e1000e: Disable ASPM L1 on 82574
[pandora-kernel.git] / drivers / net / ethernet / intel / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  * 82583V Gigabit Network Connection
44  */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50                               (ID_LED_OFF1_ON2  <<  8) | \
51                               (ID_LED_DEF1_DEF2 <<  4) | \
52                               (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT          5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS          10
57 #define E1000_IDLE_ERROR_COUNT_MASK     0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER     21
59 #define E1000_RECEIVE_ERROR_MAX         0xFFFF
60
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
62
63 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68                                       u16 words, u16 *data);
69 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75 static s32 e1000_led_on_82574(struct e1000_hw *hw);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
81 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
82 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
83
84 /**
85  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
86  *  @hw: pointer to the HW structure
87  **/
88 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
89 {
90         struct e1000_phy_info *phy = &hw->phy;
91         s32 ret_val;
92
93         if (hw->phy.media_type != e1000_media_type_copper) {
94                 phy->type = e1000_phy_none;
95                 return 0;
96         }
97
98         phy->addr                        = 1;
99         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100         phy->reset_delay_us              = 100;
101
102         phy->ops.power_up                = e1000_power_up_phy_copper;
103         phy->ops.power_down              = e1000_power_down_phy_copper_82571;
104
105         switch (hw->mac.type) {
106         case e1000_82571:
107         case e1000_82572:
108                 phy->type                = e1000_phy_igp_2;
109                 break;
110         case e1000_82573:
111                 phy->type                = e1000_phy_m88;
112                 break;
113         case e1000_82574:
114         case e1000_82583:
115                 phy->type                = e1000_phy_bm;
116                 phy->ops.acquire = e1000_get_hw_semaphore_82574;
117                 phy->ops.release = e1000_put_hw_semaphore_82574;
118                 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
119                 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
120                 break;
121         default:
122                 return -E1000_ERR_PHY;
123                 break;
124         }
125
126         /* This can only be done after all function pointers are setup. */
127         ret_val = e1000_get_phy_id_82571(hw);
128         if (ret_val) {
129                 e_dbg("Error getting PHY ID\n");
130                 return ret_val;
131         }
132
133         /* Verify phy id */
134         switch (hw->mac.type) {
135         case e1000_82571:
136         case e1000_82572:
137                 if (phy->id != IGP01E1000_I_PHY_ID)
138                         ret_val = -E1000_ERR_PHY;
139                 break;
140         case e1000_82573:
141                 if (phy->id != M88E1111_I_PHY_ID)
142                         ret_val = -E1000_ERR_PHY;
143                 break;
144         case e1000_82574:
145         case e1000_82583:
146                 if (phy->id != BME1000_E_PHY_ID_R2)
147                         ret_val = -E1000_ERR_PHY;
148                 break;
149         default:
150                 ret_val = -E1000_ERR_PHY;
151                 break;
152         }
153
154         if (ret_val)
155                 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
156
157         return ret_val;
158 }
159
160 /**
161  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
162  *  @hw: pointer to the HW structure
163  **/
164 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
165 {
166         struct e1000_nvm_info *nvm = &hw->nvm;
167         u32 eecd = er32(EECD);
168         u16 size;
169
170         nvm->opcode_bits = 8;
171         nvm->delay_usec = 1;
172         switch (nvm->override) {
173         case e1000_nvm_override_spi_large:
174                 nvm->page_size = 32;
175                 nvm->address_bits = 16;
176                 break;
177         case e1000_nvm_override_spi_small:
178                 nvm->page_size = 8;
179                 nvm->address_bits = 8;
180                 break;
181         default:
182                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
183                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
184                 break;
185         }
186
187         switch (hw->mac.type) {
188         case e1000_82573:
189         case e1000_82574:
190         case e1000_82583:
191                 if (((eecd >> 15) & 0x3) == 0x3) {
192                         nvm->type = e1000_nvm_flash_hw;
193                         nvm->word_size = 2048;
194                         /*
195                          * Autonomous Flash update bit must be cleared due
196                          * to Flash update issue.
197                          */
198                         eecd &= ~E1000_EECD_AUPDEN;
199                         ew32(EECD, eecd);
200                         break;
201                 }
202                 /* Fall Through */
203         default:
204                 nvm->type = e1000_nvm_eeprom_spi;
205                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
206                                   E1000_EECD_SIZE_EX_SHIFT);
207                 /*
208                  * Added to a constant, "size" becomes the left-shift value
209                  * for setting word_size.
210                  */
211                 size += NVM_WORD_SIZE_BASE_SHIFT;
212
213                 /* EEPROM access above 16k is unsupported */
214                 if (size > 14)
215                         size = 14;
216                 nvm->word_size  = 1 << size;
217                 break;
218         }
219
220         /* Function Pointers */
221         switch (hw->mac.type) {
222         case e1000_82574:
223         case e1000_82583:
224                 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
225                 nvm->ops.release = e1000_put_hw_semaphore_82574;
226                 break;
227         default:
228                 break;
229         }
230
231         return 0;
232 }
233
234 /**
235  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
236  *  @hw: pointer to the HW structure
237  **/
238 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
239 {
240         struct e1000_mac_info *mac = &hw->mac;
241         u32 swsm = 0;
242         u32 swsm2 = 0;
243         bool force_clear_smbi = false;
244
245         /* Set media type and media-dependent function pointers */
246         switch (hw->adapter->pdev->device) {
247         case E1000_DEV_ID_82571EB_FIBER:
248         case E1000_DEV_ID_82572EI_FIBER:
249         case E1000_DEV_ID_82571EB_QUAD_FIBER:
250                 hw->phy.media_type = e1000_media_type_fiber;
251                 mac->ops.setup_physical_interface =
252                     e1000_setup_fiber_serdes_link_82571;
253                 mac->ops.check_for_link = e1000e_check_for_fiber_link;
254                 mac->ops.get_link_up_info =
255                     e1000e_get_speed_and_duplex_fiber_serdes;
256                 break;
257         case E1000_DEV_ID_82571EB_SERDES:
258         case E1000_DEV_ID_82571EB_SERDES_DUAL:
259         case E1000_DEV_ID_82571EB_SERDES_QUAD:
260         case E1000_DEV_ID_82572EI_SERDES:
261                 hw->phy.media_type = e1000_media_type_internal_serdes;
262                 mac->ops.setup_physical_interface =
263                     e1000_setup_fiber_serdes_link_82571;
264                 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
265                 mac->ops.get_link_up_info =
266                     e1000e_get_speed_and_duplex_fiber_serdes;
267                 break;
268         default:
269                 hw->phy.media_type = e1000_media_type_copper;
270                 mac->ops.setup_physical_interface =
271                     e1000_setup_copper_link_82571;
272                 mac->ops.check_for_link = e1000e_check_for_copper_link;
273                 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
274                 break;
275         }
276
277         /* Set mta register count */
278         mac->mta_reg_count = 128;
279         /* Set rar entry count */
280         mac->rar_entry_count = E1000_RAR_ENTRIES;
281         /* Adaptive IFS supported */
282         mac->adaptive_ifs = true;
283
284         /* MAC-specific function pointers */
285         switch (hw->mac.type) {
286         case e1000_82573:
287                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
288                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
289                 mac->ops.led_on = e1000e_led_on_generic;
290                 mac->ops.blink_led = e1000e_blink_led_generic;
291
292                 /* FWSM register */
293                 mac->has_fwsm = true;
294                 /*
295                  * ARC supported; valid only if manageability features are
296                  * enabled.
297                  */
298                 mac->arc_subsystem_valid = !!(er32(FWSM) &
299                                               E1000_FWSM_MODE_MASK);
300                 break;
301         case e1000_82574:
302         case e1000_82583:
303                 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
304                 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
305                 mac->ops.led_on = e1000_led_on_82574;
306                 break;
307         default:
308                 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
309                 mac->ops.led_on = e1000e_led_on_generic;
310                 mac->ops.blink_led = e1000e_blink_led_generic;
311
312                 /* FWSM register */
313                 mac->has_fwsm = true;
314                 break;
315         }
316
317         /*
318          * Ensure that the inter-port SWSM.SMBI lock bit is clear before
319          * first NVM or PHY access. This should be done for single-port
320          * devices, and for one port only on dual-port devices so that
321          * for those devices we can still use the SMBI lock to synchronize
322          * inter-port accesses to the PHY & NVM.
323          */
324         switch (hw->mac.type) {
325         case e1000_82571:
326         case e1000_82572:
327                 swsm2 = er32(SWSM2);
328
329                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
330                         /* Only do this for the first interface on this card */
331                         ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
332                         force_clear_smbi = true;
333                 } else {
334                         force_clear_smbi = false;
335                 }
336                 break;
337         default:
338                 force_clear_smbi = true;
339                 break;
340         }
341
342         if (force_clear_smbi) {
343                 /* Make sure SWSM.SMBI is clear */
344                 swsm = er32(SWSM);
345                 if (swsm & E1000_SWSM_SMBI) {
346                         /* This bit should not be set on a first interface, and
347                          * indicates that the bootagent or EFI code has
348                          * improperly left this bit enabled
349                          */
350                         e_dbg("Please update your 82571 Bootagent\n");
351                 }
352                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
353         }
354
355         /*
356          * Initialize device specific counter of SMBI acquisition
357          * timeouts.
358          */
359          hw->dev_spec.e82571.smb_counter = 0;
360
361         return 0;
362 }
363
364 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
365 {
366         struct e1000_hw *hw = &adapter->hw;
367         static int global_quad_port_a; /* global port a indication */
368         struct pci_dev *pdev = adapter->pdev;
369         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
370         s32 rc;
371
372         rc = e1000_init_mac_params_82571(hw);
373         if (rc)
374                 return rc;
375
376         rc = e1000_init_nvm_params_82571(hw);
377         if (rc)
378                 return rc;
379
380         rc = e1000_init_phy_params_82571(hw);
381         if (rc)
382                 return rc;
383
384         /* tag quad port adapters first, it's used below */
385         switch (pdev->device) {
386         case E1000_DEV_ID_82571EB_QUAD_COPPER:
387         case E1000_DEV_ID_82571EB_QUAD_FIBER:
388         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
389         case E1000_DEV_ID_82571PT_QUAD_COPPER:
390                 adapter->flags |= FLAG_IS_QUAD_PORT;
391                 /* mark the first port */
392                 if (global_quad_port_a == 0)
393                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
394                 /* Reset for multiple quad port adapters */
395                 global_quad_port_a++;
396                 if (global_quad_port_a == 4)
397                         global_quad_port_a = 0;
398                 break;
399         default:
400                 break;
401         }
402
403         switch (adapter->hw.mac.type) {
404         case e1000_82571:
405                 /* these dual ports don't have WoL on port B at all */
406                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
407                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
408                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
409                     (is_port_b))
410                         adapter->flags &= ~FLAG_HAS_WOL;
411                 /* quad ports only support WoL on port A */
412                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
413                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
414                         adapter->flags &= ~FLAG_HAS_WOL;
415                 /* Does not support WoL on any port */
416                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
417                         adapter->flags &= ~FLAG_HAS_WOL;
418                 break;
419         case e1000_82573:
420                 if (pdev->device == E1000_DEV_ID_82573L) {
421                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
422                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
423                 }
424                 break;
425         default:
426                 break;
427         }
428
429         return 0;
430 }
431
432 /**
433  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
434  *  @hw: pointer to the HW structure
435  *
436  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
437  *  revision in the hardware structure.
438  **/
439 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
440 {
441         struct e1000_phy_info *phy = &hw->phy;
442         s32 ret_val;
443         u16 phy_id = 0;
444
445         switch (hw->mac.type) {
446         case e1000_82571:
447         case e1000_82572:
448                 /*
449                  * The 82571 firmware may still be configuring the PHY.
450                  * In this case, we cannot access the PHY until the
451                  * configuration is done.  So we explicitly set the
452                  * PHY ID.
453                  */
454                 phy->id = IGP01E1000_I_PHY_ID;
455                 break;
456         case e1000_82573:
457                 return e1000e_get_phy_id(hw);
458                 break;
459         case e1000_82574:
460         case e1000_82583:
461                 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
462                 if (ret_val)
463                         return ret_val;
464
465                 phy->id = (u32)(phy_id << 16);
466                 udelay(20);
467                 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
468                 if (ret_val)
469                         return ret_val;
470
471                 phy->id |= (u32)(phy_id);
472                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
473                 break;
474         default:
475                 return -E1000_ERR_PHY;
476                 break;
477         }
478
479         return 0;
480 }
481
482 /**
483  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
484  *  @hw: pointer to the HW structure
485  *
486  *  Acquire the HW semaphore to access the PHY or NVM
487  **/
488 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
489 {
490         u32 swsm;
491         s32 sw_timeout = hw->nvm.word_size + 1;
492         s32 fw_timeout = hw->nvm.word_size + 1;
493         s32 i = 0;
494
495         /*
496          * If we have timedout 3 times on trying to acquire
497          * the inter-port SMBI semaphore, there is old code
498          * operating on the other port, and it is not
499          * releasing SMBI. Modify the number of times that
500          * we try for the semaphore to interwork with this
501          * older code.
502          */
503         if (hw->dev_spec.e82571.smb_counter > 2)
504                 sw_timeout = 1;
505
506         /* Get the SW semaphore */
507         while (i < sw_timeout) {
508                 swsm = er32(SWSM);
509                 if (!(swsm & E1000_SWSM_SMBI))
510                         break;
511
512                 udelay(50);
513                 i++;
514         }
515
516         if (i == sw_timeout) {
517                 e_dbg("Driver can't access device - SMBI bit is set.\n");
518                 hw->dev_spec.e82571.smb_counter++;
519         }
520         /* Get the FW semaphore. */
521         for (i = 0; i < fw_timeout; i++) {
522                 swsm = er32(SWSM);
523                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
524
525                 /* Semaphore acquired if bit latched */
526                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
527                         break;
528
529                 udelay(50);
530         }
531
532         if (i == fw_timeout) {
533                 /* Release semaphores */
534                 e1000_put_hw_semaphore_82571(hw);
535                 e_dbg("Driver can't access the NVM\n");
536                 return -E1000_ERR_NVM;
537         }
538
539         return 0;
540 }
541
542 /**
543  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
544  *  @hw: pointer to the HW structure
545  *
546  *  Release hardware semaphore used to access the PHY or NVM
547  **/
548 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
549 {
550         u32 swsm;
551
552         swsm = er32(SWSM);
553         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
554         ew32(SWSM, swsm);
555 }
556 /**
557  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
558  *  @hw: pointer to the HW structure
559  *
560  *  Acquire the HW semaphore during reset.
561  *
562  **/
563 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
564 {
565         u32 extcnf_ctrl;
566         s32 i = 0;
567
568         extcnf_ctrl = er32(EXTCNF_CTRL);
569         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
570         do {
571                 ew32(EXTCNF_CTRL, extcnf_ctrl);
572                 extcnf_ctrl = er32(EXTCNF_CTRL);
573
574                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
575                         break;
576
577                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
578
579                 usleep_range(2000, 4000);
580                 i++;
581         } while (i < MDIO_OWNERSHIP_TIMEOUT);
582
583         if (i == MDIO_OWNERSHIP_TIMEOUT) {
584                 /* Release semaphores */
585                 e1000_put_hw_semaphore_82573(hw);
586                 e_dbg("Driver can't access the PHY\n");
587                 return -E1000_ERR_PHY;
588         }
589
590         return 0;
591 }
592
593 /**
594  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
595  *  @hw: pointer to the HW structure
596  *
597  *  Release hardware semaphore used during reset.
598  *
599  **/
600 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
601 {
602         u32 extcnf_ctrl;
603
604         extcnf_ctrl = er32(EXTCNF_CTRL);
605         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
606         ew32(EXTCNF_CTRL, extcnf_ctrl);
607 }
608
609 static DEFINE_MUTEX(swflag_mutex);
610
611 /**
612  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
613  *  @hw: pointer to the HW structure
614  *
615  *  Acquire the HW semaphore to access the PHY or NVM.
616  *
617  **/
618 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
619 {
620         s32 ret_val;
621
622         mutex_lock(&swflag_mutex);
623         ret_val = e1000_get_hw_semaphore_82573(hw);
624         if (ret_val)
625                 mutex_unlock(&swflag_mutex);
626         return ret_val;
627 }
628
629 /**
630  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
631  *  @hw: pointer to the HW structure
632  *
633  *  Release hardware semaphore used to access the PHY or NVM
634  *
635  **/
636 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
637 {
638         e1000_put_hw_semaphore_82573(hw);
639         mutex_unlock(&swflag_mutex);
640 }
641
642 /**
643  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
644  *  @hw: pointer to the HW structure
645  *  @active: true to enable LPLU, false to disable
646  *
647  *  Sets the LPLU D0 state according to the active flag.
648  *  LPLU will not be activated unless the
649  *  device autonegotiation advertisement meets standards of
650  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
651  *  This is a function pointer entry point only called by
652  *  PHY setup routines.
653  **/
654 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
655 {
656         u16 data = er32(POEMB);
657
658         if (active)
659                 data |= E1000_PHY_CTRL_D0A_LPLU;
660         else
661                 data &= ~E1000_PHY_CTRL_D0A_LPLU;
662
663         ew32(POEMB, data);
664         return 0;
665 }
666
667 /**
668  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
669  *  @hw: pointer to the HW structure
670  *  @active: boolean used to enable/disable lplu
671  *
672  *  The low power link up (lplu) state is set to the power management level D3
673  *  when active is true, else clear lplu for D3. LPLU
674  *  is used during Dx states where the power conservation is most important.
675  *  During driver activity, SmartSpeed should be enabled so performance is
676  *  maintained.
677  **/
678 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
679 {
680         u16 data = er32(POEMB);
681
682         if (!active) {
683                 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
684         } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
685                    (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
686                    (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
687                 data |= E1000_PHY_CTRL_NOND0A_LPLU;
688         }
689
690         ew32(POEMB, data);
691         return 0;
692 }
693
694 /**
695  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
696  *  @hw: pointer to the HW structure
697  *
698  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
699  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
700  *  for EEPROM access grant bit.  If the access grant bit is not set, release
701  *  hardware semaphore.
702  **/
703 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
704 {
705         s32 ret_val;
706
707         ret_val = e1000_get_hw_semaphore_82571(hw);
708         if (ret_val)
709                 return ret_val;
710
711         switch (hw->mac.type) {
712         case e1000_82573:
713                 break;
714         default:
715                 ret_val = e1000e_acquire_nvm(hw);
716                 break;
717         }
718
719         if (ret_val)
720                 e1000_put_hw_semaphore_82571(hw);
721
722         return ret_val;
723 }
724
725 /**
726  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
727  *  @hw: pointer to the HW structure
728  *
729  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
730  **/
731 static void e1000_release_nvm_82571(struct e1000_hw *hw)
732 {
733         e1000e_release_nvm(hw);
734         e1000_put_hw_semaphore_82571(hw);
735 }
736
737 /**
738  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
739  *  @hw: pointer to the HW structure
740  *  @offset: offset within the EEPROM to be written to
741  *  @words: number of words to write
742  *  @data: 16 bit word(s) to be written to the EEPROM
743  *
744  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
745  *
746  *  If e1000e_update_nvm_checksum is not called after this function, the
747  *  EEPROM will most likely contain an invalid checksum.
748  **/
749 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
750                                  u16 *data)
751 {
752         s32 ret_val;
753
754         switch (hw->mac.type) {
755         case e1000_82573:
756         case e1000_82574:
757         case e1000_82583:
758                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
759                 break;
760         case e1000_82571:
761         case e1000_82572:
762                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
763                 break;
764         default:
765                 ret_val = -E1000_ERR_NVM;
766                 break;
767         }
768
769         return ret_val;
770 }
771
772 /**
773  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
774  *  @hw: pointer to the HW structure
775  *
776  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
777  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
778  *  value to the EEPROM.
779  **/
780 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
781 {
782         u32 eecd;
783         s32 ret_val;
784         u16 i;
785
786         ret_val = e1000e_update_nvm_checksum_generic(hw);
787         if (ret_val)
788                 return ret_val;
789
790         /*
791          * If our nvm is an EEPROM, then we're done
792          * otherwise, commit the checksum to the flash NVM.
793          */
794         if (hw->nvm.type != e1000_nvm_flash_hw)
795                 return 0;
796
797         /* Check for pending operations. */
798         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
799                 usleep_range(1000, 2000);
800                 if (!(er32(EECD) & E1000_EECD_FLUPD))
801                         break;
802         }
803
804         if (i == E1000_FLASH_UPDATES)
805                 return -E1000_ERR_NVM;
806
807         /* Reset the firmware if using STM opcode. */
808         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
809                 /*
810                  * The enabling of and the actual reset must be done
811                  * in two write cycles.
812                  */
813                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
814                 e1e_flush();
815                 ew32(HICR, E1000_HICR_FW_RESET);
816         }
817
818         /* Commit the write to flash */
819         eecd = er32(EECD) | E1000_EECD_FLUPD;
820         ew32(EECD, eecd);
821
822         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
823                 usleep_range(1000, 2000);
824                 if (!(er32(EECD) & E1000_EECD_FLUPD))
825                         break;
826         }
827
828         if (i == E1000_FLASH_UPDATES)
829                 return -E1000_ERR_NVM;
830
831         return 0;
832 }
833
834 /**
835  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
836  *  @hw: pointer to the HW structure
837  *
838  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
839  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
840  **/
841 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
842 {
843         if (hw->nvm.type == e1000_nvm_flash_hw)
844                 e1000_fix_nvm_checksum_82571(hw);
845
846         return e1000e_validate_nvm_checksum_generic(hw);
847 }
848
849 /**
850  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
851  *  @hw: pointer to the HW structure
852  *  @offset: offset within the EEPROM to be written to
853  *  @words: number of words to write
854  *  @data: 16 bit word(s) to be written to the EEPROM
855  *
856  *  After checking for invalid values, poll the EEPROM to ensure the previous
857  *  command has completed before trying to write the next word.  After write
858  *  poll for completion.
859  *
860  *  If e1000e_update_nvm_checksum is not called after this function, the
861  *  EEPROM will most likely contain an invalid checksum.
862  **/
863 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
864                                       u16 words, u16 *data)
865 {
866         struct e1000_nvm_info *nvm = &hw->nvm;
867         u32 i, eewr = 0;
868         s32 ret_val = 0;
869
870         /*
871          * A check for invalid values:  offset too large, too many words,
872          * and not enough words.
873          */
874         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
875             (words == 0)) {
876                 e_dbg("nvm parameter(s) out of bounds\n");
877                 return -E1000_ERR_NVM;
878         }
879
880         for (i = 0; i < words; i++) {
881                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
882                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
883                        E1000_NVM_RW_REG_START;
884
885                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
886                 if (ret_val)
887                         break;
888
889                 ew32(EEWR, eewr);
890
891                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
892                 if (ret_val)
893                         break;
894         }
895
896         return ret_val;
897 }
898
899 /**
900  *  e1000_get_cfg_done_82571 - Poll for configuration done
901  *  @hw: pointer to the HW structure
902  *
903  *  Reads the management control register for the config done bit to be set.
904  **/
905 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
906 {
907         s32 timeout = PHY_CFG_TIMEOUT;
908
909         while (timeout) {
910                 if (er32(EEMNGCTL) &
911                     E1000_NVM_CFG_DONE_PORT_0)
912                         break;
913                 usleep_range(1000, 2000);
914                 timeout--;
915         }
916         if (!timeout) {
917                 e_dbg("MNG configuration cycle has not completed.\n");
918                 return -E1000_ERR_RESET;
919         }
920
921         return 0;
922 }
923
924 /**
925  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
926  *  @hw: pointer to the HW structure
927  *  @active: true to enable LPLU, false to disable
928  *
929  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
930  *  this function also disables smart speed and vice versa.  LPLU will not be
931  *  activated unless the device autonegotiation advertisement meets standards
932  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
933  *  pointer entry point only called by PHY setup routines.
934  **/
935 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
936 {
937         struct e1000_phy_info *phy = &hw->phy;
938         s32 ret_val;
939         u16 data;
940
941         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
942         if (ret_val)
943                 return ret_val;
944
945         if (active) {
946                 data |= IGP02E1000_PM_D0_LPLU;
947                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
948                 if (ret_val)
949                         return ret_val;
950
951                 /* When LPLU is enabled, we should disable SmartSpeed */
952                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
953                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
954                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
955                 if (ret_val)
956                         return ret_val;
957         } else {
958                 data &= ~IGP02E1000_PM_D0_LPLU;
959                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
960                 /*
961                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
962                  * during Dx states where the power conservation is most
963                  * important.  During driver activity we should enable
964                  * SmartSpeed, so performance is maintained.
965                  */
966                 if (phy->smart_speed == e1000_smart_speed_on) {
967                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
968                                            &data);
969                         if (ret_val)
970                                 return ret_val;
971
972                         data |= IGP01E1000_PSCFR_SMART_SPEED;
973                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
974                                            data);
975                         if (ret_val)
976                                 return ret_val;
977                 } else if (phy->smart_speed == e1000_smart_speed_off) {
978                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
979                                            &data);
980                         if (ret_val)
981                                 return ret_val;
982
983                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
984                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
985                                            data);
986                         if (ret_val)
987                                 return ret_val;
988                 }
989         }
990
991         return 0;
992 }
993
994 /**
995  *  e1000_reset_hw_82571 - Reset hardware
996  *  @hw: pointer to the HW structure
997  *
998  *  This resets the hardware into a known state.
999  **/
1000 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
1001 {
1002         u32 ctrl, ctrl_ext;
1003         s32 ret_val;
1004
1005         /*
1006          * Prevent the PCI-E bus from sticking if there is no TLP connection
1007          * on the last TLP read/write transaction when MAC is reset.
1008          */
1009         ret_val = e1000e_disable_pcie_master(hw);
1010         if (ret_val)
1011                 e_dbg("PCI-E Master disable polling has failed.\n");
1012
1013         e_dbg("Masking off all interrupts\n");
1014         ew32(IMC, 0xffffffff);
1015
1016         ew32(RCTL, 0);
1017         ew32(TCTL, E1000_TCTL_PSP);
1018         e1e_flush();
1019
1020         usleep_range(10000, 20000);
1021
1022         /*
1023          * Must acquire the MDIO ownership before MAC reset.
1024          * Ownership defaults to firmware after a reset.
1025          */
1026         switch (hw->mac.type) {
1027         case e1000_82573:
1028                 ret_val = e1000_get_hw_semaphore_82573(hw);
1029                 break;
1030         case e1000_82574:
1031         case e1000_82583:
1032                 ret_val = e1000_get_hw_semaphore_82574(hw);
1033                 break;
1034         default:
1035                 break;
1036         }
1037         if (ret_val)
1038                 e_dbg("Cannot acquire MDIO ownership\n");
1039
1040         ctrl = er32(CTRL);
1041
1042         e_dbg("Issuing a global reset to MAC\n");
1043         ew32(CTRL, ctrl | E1000_CTRL_RST);
1044
1045         /* Must release MDIO ownership and mutex after MAC reset. */
1046         switch (hw->mac.type) {
1047         case e1000_82574:
1048         case e1000_82583:
1049                 e1000_put_hw_semaphore_82574(hw);
1050                 break;
1051         default:
1052                 break;
1053         }
1054
1055         if (hw->nvm.type == e1000_nvm_flash_hw) {
1056                 udelay(10);
1057                 ctrl_ext = er32(CTRL_EXT);
1058                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1059                 ew32(CTRL_EXT, ctrl_ext);
1060                 e1e_flush();
1061         }
1062
1063         ret_val = e1000e_get_auto_rd_done(hw);
1064         if (ret_val)
1065                 /* We don't want to continue accessing MAC registers. */
1066                 return ret_val;
1067
1068         /*
1069          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1070          * Need to wait for Phy configuration completion before accessing
1071          * NVM and Phy.
1072          */
1073
1074         switch (hw->mac.type) {
1075         case e1000_82573:
1076         case e1000_82574:
1077         case e1000_82583:
1078                 msleep(25);
1079                 break;
1080         default:
1081                 break;
1082         }
1083
1084         /* Clear any pending interrupt events. */
1085         ew32(IMC, 0xffffffff);
1086         er32(ICR);
1087
1088         if (hw->mac.type == e1000_82571) {
1089                 /* Install any alternate MAC address into RAR0 */
1090                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1091                 if (ret_val)
1092                         return ret_val;
1093
1094                 e1000e_set_laa_state_82571(hw, true);
1095         }
1096
1097         /* Reinitialize the 82571 serdes link state machine */
1098         if (hw->phy.media_type == e1000_media_type_internal_serdes)
1099                 hw->mac.serdes_link_state = e1000_serdes_link_down;
1100
1101         return 0;
1102 }
1103
1104 /**
1105  *  e1000_init_hw_82571 - Initialize hardware
1106  *  @hw: pointer to the HW structure
1107  *
1108  *  This inits the hardware readying it for operation.
1109  **/
1110 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1111 {
1112         struct e1000_mac_info *mac = &hw->mac;
1113         u32 reg_data;
1114         s32 ret_val;
1115         u16 i, rar_count = mac->rar_entry_count;
1116
1117         e1000_initialize_hw_bits_82571(hw);
1118
1119         /* Initialize identification LED */
1120         ret_val = mac->ops.id_led_init(hw);
1121         if (ret_val)
1122                 e_dbg("Error initializing identification LED\n");
1123                 /* This is not fatal and we should not stop init due to this */
1124
1125         /* Disabling VLAN filtering */
1126         e_dbg("Initializing the IEEE VLAN\n");
1127         mac->ops.clear_vfta(hw);
1128
1129         /* Setup the receive address. */
1130         /*
1131          * If, however, a locally administered address was assigned to the
1132          * 82571, we must reserve a RAR for it to work around an issue where
1133          * resetting one port will reload the MAC on the other port.
1134          */
1135         if (e1000e_get_laa_state_82571(hw))
1136                 rar_count--;
1137         e1000e_init_rx_addrs(hw, rar_count);
1138
1139         /* Zero out the Multicast HASH table */
1140         e_dbg("Zeroing the MTA\n");
1141         for (i = 0; i < mac->mta_reg_count; i++)
1142                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1143
1144         /* Setup link and flow control */
1145         ret_val = mac->ops.setup_link(hw);
1146
1147         /* Set the transmit descriptor write-back policy */
1148         reg_data = er32(TXDCTL(0));
1149         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1150                    E1000_TXDCTL_FULL_TX_DESC_WB |
1151                    E1000_TXDCTL_COUNT_DESC;
1152         ew32(TXDCTL(0), reg_data);
1153
1154         /* ...for both queues. */
1155         switch (mac->type) {
1156         case e1000_82573:
1157                 e1000e_enable_tx_pkt_filtering(hw);
1158                 /* fall through */
1159         case e1000_82574:
1160         case e1000_82583:
1161                 reg_data = er32(GCR);
1162                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1163                 ew32(GCR, reg_data);
1164                 break;
1165         default:
1166                 reg_data = er32(TXDCTL(1));
1167                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1168                            E1000_TXDCTL_FULL_TX_DESC_WB |
1169                            E1000_TXDCTL_COUNT_DESC;
1170                 ew32(TXDCTL(1), reg_data);
1171                 break;
1172         }
1173
1174         /*
1175          * Clear all of the statistics registers (clear on read).  It is
1176          * important that we do this after we have tried to establish link
1177          * because the symbol error count will increment wildly if there
1178          * is no link.
1179          */
1180         e1000_clear_hw_cntrs_82571(hw);
1181
1182         return ret_val;
1183 }
1184
1185 /**
1186  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1187  *  @hw: pointer to the HW structure
1188  *
1189  *  Initializes required hardware-dependent bits needed for normal operation.
1190  **/
1191 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1192 {
1193         u32 reg;
1194
1195         /* Transmit Descriptor Control 0 */
1196         reg = er32(TXDCTL(0));
1197         reg |= (1 << 22);
1198         ew32(TXDCTL(0), reg);
1199
1200         /* Transmit Descriptor Control 1 */
1201         reg = er32(TXDCTL(1));
1202         reg |= (1 << 22);
1203         ew32(TXDCTL(1), reg);
1204
1205         /* Transmit Arbitration Control 0 */
1206         reg = er32(TARC(0));
1207         reg &= ~(0xF << 27); /* 30:27 */
1208         switch (hw->mac.type) {
1209         case e1000_82571:
1210         case e1000_82572:
1211                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1212                 break;
1213         case e1000_82574:
1214         case e1000_82583:
1215                 reg |= (1 << 26);
1216                 break;
1217         default:
1218                 break;
1219         }
1220         ew32(TARC(0), reg);
1221
1222         /* Transmit Arbitration Control 1 */
1223         reg = er32(TARC(1));
1224         switch (hw->mac.type) {
1225         case e1000_82571:
1226         case e1000_82572:
1227                 reg &= ~((1 << 29) | (1 << 30));
1228                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1229                 if (er32(TCTL) & E1000_TCTL_MULR)
1230                         reg &= ~(1 << 28);
1231                 else
1232                         reg |= (1 << 28);
1233                 ew32(TARC(1), reg);
1234                 break;
1235         default:
1236                 break;
1237         }
1238
1239         /* Device Control */
1240         switch (hw->mac.type) {
1241         case e1000_82573:
1242         case e1000_82574:
1243         case e1000_82583:
1244                 reg = er32(CTRL);
1245                 reg &= ~(1 << 29);
1246                 ew32(CTRL, reg);
1247                 break;
1248         default:
1249                 break;
1250         }
1251
1252         /* Extended Device Control */
1253         switch (hw->mac.type) {
1254         case e1000_82573:
1255         case e1000_82574:
1256         case e1000_82583:
1257                 reg = er32(CTRL_EXT);
1258                 reg &= ~(1 << 23);
1259                 reg |= (1 << 22);
1260                 ew32(CTRL_EXT, reg);
1261                 break;
1262         default:
1263                 break;
1264         }
1265
1266         if (hw->mac.type == e1000_82571) {
1267                 reg = er32(PBA_ECC);
1268                 reg |= E1000_PBA_ECC_CORR_EN;
1269                 ew32(PBA_ECC, reg);
1270         }
1271
1272         /*
1273          * Workaround for hardware errata.
1274          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1275          */
1276         if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1277                 reg = er32(CTRL_EXT);
1278                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1279                 ew32(CTRL_EXT, reg);
1280         }
1281
1282         /*
1283          * Disable IPv6 extension header parsing because some malformed
1284          * IPv6 headers can hang the Rx.
1285          */
1286         if (hw->mac.type <= e1000_82573) {
1287                 reg = er32(RFCTL);
1288                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1289                 ew32(RFCTL, reg);
1290         }
1291
1292         /* PCI-Ex Control Registers */
1293         switch (hw->mac.type) {
1294         case e1000_82574:
1295         case e1000_82583:
1296                 reg = er32(GCR);
1297                 reg |= (1 << 22);
1298                 ew32(GCR, reg);
1299
1300                 /*
1301                  * Workaround for hardware errata.
1302                  * apply workaround for hardware errata documented in errata
1303                  * docs Fixes issue where some error prone or unreliable PCIe
1304                  * completions are occurring, particularly with ASPM enabled.
1305                  * Without fix, issue can cause Tx timeouts.
1306                  */
1307                 reg = er32(GCR2);
1308                 reg |= 1;
1309                 ew32(GCR2, reg);
1310                 break;
1311         default:
1312                 break;
1313         }
1314 }
1315
1316 /**
1317  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1318  *  @hw: pointer to the HW structure
1319  *
1320  *  Clears the register array which contains the VLAN filter table by
1321  *  setting all the values to 0.
1322  **/
1323 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1324 {
1325         u32 offset;
1326         u32 vfta_value = 0;
1327         u32 vfta_offset = 0;
1328         u32 vfta_bit_in_reg = 0;
1329
1330         switch (hw->mac.type) {
1331         case e1000_82573:
1332         case e1000_82574:
1333         case e1000_82583:
1334                 if (hw->mng_cookie.vlan_id != 0) {
1335                         /*
1336                          * The VFTA is a 4096b bit-field, each identifying
1337                          * a single VLAN ID.  The following operations
1338                          * determine which 32b entry (i.e. offset) into the
1339                          * array we want to set the VLAN ID (i.e. bit) of
1340                          * the manageability unit.
1341                          */
1342                         vfta_offset = (hw->mng_cookie.vlan_id >>
1343                                        E1000_VFTA_ENTRY_SHIFT) &
1344                                       E1000_VFTA_ENTRY_MASK;
1345                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1346                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1347                 }
1348                 break;
1349         default:
1350                 break;
1351         }
1352         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1353                 /*
1354                  * If the offset we want to clear is the same offset of the
1355                  * manageability VLAN ID, then clear all bits except that of
1356                  * the manageability unit.
1357                  */
1358                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1359                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1360                 e1e_flush();
1361         }
1362 }
1363
1364 /**
1365  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1366  *  @hw: pointer to the HW structure
1367  *
1368  *  Reads the NVM Initialization Control Word 2 and returns true
1369  *  (>0) if any manageability is enabled, else false (0).
1370  **/
1371 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1372 {
1373         u16 data;
1374
1375         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1376         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1377 }
1378
1379 /**
1380  *  e1000_led_on_82574 - Turn LED on
1381  *  @hw: pointer to the HW structure
1382  *
1383  *  Turn LED on.
1384  **/
1385 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1386 {
1387         u32 ctrl;
1388         u32 i;
1389
1390         ctrl = hw->mac.ledctl_mode2;
1391         if (!(E1000_STATUS_LU & er32(STATUS))) {
1392                 /*
1393                  * If no link, then turn LED on by setting the invert bit
1394                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1395                  */
1396                 for (i = 0; i < 4; i++)
1397                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1398                             E1000_LEDCTL_MODE_LED_ON)
1399                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1400         }
1401         ew32(LEDCTL, ctrl);
1402
1403         return 0;
1404 }
1405
1406 /**
1407  *  e1000_check_phy_82574 - check 82574 phy hung state
1408  *  @hw: pointer to the HW structure
1409  *
1410  *  Returns whether phy is hung or not
1411  **/
1412 bool e1000_check_phy_82574(struct e1000_hw *hw)
1413 {
1414         u16 status_1kbt = 0;
1415         u16 receive_errors = 0;
1416         s32 ret_val = 0;
1417
1418         /*
1419          * Read PHY Receive Error counter first, if its is max - all F's then
1420          * read the Base1000T status register If both are max then PHY is hung.
1421          */
1422         ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1423         if (ret_val)
1424                 return false;
1425         if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
1426                 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1427                 if (ret_val)
1428                         return false;
1429                 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1430                     E1000_IDLE_ERROR_COUNT_MASK)
1431                         return true;
1432         }
1433
1434         return false;
1435 }
1436
1437 /**
1438  *  e1000_setup_link_82571 - Setup flow control and link settings
1439  *  @hw: pointer to the HW structure
1440  *
1441  *  Determines which flow control settings to use, then configures flow
1442  *  control.  Calls the appropriate media-specific link configuration
1443  *  function.  Assuming the adapter has a valid link partner, a valid link
1444  *  should be established.  Assumes the hardware has previously been reset
1445  *  and the transmitter and receiver are not enabled.
1446  **/
1447 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1448 {
1449         /*
1450          * 82573 does not have a word in the NVM to determine
1451          * the default flow control setting, so we explicitly
1452          * set it to full.
1453          */
1454         switch (hw->mac.type) {
1455         case e1000_82573:
1456         case e1000_82574:
1457         case e1000_82583:
1458                 if (hw->fc.requested_mode == e1000_fc_default)
1459                         hw->fc.requested_mode = e1000_fc_full;
1460                 break;
1461         default:
1462                 break;
1463         }
1464
1465         return e1000e_setup_link_generic(hw);
1466 }
1467
1468 /**
1469  *  e1000_setup_copper_link_82571 - Configure copper link settings
1470  *  @hw: pointer to the HW structure
1471  *
1472  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1473  *  for link, once link is established calls to configure collision distance
1474  *  and flow control are called.
1475  **/
1476 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1477 {
1478         u32 ctrl;
1479         s32 ret_val;
1480
1481         ctrl = er32(CTRL);
1482         ctrl |= E1000_CTRL_SLU;
1483         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1484         ew32(CTRL, ctrl);
1485
1486         switch (hw->phy.type) {
1487         case e1000_phy_m88:
1488         case e1000_phy_bm:
1489                 ret_val = e1000e_copper_link_setup_m88(hw);
1490                 break;
1491         case e1000_phy_igp_2:
1492                 ret_val = e1000e_copper_link_setup_igp(hw);
1493                 break;
1494         default:
1495                 return -E1000_ERR_PHY;
1496                 break;
1497         }
1498
1499         if (ret_val)
1500                 return ret_val;
1501
1502         return e1000e_setup_copper_link(hw);
1503 }
1504
1505 /**
1506  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1507  *  @hw: pointer to the HW structure
1508  *
1509  *  Configures collision distance and flow control for fiber and serdes links.
1510  *  Upon successful setup, poll for link.
1511  **/
1512 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1513 {
1514         switch (hw->mac.type) {
1515         case e1000_82571:
1516         case e1000_82572:
1517                 /*
1518                  * If SerDes loopback mode is entered, there is no form
1519                  * of reset to take the adapter out of that mode.  So we
1520                  * have to explicitly take the adapter out of loopback
1521                  * mode.  This prevents drivers from twiddling their thumbs
1522                  * if another tool failed to take it out of loopback mode.
1523                  */
1524                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1525                 break;
1526         default:
1527                 break;
1528         }
1529
1530         return e1000e_setup_fiber_serdes_link(hw);
1531 }
1532
1533 /**
1534  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1535  *  @hw: pointer to the HW structure
1536  *
1537  *  Reports the link state as up or down.
1538  *
1539  *  If autonegotiation is supported by the link partner, the link state is
1540  *  determined by the result of autonegotiation. This is the most likely case.
1541  *  If autonegotiation is not supported by the link partner, and the link
1542  *  has a valid signal, force the link up.
1543  *
1544  *  The link state is represented internally here by 4 states:
1545  *
1546  *  1) down
1547  *  2) autoneg_progress
1548  *  3) autoneg_complete (the link successfully autonegotiated)
1549  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1550  *
1551  **/
1552 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1553 {
1554         struct e1000_mac_info *mac = &hw->mac;
1555         u32 rxcw;
1556         u32 ctrl;
1557         u32 status;
1558         u32 txcw;
1559         u32 i;
1560         s32 ret_val = 0;
1561
1562         ctrl = er32(CTRL);
1563         status = er32(STATUS);
1564         rxcw = er32(RXCW);
1565
1566         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1567
1568                 /* Receiver is synchronized with no invalid bits.  */
1569                 switch (mac->serdes_link_state) {
1570                 case e1000_serdes_link_autoneg_complete:
1571                         if (!(status & E1000_STATUS_LU)) {
1572                                 /*
1573                                  * We have lost link, retry autoneg before
1574                                  * reporting link failure
1575                                  */
1576                                 mac->serdes_link_state =
1577                                     e1000_serdes_link_autoneg_progress;
1578                                 mac->serdes_has_link = false;
1579                                 e_dbg("AN_UP     -> AN_PROG\n");
1580                         } else {
1581                                 mac->serdes_has_link = true;
1582                         }
1583                         break;
1584
1585                 case e1000_serdes_link_forced_up:
1586                         /*
1587                          * If we are receiving /C/ ordered sets, re-enable
1588                          * auto-negotiation in the TXCW register and disable
1589                          * forced link in the Device Control register in an
1590                          * attempt to auto-negotiate with our link partner.
1591                          * If the partner code word is null, stop forcing
1592                          * and restart auto negotiation.
1593                          */
1594                         if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW))  {
1595                                 /* Enable autoneg, and unforce link up */
1596                                 ew32(TXCW, mac->txcw);
1597                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1598                                 mac->serdes_link_state =
1599                                     e1000_serdes_link_autoneg_progress;
1600                                 mac->serdes_has_link = false;
1601                                 e_dbg("FORCED_UP -> AN_PROG\n");
1602                         } else {
1603                                 mac->serdes_has_link = true;
1604                         }
1605                         break;
1606
1607                 case e1000_serdes_link_autoneg_progress:
1608                         if (rxcw & E1000_RXCW_C) {
1609                                 /*
1610                                  * We received /C/ ordered sets, meaning the
1611                                  * link partner has autonegotiated, and we can
1612                                  * trust the Link Up (LU) status bit.
1613                                  */
1614                                 if (status & E1000_STATUS_LU) {
1615                                         mac->serdes_link_state =
1616                                             e1000_serdes_link_autoneg_complete;
1617                                         e_dbg("AN_PROG   -> AN_UP\n");
1618                                         mac->serdes_has_link = true;
1619                                 } else {
1620                                         /* Autoneg completed, but failed. */
1621                                         mac->serdes_link_state =
1622                                             e1000_serdes_link_down;
1623                                         e_dbg("AN_PROG   -> DOWN\n");
1624                                 }
1625                         } else {
1626                                 /*
1627                                  * The link partner did not autoneg.
1628                                  * Force link up and full duplex, and change
1629                                  * state to forced.
1630                                  */
1631                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1632                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1633                                 ew32(CTRL, ctrl);
1634
1635                                 /* Configure Flow Control after link up. */
1636                                 ret_val = e1000e_config_fc_after_link_up(hw);
1637                                 if (ret_val) {
1638                                         e_dbg("Error config flow control\n");
1639                                         break;
1640                                 }
1641                                 mac->serdes_link_state =
1642                                     e1000_serdes_link_forced_up;
1643                                 mac->serdes_has_link = true;
1644                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1645                         }
1646                         break;
1647
1648                 case e1000_serdes_link_down:
1649                 default:
1650                         /*
1651                          * The link was down but the receiver has now gained
1652                          * valid sync, so lets see if we can bring the link
1653                          * up.
1654                          */
1655                         ew32(TXCW, mac->txcw);
1656                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1657                         mac->serdes_link_state =
1658                             e1000_serdes_link_autoneg_progress;
1659                         mac->serdes_has_link = false;
1660                         e_dbg("DOWN      -> AN_PROG\n");
1661                         break;
1662                 }
1663         } else {
1664                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1665                         mac->serdes_has_link = false;
1666                         mac->serdes_link_state = e1000_serdes_link_down;
1667                         e_dbg("ANYSTATE  -> DOWN\n");
1668                 } else {
1669                         /*
1670                          * Check several times, if Sync and Config
1671                          * both are consistently 1 then simply ignore
1672                          * the Invalid bit and restart Autoneg
1673                          */
1674                         for (i = 0; i < AN_RETRY_COUNT; i++) {
1675                                 udelay(10);
1676                                 rxcw = er32(RXCW);
1677                                 if ((rxcw & E1000_RXCW_IV) &&
1678                                     !((rxcw & E1000_RXCW_SYNCH) &&
1679                                       (rxcw & E1000_RXCW_C))) {
1680                                         mac->serdes_has_link = false;
1681                                         mac->serdes_link_state =
1682                                             e1000_serdes_link_down;
1683                                         e_dbg("ANYSTATE  -> DOWN\n");
1684                                         break;
1685                                 }
1686                         }
1687
1688                         if (i == AN_RETRY_COUNT) {
1689                                 txcw = er32(TXCW);
1690                                 txcw |= E1000_TXCW_ANE;
1691                                 ew32(TXCW, txcw);
1692                                 mac->serdes_link_state =
1693                                     e1000_serdes_link_autoneg_progress;
1694                                 mac->serdes_has_link = false;
1695                                 e_dbg("ANYSTATE  -> AN_PROG\n");
1696                         }
1697                 }
1698         }
1699
1700         return ret_val;
1701 }
1702
1703 /**
1704  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1705  *  @hw: pointer to the HW structure
1706  *  @data: pointer to the NVM (EEPROM)
1707  *
1708  *  Read the EEPROM for the current default LED configuration.  If the
1709  *  LED configuration is not valid, set to a valid LED configuration.
1710  **/
1711 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1712 {
1713         s32 ret_val;
1714
1715         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1716         if (ret_val) {
1717                 e_dbg("NVM Read Error\n");
1718                 return ret_val;
1719         }
1720
1721         switch (hw->mac.type) {
1722         case e1000_82573:
1723         case e1000_82574:
1724         case e1000_82583:
1725                 if (*data == ID_LED_RESERVED_F746)
1726                         *data = ID_LED_DEFAULT_82573;
1727                 break;
1728         default:
1729                 if (*data == ID_LED_RESERVED_0000 ||
1730                     *data == ID_LED_RESERVED_FFFF)
1731                         *data = ID_LED_DEFAULT;
1732                 break;
1733         }
1734
1735         return 0;
1736 }
1737
1738 /**
1739  *  e1000e_get_laa_state_82571 - Get locally administered address state
1740  *  @hw: pointer to the HW structure
1741  *
1742  *  Retrieve and return the current locally administered address state.
1743  **/
1744 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1745 {
1746         if (hw->mac.type != e1000_82571)
1747                 return false;
1748
1749         return hw->dev_spec.e82571.laa_is_present;
1750 }
1751
1752 /**
1753  *  e1000e_set_laa_state_82571 - Set locally administered address state
1754  *  @hw: pointer to the HW structure
1755  *  @state: enable/disable locally administered address
1756  *
1757  *  Enable/Disable the current locally administered address state.
1758  **/
1759 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1760 {
1761         if (hw->mac.type != e1000_82571)
1762                 return;
1763
1764         hw->dev_spec.e82571.laa_is_present = state;
1765
1766         /* If workaround is activated... */
1767         if (state)
1768                 /*
1769                  * Hold a copy of the LAA in RAR[14] This is done so that
1770                  * between the time RAR[0] gets clobbered and the time it
1771                  * gets fixed, the actual LAA is in one of the RARs and no
1772                  * incoming packets directed to this port are dropped.
1773                  * Eventually the LAA will be in RAR[0] and RAR[14].
1774                  */
1775                 hw->mac.ops.rar_set(hw, hw->mac.addr,
1776                                     hw->mac.rar_entry_count - 1);
1777 }
1778
1779 /**
1780  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1781  *  @hw: pointer to the HW structure
1782  *
1783  *  Verifies that the EEPROM has completed the update.  After updating the
1784  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1785  *  the checksum fix is not implemented, we need to set the bit and update
1786  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1787  *  we need to return bad checksum.
1788  **/
1789 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1790 {
1791         struct e1000_nvm_info *nvm = &hw->nvm;
1792         s32 ret_val;
1793         u16 data;
1794
1795         if (nvm->type != e1000_nvm_flash_hw)
1796                 return 0;
1797
1798         /*
1799          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1800          * 10h-12h.  Checksum may need to be fixed.
1801          */
1802         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1803         if (ret_val)
1804                 return ret_val;
1805
1806         if (!(data & 0x10)) {
1807                 /*
1808                  * Read 0x23 and check bit 15.  This bit is a 1
1809                  * when the checksum has already been fixed.  If
1810                  * the checksum is still wrong and this bit is a
1811                  * 1, we need to return bad checksum.  Otherwise,
1812                  * we need to set this bit to a 1 and update the
1813                  * checksum.
1814                  */
1815                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1816                 if (ret_val)
1817                         return ret_val;
1818
1819                 if (!(data & 0x8000)) {
1820                         data |= 0x8000;
1821                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1822                         if (ret_val)
1823                                 return ret_val;
1824                         ret_val = e1000e_update_nvm_checksum(hw);
1825                 }
1826         }
1827
1828         return 0;
1829 }
1830
1831 /**
1832  *  e1000_read_mac_addr_82571 - Read device MAC address
1833  *  @hw: pointer to the HW structure
1834  **/
1835 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1836 {
1837         if (hw->mac.type == e1000_82571) {
1838                 s32 ret_val = 0;
1839
1840                 /*
1841                  * If there's an alternate MAC address place it in RAR0
1842                  * so that it will override the Si installed default perm
1843                  * address.
1844                  */
1845                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1846                 if (ret_val)
1847                         return ret_val;
1848         }
1849
1850         return e1000_read_mac_addr_generic(hw);
1851 }
1852
1853 /**
1854  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1855  * @hw: pointer to the HW structure
1856  *
1857  * In the case of a PHY power down to save power, or to turn off link during a
1858  * driver unload, or wake on lan is not enabled, remove the link.
1859  **/
1860 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1861 {
1862         struct e1000_phy_info *phy = &hw->phy;
1863         struct e1000_mac_info *mac = &hw->mac;
1864
1865         if (!phy->ops.check_reset_block)
1866                 return;
1867
1868         /* If the management interface is not enabled, then power down */
1869         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1870                 e1000_power_down_phy_copper(hw);
1871 }
1872
1873 /**
1874  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1875  *  @hw: pointer to the HW structure
1876  *
1877  *  Clears the hardware counters by reading the counter registers.
1878  **/
1879 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1880 {
1881         e1000e_clear_hw_cntrs_base(hw);
1882
1883         er32(PRC64);
1884         er32(PRC127);
1885         er32(PRC255);
1886         er32(PRC511);
1887         er32(PRC1023);
1888         er32(PRC1522);
1889         er32(PTC64);
1890         er32(PTC127);
1891         er32(PTC255);
1892         er32(PTC511);
1893         er32(PTC1023);
1894         er32(PTC1522);
1895
1896         er32(ALGNERRC);
1897         er32(RXERRC);
1898         er32(TNCRS);
1899         er32(CEXTERR);
1900         er32(TSCTC);
1901         er32(TSCTFC);
1902
1903         er32(MGTPRC);
1904         er32(MGTPDC);
1905         er32(MGTPTC);
1906
1907         er32(IAC);
1908         er32(ICRXOC);
1909
1910         er32(ICRXPTC);
1911         er32(ICRXATC);
1912         er32(ICTXPTC);
1913         er32(ICTXATC);
1914         er32(ICTXQEC);
1915         er32(ICTXQMTC);
1916         er32(ICRXDMTC);
1917 }
1918
1919 static const struct e1000_mac_operations e82571_mac_ops = {
1920         /* .check_mng_mode: mac type dependent */
1921         /* .check_for_link: media type dependent */
1922         .id_led_init            = e1000e_id_led_init_generic,
1923         .cleanup_led            = e1000e_cleanup_led_generic,
1924         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1925         .get_bus_info           = e1000e_get_bus_info_pcie,
1926         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1927         /* .get_link_up_info: media type dependent */
1928         /* .led_on: mac type dependent */
1929         .led_off                = e1000e_led_off_generic,
1930         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1931         .write_vfta             = e1000_write_vfta_generic,
1932         .clear_vfta             = e1000_clear_vfta_82571,
1933         .reset_hw               = e1000_reset_hw_82571,
1934         .init_hw                = e1000_init_hw_82571,
1935         .setup_link             = e1000_setup_link_82571,
1936         /* .setup_physical_interface: media type dependent */
1937         .setup_led              = e1000e_setup_led_generic,
1938         .config_collision_dist  = e1000e_config_collision_dist_generic,
1939         .read_mac_addr          = e1000_read_mac_addr_82571,
1940         .rar_set                = e1000e_rar_set_generic,
1941 };
1942
1943 static const struct e1000_phy_operations e82_phy_ops_igp = {
1944         .acquire                = e1000_get_hw_semaphore_82571,
1945         .check_polarity         = e1000_check_polarity_igp,
1946         .check_reset_block      = e1000e_check_reset_block_generic,
1947         .commit                 = NULL,
1948         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1949         .get_cfg_done           = e1000_get_cfg_done_82571,
1950         .get_cable_length       = e1000e_get_cable_length_igp_2,
1951         .get_info               = e1000e_get_phy_info_igp,
1952         .read_reg               = e1000e_read_phy_reg_igp,
1953         .release                = e1000_put_hw_semaphore_82571,
1954         .reset                  = e1000e_phy_hw_reset_generic,
1955         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1956         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1957         .write_reg              = e1000e_write_phy_reg_igp,
1958         .cfg_on_link_up         = NULL,
1959 };
1960
1961 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1962         .acquire                = e1000_get_hw_semaphore_82571,
1963         .check_polarity         = e1000_check_polarity_m88,
1964         .check_reset_block      = e1000e_check_reset_block_generic,
1965         .commit                 = e1000e_phy_sw_reset,
1966         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1967         .get_cfg_done           = e1000e_get_cfg_done,
1968         .get_cable_length       = e1000e_get_cable_length_m88,
1969         .get_info               = e1000e_get_phy_info_m88,
1970         .read_reg               = e1000e_read_phy_reg_m88,
1971         .release                = e1000_put_hw_semaphore_82571,
1972         .reset                  = e1000e_phy_hw_reset_generic,
1973         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1974         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1975         .write_reg              = e1000e_write_phy_reg_m88,
1976         .cfg_on_link_up         = NULL,
1977 };
1978
1979 static const struct e1000_phy_operations e82_phy_ops_bm = {
1980         .acquire                = e1000_get_hw_semaphore_82571,
1981         .check_polarity         = e1000_check_polarity_m88,
1982         .check_reset_block      = e1000e_check_reset_block_generic,
1983         .commit                 = e1000e_phy_sw_reset,
1984         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1985         .get_cfg_done           = e1000e_get_cfg_done,
1986         .get_cable_length       = e1000e_get_cable_length_m88,
1987         .get_info               = e1000e_get_phy_info_m88,
1988         .read_reg               = e1000e_read_phy_reg_bm2,
1989         .release                = e1000_put_hw_semaphore_82571,
1990         .reset                  = e1000e_phy_hw_reset_generic,
1991         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1992         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1993         .write_reg              = e1000e_write_phy_reg_bm2,
1994         .cfg_on_link_up         = NULL,
1995 };
1996
1997 static const struct e1000_nvm_operations e82571_nvm_ops = {
1998         .acquire                = e1000_acquire_nvm_82571,
1999         .read                   = e1000e_read_nvm_eerd,
2000         .release                = e1000_release_nvm_82571,
2001         .reload                 = e1000e_reload_nvm_generic,
2002         .update                 = e1000_update_nvm_checksum_82571,
2003         .valid_led_default      = e1000_valid_led_default_82571,
2004         .validate               = e1000_validate_nvm_checksum_82571,
2005         .write                  = e1000_write_nvm_82571,
2006 };
2007
2008 const struct e1000_info e1000_82571_info = {
2009         .mac                    = e1000_82571,
2010         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2011                                   | FLAG_HAS_JUMBO_FRAMES
2012                                   | FLAG_HAS_WOL
2013                                   | FLAG_APME_IN_CTRL3
2014                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2015                                   | FLAG_HAS_SMART_POWER_DOWN
2016                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
2017                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
2018                                   | FLAG_APME_CHECK_PORT_B,
2019         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2020                                   | FLAG2_DMA_BURST,
2021         .pba                    = 38,
2022         .max_hw_frame_size      = DEFAULT_JUMBO,
2023         .get_variants           = e1000_get_variants_82571,
2024         .mac_ops                = &e82571_mac_ops,
2025         .phy_ops                = &e82_phy_ops_igp,
2026         .nvm_ops                = &e82571_nvm_ops,
2027 };
2028
2029 const struct e1000_info e1000_82572_info = {
2030         .mac                    = e1000_82572,
2031         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2032                                   | FLAG_HAS_JUMBO_FRAMES
2033                                   | FLAG_HAS_WOL
2034                                   | FLAG_APME_IN_CTRL3
2035                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2036                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
2037         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
2038                                   | FLAG2_DMA_BURST,
2039         .pba                    = 38,
2040         .max_hw_frame_size      = DEFAULT_JUMBO,
2041         .get_variants           = e1000_get_variants_82571,
2042         .mac_ops                = &e82571_mac_ops,
2043         .phy_ops                = &e82_phy_ops_igp,
2044         .nvm_ops                = &e82571_nvm_ops,
2045 };
2046
2047 const struct e1000_info e1000_82573_info = {
2048         .mac                    = e1000_82573,
2049         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2050                                   | FLAG_HAS_WOL
2051                                   | FLAG_APME_IN_CTRL3
2052                                   | FLAG_HAS_SMART_POWER_DOWN
2053                                   | FLAG_HAS_AMT
2054                                   | FLAG_HAS_SWSM_ON_LOAD,
2055         .flags2                 = FLAG2_DISABLE_ASPM_L1
2056                                   | FLAG2_DISABLE_ASPM_L0S,
2057         .pba                    = 20,
2058         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
2059         .get_variants           = e1000_get_variants_82571,
2060         .mac_ops                = &e82571_mac_ops,
2061         .phy_ops                = &e82_phy_ops_m88,
2062         .nvm_ops                = &e82571_nvm_ops,
2063 };
2064
2065 const struct e1000_info e1000_82574_info = {
2066         .mac                    = e1000_82574,
2067         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2068                                   | FLAG_HAS_MSIX
2069                                   | FLAG_HAS_JUMBO_FRAMES
2070                                   | FLAG_HAS_WOL
2071                                   | FLAG_APME_IN_CTRL3
2072                                   | FLAG_HAS_SMART_POWER_DOWN
2073                                   | FLAG_HAS_AMT
2074                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2075         .flags2                  = FLAG2_CHECK_PHY_HANG
2076                                   | FLAG2_DISABLE_ASPM_L0S
2077                                   | FLAG2_DISABLE_ASPM_L1
2078                                   | FLAG2_NO_DISABLE_RX
2079                                   | FLAG2_DMA_BURST,
2080         .pba                    = 32,
2081         .max_hw_frame_size      = DEFAULT_JUMBO,
2082         .get_variants           = e1000_get_variants_82571,
2083         .mac_ops                = &e82571_mac_ops,
2084         .phy_ops                = &e82_phy_ops_bm,
2085         .nvm_ops                = &e82571_nvm_ops,
2086 };
2087
2088 const struct e1000_info e1000_82583_info = {
2089         .mac                    = e1000_82583,
2090         .flags                  = FLAG_HAS_HW_VLAN_FILTER
2091                                   | FLAG_HAS_WOL
2092                                   | FLAG_APME_IN_CTRL3
2093                                   | FLAG_HAS_SMART_POWER_DOWN
2094                                   | FLAG_HAS_AMT
2095                                   | FLAG_HAS_JUMBO_FRAMES
2096                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
2097         .flags2                 = FLAG2_DISABLE_ASPM_L0S
2098                                   | FLAG2_NO_DISABLE_RX,
2099         .pba                    = 32,
2100         .max_hw_frame_size      = DEFAULT_JUMBO,
2101         .get_variants           = e1000_get_variants_82571,
2102         .mac_ops                = &e82571_mac_ops,
2103         .phy_ops                = &e82_phy_ops_bm,
2104         .nvm_ops                = &e82571_nvm_ops,
2105 };
2106