e1000e: fix accessing to suspended device
[pandora-kernel.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
53
54 #include "e1000.h"
55
56 #define DRV_EXTRAVERSION "-k"
57
58 #define DRV_VERSION "2.2.14" DRV_EXTRAVERSION
59 char e1000e_driver_name[] = "e1000e";
60 const char e1000e_driver_version[] = DRV_VERSION;
61
62 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
63 static int debug = -1;
64 module_param(debug, int, 0);
65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
66
67 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
68
69 static const struct e1000_info *e1000_info_tbl[] = {
70         [board_82571]           = &e1000_82571_info,
71         [board_82572]           = &e1000_82572_info,
72         [board_82573]           = &e1000_82573_info,
73         [board_82574]           = &e1000_82574_info,
74         [board_82583]           = &e1000_82583_info,
75         [board_80003es2lan]     = &e1000_es2_info,
76         [board_ich8lan]         = &e1000_ich8_info,
77         [board_ich9lan]         = &e1000_ich9_info,
78         [board_ich10lan]        = &e1000_ich10_info,
79         [board_pchlan]          = &e1000_pch_info,
80         [board_pch2lan]         = &e1000_pch2_info,
81         [board_pch_lpt]         = &e1000_pch_lpt_info,
82 };
83
84 struct e1000_reg_info {
85         u32 ofs;
86         char *name;
87 };
88
89 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
90         /* General Registers */
91         {E1000_CTRL, "CTRL"},
92         {E1000_STATUS, "STATUS"},
93         {E1000_CTRL_EXT, "CTRL_EXT"},
94
95         /* Interrupt Registers */
96         {E1000_ICR, "ICR"},
97
98         /* Rx Registers */
99         {E1000_RCTL, "RCTL"},
100         {E1000_RDLEN(0), "RDLEN"},
101         {E1000_RDH(0), "RDH"},
102         {E1000_RDT(0), "RDT"},
103         {E1000_RDTR, "RDTR"},
104         {E1000_RXDCTL(0), "RXDCTL"},
105         {E1000_ERT, "ERT"},
106         {E1000_RDBAL(0), "RDBAL"},
107         {E1000_RDBAH(0), "RDBAH"},
108         {E1000_RDFH, "RDFH"},
109         {E1000_RDFT, "RDFT"},
110         {E1000_RDFHS, "RDFHS"},
111         {E1000_RDFTS, "RDFTS"},
112         {E1000_RDFPC, "RDFPC"},
113
114         /* Tx Registers */
115         {E1000_TCTL, "TCTL"},
116         {E1000_TDBAL(0), "TDBAL"},
117         {E1000_TDBAH(0), "TDBAH"},
118         {E1000_TDLEN(0), "TDLEN"},
119         {E1000_TDH(0), "TDH"},
120         {E1000_TDT(0), "TDT"},
121         {E1000_TIDV, "TIDV"},
122         {E1000_TXDCTL(0), "TXDCTL"},
123         {E1000_TADV, "TADV"},
124         {E1000_TARC(0), "TARC"},
125         {E1000_TDFH, "TDFH"},
126         {E1000_TDFT, "TDFT"},
127         {E1000_TDFHS, "TDFHS"},
128         {E1000_TDFTS, "TDFTS"},
129         {E1000_TDFPC, "TDFPC"},
130
131         /* List Terminator */
132         {0, NULL}
133 };
134
135 /**
136  * e1000_regdump - register printout routine
137  * @hw: pointer to the HW structure
138  * @reginfo: pointer to the register info table
139  **/
140 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
141 {
142         int n = 0;
143         char rname[16];
144         u32 regs[8];
145
146         switch (reginfo->ofs) {
147         case E1000_RXDCTL(0):
148                 for (n = 0; n < 2; n++)
149                         regs[n] = __er32(hw, E1000_RXDCTL(n));
150                 break;
151         case E1000_TXDCTL(0):
152                 for (n = 0; n < 2; n++)
153                         regs[n] = __er32(hw, E1000_TXDCTL(n));
154                 break;
155         case E1000_TARC(0):
156                 for (n = 0; n < 2; n++)
157                         regs[n] = __er32(hw, E1000_TARC(n));
158                 break;
159         default:
160                 pr_info("%-15s %08x\n",
161                         reginfo->name, __er32(hw, reginfo->ofs));
162                 return;
163         }
164
165         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
166         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
167 }
168
169 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
170                                  struct e1000_buffer *bi)
171 {
172         int i;
173         struct e1000_ps_page *ps_page;
174
175         for (i = 0; i < adapter->rx_ps_pages; i++) {
176                 ps_page = &bi->ps_pages[i];
177
178                 if (ps_page->page) {
179                         pr_info("packet dump for ps_page %d:\n", i);
180                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
181                                        16, 1, page_address(ps_page->page),
182                                        PAGE_SIZE, true);
183                 }
184         }
185 }
186
187 /**
188  * e1000e_dump - Print registers, Tx-ring and Rx-ring
189  * @adapter: board private structure
190  **/
191 static void e1000e_dump(struct e1000_adapter *adapter)
192 {
193         struct net_device *netdev = adapter->netdev;
194         struct e1000_hw *hw = &adapter->hw;
195         struct e1000_reg_info *reginfo;
196         struct e1000_ring *tx_ring = adapter->tx_ring;
197         struct e1000_tx_desc *tx_desc;
198         struct my_u0 {
199                 __le64 a;
200                 __le64 b;
201         } *u0;
202         struct e1000_buffer *buffer_info;
203         struct e1000_ring *rx_ring = adapter->rx_ring;
204         union e1000_rx_desc_packet_split *rx_desc_ps;
205         union e1000_rx_desc_extended *rx_desc;
206         struct my_u1 {
207                 __le64 a;
208                 __le64 b;
209                 __le64 c;
210                 __le64 d;
211         } *u1;
212         u32 staterr;
213         int i = 0;
214
215         if (!netif_msg_hw(adapter))
216                 return;
217
218         /* Print netdevice Info */
219         if (netdev) {
220                 dev_info(&adapter->pdev->dev, "Net device Info\n");
221                 pr_info("Device Name     state            trans_start      last_rx\n");
222                 pr_info("%-15s %016lX %016lX %016lX\n",
223                         netdev->name, netdev->state, netdev->trans_start,
224                         netdev->last_rx);
225         }
226
227         /* Print Registers */
228         dev_info(&adapter->pdev->dev, "Register Dump\n");
229         pr_info(" Register Name   Value\n");
230         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
231              reginfo->name; reginfo++) {
232                 e1000_regdump(hw, reginfo);
233         }
234
235         /* Print Tx Ring Summary */
236         if (!netdev || !netif_running(netdev))
237                 return;
238
239         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
240         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
241         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
242         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
243                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
244                 (unsigned long long)buffer_info->dma,
245                 buffer_info->length,
246                 buffer_info->next_to_watch,
247                 (unsigned long long)buffer_info->time_stamp);
248
249         /* Print Tx Ring */
250         if (!netif_msg_tx_done(adapter))
251                 goto rx_ring_summary;
252
253         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
254
255         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
256          *
257          * Legacy Transmit Descriptor
258          *   +--------------------------------------------------------------+
259          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
260          *   +--------------------------------------------------------------+
261          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
262          *   +--------------------------------------------------------------+
263          *   63       48 47        36 35    32 31     24 23    16 15        0
264          *
265          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
266          *   63      48 47    40 39       32 31             16 15    8 7      0
267          *   +----------------------------------------------------------------+
268          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
269          *   +----------------------------------------------------------------+
270          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
271          *   +----------------------------------------------------------------+
272          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
273          *
274          * Extended Data Descriptor (DTYP=0x1)
275          *   +----------------------------------------------------------------+
276          * 0 |                     Buffer Address [63:0]                      |
277          *   +----------------------------------------------------------------+
278          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
279          *   +----------------------------------------------------------------+
280          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
281          */
282         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
283         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
284         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
285         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
286                 const char *next_desc;
287                 tx_desc = E1000_TX_DESC(*tx_ring, i);
288                 buffer_info = &tx_ring->buffer_info[i];
289                 u0 = (struct my_u0 *)tx_desc;
290                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
291                         next_desc = " NTC/U";
292                 else if (i == tx_ring->next_to_use)
293                         next_desc = " NTU";
294                 else if (i == tx_ring->next_to_clean)
295                         next_desc = " NTC";
296                 else
297                         next_desc = "";
298                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
299                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
300                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
301                         i,
302                         (unsigned long long)le64_to_cpu(u0->a),
303                         (unsigned long long)le64_to_cpu(u0->b),
304                         (unsigned long long)buffer_info->dma,
305                         buffer_info->length, buffer_info->next_to_watch,
306                         (unsigned long long)buffer_info->time_stamp,
307                         buffer_info->skb, next_desc);
308
309                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
310                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
311                                        16, 1, buffer_info->skb->data,
312                                        buffer_info->skb->len, true);
313         }
314
315         /* Print Rx Ring Summary */
316 rx_ring_summary:
317         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
318         pr_info("Queue [NTU] [NTC]\n");
319         pr_info(" %5d %5X %5X\n",
320                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
321
322         /* Print Rx Ring */
323         if (!netif_msg_rx_status(adapter))
324                 return;
325
326         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
327         switch (adapter->rx_ps_pages) {
328         case 1:
329         case 2:
330         case 3:
331                 /* [Extended] Packet Split Receive Descriptor Format
332                  *
333                  *    +-----------------------------------------------------+
334                  *  0 |                Buffer Address 0 [63:0]              |
335                  *    +-----------------------------------------------------+
336                  *  8 |                Buffer Address 1 [63:0]              |
337                  *    +-----------------------------------------------------+
338                  * 16 |                Buffer Address 2 [63:0]              |
339                  *    +-----------------------------------------------------+
340                  * 24 |                Buffer Address 3 [63:0]              |
341                  *    +-----------------------------------------------------+
342                  */
343                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
344                 /* [Extended] Receive Descriptor (Write-Back) Format
345                  *
346                  *   63       48 47    32 31     13 12    8 7    4 3        0
347                  *   +------------------------------------------------------+
348                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
349                  *   | Checksum | Ident  |         | Queue |      |  Type   |
350                  *   +------------------------------------------------------+
351                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
352                  *   +------------------------------------------------------+
353                  *   63       48 47    32 31            20 19               0
354                  */
355                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
356                 for (i = 0; i < rx_ring->count; i++) {
357                         const char *next_desc;
358                         buffer_info = &rx_ring->buffer_info[i];
359                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
360                         u1 = (struct my_u1 *)rx_desc_ps;
361                         staterr =
362                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
363
364                         if (i == rx_ring->next_to_use)
365                                 next_desc = " NTU";
366                         else if (i == rx_ring->next_to_clean)
367                                 next_desc = " NTC";
368                         else
369                                 next_desc = "";
370
371                         if (staterr & E1000_RXD_STAT_DD) {
372                                 /* Descriptor Done */
373                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
374                                         "RWB", i,
375                                         (unsigned long long)le64_to_cpu(u1->a),
376                                         (unsigned long long)le64_to_cpu(u1->b),
377                                         (unsigned long long)le64_to_cpu(u1->c),
378                                         (unsigned long long)le64_to_cpu(u1->d),
379                                         buffer_info->skb, next_desc);
380                         } else {
381                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
382                                         "R  ", i,
383                                         (unsigned long long)le64_to_cpu(u1->a),
384                                         (unsigned long long)le64_to_cpu(u1->b),
385                                         (unsigned long long)le64_to_cpu(u1->c),
386                                         (unsigned long long)le64_to_cpu(u1->d),
387                                         (unsigned long long)buffer_info->dma,
388                                         buffer_info->skb, next_desc);
389
390                                 if (netif_msg_pktdata(adapter))
391                                         e1000e_dump_ps_pages(adapter,
392                                                              buffer_info);
393                         }
394                 }
395                 break;
396         default:
397         case 0:
398                 /* Extended Receive Descriptor (Read) Format
399                  *
400                  *   +-----------------------------------------------------+
401                  * 0 |                Buffer Address [63:0]                |
402                  *   +-----------------------------------------------------+
403                  * 8 |                      Reserved                       |
404                  *   +-----------------------------------------------------+
405                  */
406                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
407                 /* Extended Receive Descriptor (Write-Back) Format
408                  *
409                  *   63       48 47    32 31    24 23            4 3        0
410                  *   +------------------------------------------------------+
411                  *   |     RSS Hash      |        |               |         |
412                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
413                  *   | Packet   | IP     |        |               |  Type   |
414                  *   | Checksum | Ident  |        |               |         |
415                  *   +------------------------------------------------------+
416                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
417                  *   +------------------------------------------------------+
418                  *   63       48 47    32 31            20 19               0
419                  */
420                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
421
422                 for (i = 0; i < rx_ring->count; i++) {
423                         const char *next_desc;
424
425                         buffer_info = &rx_ring->buffer_info[i];
426                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
427                         u1 = (struct my_u1 *)rx_desc;
428                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
429
430                         if (i == rx_ring->next_to_use)
431                                 next_desc = " NTU";
432                         else if (i == rx_ring->next_to_clean)
433                                 next_desc = " NTC";
434                         else
435                                 next_desc = "";
436
437                         if (staterr & E1000_RXD_STAT_DD) {
438                                 /* Descriptor Done */
439                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
440                                         "RWB", i,
441                                         (unsigned long long)le64_to_cpu(u1->a),
442                                         (unsigned long long)le64_to_cpu(u1->b),
443                                         buffer_info->skb, next_desc);
444                         } else {
445                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
446                                         "R  ", i,
447                                         (unsigned long long)le64_to_cpu(u1->a),
448                                         (unsigned long long)le64_to_cpu(u1->b),
449                                         (unsigned long long)buffer_info->dma,
450                                         buffer_info->skb, next_desc);
451
452                                 if (netif_msg_pktdata(adapter) &&
453                                     buffer_info->skb)
454                                         print_hex_dump(KERN_INFO, "",
455                                                        DUMP_PREFIX_ADDRESS, 16,
456                                                        1,
457                                                        buffer_info->skb->data,
458                                                        adapter->rx_buffer_len,
459                                                        true);
460                         }
461                 }
462         }
463 }
464
465 /**
466  * e1000_desc_unused - calculate if we have unused descriptors
467  **/
468 static int e1000_desc_unused(struct e1000_ring *ring)
469 {
470         if (ring->next_to_clean > ring->next_to_use)
471                 return ring->next_to_clean - ring->next_to_use - 1;
472
473         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
474 }
475
476 /**
477  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
478  * @adapter: board private structure
479  * @hwtstamps: time stamp structure to update
480  * @systim: unsigned 64bit system time value.
481  *
482  * Convert the system time value stored in the RX/TXSTMP registers into a
483  * hwtstamp which can be used by the upper level time stamping functions.
484  *
485  * The 'systim_lock' spinlock is used to protect the consistency of the
486  * system time value. This is needed because reading the 64 bit time
487  * value involves reading two 32 bit registers. The first read latches the
488  * value.
489  **/
490 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
491                                       struct skb_shared_hwtstamps *hwtstamps,
492                                       u64 systim)
493 {
494         u64 ns;
495         unsigned long flags;
496
497         spin_lock_irqsave(&adapter->systim_lock, flags);
498         ns = timecounter_cyc2time(&adapter->tc, systim);
499         spin_unlock_irqrestore(&adapter->systim_lock, flags);
500
501         memset(hwtstamps, 0, sizeof(*hwtstamps));
502         hwtstamps->hwtstamp = ns_to_ktime(ns);
503 }
504
505 /**
506  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
507  * @adapter: board private structure
508  * @status: descriptor extended error and status field
509  * @skb: particular skb to include time stamp
510  *
511  * If the time stamp is valid, convert it into the timecounter ns value
512  * and store that result into the shhwtstamps structure which is passed
513  * up the network stack.
514  **/
515 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
516                                struct sk_buff *skb)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u64 rxstmp;
520
521         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
522             !(status & E1000_RXDEXT_STATERR_TST) ||
523             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
524                 return;
525
526         /* The Rx time stamp registers contain the time stamp.  No other
527          * received packet will be time stamped until the Rx time stamp
528          * registers are read.  Because only one packet can be time stamped
529          * at a time, the register values must belong to this packet and
530          * therefore none of the other additional attributes need to be
531          * compared.
532          */
533         rxstmp = (u64)er32(RXSTMPL);
534         rxstmp |= (u64)er32(RXSTMPH) << 32;
535         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
536
537         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
538 }
539
540 /**
541  * e1000_receive_skb - helper function to handle Rx indications
542  * @adapter: board private structure
543  * @staterr: descriptor extended error and status field as written by hardware
544  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
545  * @skb: pointer to sk_buff to be indicated to stack
546  **/
547 static void e1000_receive_skb(struct e1000_adapter *adapter,
548                               struct net_device *netdev, struct sk_buff *skb,
549                               u32 staterr, __le16 vlan)
550 {
551         u16 tag = le16_to_cpu(vlan);
552
553         e1000e_rx_hwtstamp(adapter, staterr, skb);
554
555         skb->protocol = eth_type_trans(skb, netdev);
556
557         if (staterr & E1000_RXD_STAT_VP)
558                 __vlan_hwaccel_put_tag(skb, tag);
559
560         napi_gro_receive(&adapter->napi, skb);
561 }
562
563 /**
564  * e1000_rx_checksum - Receive Checksum Offload
565  * @adapter: board private structure
566  * @status_err: receive descriptor status and error fields
567  * @csum: receive descriptor csum field
568  * @sk_buff: socket buffer with received data
569  **/
570 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
571                               struct sk_buff *skb)
572 {
573         u16 status = (u16)status_err;
574         u8 errors = (u8)(status_err >> 24);
575
576         skb_checksum_none_assert(skb);
577
578         /* Rx checksum disabled */
579         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
580                 return;
581
582         /* Ignore Checksum bit is set */
583         if (status & E1000_RXD_STAT_IXSM)
584                 return;
585
586         /* TCP/UDP checksum error bit or IP checksum error bit is set */
587         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
588                 /* let the stack verify checksum errors */
589                 adapter->hw_csum_err++;
590                 return;
591         }
592
593         /* TCP/UDP Checksum has not been calculated */
594         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
595                 return;
596
597         /* It must be a TCP or UDP packet with a valid checksum */
598         skb->ip_summed = CHECKSUM_UNNECESSARY;
599         adapter->hw_csum_good++;
600 }
601
602 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
603 {
604         struct e1000_adapter *adapter = rx_ring->adapter;
605         struct e1000_hw *hw = &adapter->hw;
606         s32 ret_val = __ew32_prepare(hw);
607
608         writel(i, rx_ring->tail);
609
610         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
611                 u32 rctl = er32(RCTL);
612                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
613                 e_err("ME firmware caused invalid RDT - resetting\n");
614                 schedule_work(&adapter->reset_task);
615         }
616 }
617
618 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
619 {
620         struct e1000_adapter *adapter = tx_ring->adapter;
621         struct e1000_hw *hw = &adapter->hw;
622         s32 ret_val = __ew32_prepare(hw);
623
624         writel(i, tx_ring->tail);
625
626         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
627                 u32 tctl = er32(TCTL);
628                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
629                 e_err("ME firmware caused invalid TDT - resetting\n");
630                 schedule_work(&adapter->reset_task);
631         }
632 }
633
634 /**
635  * e1000_alloc_rx_buffers - Replace used receive buffers
636  * @rx_ring: Rx descriptor ring
637  **/
638 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
639                                    int cleaned_count, gfp_t gfp)
640 {
641         struct e1000_adapter *adapter = rx_ring->adapter;
642         struct net_device *netdev = adapter->netdev;
643         struct pci_dev *pdev = adapter->pdev;
644         union e1000_rx_desc_extended *rx_desc;
645         struct e1000_buffer *buffer_info;
646         struct sk_buff *skb;
647         unsigned int i;
648         unsigned int bufsz = adapter->rx_buffer_len;
649
650         i = rx_ring->next_to_use;
651         buffer_info = &rx_ring->buffer_info[i];
652
653         while (cleaned_count--) {
654                 skb = buffer_info->skb;
655                 if (skb) {
656                         skb_trim(skb, 0);
657                         goto map_skb;
658                 }
659
660                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
661                 if (!skb) {
662                         /* Better luck next round */
663                         adapter->alloc_rx_buff_failed++;
664                         break;
665                 }
666
667                 buffer_info->skb = skb;
668 map_skb:
669                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
670                                                   adapter->rx_buffer_len,
671                                                   DMA_FROM_DEVICE);
672                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
673                         dev_err(&pdev->dev, "Rx DMA map failed\n");
674                         adapter->rx_dma_failed++;
675                         break;
676                 }
677
678                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
679                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
680
681                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
682                         /* Force memory writes to complete before letting h/w
683                          * know there are new descriptors to fetch.  (Only
684                          * applicable for weak-ordered memory model archs,
685                          * such as IA-64).
686                          */
687                         wmb();
688                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
689                                 e1000e_update_rdt_wa(rx_ring, i);
690                         else
691                                 writel(i, rx_ring->tail);
692                 }
693                 i++;
694                 if (i == rx_ring->count)
695                         i = 0;
696                 buffer_info = &rx_ring->buffer_info[i];
697         }
698
699         rx_ring->next_to_use = i;
700 }
701
702 /**
703  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
704  * @rx_ring: Rx descriptor ring
705  **/
706 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
707                                       int cleaned_count, gfp_t gfp)
708 {
709         struct e1000_adapter *adapter = rx_ring->adapter;
710         struct net_device *netdev = adapter->netdev;
711         struct pci_dev *pdev = adapter->pdev;
712         union e1000_rx_desc_packet_split *rx_desc;
713         struct e1000_buffer *buffer_info;
714         struct e1000_ps_page *ps_page;
715         struct sk_buff *skb;
716         unsigned int i, j;
717
718         i = rx_ring->next_to_use;
719         buffer_info = &rx_ring->buffer_info[i];
720
721         while (cleaned_count--) {
722                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
723
724                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
725                         ps_page = &buffer_info->ps_pages[j];
726                         if (j >= adapter->rx_ps_pages) {
727                                 /* all unused desc entries get hw null ptr */
728                                 rx_desc->read.buffer_addr[j + 1] =
729                                     ~cpu_to_le64(0);
730                                 continue;
731                         }
732                         if (!ps_page->page) {
733                                 ps_page->page = alloc_page(gfp);
734                                 if (!ps_page->page) {
735                                         adapter->alloc_rx_buff_failed++;
736                                         goto no_buffers;
737                                 }
738                                 ps_page->dma = dma_map_page(&pdev->dev,
739                                                             ps_page->page,
740                                                             0, PAGE_SIZE,
741                                                             DMA_FROM_DEVICE);
742                                 if (dma_mapping_error(&pdev->dev,
743                                                       ps_page->dma)) {
744                                         dev_err(&adapter->pdev->dev,
745                                                 "Rx DMA page map failed\n");
746                                         adapter->rx_dma_failed++;
747                                         goto no_buffers;
748                                 }
749                         }
750                         /* Refresh the desc even if buffer_addrs
751                          * didn't change because each write-back
752                          * erases this info.
753                          */
754                         rx_desc->read.buffer_addr[j + 1] =
755                             cpu_to_le64(ps_page->dma);
756                 }
757
758                 skb = __netdev_alloc_skb_ip_align(netdev,
759                                                   adapter->rx_ps_bsize0,
760                                                   gfp);
761
762                 if (!skb) {
763                         adapter->alloc_rx_buff_failed++;
764                         break;
765                 }
766
767                 buffer_info->skb = skb;
768                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
769                                                   adapter->rx_ps_bsize0,
770                                                   DMA_FROM_DEVICE);
771                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
772                         dev_err(&pdev->dev, "Rx DMA map failed\n");
773                         adapter->rx_dma_failed++;
774                         /* cleanup skb */
775                         dev_kfree_skb_any(skb);
776                         buffer_info->skb = NULL;
777                         break;
778                 }
779
780                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
781
782                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
783                         /* Force memory writes to complete before letting h/w
784                          * know there are new descriptors to fetch.  (Only
785                          * applicable for weak-ordered memory model archs,
786                          * such as IA-64).
787                          */
788                         wmb();
789                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
790                                 e1000e_update_rdt_wa(rx_ring, i << 1);
791                         else
792                                 writel(i << 1, rx_ring->tail);
793                 }
794
795                 i++;
796                 if (i == rx_ring->count)
797                         i = 0;
798                 buffer_info = &rx_ring->buffer_info[i];
799         }
800
801 no_buffers:
802         rx_ring->next_to_use = i;
803 }
804
805 /**
806  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
807  * @rx_ring: Rx descriptor ring
808  * @cleaned_count: number of buffers to allocate this pass
809  **/
810
811 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
812                                          int cleaned_count, gfp_t gfp)
813 {
814         struct e1000_adapter *adapter = rx_ring->adapter;
815         struct net_device *netdev = adapter->netdev;
816         struct pci_dev *pdev = adapter->pdev;
817         union e1000_rx_desc_extended *rx_desc;
818         struct e1000_buffer *buffer_info;
819         struct sk_buff *skb;
820         unsigned int i;
821         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
822
823         i = rx_ring->next_to_use;
824         buffer_info = &rx_ring->buffer_info[i];
825
826         while (cleaned_count--) {
827                 skb = buffer_info->skb;
828                 if (skb) {
829                         skb_trim(skb, 0);
830                         goto check_page;
831                 }
832
833                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
834                 if (unlikely(!skb)) {
835                         /* Better luck next round */
836                         adapter->alloc_rx_buff_failed++;
837                         break;
838                 }
839
840                 buffer_info->skb = skb;
841 check_page:
842                 /* allocate a new page if necessary */
843                 if (!buffer_info->page) {
844                         buffer_info->page = alloc_page(gfp);
845                         if (unlikely(!buffer_info->page)) {
846                                 adapter->alloc_rx_buff_failed++;
847                                 break;
848                         }
849                 }
850
851                 if (!buffer_info->dma)
852                         buffer_info->dma = dma_map_page(&pdev->dev,
853                                                         buffer_info->page, 0,
854                                                         PAGE_SIZE,
855                                                         DMA_FROM_DEVICE);
856
857                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
858                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
859
860                 if (unlikely(++i == rx_ring->count))
861                         i = 0;
862                 buffer_info = &rx_ring->buffer_info[i];
863         }
864
865         if (likely(rx_ring->next_to_use != i)) {
866                 rx_ring->next_to_use = i;
867                 if (unlikely(i-- == 0))
868                         i = (rx_ring->count - 1);
869
870                 /* Force memory writes to complete before letting h/w
871                  * know there are new descriptors to fetch.  (Only
872                  * applicable for weak-ordered memory model archs,
873                  * such as IA-64).
874                  */
875                 wmb();
876                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
877                         e1000e_update_rdt_wa(rx_ring, i);
878                 else
879                         writel(i, rx_ring->tail);
880         }
881 }
882
883 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
884                                  struct sk_buff *skb)
885 {
886         if (netdev->features & NETIF_F_RXHASH)
887                 skb->rxhash = le32_to_cpu(rss);
888 }
889
890 /**
891  * e1000_clean_rx_irq - Send received data up the network stack
892  * @rx_ring: Rx descriptor ring
893  *
894  * the return value indicates whether actual cleaning was done, there
895  * is no guarantee that everything was cleaned
896  **/
897 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
898                                int work_to_do)
899 {
900         struct e1000_adapter *adapter = rx_ring->adapter;
901         struct net_device *netdev = adapter->netdev;
902         struct pci_dev *pdev = adapter->pdev;
903         struct e1000_hw *hw = &adapter->hw;
904         union e1000_rx_desc_extended *rx_desc, *next_rxd;
905         struct e1000_buffer *buffer_info, *next_buffer;
906         u32 length, staterr;
907         unsigned int i;
908         int cleaned_count = 0;
909         bool cleaned = false;
910         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
911
912         i = rx_ring->next_to_clean;
913         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
914         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
915         buffer_info = &rx_ring->buffer_info[i];
916
917         while (staterr & E1000_RXD_STAT_DD) {
918                 struct sk_buff *skb;
919
920                 if (*work_done >= work_to_do)
921                         break;
922                 (*work_done)++;
923                 rmb();  /* read descriptor and rx_buffer_info after status DD */
924
925                 skb = buffer_info->skb;
926                 buffer_info->skb = NULL;
927
928                 prefetch(skb->data - NET_IP_ALIGN);
929
930                 i++;
931                 if (i == rx_ring->count)
932                         i = 0;
933                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
934                 prefetch(next_rxd);
935
936                 next_buffer = &rx_ring->buffer_info[i];
937
938                 cleaned = true;
939                 cleaned_count++;
940                 dma_unmap_single(&pdev->dev,
941                                  buffer_info->dma,
942                                  adapter->rx_buffer_len,
943                                  DMA_FROM_DEVICE);
944                 buffer_info->dma = 0;
945
946                 length = le16_to_cpu(rx_desc->wb.upper.length);
947
948                 /* !EOP means multiple descriptors were used to store a single
949                  * packet, if that's the case we need to toss it.  In fact, we
950                  * need to toss every packet with the EOP bit clear and the
951                  * next frame that _does_ have the EOP bit set, as it is by
952                  * definition only a frame fragment
953                  */
954                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
955                         adapter->flags2 |= FLAG2_IS_DISCARDING;
956
957                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
958                         /* All receives must fit into a single buffer */
959                         e_dbg("Receive packet consumed multiple buffers\n");
960                         /* recycle */
961                         buffer_info->skb = skb;
962                         if (staterr & E1000_RXD_STAT_EOP)
963                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
964                         goto next_desc;
965                 }
966
967                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
968                              !(netdev->features & NETIF_F_RXALL))) {
969                         /* recycle */
970                         buffer_info->skb = skb;
971                         goto next_desc;
972                 }
973
974                 /* adjust length to remove Ethernet CRC */
975                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
976                         /* If configured to store CRC, don't subtract FCS,
977                          * but keep the FCS bytes out of the total_rx_bytes
978                          * counter
979                          */
980                         if (netdev->features & NETIF_F_RXFCS)
981                                 total_rx_bytes -= 4;
982                         else
983                                 length -= 4;
984                 }
985
986                 total_rx_bytes += length;
987                 total_rx_packets++;
988
989                 /* code added for copybreak, this should improve
990                  * performance for small packets with large amounts
991                  * of reassembly being done in the stack
992                  */
993                 if (length < copybreak) {
994                         struct sk_buff *new_skb =
995                             netdev_alloc_skb_ip_align(netdev, length);
996                         if (new_skb) {
997                                 skb_copy_to_linear_data_offset(new_skb,
998                                                                -NET_IP_ALIGN,
999                                                                (skb->data -
1000                                                                 NET_IP_ALIGN),
1001                                                                (length +
1002                                                                 NET_IP_ALIGN));
1003                                 /* save the skb in buffer_info as good */
1004                                 buffer_info->skb = skb;
1005                                 skb = new_skb;
1006                         }
1007                         /* else just continue with the old one */
1008                 }
1009                 /* end copybreak code */
1010                 skb_put(skb, length);
1011
1012                 /* Receive Checksum Offload */
1013                 e1000_rx_checksum(adapter, staterr, skb);
1014
1015                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1016
1017                 e1000_receive_skb(adapter, netdev, skb, staterr,
1018                                   rx_desc->wb.upper.vlan);
1019
1020 next_desc:
1021                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1022
1023                 /* return some buffers to hardware, one at a time is too slow */
1024                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1025                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1026                                               GFP_ATOMIC);
1027                         cleaned_count = 0;
1028                 }
1029
1030                 /* use prefetched values */
1031                 rx_desc = next_rxd;
1032                 buffer_info = next_buffer;
1033
1034                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1035         }
1036         rx_ring->next_to_clean = i;
1037
1038         cleaned_count = e1000_desc_unused(rx_ring);
1039         if (cleaned_count)
1040                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1041
1042         adapter->total_rx_bytes += total_rx_bytes;
1043         adapter->total_rx_packets += total_rx_packets;
1044         return cleaned;
1045 }
1046
1047 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1048                             struct e1000_buffer *buffer_info)
1049 {
1050         struct e1000_adapter *adapter = tx_ring->adapter;
1051
1052         if (buffer_info->dma) {
1053                 if (buffer_info->mapped_as_page)
1054                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1055                                        buffer_info->length, DMA_TO_DEVICE);
1056                 else
1057                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1058                                          buffer_info->length, DMA_TO_DEVICE);
1059                 buffer_info->dma = 0;
1060         }
1061         if (buffer_info->skb) {
1062                 dev_kfree_skb_any(buffer_info->skb);
1063                 buffer_info->skb = NULL;
1064         }
1065         buffer_info->time_stamp = 0;
1066 }
1067
1068 static void e1000_print_hw_hang(struct work_struct *work)
1069 {
1070         struct e1000_adapter *adapter = container_of(work,
1071                                                      struct e1000_adapter,
1072                                                      print_hang_task);
1073         struct net_device *netdev = adapter->netdev;
1074         struct e1000_ring *tx_ring = adapter->tx_ring;
1075         unsigned int i = tx_ring->next_to_clean;
1076         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1077         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1078         struct e1000_hw *hw = &adapter->hw;
1079         u16 phy_status, phy_1000t_status, phy_ext_status;
1080         u16 pci_status;
1081
1082         if (test_bit(__E1000_DOWN, &adapter->state))
1083                 return;
1084
1085         if (!adapter->tx_hang_recheck &&
1086             (adapter->flags2 & FLAG2_DMA_BURST)) {
1087                 /* May be block on write-back, flush and detect again
1088                  * flush pending descriptor writebacks to memory
1089                  */
1090                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1091                 /* execute the writes immediately */
1092                 e1e_flush();
1093                 /* Due to rare timing issues, write to TIDV again to ensure
1094                  * the write is successful
1095                  */
1096                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1097                 /* execute the writes immediately */
1098                 e1e_flush();
1099                 adapter->tx_hang_recheck = true;
1100                 return;
1101         }
1102         /* Real hang detected */
1103         adapter->tx_hang_recheck = false;
1104         netif_stop_queue(netdev);
1105
1106         e1e_rphy(hw, MII_BMSR, &phy_status);
1107         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1108         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1109
1110         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1111
1112         /* detected Hardware unit hang */
1113         e_err("Detected Hardware Unit Hang:\n"
1114               "  TDH                  <%x>\n"
1115               "  TDT                  <%x>\n"
1116               "  next_to_use          <%x>\n"
1117               "  next_to_clean        <%x>\n"
1118               "buffer_info[next_to_clean]:\n"
1119               "  time_stamp           <%lx>\n"
1120               "  next_to_watch        <%x>\n"
1121               "  jiffies              <%lx>\n"
1122               "  next_to_watch.status <%x>\n"
1123               "MAC Status             <%x>\n"
1124               "PHY Status             <%x>\n"
1125               "PHY 1000BASE-T Status  <%x>\n"
1126               "PHY Extended Status    <%x>\n"
1127               "PCI Status             <%x>\n",
1128               readl(tx_ring->head),
1129               readl(tx_ring->tail),
1130               tx_ring->next_to_use,
1131               tx_ring->next_to_clean,
1132               tx_ring->buffer_info[eop].time_stamp,
1133               eop,
1134               jiffies,
1135               eop_desc->upper.fields.status,
1136               er32(STATUS),
1137               phy_status,
1138               phy_1000t_status,
1139               phy_ext_status,
1140               pci_status);
1141
1142         /* Suggest workaround for known h/w issue */
1143         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1144                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1145 }
1146
1147 /**
1148  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1149  * @work: pointer to work struct
1150  *
1151  * This work function polls the TSYNCTXCTL valid bit to determine when a
1152  * timestamp has been taken for the current stored skb.  The timestamp must
1153  * be for this skb because only one such packet is allowed in the queue.
1154  */
1155 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1156 {
1157         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1158                                                      tx_hwtstamp_work);
1159         struct e1000_hw *hw = &adapter->hw;
1160
1161         if (!adapter->tx_hwtstamp_skb)
1162                 return;
1163
1164         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1165                 struct skb_shared_hwtstamps shhwtstamps;
1166                 u64 txstmp;
1167
1168                 txstmp = er32(TXSTMPL);
1169                 txstmp |= (u64)er32(TXSTMPH) << 32;
1170
1171                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1172
1173                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1174                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1175                 adapter->tx_hwtstamp_skb = NULL;
1176         } else {
1177                 /* reschedule to check later */
1178                 schedule_work(&adapter->tx_hwtstamp_work);
1179         }
1180 }
1181
1182 /**
1183  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1184  * @tx_ring: Tx descriptor ring
1185  *
1186  * the return value indicates whether actual cleaning was done, there
1187  * is no guarantee that everything was cleaned
1188  **/
1189 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1190 {
1191         struct e1000_adapter *adapter = tx_ring->adapter;
1192         struct net_device *netdev = adapter->netdev;
1193         struct e1000_hw *hw = &adapter->hw;
1194         struct e1000_tx_desc *tx_desc, *eop_desc;
1195         struct e1000_buffer *buffer_info;
1196         unsigned int i, eop;
1197         unsigned int count = 0;
1198         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1199         unsigned int bytes_compl = 0, pkts_compl = 0;
1200
1201         i = tx_ring->next_to_clean;
1202         eop = tx_ring->buffer_info[i].next_to_watch;
1203         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1204
1205         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1206                (count < tx_ring->count)) {
1207                 bool cleaned = false;
1208                 rmb(); /* read buffer_info after eop_desc */
1209                 for (; !cleaned; count++) {
1210                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1211                         buffer_info = &tx_ring->buffer_info[i];
1212                         cleaned = (i == eop);
1213
1214                         if (cleaned) {
1215                                 total_tx_packets += buffer_info->segs;
1216                                 total_tx_bytes += buffer_info->bytecount;
1217                                 if (buffer_info->skb) {
1218                                         bytes_compl += buffer_info->skb->len;
1219                                         pkts_compl++;
1220                                 }
1221                         }
1222
1223                         e1000_put_txbuf(tx_ring, buffer_info);
1224                         tx_desc->upper.data = 0;
1225
1226                         i++;
1227                         if (i == tx_ring->count)
1228                                 i = 0;
1229                 }
1230
1231                 if (i == tx_ring->next_to_use)
1232                         break;
1233                 eop = tx_ring->buffer_info[i].next_to_watch;
1234                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1235         }
1236
1237         tx_ring->next_to_clean = i;
1238
1239         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1240
1241 #define TX_WAKE_THRESHOLD 32
1242         if (count && netif_carrier_ok(netdev) &&
1243             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1244                 /* Make sure that anybody stopping the queue after this
1245                  * sees the new next_to_clean.
1246                  */
1247                 smp_mb();
1248
1249                 if (netif_queue_stopped(netdev) &&
1250                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1251                         netif_wake_queue(netdev);
1252                         ++adapter->restart_queue;
1253                 }
1254         }
1255
1256         if (adapter->detect_tx_hung) {
1257                 /* Detect a transmit hang in hardware, this serializes the
1258                  * check with the clearing of time_stamp and movement of i
1259                  */
1260                 adapter->detect_tx_hung = false;
1261                 if (tx_ring->buffer_info[i].time_stamp &&
1262                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1263                                + (adapter->tx_timeout_factor * HZ)) &&
1264                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1265                         schedule_work(&adapter->print_hang_task);
1266                 else
1267                         adapter->tx_hang_recheck = false;
1268         }
1269         adapter->total_tx_bytes += total_tx_bytes;
1270         adapter->total_tx_packets += total_tx_packets;
1271         return count < tx_ring->count;
1272 }
1273
1274 /**
1275  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1276  * @rx_ring: Rx descriptor ring
1277  *
1278  * the return value indicates whether actual cleaning was done, there
1279  * is no guarantee that everything was cleaned
1280  **/
1281 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1282                                   int work_to_do)
1283 {
1284         struct e1000_adapter *adapter = rx_ring->adapter;
1285         struct e1000_hw *hw = &adapter->hw;
1286         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1287         struct net_device *netdev = adapter->netdev;
1288         struct pci_dev *pdev = adapter->pdev;
1289         struct e1000_buffer *buffer_info, *next_buffer;
1290         struct e1000_ps_page *ps_page;
1291         struct sk_buff *skb;
1292         unsigned int i, j;
1293         u32 length, staterr;
1294         int cleaned_count = 0;
1295         bool cleaned = false;
1296         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1297
1298         i = rx_ring->next_to_clean;
1299         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1300         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1301         buffer_info = &rx_ring->buffer_info[i];
1302
1303         while (staterr & E1000_RXD_STAT_DD) {
1304                 if (*work_done >= work_to_do)
1305                         break;
1306                 (*work_done)++;
1307                 skb = buffer_info->skb;
1308                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1309
1310                 /* in the packet split case this is header only */
1311                 prefetch(skb->data - NET_IP_ALIGN);
1312
1313                 i++;
1314                 if (i == rx_ring->count)
1315                         i = 0;
1316                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1317                 prefetch(next_rxd);
1318
1319                 next_buffer = &rx_ring->buffer_info[i];
1320
1321                 cleaned = true;
1322                 cleaned_count++;
1323                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1324                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1325                 buffer_info->dma = 0;
1326
1327                 /* see !EOP comment in other Rx routine */
1328                 if (!(staterr & E1000_RXD_STAT_EOP))
1329                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1330
1331                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1332                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1333                         dev_kfree_skb_irq(skb);
1334                         if (staterr & E1000_RXD_STAT_EOP)
1335                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1336                         goto next_desc;
1337                 }
1338
1339                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1340                              !(netdev->features & NETIF_F_RXALL))) {
1341                         dev_kfree_skb_irq(skb);
1342                         goto next_desc;
1343                 }
1344
1345                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1346
1347                 if (!length) {
1348                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1349                         dev_kfree_skb_irq(skb);
1350                         goto next_desc;
1351                 }
1352
1353                 /* Good Receive */
1354                 skb_put(skb, length);
1355
1356                 {
1357                         /* this looks ugly, but it seems compiler issues make
1358                          * it more efficient than reusing j
1359                          */
1360                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1361
1362                         /* page alloc/put takes too long and effects small
1363                          * packet throughput, so unsplit small packets and
1364                          * save the alloc/put only valid in softirq (napi)
1365                          * context to call kmap_*
1366                          */
1367                         if (l1 && (l1 <= copybreak) &&
1368                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1369                                 u8 *vaddr;
1370
1371                                 ps_page = &buffer_info->ps_pages[0];
1372
1373                                 /* there is no documentation about how to call
1374                                  * kmap_atomic, so we can't hold the mapping
1375                                  * very long
1376                                  */
1377                                 dma_sync_single_for_cpu(&pdev->dev,
1378                                                         ps_page->dma,
1379                                                         PAGE_SIZE,
1380                                                         DMA_FROM_DEVICE);
1381                                 vaddr = kmap_atomic(ps_page->page);
1382                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1383                                 kunmap_atomic(vaddr);
1384                                 dma_sync_single_for_device(&pdev->dev,
1385                                                            ps_page->dma,
1386                                                            PAGE_SIZE,
1387                                                            DMA_FROM_DEVICE);
1388
1389                                 /* remove the CRC */
1390                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1391                                         if (!(netdev->features & NETIF_F_RXFCS))
1392                                                 l1 -= 4;
1393                                 }
1394
1395                                 skb_put(skb, l1);
1396                                 goto copydone;
1397                         } /* if */
1398                 }
1399
1400                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1401                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1402                         if (!length)
1403                                 break;
1404
1405                         ps_page = &buffer_info->ps_pages[j];
1406                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1407                                        DMA_FROM_DEVICE);
1408                         ps_page->dma = 0;
1409                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1410                         ps_page->page = NULL;
1411                         skb->len += length;
1412                         skb->data_len += length;
1413                         skb->truesize += PAGE_SIZE;
1414                 }
1415
1416                 /* strip the ethernet crc, problem is we're using pages now so
1417                  * this whole operation can get a little cpu intensive
1418                  */
1419                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1420                         if (!(netdev->features & NETIF_F_RXFCS))
1421                                 pskb_trim(skb, skb->len - 4);
1422                 }
1423
1424 copydone:
1425                 total_rx_bytes += skb->len;
1426                 total_rx_packets++;
1427
1428                 e1000_rx_checksum(adapter, staterr, skb);
1429
1430                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1431
1432                 if (rx_desc->wb.upper.header_status &
1433                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1434                         adapter->rx_hdr_split++;
1435
1436                 e1000_receive_skb(adapter, netdev, skb, staterr,
1437                                   rx_desc->wb.middle.vlan);
1438
1439 next_desc:
1440                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1441                 buffer_info->skb = NULL;
1442
1443                 /* return some buffers to hardware, one at a time is too slow */
1444                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1445                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1446                                               GFP_ATOMIC);
1447                         cleaned_count = 0;
1448                 }
1449
1450                 /* use prefetched values */
1451                 rx_desc = next_rxd;
1452                 buffer_info = next_buffer;
1453
1454                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1455         }
1456         rx_ring->next_to_clean = i;
1457
1458         cleaned_count = e1000_desc_unused(rx_ring);
1459         if (cleaned_count)
1460                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1461
1462         adapter->total_rx_bytes += total_rx_bytes;
1463         adapter->total_rx_packets += total_rx_packets;
1464         return cleaned;
1465 }
1466
1467 /**
1468  * e1000_consume_page - helper function
1469  **/
1470 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1471                                u16 length)
1472 {
1473         bi->page = NULL;
1474         skb->len += length;
1475         skb->data_len += length;
1476         skb->truesize += PAGE_SIZE;
1477 }
1478
1479 /**
1480  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1481  * @adapter: board private structure
1482  *
1483  * the return value indicates whether actual cleaning was done, there
1484  * is no guarantee that everything was cleaned
1485  **/
1486 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1487                                      int work_to_do)
1488 {
1489         struct e1000_adapter *adapter = rx_ring->adapter;
1490         struct net_device *netdev = adapter->netdev;
1491         struct pci_dev *pdev = adapter->pdev;
1492         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1493         struct e1000_buffer *buffer_info, *next_buffer;
1494         u32 length, staterr;
1495         unsigned int i;
1496         int cleaned_count = 0;
1497         bool cleaned = false;
1498         unsigned int total_rx_bytes=0, total_rx_packets=0;
1499
1500         i = rx_ring->next_to_clean;
1501         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1502         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1503         buffer_info = &rx_ring->buffer_info[i];
1504
1505         while (staterr & E1000_RXD_STAT_DD) {
1506                 struct sk_buff *skb;
1507
1508                 if (*work_done >= work_to_do)
1509                         break;
1510                 (*work_done)++;
1511                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1512
1513                 skb = buffer_info->skb;
1514                 buffer_info->skb = NULL;
1515
1516                 ++i;
1517                 if (i == rx_ring->count)
1518                         i = 0;
1519                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1520                 prefetch(next_rxd);
1521
1522                 next_buffer = &rx_ring->buffer_info[i];
1523
1524                 cleaned = true;
1525                 cleaned_count++;
1526                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1527                                DMA_FROM_DEVICE);
1528                 buffer_info->dma = 0;
1529
1530                 length = le16_to_cpu(rx_desc->wb.upper.length);
1531
1532                 /* errors is only valid for DD + EOP descriptors */
1533                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1534                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1535                               !(netdev->features & NETIF_F_RXALL)))) {
1536                         /* recycle both page and skb */
1537                         buffer_info->skb = skb;
1538                         /* an error means any chain goes out the window too */
1539                         if (rx_ring->rx_skb_top)
1540                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1541                         rx_ring->rx_skb_top = NULL;
1542                         goto next_desc;
1543                 }
1544
1545 #define rxtop (rx_ring->rx_skb_top)
1546                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1547                         /* this descriptor is only the beginning (or middle) */
1548                         if (!rxtop) {
1549                                 /* this is the beginning of a chain */
1550                                 rxtop = skb;
1551                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1552                                                    0, length);
1553                         } else {
1554                                 /* this is the middle of a chain */
1555                                 skb_fill_page_desc(rxtop,
1556                                     skb_shinfo(rxtop)->nr_frags,
1557                                     buffer_info->page, 0, length);
1558                                 /* re-use the skb, only consumed the page */
1559                                 buffer_info->skb = skb;
1560                         }
1561                         e1000_consume_page(buffer_info, rxtop, length);
1562                         goto next_desc;
1563                 } else {
1564                         if (rxtop) {
1565                                 /* end of the chain */
1566                                 skb_fill_page_desc(rxtop,
1567                                     skb_shinfo(rxtop)->nr_frags,
1568                                     buffer_info->page, 0, length);
1569                                 /* re-use the current skb, we only consumed the
1570                                  * page
1571                                  */
1572                                 buffer_info->skb = skb;
1573                                 skb = rxtop;
1574                                 rxtop = NULL;
1575                                 e1000_consume_page(buffer_info, skb, length);
1576                         } else {
1577                                 /* no chain, got EOP, this buf is the packet
1578                                  * copybreak to save the put_page/alloc_page
1579                                  */
1580                                 if (length <= copybreak &&
1581                                     skb_tailroom(skb) >= length) {
1582                                         u8 *vaddr;
1583                                         vaddr = kmap_atomic(buffer_info->page);
1584                                         memcpy(skb_tail_pointer(skb), vaddr,
1585                                                length);
1586                                         kunmap_atomic(vaddr);
1587                                         /* re-use the page, so don't erase
1588                                          * buffer_info->page
1589                                          */
1590                                         skb_put(skb, length);
1591                                 } else {
1592                                         skb_fill_page_desc(skb, 0,
1593                                                            buffer_info->page, 0,
1594                                                            length);
1595                                         e1000_consume_page(buffer_info, skb,
1596                                                            length);
1597                                 }
1598                         }
1599                 }
1600
1601                 /* Receive Checksum Offload */
1602                 e1000_rx_checksum(adapter, staterr, skb);
1603
1604                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1605
1606                 /* probably a little skewed due to removing CRC */
1607                 total_rx_bytes += skb->len;
1608                 total_rx_packets++;
1609
1610                 /* eth type trans needs skb->data to point to something */
1611                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1612                         e_err("pskb_may_pull failed.\n");
1613                         dev_kfree_skb_irq(skb);
1614                         goto next_desc;
1615                 }
1616
1617                 e1000_receive_skb(adapter, netdev, skb, staterr,
1618                                   rx_desc->wb.upper.vlan);
1619
1620 next_desc:
1621                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1622
1623                 /* return some buffers to hardware, one at a time is too slow */
1624                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1625                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1626                                               GFP_ATOMIC);
1627                         cleaned_count = 0;
1628                 }
1629
1630                 /* use prefetched values */
1631                 rx_desc = next_rxd;
1632                 buffer_info = next_buffer;
1633
1634                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1635         }
1636         rx_ring->next_to_clean = i;
1637
1638         cleaned_count = e1000_desc_unused(rx_ring);
1639         if (cleaned_count)
1640                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1641
1642         adapter->total_rx_bytes += total_rx_bytes;
1643         adapter->total_rx_packets += total_rx_packets;
1644         return cleaned;
1645 }
1646
1647 /**
1648  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1649  * @rx_ring: Rx descriptor ring
1650  **/
1651 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1652 {
1653         struct e1000_adapter *adapter = rx_ring->adapter;
1654         struct e1000_buffer *buffer_info;
1655         struct e1000_ps_page *ps_page;
1656         struct pci_dev *pdev = adapter->pdev;
1657         unsigned int i, j;
1658
1659         /* Free all the Rx ring sk_buffs */
1660         for (i = 0; i < rx_ring->count; i++) {
1661                 buffer_info = &rx_ring->buffer_info[i];
1662                 if (buffer_info->dma) {
1663                         if (adapter->clean_rx == e1000_clean_rx_irq)
1664                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1665                                                  adapter->rx_buffer_len,
1666                                                  DMA_FROM_DEVICE);
1667                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1668                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1669                                                PAGE_SIZE,
1670                                                DMA_FROM_DEVICE);
1671                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1672                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1673                                                  adapter->rx_ps_bsize0,
1674                                                  DMA_FROM_DEVICE);
1675                         buffer_info->dma = 0;
1676                 }
1677
1678                 if (buffer_info->page) {
1679                         put_page(buffer_info->page);
1680                         buffer_info->page = NULL;
1681                 }
1682
1683                 if (buffer_info->skb) {
1684                         dev_kfree_skb(buffer_info->skb);
1685                         buffer_info->skb = NULL;
1686                 }
1687
1688                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1689                         ps_page = &buffer_info->ps_pages[j];
1690                         if (!ps_page->page)
1691                                 break;
1692                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1693                                        DMA_FROM_DEVICE);
1694                         ps_page->dma = 0;
1695                         put_page(ps_page->page);
1696                         ps_page->page = NULL;
1697                 }
1698         }
1699
1700         /* there also may be some cached data from a chained receive */
1701         if (rx_ring->rx_skb_top) {
1702                 dev_kfree_skb(rx_ring->rx_skb_top);
1703                 rx_ring->rx_skb_top = NULL;
1704         }
1705
1706         /* Zero out the descriptor ring */
1707         memset(rx_ring->desc, 0, rx_ring->size);
1708
1709         rx_ring->next_to_clean = 0;
1710         rx_ring->next_to_use = 0;
1711         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1712
1713         writel(0, rx_ring->head);
1714         if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1715                 e1000e_update_rdt_wa(rx_ring, 0);
1716         else
1717                 writel(0, rx_ring->tail);
1718 }
1719
1720 static void e1000e_downshift_workaround(struct work_struct *work)
1721 {
1722         struct e1000_adapter *adapter = container_of(work,
1723                                         struct e1000_adapter, downshift_task);
1724
1725         if (test_bit(__E1000_DOWN, &adapter->state))
1726                 return;
1727
1728         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1729 }
1730
1731 /**
1732  * e1000_intr_msi - Interrupt Handler
1733  * @irq: interrupt number
1734  * @data: pointer to a network interface device structure
1735  **/
1736 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1737 {
1738         struct net_device *netdev = data;
1739         struct e1000_adapter *adapter = netdev_priv(netdev);
1740         struct e1000_hw *hw = &adapter->hw;
1741         u32 icr = er32(ICR);
1742
1743         /* read ICR disables interrupts using IAM */
1744         if (icr & E1000_ICR_LSC) {
1745                 hw->mac.get_link_status = true;
1746                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1747                  * disconnect (LSC) before accessing any PHY registers
1748                  */
1749                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1750                     (!(er32(STATUS) & E1000_STATUS_LU)))
1751                         schedule_work(&adapter->downshift_task);
1752
1753                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1754                  * link down event; disable receives here in the ISR and reset
1755                  * adapter in watchdog
1756                  */
1757                 if (netif_carrier_ok(netdev) &&
1758                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1759                         /* disable receives */
1760                         u32 rctl = er32(RCTL);
1761                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1762                         adapter->flags |= FLAG_RESTART_NOW;
1763                 }
1764                 /* guard against interrupt when we're going down */
1765                 if (!test_bit(__E1000_DOWN, &adapter->state))
1766                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1767         }
1768
1769         /* Reset on uncorrectable ECC error */
1770         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1771                 u32 pbeccsts = er32(PBECCSTS);
1772
1773                 adapter->corr_errors +=
1774                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1775                 adapter->uncorr_errors +=
1776                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1777                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1778
1779                 /* Do the reset outside of interrupt context */
1780                 schedule_work(&adapter->reset_task);
1781
1782                 /* return immediately since reset is imminent */
1783                 return IRQ_HANDLED;
1784         }
1785
1786         if (napi_schedule_prep(&adapter->napi)) {
1787                 adapter->total_tx_bytes = 0;
1788                 adapter->total_tx_packets = 0;
1789                 adapter->total_rx_bytes = 0;
1790                 adapter->total_rx_packets = 0;
1791                 __napi_schedule(&adapter->napi);
1792         }
1793
1794         return IRQ_HANDLED;
1795 }
1796
1797 /**
1798  * e1000_intr - Interrupt Handler
1799  * @irq: interrupt number
1800  * @data: pointer to a network interface device structure
1801  **/
1802 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1803 {
1804         struct net_device *netdev = data;
1805         struct e1000_adapter *adapter = netdev_priv(netdev);
1806         struct e1000_hw *hw = &adapter->hw;
1807         u32 rctl, icr = er32(ICR);
1808
1809         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1810                 return IRQ_NONE;  /* Not our interrupt */
1811
1812         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1813          * not set, then the adapter didn't send an interrupt
1814          */
1815         if (!(icr & E1000_ICR_INT_ASSERTED))
1816                 return IRQ_NONE;
1817
1818         /* Interrupt Auto-Mask...upon reading ICR,
1819          * interrupts are masked.  No need for the
1820          * IMC write
1821          */
1822
1823         if (icr & E1000_ICR_LSC) {
1824                 hw->mac.get_link_status = true;
1825                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1826                  * disconnect (LSC) before accessing any PHY registers
1827                  */
1828                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1829                     (!(er32(STATUS) & E1000_STATUS_LU)))
1830                         schedule_work(&adapter->downshift_task);
1831
1832                 /* 80003ES2LAN workaround--
1833                  * For packet buffer work-around on link down event;
1834                  * disable receives here in the ISR and
1835                  * reset adapter in watchdog
1836                  */
1837                 if (netif_carrier_ok(netdev) &&
1838                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1839                         /* disable receives */
1840                         rctl = er32(RCTL);
1841                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1842                         adapter->flags |= FLAG_RESTART_NOW;
1843                 }
1844                 /* guard against interrupt when we're going down */
1845                 if (!test_bit(__E1000_DOWN, &adapter->state))
1846                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1847         }
1848
1849         /* Reset on uncorrectable ECC error */
1850         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1851                 u32 pbeccsts = er32(PBECCSTS);
1852
1853                 adapter->corr_errors +=
1854                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1855                 adapter->uncorr_errors +=
1856                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1857                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1858
1859                 /* Do the reset outside of interrupt context */
1860                 schedule_work(&adapter->reset_task);
1861
1862                 /* return immediately since reset is imminent */
1863                 return IRQ_HANDLED;
1864         }
1865
1866         if (napi_schedule_prep(&adapter->napi)) {
1867                 adapter->total_tx_bytes = 0;
1868                 adapter->total_tx_packets = 0;
1869                 adapter->total_rx_bytes = 0;
1870                 adapter->total_rx_packets = 0;
1871                 __napi_schedule(&adapter->napi);
1872         }
1873
1874         return IRQ_HANDLED;
1875 }
1876
1877 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1878 {
1879         struct net_device *netdev = data;
1880         struct e1000_adapter *adapter = netdev_priv(netdev);
1881         struct e1000_hw *hw = &adapter->hw;
1882         u32 icr = er32(ICR);
1883
1884         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1885                 if (!test_bit(__E1000_DOWN, &adapter->state))
1886                         ew32(IMS, E1000_IMS_OTHER);
1887                 return IRQ_NONE;
1888         }
1889
1890         if (icr & adapter->eiac_mask)
1891                 ew32(ICS, (icr & adapter->eiac_mask));
1892
1893         if (icr & E1000_ICR_OTHER) {
1894                 if (!(icr & E1000_ICR_LSC))
1895                         goto no_link_interrupt;
1896                 hw->mac.get_link_status = true;
1897                 /* guard against interrupt when we're going down */
1898                 if (!test_bit(__E1000_DOWN, &adapter->state))
1899                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1900         }
1901
1902 no_link_interrupt:
1903         if (!test_bit(__E1000_DOWN, &adapter->state))
1904                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1905
1906         return IRQ_HANDLED;
1907 }
1908
1909 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1910 {
1911         struct net_device *netdev = data;
1912         struct e1000_adapter *adapter = netdev_priv(netdev);
1913         struct e1000_hw *hw = &adapter->hw;
1914         struct e1000_ring *tx_ring = adapter->tx_ring;
1915
1916
1917         adapter->total_tx_bytes = 0;
1918         adapter->total_tx_packets = 0;
1919
1920         if (!e1000_clean_tx_irq(tx_ring))
1921                 /* Ring was not completely cleaned, so fire another interrupt */
1922                 ew32(ICS, tx_ring->ims_val);
1923
1924         return IRQ_HANDLED;
1925 }
1926
1927 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1928 {
1929         struct net_device *netdev = data;
1930         struct e1000_adapter *adapter = netdev_priv(netdev);
1931         struct e1000_ring *rx_ring = adapter->rx_ring;
1932
1933         /* Write the ITR value calculated at the end of the
1934          * previous interrupt.
1935          */
1936         if (rx_ring->set_itr) {
1937                 writel(1000000000 / (rx_ring->itr_val * 256),
1938                        rx_ring->itr_register);
1939                 rx_ring->set_itr = 0;
1940         }
1941
1942         if (napi_schedule_prep(&adapter->napi)) {
1943                 adapter->total_rx_bytes = 0;
1944                 adapter->total_rx_packets = 0;
1945                 __napi_schedule(&adapter->napi);
1946         }
1947         return IRQ_HANDLED;
1948 }
1949
1950 /**
1951  * e1000_configure_msix - Configure MSI-X hardware
1952  *
1953  * e1000_configure_msix sets up the hardware to properly
1954  * generate MSI-X interrupts.
1955  **/
1956 static void e1000_configure_msix(struct e1000_adapter *adapter)
1957 {
1958         struct e1000_hw *hw = &adapter->hw;
1959         struct e1000_ring *rx_ring = adapter->rx_ring;
1960         struct e1000_ring *tx_ring = adapter->tx_ring;
1961         int vector = 0;
1962         u32 ctrl_ext, ivar = 0;
1963
1964         adapter->eiac_mask = 0;
1965
1966         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1967         if (hw->mac.type == e1000_82574) {
1968                 u32 rfctl = er32(RFCTL);
1969                 rfctl |= E1000_RFCTL_ACK_DIS;
1970                 ew32(RFCTL, rfctl);
1971         }
1972
1973 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1974         /* Configure Rx vector */
1975         rx_ring->ims_val = E1000_IMS_RXQ0;
1976         adapter->eiac_mask |= rx_ring->ims_val;
1977         if (rx_ring->itr_val)
1978                 writel(1000000000 / (rx_ring->itr_val * 256),
1979                        rx_ring->itr_register);
1980         else
1981                 writel(1, rx_ring->itr_register);
1982         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1983
1984         /* Configure Tx vector */
1985         tx_ring->ims_val = E1000_IMS_TXQ0;
1986         vector++;
1987         if (tx_ring->itr_val)
1988                 writel(1000000000 / (tx_ring->itr_val * 256),
1989                        tx_ring->itr_register);
1990         else
1991                 writel(1, tx_ring->itr_register);
1992         adapter->eiac_mask |= tx_ring->ims_val;
1993         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1994
1995         /* set vector for Other Causes, e.g. link changes */
1996         vector++;
1997         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1998         if (rx_ring->itr_val)
1999                 writel(1000000000 / (rx_ring->itr_val * 256),
2000                        hw->hw_addr + E1000_EITR_82574(vector));
2001         else
2002                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2003
2004         /* Cause Tx interrupts on every write back */
2005         ivar |= (1 << 31);
2006
2007         ew32(IVAR, ivar);
2008
2009         /* enable MSI-X PBA support */
2010         ctrl_ext = er32(CTRL_EXT);
2011         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2012
2013         /* Auto-Mask Other interrupts upon ICR read */
2014         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2015         ctrl_ext |= E1000_CTRL_EXT_EIAME;
2016         ew32(CTRL_EXT, ctrl_ext);
2017         e1e_flush();
2018 }
2019
2020 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2021 {
2022         if (adapter->msix_entries) {
2023                 pci_disable_msix(adapter->pdev);
2024                 kfree(adapter->msix_entries);
2025                 adapter->msix_entries = NULL;
2026         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2027                 pci_disable_msi(adapter->pdev);
2028                 adapter->flags &= ~FLAG_MSI_ENABLED;
2029         }
2030 }
2031
2032 /**
2033  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2034  *
2035  * Attempt to configure interrupts using the best available
2036  * capabilities of the hardware and kernel.
2037  **/
2038 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2039 {
2040         int err;
2041         int i;
2042
2043         switch (adapter->int_mode) {
2044         case E1000E_INT_MODE_MSIX:
2045                 if (adapter->flags & FLAG_HAS_MSIX) {
2046                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2047                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2048                                                       sizeof(struct msix_entry),
2049                                                       GFP_KERNEL);
2050                         if (adapter->msix_entries) {
2051                                 for (i = 0; i < adapter->num_vectors; i++)
2052                                         adapter->msix_entries[i].entry = i;
2053
2054                                 err = pci_enable_msix(adapter->pdev,
2055                                                       adapter->msix_entries,
2056                                                       adapter->num_vectors);
2057                                 if (err == 0)
2058                                         return;
2059                         }
2060                         /* MSI-X failed, so fall through and try MSI */
2061                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2062                         e1000e_reset_interrupt_capability(adapter);
2063                 }
2064                 adapter->int_mode = E1000E_INT_MODE_MSI;
2065                 /* Fall through */
2066         case E1000E_INT_MODE_MSI:
2067                 if (!pci_enable_msi(adapter->pdev)) {
2068                         adapter->flags |= FLAG_MSI_ENABLED;
2069                 } else {
2070                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2071                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2072                 }
2073                 /* Fall through */
2074         case E1000E_INT_MODE_LEGACY:
2075                 /* Don't do anything; this is the system default */
2076                 break;
2077         }
2078
2079         /* store the number of vectors being used */
2080         adapter->num_vectors = 1;
2081 }
2082
2083 /**
2084  * e1000_request_msix - Initialize MSI-X interrupts
2085  *
2086  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2087  * kernel.
2088  **/
2089 static int e1000_request_msix(struct e1000_adapter *adapter)
2090 {
2091         struct net_device *netdev = adapter->netdev;
2092         int err = 0, vector = 0;
2093
2094         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2095                 snprintf(adapter->rx_ring->name,
2096                          sizeof(adapter->rx_ring->name) - 1,
2097                          "%s-rx-0", netdev->name);
2098         else
2099                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2100         err = request_irq(adapter->msix_entries[vector].vector,
2101                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2102                           netdev);
2103         if (err)
2104                 return err;
2105         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2106             E1000_EITR_82574(vector);
2107         adapter->rx_ring->itr_val = adapter->itr;
2108         vector++;
2109
2110         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2111                 snprintf(adapter->tx_ring->name,
2112                          sizeof(adapter->tx_ring->name) - 1,
2113                          "%s-tx-0", netdev->name);
2114         else
2115                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2116         err = request_irq(adapter->msix_entries[vector].vector,
2117                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2118                           netdev);
2119         if (err)
2120                 return err;
2121         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2122             E1000_EITR_82574(vector);
2123         adapter->tx_ring->itr_val = adapter->itr;
2124         vector++;
2125
2126         err = request_irq(adapter->msix_entries[vector].vector,
2127                           e1000_msix_other, 0, netdev->name, netdev);
2128         if (err)
2129                 return err;
2130
2131         e1000_configure_msix(adapter);
2132
2133         return 0;
2134 }
2135
2136 /**
2137  * e1000_request_irq - initialize interrupts
2138  *
2139  * Attempts to configure interrupts using the best available
2140  * capabilities of the hardware and kernel.
2141  **/
2142 static int e1000_request_irq(struct e1000_adapter *adapter)
2143 {
2144         struct net_device *netdev = adapter->netdev;
2145         int err;
2146
2147         if (adapter->msix_entries) {
2148                 err = e1000_request_msix(adapter);
2149                 if (!err)
2150                         return err;
2151                 /* fall back to MSI */
2152                 e1000e_reset_interrupt_capability(adapter);
2153                 adapter->int_mode = E1000E_INT_MODE_MSI;
2154                 e1000e_set_interrupt_capability(adapter);
2155         }
2156         if (adapter->flags & FLAG_MSI_ENABLED) {
2157                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2158                                   netdev->name, netdev);
2159                 if (!err)
2160                         return err;
2161
2162                 /* fall back to legacy interrupt */
2163                 e1000e_reset_interrupt_capability(adapter);
2164                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2165         }
2166
2167         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2168                           netdev->name, netdev);
2169         if (err)
2170                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2171
2172         return err;
2173 }
2174
2175 static void e1000_free_irq(struct e1000_adapter *adapter)
2176 {
2177         struct net_device *netdev = adapter->netdev;
2178
2179         if (adapter->msix_entries) {
2180                 int vector = 0;
2181
2182                 free_irq(adapter->msix_entries[vector].vector, netdev);
2183                 vector++;
2184
2185                 free_irq(adapter->msix_entries[vector].vector, netdev);
2186                 vector++;
2187
2188                 /* Other Causes interrupt vector */
2189                 free_irq(adapter->msix_entries[vector].vector, netdev);
2190                 return;
2191         }
2192
2193         free_irq(adapter->pdev->irq, netdev);
2194 }
2195
2196 /**
2197  * e1000_irq_disable - Mask off interrupt generation on the NIC
2198  **/
2199 static void e1000_irq_disable(struct e1000_adapter *adapter)
2200 {
2201         struct e1000_hw *hw = &adapter->hw;
2202
2203         ew32(IMC, ~0);
2204         if (adapter->msix_entries)
2205                 ew32(EIAC_82574, 0);
2206         e1e_flush();
2207
2208         if (adapter->msix_entries) {
2209                 int i;
2210                 for (i = 0; i < adapter->num_vectors; i++)
2211                         synchronize_irq(adapter->msix_entries[i].vector);
2212         } else {
2213                 synchronize_irq(adapter->pdev->irq);
2214         }
2215 }
2216
2217 /**
2218  * e1000_irq_enable - Enable default interrupt generation settings
2219  **/
2220 static void e1000_irq_enable(struct e1000_adapter *adapter)
2221 {
2222         struct e1000_hw *hw = &adapter->hw;
2223
2224         if (adapter->msix_entries) {
2225                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2226                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2227         } else if (hw->mac.type == e1000_pch_lpt) {
2228                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2229         } else {
2230                 ew32(IMS, IMS_ENABLE_MASK);
2231         }
2232         e1e_flush();
2233 }
2234
2235 /**
2236  * e1000e_get_hw_control - get control of the h/w from f/w
2237  * @adapter: address of board private structure
2238  *
2239  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2240  * For ASF and Pass Through versions of f/w this means that
2241  * the driver is loaded. For AMT version (only with 82573)
2242  * of the f/w this means that the network i/f is open.
2243  **/
2244 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2245 {
2246         struct e1000_hw *hw = &adapter->hw;
2247         u32 ctrl_ext;
2248         u32 swsm;
2249
2250         /* Let firmware know the driver has taken over */
2251         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2252                 swsm = er32(SWSM);
2253                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2254         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2255                 ctrl_ext = er32(CTRL_EXT);
2256                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2257         }
2258 }
2259
2260 /**
2261  * e1000e_release_hw_control - release control of the h/w to f/w
2262  * @adapter: address of board private structure
2263  *
2264  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2265  * For ASF and Pass Through versions of f/w this means that the
2266  * driver is no longer loaded. For AMT version (only with 82573) i
2267  * of the f/w this means that the network i/f is closed.
2268  *
2269  **/
2270 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2271 {
2272         struct e1000_hw *hw = &adapter->hw;
2273         u32 ctrl_ext;
2274         u32 swsm;
2275
2276         /* Let firmware taken over control of h/w */
2277         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2278                 swsm = er32(SWSM);
2279                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2280         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2281                 ctrl_ext = er32(CTRL_EXT);
2282                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2283         }
2284 }
2285
2286 /**
2287  * e1000_alloc_ring_dma - allocate memory for a ring structure
2288  **/
2289 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2290                                 struct e1000_ring *ring)
2291 {
2292         struct pci_dev *pdev = adapter->pdev;
2293
2294         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2295                                         GFP_KERNEL);
2296         if (!ring->desc)
2297                 return -ENOMEM;
2298
2299         return 0;
2300 }
2301
2302 /**
2303  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2304  * @tx_ring: Tx descriptor ring
2305  *
2306  * Return 0 on success, negative on failure
2307  **/
2308 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2309 {
2310         struct e1000_adapter *adapter = tx_ring->adapter;
2311         int err = -ENOMEM, size;
2312
2313         size = sizeof(struct e1000_buffer) * tx_ring->count;
2314         tx_ring->buffer_info = vzalloc(size);
2315         if (!tx_ring->buffer_info)
2316                 goto err;
2317
2318         /* round up to nearest 4K */
2319         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2320         tx_ring->size = ALIGN(tx_ring->size, 4096);
2321
2322         err = e1000_alloc_ring_dma(adapter, tx_ring);
2323         if (err)
2324                 goto err;
2325
2326         tx_ring->next_to_use = 0;
2327         tx_ring->next_to_clean = 0;
2328
2329         return 0;
2330 err:
2331         vfree(tx_ring->buffer_info);
2332         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2333         return err;
2334 }
2335
2336 /**
2337  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2338  * @rx_ring: Rx descriptor ring
2339  *
2340  * Returns 0 on success, negative on failure
2341  **/
2342 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2343 {
2344         struct e1000_adapter *adapter = rx_ring->adapter;
2345         struct e1000_buffer *buffer_info;
2346         int i, size, desc_len, err = -ENOMEM;
2347
2348         size = sizeof(struct e1000_buffer) * rx_ring->count;
2349         rx_ring->buffer_info = vzalloc(size);
2350         if (!rx_ring->buffer_info)
2351                 goto err;
2352
2353         for (i = 0; i < rx_ring->count; i++) {
2354                 buffer_info = &rx_ring->buffer_info[i];
2355                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2356                                                 sizeof(struct e1000_ps_page),
2357                                                 GFP_KERNEL);
2358                 if (!buffer_info->ps_pages)
2359                         goto err_pages;
2360         }
2361
2362         desc_len = sizeof(union e1000_rx_desc_packet_split);
2363
2364         /* Round up to nearest 4K */
2365         rx_ring->size = rx_ring->count * desc_len;
2366         rx_ring->size = ALIGN(rx_ring->size, 4096);
2367
2368         err = e1000_alloc_ring_dma(adapter, rx_ring);
2369         if (err)
2370                 goto err_pages;
2371
2372         rx_ring->next_to_clean = 0;
2373         rx_ring->next_to_use = 0;
2374         rx_ring->rx_skb_top = NULL;
2375
2376         return 0;
2377
2378 err_pages:
2379         for (i = 0; i < rx_ring->count; i++) {
2380                 buffer_info = &rx_ring->buffer_info[i];
2381                 kfree(buffer_info->ps_pages);
2382         }
2383 err:
2384         vfree(rx_ring->buffer_info);
2385         e_err("Unable to allocate memory for the receive descriptor ring\n");
2386         return err;
2387 }
2388
2389 /**
2390  * e1000_clean_tx_ring - Free Tx Buffers
2391  * @tx_ring: Tx descriptor ring
2392  **/
2393 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2394 {
2395         struct e1000_adapter *adapter = tx_ring->adapter;
2396         struct e1000_buffer *buffer_info;
2397         unsigned long size;
2398         unsigned int i;
2399
2400         for (i = 0; i < tx_ring->count; i++) {
2401                 buffer_info = &tx_ring->buffer_info[i];
2402                 e1000_put_txbuf(tx_ring, buffer_info);
2403         }
2404
2405         netdev_reset_queue(adapter->netdev);
2406         size = sizeof(struct e1000_buffer) * tx_ring->count;
2407         memset(tx_ring->buffer_info, 0, size);
2408
2409         memset(tx_ring->desc, 0, tx_ring->size);
2410
2411         tx_ring->next_to_use = 0;
2412         tx_ring->next_to_clean = 0;
2413
2414         writel(0, tx_ring->head);
2415         if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2416                 e1000e_update_tdt_wa(tx_ring, 0);
2417         else
2418                 writel(0, tx_ring->tail);
2419 }
2420
2421 /**
2422  * e1000e_free_tx_resources - Free Tx Resources per Queue
2423  * @tx_ring: Tx descriptor ring
2424  *
2425  * Free all transmit software resources
2426  **/
2427 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2428 {
2429         struct e1000_adapter *adapter = tx_ring->adapter;
2430         struct pci_dev *pdev = adapter->pdev;
2431
2432         e1000_clean_tx_ring(tx_ring);
2433
2434         vfree(tx_ring->buffer_info);
2435         tx_ring->buffer_info = NULL;
2436
2437         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2438                           tx_ring->dma);
2439         tx_ring->desc = NULL;
2440 }
2441
2442 /**
2443  * e1000e_free_rx_resources - Free Rx Resources
2444  * @rx_ring: Rx descriptor ring
2445  *
2446  * Free all receive software resources
2447  **/
2448 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2449 {
2450         struct e1000_adapter *adapter = rx_ring->adapter;
2451         struct pci_dev *pdev = adapter->pdev;
2452         int i;
2453
2454         e1000_clean_rx_ring(rx_ring);
2455
2456         for (i = 0; i < rx_ring->count; i++)
2457                 kfree(rx_ring->buffer_info[i].ps_pages);
2458
2459         vfree(rx_ring->buffer_info);
2460         rx_ring->buffer_info = NULL;
2461
2462         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2463                           rx_ring->dma);
2464         rx_ring->desc = NULL;
2465 }
2466
2467 /**
2468  * e1000_update_itr - update the dynamic ITR value based on statistics
2469  * @adapter: pointer to adapter
2470  * @itr_setting: current adapter->itr
2471  * @packets: the number of packets during this measurement interval
2472  * @bytes: the number of bytes during this measurement interval
2473  *
2474  *      Stores a new ITR value based on packets and byte
2475  *      counts during the last interrupt.  The advantage of per interrupt
2476  *      computation is faster updates and more accurate ITR for the current
2477  *      traffic pattern.  Constants in this function were computed
2478  *      based on theoretical maximum wire speed and thresholds were set based
2479  *      on testing data as well as attempting to minimize response time
2480  *      while increasing bulk throughput.  This functionality is controlled
2481  *      by the InterruptThrottleRate module parameter.
2482  **/
2483 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2484 {
2485         unsigned int retval = itr_setting;
2486
2487         if (packets == 0)
2488                 return itr_setting;
2489
2490         switch (itr_setting) {
2491         case lowest_latency:
2492                 /* handle TSO and jumbo frames */
2493                 if (bytes/packets > 8000)
2494                         retval = bulk_latency;
2495                 else if ((packets < 5) && (bytes > 512))
2496                         retval = low_latency;
2497                 break;
2498         case low_latency:  /* 50 usec aka 20000 ints/s */
2499                 if (bytes > 10000) {
2500                         /* this if handles the TSO accounting */
2501                         if (bytes/packets > 8000)
2502                                 retval = bulk_latency;
2503                         else if ((packets < 10) || ((bytes/packets) > 1200))
2504                                 retval = bulk_latency;
2505                         else if ((packets > 35))
2506                                 retval = lowest_latency;
2507                 } else if (bytes/packets > 2000) {
2508                         retval = bulk_latency;
2509                 } else if (packets <= 2 && bytes < 512) {
2510                         retval = lowest_latency;
2511                 }
2512                 break;
2513         case bulk_latency: /* 250 usec aka 4000 ints/s */
2514                 if (bytes > 25000) {
2515                         if (packets > 35)
2516                                 retval = low_latency;
2517                 } else if (bytes < 6000) {
2518                         retval = low_latency;
2519                 }
2520                 break;
2521         }
2522
2523         return retval;
2524 }
2525
2526 static void e1000_set_itr(struct e1000_adapter *adapter)
2527 {
2528         u16 current_itr;
2529         u32 new_itr = adapter->itr;
2530
2531         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2532         if (adapter->link_speed != SPEED_1000) {
2533                 current_itr = 0;
2534                 new_itr = 4000;
2535                 goto set_itr_now;
2536         }
2537
2538         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2539                 new_itr = 0;
2540                 goto set_itr_now;
2541         }
2542
2543         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2544                                            adapter->total_tx_packets,
2545                                            adapter->total_tx_bytes);
2546         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2547         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2548                 adapter->tx_itr = low_latency;
2549
2550         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2551                                            adapter->total_rx_packets,
2552                                            adapter->total_rx_bytes);
2553         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2554         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2555                 adapter->rx_itr = low_latency;
2556
2557         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2558
2559         switch (current_itr) {
2560         /* counts and packets in update_itr are dependent on these numbers */
2561         case lowest_latency:
2562                 new_itr = 70000;
2563                 break;
2564         case low_latency:
2565                 new_itr = 20000; /* aka hwitr = ~200 */
2566                 break;
2567         case bulk_latency:
2568                 new_itr = 4000;
2569                 break;
2570         default:
2571                 break;
2572         }
2573
2574 set_itr_now:
2575         if (new_itr != adapter->itr) {
2576                 /* this attempts to bias the interrupt rate towards Bulk
2577                  * by adding intermediate steps when interrupt rate is
2578                  * increasing
2579                  */
2580                 new_itr = new_itr > adapter->itr ?
2581                              min(adapter->itr + (new_itr >> 2), new_itr) :
2582                              new_itr;
2583                 adapter->itr = new_itr;
2584                 adapter->rx_ring->itr_val = new_itr;
2585                 if (adapter->msix_entries)
2586                         adapter->rx_ring->set_itr = 1;
2587                 else
2588                         e1000e_write_itr(adapter, new_itr);
2589         }
2590 }
2591
2592 /**
2593  * e1000e_write_itr - write the ITR value to the appropriate registers
2594  * @adapter: address of board private structure
2595  * @itr: new ITR value to program
2596  *
2597  * e1000e_write_itr determines if the adapter is in MSI-X mode
2598  * and, if so, writes the EITR registers with the ITR value.
2599  * Otherwise, it writes the ITR value into the ITR register.
2600  **/
2601 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2602 {
2603         struct e1000_hw *hw = &adapter->hw;
2604         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2605
2606         if (adapter->msix_entries) {
2607                 int vector;
2608
2609                 for (vector = 0; vector < adapter->num_vectors; vector++)
2610                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2611         } else {
2612                 ew32(ITR, new_itr);
2613         }
2614 }
2615
2616 /**
2617  * e1000_alloc_queues - Allocate memory for all rings
2618  * @adapter: board private structure to initialize
2619  **/
2620 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2621 {
2622         int size = sizeof(struct e1000_ring);
2623
2624         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2625         if (!adapter->tx_ring)
2626                 goto err;
2627         adapter->tx_ring->count = adapter->tx_ring_count;
2628         adapter->tx_ring->adapter = adapter;
2629
2630         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2631         if (!adapter->rx_ring)
2632                 goto err;
2633         adapter->rx_ring->count = adapter->rx_ring_count;
2634         adapter->rx_ring->adapter = adapter;
2635
2636         return 0;
2637 err:
2638         e_err("Unable to allocate memory for queues\n");
2639         kfree(adapter->rx_ring);
2640         kfree(adapter->tx_ring);
2641         return -ENOMEM;
2642 }
2643
2644 /**
2645  * e1000e_poll - NAPI Rx polling callback
2646  * @napi: struct associated with this polling callback
2647  * @weight: number of packets driver is allowed to process this poll
2648  **/
2649 static int e1000e_poll(struct napi_struct *napi, int weight)
2650 {
2651         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2652                                                      napi);
2653         struct e1000_hw *hw = &adapter->hw;
2654         struct net_device *poll_dev = adapter->netdev;
2655         int tx_cleaned = 1, work_done = 0;
2656
2657         adapter = netdev_priv(poll_dev);
2658
2659         if (!adapter->msix_entries ||
2660             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2661                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2662
2663         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2664
2665         if (!tx_cleaned)
2666                 work_done = weight;
2667
2668         /* If weight not fully consumed, exit the polling mode */
2669         if (work_done < weight) {
2670                 if (adapter->itr_setting & 3)
2671                         e1000_set_itr(adapter);
2672                 napi_complete(napi);
2673                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2674                         if (adapter->msix_entries)
2675                                 ew32(IMS, adapter->rx_ring->ims_val);
2676                         else
2677                                 e1000_irq_enable(adapter);
2678                 }
2679         }
2680
2681         return work_done;
2682 }
2683
2684 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2685 {
2686         struct e1000_adapter *adapter = netdev_priv(netdev);
2687         struct e1000_hw *hw = &adapter->hw;
2688         u32 vfta, index;
2689
2690         /* don't update vlan cookie if already programmed */
2691         if ((adapter->hw.mng_cookie.status &
2692              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2693             (vid == adapter->mng_vlan_id))
2694                 return 0;
2695
2696         /* add VID to filter table */
2697         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2698                 index = (vid >> 5) & 0x7F;
2699                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2700                 vfta |= (1 << (vid & 0x1F));
2701                 hw->mac.ops.write_vfta(hw, index, vfta);
2702         }
2703
2704         set_bit(vid, adapter->active_vlans);
2705
2706         return 0;
2707 }
2708
2709 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2710 {
2711         struct e1000_adapter *adapter = netdev_priv(netdev);
2712         struct e1000_hw *hw = &adapter->hw;
2713         u32 vfta, index;
2714
2715         if ((adapter->hw.mng_cookie.status &
2716              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2717             (vid == adapter->mng_vlan_id)) {
2718                 /* release control to f/w */
2719                 e1000e_release_hw_control(adapter);
2720                 return 0;
2721         }
2722
2723         /* remove VID from filter table */
2724         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2725                 index = (vid >> 5) & 0x7F;
2726                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2727                 vfta &= ~(1 << (vid & 0x1F));
2728                 hw->mac.ops.write_vfta(hw, index, vfta);
2729         }
2730
2731         clear_bit(vid, adapter->active_vlans);
2732
2733         return 0;
2734 }
2735
2736 /**
2737  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2738  * @adapter: board private structure to initialize
2739  **/
2740 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2741 {
2742         struct net_device *netdev = adapter->netdev;
2743         struct e1000_hw *hw = &adapter->hw;
2744         u32 rctl;
2745
2746         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2747                 /* disable VLAN receive filtering */
2748                 rctl = er32(RCTL);
2749                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2750                 ew32(RCTL, rctl);
2751
2752                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2753                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2754                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2755                 }
2756         }
2757 }
2758
2759 /**
2760  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2761  * @adapter: board private structure to initialize
2762  **/
2763 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2764 {
2765         struct e1000_hw *hw = &adapter->hw;
2766         u32 rctl;
2767
2768         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2769                 /* enable VLAN receive filtering */
2770                 rctl = er32(RCTL);
2771                 rctl |= E1000_RCTL_VFE;
2772                 rctl &= ~E1000_RCTL_CFIEN;
2773                 ew32(RCTL, rctl);
2774         }
2775 }
2776
2777 /**
2778  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2779  * @adapter: board private structure to initialize
2780  **/
2781 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2782 {
2783         struct e1000_hw *hw = &adapter->hw;
2784         u32 ctrl;
2785
2786         /* disable VLAN tag insert/strip */
2787         ctrl = er32(CTRL);
2788         ctrl &= ~E1000_CTRL_VME;
2789         ew32(CTRL, ctrl);
2790 }
2791
2792 /**
2793  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2794  * @adapter: board private structure to initialize
2795  **/
2796 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2797 {
2798         struct e1000_hw *hw = &adapter->hw;
2799         u32 ctrl;
2800
2801         /* enable VLAN tag insert/strip */
2802         ctrl = er32(CTRL);
2803         ctrl |= E1000_CTRL_VME;
2804         ew32(CTRL, ctrl);
2805 }
2806
2807 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2808 {
2809         struct net_device *netdev = adapter->netdev;
2810         u16 vid = adapter->hw.mng_cookie.vlan_id;
2811         u16 old_vid = adapter->mng_vlan_id;
2812
2813         if (adapter->hw.mng_cookie.status &
2814             E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2815                 e1000_vlan_rx_add_vid(netdev, vid);
2816                 adapter->mng_vlan_id = vid;
2817         }
2818
2819         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2820                 e1000_vlan_rx_kill_vid(netdev, old_vid);
2821 }
2822
2823 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2824 {
2825         u16 vid;
2826
2827         e1000_vlan_rx_add_vid(adapter->netdev, 0);
2828
2829         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2830                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2831 }
2832
2833 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2834 {
2835         struct e1000_hw *hw = &adapter->hw;
2836         u32 manc, manc2h, mdef, i, j;
2837
2838         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2839                 return;
2840
2841         manc = er32(MANC);
2842
2843         /* enable receiving management packets to the host. this will probably
2844          * generate destination unreachable messages from the host OS, but
2845          * the packets will be handled on SMBUS
2846          */
2847         manc |= E1000_MANC_EN_MNG2HOST;
2848         manc2h = er32(MANC2H);
2849
2850         switch (hw->mac.type) {
2851         default:
2852                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2853                 break;
2854         case e1000_82574:
2855         case e1000_82583:
2856                 /* Check if IPMI pass-through decision filter already exists;
2857                  * if so, enable it.
2858                  */
2859                 for (i = 0, j = 0; i < 8; i++) {
2860                         mdef = er32(MDEF(i));
2861
2862                         /* Ignore filters with anything other than IPMI ports */
2863                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2864                                 continue;
2865
2866                         /* Enable this decision filter in MANC2H */
2867                         if (mdef)
2868                                 manc2h |= (1 << i);
2869
2870                         j |= mdef;
2871                 }
2872
2873                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2874                         break;
2875
2876                 /* Create new decision filter in an empty filter */
2877                 for (i = 0, j = 0; i < 8; i++)
2878                         if (er32(MDEF(i)) == 0) {
2879                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2880                                                E1000_MDEF_PORT_664));
2881                                 manc2h |= (1 << 1);
2882                                 j++;
2883                                 break;
2884                         }
2885
2886                 if (!j)
2887                         e_warn("Unable to create IPMI pass-through filter\n");
2888                 break;
2889         }
2890
2891         ew32(MANC2H, manc2h);
2892         ew32(MANC, manc);
2893 }
2894
2895 /**
2896  * e1000_configure_tx - Configure Transmit Unit after Reset
2897  * @adapter: board private structure
2898  *
2899  * Configure the Tx unit of the MAC after a reset.
2900  **/
2901 static void e1000_configure_tx(struct e1000_adapter *adapter)
2902 {
2903         struct e1000_hw *hw = &adapter->hw;
2904         struct e1000_ring *tx_ring = adapter->tx_ring;
2905         u64 tdba;
2906         u32 tdlen, tarc;
2907
2908         /* Setup the HW Tx Head and Tail descriptor pointers */
2909         tdba = tx_ring->dma;
2910         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2911         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2912         ew32(TDBAH(0), (tdba >> 32));
2913         ew32(TDLEN(0), tdlen);
2914         ew32(TDH(0), 0);
2915         ew32(TDT(0), 0);
2916         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2917         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2918
2919         /* Set the Tx Interrupt Delay register */
2920         ew32(TIDV, adapter->tx_int_delay);
2921         /* Tx irq moderation */
2922         ew32(TADV, adapter->tx_abs_int_delay);
2923
2924         if (adapter->flags2 & FLAG2_DMA_BURST) {
2925                 u32 txdctl = er32(TXDCTL(0));
2926                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2927                             E1000_TXDCTL_WTHRESH);
2928                 /* set up some performance related parameters to encourage the
2929                  * hardware to use the bus more efficiently in bursts, depends
2930                  * on the tx_int_delay to be enabled,
2931                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2932                  * hthresh = 1 ==> prefetch when one or more available
2933                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2934                  * BEWARE: this seems to work but should be considered first if
2935                  * there are Tx hangs or other Tx related bugs
2936                  */
2937                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2938                 ew32(TXDCTL(0), txdctl);
2939         }
2940         /* erratum work around: set txdctl the same for both queues */
2941         ew32(TXDCTL(1), er32(TXDCTL(0)));
2942
2943         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2944                 tarc = er32(TARC(0));
2945                 /* set the speed mode bit, we'll clear it if we're not at
2946                  * gigabit link later
2947                  */
2948 #define SPEED_MODE_BIT (1 << 21)
2949                 tarc |= SPEED_MODE_BIT;
2950                 ew32(TARC(0), tarc);
2951         }
2952
2953         /* errata: program both queues to unweighted RR */
2954         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2955                 tarc = er32(TARC(0));
2956                 tarc |= 1;
2957                 ew32(TARC(0), tarc);
2958                 tarc = er32(TARC(1));
2959                 tarc |= 1;
2960                 ew32(TARC(1), tarc);
2961         }
2962
2963         /* Setup Transmit Descriptor Settings for eop descriptor */
2964         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2965
2966         /* only set IDE if we are delaying interrupts using the timers */
2967         if (adapter->tx_int_delay)
2968                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2969
2970         /* enable Report Status bit */
2971         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2972
2973         hw->mac.ops.config_collision_dist(hw);
2974 }
2975
2976 /**
2977  * e1000_setup_rctl - configure the receive control registers
2978  * @adapter: Board private structure
2979  **/
2980 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2981                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2982 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2983 {
2984         struct e1000_hw *hw = &adapter->hw;
2985         u32 rctl, rfctl;
2986         u32 pages = 0;
2987
2988         /* Workaround Si errata on PCHx - configure jumbo frame flow */
2989         if (hw->mac.type >= e1000_pch2lan) {
2990                 s32 ret_val;
2991
2992                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2993                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2994                 else
2995                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2996
2997                 if (ret_val)
2998                         e_dbg("failed to enable jumbo frame workaround mode\n");
2999         }
3000
3001         /* Program MC offset vector base */
3002         rctl = er32(RCTL);
3003         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3004         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3005                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3006                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3007
3008         /* Do not Store bad packets */
3009         rctl &= ~E1000_RCTL_SBP;
3010
3011         /* Enable Long Packet receive */
3012         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3013                 rctl &= ~E1000_RCTL_LPE;
3014         else
3015                 rctl |= E1000_RCTL_LPE;
3016
3017         /* Some systems expect that the CRC is included in SMBUS traffic. The
3018          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3019          * host memory when this is enabled
3020          */
3021         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3022                 rctl |= E1000_RCTL_SECRC;
3023
3024         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3025         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3026                 u16 phy_data;
3027
3028                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3029                 phy_data &= 0xfff8;
3030                 phy_data |= (1 << 2);
3031                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3032
3033                 e1e_rphy(hw, 22, &phy_data);
3034                 phy_data &= 0x0fff;
3035                 phy_data |= (1 << 14);
3036                 e1e_wphy(hw, 0x10, 0x2823);
3037                 e1e_wphy(hw, 0x11, 0x0003);
3038                 e1e_wphy(hw, 22, phy_data);
3039         }
3040
3041         /* Setup buffer sizes */
3042         rctl &= ~E1000_RCTL_SZ_4096;
3043         rctl |= E1000_RCTL_BSEX;
3044         switch (adapter->rx_buffer_len) {
3045         case 2048:
3046         default:
3047                 rctl |= E1000_RCTL_SZ_2048;
3048                 rctl &= ~E1000_RCTL_BSEX;
3049                 break;
3050         case 4096:
3051                 rctl |= E1000_RCTL_SZ_4096;
3052                 break;
3053         case 8192:
3054                 rctl |= E1000_RCTL_SZ_8192;
3055                 break;
3056         case 16384:
3057                 rctl |= E1000_RCTL_SZ_16384;
3058                 break;
3059         }
3060
3061         /* Enable Extended Status in all Receive Descriptors */
3062         rfctl = er32(RFCTL);
3063         rfctl |= E1000_RFCTL_EXTEN;
3064         ew32(RFCTL, rfctl);
3065
3066         /* 82571 and greater support packet-split where the protocol
3067          * header is placed in skb->data and the packet data is
3068          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3069          * In the case of a non-split, skb->data is linearly filled,
3070          * followed by the page buffers.  Therefore, skb->data is
3071          * sized to hold the largest protocol header.
3072          *
3073          * allocations using alloc_page take too long for regular MTU
3074          * so only enable packet split for jumbo frames
3075          *
3076          * Using pages when the page size is greater than 16k wastes
3077          * a lot of memory, since we allocate 3 pages at all times
3078          * per packet.
3079          */
3080         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3081         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3082                 adapter->rx_ps_pages = pages;
3083         else
3084                 adapter->rx_ps_pages = 0;
3085
3086         if (adapter->rx_ps_pages) {
3087                 u32 psrctl = 0;
3088
3089                 /* Enable Packet split descriptors */
3090                 rctl |= E1000_RCTL_DTYP_PS;
3091
3092                 psrctl |= adapter->rx_ps_bsize0 >>
3093                         E1000_PSRCTL_BSIZE0_SHIFT;
3094
3095                 switch (adapter->rx_ps_pages) {
3096                 case 3:
3097                         psrctl |= PAGE_SIZE <<
3098                                 E1000_PSRCTL_BSIZE3_SHIFT;
3099                 case 2:
3100                         psrctl |= PAGE_SIZE <<
3101                                 E1000_PSRCTL_BSIZE2_SHIFT;
3102                 case 1:
3103                         psrctl |= PAGE_SIZE >>
3104                                 E1000_PSRCTL_BSIZE1_SHIFT;
3105                         break;
3106                 }
3107
3108                 ew32(PSRCTL, psrctl);
3109         }
3110
3111         /* This is useful for sniffing bad packets. */
3112         if (adapter->netdev->features & NETIF_F_RXALL) {
3113                 /* UPE and MPE will be handled by normal PROMISC logic
3114                  * in e1000e_set_rx_mode
3115                  */
3116                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3117                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3118                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3119
3120                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3121                           E1000_RCTL_DPF | /* Allow filtered pause */
3122                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3123                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3124                  * and that breaks VLANs.
3125                  */
3126         }
3127
3128         ew32(RCTL, rctl);
3129         /* just started the receive unit, no need to restart */
3130         adapter->flags &= ~FLAG_RESTART_NOW;
3131 }
3132
3133 /**
3134  * e1000_configure_rx - Configure Receive Unit after Reset
3135  * @adapter: board private structure
3136  *
3137  * Configure the Rx unit of the MAC after a reset.
3138  **/
3139 static void e1000_configure_rx(struct e1000_adapter *adapter)
3140 {
3141         struct e1000_hw *hw = &adapter->hw;
3142         struct e1000_ring *rx_ring = adapter->rx_ring;
3143         u64 rdba;
3144         u32 rdlen, rctl, rxcsum, ctrl_ext;
3145
3146         if (adapter->rx_ps_pages) {
3147                 /* this is a 32 byte descriptor */
3148                 rdlen = rx_ring->count *
3149                     sizeof(union e1000_rx_desc_packet_split);
3150                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3151                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3152         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3153                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3154                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3155                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3156         } else {
3157                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3158                 adapter->clean_rx = e1000_clean_rx_irq;
3159                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3160         }
3161
3162         /* disable receives while setting up the descriptors */
3163         rctl = er32(RCTL);
3164         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3165                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3166         e1e_flush();
3167         usleep_range(10000, 20000);
3168
3169         if (adapter->flags2 & FLAG2_DMA_BURST) {
3170                 /* set the writeback threshold (only takes effect if the RDTR
3171                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3172                  * enable prefetching of 0x20 Rx descriptors
3173                  * granularity = 01
3174                  * wthresh = 04,
3175                  * hthresh = 04,
3176                  * pthresh = 0x20
3177                  */
3178                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3179                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3180
3181                 /* override the delay timers for enabling bursting, only if
3182                  * the value was not set by the user via module options
3183                  */
3184                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3185                         adapter->rx_int_delay = BURST_RDTR;
3186                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3187                         adapter->rx_abs_int_delay = BURST_RADV;
3188         }
3189
3190         /* set the Receive Delay Timer Register */
3191         ew32(RDTR, adapter->rx_int_delay);
3192
3193         /* irq moderation */
3194         ew32(RADV, adapter->rx_abs_int_delay);
3195         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3196                 e1000e_write_itr(adapter, adapter->itr);
3197
3198         ctrl_ext = er32(CTRL_EXT);
3199         /* Auto-Mask interrupts upon ICR access */
3200         ctrl_ext |= E1000_CTRL_EXT_IAME;
3201         ew32(IAM, 0xffffffff);
3202         ew32(CTRL_EXT, ctrl_ext);
3203         e1e_flush();
3204
3205         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3206          * the Base and Length of the Rx Descriptor Ring
3207          */
3208         rdba = rx_ring->dma;
3209         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3210         ew32(RDBAH(0), (rdba >> 32));
3211         ew32(RDLEN(0), rdlen);
3212         ew32(RDH(0), 0);
3213         ew32(RDT(0), 0);
3214         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3215         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3216
3217         /* Enable Receive Checksum Offload for TCP and UDP */
3218         rxcsum = er32(RXCSUM);
3219         if (adapter->netdev->features & NETIF_F_RXCSUM)
3220                 rxcsum |= E1000_RXCSUM_TUOFL;
3221         else
3222                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3223         ew32(RXCSUM, rxcsum);
3224
3225         /* With jumbo frames, excessive C-state transition latencies result
3226          * in dropped transactions.
3227          */
3228         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3229                 u32 lat =
3230                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3231                      adapter->max_frame_size) * 8 / 1000;
3232
3233                 if (adapter->flags & FLAG_IS_ICH) {
3234                         u32 rxdctl = er32(RXDCTL(0));
3235                         ew32(RXDCTL(0), rxdctl | 0x3);
3236                 }
3237
3238                 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3239         } else {
3240                 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3241                                       PM_QOS_DEFAULT_VALUE);
3242         }
3243
3244         /* Enable Receives */
3245         ew32(RCTL, rctl);
3246 }
3247
3248 /**
3249  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3250  * @netdev: network interface device structure
3251  *
3252  * Writes multicast address list to the MTA hash table.
3253  * Returns: -ENOMEM on failure
3254  *                0 on no addresses written
3255  *                X on writing X addresses to MTA
3256  */
3257 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3258 {
3259         struct e1000_adapter *adapter = netdev_priv(netdev);
3260         struct e1000_hw *hw = &adapter->hw;
3261         struct netdev_hw_addr *ha;
3262         u8 *mta_list;
3263         int i;
3264
3265         if (netdev_mc_empty(netdev)) {
3266                 /* nothing to program, so clear mc list */
3267                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3268                 return 0;
3269         }
3270
3271         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3272         if (!mta_list)
3273                 return -ENOMEM;
3274
3275         /* update_mc_addr_list expects a packed array of only addresses. */
3276         i = 0;
3277         netdev_for_each_mc_addr(ha, netdev)
3278                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3279
3280         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3281         kfree(mta_list);
3282
3283         return netdev_mc_count(netdev);
3284 }
3285
3286 /**
3287  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3288  * @netdev: network interface device structure
3289  *
3290  * Writes unicast address list to the RAR table.
3291  * Returns: -ENOMEM on failure/insufficient address space
3292  *                0 on no addresses written
3293  *                X on writing X addresses to the RAR table
3294  **/
3295 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3296 {
3297         struct e1000_adapter *adapter = netdev_priv(netdev);
3298         struct e1000_hw *hw = &adapter->hw;
3299         unsigned int rar_entries = hw->mac.rar_entry_count;
3300         int count = 0;
3301
3302         /* save a rar entry for our hardware address */
3303         rar_entries--;
3304
3305         /* save a rar entry for the LAA workaround */
3306         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3307                 rar_entries--;
3308
3309         /* return ENOMEM indicating insufficient memory for addresses */
3310         if (netdev_uc_count(netdev) > rar_entries)
3311                 return -ENOMEM;
3312
3313         if (!netdev_uc_empty(netdev) && rar_entries) {
3314                 struct netdev_hw_addr *ha;
3315
3316                 /* write the addresses in reverse order to avoid write
3317                  * combining
3318                  */
3319                 netdev_for_each_uc_addr(ha, netdev) {
3320                         if (!rar_entries)
3321                                 break;
3322                         hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3323                         count++;
3324                 }
3325         }
3326
3327         /* zero out the remaining RAR entries not used above */
3328         for (; rar_entries > 0; rar_entries--) {
3329                 ew32(RAH(rar_entries), 0);
3330                 ew32(RAL(rar_entries), 0);
3331         }
3332         e1e_flush();
3333
3334         return count;
3335 }
3336
3337 /**
3338  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3339  * @netdev: network interface device structure
3340  *
3341  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3342  * address list or the network interface flags are updated.  This routine is
3343  * responsible for configuring the hardware for proper unicast, multicast,
3344  * promiscuous mode, and all-multi behavior.
3345  **/
3346 static void e1000e_set_rx_mode(struct net_device *netdev)
3347 {
3348         struct e1000_adapter *adapter = netdev_priv(netdev);
3349         struct e1000_hw *hw = &adapter->hw;
3350         u32 rctl;
3351
3352         /* Check for Promiscuous and All Multicast modes */
3353         rctl = er32(RCTL);
3354
3355         /* clear the affected bits */
3356         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3357
3358         if (netdev->flags & IFF_PROMISC) {
3359                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3360                 /* Do not hardware filter VLANs in promisc mode */
3361                 e1000e_vlan_filter_disable(adapter);
3362         } else {
3363                 int count;
3364
3365                 if (netdev->flags & IFF_ALLMULTI) {
3366                         rctl |= E1000_RCTL_MPE;
3367                 } else {
3368                         /* Write addresses to the MTA, if the attempt fails
3369                          * then we should just turn on promiscuous mode so
3370                          * that we can at least receive multicast traffic
3371                          */
3372                         count = e1000e_write_mc_addr_list(netdev);
3373                         if (count < 0)
3374                                 rctl |= E1000_RCTL_MPE;
3375                 }
3376                 e1000e_vlan_filter_enable(adapter);
3377                 /* Write addresses to available RAR registers, if there is not
3378                  * sufficient space to store all the addresses then enable
3379                  * unicast promiscuous mode
3380                  */
3381                 count = e1000e_write_uc_addr_list(netdev);
3382                 if (count < 0)
3383                         rctl |= E1000_RCTL_UPE;
3384         }
3385
3386         ew32(RCTL, rctl);
3387
3388         if (netdev->features & NETIF_F_HW_VLAN_RX)
3389                 e1000e_vlan_strip_enable(adapter);
3390         else
3391                 e1000e_vlan_strip_disable(adapter);
3392 }
3393
3394 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3395 {
3396         struct e1000_hw *hw = &adapter->hw;
3397         u32 mrqc, rxcsum;
3398         int i;
3399         static const u32 rsskey[10] = {
3400                 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3401                 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3402         };
3403
3404         /* Fill out hash function seed */
3405         for (i = 0; i < 10; i++)
3406                 ew32(RSSRK(i), rsskey[i]);
3407
3408         /* Direct all traffic to queue 0 */
3409         for (i = 0; i < 32; i++)
3410                 ew32(RETA(i), 0);
3411
3412         /* Disable raw packet checksumming so that RSS hash is placed in
3413          * descriptor on writeback.
3414          */
3415         rxcsum = er32(RXCSUM);
3416         rxcsum |= E1000_RXCSUM_PCSD;
3417
3418         ew32(RXCSUM, rxcsum);
3419
3420         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3421                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3422                 E1000_MRQC_RSS_FIELD_IPV6 |
3423                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3424                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3425
3426         ew32(MRQC, mrqc);
3427 }
3428
3429 /**
3430  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3431  * @adapter: board private structure
3432  * @timinca: pointer to returned time increment attributes
3433  *
3434  * Get attributes for incrementing the System Time Register SYSTIML/H at
3435  * the default base frequency, and set the cyclecounter shift value.
3436  **/
3437 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3438 {
3439         struct e1000_hw *hw = &adapter->hw;
3440         u32 incvalue, incperiod, shift;
3441
3442         /* Make sure clock is enabled on I217 before checking the frequency */
3443         if ((hw->mac.type == e1000_pch_lpt) &&
3444             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3445             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3446                 u32 fextnvm7 = er32(FEXTNVM7);
3447
3448                 if (!(fextnvm7 & (1 << 0))) {
3449                         ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3450                         e1e_flush();
3451                 }
3452         }
3453
3454         switch (hw->mac.type) {
3455         case e1000_pch2lan:
3456         case e1000_pch_lpt:
3457                 /* On I217, the clock frequency is 25MHz or 96MHz as
3458                  * indicated by the System Clock Frequency Indication
3459                  */
3460                 if ((hw->mac.type != e1000_pch_lpt) ||
3461                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3462                         /* Stable 96MHz frequency */
3463                         incperiod = INCPERIOD_96MHz;
3464                         incvalue = INCVALUE_96MHz;
3465                         shift = INCVALUE_SHIFT_96MHz;
3466                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3467                         break;
3468                 }
3469                 /* fall-through */
3470         case e1000_82574:
3471         case e1000_82583:
3472                 /* Stable 25MHz frequency */
3473                 incperiod = INCPERIOD_25MHz;
3474                 incvalue = INCVALUE_25MHz;
3475                 shift = INCVALUE_SHIFT_25MHz;
3476                 adapter->cc.shift = shift;
3477                 break;
3478         default:
3479                 return -EINVAL;
3480         }
3481
3482         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3483                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3484
3485         return 0;
3486 }
3487
3488 /**
3489  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3490  * @adapter: board private structure
3491  *
3492  * Outgoing time stamping can be enabled and disabled. Play nice and
3493  * disable it when requested, although it shouldn't cause any overhead
3494  * when no packet needs it. At most one packet in the queue may be
3495  * marked for time stamping, otherwise it would be impossible to tell
3496  * for sure to which packet the hardware time stamp belongs.
3497  *
3498  * Incoming time stamping has to be configured via the hardware filters.
3499  * Not all combinations are supported, in particular event type has to be
3500  * specified. Matching the kind of event packet is not supported, with the
3501  * exception of "all V2 events regardless of level 2 or 4".
3502  **/
3503 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter)
3504 {
3505         struct e1000_hw *hw = &adapter->hw;
3506         struct hwtstamp_config *config = &adapter->hwtstamp_config;
3507         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3508         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3509         u32 rxmtrl = 0;
3510         u16 rxudp = 0;
3511         bool is_l4 = false;
3512         bool is_l2 = false;
3513         u32 regval;
3514         s32 ret_val;
3515
3516         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3517                 return -EINVAL;
3518
3519         /* flags reserved for future extensions - must be zero */
3520         if (config->flags)
3521                 return -EINVAL;
3522
3523         switch (config->tx_type) {
3524         case HWTSTAMP_TX_OFF:
3525                 tsync_tx_ctl = 0;
3526                 break;
3527         case HWTSTAMP_TX_ON:
3528                 break;
3529         default:
3530                 return -ERANGE;
3531         }
3532
3533         switch (config->rx_filter) {
3534         case HWTSTAMP_FILTER_NONE:
3535                 tsync_rx_ctl = 0;
3536                 break;
3537         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3538                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3539                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3540                 is_l4 = true;
3541                 break;
3542         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3543                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3544                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3545                 is_l4 = true;
3546                 break;
3547         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3548                 /* Also time stamps V2 L2 Path Delay Request/Response */
3549                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3550                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3551                 is_l2 = true;
3552                 break;
3553         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3554                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3555                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3556                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3557                 is_l2 = true;
3558                 break;
3559         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3560                 /* Hardware cannot filter just V2 L4 Sync messages;
3561                  * fall-through to V2 (both L2 and L4) Sync.
3562                  */
3563         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3564                 /* Also time stamps V2 Path Delay Request/Response. */
3565                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3566                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3567                 is_l2 = true;
3568                 is_l4 = true;
3569                 break;
3570         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3571                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3572                  * fall-through to V2 (both L2 and L4) Delay Request.
3573                  */
3574         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3575                 /* Also time stamps V2 Path Delay Request/Response. */
3576                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3577                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3578                 is_l2 = true;
3579                 is_l4 = true;
3580                 break;
3581         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3582         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3583                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3584                  * fall-through to all V2 (both L2 and L4) Events.
3585                  */
3586         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3587                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3588                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3589                 is_l2 = true;
3590                 is_l4 = true;
3591                 break;
3592         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3593                 /* For V1, the hardware can only filter Sync messages or
3594                  * Delay Request messages but not both so fall-through to
3595                  * time stamp all packets.
3596                  */
3597         case HWTSTAMP_FILTER_ALL:
3598                 is_l2 = true;
3599                 is_l4 = true;
3600                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3601                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3602                 break;
3603         default:
3604                 return -ERANGE;
3605         }
3606
3607         /* enable/disable Tx h/w time stamping */
3608         regval = er32(TSYNCTXCTL);
3609         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3610         regval |= tsync_tx_ctl;
3611         ew32(TSYNCTXCTL, regval);
3612         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3613             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3614                 e_err("Timesync Tx Control register not set as expected\n");
3615                 return -EAGAIN;
3616         }
3617
3618         /* enable/disable Rx h/w time stamping */
3619         regval = er32(TSYNCRXCTL);
3620         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3621         regval |= tsync_rx_ctl;
3622         ew32(TSYNCRXCTL, regval);
3623         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3624                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3625             (regval & (E1000_TSYNCRXCTL_ENABLED |
3626                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3627                 e_err("Timesync Rx Control register not set as expected\n");
3628                 return -EAGAIN;
3629         }
3630
3631         /* L2: define ethertype filter for time stamped packets */
3632         if (is_l2)
3633                 rxmtrl |= ETH_P_1588;
3634
3635         /* define which PTP packets get time stamped */
3636         ew32(RXMTRL, rxmtrl);
3637
3638         /* Filter by destination port */
3639         if (is_l4) {
3640                 rxudp = PTP_EV_PORT;
3641                 cpu_to_be16s(&rxudp);
3642         }
3643         ew32(RXUDP, rxudp);
3644
3645         e1e_flush();
3646
3647         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3648         er32(RXSTMPH);
3649         er32(TXSTMPH);
3650
3651         /* Get and set the System Time Register SYSTIM base frequency */
3652         ret_val = e1000e_get_base_timinca(adapter, &regval);
3653         if (ret_val)
3654                 return ret_val;
3655         ew32(TIMINCA, regval);
3656
3657         /* reset the ns time counter */
3658         timecounter_init(&adapter->tc, &adapter->cc,
3659                          ktime_to_ns(ktime_get_real()));
3660
3661         return 0;
3662 }
3663
3664 /**
3665  * e1000_configure - configure the hardware for Rx and Tx
3666  * @adapter: private board structure
3667  **/
3668 static void e1000_configure(struct e1000_adapter *adapter)
3669 {
3670         struct e1000_ring *rx_ring = adapter->rx_ring;
3671
3672         e1000e_set_rx_mode(adapter->netdev);
3673
3674         e1000_restore_vlan(adapter);
3675         e1000_init_manageability_pt(adapter);
3676
3677         e1000_configure_tx(adapter);
3678
3679         if (adapter->netdev->features & NETIF_F_RXHASH)
3680                 e1000e_setup_rss_hash(adapter);
3681         e1000_setup_rctl(adapter);
3682         e1000_configure_rx(adapter);
3683         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3684 }
3685
3686 /**
3687  * e1000e_power_up_phy - restore link in case the phy was powered down
3688  * @adapter: address of board private structure
3689  *
3690  * The phy may be powered down to save power and turn off link when the
3691  * driver is unloaded and wake on lan is not enabled (among others)
3692  * *** this routine MUST be followed by a call to e1000e_reset ***
3693  **/
3694 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3695 {
3696         if (adapter->hw.phy.ops.power_up)
3697                 adapter->hw.phy.ops.power_up(&adapter->hw);
3698
3699         adapter->hw.mac.ops.setup_link(&adapter->hw);
3700 }
3701
3702 /**
3703  * e1000_power_down_phy - Power down the PHY
3704  *
3705  * Power down the PHY so no link is implied when interface is down.
3706  * The PHY cannot be powered down if management or WoL is active.
3707  */
3708 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3709 {
3710         /* WoL is enabled */
3711         if (adapter->wol)
3712                 return;
3713
3714         if (adapter->hw.phy.ops.power_down)
3715                 adapter->hw.phy.ops.power_down(&adapter->hw);
3716 }
3717
3718 /**
3719  * e1000e_reset - bring the hardware into a known good state
3720  *
3721  * This function boots the hardware and enables some settings that
3722  * require a configuration cycle of the hardware - those cannot be
3723  * set/changed during runtime. After reset the device needs to be
3724  * properly configured for Rx, Tx etc.
3725  */
3726 void e1000e_reset(struct e1000_adapter *adapter)
3727 {
3728         struct e1000_mac_info *mac = &adapter->hw.mac;
3729         struct e1000_fc_info *fc = &adapter->hw.fc;
3730         struct e1000_hw *hw = &adapter->hw;
3731         u32 tx_space, min_tx_space, min_rx_space;
3732         u32 pba = adapter->pba;
3733         u16 hwm;
3734
3735         /* reset Packet Buffer Allocation to default */
3736         ew32(PBA, pba);
3737
3738         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3739                 /* To maintain wire speed transmits, the Tx FIFO should be
3740                  * large enough to accommodate two full transmit packets,
3741                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3742                  * the Rx FIFO should be large enough to accommodate at least
3743                  * one full receive packet and is similarly rounded up and
3744                  * expressed in KB.
3745                  */
3746                 pba = er32(PBA);
3747                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3748                 tx_space = pba >> 16;
3749                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3750                 pba &= 0xffff;
3751                 /* the Tx fifo also stores 16 bytes of information about the Tx
3752                  * but don't include ethernet FCS because hardware appends it
3753                  */
3754                 min_tx_space = (adapter->max_frame_size +
3755                                 sizeof(struct e1000_tx_desc) -
3756                                 ETH_FCS_LEN) * 2;
3757                 min_tx_space = ALIGN(min_tx_space, 1024);
3758                 min_tx_space >>= 10;
3759                 /* software strips receive CRC, so leave room for it */
3760                 min_rx_space = adapter->max_frame_size;
3761                 min_rx_space = ALIGN(min_rx_space, 1024);
3762                 min_rx_space >>= 10;
3763
3764                 /* If current Tx allocation is less than the min Tx FIFO size,
3765                  * and the min Tx FIFO size is less than the current Rx FIFO
3766                  * allocation, take space away from current Rx allocation
3767                  */
3768                 if ((tx_space < min_tx_space) &&
3769                     ((min_tx_space - tx_space) < pba)) {
3770                         pba -= min_tx_space - tx_space;
3771
3772                         /* if short on Rx space, Rx wins and must trump Tx
3773                          * adjustment
3774                          */
3775                         if (pba < min_rx_space)
3776                                 pba = min_rx_space;
3777                 }
3778
3779                 ew32(PBA, pba);
3780         }
3781
3782         /* flow control settings
3783          *
3784          * The high water mark must be low enough to fit one full frame
3785          * (or the size used for early receive) above it in the Rx FIFO.
3786          * Set it to the lower of:
3787          * - 90% of the Rx FIFO size, and
3788          * - the full Rx FIFO size minus one full frame
3789          */
3790         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3791                 fc->pause_time = 0xFFFF;
3792         else
3793                 fc->pause_time = E1000_FC_PAUSE_TIME;
3794         fc->send_xon = true;
3795         fc->current_mode = fc->requested_mode;
3796
3797         switch (hw->mac.type) {
3798         case e1000_ich9lan:
3799         case e1000_ich10lan:
3800                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3801                         pba = 14;
3802                         ew32(PBA, pba);
3803                         fc->high_water = 0x2800;
3804                         fc->low_water = fc->high_water - 8;
3805                         break;
3806                 }
3807                 /* fall-through */
3808         default:
3809                 hwm = min(((pba << 10) * 9 / 10),
3810                           ((pba << 10) - adapter->max_frame_size));
3811
3812                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3813                 fc->low_water = fc->high_water - 8;
3814                 break;
3815         case e1000_pchlan:
3816                 /* Workaround PCH LOM adapter hangs with certain network
3817                  * loads.  If hangs persist, try disabling Tx flow control.
3818                  */
3819                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3820                         fc->high_water = 0x3500;
3821                         fc->low_water  = 0x1500;
3822                 } else {
3823                         fc->high_water = 0x5000;
3824                         fc->low_water  = 0x3000;
3825                 }
3826                 fc->refresh_time = 0x1000;
3827                 break;
3828         case e1000_pch2lan:
3829         case e1000_pch_lpt:
3830                 fc->refresh_time = 0x0400;
3831
3832                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3833                         fc->high_water = 0x05C20;
3834                         fc->low_water = 0x05048;
3835                         fc->pause_time = 0x0650;
3836                         break;
3837                 }
3838
3839                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3840                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3841                 break;
3842         }
3843
3844         /* Alignment of Tx data is on an arbitrary byte boundary with the
3845          * maximum size per Tx descriptor limited only to the transmit
3846          * allocation of the packet buffer minus 96 bytes with an upper
3847          * limit of 24KB due to receive synchronization limitations.
3848          */
3849         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3850                                        24 << 10);
3851
3852         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3853          * fit in receive buffer.
3854          */
3855         if (adapter->itr_setting & 0x3) {
3856                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3857                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3858                                 dev_info(&adapter->pdev->dev,
3859                                         "Interrupt Throttle Rate turned off\n");
3860                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3861                                 e1000e_write_itr(adapter, 0);
3862                         }
3863                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3864                         dev_info(&adapter->pdev->dev,
3865                                  "Interrupt Throttle Rate turned on\n");
3866                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3867                         adapter->itr = 20000;
3868                         e1000e_write_itr(adapter, adapter->itr);
3869                 }
3870         }
3871
3872         /* Allow time for pending master requests to run */
3873         mac->ops.reset_hw(hw);
3874
3875         /* For parts with AMT enabled, let the firmware know
3876          * that the network interface is in control
3877          */
3878         if (adapter->flags & FLAG_HAS_AMT)
3879                 e1000e_get_hw_control(adapter);
3880
3881         ew32(WUC, 0);
3882
3883         if (mac->ops.init_hw(hw))
3884                 e_err("Hardware Error\n");
3885
3886         e1000_update_mng_vlan(adapter);
3887
3888         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3889         ew32(VET, ETH_P_8021Q);
3890
3891         e1000e_reset_adaptive(hw);
3892
3893         /* initialize systim and reset the ns time counter */
3894         e1000e_config_hwtstamp(adapter);
3895
3896         if (!netif_running(adapter->netdev) &&
3897             !test_bit(__E1000_TESTING, &adapter->state)) {
3898                 e1000_power_down_phy(adapter);
3899                 return;
3900         }
3901
3902         e1000_get_phy_info(hw);
3903
3904         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3905             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3906                 u16 phy_data = 0;
3907                 /* speed up time to link by disabling smart power down, ignore
3908                  * the return value of this function because there is nothing
3909                  * different we would do if it failed
3910                  */
3911                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3912                 phy_data &= ~IGP02E1000_PM_SPD;
3913                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3914         }
3915 }
3916
3917 int e1000e_up(struct e1000_adapter *adapter)
3918 {
3919         struct e1000_hw *hw = &adapter->hw;
3920
3921         /* hardware has been reset, we need to reload some things */
3922         e1000_configure(adapter);
3923
3924         clear_bit(__E1000_DOWN, &adapter->state);
3925
3926         if (adapter->msix_entries)
3927                 e1000_configure_msix(adapter);
3928         e1000_irq_enable(adapter);
3929
3930         netif_start_queue(adapter->netdev);
3931
3932         /* fire a link change interrupt to start the watchdog */
3933         if (adapter->msix_entries)
3934                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3935         else
3936                 ew32(ICS, E1000_ICS_LSC);
3937
3938         return 0;
3939 }
3940
3941 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3942 {
3943         struct e1000_hw *hw = &adapter->hw;
3944
3945         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3946                 return;
3947
3948         /* flush pending descriptor writebacks to memory */
3949         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3950         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3951
3952         /* execute the writes immediately */
3953         e1e_flush();
3954
3955         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
3956          * write is successful
3957          */
3958         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3959         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3960
3961         /* execute the writes immediately */
3962         e1e_flush();
3963 }
3964
3965 static void e1000e_update_stats(struct e1000_adapter *adapter);
3966
3967 void e1000e_down(struct e1000_adapter *adapter)
3968 {
3969         struct net_device *netdev = adapter->netdev;
3970         struct e1000_hw *hw = &adapter->hw;
3971         u32 tctl, rctl;
3972
3973         /* signal that we're down so the interrupt handler does not
3974          * reschedule our watchdog timer
3975          */
3976         set_bit(__E1000_DOWN, &adapter->state);
3977
3978         /* disable receives in the hardware */
3979         rctl = er32(RCTL);
3980         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3981                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3982         /* flush and sleep below */
3983
3984         netif_stop_queue(netdev);
3985
3986         /* disable transmits in the hardware */
3987         tctl = er32(TCTL);
3988         tctl &= ~E1000_TCTL_EN;
3989         ew32(TCTL, tctl);
3990
3991         /* flush both disables and wait for them to finish */
3992         e1e_flush();
3993         usleep_range(10000, 20000);
3994
3995         e1000_irq_disable(adapter);
3996
3997         del_timer_sync(&adapter->watchdog_timer);
3998         del_timer_sync(&adapter->phy_info_timer);
3999
4000         netif_carrier_off(netdev);
4001
4002         spin_lock(&adapter->stats64_lock);
4003         e1000e_update_stats(adapter);
4004         spin_unlock(&adapter->stats64_lock);
4005
4006         e1000e_flush_descriptors(adapter);
4007         e1000_clean_tx_ring(adapter->tx_ring);
4008         e1000_clean_rx_ring(adapter->rx_ring);
4009
4010         adapter->link_speed = 0;
4011         adapter->link_duplex = 0;
4012
4013         if (!pci_channel_offline(adapter->pdev))
4014                 e1000e_reset(adapter);
4015
4016         /* TODO: for power management, we could drop the link and
4017          * pci_disable_device here.
4018          */
4019 }
4020
4021 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4022 {
4023         might_sleep();
4024         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4025                 usleep_range(1000, 2000);
4026         e1000e_down(adapter);
4027         e1000e_up(adapter);
4028         clear_bit(__E1000_RESETTING, &adapter->state);
4029 }
4030
4031 /**
4032  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4033  * @cc: cyclecounter structure
4034  **/
4035 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4036 {
4037         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4038                                                      cc);
4039         struct e1000_hw *hw = &adapter->hw;
4040         cycle_t systim;
4041
4042         /* latch SYSTIMH on read of SYSTIML */
4043         systim = (cycle_t)er32(SYSTIML);
4044         systim |= (cycle_t)er32(SYSTIMH) << 32;
4045
4046         return systim;
4047 }
4048
4049 /**
4050  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4051  * @adapter: board private structure to initialize
4052  *
4053  * e1000_sw_init initializes the Adapter private data structure.
4054  * Fields are initialized based on PCI device information and
4055  * OS network device settings (MTU size).
4056  **/
4057 static int e1000_sw_init(struct e1000_adapter *adapter)
4058 {
4059         struct net_device *netdev = adapter->netdev;
4060
4061         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4062         adapter->rx_ps_bsize0 = 128;
4063         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4064         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4065         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4066         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4067
4068         spin_lock_init(&adapter->stats64_lock);
4069
4070         e1000e_set_interrupt_capability(adapter);
4071
4072         if (e1000_alloc_queues(adapter))
4073                 return -ENOMEM;
4074
4075         /* Setup hardware time stamping cyclecounter */
4076         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4077                 adapter->cc.read = e1000e_cyclecounter_read;
4078                 adapter->cc.mask = CLOCKSOURCE_MASK(64);
4079                 adapter->cc.mult = 1;
4080                 /* cc.shift set in e1000e_get_base_tininca() */
4081
4082                 spin_lock_init(&adapter->systim_lock);
4083                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4084         }
4085
4086         /* Explicitly disable IRQ since the NIC can be in any state. */
4087         e1000_irq_disable(adapter);
4088
4089         set_bit(__E1000_DOWN, &adapter->state);
4090         return 0;
4091 }
4092
4093 /**
4094  * e1000_intr_msi_test - Interrupt Handler
4095  * @irq: interrupt number
4096  * @data: pointer to a network interface device structure
4097  **/
4098 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4099 {
4100         struct net_device *netdev = data;
4101         struct e1000_adapter *adapter = netdev_priv(netdev);
4102         struct e1000_hw *hw = &adapter->hw;
4103         u32 icr = er32(ICR);
4104
4105         e_dbg("icr is %08X\n", icr);
4106         if (icr & E1000_ICR_RXSEQ) {
4107                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4108                 /* Force memory writes to complete before acknowledging the
4109                  * interrupt is handled.
4110                  */
4111                 wmb();
4112         }
4113
4114         return IRQ_HANDLED;
4115 }
4116
4117 /**
4118  * e1000_test_msi_interrupt - Returns 0 for successful test
4119  * @adapter: board private struct
4120  *
4121  * code flow taken from tg3.c
4122  **/
4123 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4124 {
4125         struct net_device *netdev = adapter->netdev;
4126         struct e1000_hw *hw = &adapter->hw;
4127         int err;
4128
4129         /* poll_enable hasn't been called yet, so don't need disable */
4130         /* clear any pending events */
4131         er32(ICR);
4132
4133         /* free the real vector and request a test handler */
4134         e1000_free_irq(adapter);
4135         e1000e_reset_interrupt_capability(adapter);
4136
4137         /* Assume that the test fails, if it succeeds then the test
4138          * MSI irq handler will unset this flag
4139          */
4140         adapter->flags |= FLAG_MSI_TEST_FAILED;
4141
4142         err = pci_enable_msi(adapter->pdev);
4143         if (err)
4144                 goto msi_test_failed;
4145
4146         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4147                           netdev->name, netdev);
4148         if (err) {
4149                 pci_disable_msi(adapter->pdev);
4150                 goto msi_test_failed;
4151         }
4152
4153         /* Force memory writes to complete before enabling and firing an
4154          * interrupt.
4155          */
4156         wmb();
4157
4158         e1000_irq_enable(adapter);
4159
4160         /* fire an unusual interrupt on the test handler */
4161         ew32(ICS, E1000_ICS_RXSEQ);
4162         e1e_flush();
4163         msleep(100);
4164
4165         e1000_irq_disable(adapter);
4166
4167         rmb();                  /* read flags after interrupt has been fired */
4168
4169         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4170                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4171                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4172         } else {
4173                 e_dbg("MSI interrupt test succeeded!\n");
4174         }
4175
4176         free_irq(adapter->pdev->irq, netdev);
4177         pci_disable_msi(adapter->pdev);
4178
4179 msi_test_failed:
4180         e1000e_set_interrupt_capability(adapter);
4181         return e1000_request_irq(adapter);
4182 }
4183
4184 /**
4185  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4186  * @adapter: board private struct
4187  *
4188  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4189  **/
4190 static int e1000_test_msi(struct e1000_adapter *adapter)
4191 {
4192         int err;
4193         u16 pci_cmd;
4194
4195         if (!(adapter->flags & FLAG_MSI_ENABLED))
4196                 return 0;
4197
4198         /* disable SERR in case the MSI write causes a master abort */
4199         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4200         if (pci_cmd & PCI_COMMAND_SERR)
4201                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4202                                       pci_cmd & ~PCI_COMMAND_SERR);
4203
4204         err = e1000_test_msi_interrupt(adapter);
4205
4206         /* re-enable SERR */
4207         if (pci_cmd & PCI_COMMAND_SERR) {
4208                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4209                 pci_cmd |= PCI_COMMAND_SERR;
4210                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4211         }
4212
4213         return err;
4214 }
4215
4216 /**
4217  * e1000_open - Called when a network interface is made active
4218  * @netdev: network interface device structure
4219  *
4220  * Returns 0 on success, negative value on failure
4221  *
4222  * The open entry point is called when a network interface is made
4223  * active by the system (IFF_UP).  At this point all resources needed
4224  * for transmit and receive operations are allocated, the interrupt
4225  * handler is registered with the OS, the watchdog timer is started,
4226  * and the stack is notified that the interface is ready.
4227  **/
4228 static int e1000_open(struct net_device *netdev)
4229 {
4230         struct e1000_adapter *adapter = netdev_priv(netdev);
4231         struct e1000_hw *hw = &adapter->hw;
4232         struct pci_dev *pdev = adapter->pdev;
4233         int err;
4234
4235         /* disallow open during test */
4236         if (test_bit(__E1000_TESTING, &adapter->state))
4237                 return -EBUSY;
4238
4239         pm_runtime_get_sync(&pdev->dev);
4240
4241         netif_carrier_off(netdev);
4242
4243         /* allocate transmit descriptors */
4244         err = e1000e_setup_tx_resources(adapter->tx_ring);
4245         if (err)
4246                 goto err_setup_tx;
4247
4248         /* allocate receive descriptors */
4249         err = e1000e_setup_rx_resources(adapter->rx_ring);
4250         if (err)
4251                 goto err_setup_rx;
4252
4253         /* If AMT is enabled, let the firmware know that the network
4254          * interface is now open and reset the part to a known state.
4255          */
4256         if (adapter->flags & FLAG_HAS_AMT) {
4257                 e1000e_get_hw_control(adapter);
4258                 e1000e_reset(adapter);
4259         }
4260
4261         e1000e_power_up_phy(adapter);
4262
4263         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4264         if ((adapter->hw.mng_cookie.status &
4265              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4266                 e1000_update_mng_vlan(adapter);
4267
4268         /* DMA latency requirement to workaround jumbo issue */
4269         pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4270                            PM_QOS_DEFAULT_VALUE);
4271
4272         /* before we allocate an interrupt, we must be ready to handle it.
4273          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4274          * as soon as we call pci_request_irq, so we have to setup our
4275          * clean_rx handler before we do so.
4276          */
4277         e1000_configure(adapter);
4278
4279         err = e1000_request_irq(adapter);
4280         if (err)
4281                 goto err_req_irq;
4282
4283         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4284          * ignore e1000e MSI messages, which means we need to test our MSI
4285          * interrupt now
4286          */
4287         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4288                 err = e1000_test_msi(adapter);
4289                 if (err) {
4290                         e_err("Interrupt allocation failed\n");
4291                         goto err_req_irq;
4292                 }
4293         }
4294
4295         /* From here on the code is the same as e1000e_up() */
4296         clear_bit(__E1000_DOWN, &adapter->state);
4297
4298         napi_enable(&adapter->napi);
4299
4300         e1000_irq_enable(adapter);
4301
4302         adapter->tx_hang_recheck = false;
4303         netif_start_queue(netdev);
4304
4305         adapter->idle_check = true;
4306         hw->mac.get_link_status = true;
4307         pm_runtime_put(&pdev->dev);
4308
4309         /* fire a link status change interrupt to start the watchdog */
4310         if (adapter->msix_entries)
4311                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4312         else
4313                 ew32(ICS, E1000_ICS_LSC);
4314
4315         return 0;
4316
4317 err_req_irq:
4318         e1000e_release_hw_control(adapter);
4319         e1000_power_down_phy(adapter);
4320         e1000e_free_rx_resources(adapter->rx_ring);
4321 err_setup_rx:
4322         e1000e_free_tx_resources(adapter->tx_ring);
4323 err_setup_tx:
4324         e1000e_reset(adapter);
4325         pm_runtime_put_sync(&pdev->dev);
4326
4327         return err;
4328 }
4329
4330 /**
4331  * e1000_close - Disables a network interface
4332  * @netdev: network interface device structure
4333  *
4334  * Returns 0, this is not allowed to fail
4335  *
4336  * The close entry point is called when an interface is de-activated
4337  * by the OS.  The hardware is still under the drivers control, but
4338  * needs to be disabled.  A global MAC reset is issued to stop the
4339  * hardware, and all transmit and receive resources are freed.
4340  **/
4341 static int e1000_close(struct net_device *netdev)
4342 {
4343         struct e1000_adapter *adapter = netdev_priv(netdev);
4344         struct pci_dev *pdev = adapter->pdev;
4345         int count = E1000_CHECK_RESET_COUNT;
4346
4347         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4348                 usleep_range(10000, 20000);
4349
4350         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4351
4352         pm_runtime_get_sync(&pdev->dev);
4353
4354         napi_disable(&adapter->napi);
4355
4356         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4357                 e1000e_down(adapter);
4358                 e1000_free_irq(adapter);
4359         }
4360         e1000_power_down_phy(adapter);
4361
4362         e1000e_free_tx_resources(adapter->tx_ring);
4363         e1000e_free_rx_resources(adapter->rx_ring);
4364
4365         /* kill manageability vlan ID if supported, but not if a vlan with
4366          * the same ID is registered on the host OS (let 8021q kill it)
4367          */
4368         if (adapter->hw.mng_cookie.status &
4369             E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4370                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4371
4372         /* If AMT is enabled, let the firmware know that the network
4373          * interface is now closed
4374          */
4375         if ((adapter->flags & FLAG_HAS_AMT) &&
4376             !test_bit(__E1000_TESTING, &adapter->state))
4377                 e1000e_release_hw_control(adapter);
4378
4379         pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4380
4381         pm_runtime_put_sync(&pdev->dev);
4382
4383         return 0;
4384 }
4385 /**
4386  * e1000_set_mac - Change the Ethernet Address of the NIC
4387  * @netdev: network interface device structure
4388  * @p: pointer to an address structure
4389  *
4390  * Returns 0 on success, negative on failure
4391  **/
4392 static int e1000_set_mac(struct net_device *netdev, void *p)
4393 {
4394         struct e1000_adapter *adapter = netdev_priv(netdev);
4395         struct e1000_hw *hw = &adapter->hw;
4396         struct sockaddr *addr = p;
4397
4398         if (!is_valid_ether_addr(addr->sa_data))
4399                 return -EADDRNOTAVAIL;
4400
4401         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4402         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4403
4404         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4405
4406         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4407                 /* activate the work around */
4408                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4409
4410                 /* Hold a copy of the LAA in RAR[14] This is done so that
4411                  * between the time RAR[0] gets clobbered  and the time it
4412                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4413                  * of the RARs and no incoming packets directed to this port
4414                  * are dropped. Eventually the LAA will be in RAR[0] and
4415                  * RAR[14]
4416                  */
4417                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4418                                     adapter->hw.mac.rar_entry_count - 1);
4419         }
4420
4421         return 0;
4422 }
4423
4424 /**
4425  * e1000e_update_phy_task - work thread to update phy
4426  * @work: pointer to our work struct
4427  *
4428  * this worker thread exists because we must acquire a
4429  * semaphore to read the phy, which we could msleep while
4430  * waiting for it, and we can't msleep in a timer.
4431  **/
4432 static void e1000e_update_phy_task(struct work_struct *work)
4433 {
4434         struct e1000_adapter *adapter = container_of(work,
4435                                         struct e1000_adapter, update_phy_task);
4436
4437         if (test_bit(__E1000_DOWN, &adapter->state))
4438                 return;
4439
4440         e1000_get_phy_info(&adapter->hw);
4441 }
4442
4443 /**
4444  * e1000_update_phy_info - timre call-back to update PHY info
4445  * @data: pointer to adapter cast into an unsigned long
4446  *
4447  * Need to wait a few seconds after link up to get diagnostic information from
4448  * the phy
4449  **/
4450 static void e1000_update_phy_info(unsigned long data)
4451 {
4452         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4453
4454         if (test_bit(__E1000_DOWN, &adapter->state))
4455                 return;
4456
4457         schedule_work(&adapter->update_phy_task);
4458 }
4459
4460 /**
4461  * e1000e_update_phy_stats - Update the PHY statistics counters
4462  * @adapter: board private structure
4463  *
4464  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4465  **/
4466 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4467 {
4468         struct e1000_hw *hw = &adapter->hw;
4469         s32 ret_val;
4470         u16 phy_data;
4471
4472         ret_val = hw->phy.ops.acquire(hw);
4473         if (ret_val)
4474                 return;
4475
4476         /* A page set is expensive so check if already on desired page.
4477          * If not, set to the page with the PHY status registers.
4478          */
4479         hw->phy.addr = 1;
4480         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4481                                            &phy_data);
4482         if (ret_val)
4483                 goto release;
4484         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4485                 ret_val = hw->phy.ops.set_page(hw,
4486                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4487                 if (ret_val)
4488                         goto release;
4489         }
4490
4491         /* Single Collision Count */
4492         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4493         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4494         if (!ret_val)
4495                 adapter->stats.scc += phy_data;
4496
4497         /* Excessive Collision Count */
4498         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4499         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4500         if (!ret_val)
4501                 adapter->stats.ecol += phy_data;
4502
4503         /* Multiple Collision Count */
4504         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4505         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4506         if (!ret_val)
4507                 adapter->stats.mcc += phy_data;
4508
4509         /* Late Collision Count */
4510         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4511         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4512         if (!ret_val)
4513                 adapter->stats.latecol += phy_data;
4514
4515         /* Collision Count - also used for adaptive IFS */
4516         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4517         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4518         if (!ret_val)
4519                 hw->mac.collision_delta = phy_data;
4520
4521         /* Defer Count */
4522         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4523         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4524         if (!ret_val)
4525                 adapter->stats.dc += phy_data;
4526
4527         /* Transmit with no CRS */
4528         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4529         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4530         if (!ret_val)
4531                 adapter->stats.tncrs += phy_data;
4532
4533 release:
4534         hw->phy.ops.release(hw);
4535 }
4536
4537 /**
4538  * e1000e_update_stats - Update the board statistics counters
4539  * @adapter: board private structure
4540  **/
4541 static void e1000e_update_stats(struct e1000_adapter *adapter)
4542 {
4543         struct net_device *netdev = adapter->netdev;
4544         struct e1000_hw *hw = &adapter->hw;
4545         struct pci_dev *pdev = adapter->pdev;
4546
4547         /* Prevent stats update while adapter is being reset, or if the pci
4548          * connection is down.
4549          */
4550         if (adapter->link_speed == 0)
4551                 return;
4552         if (pci_channel_offline(pdev))
4553                 return;
4554
4555         adapter->stats.crcerrs += er32(CRCERRS);
4556         adapter->stats.gprc += er32(GPRC);
4557         adapter->stats.gorc += er32(GORCL);
4558         er32(GORCH); /* Clear gorc */
4559         adapter->stats.bprc += er32(BPRC);
4560         adapter->stats.mprc += er32(MPRC);
4561         adapter->stats.roc += er32(ROC);
4562
4563         adapter->stats.mpc += er32(MPC);
4564
4565         /* Half-duplex statistics */
4566         if (adapter->link_duplex == HALF_DUPLEX) {
4567                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4568                         e1000e_update_phy_stats(adapter);
4569                 } else {
4570                         adapter->stats.scc += er32(SCC);
4571                         adapter->stats.ecol += er32(ECOL);
4572                         adapter->stats.mcc += er32(MCC);
4573                         adapter->stats.latecol += er32(LATECOL);
4574                         adapter->stats.dc += er32(DC);
4575
4576                         hw->mac.collision_delta = er32(COLC);
4577
4578                         if ((hw->mac.type != e1000_82574) &&
4579                             (hw->mac.type != e1000_82583))
4580                                 adapter->stats.tncrs += er32(TNCRS);
4581                 }
4582                 adapter->stats.colc += hw->mac.collision_delta;
4583         }
4584
4585         adapter->stats.xonrxc += er32(XONRXC);
4586         adapter->stats.xontxc += er32(XONTXC);
4587         adapter->stats.xoffrxc += er32(XOFFRXC);
4588         adapter->stats.xofftxc += er32(XOFFTXC);
4589         adapter->stats.gptc += er32(GPTC);
4590         adapter->stats.gotc += er32(GOTCL);
4591         er32(GOTCH); /* Clear gotc */
4592         adapter->stats.rnbc += er32(RNBC);
4593         adapter->stats.ruc += er32(RUC);
4594
4595         adapter->stats.mptc += er32(MPTC);
4596         adapter->stats.bptc += er32(BPTC);
4597
4598         /* used for adaptive IFS */
4599
4600         hw->mac.tx_packet_delta = er32(TPT);
4601         adapter->stats.tpt += hw->mac.tx_packet_delta;
4602
4603         adapter->stats.algnerrc += er32(ALGNERRC);
4604         adapter->stats.rxerrc += er32(RXERRC);
4605         adapter->stats.cexterr += er32(CEXTERR);
4606         adapter->stats.tsctc += er32(TSCTC);
4607         adapter->stats.tsctfc += er32(TSCTFC);
4608
4609         /* Fill out the OS statistics structure */
4610         netdev->stats.multicast = adapter->stats.mprc;
4611         netdev->stats.collisions = adapter->stats.colc;
4612
4613         /* Rx Errors */
4614
4615         /* RLEC on some newer hardware can be incorrect so build
4616          * our own version based on RUC and ROC
4617          */
4618         netdev->stats.rx_errors = adapter->stats.rxerrc +
4619                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4620                 adapter->stats.ruc + adapter->stats.roc +
4621                 adapter->stats.cexterr;
4622         netdev->stats.rx_length_errors = adapter->stats.ruc +
4623                                               adapter->stats.roc;
4624         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4625         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4626         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4627
4628         /* Tx Errors */
4629         netdev->stats.tx_errors = adapter->stats.ecol +
4630                                        adapter->stats.latecol;
4631         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4632         netdev->stats.tx_window_errors = adapter->stats.latecol;
4633         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4634
4635         /* Tx Dropped needs to be maintained elsewhere */
4636
4637         /* Management Stats */
4638         adapter->stats.mgptc += er32(MGTPTC);
4639         adapter->stats.mgprc += er32(MGTPRC);
4640         adapter->stats.mgpdc += er32(MGTPDC);
4641
4642         /* Correctable ECC Errors */
4643         if (hw->mac.type == e1000_pch_lpt) {
4644                 u32 pbeccsts = er32(PBECCSTS);
4645                 adapter->corr_errors +=
4646                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4647                 adapter->uncorr_errors +=
4648                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4649                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4650         }
4651 }
4652
4653 /**
4654  * e1000_phy_read_status - Update the PHY register status snapshot
4655  * @adapter: board private structure
4656  **/
4657 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4658 {
4659         struct e1000_hw *hw = &adapter->hw;
4660         struct e1000_phy_regs *phy = &adapter->phy_regs;
4661
4662         if ((er32(STATUS) & E1000_STATUS_LU) &&
4663             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4664                 int ret_val;
4665
4666                 pm_runtime_get_sync(&adapter->pdev->dev);
4667                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4668                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4669                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4670                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4671                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4672                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4673                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4674                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4675                 if (ret_val)
4676                         e_warn("Error reading PHY register\n");
4677                 pm_runtime_put_sync(&adapter->pdev->dev);
4678         } else {
4679                 /* Do not read PHY registers if link is not up
4680                  * Set values to typical power-on defaults
4681                  */
4682                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4683                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4684                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4685                              BMSR_ERCAP);
4686                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4687                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4688                 phy->lpa = 0;
4689                 phy->expansion = EXPANSION_ENABLENPAGE;
4690                 phy->ctrl1000 = ADVERTISE_1000FULL;
4691                 phy->stat1000 = 0;
4692                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4693         }
4694 }
4695
4696 static void e1000_print_link_info(struct e1000_adapter *adapter)
4697 {
4698         struct e1000_hw *hw = &adapter->hw;
4699         u32 ctrl = er32(CTRL);
4700
4701         /* Link status message must follow this format for user tools */
4702         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4703                 adapter->netdev->name, adapter->link_speed,
4704                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4705                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4706                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4707                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4708 }
4709
4710 static bool e1000e_has_link(struct e1000_adapter *adapter)
4711 {
4712         struct e1000_hw *hw = &adapter->hw;
4713         bool link_active = false;
4714         s32 ret_val = 0;
4715
4716         /* get_link_status is set on LSC (link status) interrupt or
4717          * Rx sequence error interrupt.  get_link_status will stay
4718          * false until the check_for_link establishes link
4719          * for copper adapters ONLY
4720          */
4721         switch (hw->phy.media_type) {
4722         case e1000_media_type_copper:
4723                 if (hw->mac.get_link_status) {
4724                         ret_val = hw->mac.ops.check_for_link(hw);
4725                         link_active = !hw->mac.get_link_status;
4726                 } else {
4727                         link_active = true;
4728                 }
4729                 break;
4730         case e1000_media_type_fiber:
4731                 ret_val = hw->mac.ops.check_for_link(hw);
4732                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4733                 break;
4734         case e1000_media_type_internal_serdes:
4735                 ret_val = hw->mac.ops.check_for_link(hw);
4736                 link_active = adapter->hw.mac.serdes_has_link;
4737                 break;
4738         default:
4739         case e1000_media_type_unknown:
4740                 break;
4741         }
4742
4743         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4744             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4745                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4746                 e_info("Gigabit has been disabled, downgrading speed\n");
4747         }
4748
4749         return link_active;
4750 }
4751
4752 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4753 {
4754         /* make sure the receive unit is started */
4755         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4756             (adapter->flags & FLAG_RESTART_NOW)) {
4757                 struct e1000_hw *hw = &adapter->hw;
4758                 u32 rctl = er32(RCTL);
4759                 ew32(RCTL, rctl | E1000_RCTL_EN);
4760                 adapter->flags &= ~FLAG_RESTART_NOW;
4761         }
4762 }
4763
4764 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4765 {
4766         struct e1000_hw *hw = &adapter->hw;
4767
4768         /* With 82574 controllers, PHY needs to be checked periodically
4769          * for hung state and reset, if two calls return true
4770          */
4771         if (e1000_check_phy_82574(hw))
4772                 adapter->phy_hang_count++;
4773         else
4774                 adapter->phy_hang_count = 0;
4775
4776         if (adapter->phy_hang_count > 1) {
4777                 adapter->phy_hang_count = 0;
4778                 schedule_work(&adapter->reset_task);
4779         }
4780 }
4781
4782 /**
4783  * e1000_watchdog - Timer Call-back
4784  * @data: pointer to adapter cast into an unsigned long
4785  **/
4786 static void e1000_watchdog(unsigned long data)
4787 {
4788         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4789
4790         /* Do the rest outside of interrupt context */
4791         schedule_work(&adapter->watchdog_task);
4792
4793         /* TODO: make this use queue_delayed_work() */
4794 }
4795
4796 static void e1000_watchdog_task(struct work_struct *work)
4797 {
4798         struct e1000_adapter *adapter = container_of(work,
4799                                         struct e1000_adapter, watchdog_task);
4800         struct net_device *netdev = adapter->netdev;
4801         struct e1000_mac_info *mac = &adapter->hw.mac;
4802         struct e1000_phy_info *phy = &adapter->hw.phy;
4803         struct e1000_ring *tx_ring = adapter->tx_ring;
4804         struct e1000_hw *hw = &adapter->hw;
4805         u32 link, tctl;
4806
4807         if (test_bit(__E1000_DOWN, &adapter->state))
4808                 return;
4809
4810         link = e1000e_has_link(adapter);
4811         if ((netif_carrier_ok(netdev)) && link) {
4812                 /* Cancel scheduled suspend requests. */
4813                 pm_runtime_resume(netdev->dev.parent);
4814
4815                 e1000e_enable_receives(adapter);
4816                 goto link_up;
4817         }
4818
4819         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4820             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4821                 e1000_update_mng_vlan(adapter);
4822
4823         if (link) {
4824                 if (!netif_carrier_ok(netdev)) {
4825                         bool txb2b = true;
4826
4827                         /* Cancel scheduled suspend requests. */
4828                         pm_runtime_resume(netdev->dev.parent);
4829
4830                         /* update snapshot of PHY registers on LSC */
4831                         e1000_phy_read_status(adapter);
4832                         mac->ops.get_link_up_info(&adapter->hw,
4833                                                    &adapter->link_speed,
4834                                                    &adapter->link_duplex);
4835                         e1000_print_link_info(adapter);
4836
4837                         /* check if SmartSpeed worked */
4838                         e1000e_check_downshift(hw);
4839                         if (phy->speed_downgraded)
4840                                 netdev_warn(netdev,
4841                                             "Link Speed was downgraded by SmartSpeed\n");
4842
4843                         /* On supported PHYs, check for duplex mismatch only
4844                          * if link has autonegotiated at 10/100 half
4845                          */
4846                         if ((hw->phy.type == e1000_phy_igp_3 ||
4847                              hw->phy.type == e1000_phy_bm) &&
4848                             (hw->mac.autoneg == true) &&
4849                             (adapter->link_speed == SPEED_10 ||
4850                              adapter->link_speed == SPEED_100) &&
4851                             (adapter->link_duplex == HALF_DUPLEX)) {
4852                                 u16 autoneg_exp;
4853
4854                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4855
4856                                 if (!(autoneg_exp & EXPANSION_NWAY))
4857                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4858                         }
4859
4860                         /* adjust timeout factor according to speed/duplex */
4861                         adapter->tx_timeout_factor = 1;
4862                         switch (adapter->link_speed) {
4863                         case SPEED_10:
4864                                 txb2b = false;
4865                                 adapter->tx_timeout_factor = 16;
4866                                 break;
4867                         case SPEED_100:
4868                                 txb2b = false;
4869                                 adapter->tx_timeout_factor = 10;
4870                                 break;
4871                         }
4872
4873                         /* workaround: re-program speed mode bit after
4874                          * link-up event
4875                          */
4876                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4877                             !txb2b) {
4878                                 u32 tarc0;
4879                                 tarc0 = er32(TARC(0));
4880                                 tarc0 &= ~SPEED_MODE_BIT;
4881                                 ew32(TARC(0), tarc0);
4882                         }
4883
4884                         /* disable TSO for pcie and 10/100 speeds, to avoid
4885                          * some hardware issues
4886                          */
4887                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4888                                 switch (adapter->link_speed) {
4889                                 case SPEED_10:
4890                                 case SPEED_100:
4891                                         e_info("10/100 speed: disabling TSO\n");
4892                                         netdev->features &= ~NETIF_F_TSO;
4893                                         netdev->features &= ~NETIF_F_TSO6;
4894                                         break;
4895                                 case SPEED_1000:
4896                                         netdev->features |= NETIF_F_TSO;
4897                                         netdev->features |= NETIF_F_TSO6;
4898                                         break;
4899                                 default:
4900                                         /* oops */
4901                                         break;
4902                                 }
4903                         }
4904
4905                         /* enable transmits in the hardware, need to do this
4906                          * after setting TARC(0)
4907                          */
4908                         tctl = er32(TCTL);
4909                         tctl |= E1000_TCTL_EN;
4910                         ew32(TCTL, tctl);
4911
4912                         /* Perform any post-link-up configuration before
4913                          * reporting link up.
4914                          */
4915                         if (phy->ops.cfg_on_link_up)
4916                                 phy->ops.cfg_on_link_up(hw);
4917
4918                         netif_carrier_on(netdev);
4919
4920                         if (!test_bit(__E1000_DOWN, &adapter->state))
4921                                 mod_timer(&adapter->phy_info_timer,
4922                                           round_jiffies(jiffies + 2 * HZ));
4923                 }
4924         } else {
4925                 if (netif_carrier_ok(netdev)) {
4926                         adapter->link_speed = 0;
4927                         adapter->link_duplex = 0;
4928                         /* Link status message must follow this format */
4929                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4930                         netif_carrier_off(netdev);
4931                         if (!test_bit(__E1000_DOWN, &adapter->state))
4932                                 mod_timer(&adapter->phy_info_timer,
4933                                           round_jiffies(jiffies + 2 * HZ));
4934
4935                         /* The link is lost so the controller stops DMA.
4936                          * If there is queued Tx work that cannot be done
4937                          * or if on an 8000ES2LAN which requires a Rx packet
4938                          * buffer work-around on link down event, reset the
4939                          * controller to flush the Tx/Rx packet buffers.
4940                          * (Do the reset outside of interrupt context).
4941                          */
4942                         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) ||
4943                             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
4944                                 adapter->flags |= FLAG_RESTART_NOW;
4945                         else
4946                                 pm_schedule_suspend(netdev->dev.parent,
4947                                                         LINK_TIMEOUT);
4948                 }
4949         }
4950
4951 link_up:
4952         spin_lock(&adapter->stats64_lock);
4953         e1000e_update_stats(adapter);
4954
4955         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4956         adapter->tpt_old = adapter->stats.tpt;
4957         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4958         adapter->colc_old = adapter->stats.colc;
4959
4960         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4961         adapter->gorc_old = adapter->stats.gorc;
4962         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4963         adapter->gotc_old = adapter->stats.gotc;
4964         spin_unlock(&adapter->stats64_lock);
4965
4966         if (adapter->flags & FLAG_RESTART_NOW) {
4967                 schedule_work(&adapter->reset_task);
4968                 /* return immediately since reset is imminent */
4969                 return;
4970         }
4971
4972         e1000e_update_adaptive(&adapter->hw);
4973
4974         /* Simple mode for Interrupt Throttle Rate (ITR) */
4975         if (adapter->itr_setting == 4) {
4976                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
4977                  * Total asymmetrical Tx or Rx gets ITR=8000;
4978                  * everyone else is between 2000-8000.
4979                  */
4980                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4981                 u32 dif = (adapter->gotc > adapter->gorc ?
4982                             adapter->gotc - adapter->gorc :
4983                             adapter->gorc - adapter->gotc) / 10000;
4984                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4985
4986                 e1000e_write_itr(adapter, itr);
4987         }
4988
4989         /* Cause software interrupt to ensure Rx ring is cleaned */
4990         if (adapter->msix_entries)
4991                 ew32(ICS, adapter->rx_ring->ims_val);
4992         else
4993                 ew32(ICS, E1000_ICS_RXDMT0);
4994
4995         /* flush pending descriptors to memory before detecting Tx hang */
4996         e1000e_flush_descriptors(adapter);
4997
4998         /* Force detection of hung controller every watchdog period */
4999         adapter->detect_tx_hung = true;
5000
5001         /* With 82571 controllers, LAA may be overwritten due to controller
5002          * reset from the other port. Set the appropriate LAA in RAR[0]
5003          */
5004         if (e1000e_get_laa_state_82571(hw))
5005                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5006
5007         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5008                 e1000e_check_82574_phy_workaround(adapter);
5009
5010         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5011         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5012                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5013                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5014                         er32(RXSTMPH);
5015                         adapter->rx_hwtstamp_cleared++;
5016                 } else {
5017                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5018                 }
5019         }
5020
5021         /* Reset the timer */
5022         if (!test_bit(__E1000_DOWN, &adapter->state))
5023                 mod_timer(&adapter->watchdog_timer,
5024                           round_jiffies(jiffies + 2 * HZ));
5025 }
5026
5027 #define E1000_TX_FLAGS_CSUM             0x00000001
5028 #define E1000_TX_FLAGS_VLAN             0x00000002
5029 #define E1000_TX_FLAGS_TSO              0x00000004
5030 #define E1000_TX_FLAGS_IPV4             0x00000008
5031 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5032 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5033 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5034 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5035
5036 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
5037 {
5038         struct e1000_context_desc *context_desc;
5039         struct e1000_buffer *buffer_info;
5040         unsigned int i;
5041         u32 cmd_length = 0;
5042         u16 ipcse = 0, mss;
5043         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5044
5045         if (!skb_is_gso(skb))
5046                 return 0;
5047
5048         if (skb_header_cloned(skb)) {
5049                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5050
5051                 if (err)
5052                         return err;
5053         }
5054
5055         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5056         mss = skb_shinfo(skb)->gso_size;
5057         if (skb->protocol == htons(ETH_P_IP)) {
5058                 struct iphdr *iph = ip_hdr(skb);
5059                 iph->tot_len = 0;
5060                 iph->check = 0;
5061                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5062                                                          0, IPPROTO_TCP, 0);
5063                 cmd_length = E1000_TXD_CMD_IP;
5064                 ipcse = skb_transport_offset(skb) - 1;
5065         } else if (skb_is_gso_v6(skb)) {
5066                 ipv6_hdr(skb)->payload_len = 0;
5067                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5068                                                        &ipv6_hdr(skb)->daddr,
5069                                                        0, IPPROTO_TCP, 0);
5070                 ipcse = 0;
5071         }
5072         ipcss = skb_network_offset(skb);
5073         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5074         tucss = skb_transport_offset(skb);
5075         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5076
5077         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5078                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5079
5080         i = tx_ring->next_to_use;
5081         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5082         buffer_info = &tx_ring->buffer_info[i];
5083
5084         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
5085         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
5086         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
5087         context_desc->upper_setup.tcp_fields.tucss = tucss;
5088         context_desc->upper_setup.tcp_fields.tucso = tucso;
5089         context_desc->upper_setup.tcp_fields.tucse = 0;
5090         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
5091         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5092         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5093
5094         buffer_info->time_stamp = jiffies;
5095         buffer_info->next_to_watch = i;
5096
5097         i++;
5098         if (i == tx_ring->count)
5099                 i = 0;
5100         tx_ring->next_to_use = i;
5101
5102         return 1;
5103 }
5104
5105 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
5106 {
5107         struct e1000_adapter *adapter = tx_ring->adapter;
5108         struct e1000_context_desc *context_desc;
5109         struct e1000_buffer *buffer_info;
5110         unsigned int i;
5111         u8 css;
5112         u32 cmd_len = E1000_TXD_CMD_DEXT;
5113         __be16 protocol;
5114
5115         if (skb->ip_summed != CHECKSUM_PARTIAL)
5116                 return 0;
5117
5118         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5119                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5120         else
5121                 protocol = skb->protocol;
5122
5123         switch (protocol) {
5124         case cpu_to_be16(ETH_P_IP):
5125                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5126                         cmd_len |= E1000_TXD_CMD_TCP;
5127                 break;
5128         case cpu_to_be16(ETH_P_IPV6):
5129                 /* XXX not handling all IPV6 headers */
5130                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5131                         cmd_len |= E1000_TXD_CMD_TCP;
5132                 break;
5133         default:
5134                 if (unlikely(net_ratelimit()))
5135                         e_warn("checksum_partial proto=%x!\n",
5136                                be16_to_cpu(protocol));
5137                 break;
5138         }
5139
5140         css = skb_checksum_start_offset(skb);
5141
5142         i = tx_ring->next_to_use;
5143         buffer_info = &tx_ring->buffer_info[i];
5144         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5145
5146         context_desc->lower_setup.ip_config = 0;
5147         context_desc->upper_setup.tcp_fields.tucss = css;
5148         context_desc->upper_setup.tcp_fields.tucso =
5149                                 css + skb->csum_offset;
5150         context_desc->upper_setup.tcp_fields.tucse = 0;
5151         context_desc->tcp_seg_setup.data = 0;
5152         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5153
5154         buffer_info->time_stamp = jiffies;
5155         buffer_info->next_to_watch = i;
5156
5157         i++;
5158         if (i == tx_ring->count)
5159                 i = 0;
5160         tx_ring->next_to_use = i;
5161
5162         return 1;
5163 }
5164
5165 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5166                         unsigned int first, unsigned int max_per_txd,
5167                         unsigned int nr_frags)
5168 {
5169         struct e1000_adapter *adapter = tx_ring->adapter;
5170         struct pci_dev *pdev = adapter->pdev;
5171         struct e1000_buffer *buffer_info;
5172         unsigned int len = skb_headlen(skb);
5173         unsigned int offset = 0, size, count = 0, i;
5174         unsigned int f, bytecount, segs;
5175
5176         i = tx_ring->next_to_use;
5177
5178         while (len) {
5179                 buffer_info = &tx_ring->buffer_info[i];
5180                 size = min(len, max_per_txd);
5181
5182                 buffer_info->length = size;
5183                 buffer_info->time_stamp = jiffies;
5184                 buffer_info->next_to_watch = i;
5185                 buffer_info->dma = dma_map_single(&pdev->dev,
5186                                                   skb->data + offset,
5187                                                   size, DMA_TO_DEVICE);
5188                 buffer_info->mapped_as_page = false;
5189                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5190                         goto dma_error;
5191
5192                 len -= size;
5193                 offset += size;
5194                 count++;
5195
5196                 if (len) {
5197                         i++;
5198                         if (i == tx_ring->count)
5199                                 i = 0;
5200                 }
5201         }
5202
5203         for (f = 0; f < nr_frags; f++) {
5204                 const struct skb_frag_struct *frag;
5205
5206                 frag = &skb_shinfo(skb)->frags[f];
5207                 len = skb_frag_size(frag);
5208                 offset = 0;
5209
5210                 while (len) {
5211                         i++;
5212                         if (i == tx_ring->count)
5213                                 i = 0;
5214
5215                         buffer_info = &tx_ring->buffer_info[i];
5216                         size = min(len, max_per_txd);
5217
5218                         buffer_info->length = size;
5219                         buffer_info->time_stamp = jiffies;
5220                         buffer_info->next_to_watch = i;
5221                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5222                                                 offset, size, DMA_TO_DEVICE);
5223                         buffer_info->mapped_as_page = true;
5224                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5225                                 goto dma_error;
5226
5227                         len -= size;
5228                         offset += size;
5229                         count++;
5230                 }
5231         }
5232
5233         segs = skb_shinfo(skb)->gso_segs ? : 1;
5234         /* multiply data chunks by size of headers */
5235         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5236
5237         tx_ring->buffer_info[i].skb = skb;
5238         tx_ring->buffer_info[i].segs = segs;
5239         tx_ring->buffer_info[i].bytecount = bytecount;
5240         tx_ring->buffer_info[first].next_to_watch = i;
5241
5242         return count;
5243
5244 dma_error:
5245         dev_err(&pdev->dev, "Tx DMA map failed\n");
5246         buffer_info->dma = 0;
5247         if (count)
5248                 count--;
5249
5250         while (count--) {
5251                 if (i == 0)
5252                         i += tx_ring->count;
5253                 i--;
5254                 buffer_info = &tx_ring->buffer_info[i];
5255                 e1000_put_txbuf(tx_ring, buffer_info);
5256         }
5257
5258         return 0;
5259 }
5260
5261 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5262 {
5263         struct e1000_adapter *adapter = tx_ring->adapter;
5264         struct e1000_tx_desc *tx_desc = NULL;
5265         struct e1000_buffer *buffer_info;
5266         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5267         unsigned int i;
5268
5269         if (tx_flags & E1000_TX_FLAGS_TSO) {
5270                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5271                              E1000_TXD_CMD_TSE;
5272                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5273
5274                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5275                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5276         }
5277
5278         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5279                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5280                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5281         }
5282
5283         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5284                 txd_lower |= E1000_TXD_CMD_VLE;
5285                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5286         }
5287
5288         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5289                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5290
5291         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5292                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5293                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5294         }
5295
5296         i = tx_ring->next_to_use;
5297
5298         do {
5299                 buffer_info = &tx_ring->buffer_info[i];
5300                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5301                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5302                 tx_desc->lower.data =
5303                         cpu_to_le32(txd_lower | buffer_info->length);
5304                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5305
5306                 i++;
5307                 if (i == tx_ring->count)
5308                         i = 0;
5309         } while (--count > 0);
5310
5311         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5312
5313         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5314         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5315                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5316
5317         /* Force memory writes to complete before letting h/w
5318          * know there are new descriptors to fetch.  (Only
5319          * applicable for weak-ordered memory model archs,
5320          * such as IA-64).
5321          */
5322         wmb();
5323
5324         tx_ring->next_to_use = i;
5325
5326         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5327                 e1000e_update_tdt_wa(tx_ring, i);
5328         else
5329                 writel(i, tx_ring->tail);
5330
5331         /* we need this if more than one processor can write to our tail
5332          * at a time, it synchronizes IO on IA64/Altix systems
5333          */
5334         mmiowb();
5335 }
5336
5337 #define MINIMUM_DHCP_PACKET_SIZE 282
5338 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5339                                     struct sk_buff *skb)
5340 {
5341         struct e1000_hw *hw =  &adapter->hw;
5342         u16 length, offset;
5343
5344         if (vlan_tx_tag_present(skb) &&
5345             !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5346               (adapter->hw.mng_cookie.status &
5347                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5348                 return 0;
5349
5350         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5351                 return 0;
5352
5353         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
5354                 return 0;
5355
5356         {
5357                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
5358                 struct udphdr *udp;
5359
5360                 if (ip->protocol != IPPROTO_UDP)
5361                         return 0;
5362
5363                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5364                 if (ntohs(udp->dest) != 67)
5365                         return 0;
5366
5367                 offset = (u8 *)udp + 8 - skb->data;
5368                 length = skb->len - offset;
5369                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5370         }
5371
5372         return 0;
5373 }
5374
5375 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5376 {
5377         struct e1000_adapter *adapter = tx_ring->adapter;
5378
5379         netif_stop_queue(adapter->netdev);
5380         /* Herbert's original patch had:
5381          *  smp_mb__after_netif_stop_queue();
5382          * but since that doesn't exist yet, just open code it.
5383          */
5384         smp_mb();
5385
5386         /* We need to check again in a case another CPU has just
5387          * made room available.
5388          */
5389         if (e1000_desc_unused(tx_ring) < size)
5390                 return -EBUSY;
5391
5392         /* A reprieve! */
5393         netif_start_queue(adapter->netdev);
5394         ++adapter->restart_queue;
5395         return 0;
5396 }
5397
5398 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5399 {
5400         BUG_ON(size > tx_ring->count);
5401
5402         if (e1000_desc_unused(tx_ring) >= size)
5403                 return 0;
5404         return __e1000_maybe_stop_tx(tx_ring, size);
5405 }
5406
5407 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5408                                     struct net_device *netdev)
5409 {
5410         struct e1000_adapter *adapter = netdev_priv(netdev);
5411         struct e1000_ring *tx_ring = adapter->tx_ring;
5412         unsigned int first;
5413         unsigned int tx_flags = 0;
5414         unsigned int len = skb_headlen(skb);
5415         unsigned int nr_frags;
5416         unsigned int mss;
5417         int count = 0;
5418         int tso;
5419         unsigned int f;
5420
5421         if (test_bit(__E1000_DOWN, &adapter->state)) {
5422                 dev_kfree_skb_any(skb);
5423                 return NETDEV_TX_OK;
5424         }
5425
5426         if (skb->len <= 0) {
5427                 dev_kfree_skb_any(skb);
5428                 return NETDEV_TX_OK;
5429         }
5430
5431         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5432          * pad skb in order to meet this minimum size requirement
5433          */
5434         if (unlikely(skb->len < 17)) {
5435                 if (skb_pad(skb, 17 - skb->len))
5436                         return NETDEV_TX_OK;
5437                 skb->len = 17;
5438                 skb_set_tail_pointer(skb, 17);
5439         }
5440
5441         mss = skb_shinfo(skb)->gso_size;
5442         if (mss) {
5443                 u8 hdr_len;
5444
5445                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5446                  * points to just header, pull a few bytes of payload from
5447                  * frags into skb->data
5448                  */
5449                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5450                 /* we do this workaround for ES2LAN, but it is un-necessary,
5451                  * avoiding it could save a lot of cycles
5452                  */
5453                 if (skb->data_len && (hdr_len == len)) {
5454                         unsigned int pull_size;
5455
5456                         pull_size = min_t(unsigned int, 4, skb->data_len);
5457                         if (!__pskb_pull_tail(skb, pull_size)) {
5458                                 e_err("__pskb_pull_tail failed.\n");
5459                                 dev_kfree_skb_any(skb);
5460                                 return NETDEV_TX_OK;
5461                         }
5462                         len = skb_headlen(skb);
5463                 }
5464         }
5465
5466         /* reserve a descriptor for the offload context */
5467         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5468                 count++;
5469         count++;
5470
5471         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5472
5473         nr_frags = skb_shinfo(skb)->nr_frags;
5474         for (f = 0; f < nr_frags; f++)
5475                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5476                                       adapter->tx_fifo_limit);
5477
5478         if (adapter->hw.mac.tx_pkt_filtering)
5479                 e1000_transfer_dhcp_info(adapter, skb);
5480
5481         /* need: count + 2 desc gap to keep tail from touching
5482          * head, otherwise try next time
5483          */
5484         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5485                 return NETDEV_TX_BUSY;
5486
5487         if (vlan_tx_tag_present(skb)) {
5488                 tx_flags |= E1000_TX_FLAGS_VLAN;
5489                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5490         }
5491
5492         first = tx_ring->next_to_use;
5493
5494         tso = e1000_tso(tx_ring, skb);
5495         if (tso < 0) {
5496                 dev_kfree_skb_any(skb);
5497                 return NETDEV_TX_OK;
5498         }
5499
5500         if (tso)
5501                 tx_flags |= E1000_TX_FLAGS_TSO;
5502         else if (e1000_tx_csum(tx_ring, skb))
5503                 tx_flags |= E1000_TX_FLAGS_CSUM;
5504
5505         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5506          * 82571 hardware supports TSO capabilities for IPv6 as well...
5507          * no longer assume, we must.
5508          */
5509         if (skb->protocol == htons(ETH_P_IP))
5510                 tx_flags |= E1000_TX_FLAGS_IPV4;
5511
5512         if (unlikely(skb->no_fcs))
5513                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5514
5515         /* if count is 0 then mapping error has occurred */
5516         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5517                              nr_frags);
5518         if (count) {
5519                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5520                              !adapter->tx_hwtstamp_skb)) {
5521                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5522                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5523                         adapter->tx_hwtstamp_skb = skb_get(skb);
5524                         schedule_work(&adapter->tx_hwtstamp_work);
5525                 } else {
5526                         skb_tx_timestamp(skb);
5527                 }
5528
5529                 netdev_sent_queue(netdev, skb->len);
5530                 e1000_tx_queue(tx_ring, tx_flags, count);
5531                 /* Make sure there is space in the ring for the next send. */
5532                 e1000_maybe_stop_tx(tx_ring,
5533                                     (MAX_SKB_FRAGS *
5534                                      DIV_ROUND_UP(PAGE_SIZE,
5535                                                   adapter->tx_fifo_limit) + 2));
5536         } else {
5537                 dev_kfree_skb_any(skb);
5538                 tx_ring->buffer_info[first].time_stamp = 0;
5539                 tx_ring->next_to_use = first;
5540         }
5541
5542         return NETDEV_TX_OK;
5543 }
5544
5545 /**
5546  * e1000_tx_timeout - Respond to a Tx Hang
5547  * @netdev: network interface device structure
5548  **/
5549 static void e1000_tx_timeout(struct net_device *netdev)
5550 {
5551         struct e1000_adapter *adapter = netdev_priv(netdev);
5552
5553         /* Do the reset outside of interrupt context */
5554         adapter->tx_timeout_count++;
5555         schedule_work(&adapter->reset_task);
5556 }
5557
5558 static void e1000_reset_task(struct work_struct *work)
5559 {
5560         struct e1000_adapter *adapter;
5561         adapter = container_of(work, struct e1000_adapter, reset_task);
5562
5563         /* don't run the task if already down */
5564         if (test_bit(__E1000_DOWN, &adapter->state))
5565                 return;
5566
5567         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5568                 e1000e_dump(adapter);
5569                 e_err("Reset adapter unexpectedly\n");
5570         }
5571         e1000e_reinit_locked(adapter);
5572 }
5573
5574 /**
5575  * e1000_get_stats64 - Get System Network Statistics
5576  * @netdev: network interface device structure
5577  * @stats: rtnl_link_stats64 pointer
5578  *
5579  * Returns the address of the device statistics structure.
5580  **/
5581 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5582                                              struct rtnl_link_stats64 *stats)
5583 {
5584         struct e1000_adapter *adapter = netdev_priv(netdev);
5585
5586         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5587         spin_lock(&adapter->stats64_lock);
5588         e1000e_update_stats(adapter);
5589         /* Fill out the OS statistics structure */
5590         stats->rx_bytes = adapter->stats.gorc;
5591         stats->rx_packets = adapter->stats.gprc;
5592         stats->tx_bytes = adapter->stats.gotc;
5593         stats->tx_packets = adapter->stats.gptc;
5594         stats->multicast = adapter->stats.mprc;
5595         stats->collisions = adapter->stats.colc;
5596
5597         /* Rx Errors */
5598
5599         /* RLEC on some newer hardware can be incorrect so build
5600          * our own version based on RUC and ROC
5601          */
5602         stats->rx_errors = adapter->stats.rxerrc +
5603                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5604                 adapter->stats.ruc + adapter->stats.roc +
5605                 adapter->stats.cexterr;
5606         stats->rx_length_errors = adapter->stats.ruc +
5607                                               adapter->stats.roc;
5608         stats->rx_crc_errors = adapter->stats.crcerrs;
5609         stats->rx_frame_errors = adapter->stats.algnerrc;
5610         stats->rx_missed_errors = adapter->stats.mpc;
5611
5612         /* Tx Errors */
5613         stats->tx_errors = adapter->stats.ecol +
5614                                        adapter->stats.latecol;
5615         stats->tx_aborted_errors = adapter->stats.ecol;
5616         stats->tx_window_errors = adapter->stats.latecol;
5617         stats->tx_carrier_errors = adapter->stats.tncrs;
5618
5619         /* Tx Dropped needs to be maintained elsewhere */
5620
5621         spin_unlock(&adapter->stats64_lock);
5622         return stats;
5623 }
5624
5625 /**
5626  * e1000_change_mtu - Change the Maximum Transfer Unit
5627  * @netdev: network interface device structure
5628  * @new_mtu: new value for maximum frame size
5629  *
5630  * Returns 0 on success, negative on failure
5631  **/
5632 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5633 {
5634         struct e1000_adapter *adapter = netdev_priv(netdev);
5635         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5636
5637         /* Jumbo frame support */
5638         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5639             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5640                 e_err("Jumbo Frames not supported.\n");
5641                 return -EINVAL;
5642         }
5643
5644         /* Supported frame sizes */
5645         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5646             (max_frame > adapter->max_hw_frame_size)) {
5647                 e_err("Unsupported MTU setting\n");
5648                 return -EINVAL;
5649         }
5650
5651         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5652         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5653             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5654             (new_mtu > ETH_DATA_LEN)) {
5655                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5656                 return -EINVAL;
5657         }
5658
5659         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5660                 usleep_range(1000, 2000);
5661         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5662         adapter->max_frame_size = max_frame;
5663         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5664         netdev->mtu = new_mtu;
5665         if (netif_running(netdev))
5666                 e1000e_down(adapter);
5667
5668         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5669          * means we reserve 2 more, this pushes us to allocate from the next
5670          * larger slab size.
5671          * i.e. RXBUFFER_2048 --> size-4096 slab
5672          * However with the new *_jumbo_rx* routines, jumbo receives will use
5673          * fragmented skbs
5674          */
5675
5676         if (max_frame <= 2048)
5677                 adapter->rx_buffer_len = 2048;
5678         else
5679                 adapter->rx_buffer_len = 4096;
5680
5681         /* adjust allocation if LPE protects us, and we aren't using SBP */
5682         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5683              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5684                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5685                                          + ETH_FCS_LEN;
5686
5687         if (netif_running(netdev))
5688                 e1000e_up(adapter);
5689         else
5690                 e1000e_reset(adapter);
5691
5692         clear_bit(__E1000_RESETTING, &adapter->state);
5693
5694         return 0;
5695 }
5696
5697 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5698                            int cmd)
5699 {
5700         struct e1000_adapter *adapter = netdev_priv(netdev);
5701         struct mii_ioctl_data *data = if_mii(ifr);
5702
5703         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5704                 return -EOPNOTSUPP;
5705
5706         switch (cmd) {
5707         case SIOCGMIIPHY:
5708                 data->phy_id = adapter->hw.phy.addr;
5709                 break;
5710         case SIOCGMIIREG:
5711                 e1000_phy_read_status(adapter);
5712
5713                 switch (data->reg_num & 0x1F) {
5714                 case MII_BMCR:
5715                         data->val_out = adapter->phy_regs.bmcr;
5716                         break;
5717                 case MII_BMSR:
5718                         data->val_out = adapter->phy_regs.bmsr;
5719                         break;
5720                 case MII_PHYSID1:
5721                         data->val_out = (adapter->hw.phy.id >> 16);
5722                         break;
5723                 case MII_PHYSID2:
5724                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5725                         break;
5726                 case MII_ADVERTISE:
5727                         data->val_out = adapter->phy_regs.advertise;
5728                         break;
5729                 case MII_LPA:
5730                         data->val_out = adapter->phy_regs.lpa;
5731                         break;
5732                 case MII_EXPANSION:
5733                         data->val_out = adapter->phy_regs.expansion;
5734                         break;
5735                 case MII_CTRL1000:
5736                         data->val_out = adapter->phy_regs.ctrl1000;
5737                         break;
5738                 case MII_STAT1000:
5739                         data->val_out = adapter->phy_regs.stat1000;
5740                         break;
5741                 case MII_ESTATUS:
5742                         data->val_out = adapter->phy_regs.estatus;
5743                         break;
5744                 default:
5745                         return -EIO;
5746                 }
5747                 break;
5748         case SIOCSMIIREG:
5749         default:
5750                 return -EOPNOTSUPP;
5751         }
5752         return 0;
5753 }
5754
5755 /**
5756  * e1000e_hwtstamp_ioctl - control hardware time stamping
5757  * @netdev: network interface device structure
5758  * @ifreq: interface request
5759  *
5760  * Outgoing time stamping can be enabled and disabled. Play nice and
5761  * disable it when requested, although it shouldn't cause any overhead
5762  * when no packet needs it. At most one packet in the queue may be
5763  * marked for time stamping, otherwise it would be impossible to tell
5764  * for sure to which packet the hardware time stamp belongs.
5765  *
5766  * Incoming time stamping has to be configured via the hardware filters.
5767  * Not all combinations are supported, in particular event type has to be
5768  * specified. Matching the kind of event packet is not supported, with the
5769  * exception of "all V2 events regardless of level 2 or 4".
5770  **/
5771 static int e1000e_hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
5772 {
5773         struct e1000_adapter *adapter = netdev_priv(netdev);
5774         struct hwtstamp_config config;
5775         int ret_val;
5776
5777         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5778                 return -EFAULT;
5779
5780         adapter->hwtstamp_config = config;
5781
5782         ret_val = e1000e_config_hwtstamp(adapter);
5783         if (ret_val)
5784                 return ret_val;
5785
5786         config = adapter->hwtstamp_config;
5787
5788         switch (config.rx_filter) {
5789         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5790         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5791         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5792         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5793         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5794         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5795                 /* With V2 type filters which specify a Sync or Delay Request,
5796                  * Path Delay Request/Response messages are also time stamped
5797                  * by hardware so notify the caller the requested packets plus
5798                  * some others are time stamped.
5799                  */
5800                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5801                 break;
5802         default:
5803                 break;
5804         }
5805
5806         return copy_to_user(ifr->ifr_data, &config,
5807                             sizeof(config)) ? -EFAULT : 0;
5808 }
5809
5810 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5811 {
5812         switch (cmd) {
5813         case SIOCGMIIPHY:
5814         case SIOCGMIIREG:
5815         case SIOCSMIIREG:
5816                 return e1000_mii_ioctl(netdev, ifr, cmd);
5817         case SIOCSHWTSTAMP:
5818                 return e1000e_hwtstamp_ioctl(netdev, ifr);
5819         default:
5820                 return -EOPNOTSUPP;
5821         }
5822 }
5823
5824 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5825 {
5826         struct e1000_hw *hw = &adapter->hw;
5827         u32 i, mac_reg;
5828         u16 phy_reg, wuc_enable;
5829         int retval;
5830
5831         /* copy MAC RARs to PHY RARs */
5832         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5833
5834         retval = hw->phy.ops.acquire(hw);
5835         if (retval) {
5836                 e_err("Could not acquire PHY\n");
5837                 return retval;
5838         }
5839
5840         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5841         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5842         if (retval)
5843                 goto release;
5844
5845         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5846         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5847                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5848                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5849                                            (u16)(mac_reg & 0xFFFF));
5850                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5851                                            (u16)((mac_reg >> 16) & 0xFFFF));
5852         }
5853
5854         /* configure PHY Rx Control register */
5855         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5856         mac_reg = er32(RCTL);
5857         if (mac_reg & E1000_RCTL_UPE)
5858                 phy_reg |= BM_RCTL_UPE;
5859         if (mac_reg & E1000_RCTL_MPE)
5860                 phy_reg |= BM_RCTL_MPE;
5861         phy_reg &= ~(BM_RCTL_MO_MASK);
5862         if (mac_reg & E1000_RCTL_MO_3)
5863                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5864                                 << BM_RCTL_MO_SHIFT);
5865         if (mac_reg & E1000_RCTL_BAM)
5866                 phy_reg |= BM_RCTL_BAM;
5867         if (mac_reg & E1000_RCTL_PMCF)
5868                 phy_reg |= BM_RCTL_PMCF;
5869         mac_reg = er32(CTRL);
5870         if (mac_reg & E1000_CTRL_RFCE)
5871                 phy_reg |= BM_RCTL_RFCE;
5872         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5873
5874         /* enable PHY wakeup in MAC register */
5875         ew32(WUFC, wufc);
5876         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5877
5878         /* configure and enable PHY wakeup in PHY registers */
5879         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5880         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5881
5882         /* activate PHY wakeup */
5883         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5884         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5885         if (retval)
5886                 e_err("Could not set PHY Host Wakeup bit\n");
5887 release:
5888         hw->phy.ops.release(hw);
5889
5890         return retval;
5891 }
5892
5893 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
5894 {
5895         struct net_device *netdev = pci_get_drvdata(pdev);
5896         struct e1000_adapter *adapter = netdev_priv(netdev);
5897         struct e1000_hw *hw = &adapter->hw;
5898         u32 ctrl, ctrl_ext, rctl, status;
5899         /* Runtime suspend should only enable wakeup for link changes */
5900         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5901         int retval = 0;
5902
5903         netif_device_detach(netdev);
5904
5905         if (netif_running(netdev)) {
5906                 int count = E1000_CHECK_RESET_COUNT;
5907
5908                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5909                         usleep_range(10000, 20000);
5910
5911                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5912                 e1000e_down(adapter);
5913                 e1000_free_irq(adapter);
5914         }
5915         e1000e_reset_interrupt_capability(adapter);
5916
5917         status = er32(STATUS);
5918         if (status & E1000_STATUS_LU)
5919                 wufc &= ~E1000_WUFC_LNKC;
5920
5921         if (wufc) {
5922                 e1000_setup_rctl(adapter);
5923                 e1000e_set_rx_mode(netdev);
5924
5925                 /* turn on all-multi mode if wake on multicast is enabled */
5926                 if (wufc & E1000_WUFC_MC) {
5927                         rctl = er32(RCTL);
5928                         rctl |= E1000_RCTL_MPE;
5929                         ew32(RCTL, rctl);
5930                 }
5931
5932                 ctrl = er32(CTRL);
5933                 /* advertise wake from D3Cold */
5934                 #define E1000_CTRL_ADVD3WUC 0x00100000
5935                 /* phy power management enable */
5936                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5937                 ctrl |= E1000_CTRL_ADVD3WUC;
5938                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5939                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5940                 ew32(CTRL, ctrl);
5941
5942                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5943                     adapter->hw.phy.media_type ==
5944                     e1000_media_type_internal_serdes) {
5945                         /* keep the laser running in D3 */
5946                         ctrl_ext = er32(CTRL_EXT);
5947                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5948                         ew32(CTRL_EXT, ctrl_ext);
5949                 }
5950
5951                 if (adapter->flags & FLAG_IS_ICH)
5952                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
5953
5954                 /* Allow time for pending master requests to run */
5955                 e1000e_disable_pcie_master(&adapter->hw);
5956
5957                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5958                         /* enable wakeup by the PHY */
5959                         retval = e1000_init_phy_wakeup(adapter, wufc);
5960                         if (retval)
5961                                 return retval;
5962                 } else {
5963                         /* enable wakeup by the MAC */
5964                         ew32(WUFC, wufc);
5965                         ew32(WUC, E1000_WUC_PME_EN);
5966                 }
5967         } else {
5968                 ew32(WUC, 0);
5969                 ew32(WUFC, 0);
5970         }
5971
5972         if (adapter->hw.phy.type == e1000_phy_igp_3)
5973                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5974
5975         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5976          * would have already happened in close and is redundant.
5977          */
5978         e1000e_release_hw_control(adapter);
5979
5980         pci_clear_master(pdev);
5981
5982         /* The pci-e switch on some quad port adapters will report a
5983          * correctable error when the MAC transitions from D0 to D3.  To
5984          * prevent this we need to mask off the correctable errors on the
5985          * downstream port of the pci-e switch.
5986          */
5987         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5988                 struct pci_dev *us_dev = pdev->bus->self;
5989                 u16 devctl;
5990
5991                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
5992                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
5993                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
5994
5995                 pci_save_state(pdev);
5996                 pci_prepare_to_sleep(pdev);
5997
5998                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
5999         }
6000
6001         return 0;
6002 }
6003
6004 #ifdef CONFIG_PCIEASPM
6005 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6006 {
6007         pci_disable_link_state_locked(pdev, state);
6008 }
6009 #else
6010 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6011 {
6012         u16 aspm_ctl = 0;
6013
6014         if (state & PCIE_LINK_STATE_L0S)
6015                 aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L0S;
6016         if (state & PCIE_LINK_STATE_L1)
6017                 aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L1;
6018
6019         /* Both device and parent should have the same ASPM setting.
6020          * Disable ASPM in downstream component first and then upstream.
6021          */
6022         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_ctl);
6023
6024         if (pdev->bus->self)
6025                 pcie_capability_clear_word(pdev->bus->self, PCI_EXP_LNKCTL,
6026                                            aspm_ctl);
6027 }
6028 #endif
6029 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6030 {
6031         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6032                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
6033                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
6034
6035         __e1000e_disable_aspm(pdev, state);
6036 }
6037
6038 #ifdef CONFIG_PM
6039 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
6040 {
6041         return !!adapter->tx_ring->buffer_info;
6042 }
6043
6044 static int __e1000_resume(struct pci_dev *pdev)
6045 {
6046         struct net_device *netdev = pci_get_drvdata(pdev);
6047         struct e1000_adapter *adapter = netdev_priv(netdev);
6048         struct e1000_hw *hw = &adapter->hw;
6049         u16 aspm_disable_flag = 0;
6050         u32 err;
6051
6052         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6053                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6054         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6055                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6056         if (aspm_disable_flag)
6057                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6058
6059         pci_set_master(pdev);
6060
6061         e1000e_set_interrupt_capability(adapter);
6062         if (netif_running(netdev)) {
6063                 err = e1000_request_irq(adapter);
6064                 if (err)
6065                         return err;
6066         }
6067
6068         if (hw->mac.type >= e1000_pch2lan)
6069                 e1000_resume_workarounds_pchlan(&adapter->hw);
6070
6071         e1000e_power_up_phy(adapter);
6072
6073         /* report the system wakeup cause from S3/S4 */
6074         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6075                 u16 phy_data;
6076
6077                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6078                 if (phy_data) {
6079                         e_info("PHY Wakeup cause - %s\n",
6080                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6081                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6082                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6083                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6084                                 phy_data & E1000_WUS_LNKC ?
6085                                 "Link Status Change" : "other");
6086                 }
6087                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6088         } else {
6089                 u32 wus = er32(WUS);
6090                 if (wus) {
6091                         e_info("MAC Wakeup cause - %s\n",
6092                                 wus & E1000_WUS_EX ? "Unicast Packet" :
6093                                 wus & E1000_WUS_MC ? "Multicast Packet" :
6094                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
6095                                 wus & E1000_WUS_MAG ? "Magic Packet" :
6096                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
6097                                 "other");
6098                 }
6099                 ew32(WUS, ~0);
6100         }
6101
6102         e1000e_reset(adapter);
6103
6104         e1000_init_manageability_pt(adapter);
6105
6106         if (netif_running(netdev))
6107                 e1000e_up(adapter);
6108
6109         netif_device_attach(netdev);
6110
6111         /* If the controller has AMT, do not set DRV_LOAD until the interface
6112          * is up.  For all other cases, let the f/w know that the h/w is now
6113          * under the control of the driver.
6114          */
6115         if (!(adapter->flags & FLAG_HAS_AMT))
6116                 e1000e_get_hw_control(adapter);
6117
6118         return 0;
6119 }
6120
6121 #ifdef CONFIG_PM_SLEEP
6122 static int e1000_suspend(struct device *dev)
6123 {
6124         struct pci_dev *pdev = to_pci_dev(dev);
6125
6126         return __e1000_shutdown(pdev, false);
6127 }
6128
6129 static int e1000_resume(struct device *dev)
6130 {
6131         struct pci_dev *pdev = to_pci_dev(dev);
6132         struct net_device *netdev = pci_get_drvdata(pdev);
6133         struct e1000_adapter *adapter = netdev_priv(netdev);
6134
6135         if (e1000e_pm_ready(adapter))
6136                 adapter->idle_check = true;
6137
6138         return __e1000_resume(pdev);
6139 }
6140 #endif /* CONFIG_PM_SLEEP */
6141
6142 #ifdef CONFIG_PM_RUNTIME
6143 static int e1000_runtime_suspend(struct device *dev)
6144 {
6145         struct pci_dev *pdev = to_pci_dev(dev);
6146         struct net_device *netdev = pci_get_drvdata(pdev);
6147         struct e1000_adapter *adapter = netdev_priv(netdev);
6148
6149         if (!e1000e_pm_ready(adapter))
6150                 return 0;
6151
6152         return __e1000_shutdown(pdev, true);
6153 }
6154
6155 static int e1000_idle(struct device *dev)
6156 {
6157         struct pci_dev *pdev = to_pci_dev(dev);
6158         struct net_device *netdev = pci_get_drvdata(pdev);
6159         struct e1000_adapter *adapter = netdev_priv(netdev);
6160
6161         if (!e1000e_pm_ready(adapter))
6162                 return 0;
6163
6164         if (adapter->idle_check) {
6165                 adapter->idle_check = false;
6166                 if (!e1000e_has_link(adapter))
6167                         pm_schedule_suspend(dev, MSEC_PER_SEC);
6168         }
6169
6170         return -EBUSY;
6171 }
6172
6173 static int e1000_runtime_resume(struct device *dev)
6174 {
6175         struct pci_dev *pdev = to_pci_dev(dev);
6176         struct net_device *netdev = pci_get_drvdata(pdev);
6177         struct e1000_adapter *adapter = netdev_priv(netdev);
6178
6179         if (!e1000e_pm_ready(adapter))
6180                 return 0;
6181
6182         adapter->idle_check = !dev->power.runtime_auto;
6183         return __e1000_resume(pdev);
6184 }
6185 #endif /* CONFIG_PM_RUNTIME */
6186 #endif /* CONFIG_PM */
6187
6188 static void e1000_shutdown(struct pci_dev *pdev)
6189 {
6190         __e1000_shutdown(pdev, false);
6191 }
6192
6193 #ifdef CONFIG_NET_POLL_CONTROLLER
6194
6195 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6196 {
6197         struct net_device *netdev = data;
6198         struct e1000_adapter *adapter = netdev_priv(netdev);
6199
6200         if (adapter->msix_entries) {
6201                 int vector, msix_irq;
6202
6203                 vector = 0;
6204                 msix_irq = adapter->msix_entries[vector].vector;
6205                 disable_irq(msix_irq);
6206                 e1000_intr_msix_rx(msix_irq, netdev);
6207                 enable_irq(msix_irq);
6208
6209                 vector++;
6210                 msix_irq = adapter->msix_entries[vector].vector;
6211                 disable_irq(msix_irq);
6212                 e1000_intr_msix_tx(msix_irq, netdev);
6213                 enable_irq(msix_irq);
6214
6215                 vector++;
6216                 msix_irq = adapter->msix_entries[vector].vector;
6217                 disable_irq(msix_irq);
6218                 e1000_msix_other(msix_irq, netdev);
6219                 enable_irq(msix_irq);
6220         }
6221
6222         return IRQ_HANDLED;
6223 }
6224
6225 /**
6226  * e1000_netpoll
6227  * @netdev: network interface device structure
6228  *
6229  * Polling 'interrupt' - used by things like netconsole to send skbs
6230  * without having to re-enable interrupts. It's not called while
6231  * the interrupt routine is executing.
6232  */
6233 static void e1000_netpoll(struct net_device *netdev)
6234 {
6235         struct e1000_adapter *adapter = netdev_priv(netdev);
6236
6237         switch (adapter->int_mode) {
6238         case E1000E_INT_MODE_MSIX:
6239                 e1000_intr_msix(adapter->pdev->irq, netdev);
6240                 break;
6241         case E1000E_INT_MODE_MSI:
6242                 disable_irq(adapter->pdev->irq);
6243                 e1000_intr_msi(adapter->pdev->irq, netdev);
6244                 enable_irq(adapter->pdev->irq);
6245                 break;
6246         default: /* E1000E_INT_MODE_LEGACY */
6247                 disable_irq(adapter->pdev->irq);
6248                 e1000_intr(adapter->pdev->irq, netdev);
6249                 enable_irq(adapter->pdev->irq);
6250                 break;
6251         }
6252 }
6253 #endif
6254
6255 /**
6256  * e1000_io_error_detected - called when PCI error is detected
6257  * @pdev: Pointer to PCI device
6258  * @state: The current pci connection state
6259  *
6260  * This function is called after a PCI bus error affecting
6261  * this device has been detected.
6262  */
6263 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6264                                                 pci_channel_state_t state)
6265 {
6266         struct net_device *netdev = pci_get_drvdata(pdev);
6267         struct e1000_adapter *adapter = netdev_priv(netdev);
6268
6269         netif_device_detach(netdev);
6270
6271         if (state == pci_channel_io_perm_failure)
6272                 return PCI_ERS_RESULT_DISCONNECT;
6273
6274         if (netif_running(netdev))
6275                 e1000e_down(adapter);
6276         pci_disable_device(pdev);
6277
6278         /* Request a slot slot reset. */
6279         return PCI_ERS_RESULT_NEED_RESET;
6280 }
6281
6282 /**
6283  * e1000_io_slot_reset - called after the pci bus has been reset.
6284  * @pdev: Pointer to PCI device
6285  *
6286  * Restart the card from scratch, as if from a cold-boot. Implementation
6287  * resembles the first-half of the e1000_resume routine.
6288  */
6289 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6290 {
6291         struct net_device *netdev = pci_get_drvdata(pdev);
6292         struct e1000_adapter *adapter = netdev_priv(netdev);
6293         struct e1000_hw *hw = &adapter->hw;
6294         u16 aspm_disable_flag = 0;
6295         int err;
6296         pci_ers_result_t result;
6297
6298         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6299                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6300         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6301                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6302         if (aspm_disable_flag)
6303                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6304
6305         err = pci_enable_device_mem(pdev);
6306         if (err) {
6307                 dev_err(&pdev->dev,
6308                         "Cannot re-enable PCI device after reset.\n");
6309                 result = PCI_ERS_RESULT_DISCONNECT;
6310         } else {
6311                 pdev->state_saved = true;
6312                 pci_restore_state(pdev);
6313                 pci_set_master(pdev);
6314
6315                 pci_enable_wake(pdev, PCI_D3hot, 0);
6316                 pci_enable_wake(pdev, PCI_D3cold, 0);
6317
6318                 e1000e_reset(adapter);
6319                 ew32(WUS, ~0);
6320                 result = PCI_ERS_RESULT_RECOVERED;
6321         }
6322
6323         pci_cleanup_aer_uncorrect_error_status(pdev);
6324
6325         return result;
6326 }
6327
6328 /**
6329  * e1000_io_resume - called when traffic can start flowing again.
6330  * @pdev: Pointer to PCI device
6331  *
6332  * This callback is called when the error recovery driver tells us that
6333  * its OK to resume normal operation. Implementation resembles the
6334  * second-half of the e1000_resume routine.
6335  */
6336 static void e1000_io_resume(struct pci_dev *pdev)
6337 {
6338         struct net_device *netdev = pci_get_drvdata(pdev);
6339         struct e1000_adapter *adapter = netdev_priv(netdev);
6340
6341         e1000_init_manageability_pt(adapter);
6342
6343         if (netif_running(netdev)) {
6344                 if (e1000e_up(adapter)) {
6345                         dev_err(&pdev->dev,
6346                                 "can't bring device back up after reset\n");
6347                         return;
6348                 }
6349         }
6350
6351         netif_device_attach(netdev);
6352
6353         /* If the controller has AMT, do not set DRV_LOAD until the interface
6354          * is up.  For all other cases, let the f/w know that the h/w is now
6355          * under the control of the driver.
6356          */
6357         if (!(adapter->flags & FLAG_HAS_AMT))
6358                 e1000e_get_hw_control(adapter);
6359 }
6360
6361 static void e1000_print_device_info(struct e1000_adapter *adapter)
6362 {
6363         struct e1000_hw *hw = &adapter->hw;
6364         struct net_device *netdev = adapter->netdev;
6365         u32 ret_val;
6366         u8 pba_str[E1000_PBANUM_LENGTH];
6367
6368         /* print bus type/speed/width info */
6369         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6370                /* bus width */
6371                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6372                 "Width x1"),
6373                /* MAC address */
6374                netdev->dev_addr);
6375         e_info("Intel(R) PRO/%s Network Connection\n",
6376                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6377         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6378                                                 E1000_PBANUM_LENGTH);
6379         if (ret_val)
6380                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6381         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6382                hw->mac.type, hw->phy.type, pba_str);
6383 }
6384
6385 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6386 {
6387         struct e1000_hw *hw = &adapter->hw;
6388         int ret_val;
6389         u16 buf = 0;
6390
6391         if (hw->mac.type != e1000_82573)
6392                 return;
6393
6394         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6395         le16_to_cpus(&buf);
6396         if (!ret_val && (!(buf & (1 << 0)))) {
6397                 /* Deep Smart Power Down (DSPD) */
6398                 dev_warn(&adapter->pdev->dev,
6399                          "Warning: detected DSPD enabled in EEPROM\n");
6400         }
6401 }
6402
6403 static int e1000_set_features(struct net_device *netdev,
6404                               netdev_features_t features)
6405 {
6406         struct e1000_adapter *adapter = netdev_priv(netdev);
6407         netdev_features_t changed = features ^ netdev->features;
6408
6409         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6410                 adapter->flags |= FLAG_TSO_FORCE;
6411
6412         if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6413                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6414                          NETIF_F_RXALL)))
6415                 return 0;
6416
6417         if (changed & NETIF_F_RXFCS) {
6418                 if (features & NETIF_F_RXFCS) {
6419                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6420                 } else {
6421                         /* We need to take it back to defaults, which might mean
6422                          * stripping is still disabled at the adapter level.
6423                          */
6424                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6425                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6426                         else
6427                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6428                 }
6429         }
6430
6431         netdev->features = features;
6432
6433         if (netif_running(netdev))
6434                 e1000e_reinit_locked(adapter);
6435         else
6436                 e1000e_reset(adapter);
6437
6438         return 0;
6439 }
6440
6441 static const struct net_device_ops e1000e_netdev_ops = {
6442         .ndo_open               = e1000_open,
6443         .ndo_stop               = e1000_close,
6444         .ndo_start_xmit         = e1000_xmit_frame,
6445         .ndo_get_stats64        = e1000e_get_stats64,
6446         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6447         .ndo_set_mac_address    = e1000_set_mac,
6448         .ndo_change_mtu         = e1000_change_mtu,
6449         .ndo_do_ioctl           = e1000_ioctl,
6450         .ndo_tx_timeout         = e1000_tx_timeout,
6451         .ndo_validate_addr      = eth_validate_addr,
6452
6453         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6454         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6455 #ifdef CONFIG_NET_POLL_CONTROLLER
6456         .ndo_poll_controller    = e1000_netpoll,
6457 #endif
6458         .ndo_set_features = e1000_set_features,
6459 };
6460
6461 /**
6462  * e1000_probe - Device Initialization Routine
6463  * @pdev: PCI device information struct
6464  * @ent: entry in e1000_pci_tbl
6465  *
6466  * Returns 0 on success, negative on failure
6467  *
6468  * e1000_probe initializes an adapter identified by a pci_dev structure.
6469  * The OS initialization, configuring of the adapter private structure,
6470  * and a hardware reset occur.
6471  **/
6472 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6473 {
6474         struct net_device *netdev;
6475         struct e1000_adapter *adapter;
6476         struct e1000_hw *hw;
6477         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6478         resource_size_t mmio_start, mmio_len;
6479         resource_size_t flash_start, flash_len;
6480         static int cards_found;
6481         u16 aspm_disable_flag = 0;
6482         int i, err, pci_using_dac;
6483         u16 eeprom_data = 0;
6484         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6485
6486         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6487                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6488         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6489                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6490         if (aspm_disable_flag)
6491                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6492
6493         err = pci_enable_device_mem(pdev);
6494         if (err)
6495                 return err;
6496
6497         pci_using_dac = 0;
6498         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6499         if (!err) {
6500                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6501                 if (!err)
6502                         pci_using_dac = 1;
6503         } else {
6504                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6505                 if (err) {
6506                         err = dma_set_coherent_mask(&pdev->dev,
6507                                                     DMA_BIT_MASK(32));
6508                         if (err) {
6509                                 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6510                                 goto err_dma;
6511                         }
6512                 }
6513         }
6514
6515         err = pci_request_selected_regions_exclusive(pdev,
6516                                           pci_select_bars(pdev, IORESOURCE_MEM),
6517                                           e1000e_driver_name);
6518         if (err)
6519                 goto err_pci_reg;
6520
6521         /* AER (Advanced Error Reporting) hooks */
6522         pci_enable_pcie_error_reporting(pdev);
6523
6524         pci_set_master(pdev);
6525         /* PCI config space info */
6526         err = pci_save_state(pdev);
6527         if (err)
6528                 goto err_alloc_etherdev;
6529
6530         err = -ENOMEM;
6531         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6532         if (!netdev)
6533                 goto err_alloc_etherdev;
6534
6535         SET_NETDEV_DEV(netdev, &pdev->dev);
6536
6537         netdev->irq = pdev->irq;
6538
6539         pci_set_drvdata(pdev, netdev);
6540         adapter = netdev_priv(netdev);
6541         hw = &adapter->hw;
6542         adapter->netdev = netdev;
6543         adapter->pdev = pdev;
6544         adapter->ei = ei;
6545         adapter->pba = ei->pba;
6546         adapter->flags = ei->flags;
6547         adapter->flags2 = ei->flags2;
6548         adapter->hw.adapter = adapter;
6549         adapter->hw.mac.type = ei->mac;
6550         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6551         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6552
6553         mmio_start = pci_resource_start(pdev, 0);
6554         mmio_len = pci_resource_len(pdev, 0);
6555
6556         err = -EIO;
6557         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6558         if (!adapter->hw.hw_addr)
6559                 goto err_ioremap;
6560
6561         if ((adapter->flags & FLAG_HAS_FLASH) &&
6562             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6563                 flash_start = pci_resource_start(pdev, 1);
6564                 flash_len = pci_resource_len(pdev, 1);
6565                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6566                 if (!adapter->hw.flash_address)
6567                         goto err_flashmap;
6568         }
6569
6570         /* construct the net_device struct */
6571         netdev->netdev_ops              = &e1000e_netdev_ops;
6572         e1000e_set_ethtool_ops(netdev);
6573         netdev->watchdog_timeo          = 5 * HZ;
6574         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6575         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6576
6577         netdev->mem_start = mmio_start;
6578         netdev->mem_end = mmio_start + mmio_len;
6579
6580         adapter->bd_number = cards_found++;
6581
6582         e1000e_check_options(adapter);
6583
6584         /* setup adapter struct */
6585         err = e1000_sw_init(adapter);
6586         if (err)
6587                 goto err_sw_init;
6588
6589         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6590         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6591         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6592
6593         err = ei->get_variants(adapter);
6594         if (err)
6595                 goto err_hw_init;
6596
6597         if ((adapter->flags & FLAG_IS_ICH) &&
6598             (adapter->flags & FLAG_READ_ONLY_NVM))
6599                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6600
6601         hw->mac.ops.get_bus_info(&adapter->hw);
6602
6603         adapter->hw.phy.autoneg_wait_to_complete = 0;
6604
6605         /* Copper options */
6606         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6607                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6608                 adapter->hw.phy.disable_polarity_correction = 0;
6609                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6610         }
6611
6612         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6613                 dev_info(&pdev->dev,
6614                          "PHY reset is blocked due to SOL/IDER session.\n");
6615
6616         /* Set initial default active device features */
6617         netdev->features = (NETIF_F_SG |
6618                             NETIF_F_HW_VLAN_RX |
6619                             NETIF_F_HW_VLAN_TX |
6620                             NETIF_F_TSO |
6621                             NETIF_F_TSO6 |
6622                             NETIF_F_RXHASH |
6623                             NETIF_F_RXCSUM |
6624                             NETIF_F_HW_CSUM);
6625
6626         /* Set user-changeable features (subset of all device features) */
6627         netdev->hw_features = netdev->features;
6628         netdev->hw_features |= NETIF_F_RXFCS;
6629         netdev->priv_flags |= IFF_SUPP_NOFCS;
6630         netdev->hw_features |= NETIF_F_RXALL;
6631
6632         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6633                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6634
6635         netdev->vlan_features |= (NETIF_F_SG |
6636                                   NETIF_F_TSO |
6637                                   NETIF_F_TSO6 |
6638                                   NETIF_F_HW_CSUM);
6639
6640         netdev->priv_flags |= IFF_UNICAST_FLT;
6641
6642         if (pci_using_dac) {
6643                 netdev->features |= NETIF_F_HIGHDMA;
6644                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6645         }
6646
6647         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6648                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6649
6650         /* before reading the NVM, reset the controller to
6651          * put the device in a known good starting state
6652          */
6653         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6654
6655         /* systems with ASPM and others may see the checksum fail on the first
6656          * attempt. Let's give it a few tries
6657          */
6658         for (i = 0;; i++) {
6659                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6660                         break;
6661                 if (i == 2) {
6662                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6663                         err = -EIO;
6664                         goto err_eeprom;
6665                 }
6666         }
6667
6668         e1000_eeprom_checks(adapter);
6669
6670         /* copy the MAC address */
6671         if (e1000e_read_mac_addr(&adapter->hw))
6672                 dev_err(&pdev->dev,
6673                         "NVM Read Error while reading MAC address\n");
6674
6675         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6676
6677         if (!is_valid_ether_addr(netdev->dev_addr)) {
6678                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6679                         netdev->dev_addr);
6680                 err = -EIO;
6681                 goto err_eeprom;
6682         }
6683
6684         init_timer(&adapter->watchdog_timer);
6685         adapter->watchdog_timer.function = e1000_watchdog;
6686         adapter->watchdog_timer.data = (unsigned long) adapter;
6687
6688         init_timer(&adapter->phy_info_timer);
6689         adapter->phy_info_timer.function = e1000_update_phy_info;
6690         adapter->phy_info_timer.data = (unsigned long) adapter;
6691
6692         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6693         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6694         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6695         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6696         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6697
6698         /* Initialize link parameters. User can change them with ethtool */
6699         adapter->hw.mac.autoneg = 1;
6700         adapter->fc_autoneg = true;
6701         adapter->hw.fc.requested_mode = e1000_fc_default;
6702         adapter->hw.fc.current_mode = e1000_fc_default;
6703         adapter->hw.phy.autoneg_advertised = 0x2f;
6704
6705         /* ring size defaults */
6706         adapter->rx_ring->count = E1000_DEFAULT_RXD;
6707         adapter->tx_ring->count = E1000_DEFAULT_TXD;
6708
6709         /* Initial Wake on LAN setting - If APM wake is enabled in
6710          * the EEPROM, enable the ACPI Magic Packet filter
6711          */
6712         if (adapter->flags & FLAG_APME_IN_WUC) {
6713                 /* APME bit in EEPROM is mapped to WUC.APME */
6714                 eeprom_data = er32(WUC);
6715                 eeprom_apme_mask = E1000_WUC_APME;
6716                 if ((hw->mac.type > e1000_ich10lan) &&
6717                     (eeprom_data & E1000_WUC_PHY_WAKE))
6718                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6719         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6720                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6721                     (adapter->hw.bus.func == 1))
6722                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6723                                        1, &eeprom_data);
6724                 else
6725                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6726                                        1, &eeprom_data);
6727         }
6728
6729         /* fetch WoL from EEPROM */
6730         if (eeprom_data & eeprom_apme_mask)
6731                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6732
6733         /* now that we have the eeprom settings, apply the special cases
6734          * where the eeprom may be wrong or the board simply won't support
6735          * wake on lan on a particular port
6736          */
6737         if (!(adapter->flags & FLAG_HAS_WOL))
6738                 adapter->eeprom_wol = 0;
6739
6740         /* initialize the wol settings based on the eeprom settings */
6741         adapter->wol = adapter->eeprom_wol;
6742
6743         /* make sure adapter isn't asleep if manageability is enabled */
6744         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6745             (hw->mac.ops.check_mng_mode(hw)))
6746                 device_wakeup_enable(&pdev->dev);
6747
6748         /* save off EEPROM version number */
6749         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6750
6751         /* reset the hardware with the new settings */
6752         e1000e_reset(adapter);
6753
6754         /* If the controller has AMT, do not set DRV_LOAD until the interface
6755          * is up.  For all other cases, let the f/w know that the h/w is now
6756          * under the control of the driver.
6757          */
6758         if (!(adapter->flags & FLAG_HAS_AMT))
6759                 e1000e_get_hw_control(adapter);
6760
6761         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6762         err = register_netdev(netdev);
6763         if (err)
6764                 goto err_register;
6765
6766         /* carrier off reporting is important to ethtool even BEFORE open */
6767         netif_carrier_off(netdev);
6768
6769         /* init PTP hardware clock */
6770         e1000e_ptp_init(adapter);
6771
6772         e1000_print_device_info(adapter);
6773
6774         if (pci_dev_run_wake(pdev))
6775                 pm_runtime_put_noidle(&pdev->dev);
6776
6777         return 0;
6778
6779 err_register:
6780         if (!(adapter->flags & FLAG_HAS_AMT))
6781                 e1000e_release_hw_control(adapter);
6782 err_eeprom:
6783         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6784                 e1000_phy_hw_reset(&adapter->hw);
6785 err_hw_init:
6786         kfree(adapter->tx_ring);
6787         kfree(adapter->rx_ring);
6788 err_sw_init:
6789         if (adapter->hw.flash_address)
6790                 iounmap(adapter->hw.flash_address);
6791         e1000e_reset_interrupt_capability(adapter);
6792 err_flashmap:
6793         iounmap(adapter->hw.hw_addr);
6794 err_ioremap:
6795         free_netdev(netdev);
6796 err_alloc_etherdev:
6797         pci_release_selected_regions(pdev,
6798                                      pci_select_bars(pdev, IORESOURCE_MEM));
6799 err_pci_reg:
6800 err_dma:
6801         pci_disable_device(pdev);
6802         return err;
6803 }
6804
6805 /**
6806  * e1000_remove - Device Removal Routine
6807  * @pdev: PCI device information struct
6808  *
6809  * e1000_remove is called by the PCI subsystem to alert the driver
6810  * that it should release a PCI device.  The could be caused by a
6811  * Hot-Plug event, or because the driver is going to be removed from
6812  * memory.
6813  **/
6814 static void e1000_remove(struct pci_dev *pdev)
6815 {
6816         struct net_device *netdev = pci_get_drvdata(pdev);
6817         struct e1000_adapter *adapter = netdev_priv(netdev);
6818         bool down = test_bit(__E1000_DOWN, &adapter->state);
6819
6820         e1000e_ptp_remove(adapter);
6821
6822         /* The timers may be rescheduled, so explicitly disable them
6823          * from being rescheduled.
6824          */
6825         if (!down)
6826                 set_bit(__E1000_DOWN, &adapter->state);
6827         del_timer_sync(&adapter->watchdog_timer);
6828         del_timer_sync(&adapter->phy_info_timer);
6829
6830         cancel_work_sync(&adapter->reset_task);
6831         cancel_work_sync(&adapter->watchdog_task);
6832         cancel_work_sync(&adapter->downshift_task);
6833         cancel_work_sync(&adapter->update_phy_task);
6834         cancel_work_sync(&adapter->print_hang_task);
6835
6836         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6837                 cancel_work_sync(&adapter->tx_hwtstamp_work);
6838                 if (adapter->tx_hwtstamp_skb) {
6839                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
6840                         adapter->tx_hwtstamp_skb = NULL;
6841                 }
6842         }
6843
6844         if (!(netdev->flags & IFF_UP))
6845                 e1000_power_down_phy(adapter);
6846
6847         /* Don't lie to e1000_close() down the road. */
6848         if (!down)
6849                 clear_bit(__E1000_DOWN, &adapter->state);
6850         unregister_netdev(netdev);
6851
6852         if (pci_dev_run_wake(pdev))
6853                 pm_runtime_get_noresume(&pdev->dev);
6854
6855         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6856          * would have already happened in close and is redundant.
6857          */
6858         e1000e_release_hw_control(adapter);
6859
6860         e1000e_reset_interrupt_capability(adapter);
6861         kfree(adapter->tx_ring);
6862         kfree(adapter->rx_ring);
6863
6864         iounmap(adapter->hw.hw_addr);
6865         if (adapter->hw.flash_address)
6866                 iounmap(adapter->hw.flash_address);
6867         pci_release_selected_regions(pdev,
6868                                      pci_select_bars(pdev, IORESOURCE_MEM));
6869
6870         free_netdev(netdev);
6871
6872         /* AER disable */
6873         pci_disable_pcie_error_reporting(pdev);
6874
6875         pci_disable_device(pdev);
6876 }
6877
6878 /* PCI Error Recovery (ERS) */
6879 static const struct pci_error_handlers e1000_err_handler = {
6880         .error_detected = e1000_io_error_detected,
6881         .slot_reset = e1000_io_slot_reset,
6882         .resume = e1000_io_resume,
6883 };
6884
6885 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6886         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6887         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6888         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6889         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6890         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6891         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6892         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6893         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6894         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6895
6896         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6897         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6898         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6899         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6900
6901         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6902         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6903         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6904
6905         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6906         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6907         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6908
6909         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6910           board_80003es2lan },
6911         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6912           board_80003es2lan },
6913         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6914           board_80003es2lan },
6915         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6916           board_80003es2lan },
6917
6918         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6919         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6920         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6921         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6922         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6923         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6924         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6925         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6926
6927         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6928         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6929         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6930         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6931         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6932         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6933         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6934         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6935         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6936
6937         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6938         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6939         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6940
6941         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6942         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6943         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6944
6945         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6946         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6947         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6948         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6949
6950         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6951         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6952
6953         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6954         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6955         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
6956         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
6957
6958         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6959 };
6960 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6961
6962 #ifdef CONFIG_PM
6963 static const struct dev_pm_ops e1000_pm_ops = {
6964         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6965         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6966                                 e1000_runtime_resume, e1000_idle)
6967 };
6968 #endif
6969
6970 /* PCI Device API Driver */
6971 static struct pci_driver e1000_driver = {
6972         .name     = e1000e_driver_name,
6973         .id_table = e1000_pci_tbl,
6974         .probe    = e1000_probe,
6975         .remove   = e1000_remove,
6976 #ifdef CONFIG_PM
6977         .driver   = {
6978                 .pm = &e1000_pm_ops,
6979         },
6980 #endif
6981         .shutdown = e1000_shutdown,
6982         .err_handler = &e1000_err_handler
6983 };
6984
6985 /**
6986  * e1000_init_module - Driver Registration Routine
6987  *
6988  * e1000_init_module is the first routine called when the driver is
6989  * loaded. All it does is register with the PCI subsystem.
6990  **/
6991 static int __init e1000_init_module(void)
6992 {
6993         int ret;
6994         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6995                 e1000e_driver_version);
6996         pr_info("Copyright(c) 1999 - 2013 Intel Corporation.\n");
6997         ret = pci_register_driver(&e1000_driver);
6998
6999         return ret;
7000 }
7001 module_init(e1000_init_module);
7002
7003 /**
7004  * e1000_exit_module - Driver Exit Cleanup Routine
7005  *
7006  * e1000_exit_module is called just before the driver is removed
7007  * from memory.
7008  **/
7009 static void __exit e1000_exit_module(void)
7010 {
7011         pci_unregister_driver(&e1000_driver);
7012 }
7013 module_exit(e1000_exit_module);
7014
7015
7016 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7017 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7018 MODULE_LICENSE("GPL");
7019 MODULE_VERSION(DRV_VERSION);
7020
7021 /* netdev.c */