Merge branch 'for-3.17' of git://linux-nfs.org/~bfields/linux
[pandora-kernel.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "cxgb4_dcb.h"
71 #include "l2t.h"
72
73 #include <../drivers/net/bonding/bonding.h>
74
75 #ifdef DRV_VERSION
76 #undef DRV_VERSION
77 #endif
78 #define DRV_VERSION "2.0.0-ko"
79 #define DRV_DESC "Chelsio T4/T5 Network Driver"
80
81 /*
82  * Max interrupt hold-off timer value in us.  Queues fall back to this value
83  * under extreme memory pressure so it's largish to give the system time to
84  * recover.
85  */
86 #define MAX_SGE_TIMERVAL 200U
87
88 enum {
89         /*
90          * Physical Function provisioning constants.
91          */
92         PFRES_NVI = 4,                  /* # of Virtual Interfaces */
93         PFRES_NETHCTRL = 128,           /* # of EQs used for ETH or CTRL Qs */
94         PFRES_NIQFLINT = 128,           /* # of ingress Qs/w Free List(s)/intr
95                                          */
96         PFRES_NEQ = 256,                /* # of egress queues */
97         PFRES_NIQ = 0,                  /* # of ingress queues */
98         PFRES_TC = 0,                   /* PCI-E traffic class */
99         PFRES_NEXACTF = 128,            /* # of exact MPS filters */
100
101         PFRES_R_CAPS = FW_CMD_CAP_PF,
102         PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104 #ifdef CONFIG_PCI_IOV
105         /*
106          * Virtual Function provisioning constants.  We need two extra Ingress
107          * Queues with Interrupt capability to serve as the VF's Firmware
108          * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109          * neither will have Free Lists associated with them).  For each
110          * Ethernet/Control Egress Queue and for each Free List, we need an
111          * Egress Context.
112          */
113         VFRES_NPORTS = 1,               /* # of "ports" per VF */
114         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
115
116         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
117         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
118         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
119         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
120         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
121         VFRES_TC = 0,                   /* PCI-E traffic class */
122         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
123
124         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
126 #endif
127 };
128
129 /*
130  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
131  * static and likely not to be useful in the long run.  We really need to
132  * implement some form of persistent configuration which the firmware
133  * controls.
134  */
135 static unsigned int pfvfres_pmask(struct adapter *adapter,
136                                   unsigned int pf, unsigned int vf)
137 {
138         unsigned int portn, portvec;
139
140         /*
141          * Give PF's access to all of the ports.
142          */
143         if (vf == 0)
144                 return FW_PFVF_CMD_PMASK_MASK;
145
146         /*
147          * For VFs, we'll assign them access to the ports based purely on the
148          * PF.  We assign active ports in order, wrapping around if there are
149          * fewer active ports than PFs: e.g. active port[pf % nports].
150          * Unfortunately the adapter's port_info structs haven't been
151          * initialized yet so we have to compute this.
152          */
153         if (adapter->params.nports == 0)
154                 return 0;
155
156         portn = pf % adapter->params.nports;
157         portvec = adapter->params.portvec;
158         for (;;) {
159                 /*
160                  * Isolate the lowest set bit in the port vector.  If we're at
161                  * the port number that we want, return that as the pmask.
162                  * otherwise mask that bit out of the port vector and
163                  * decrement our port number ...
164                  */
165                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166                 if (portn == 0)
167                         return pmask;
168                 portn--;
169                 portvec &= ~pmask;
170         }
171         /*NOTREACHED*/
172 }
173
174 enum {
175         MAX_TXQ_ENTRIES      = 16384,
176         MAX_CTRL_TXQ_ENTRIES = 1024,
177         MAX_RSPQ_ENTRIES     = 16384,
178         MAX_RX_BUFFERS       = 16384,
179         MIN_TXQ_ENTRIES      = 32,
180         MIN_CTRL_TXQ_ENTRIES = 32,
181         MIN_RSPQ_ENTRIES     = 128,
182         MIN_FL_ENTRIES       = 16
183 };
184
185 /* Host shadow copy of ingress filter entry.  This is in host native format
186  * and doesn't match the ordering or bit order, etc. of the hardware of the
187  * firmware command.  The use of bit-field structure elements is purely to
188  * remind ourselves of the field size limitations and save memory in the case
189  * where the filter table is large.
190  */
191 struct filter_entry {
192         /* Administrative fields for filter.
193          */
194         u32 valid:1;            /* filter allocated and valid */
195         u32 locked:1;           /* filter is administratively locked */
196
197         u32 pending:1;          /* filter action is pending firmware reply */
198         u32 smtidx:8;           /* Source MAC Table index for smac */
199         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
200
201         /* The filter itself.  Most of this is a straight copy of information
202          * provided by the extended ioctl().  Some fields are translated to
203          * internal forms -- for instance the Ingress Queue ID passed in from
204          * the ioctl() is translated into the Absolute Ingress Queue ID.
205          */
206         struct ch_filter_specification fs;
207 };
208
209 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
213 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
214
215 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
216         CH_DEVICE(0xa000, 0),  /* PE10K */
217         CH_DEVICE(0x4001, -1),
218         CH_DEVICE(0x4002, -1),
219         CH_DEVICE(0x4003, -1),
220         CH_DEVICE(0x4004, -1),
221         CH_DEVICE(0x4005, -1),
222         CH_DEVICE(0x4006, -1),
223         CH_DEVICE(0x4007, -1),
224         CH_DEVICE(0x4008, -1),
225         CH_DEVICE(0x4009, -1),
226         CH_DEVICE(0x400a, -1),
227         CH_DEVICE(0x400d, -1),
228         CH_DEVICE(0x400e, -1),
229         CH_DEVICE(0x4080, -1),
230         CH_DEVICE(0x4081, -1),
231         CH_DEVICE(0x4082, -1),
232         CH_DEVICE(0x4083, -1),
233         CH_DEVICE(0x4084, -1),
234         CH_DEVICE(0x4085, -1),
235         CH_DEVICE(0x4086, -1),
236         CH_DEVICE(0x4087, -1),
237         CH_DEVICE(0x4088, -1),
238         CH_DEVICE(0x4401, 4),
239         CH_DEVICE(0x4402, 4),
240         CH_DEVICE(0x4403, 4),
241         CH_DEVICE(0x4404, 4),
242         CH_DEVICE(0x4405, 4),
243         CH_DEVICE(0x4406, 4),
244         CH_DEVICE(0x4407, 4),
245         CH_DEVICE(0x4408, 4),
246         CH_DEVICE(0x4409, 4),
247         CH_DEVICE(0x440a, 4),
248         CH_DEVICE(0x440d, 4),
249         CH_DEVICE(0x440e, 4),
250         CH_DEVICE(0x4480, 4),
251         CH_DEVICE(0x4481, 4),
252         CH_DEVICE(0x4482, 4),
253         CH_DEVICE(0x4483, 4),
254         CH_DEVICE(0x4484, 4),
255         CH_DEVICE(0x4485, 4),
256         CH_DEVICE(0x4486, 4),
257         CH_DEVICE(0x4487, 4),
258         CH_DEVICE(0x4488, 4),
259         CH_DEVICE(0x5001, 4),
260         CH_DEVICE(0x5002, 4),
261         CH_DEVICE(0x5003, 4),
262         CH_DEVICE(0x5004, 4),
263         CH_DEVICE(0x5005, 4),
264         CH_DEVICE(0x5006, 4),
265         CH_DEVICE(0x5007, 4),
266         CH_DEVICE(0x5008, 4),
267         CH_DEVICE(0x5009, 4),
268         CH_DEVICE(0x500A, 4),
269         CH_DEVICE(0x500B, 4),
270         CH_DEVICE(0x500C, 4),
271         CH_DEVICE(0x500D, 4),
272         CH_DEVICE(0x500E, 4),
273         CH_DEVICE(0x500F, 4),
274         CH_DEVICE(0x5010, 4),
275         CH_DEVICE(0x5011, 4),
276         CH_DEVICE(0x5012, 4),
277         CH_DEVICE(0x5013, 4),
278         CH_DEVICE(0x5014, 4),
279         CH_DEVICE(0x5015, 4),
280         CH_DEVICE(0x5080, 4),
281         CH_DEVICE(0x5081, 4),
282         CH_DEVICE(0x5082, 4),
283         CH_DEVICE(0x5083, 4),
284         CH_DEVICE(0x5084, 4),
285         CH_DEVICE(0x5085, 4),
286         CH_DEVICE(0x5401, 4),
287         CH_DEVICE(0x5402, 4),
288         CH_DEVICE(0x5403, 4),
289         CH_DEVICE(0x5404, 4),
290         CH_DEVICE(0x5405, 4),
291         CH_DEVICE(0x5406, 4),
292         CH_DEVICE(0x5407, 4),
293         CH_DEVICE(0x5408, 4),
294         CH_DEVICE(0x5409, 4),
295         CH_DEVICE(0x540A, 4),
296         CH_DEVICE(0x540B, 4),
297         CH_DEVICE(0x540C, 4),
298         CH_DEVICE(0x540D, 4),
299         CH_DEVICE(0x540E, 4),
300         CH_DEVICE(0x540F, 4),
301         CH_DEVICE(0x5410, 4),
302         CH_DEVICE(0x5411, 4),
303         CH_DEVICE(0x5412, 4),
304         CH_DEVICE(0x5413, 4),
305         CH_DEVICE(0x5414, 4),
306         CH_DEVICE(0x5415, 4),
307         CH_DEVICE(0x5480, 4),
308         CH_DEVICE(0x5481, 4),
309         CH_DEVICE(0x5482, 4),
310         CH_DEVICE(0x5483, 4),
311         CH_DEVICE(0x5484, 4),
312         CH_DEVICE(0x5485, 4),
313         { 0, }
314 };
315
316 #define FW4_FNAME "cxgb4/t4fw.bin"
317 #define FW5_FNAME "cxgb4/t5fw.bin"
318 #define FW4_CFNAME "cxgb4/t4-config.txt"
319 #define FW5_CFNAME "cxgb4/t5-config.txt"
320
321 MODULE_DESCRIPTION(DRV_DESC);
322 MODULE_AUTHOR("Chelsio Communications");
323 MODULE_LICENSE("Dual BSD/GPL");
324 MODULE_VERSION(DRV_VERSION);
325 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
326 MODULE_FIRMWARE(FW4_FNAME);
327 MODULE_FIRMWARE(FW5_FNAME);
328
329 /*
330  * Normally we're willing to become the firmware's Master PF but will be happy
331  * if another PF has already become the Master and initialized the adapter.
332  * Setting "force_init" will cause this driver to forcibly establish itself as
333  * the Master PF and initialize the adapter.
334  */
335 static uint force_init;
336
337 module_param(force_init, uint, 0644);
338 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
339
340 /*
341  * Normally if the firmware we connect to has Configuration File support, we
342  * use that and only fall back to the old Driver-based initialization if the
343  * Configuration File fails for some reason.  If force_old_init is set, then
344  * we'll always use the old Driver-based initialization sequence.
345  */
346 static uint force_old_init;
347
348 module_param(force_old_init, uint, 0644);
349 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
350
351 static int dflt_msg_enable = DFLT_MSG_ENABLE;
352
353 module_param(dflt_msg_enable, int, 0644);
354 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
355
356 /*
357  * The driver uses the best interrupt scheme available on a platform in the
358  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
359  * of these schemes the driver may consider as follows:
360  *
361  * msi = 2: choose from among all three options
362  * msi = 1: only consider MSI and INTx interrupts
363  * msi = 0: force INTx interrupts
364  */
365 static int msi = 2;
366
367 module_param(msi, int, 0644);
368 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
369
370 /*
371  * Queue interrupt hold-off timer values.  Queues default to the first of these
372  * upon creation.
373  */
374 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
375
376 module_param_array(intr_holdoff, uint, NULL, 0644);
377 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
378                  "0..4 in microseconds");
379
380 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
381
382 module_param_array(intr_cnt, uint, NULL, 0644);
383 MODULE_PARM_DESC(intr_cnt,
384                  "thresholds 1..3 for queue interrupt packet counters");
385
386 /*
387  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
388  * offset by 2 bytes in order to have the IP headers line up on 4-byte
389  * boundaries.  This is a requirement for many architectures which will throw
390  * a machine check fault if an attempt is made to access one of the 4-byte IP
391  * header fields on a non-4-byte boundary.  And it's a major performance issue
392  * even on some architectures which allow it like some implementations of the
393  * x86 ISA.  However, some architectures don't mind this and for some very
394  * edge-case performance sensitive applications (like forwarding large volumes
395  * of small packets), setting this DMA offset to 0 will decrease the number of
396  * PCI-E Bus transfers enough to measurably affect performance.
397  */
398 static int rx_dma_offset = 2;
399
400 static bool vf_acls;
401
402 #ifdef CONFIG_PCI_IOV
403 module_param(vf_acls, bool, 0644);
404 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
405
406 /* Configure the number of PCI-E Virtual Function which are to be instantiated
407  * on SR-IOV Capable Physical Functions.
408  */
409 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
410
411 module_param_array(num_vf, uint, NULL, 0644);
412 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
413 #endif
414
415 /* TX Queue select used to determine what algorithm to use for selecting TX
416  * queue. Select between the kernel provided function (select_queue=0) or user
417  * cxgb_select_queue function (select_queue=1)
418  *
419  * Default: select_queue=0
420  */
421 static int select_queue;
422 module_param(select_queue, int, 0644);
423 MODULE_PARM_DESC(select_queue,
424                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
425
426 /*
427  * The filter TCAM has a fixed portion and a variable portion.  The fixed
428  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
429  * ports.  The variable portion is 36 bits which can include things like Exact
430  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
431  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
432  * far exceed the 36-bit budget for this "compressed" header portion of the
433  * filter.  Thus, we have a scarce resource which must be carefully managed.
434  *
435  * By default we set this up to mostly match the set of filter matching
436  * capabilities of T3 but with accommodations for some of T4's more
437  * interesting features:
438  *
439  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
440  *     [Inner] VLAN (17), Port (3), FCoE (1) }
441  */
442 enum {
443         TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
444         TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
445         TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
446 };
447
448 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
449
450 module_param(tp_vlan_pri_map, uint, 0644);
451 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
452
453 static struct dentry *cxgb4_debugfs_root;
454
455 static LIST_HEAD(adapter_list);
456 static DEFINE_MUTEX(uld_mutex);
457 /* Adapter list to be accessed from atomic context */
458 static LIST_HEAD(adap_rcu_list);
459 static DEFINE_SPINLOCK(adap_rcu_lock);
460 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
461 static const char *uld_str[] = { "RDMA", "iSCSI" };
462
463 static void link_report(struct net_device *dev)
464 {
465         if (!netif_carrier_ok(dev))
466                 netdev_info(dev, "link down\n");
467         else {
468                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
469
470                 const char *s = "10Mbps";
471                 const struct port_info *p = netdev_priv(dev);
472
473                 switch (p->link_cfg.speed) {
474                 case 10000:
475                         s = "10Gbps";
476                         break;
477                 case 1000:
478                         s = "1000Mbps";
479                         break;
480                 case 100:
481                         s = "100Mbps";
482                         break;
483                 case 40000:
484                         s = "40Gbps";
485                         break;
486                 }
487
488                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
489                             fc[p->link_cfg.fc]);
490         }
491 }
492
493 #ifdef CONFIG_CHELSIO_T4_DCB
494 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
495 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
496 {
497         struct port_info *pi = netdev_priv(dev);
498         struct adapter *adap = pi->adapter;
499         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
500         int i;
501
502         /* We use a simple mapping of Port TX Queue Index to DCB
503          * Priority when we're enabling DCB.
504          */
505         for (i = 0; i < pi->nqsets; i++, txq++) {
506                 u32 name, value;
507                 int err;
508
509                 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
510                         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
511                         FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
512                 value = enable ? i : 0xffffffff;
513
514                 /* Since we can be called while atomic (from "interrupt
515                  * level") we need to issue the Set Parameters Commannd
516                  * without sleeping (timeout < 0).
517                  */
518                 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
519                                             &name, &value);
520
521                 if (err)
522                         dev_err(adap->pdev_dev,
523                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
524                                 enable ? "set" : "unset", pi->port_id, i, -err);
525         }
526 }
527 #endif /* CONFIG_CHELSIO_T4_DCB */
528
529 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
530 {
531         struct net_device *dev = adapter->port[port_id];
532
533         /* Skip changes from disabled ports. */
534         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
535                 if (link_stat)
536                         netif_carrier_on(dev);
537                 else {
538 #ifdef CONFIG_CHELSIO_T4_DCB
539                         cxgb4_dcb_state_init(dev);
540                         dcb_tx_queue_prio_enable(dev, false);
541 #endif /* CONFIG_CHELSIO_T4_DCB */
542                         netif_carrier_off(dev);
543                 }
544
545                 link_report(dev);
546         }
547 }
548
549 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
550 {
551         static const char *mod_str[] = {
552                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
553         };
554
555         const struct net_device *dev = adap->port[port_id];
556         const struct port_info *pi = netdev_priv(dev);
557
558         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
559                 netdev_info(dev, "port module unplugged\n");
560         else if (pi->mod_type < ARRAY_SIZE(mod_str))
561                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
562 }
563
564 /*
565  * Configure the exact and hash address filters to handle a port's multicast
566  * and secondary unicast MAC addresses.
567  */
568 static int set_addr_filters(const struct net_device *dev, bool sleep)
569 {
570         u64 mhash = 0;
571         u64 uhash = 0;
572         bool free = true;
573         u16 filt_idx[7];
574         const u8 *addr[7];
575         int ret, naddr = 0;
576         const struct netdev_hw_addr *ha;
577         int uc_cnt = netdev_uc_count(dev);
578         int mc_cnt = netdev_mc_count(dev);
579         const struct port_info *pi = netdev_priv(dev);
580         unsigned int mb = pi->adapter->fn;
581
582         /* first do the secondary unicast addresses */
583         netdev_for_each_uc_addr(ha, dev) {
584                 addr[naddr++] = ha->addr;
585                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
586                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
587                                         naddr, addr, filt_idx, &uhash, sleep);
588                         if (ret < 0)
589                                 return ret;
590
591                         free = false;
592                         naddr = 0;
593                 }
594         }
595
596         /* next set up the multicast addresses */
597         netdev_for_each_mc_addr(ha, dev) {
598                 addr[naddr++] = ha->addr;
599                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
600                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
601                                         naddr, addr, filt_idx, &mhash, sleep);
602                         if (ret < 0)
603                                 return ret;
604
605                         free = false;
606                         naddr = 0;
607                 }
608         }
609
610         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
611                                 uhash | mhash, sleep);
612 }
613
614 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
615 module_param(dbfifo_int_thresh, int, 0644);
616 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
617
618 /*
619  * usecs to sleep while draining the dbfifo
620  */
621 static int dbfifo_drain_delay = 1000;
622 module_param(dbfifo_drain_delay, int, 0644);
623 MODULE_PARM_DESC(dbfifo_drain_delay,
624                  "usecs to sleep while draining the dbfifo");
625
626 /*
627  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
628  * If @mtu is -1 it is left unchanged.
629  */
630 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
631 {
632         int ret;
633         struct port_info *pi = netdev_priv(dev);
634
635         ret = set_addr_filters(dev, sleep_ok);
636         if (ret == 0)
637                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
638                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
639                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
640                                     sleep_ok);
641         return ret;
642 }
643
644 static struct workqueue_struct *workq;
645
646 /**
647  *      link_start - enable a port
648  *      @dev: the port to enable
649  *
650  *      Performs the MAC and PHY actions needed to enable a port.
651  */
652 static int link_start(struct net_device *dev)
653 {
654         int ret;
655         struct port_info *pi = netdev_priv(dev);
656         unsigned int mb = pi->adapter->fn;
657
658         /*
659          * We do not set address filters and promiscuity here, the stack does
660          * that step explicitly.
661          */
662         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
663                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
664         if (ret == 0) {
665                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
666                                     pi->xact_addr_filt, dev->dev_addr, true,
667                                     true);
668                 if (ret >= 0) {
669                         pi->xact_addr_filt = ret;
670                         ret = 0;
671                 }
672         }
673         if (ret == 0)
674                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
675                                     &pi->link_cfg);
676         if (ret == 0) {
677                 local_bh_disable();
678                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
679                                           true, CXGB4_DCB_ENABLED);
680                 local_bh_enable();
681         }
682
683         return ret;
684 }
685
686 int cxgb4_dcb_enabled(const struct net_device *dev)
687 {
688 #ifdef CONFIG_CHELSIO_T4_DCB
689         struct port_info *pi = netdev_priv(dev);
690
691         return pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED;
692 #else
693         return 0;
694 #endif
695 }
696 EXPORT_SYMBOL(cxgb4_dcb_enabled);
697
698 #ifdef CONFIG_CHELSIO_T4_DCB
699 /* Handle a Data Center Bridging update message from the firmware. */
700 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
701 {
702         int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
703         struct net_device *dev = adap->port[port];
704         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
705         int new_dcb_enabled;
706
707         cxgb4_dcb_handle_fw_update(adap, pcmd);
708         new_dcb_enabled = cxgb4_dcb_enabled(dev);
709
710         /* If the DCB has become enabled or disabled on the port then we're
711          * going to need to set up/tear down DCB Priority parameters for the
712          * TX Queues associated with the port.
713          */
714         if (new_dcb_enabled != old_dcb_enabled)
715                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
716 }
717 #endif /* CONFIG_CHELSIO_T4_DCB */
718
719 /* Clear a filter and release any of its resources that we own.  This also
720  * clears the filter's "pending" status.
721  */
722 static void clear_filter(struct adapter *adap, struct filter_entry *f)
723 {
724         /* If the new or old filter have loopback rewriteing rules then we'll
725          * need to free any existing Layer Two Table (L2T) entries of the old
726          * filter rule.  The firmware will handle freeing up any Source MAC
727          * Table (SMT) entries used for rewriting Source MAC Addresses in
728          * loopback rules.
729          */
730         if (f->l2t)
731                 cxgb4_l2t_release(f->l2t);
732
733         /* The zeroing of the filter rule below clears the filter valid,
734          * pending, locked flags, l2t pointer, etc. so it's all we need for
735          * this operation.
736          */
737         memset(f, 0, sizeof(*f));
738 }
739
740 /* Handle a filter write/deletion reply.
741  */
742 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
743 {
744         unsigned int idx = GET_TID(rpl);
745         unsigned int nidx = idx - adap->tids.ftid_base;
746         unsigned int ret;
747         struct filter_entry *f;
748
749         if (idx >= adap->tids.ftid_base && nidx <
750            (adap->tids.nftids + adap->tids.nsftids)) {
751                 idx = nidx;
752                 ret = GET_TCB_COOKIE(rpl->cookie);
753                 f = &adap->tids.ftid_tab[idx];
754
755                 if (ret == FW_FILTER_WR_FLT_DELETED) {
756                         /* Clear the filter when we get confirmation from the
757                          * hardware that the filter has been deleted.
758                          */
759                         clear_filter(adap, f);
760                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
761                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
762                                 idx);
763                         clear_filter(adap, f);
764                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
765                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
766                         f->pending = 0;  /* asynchronous setup completed */
767                         f->valid = 1;
768                 } else {
769                         /* Something went wrong.  Issue a warning about the
770                          * problem and clear everything out.
771                          */
772                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
773                                 idx, ret);
774                         clear_filter(adap, f);
775                 }
776         }
777 }
778
779 /* Response queue handler for the FW event queue.
780  */
781 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
782                           const struct pkt_gl *gl)
783 {
784         u8 opcode = ((const struct rss_header *)rsp)->opcode;
785
786         rsp++;                                          /* skip RSS header */
787
788         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
789          */
790         if (unlikely(opcode == CPL_FW4_MSG &&
791            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
792                 rsp++;
793                 opcode = ((const struct rss_header *)rsp)->opcode;
794                 rsp++;
795                 if (opcode != CPL_SGE_EGR_UPDATE) {
796                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
797                                 , opcode);
798                         goto out;
799                 }
800         }
801
802         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
803                 const struct cpl_sge_egr_update *p = (void *)rsp;
804                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
805                 struct sge_txq *txq;
806
807                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
808                 txq->restarts++;
809                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
810                         struct sge_eth_txq *eq;
811
812                         eq = container_of(txq, struct sge_eth_txq, q);
813                         netif_tx_wake_queue(eq->txq);
814                 } else {
815                         struct sge_ofld_txq *oq;
816
817                         oq = container_of(txq, struct sge_ofld_txq, q);
818                         tasklet_schedule(&oq->qresume_tsk);
819                 }
820         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
821                 const struct cpl_fw6_msg *p = (void *)rsp;
822
823 #ifdef CONFIG_CHELSIO_T4_DCB
824                 const struct fw_port_cmd *pcmd = (const void *)p->data;
825                 unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
826                 unsigned int action =
827                         FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
828
829                 if (cmd == FW_PORT_CMD &&
830                     action == FW_PORT_ACTION_GET_PORT_INFO) {
831                         int port = FW_PORT_CMD_PORTID_GET(
832                                         be32_to_cpu(pcmd->op_to_portid));
833                         struct net_device *dev = q->adap->port[port];
834                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
835                                             FW_PORT_CMD_DCBXDIS)
836                                            ? CXGB4_DCB_INPUT_FW_DISABLED
837                                            : CXGB4_DCB_INPUT_FW_ENABLED);
838
839                         cxgb4_dcb_state_fsm(dev, state_input);
840                 }
841
842                 if (cmd == FW_PORT_CMD &&
843                     action == FW_PORT_ACTION_L2_DCB_CFG)
844                         dcb_rpl(q->adap, pcmd);
845                 else
846 #endif
847                         if (p->type == 0)
848                                 t4_handle_fw_rpl(q->adap, p->data);
849         } else if (opcode == CPL_L2T_WRITE_RPL) {
850                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
851
852                 do_l2t_write_rpl(q->adap, p);
853         } else if (opcode == CPL_SET_TCB_RPL) {
854                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
855
856                 filter_rpl(q->adap, p);
857         } else
858                 dev_err(q->adap->pdev_dev,
859                         "unexpected CPL %#x on FW event queue\n", opcode);
860 out:
861         return 0;
862 }
863
864 /**
865  *      uldrx_handler - response queue handler for ULD queues
866  *      @q: the response queue that received the packet
867  *      @rsp: the response queue descriptor holding the offload message
868  *      @gl: the gather list of packet fragments
869  *
870  *      Deliver an ingress offload packet to a ULD.  All processing is done by
871  *      the ULD, we just maintain statistics.
872  */
873 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
874                          const struct pkt_gl *gl)
875 {
876         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
877
878         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
879          */
880         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
881             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
882                 rsp += 2;
883
884         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
885                 rxq->stats.nomem++;
886                 return -1;
887         }
888         if (gl == NULL)
889                 rxq->stats.imm++;
890         else if (gl == CXGB4_MSG_AN)
891                 rxq->stats.an++;
892         else
893                 rxq->stats.pkts++;
894         return 0;
895 }
896
897 static void disable_msi(struct adapter *adapter)
898 {
899         if (adapter->flags & USING_MSIX) {
900                 pci_disable_msix(adapter->pdev);
901                 adapter->flags &= ~USING_MSIX;
902         } else if (adapter->flags & USING_MSI) {
903                 pci_disable_msi(adapter->pdev);
904                 adapter->flags &= ~USING_MSI;
905         }
906 }
907
908 /*
909  * Interrupt handler for non-data events used with MSI-X.
910  */
911 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
912 {
913         struct adapter *adap = cookie;
914
915         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
916         if (v & PFSW) {
917                 adap->swintr = 1;
918                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
919         }
920         t4_slow_intr_handler(adap);
921         return IRQ_HANDLED;
922 }
923
924 /*
925  * Name the MSI-X interrupts.
926  */
927 static void name_msix_vecs(struct adapter *adap)
928 {
929         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
930
931         /* non-data interrupts */
932         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
933
934         /* FW events */
935         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
936                  adap->port[0]->name);
937
938         /* Ethernet queues */
939         for_each_port(adap, j) {
940                 struct net_device *d = adap->port[j];
941                 const struct port_info *pi = netdev_priv(d);
942
943                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
944                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
945                                  d->name, i);
946         }
947
948         /* offload queues */
949         for_each_ofldrxq(&adap->sge, i)
950                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
951                          adap->port[0]->name, i);
952
953         for_each_rdmarxq(&adap->sge, i)
954                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
955                          adap->port[0]->name, i);
956
957         for_each_rdmaciq(&adap->sge, i)
958                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
959                          adap->port[0]->name, i);
960 }
961
962 static int request_msix_queue_irqs(struct adapter *adap)
963 {
964         struct sge *s = &adap->sge;
965         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
966         int msi_index = 2;
967
968         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
969                           adap->msix_info[1].desc, &s->fw_evtq);
970         if (err)
971                 return err;
972
973         for_each_ethrxq(s, ethqidx) {
974                 err = request_irq(adap->msix_info[msi_index].vec,
975                                   t4_sge_intr_msix, 0,
976                                   adap->msix_info[msi_index].desc,
977                                   &s->ethrxq[ethqidx].rspq);
978                 if (err)
979                         goto unwind;
980                 msi_index++;
981         }
982         for_each_ofldrxq(s, ofldqidx) {
983                 err = request_irq(adap->msix_info[msi_index].vec,
984                                   t4_sge_intr_msix, 0,
985                                   adap->msix_info[msi_index].desc,
986                                   &s->ofldrxq[ofldqidx].rspq);
987                 if (err)
988                         goto unwind;
989                 msi_index++;
990         }
991         for_each_rdmarxq(s, rdmaqidx) {
992                 err = request_irq(adap->msix_info[msi_index].vec,
993                                   t4_sge_intr_msix, 0,
994                                   adap->msix_info[msi_index].desc,
995                                   &s->rdmarxq[rdmaqidx].rspq);
996                 if (err)
997                         goto unwind;
998                 msi_index++;
999         }
1000         for_each_rdmaciq(s, rdmaciqqidx) {
1001                 err = request_irq(adap->msix_info[msi_index].vec,
1002                                   t4_sge_intr_msix, 0,
1003                                   adap->msix_info[msi_index].desc,
1004                                   &s->rdmaciq[rdmaciqqidx].rspq);
1005                 if (err)
1006                         goto unwind;
1007                 msi_index++;
1008         }
1009         return 0;
1010
1011 unwind:
1012         while (--rdmaciqqidx >= 0)
1013                 free_irq(adap->msix_info[--msi_index].vec,
1014                          &s->rdmaciq[rdmaciqqidx].rspq);
1015         while (--rdmaqidx >= 0)
1016                 free_irq(adap->msix_info[--msi_index].vec,
1017                          &s->rdmarxq[rdmaqidx].rspq);
1018         while (--ofldqidx >= 0)
1019                 free_irq(adap->msix_info[--msi_index].vec,
1020                          &s->ofldrxq[ofldqidx].rspq);
1021         while (--ethqidx >= 0)
1022                 free_irq(adap->msix_info[--msi_index].vec,
1023                          &s->ethrxq[ethqidx].rspq);
1024         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1025         return err;
1026 }
1027
1028 static void free_msix_queue_irqs(struct adapter *adap)
1029 {
1030         int i, msi_index = 2;
1031         struct sge *s = &adap->sge;
1032
1033         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1034         for_each_ethrxq(s, i)
1035                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
1036         for_each_ofldrxq(s, i)
1037                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
1038         for_each_rdmarxq(s, i)
1039                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
1040         for_each_rdmaciq(s, i)
1041                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
1042 }
1043
1044 /**
1045  *      write_rss - write the RSS table for a given port
1046  *      @pi: the port
1047  *      @queues: array of queue indices for RSS
1048  *
1049  *      Sets up the portion of the HW RSS table for the port's VI to distribute
1050  *      packets to the Rx queues in @queues.
1051  */
1052 static int write_rss(const struct port_info *pi, const u16 *queues)
1053 {
1054         u16 *rss;
1055         int i, err;
1056         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1057
1058         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1059         if (!rss)
1060                 return -ENOMEM;
1061
1062         /* map the queue indices to queue ids */
1063         for (i = 0; i < pi->rss_size; i++, queues++)
1064                 rss[i] = q[*queues].rspq.abs_id;
1065
1066         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1067                                   pi->rss_size, rss, pi->rss_size);
1068         kfree(rss);
1069         return err;
1070 }
1071
1072 /**
1073  *      setup_rss - configure RSS
1074  *      @adap: the adapter
1075  *
1076  *      Sets up RSS for each port.
1077  */
1078 static int setup_rss(struct adapter *adap)
1079 {
1080         int i, err;
1081
1082         for_each_port(adap, i) {
1083                 const struct port_info *pi = adap2pinfo(adap, i);
1084
1085                 err = write_rss(pi, pi->rss);
1086                 if (err)
1087                         return err;
1088         }
1089         return 0;
1090 }
1091
1092 /*
1093  * Return the channel of the ingress queue with the given qid.
1094  */
1095 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1096 {
1097         qid -= p->ingr_start;
1098         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1099 }
1100
1101 /*
1102  * Wait until all NAPI handlers are descheduled.
1103  */
1104 static void quiesce_rx(struct adapter *adap)
1105 {
1106         int i;
1107
1108         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1109                 struct sge_rspq *q = adap->sge.ingr_map[i];
1110
1111                 if (q && q->handler)
1112                         napi_disable(&q->napi);
1113         }
1114 }
1115
1116 /*
1117  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1118  */
1119 static void enable_rx(struct adapter *adap)
1120 {
1121         int i;
1122
1123         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1124                 struct sge_rspq *q = adap->sge.ingr_map[i];
1125
1126                 if (!q)
1127                         continue;
1128                 if (q->handler)
1129                         napi_enable(&q->napi);
1130                 /* 0-increment GTS to start the timer and enable interrupts */
1131                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1132                              SEINTARM(q->intr_params) |
1133                              INGRESSQID(q->cntxt_id));
1134         }
1135 }
1136
1137 /**
1138  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1139  *      @adap: the adapter
1140  *
1141  *      Determines how many sets of SGE queues to use and initializes them.
1142  *      We support multiple queue sets per port if we have MSI-X, otherwise
1143  *      just one queue set per port.
1144  */
1145 static int setup_sge_queues(struct adapter *adap)
1146 {
1147         int err, msi_idx, i, j;
1148         struct sge *s = &adap->sge;
1149
1150         bitmap_zero(s->starving_fl, MAX_EGRQ);
1151         bitmap_zero(s->txq_maperr, MAX_EGRQ);
1152
1153         if (adap->flags & USING_MSIX)
1154                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1155         else {
1156                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1157                                        NULL, NULL);
1158                 if (err)
1159                         return err;
1160                 msi_idx = -((int)s->intrq.abs_id + 1);
1161         }
1162
1163         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1164                                msi_idx, NULL, fwevtq_handler);
1165         if (err) {
1166 freeout:        t4_free_sge_resources(adap);
1167                 return err;
1168         }
1169
1170         for_each_port(adap, i) {
1171                 struct net_device *dev = adap->port[i];
1172                 struct port_info *pi = netdev_priv(dev);
1173                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1174                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1175
1176                 for (j = 0; j < pi->nqsets; j++, q++) {
1177                         if (msi_idx > 0)
1178                                 msi_idx++;
1179                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1180                                                msi_idx, &q->fl,
1181                                                t4_ethrx_handler);
1182                         if (err)
1183                                 goto freeout;
1184                         q->rspq.idx = j;
1185                         memset(&q->stats, 0, sizeof(q->stats));
1186                 }
1187                 for (j = 0; j < pi->nqsets; j++, t++) {
1188                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1189                                         netdev_get_tx_queue(dev, j),
1190                                         s->fw_evtq.cntxt_id);
1191                         if (err)
1192                                 goto freeout;
1193                 }
1194         }
1195
1196         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1197         for_each_ofldrxq(s, i) {
1198                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1199                 struct net_device *dev = adap->port[i / j];
1200
1201                 if (msi_idx > 0)
1202                         msi_idx++;
1203                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1204                                        q->fl.size ? &q->fl : NULL,
1205                                        uldrx_handler);
1206                 if (err)
1207                         goto freeout;
1208                 memset(&q->stats, 0, sizeof(q->stats));
1209                 s->ofld_rxq[i] = q->rspq.abs_id;
1210                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1211                                             s->fw_evtq.cntxt_id);
1212                 if (err)
1213                         goto freeout;
1214         }
1215
1216         for_each_rdmarxq(s, i) {
1217                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1218
1219                 if (msi_idx > 0)
1220                         msi_idx++;
1221                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1222                                        msi_idx, q->fl.size ? &q->fl : NULL,
1223                                        uldrx_handler);
1224                 if (err)
1225                         goto freeout;
1226                 memset(&q->stats, 0, sizeof(q->stats));
1227                 s->rdma_rxq[i] = q->rspq.abs_id;
1228         }
1229
1230         for_each_rdmaciq(s, i) {
1231                 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1232
1233                 if (msi_idx > 0)
1234                         msi_idx++;
1235                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1236                                        msi_idx, q->fl.size ? &q->fl : NULL,
1237                                        uldrx_handler);
1238                 if (err)
1239                         goto freeout;
1240                 memset(&q->stats, 0, sizeof(q->stats));
1241                 s->rdma_ciq[i] = q->rspq.abs_id;
1242         }
1243
1244         for_each_port(adap, i) {
1245                 /*
1246                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1247                  * have RDMA queues, and that's the right value.
1248                  */
1249                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1250                                             s->fw_evtq.cntxt_id,
1251                                             s->rdmarxq[i].rspq.cntxt_id);
1252                 if (err)
1253                         goto freeout;
1254         }
1255
1256         t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1257                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1258                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1259         return 0;
1260 }
1261
1262 /*
1263  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1264  * The allocated memory is cleared.
1265  */
1266 void *t4_alloc_mem(size_t size)
1267 {
1268         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1269
1270         if (!p)
1271                 p = vzalloc(size);
1272         return p;
1273 }
1274
1275 /*
1276  * Free memory allocated through alloc_mem().
1277  */
1278 static void t4_free_mem(void *addr)
1279 {
1280         if (is_vmalloc_addr(addr))
1281                 vfree(addr);
1282         else
1283                 kfree(addr);
1284 }
1285
1286 /* Send a Work Request to write the filter at a specified index.  We construct
1287  * a Firmware Filter Work Request to have the work done and put the indicated
1288  * filter into "pending" mode which will prevent any further actions against
1289  * it till we get a reply from the firmware on the completion status of the
1290  * request.
1291  */
1292 static int set_filter_wr(struct adapter *adapter, int fidx)
1293 {
1294         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1295         struct sk_buff *skb;
1296         struct fw_filter_wr *fwr;
1297         unsigned int ftid;
1298
1299         /* If the new filter requires loopback Destination MAC and/or VLAN
1300          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1301          * the filter.
1302          */
1303         if (f->fs.newdmac || f->fs.newvlan) {
1304                 /* allocate L2T entry for new filter */
1305                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1306                 if (f->l2t == NULL)
1307                         return -EAGAIN;
1308                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1309                                         f->fs.eport, f->fs.dmac)) {
1310                         cxgb4_l2t_release(f->l2t);
1311                         f->l2t = NULL;
1312                         return -ENOMEM;
1313                 }
1314         }
1315
1316         ftid = adapter->tids.ftid_base + fidx;
1317
1318         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1319         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1320         memset(fwr, 0, sizeof(*fwr));
1321
1322         /* It would be nice to put most of the following in t4_hw.c but most
1323          * of the work is translating the cxgbtool ch_filter_specification
1324          * into the Work Request and the definition of that structure is
1325          * currently in cxgbtool.h which isn't appropriate to pull into the
1326          * common code.  We may eventually try to come up with a more neutral
1327          * filter specification structure but for now it's easiest to simply
1328          * put this fairly direct code in line ...
1329          */
1330         fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1331         fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1332         fwr->tid_to_iq =
1333                 htonl(V_FW_FILTER_WR_TID(ftid) |
1334                       V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1335                       V_FW_FILTER_WR_NOREPLY(0) |
1336                       V_FW_FILTER_WR_IQ(f->fs.iq));
1337         fwr->del_filter_to_l2tix =
1338                 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1339                       V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1340                       V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1341                       V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1342                       V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1343                       V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1344                       V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1345                       V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1346                       V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1347                                              f->fs.newvlan == VLAN_REWRITE) |
1348                       V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1349                                             f->fs.newvlan == VLAN_REWRITE) |
1350                       V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1351                       V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1352                       V_FW_FILTER_WR_PRIO(f->fs.prio) |
1353                       V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1354         fwr->ethtype = htons(f->fs.val.ethtype);
1355         fwr->ethtypem = htons(f->fs.mask.ethtype);
1356         fwr->frag_to_ovlan_vldm =
1357                 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1358                  V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1359                  V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1360                  V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1361                  V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1362                  V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1363         fwr->smac_sel = 0;
1364         fwr->rx_chan_rx_rpl_iq =
1365                 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1366                       V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1367         fwr->maci_to_matchtypem =
1368                 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1369                       V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1370                       V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1371                       V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1372                       V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1373                       V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1374                       V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1375                       V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1376         fwr->ptcl = f->fs.val.proto;
1377         fwr->ptclm = f->fs.mask.proto;
1378         fwr->ttyp = f->fs.val.tos;
1379         fwr->ttypm = f->fs.mask.tos;
1380         fwr->ivlan = htons(f->fs.val.ivlan);
1381         fwr->ivlanm = htons(f->fs.mask.ivlan);
1382         fwr->ovlan = htons(f->fs.val.ovlan);
1383         fwr->ovlanm = htons(f->fs.mask.ovlan);
1384         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1385         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1386         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1387         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1388         fwr->lp = htons(f->fs.val.lport);
1389         fwr->lpm = htons(f->fs.mask.lport);
1390         fwr->fp = htons(f->fs.val.fport);
1391         fwr->fpm = htons(f->fs.mask.fport);
1392         if (f->fs.newsmac)
1393                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1394
1395         /* Mark the filter as "pending" and ship off the Filter Work Request.
1396          * When we get the Work Request Reply we'll clear the pending status.
1397          */
1398         f->pending = 1;
1399         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1400         t4_ofld_send(adapter, skb);
1401         return 0;
1402 }
1403
1404 /* Delete the filter at a specified index.
1405  */
1406 static int del_filter_wr(struct adapter *adapter, int fidx)
1407 {
1408         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1409         struct sk_buff *skb;
1410         struct fw_filter_wr *fwr;
1411         unsigned int len, ftid;
1412
1413         len = sizeof(*fwr);
1414         ftid = adapter->tids.ftid_base + fidx;
1415
1416         skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1417         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1418         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1419
1420         /* Mark the filter as "pending" and ship off the Filter Work Request.
1421          * When we get the Work Request Reply we'll clear the pending status.
1422          */
1423         f->pending = 1;
1424         t4_mgmt_tx(adapter, skb);
1425         return 0;
1426 }
1427
1428 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1429                              void *accel_priv, select_queue_fallback_t fallback)
1430 {
1431         int txq;
1432
1433 #ifdef CONFIG_CHELSIO_T4_DCB
1434         /* If a Data Center Bridging has been successfully negotiated on this
1435          * link then we'll use the skb's priority to map it to a TX Queue.
1436          * The skb's priority is determined via the VLAN Tag Priority Code
1437          * Point field.
1438          */
1439         if (cxgb4_dcb_enabled(dev)) {
1440                 u16 vlan_tci;
1441                 int err;
1442
1443                 err = vlan_get_tag(skb, &vlan_tci);
1444                 if (unlikely(err)) {
1445                         if (net_ratelimit())
1446                                 netdev_warn(dev,
1447                                             "TX Packet without VLAN Tag on DCB Link\n");
1448                         txq = 0;
1449                 } else {
1450                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1451                 }
1452                 return txq;
1453         }
1454 #endif /* CONFIG_CHELSIO_T4_DCB */
1455
1456         if (select_queue) {
1457                 txq = (skb_rx_queue_recorded(skb)
1458                         ? skb_get_rx_queue(skb)
1459                         : smp_processor_id());
1460
1461                 while (unlikely(txq >= dev->real_num_tx_queues))
1462                         txq -= dev->real_num_tx_queues;
1463
1464                 return txq;
1465         }
1466
1467         return fallback(dev, skb) % dev->real_num_tx_queues;
1468 }
1469
1470 static inline int is_offload(const struct adapter *adap)
1471 {
1472         return adap->params.offload;
1473 }
1474
1475 /*
1476  * Implementation of ethtool operations.
1477  */
1478
1479 static u32 get_msglevel(struct net_device *dev)
1480 {
1481         return netdev2adap(dev)->msg_enable;
1482 }
1483
1484 static void set_msglevel(struct net_device *dev, u32 val)
1485 {
1486         netdev2adap(dev)->msg_enable = val;
1487 }
1488
1489 static char stats_strings[][ETH_GSTRING_LEN] = {
1490         "TxOctetsOK         ",
1491         "TxFramesOK         ",
1492         "TxBroadcastFrames  ",
1493         "TxMulticastFrames  ",
1494         "TxUnicastFrames    ",
1495         "TxErrorFrames      ",
1496
1497         "TxFrames64         ",
1498         "TxFrames65To127    ",
1499         "TxFrames128To255   ",
1500         "TxFrames256To511   ",
1501         "TxFrames512To1023  ",
1502         "TxFrames1024To1518 ",
1503         "TxFrames1519ToMax  ",
1504
1505         "TxFramesDropped    ",
1506         "TxPauseFrames      ",
1507         "TxPPP0Frames       ",
1508         "TxPPP1Frames       ",
1509         "TxPPP2Frames       ",
1510         "TxPPP3Frames       ",
1511         "TxPPP4Frames       ",
1512         "TxPPP5Frames       ",
1513         "TxPPP6Frames       ",
1514         "TxPPP7Frames       ",
1515
1516         "RxOctetsOK         ",
1517         "RxFramesOK         ",
1518         "RxBroadcastFrames  ",
1519         "RxMulticastFrames  ",
1520         "RxUnicastFrames    ",
1521
1522         "RxFramesTooLong    ",
1523         "RxJabberErrors     ",
1524         "RxFCSErrors        ",
1525         "RxLengthErrors     ",
1526         "RxSymbolErrors     ",
1527         "RxRuntFrames       ",
1528
1529         "RxFrames64         ",
1530         "RxFrames65To127    ",
1531         "RxFrames128To255   ",
1532         "RxFrames256To511   ",
1533         "RxFrames512To1023  ",
1534         "RxFrames1024To1518 ",
1535         "RxFrames1519ToMax  ",
1536
1537         "RxPauseFrames      ",
1538         "RxPPP0Frames       ",
1539         "RxPPP1Frames       ",
1540         "RxPPP2Frames       ",
1541         "RxPPP3Frames       ",
1542         "RxPPP4Frames       ",
1543         "RxPPP5Frames       ",
1544         "RxPPP6Frames       ",
1545         "RxPPP7Frames       ",
1546
1547         "RxBG0FramesDropped ",
1548         "RxBG1FramesDropped ",
1549         "RxBG2FramesDropped ",
1550         "RxBG3FramesDropped ",
1551         "RxBG0FramesTrunc   ",
1552         "RxBG1FramesTrunc   ",
1553         "RxBG2FramesTrunc   ",
1554         "RxBG3FramesTrunc   ",
1555
1556         "TSO                ",
1557         "TxCsumOffload      ",
1558         "RxCsumGood         ",
1559         "VLANextractions    ",
1560         "VLANinsertions     ",
1561         "GROpackets         ",
1562         "GROmerged          ",
1563         "WriteCoalSuccess   ",
1564         "WriteCoalFail      ",
1565 };
1566
1567 static int get_sset_count(struct net_device *dev, int sset)
1568 {
1569         switch (sset) {
1570         case ETH_SS_STATS:
1571                 return ARRAY_SIZE(stats_strings);
1572         default:
1573                 return -EOPNOTSUPP;
1574         }
1575 }
1576
1577 #define T4_REGMAP_SIZE (160 * 1024)
1578 #define T5_REGMAP_SIZE (332 * 1024)
1579
1580 static int get_regs_len(struct net_device *dev)
1581 {
1582         struct adapter *adap = netdev2adap(dev);
1583         if (is_t4(adap->params.chip))
1584                 return T4_REGMAP_SIZE;
1585         else
1586                 return T5_REGMAP_SIZE;
1587 }
1588
1589 static int get_eeprom_len(struct net_device *dev)
1590 {
1591         return EEPROMSIZE;
1592 }
1593
1594 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1595 {
1596         struct adapter *adapter = netdev2adap(dev);
1597
1598         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1599         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1600         strlcpy(info->bus_info, pci_name(adapter->pdev),
1601                 sizeof(info->bus_info));
1602
1603         if (adapter->params.fw_vers)
1604                 snprintf(info->fw_version, sizeof(info->fw_version),
1605                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1606                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1607                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1608                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1609                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1610                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1611                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1612                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1613                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1614 }
1615
1616 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1617 {
1618         if (stringset == ETH_SS_STATS)
1619                 memcpy(data, stats_strings, sizeof(stats_strings));
1620 }
1621
1622 /*
1623  * port stats maintained per queue of the port.  They should be in the same
1624  * order as in stats_strings above.
1625  */
1626 struct queue_port_stats {
1627         u64 tso;
1628         u64 tx_csum;
1629         u64 rx_csum;
1630         u64 vlan_ex;
1631         u64 vlan_ins;
1632         u64 gro_pkts;
1633         u64 gro_merged;
1634 };
1635
1636 static void collect_sge_port_stats(const struct adapter *adap,
1637                 const struct port_info *p, struct queue_port_stats *s)
1638 {
1639         int i;
1640         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1641         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1642
1643         memset(s, 0, sizeof(*s));
1644         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1645                 s->tso += tx->tso;
1646                 s->tx_csum += tx->tx_cso;
1647                 s->rx_csum += rx->stats.rx_cso;
1648                 s->vlan_ex += rx->stats.vlan_ex;
1649                 s->vlan_ins += tx->vlan_ins;
1650                 s->gro_pkts += rx->stats.lro_pkts;
1651                 s->gro_merged += rx->stats.lro_merged;
1652         }
1653 }
1654
1655 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1656                       u64 *data)
1657 {
1658         struct port_info *pi = netdev_priv(dev);
1659         struct adapter *adapter = pi->adapter;
1660         u32 val1, val2;
1661
1662         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1663
1664         data += sizeof(struct port_stats) / sizeof(u64);
1665         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1666         data += sizeof(struct queue_port_stats) / sizeof(u64);
1667         if (!is_t4(adapter->params.chip)) {
1668                 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1669                 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1670                 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1671                 *data = val1 - val2;
1672                 data++;
1673                 *data = val2;
1674                 data++;
1675         } else {
1676                 memset(data, 0, 2 * sizeof(u64));
1677                 *data += 2;
1678         }
1679 }
1680
1681 /*
1682  * Return a version number to identify the type of adapter.  The scheme is:
1683  * - bits 0..9: chip version
1684  * - bits 10..15: chip revision
1685  * - bits 16..23: register dump version
1686  */
1687 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1688 {
1689         return CHELSIO_CHIP_VERSION(ap->params.chip) |
1690                 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1691 }
1692
1693 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1694                            unsigned int end)
1695 {
1696         u32 *p = buf + start;
1697
1698         for ( ; start <= end; start += sizeof(u32))
1699                 *p++ = t4_read_reg(ap, start);
1700 }
1701
1702 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1703                      void *buf)
1704 {
1705         static const unsigned int t4_reg_ranges[] = {
1706                 0x1008, 0x1108,
1707                 0x1180, 0x11b4,
1708                 0x11fc, 0x123c,
1709                 0x1300, 0x173c,
1710                 0x1800, 0x18fc,
1711                 0x3000, 0x30d8,
1712                 0x30e0, 0x5924,
1713                 0x5960, 0x59d4,
1714                 0x5a00, 0x5af8,
1715                 0x6000, 0x6098,
1716                 0x6100, 0x6150,
1717                 0x6200, 0x6208,
1718                 0x6240, 0x6248,
1719                 0x6280, 0x6338,
1720                 0x6370, 0x638c,
1721                 0x6400, 0x643c,
1722                 0x6500, 0x6524,
1723                 0x6a00, 0x6a38,
1724                 0x6a60, 0x6a78,
1725                 0x6b00, 0x6b84,
1726                 0x6bf0, 0x6c84,
1727                 0x6cf0, 0x6d84,
1728                 0x6df0, 0x6e84,
1729                 0x6ef0, 0x6f84,
1730                 0x6ff0, 0x7084,
1731                 0x70f0, 0x7184,
1732                 0x71f0, 0x7284,
1733                 0x72f0, 0x7384,
1734                 0x73f0, 0x7450,
1735                 0x7500, 0x7530,
1736                 0x7600, 0x761c,
1737                 0x7680, 0x76cc,
1738                 0x7700, 0x7798,
1739                 0x77c0, 0x77fc,
1740                 0x7900, 0x79fc,
1741                 0x7b00, 0x7c38,
1742                 0x7d00, 0x7efc,
1743                 0x8dc0, 0x8e1c,
1744                 0x8e30, 0x8e78,
1745                 0x8ea0, 0x8f6c,
1746                 0x8fc0, 0x9074,
1747                 0x90fc, 0x90fc,
1748                 0x9400, 0x9458,
1749                 0x9600, 0x96bc,
1750                 0x9800, 0x9808,
1751                 0x9820, 0x983c,
1752                 0x9850, 0x9864,
1753                 0x9c00, 0x9c6c,
1754                 0x9c80, 0x9cec,
1755                 0x9d00, 0x9d6c,
1756                 0x9d80, 0x9dec,
1757                 0x9e00, 0x9e6c,
1758                 0x9e80, 0x9eec,
1759                 0x9f00, 0x9f6c,
1760                 0x9f80, 0x9fec,
1761                 0xd004, 0xd03c,
1762                 0xdfc0, 0xdfe0,
1763                 0xe000, 0xea7c,
1764                 0xf000, 0x11190,
1765                 0x19040, 0x1906c,
1766                 0x19078, 0x19080,
1767                 0x1908c, 0x19124,
1768                 0x19150, 0x191b0,
1769                 0x191d0, 0x191e8,
1770                 0x19238, 0x1924c,
1771                 0x193f8, 0x19474,
1772                 0x19490, 0x194f8,
1773                 0x19800, 0x19f30,
1774                 0x1a000, 0x1a06c,
1775                 0x1a0b0, 0x1a120,
1776                 0x1a128, 0x1a138,
1777                 0x1a190, 0x1a1c4,
1778                 0x1a1fc, 0x1a1fc,
1779                 0x1e040, 0x1e04c,
1780                 0x1e284, 0x1e28c,
1781                 0x1e2c0, 0x1e2c0,
1782                 0x1e2e0, 0x1e2e0,
1783                 0x1e300, 0x1e384,
1784                 0x1e3c0, 0x1e3c8,
1785                 0x1e440, 0x1e44c,
1786                 0x1e684, 0x1e68c,
1787                 0x1e6c0, 0x1e6c0,
1788                 0x1e6e0, 0x1e6e0,
1789                 0x1e700, 0x1e784,
1790                 0x1e7c0, 0x1e7c8,
1791                 0x1e840, 0x1e84c,
1792                 0x1ea84, 0x1ea8c,
1793                 0x1eac0, 0x1eac0,
1794                 0x1eae0, 0x1eae0,
1795                 0x1eb00, 0x1eb84,
1796                 0x1ebc0, 0x1ebc8,
1797                 0x1ec40, 0x1ec4c,
1798                 0x1ee84, 0x1ee8c,
1799                 0x1eec0, 0x1eec0,
1800                 0x1eee0, 0x1eee0,
1801                 0x1ef00, 0x1ef84,
1802                 0x1efc0, 0x1efc8,
1803                 0x1f040, 0x1f04c,
1804                 0x1f284, 0x1f28c,
1805                 0x1f2c0, 0x1f2c0,
1806                 0x1f2e0, 0x1f2e0,
1807                 0x1f300, 0x1f384,
1808                 0x1f3c0, 0x1f3c8,
1809                 0x1f440, 0x1f44c,
1810                 0x1f684, 0x1f68c,
1811                 0x1f6c0, 0x1f6c0,
1812                 0x1f6e0, 0x1f6e0,
1813                 0x1f700, 0x1f784,
1814                 0x1f7c0, 0x1f7c8,
1815                 0x1f840, 0x1f84c,
1816                 0x1fa84, 0x1fa8c,
1817                 0x1fac0, 0x1fac0,
1818                 0x1fae0, 0x1fae0,
1819                 0x1fb00, 0x1fb84,
1820                 0x1fbc0, 0x1fbc8,
1821                 0x1fc40, 0x1fc4c,
1822                 0x1fe84, 0x1fe8c,
1823                 0x1fec0, 0x1fec0,
1824                 0x1fee0, 0x1fee0,
1825                 0x1ff00, 0x1ff84,
1826                 0x1ffc0, 0x1ffc8,
1827                 0x20000, 0x2002c,
1828                 0x20100, 0x2013c,
1829                 0x20190, 0x201c8,
1830                 0x20200, 0x20318,
1831                 0x20400, 0x20528,
1832                 0x20540, 0x20614,
1833                 0x21000, 0x21040,
1834                 0x2104c, 0x21060,
1835                 0x210c0, 0x210ec,
1836                 0x21200, 0x21268,
1837                 0x21270, 0x21284,
1838                 0x212fc, 0x21388,
1839                 0x21400, 0x21404,
1840                 0x21500, 0x21518,
1841                 0x2152c, 0x2153c,
1842                 0x21550, 0x21554,
1843                 0x21600, 0x21600,
1844                 0x21608, 0x21628,
1845                 0x21630, 0x2163c,
1846                 0x21700, 0x2171c,
1847                 0x21780, 0x2178c,
1848                 0x21800, 0x21c38,
1849                 0x21c80, 0x21d7c,
1850                 0x21e00, 0x21e04,
1851                 0x22000, 0x2202c,
1852                 0x22100, 0x2213c,
1853                 0x22190, 0x221c8,
1854                 0x22200, 0x22318,
1855                 0x22400, 0x22528,
1856                 0x22540, 0x22614,
1857                 0x23000, 0x23040,
1858                 0x2304c, 0x23060,
1859                 0x230c0, 0x230ec,
1860                 0x23200, 0x23268,
1861                 0x23270, 0x23284,
1862                 0x232fc, 0x23388,
1863                 0x23400, 0x23404,
1864                 0x23500, 0x23518,
1865                 0x2352c, 0x2353c,
1866                 0x23550, 0x23554,
1867                 0x23600, 0x23600,
1868                 0x23608, 0x23628,
1869                 0x23630, 0x2363c,
1870                 0x23700, 0x2371c,
1871                 0x23780, 0x2378c,
1872                 0x23800, 0x23c38,
1873                 0x23c80, 0x23d7c,
1874                 0x23e00, 0x23e04,
1875                 0x24000, 0x2402c,
1876                 0x24100, 0x2413c,
1877                 0x24190, 0x241c8,
1878                 0x24200, 0x24318,
1879                 0x24400, 0x24528,
1880                 0x24540, 0x24614,
1881                 0x25000, 0x25040,
1882                 0x2504c, 0x25060,
1883                 0x250c0, 0x250ec,
1884                 0x25200, 0x25268,
1885                 0x25270, 0x25284,
1886                 0x252fc, 0x25388,
1887                 0x25400, 0x25404,
1888                 0x25500, 0x25518,
1889                 0x2552c, 0x2553c,
1890                 0x25550, 0x25554,
1891                 0x25600, 0x25600,
1892                 0x25608, 0x25628,
1893                 0x25630, 0x2563c,
1894                 0x25700, 0x2571c,
1895                 0x25780, 0x2578c,
1896                 0x25800, 0x25c38,
1897                 0x25c80, 0x25d7c,
1898                 0x25e00, 0x25e04,
1899                 0x26000, 0x2602c,
1900                 0x26100, 0x2613c,
1901                 0x26190, 0x261c8,
1902                 0x26200, 0x26318,
1903                 0x26400, 0x26528,
1904                 0x26540, 0x26614,
1905                 0x27000, 0x27040,
1906                 0x2704c, 0x27060,
1907                 0x270c0, 0x270ec,
1908                 0x27200, 0x27268,
1909                 0x27270, 0x27284,
1910                 0x272fc, 0x27388,
1911                 0x27400, 0x27404,
1912                 0x27500, 0x27518,
1913                 0x2752c, 0x2753c,
1914                 0x27550, 0x27554,
1915                 0x27600, 0x27600,
1916                 0x27608, 0x27628,
1917                 0x27630, 0x2763c,
1918                 0x27700, 0x2771c,
1919                 0x27780, 0x2778c,
1920                 0x27800, 0x27c38,
1921                 0x27c80, 0x27d7c,
1922                 0x27e00, 0x27e04
1923         };
1924
1925         static const unsigned int t5_reg_ranges[] = {
1926                 0x1008, 0x1148,
1927                 0x1180, 0x11b4,
1928                 0x11fc, 0x123c,
1929                 0x1280, 0x173c,
1930                 0x1800, 0x18fc,
1931                 0x3000, 0x3028,
1932                 0x3060, 0x30d8,
1933                 0x30e0, 0x30fc,
1934                 0x3140, 0x357c,
1935                 0x35a8, 0x35cc,
1936                 0x35ec, 0x35ec,
1937                 0x3600, 0x5624,
1938                 0x56cc, 0x575c,
1939                 0x580c, 0x5814,
1940                 0x5890, 0x58bc,
1941                 0x5940, 0x59dc,
1942                 0x59fc, 0x5a18,
1943                 0x5a60, 0x5a9c,
1944                 0x5b9c, 0x5bfc,
1945                 0x6000, 0x6040,
1946                 0x6058, 0x614c,
1947                 0x7700, 0x7798,
1948                 0x77c0, 0x78fc,
1949                 0x7b00, 0x7c54,
1950                 0x7d00, 0x7efc,
1951                 0x8dc0, 0x8de0,
1952                 0x8df8, 0x8e84,
1953                 0x8ea0, 0x8f84,
1954                 0x8fc0, 0x90f8,
1955                 0x9400, 0x9470,
1956                 0x9600, 0x96f4,
1957                 0x9800, 0x9808,
1958                 0x9820, 0x983c,
1959                 0x9850, 0x9864,
1960                 0x9c00, 0x9c6c,
1961                 0x9c80, 0x9cec,
1962                 0x9d00, 0x9d6c,
1963                 0x9d80, 0x9dec,
1964                 0x9e00, 0x9e6c,
1965                 0x9e80, 0x9eec,
1966                 0x9f00, 0x9f6c,
1967                 0x9f80, 0xa020,
1968                 0xd004, 0xd03c,
1969                 0xdfc0, 0xdfe0,
1970                 0xe000, 0x11088,
1971                 0x1109c, 0x1117c,
1972                 0x11190, 0x11204,
1973                 0x19040, 0x1906c,
1974                 0x19078, 0x19080,
1975                 0x1908c, 0x19124,
1976                 0x19150, 0x191b0,
1977                 0x191d0, 0x191e8,
1978                 0x19238, 0x19290,
1979                 0x193f8, 0x19474,
1980                 0x19490, 0x194cc,
1981                 0x194f0, 0x194f8,
1982                 0x19c00, 0x19c60,
1983                 0x19c94, 0x19e10,
1984                 0x19e50, 0x19f34,
1985                 0x19f40, 0x19f50,
1986                 0x19f90, 0x19fe4,
1987                 0x1a000, 0x1a06c,
1988                 0x1a0b0, 0x1a120,
1989                 0x1a128, 0x1a138,
1990                 0x1a190, 0x1a1c4,
1991                 0x1a1fc, 0x1a1fc,
1992                 0x1e008, 0x1e00c,
1993                 0x1e040, 0x1e04c,
1994                 0x1e284, 0x1e290,
1995                 0x1e2c0, 0x1e2c0,
1996                 0x1e2e0, 0x1e2e0,
1997                 0x1e300, 0x1e384,
1998                 0x1e3c0, 0x1e3c8,
1999                 0x1e408, 0x1e40c,
2000                 0x1e440, 0x1e44c,
2001                 0x1e684, 0x1e690,
2002                 0x1e6c0, 0x1e6c0,
2003                 0x1e6e0, 0x1e6e0,
2004                 0x1e700, 0x1e784,
2005                 0x1e7c0, 0x1e7c8,
2006                 0x1e808, 0x1e80c,
2007                 0x1e840, 0x1e84c,
2008                 0x1ea84, 0x1ea90,
2009                 0x1eac0, 0x1eac0,
2010                 0x1eae0, 0x1eae0,
2011                 0x1eb00, 0x1eb84,
2012                 0x1ebc0, 0x1ebc8,
2013                 0x1ec08, 0x1ec0c,
2014                 0x1ec40, 0x1ec4c,
2015                 0x1ee84, 0x1ee90,
2016                 0x1eec0, 0x1eec0,
2017                 0x1eee0, 0x1eee0,
2018                 0x1ef00, 0x1ef84,
2019                 0x1efc0, 0x1efc8,
2020                 0x1f008, 0x1f00c,
2021                 0x1f040, 0x1f04c,
2022                 0x1f284, 0x1f290,
2023                 0x1f2c0, 0x1f2c0,
2024                 0x1f2e0, 0x1f2e0,
2025                 0x1f300, 0x1f384,
2026                 0x1f3c0, 0x1f3c8,
2027                 0x1f408, 0x1f40c,
2028                 0x1f440, 0x1f44c,
2029                 0x1f684, 0x1f690,
2030                 0x1f6c0, 0x1f6c0,
2031                 0x1f6e0, 0x1f6e0,
2032                 0x1f700, 0x1f784,
2033                 0x1f7c0, 0x1f7c8,
2034                 0x1f808, 0x1f80c,
2035                 0x1f840, 0x1f84c,
2036                 0x1fa84, 0x1fa90,
2037                 0x1fac0, 0x1fac0,
2038                 0x1fae0, 0x1fae0,
2039                 0x1fb00, 0x1fb84,
2040                 0x1fbc0, 0x1fbc8,
2041                 0x1fc08, 0x1fc0c,
2042                 0x1fc40, 0x1fc4c,
2043                 0x1fe84, 0x1fe90,
2044                 0x1fec0, 0x1fec0,
2045                 0x1fee0, 0x1fee0,
2046                 0x1ff00, 0x1ff84,
2047                 0x1ffc0, 0x1ffc8,
2048                 0x30000, 0x30030,
2049                 0x30100, 0x30144,
2050                 0x30190, 0x301d0,
2051                 0x30200, 0x30318,
2052                 0x30400, 0x3052c,
2053                 0x30540, 0x3061c,
2054                 0x30800, 0x30834,
2055                 0x308c0, 0x30908,
2056                 0x30910, 0x309ac,
2057                 0x30a00, 0x30a04,
2058                 0x30a0c, 0x30a2c,
2059                 0x30a44, 0x30a50,
2060                 0x30a74, 0x30c24,
2061                 0x30d08, 0x30d14,
2062                 0x30d1c, 0x30d20,
2063                 0x30d3c, 0x30d50,
2064                 0x31200, 0x3120c,
2065                 0x31220, 0x31220,
2066                 0x31240, 0x31240,
2067                 0x31600, 0x31600,
2068                 0x31608, 0x3160c,
2069                 0x31a00, 0x31a1c,
2070                 0x31e04, 0x31e20,
2071                 0x31e38, 0x31e3c,
2072                 0x31e80, 0x31e80,
2073                 0x31e88, 0x31ea8,
2074                 0x31eb0, 0x31eb4,
2075                 0x31ec8, 0x31ed4,
2076                 0x31fb8, 0x32004,
2077                 0x32208, 0x3223c,
2078                 0x32600, 0x32630,
2079                 0x32a00, 0x32abc,
2080                 0x32b00, 0x32b70,
2081                 0x33000, 0x33048,
2082                 0x33060, 0x3309c,
2083                 0x330f0, 0x33148,
2084                 0x33160, 0x3319c,
2085                 0x331f0, 0x332e4,
2086                 0x332f8, 0x333e4,
2087                 0x333f8, 0x33448,
2088                 0x33460, 0x3349c,
2089                 0x334f0, 0x33548,
2090                 0x33560, 0x3359c,
2091                 0x335f0, 0x336e4,
2092                 0x336f8, 0x337e4,
2093                 0x337f8, 0x337fc,
2094                 0x33814, 0x33814,
2095                 0x3382c, 0x3382c,
2096                 0x33880, 0x3388c,
2097                 0x338e8, 0x338ec,
2098                 0x33900, 0x33948,
2099                 0x33960, 0x3399c,
2100                 0x339f0, 0x33ae4,
2101                 0x33af8, 0x33b10,
2102                 0x33b28, 0x33b28,
2103                 0x33b3c, 0x33b50,
2104                 0x33bf0, 0x33c10,
2105                 0x33c28, 0x33c28,
2106                 0x33c3c, 0x33c50,
2107                 0x33cf0, 0x33cfc,
2108                 0x34000, 0x34030,
2109                 0x34100, 0x34144,
2110                 0x34190, 0x341d0,
2111                 0x34200, 0x34318,
2112                 0x34400, 0x3452c,
2113                 0x34540, 0x3461c,
2114                 0x34800, 0x34834,
2115                 0x348c0, 0x34908,
2116                 0x34910, 0x349ac,
2117                 0x34a00, 0x34a04,
2118                 0x34a0c, 0x34a2c,
2119                 0x34a44, 0x34a50,
2120                 0x34a74, 0x34c24,
2121                 0x34d08, 0x34d14,
2122                 0x34d1c, 0x34d20,
2123                 0x34d3c, 0x34d50,
2124                 0x35200, 0x3520c,
2125                 0x35220, 0x35220,
2126                 0x35240, 0x35240,
2127                 0x35600, 0x35600,
2128                 0x35608, 0x3560c,
2129                 0x35a00, 0x35a1c,
2130                 0x35e04, 0x35e20,
2131                 0x35e38, 0x35e3c,
2132                 0x35e80, 0x35e80,
2133                 0x35e88, 0x35ea8,
2134                 0x35eb0, 0x35eb4,
2135                 0x35ec8, 0x35ed4,
2136                 0x35fb8, 0x36004,
2137                 0x36208, 0x3623c,
2138                 0x36600, 0x36630,
2139                 0x36a00, 0x36abc,
2140                 0x36b00, 0x36b70,
2141                 0x37000, 0x37048,
2142                 0x37060, 0x3709c,
2143                 0x370f0, 0x37148,
2144                 0x37160, 0x3719c,
2145                 0x371f0, 0x372e4,
2146                 0x372f8, 0x373e4,
2147                 0x373f8, 0x37448,
2148                 0x37460, 0x3749c,
2149                 0x374f0, 0x37548,
2150                 0x37560, 0x3759c,
2151                 0x375f0, 0x376e4,
2152                 0x376f8, 0x377e4,
2153                 0x377f8, 0x377fc,
2154                 0x37814, 0x37814,
2155                 0x3782c, 0x3782c,
2156                 0x37880, 0x3788c,
2157                 0x378e8, 0x378ec,
2158                 0x37900, 0x37948,
2159                 0x37960, 0x3799c,
2160                 0x379f0, 0x37ae4,
2161                 0x37af8, 0x37b10,
2162                 0x37b28, 0x37b28,
2163                 0x37b3c, 0x37b50,
2164                 0x37bf0, 0x37c10,
2165                 0x37c28, 0x37c28,
2166                 0x37c3c, 0x37c50,
2167                 0x37cf0, 0x37cfc,
2168                 0x38000, 0x38030,
2169                 0x38100, 0x38144,
2170                 0x38190, 0x381d0,
2171                 0x38200, 0x38318,
2172                 0x38400, 0x3852c,
2173                 0x38540, 0x3861c,
2174                 0x38800, 0x38834,
2175                 0x388c0, 0x38908,
2176                 0x38910, 0x389ac,
2177                 0x38a00, 0x38a04,
2178                 0x38a0c, 0x38a2c,
2179                 0x38a44, 0x38a50,
2180                 0x38a74, 0x38c24,
2181                 0x38d08, 0x38d14,
2182                 0x38d1c, 0x38d20,
2183                 0x38d3c, 0x38d50,
2184                 0x39200, 0x3920c,
2185                 0x39220, 0x39220,
2186                 0x39240, 0x39240,
2187                 0x39600, 0x39600,
2188                 0x39608, 0x3960c,
2189                 0x39a00, 0x39a1c,
2190                 0x39e04, 0x39e20,
2191                 0x39e38, 0x39e3c,
2192                 0x39e80, 0x39e80,
2193                 0x39e88, 0x39ea8,
2194                 0x39eb0, 0x39eb4,
2195                 0x39ec8, 0x39ed4,
2196                 0x39fb8, 0x3a004,
2197                 0x3a208, 0x3a23c,
2198                 0x3a600, 0x3a630,
2199                 0x3aa00, 0x3aabc,
2200                 0x3ab00, 0x3ab70,
2201                 0x3b000, 0x3b048,
2202                 0x3b060, 0x3b09c,
2203                 0x3b0f0, 0x3b148,
2204                 0x3b160, 0x3b19c,
2205                 0x3b1f0, 0x3b2e4,
2206                 0x3b2f8, 0x3b3e4,
2207                 0x3b3f8, 0x3b448,
2208                 0x3b460, 0x3b49c,
2209                 0x3b4f0, 0x3b548,
2210                 0x3b560, 0x3b59c,
2211                 0x3b5f0, 0x3b6e4,
2212                 0x3b6f8, 0x3b7e4,
2213                 0x3b7f8, 0x3b7fc,
2214                 0x3b814, 0x3b814,
2215                 0x3b82c, 0x3b82c,
2216                 0x3b880, 0x3b88c,
2217                 0x3b8e8, 0x3b8ec,
2218                 0x3b900, 0x3b948,
2219                 0x3b960, 0x3b99c,
2220                 0x3b9f0, 0x3bae4,
2221                 0x3baf8, 0x3bb10,
2222                 0x3bb28, 0x3bb28,
2223                 0x3bb3c, 0x3bb50,
2224                 0x3bbf0, 0x3bc10,
2225                 0x3bc28, 0x3bc28,
2226                 0x3bc3c, 0x3bc50,
2227                 0x3bcf0, 0x3bcfc,
2228                 0x3c000, 0x3c030,
2229                 0x3c100, 0x3c144,
2230                 0x3c190, 0x3c1d0,
2231                 0x3c200, 0x3c318,
2232                 0x3c400, 0x3c52c,
2233                 0x3c540, 0x3c61c,
2234                 0x3c800, 0x3c834,
2235                 0x3c8c0, 0x3c908,
2236                 0x3c910, 0x3c9ac,
2237                 0x3ca00, 0x3ca04,
2238                 0x3ca0c, 0x3ca2c,
2239                 0x3ca44, 0x3ca50,
2240                 0x3ca74, 0x3cc24,
2241                 0x3cd08, 0x3cd14,
2242                 0x3cd1c, 0x3cd20,
2243                 0x3cd3c, 0x3cd50,
2244                 0x3d200, 0x3d20c,
2245                 0x3d220, 0x3d220,
2246                 0x3d240, 0x3d240,
2247                 0x3d600, 0x3d600,
2248                 0x3d608, 0x3d60c,
2249                 0x3da00, 0x3da1c,
2250                 0x3de04, 0x3de20,
2251                 0x3de38, 0x3de3c,
2252                 0x3de80, 0x3de80,
2253                 0x3de88, 0x3dea8,
2254                 0x3deb0, 0x3deb4,
2255                 0x3dec8, 0x3ded4,
2256                 0x3dfb8, 0x3e004,
2257                 0x3e208, 0x3e23c,
2258                 0x3e600, 0x3e630,
2259                 0x3ea00, 0x3eabc,
2260                 0x3eb00, 0x3eb70,
2261                 0x3f000, 0x3f048,
2262                 0x3f060, 0x3f09c,
2263                 0x3f0f0, 0x3f148,
2264                 0x3f160, 0x3f19c,
2265                 0x3f1f0, 0x3f2e4,
2266                 0x3f2f8, 0x3f3e4,
2267                 0x3f3f8, 0x3f448,
2268                 0x3f460, 0x3f49c,
2269                 0x3f4f0, 0x3f548,
2270                 0x3f560, 0x3f59c,
2271                 0x3f5f0, 0x3f6e4,
2272                 0x3f6f8, 0x3f7e4,
2273                 0x3f7f8, 0x3f7fc,
2274                 0x3f814, 0x3f814,
2275                 0x3f82c, 0x3f82c,
2276                 0x3f880, 0x3f88c,
2277                 0x3f8e8, 0x3f8ec,
2278                 0x3f900, 0x3f948,
2279                 0x3f960, 0x3f99c,
2280                 0x3f9f0, 0x3fae4,
2281                 0x3faf8, 0x3fb10,
2282                 0x3fb28, 0x3fb28,
2283                 0x3fb3c, 0x3fb50,
2284                 0x3fbf0, 0x3fc10,
2285                 0x3fc28, 0x3fc28,
2286                 0x3fc3c, 0x3fc50,
2287                 0x3fcf0, 0x3fcfc,
2288                 0x40000, 0x4000c,
2289                 0x40040, 0x40068,
2290                 0x40080, 0x40144,
2291                 0x40180, 0x4018c,
2292                 0x40200, 0x40298,
2293                 0x402ac, 0x4033c,
2294                 0x403f8, 0x403fc,
2295                 0x41304, 0x413c4,
2296                 0x41400, 0x4141c,
2297                 0x41480, 0x414d0,
2298                 0x44000, 0x44078,
2299                 0x440c0, 0x44278,
2300                 0x442c0, 0x44478,
2301                 0x444c0, 0x44678,
2302                 0x446c0, 0x44878,
2303                 0x448c0, 0x449fc,
2304                 0x45000, 0x45068,
2305                 0x45080, 0x45084,
2306                 0x450a0, 0x450b0,
2307                 0x45200, 0x45268,
2308                 0x45280, 0x45284,
2309                 0x452a0, 0x452b0,
2310                 0x460c0, 0x460e4,
2311                 0x47000, 0x4708c,
2312                 0x47200, 0x47250,
2313                 0x47400, 0x47420,
2314                 0x47600, 0x47618,
2315                 0x47800, 0x47814,
2316                 0x48000, 0x4800c,
2317                 0x48040, 0x48068,
2318                 0x48080, 0x48144,
2319                 0x48180, 0x4818c,
2320                 0x48200, 0x48298,
2321                 0x482ac, 0x4833c,
2322                 0x483f8, 0x483fc,
2323                 0x49304, 0x493c4,
2324                 0x49400, 0x4941c,
2325                 0x49480, 0x494d0,
2326                 0x4c000, 0x4c078,
2327                 0x4c0c0, 0x4c278,
2328                 0x4c2c0, 0x4c478,
2329                 0x4c4c0, 0x4c678,
2330                 0x4c6c0, 0x4c878,
2331                 0x4c8c0, 0x4c9fc,
2332                 0x4d000, 0x4d068,
2333                 0x4d080, 0x4d084,
2334                 0x4d0a0, 0x4d0b0,
2335                 0x4d200, 0x4d268,
2336                 0x4d280, 0x4d284,
2337                 0x4d2a0, 0x4d2b0,
2338                 0x4e0c0, 0x4e0e4,
2339                 0x4f000, 0x4f08c,
2340                 0x4f200, 0x4f250,
2341                 0x4f400, 0x4f420,
2342                 0x4f600, 0x4f618,
2343                 0x4f800, 0x4f814,
2344                 0x50000, 0x500cc,
2345                 0x50400, 0x50400,
2346                 0x50800, 0x508cc,
2347                 0x50c00, 0x50c00,
2348                 0x51000, 0x5101c,
2349                 0x51300, 0x51308,
2350         };
2351
2352         int i;
2353         struct adapter *ap = netdev2adap(dev);
2354         static const unsigned int *reg_ranges;
2355         int arr_size = 0, buf_size = 0;
2356
2357         if (is_t4(ap->params.chip)) {
2358                 reg_ranges = &t4_reg_ranges[0];
2359                 arr_size = ARRAY_SIZE(t4_reg_ranges);
2360                 buf_size = T4_REGMAP_SIZE;
2361         } else {
2362                 reg_ranges = &t5_reg_ranges[0];
2363                 arr_size = ARRAY_SIZE(t5_reg_ranges);
2364                 buf_size = T5_REGMAP_SIZE;
2365         }
2366
2367         regs->version = mk_adap_vers(ap);
2368
2369         memset(buf, 0, buf_size);
2370         for (i = 0; i < arr_size; i += 2)
2371                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2372 }
2373
2374 static int restart_autoneg(struct net_device *dev)
2375 {
2376         struct port_info *p = netdev_priv(dev);
2377
2378         if (!netif_running(dev))
2379                 return -EAGAIN;
2380         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2381                 return -EINVAL;
2382         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2383         return 0;
2384 }
2385
2386 static int identify_port(struct net_device *dev,
2387                          enum ethtool_phys_id_state state)
2388 {
2389         unsigned int val;
2390         struct adapter *adap = netdev2adap(dev);
2391
2392         if (state == ETHTOOL_ID_ACTIVE)
2393                 val = 0xffff;
2394         else if (state == ETHTOOL_ID_INACTIVE)
2395                 val = 0;
2396         else
2397                 return -EINVAL;
2398
2399         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2400 }
2401
2402 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2403 {
2404         unsigned int v = 0;
2405
2406         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2407             type == FW_PORT_TYPE_BT_XAUI) {
2408                 v |= SUPPORTED_TP;
2409                 if (caps & FW_PORT_CAP_SPEED_100M)
2410                         v |= SUPPORTED_100baseT_Full;
2411                 if (caps & FW_PORT_CAP_SPEED_1G)
2412                         v |= SUPPORTED_1000baseT_Full;
2413                 if (caps & FW_PORT_CAP_SPEED_10G)
2414                         v |= SUPPORTED_10000baseT_Full;
2415         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2416                 v |= SUPPORTED_Backplane;
2417                 if (caps & FW_PORT_CAP_SPEED_1G)
2418                         v |= SUPPORTED_1000baseKX_Full;
2419                 if (caps & FW_PORT_CAP_SPEED_10G)
2420                         v |= SUPPORTED_10000baseKX4_Full;
2421         } else if (type == FW_PORT_TYPE_KR)
2422                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2423         else if (type == FW_PORT_TYPE_BP_AP)
2424                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2425                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2426         else if (type == FW_PORT_TYPE_BP4_AP)
2427                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2428                      SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2429                      SUPPORTED_10000baseKX4_Full;
2430         else if (type == FW_PORT_TYPE_FIBER_XFI ||
2431                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2432                 v |= SUPPORTED_FIBRE;
2433         else if (type == FW_PORT_TYPE_BP40_BA)
2434                 v |= SUPPORTED_40000baseSR4_Full;
2435
2436         if (caps & FW_PORT_CAP_ANEG)
2437                 v |= SUPPORTED_Autoneg;
2438         return v;
2439 }
2440
2441 static unsigned int to_fw_linkcaps(unsigned int caps)
2442 {
2443         unsigned int v = 0;
2444
2445         if (caps & ADVERTISED_100baseT_Full)
2446                 v |= FW_PORT_CAP_SPEED_100M;
2447         if (caps & ADVERTISED_1000baseT_Full)
2448                 v |= FW_PORT_CAP_SPEED_1G;
2449         if (caps & ADVERTISED_10000baseT_Full)
2450                 v |= FW_PORT_CAP_SPEED_10G;
2451         if (caps & ADVERTISED_40000baseSR4_Full)
2452                 v |= FW_PORT_CAP_SPEED_40G;
2453         return v;
2454 }
2455
2456 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2457 {
2458         const struct port_info *p = netdev_priv(dev);
2459
2460         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2461             p->port_type == FW_PORT_TYPE_BT_XFI ||
2462             p->port_type == FW_PORT_TYPE_BT_XAUI)
2463                 cmd->port = PORT_TP;
2464         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2465                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2466                 cmd->port = PORT_FIBRE;
2467         else if (p->port_type == FW_PORT_TYPE_SFP ||
2468                  p->port_type == FW_PORT_TYPE_QSFP_10G ||
2469                  p->port_type == FW_PORT_TYPE_QSFP) {
2470                 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2471                     p->mod_type == FW_PORT_MOD_TYPE_SR ||
2472                     p->mod_type == FW_PORT_MOD_TYPE_ER ||
2473                     p->mod_type == FW_PORT_MOD_TYPE_LRM)
2474                         cmd->port = PORT_FIBRE;
2475                 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2476                          p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2477                         cmd->port = PORT_DA;
2478                 else
2479                         cmd->port = PORT_OTHER;
2480         } else
2481                 cmd->port = PORT_OTHER;
2482
2483         if (p->mdio_addr >= 0) {
2484                 cmd->phy_address = p->mdio_addr;
2485                 cmd->transceiver = XCVR_EXTERNAL;
2486                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2487                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2488         } else {
2489                 cmd->phy_address = 0;  /* not really, but no better option */
2490                 cmd->transceiver = XCVR_INTERNAL;
2491                 cmd->mdio_support = 0;
2492         }
2493
2494         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2495         cmd->advertising = from_fw_linkcaps(p->port_type,
2496                                             p->link_cfg.advertising);
2497         ethtool_cmd_speed_set(cmd,
2498                               netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2499         cmd->duplex = DUPLEX_FULL;
2500         cmd->autoneg = p->link_cfg.autoneg;
2501         cmd->maxtxpkt = 0;
2502         cmd->maxrxpkt = 0;
2503         return 0;
2504 }
2505
2506 static unsigned int speed_to_caps(int speed)
2507 {
2508         if (speed == 100)
2509                 return FW_PORT_CAP_SPEED_100M;
2510         if (speed == 1000)
2511                 return FW_PORT_CAP_SPEED_1G;
2512         if (speed == 10000)
2513                 return FW_PORT_CAP_SPEED_10G;
2514         if (speed == 40000)
2515                 return FW_PORT_CAP_SPEED_40G;
2516         return 0;
2517 }
2518
2519 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2520 {
2521         unsigned int cap;
2522         struct port_info *p = netdev_priv(dev);
2523         struct link_config *lc = &p->link_cfg;
2524         u32 speed = ethtool_cmd_speed(cmd);
2525
2526         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2527                 return -EINVAL;
2528
2529         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2530                 /*
2531                  * PHY offers a single speed.  See if that's what's
2532                  * being requested.
2533                  */
2534                 if (cmd->autoneg == AUTONEG_DISABLE &&
2535                     (lc->supported & speed_to_caps(speed)))
2536                         return 0;
2537                 return -EINVAL;
2538         }
2539
2540         if (cmd->autoneg == AUTONEG_DISABLE) {
2541                 cap = speed_to_caps(speed);
2542
2543                 if (!(lc->supported & cap) ||
2544                     (speed == 1000) ||
2545                     (speed == 10000) ||
2546                     (speed == 40000))
2547                         return -EINVAL;
2548                 lc->requested_speed = cap;
2549                 lc->advertising = 0;
2550         } else {
2551                 cap = to_fw_linkcaps(cmd->advertising);
2552                 if (!(lc->supported & cap))
2553                         return -EINVAL;
2554                 lc->requested_speed = 0;
2555                 lc->advertising = cap | FW_PORT_CAP_ANEG;
2556         }
2557         lc->autoneg = cmd->autoneg;
2558
2559         if (netif_running(dev))
2560                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2561                                      lc);
2562         return 0;
2563 }
2564
2565 static void get_pauseparam(struct net_device *dev,
2566                            struct ethtool_pauseparam *epause)
2567 {
2568         struct port_info *p = netdev_priv(dev);
2569
2570         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2571         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2572         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2573 }
2574
2575 static int set_pauseparam(struct net_device *dev,
2576                           struct ethtool_pauseparam *epause)
2577 {
2578         struct port_info *p = netdev_priv(dev);
2579         struct link_config *lc = &p->link_cfg;
2580
2581         if (epause->autoneg == AUTONEG_DISABLE)
2582                 lc->requested_fc = 0;
2583         else if (lc->supported & FW_PORT_CAP_ANEG)
2584                 lc->requested_fc = PAUSE_AUTONEG;
2585         else
2586                 return -EINVAL;
2587
2588         if (epause->rx_pause)
2589                 lc->requested_fc |= PAUSE_RX;
2590         if (epause->tx_pause)
2591                 lc->requested_fc |= PAUSE_TX;
2592         if (netif_running(dev))
2593                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2594                                      lc);
2595         return 0;
2596 }
2597
2598 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2599 {
2600         const struct port_info *pi = netdev_priv(dev);
2601         const struct sge *s = &pi->adapter->sge;
2602
2603         e->rx_max_pending = MAX_RX_BUFFERS;
2604         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2605         e->rx_jumbo_max_pending = 0;
2606         e->tx_max_pending = MAX_TXQ_ENTRIES;
2607
2608         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2609         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2610         e->rx_jumbo_pending = 0;
2611         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2612 }
2613
2614 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2615 {
2616         int i;
2617         const struct port_info *pi = netdev_priv(dev);
2618         struct adapter *adapter = pi->adapter;
2619         struct sge *s = &adapter->sge;
2620
2621         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2622             e->tx_pending > MAX_TXQ_ENTRIES ||
2623             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2624             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2625             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2626                 return -EINVAL;
2627
2628         if (adapter->flags & FULL_INIT_DONE)
2629                 return -EBUSY;
2630
2631         for (i = 0; i < pi->nqsets; ++i) {
2632                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2633                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2634                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2635         }
2636         return 0;
2637 }
2638
2639 static int closest_timer(const struct sge *s, int time)
2640 {
2641         int i, delta, match = 0, min_delta = INT_MAX;
2642
2643         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2644                 delta = time - s->timer_val[i];
2645                 if (delta < 0)
2646                         delta = -delta;
2647                 if (delta < min_delta) {
2648                         min_delta = delta;
2649                         match = i;
2650                 }
2651         }
2652         return match;
2653 }
2654
2655 static int closest_thres(const struct sge *s, int thres)
2656 {
2657         int i, delta, match = 0, min_delta = INT_MAX;
2658
2659         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2660                 delta = thres - s->counter_val[i];
2661                 if (delta < 0)
2662                         delta = -delta;
2663                 if (delta < min_delta) {
2664                         min_delta = delta;
2665                         match = i;
2666                 }
2667         }
2668         return match;
2669 }
2670
2671 /*
2672  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2673  */
2674 static unsigned int qtimer_val(const struct adapter *adap,
2675                                const struct sge_rspq *q)
2676 {
2677         unsigned int idx = q->intr_params >> 1;
2678
2679         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2680 }
2681
2682 /**
2683  *      set_rspq_intr_params - set a queue's interrupt holdoff parameters
2684  *      @q: the Rx queue
2685  *      @us: the hold-off time in us, or 0 to disable timer
2686  *      @cnt: the hold-off packet count, or 0 to disable counter
2687  *
2688  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
2689  *      one of the two needs to be enabled for the queue to generate interrupts.
2690  */
2691 static int set_rspq_intr_params(struct sge_rspq *q,
2692                                 unsigned int us, unsigned int cnt)
2693 {
2694         struct adapter *adap = q->adap;
2695
2696         if ((us | cnt) == 0)
2697                 cnt = 1;
2698
2699         if (cnt) {
2700                 int err;
2701                 u32 v, new_idx;
2702
2703                 new_idx = closest_thres(&adap->sge, cnt);
2704                 if (q->desc && q->pktcnt_idx != new_idx) {
2705                         /* the queue has already been created, update it */
2706                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2707                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2708                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
2709                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2710                                             &new_idx);
2711                         if (err)
2712                                 return err;
2713                 }
2714                 q->pktcnt_idx = new_idx;
2715         }
2716
2717         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2718         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2719         return 0;
2720 }
2721
2722 /**
2723  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2724  * @dev: the network device
2725  * @us: the hold-off time in us, or 0 to disable timer
2726  * @cnt: the hold-off packet count, or 0 to disable counter
2727  *
2728  * Set the RX interrupt hold-off parameters for a network device.
2729  */
2730 static int set_rx_intr_params(struct net_device *dev,
2731                               unsigned int us, unsigned int cnt)
2732 {
2733         int i, err;
2734         struct port_info *pi = netdev_priv(dev);
2735         struct adapter *adap = pi->adapter;
2736         struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2737
2738         for (i = 0; i < pi->nqsets; i++, q++) {
2739                 err = set_rspq_intr_params(&q->rspq, us, cnt);
2740                 if (err)
2741                         return err;
2742         }
2743         return 0;
2744 }
2745
2746 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2747 {
2748         return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2749                                   c->rx_max_coalesced_frames);
2750 }
2751
2752 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2753 {
2754         const struct port_info *pi = netdev_priv(dev);
2755         const struct adapter *adap = pi->adapter;
2756         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2757
2758         c->rx_coalesce_usecs = qtimer_val(adap, rq);
2759         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2760                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2761         return 0;
2762 }
2763
2764 /**
2765  *      eeprom_ptov - translate a physical EEPROM address to virtual
2766  *      @phys_addr: the physical EEPROM address
2767  *      @fn: the PCI function number
2768  *      @sz: size of function-specific area
2769  *
2770  *      Translate a physical EEPROM address to virtual.  The first 1K is
2771  *      accessed through virtual addresses starting at 31K, the rest is
2772  *      accessed through virtual addresses starting at 0.
2773  *
2774  *      The mapping is as follows:
2775  *      [0..1K) -> [31K..32K)
2776  *      [1K..1K+A) -> [31K-A..31K)
2777  *      [1K+A..ES) -> [0..ES-A-1K)
2778  *
2779  *      where A = @fn * @sz, and ES = EEPROM size.
2780  */
2781 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2782 {
2783         fn *= sz;
2784         if (phys_addr < 1024)
2785                 return phys_addr + (31 << 10);
2786         if (phys_addr < 1024 + fn)
2787                 return 31744 - fn + phys_addr - 1024;
2788         if (phys_addr < EEPROMSIZE)
2789                 return phys_addr - 1024 - fn;
2790         return -EINVAL;
2791 }
2792
2793 /*
2794  * The next two routines implement eeprom read/write from physical addresses.
2795  */
2796 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2797 {
2798         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2799
2800         if (vaddr >= 0)
2801                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2802         return vaddr < 0 ? vaddr : 0;
2803 }
2804
2805 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2806 {
2807         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2808
2809         if (vaddr >= 0)
2810                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2811         return vaddr < 0 ? vaddr : 0;
2812 }
2813
2814 #define EEPROM_MAGIC 0x38E2F10C
2815
2816 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2817                       u8 *data)
2818 {
2819         int i, err = 0;
2820         struct adapter *adapter = netdev2adap(dev);
2821
2822         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2823         if (!buf)
2824                 return -ENOMEM;
2825
2826         e->magic = EEPROM_MAGIC;
2827         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2828                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2829
2830         if (!err)
2831                 memcpy(data, buf + e->offset, e->len);
2832         kfree(buf);
2833         return err;
2834 }
2835
2836 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2837                       u8 *data)
2838 {
2839         u8 *buf;
2840         int err = 0;
2841         u32 aligned_offset, aligned_len, *p;
2842         struct adapter *adapter = netdev2adap(dev);
2843
2844         if (eeprom->magic != EEPROM_MAGIC)
2845                 return -EINVAL;
2846
2847         aligned_offset = eeprom->offset & ~3;
2848         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2849
2850         if (adapter->fn > 0) {
2851                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2852
2853                 if (aligned_offset < start ||
2854                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
2855                         return -EPERM;
2856         }
2857
2858         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2859                 /*
2860                  * RMW possibly needed for first or last words.
2861                  */
2862                 buf = kmalloc(aligned_len, GFP_KERNEL);
2863                 if (!buf)
2864                         return -ENOMEM;
2865                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2866                 if (!err && aligned_len > 4)
2867                         err = eeprom_rd_phys(adapter,
2868                                              aligned_offset + aligned_len - 4,
2869                                              (u32 *)&buf[aligned_len - 4]);
2870                 if (err)
2871                         goto out;
2872                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2873         } else
2874                 buf = data;
2875
2876         err = t4_seeprom_wp(adapter, false);
2877         if (err)
2878                 goto out;
2879
2880         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2881                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2882                 aligned_offset += 4;
2883         }
2884
2885         if (!err)
2886                 err = t4_seeprom_wp(adapter, true);
2887 out:
2888         if (buf != data)
2889                 kfree(buf);
2890         return err;
2891 }
2892
2893 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2894 {
2895         int ret;
2896         const struct firmware *fw;
2897         struct adapter *adap = netdev2adap(netdev);
2898
2899         ef->data[sizeof(ef->data) - 1] = '\0';
2900         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2901         if (ret < 0)
2902                 return ret;
2903
2904         ret = t4_load_fw(adap, fw->data, fw->size);
2905         release_firmware(fw);
2906         if (!ret)
2907                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2908         return ret;
2909 }
2910
2911 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2912 #define BCAST_CRC 0xa0ccc1a6
2913
2914 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2915 {
2916         wol->supported = WAKE_BCAST | WAKE_MAGIC;
2917         wol->wolopts = netdev2adap(dev)->wol;
2918         memset(&wol->sopass, 0, sizeof(wol->sopass));
2919 }
2920
2921 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2922 {
2923         int err = 0;
2924         struct port_info *pi = netdev_priv(dev);
2925
2926         if (wol->wolopts & ~WOL_SUPPORTED)
2927                 return -EINVAL;
2928         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2929                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2930         if (wol->wolopts & WAKE_BCAST) {
2931                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2932                                         ~0ULL, 0, false);
2933                 if (!err)
2934                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2935                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
2936         } else
2937                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2938         return err;
2939 }
2940
2941 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2942 {
2943         const struct port_info *pi = netdev_priv(dev);
2944         netdev_features_t changed = dev->features ^ features;
2945         int err;
2946
2947         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2948                 return 0;
2949
2950         err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2951                             -1, -1, -1,
2952                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2953         if (unlikely(err))
2954                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
2955         return err;
2956 }
2957
2958 static u32 get_rss_table_size(struct net_device *dev)
2959 {
2960         const struct port_info *pi = netdev_priv(dev);
2961
2962         return pi->rss_size;
2963 }
2964
2965 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
2966 {
2967         const struct port_info *pi = netdev_priv(dev);
2968         unsigned int n = pi->rss_size;
2969
2970         while (n--)
2971                 p[n] = pi->rss[n];
2972         return 0;
2973 }
2974
2975 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
2976 {
2977         unsigned int i;
2978         struct port_info *pi = netdev_priv(dev);
2979
2980         for (i = 0; i < pi->rss_size; i++)
2981                 pi->rss[i] = p[i];
2982         if (pi->adapter->flags & FULL_INIT_DONE)
2983                 return write_rss(pi, pi->rss);
2984         return 0;
2985 }
2986
2987 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2988                      u32 *rules)
2989 {
2990         const struct port_info *pi = netdev_priv(dev);
2991
2992         switch (info->cmd) {
2993         case ETHTOOL_GRXFH: {
2994                 unsigned int v = pi->rss_mode;
2995
2996                 info->data = 0;
2997                 switch (info->flow_type) {
2998                 case TCP_V4_FLOW:
2999                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3000                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3001                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3002                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3003                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3004                         break;
3005                 case UDP_V4_FLOW:
3006                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3007                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3008                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3009                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3010                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3011                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3012                         break;
3013                 case SCTP_V4_FLOW:
3014                 case AH_ESP_V4_FLOW:
3015                 case IPV4_FLOW:
3016                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3017                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3018                         break;
3019                 case TCP_V6_FLOW:
3020                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3021                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3022                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3023                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3024                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3025                         break;
3026                 case UDP_V6_FLOW:
3027                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3028                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3029                                 info->data = RXH_IP_SRC | RXH_IP_DST |
3030                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
3031                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3032                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3033                         break;
3034                 case SCTP_V6_FLOW:
3035                 case AH_ESP_V6_FLOW:
3036                 case IPV6_FLOW:
3037                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3038                                 info->data = RXH_IP_SRC | RXH_IP_DST;
3039                         break;
3040                 }
3041                 return 0;
3042         }
3043         case ETHTOOL_GRXRINGS:
3044                 info->data = pi->nqsets;
3045                 return 0;
3046         }
3047         return -EOPNOTSUPP;
3048 }
3049
3050 static const struct ethtool_ops cxgb_ethtool_ops = {
3051         .get_settings      = get_settings,
3052         .set_settings      = set_settings,
3053         .get_drvinfo       = get_drvinfo,
3054         .get_msglevel      = get_msglevel,
3055         .set_msglevel      = set_msglevel,
3056         .get_ringparam     = get_sge_param,
3057         .set_ringparam     = set_sge_param,
3058         .get_coalesce      = get_coalesce,
3059         .set_coalesce      = set_coalesce,
3060         .get_eeprom_len    = get_eeprom_len,
3061         .get_eeprom        = get_eeprom,
3062         .set_eeprom        = set_eeprom,
3063         .get_pauseparam    = get_pauseparam,
3064         .set_pauseparam    = set_pauseparam,
3065         .get_link          = ethtool_op_get_link,
3066         .get_strings       = get_strings,
3067         .set_phys_id       = identify_port,
3068         .nway_reset        = restart_autoneg,
3069         .get_sset_count    = get_sset_count,
3070         .get_ethtool_stats = get_stats,
3071         .get_regs_len      = get_regs_len,
3072         .get_regs          = get_regs,
3073         .get_wol           = get_wol,
3074         .set_wol           = set_wol,
3075         .get_rxnfc         = get_rxnfc,
3076         .get_rxfh_indir_size = get_rss_table_size,
3077         .get_rxfh          = get_rss_table,
3078         .set_rxfh          = set_rss_table,
3079         .flash_device      = set_flash,
3080 };
3081
3082 /*
3083  * debugfs support
3084  */
3085 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3086                         loff_t *ppos)
3087 {
3088         loff_t pos = *ppos;
3089         loff_t avail = file_inode(file)->i_size;
3090         unsigned int mem = (uintptr_t)file->private_data & 3;
3091         struct adapter *adap = file->private_data - mem;
3092         __be32 *data;
3093         int ret;
3094
3095         if (pos < 0)
3096                 return -EINVAL;
3097         if (pos >= avail)
3098                 return 0;
3099         if (count > avail - pos)
3100                 count = avail - pos;
3101
3102         data = t4_alloc_mem(count);
3103         if (!data)
3104                 return -ENOMEM;
3105
3106         spin_lock(&adap->win0_lock);
3107         ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
3108         spin_unlock(&adap->win0_lock);
3109         if (ret) {
3110                 t4_free_mem(data);
3111                 return ret;
3112         }
3113         ret = copy_to_user(buf, data, count);
3114
3115         t4_free_mem(data);
3116         if (ret)
3117                 return -EFAULT;
3118
3119         *ppos = pos + count;
3120         return count;
3121 }
3122
3123 static const struct file_operations mem_debugfs_fops = {
3124         .owner   = THIS_MODULE,
3125         .open    = simple_open,
3126         .read    = mem_read,
3127         .llseek  = default_llseek,
3128 };
3129
3130 static void add_debugfs_mem(struct adapter *adap, const char *name,
3131                             unsigned int idx, unsigned int size_mb)
3132 {
3133         struct dentry *de;
3134
3135         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3136                                  (void *)adap + idx, &mem_debugfs_fops);
3137         if (de && de->d_inode)
3138                 de->d_inode->i_size = size_mb << 20;
3139 }
3140
3141 static int setup_debugfs(struct adapter *adap)
3142 {
3143         int i;
3144         u32 size;
3145
3146         if (IS_ERR_OR_NULL(adap->debugfs_root))
3147                 return -1;
3148
3149         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
3150         if (i & EDRAM0_ENABLE) {
3151                 size = t4_read_reg(adap, MA_EDRAM0_BAR);
3152                 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
3153         }
3154         if (i & EDRAM1_ENABLE) {
3155                 size = t4_read_reg(adap, MA_EDRAM1_BAR);
3156                 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3157         }
3158         if (is_t4(adap->params.chip)) {
3159                 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3160                 if (i & EXT_MEM_ENABLE)
3161                         add_debugfs_mem(adap, "mc", MEM_MC,
3162                                         EXT_MEM_SIZE_GET(size));
3163         } else {
3164                 if (i & EXT_MEM_ENABLE) {
3165                         size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3166                         add_debugfs_mem(adap, "mc0", MEM_MC0,
3167                                         EXT_MEM_SIZE_GET(size));
3168                 }
3169                 if (i & EXT_MEM1_ENABLE) {
3170                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3171                         add_debugfs_mem(adap, "mc1", MEM_MC1,
3172                                         EXT_MEM_SIZE_GET(size));
3173                 }
3174         }
3175         if (adap->l2t)
3176                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3177                                     &t4_l2t_fops);
3178         return 0;
3179 }
3180
3181 /*
3182  * upper-layer driver support
3183  */
3184
3185 /*
3186  * Allocate an active-open TID and set it to the supplied value.
3187  */
3188 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3189 {
3190         int atid = -1;
3191
3192         spin_lock_bh(&t->atid_lock);
3193         if (t->afree) {
3194                 union aopen_entry *p = t->afree;
3195
3196                 atid = (p - t->atid_tab) + t->atid_base;
3197                 t->afree = p->next;
3198                 p->data = data;
3199                 t->atids_in_use++;
3200         }
3201         spin_unlock_bh(&t->atid_lock);
3202         return atid;
3203 }
3204 EXPORT_SYMBOL(cxgb4_alloc_atid);
3205
3206 /*
3207  * Release an active-open TID.
3208  */
3209 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3210 {
3211         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3212
3213         spin_lock_bh(&t->atid_lock);
3214         p->next = t->afree;
3215         t->afree = p;
3216         t->atids_in_use--;
3217         spin_unlock_bh(&t->atid_lock);
3218 }
3219 EXPORT_SYMBOL(cxgb4_free_atid);
3220
3221 /*
3222  * Allocate a server TID and set it to the supplied value.
3223  */
3224 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3225 {
3226         int stid;
3227
3228         spin_lock_bh(&t->stid_lock);
3229         if (family == PF_INET) {
3230                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3231                 if (stid < t->nstids)
3232                         __set_bit(stid, t->stid_bmap);
3233                 else
3234                         stid = -1;
3235         } else {
3236                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3237                 if (stid < 0)
3238                         stid = -1;
3239         }
3240         if (stid >= 0) {
3241                 t->stid_tab[stid].data = data;
3242                 stid += t->stid_base;
3243                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3244                  * This is equivalent to 4 TIDs. With CLIP enabled it
3245                  * needs 2 TIDs.
3246                  */
3247                 if (family == PF_INET)
3248                         t->stids_in_use++;
3249                 else
3250                         t->stids_in_use += 4;
3251         }
3252         spin_unlock_bh(&t->stid_lock);
3253         return stid;
3254 }
3255 EXPORT_SYMBOL(cxgb4_alloc_stid);
3256
3257 /* Allocate a server filter TID and set it to the supplied value.
3258  */
3259 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3260 {
3261         int stid;
3262
3263         spin_lock_bh(&t->stid_lock);
3264         if (family == PF_INET) {
3265                 stid = find_next_zero_bit(t->stid_bmap,
3266                                 t->nstids + t->nsftids, t->nstids);
3267                 if (stid < (t->nstids + t->nsftids))
3268                         __set_bit(stid, t->stid_bmap);
3269                 else
3270                         stid = -1;
3271         } else {
3272                 stid = -1;
3273         }
3274         if (stid >= 0) {
3275                 t->stid_tab[stid].data = data;
3276                 stid -= t->nstids;
3277                 stid += t->sftid_base;
3278                 t->stids_in_use++;
3279         }
3280         spin_unlock_bh(&t->stid_lock);
3281         return stid;
3282 }
3283 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3284
3285 /* Release a server TID.
3286  */
3287 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3288 {
3289         /* Is it a server filter TID? */
3290         if (t->nsftids && (stid >= t->sftid_base)) {
3291                 stid -= t->sftid_base;
3292                 stid += t->nstids;
3293         } else {
3294                 stid -= t->stid_base;
3295         }
3296
3297         spin_lock_bh(&t->stid_lock);
3298         if (family == PF_INET)
3299                 __clear_bit(stid, t->stid_bmap);
3300         else
3301                 bitmap_release_region(t->stid_bmap, stid, 2);
3302         t->stid_tab[stid].data = NULL;
3303         if (family == PF_INET)
3304                 t->stids_in_use--;
3305         else
3306                 t->stids_in_use -= 4;
3307         spin_unlock_bh(&t->stid_lock);
3308 }
3309 EXPORT_SYMBOL(cxgb4_free_stid);
3310
3311 /*
3312  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3313  */
3314 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3315                            unsigned int tid)
3316 {
3317         struct cpl_tid_release *req;
3318
3319         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3320         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3321         INIT_TP_WR(req, tid);
3322         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3323 }
3324
3325 /*
3326  * Queue a TID release request and if necessary schedule a work queue to
3327  * process it.
3328  */
3329 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3330                                     unsigned int tid)
3331 {
3332         void **p = &t->tid_tab[tid];
3333         struct adapter *adap = container_of(t, struct adapter, tids);
3334
3335         spin_lock_bh(&adap->tid_release_lock);
3336         *p = adap->tid_release_head;
3337         /* Low 2 bits encode the Tx channel number */
3338         adap->tid_release_head = (void **)((uintptr_t)p | chan);
3339         if (!adap->tid_release_task_busy) {
3340                 adap->tid_release_task_busy = true;
3341                 queue_work(workq, &adap->tid_release_task);
3342         }
3343         spin_unlock_bh(&adap->tid_release_lock);
3344 }
3345
3346 /*
3347  * Process the list of pending TID release requests.
3348  */
3349 static void process_tid_release_list(struct work_struct *work)
3350 {
3351         struct sk_buff *skb;
3352         struct adapter *adap;
3353
3354         adap = container_of(work, struct adapter, tid_release_task);
3355
3356         spin_lock_bh(&adap->tid_release_lock);
3357         while (adap->tid_release_head) {
3358                 void **p = adap->tid_release_head;
3359                 unsigned int chan = (uintptr_t)p & 3;
3360                 p = (void *)p - chan;
3361
3362                 adap->tid_release_head = *p;
3363                 *p = NULL;
3364                 spin_unlock_bh(&adap->tid_release_lock);
3365
3366                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3367                                          GFP_KERNEL)))
3368                         schedule_timeout_uninterruptible(1);
3369
3370                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3371                 t4_ofld_send(adap, skb);
3372                 spin_lock_bh(&adap->tid_release_lock);
3373         }
3374         adap->tid_release_task_busy = false;
3375         spin_unlock_bh(&adap->tid_release_lock);
3376 }
3377
3378 /*
3379  * Release a TID and inform HW.  If we are unable to allocate the release
3380  * message we defer to a work queue.
3381  */
3382 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3383 {
3384         void *old;
3385         struct sk_buff *skb;
3386         struct adapter *adap = container_of(t, struct adapter, tids);
3387
3388         old = t->tid_tab[tid];
3389         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3390         if (likely(skb)) {
3391                 t->tid_tab[tid] = NULL;
3392                 mk_tid_release(skb, chan, tid);
3393                 t4_ofld_send(adap, skb);
3394         } else
3395                 cxgb4_queue_tid_release(t, chan, tid);
3396         if (old)
3397                 atomic_dec(&t->tids_in_use);
3398 }
3399 EXPORT_SYMBOL(cxgb4_remove_tid);
3400
3401 /*
3402  * Allocate and initialize the TID tables.  Returns 0 on success.
3403  */
3404 static int tid_init(struct tid_info *t)
3405 {
3406         size_t size;
3407         unsigned int stid_bmap_size;
3408         unsigned int natids = t->natids;
3409         struct adapter *adap = container_of(t, struct adapter, tids);
3410
3411         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3412         size = t->ntids * sizeof(*t->tid_tab) +
3413                natids * sizeof(*t->atid_tab) +
3414                t->nstids * sizeof(*t->stid_tab) +
3415                t->nsftids * sizeof(*t->stid_tab) +
3416                stid_bmap_size * sizeof(long) +
3417                t->nftids * sizeof(*t->ftid_tab) +
3418                t->nsftids * sizeof(*t->ftid_tab);
3419
3420         t->tid_tab = t4_alloc_mem(size);
3421         if (!t->tid_tab)
3422                 return -ENOMEM;
3423
3424         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3425         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3426         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3427         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3428         spin_lock_init(&t->stid_lock);
3429         spin_lock_init(&t->atid_lock);
3430
3431         t->stids_in_use = 0;
3432         t->afree = NULL;
3433         t->atids_in_use = 0;
3434         atomic_set(&t->tids_in_use, 0);
3435
3436         /* Setup the free list for atid_tab and clear the stid bitmap. */
3437         if (natids) {
3438                 while (--natids)
3439                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3440                 t->afree = t->atid_tab;
3441         }
3442         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3443         /* Reserve stid 0 for T4/T5 adapters */
3444         if (!t->stid_base &&
3445             (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3446                 __set_bit(0, t->stid_bmap);
3447
3448         return 0;
3449 }
3450
3451 int cxgb4_clip_get(const struct net_device *dev,
3452                    const struct in6_addr *lip)
3453 {
3454         struct adapter *adap;
3455         struct fw_clip_cmd c;
3456
3457         adap = netdev2adap(dev);
3458         memset(&c, 0, sizeof(c));
3459         c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3460                         FW_CMD_REQUEST | FW_CMD_WRITE);
3461         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3462         c.ip_hi = *(__be64 *)(lip->s6_addr);
3463         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3464         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3465 }
3466 EXPORT_SYMBOL(cxgb4_clip_get);
3467
3468 int cxgb4_clip_release(const struct net_device *dev,
3469                        const struct in6_addr *lip)
3470 {
3471         struct adapter *adap;
3472         struct fw_clip_cmd c;
3473
3474         adap = netdev2adap(dev);
3475         memset(&c, 0, sizeof(c));
3476         c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3477                         FW_CMD_REQUEST | FW_CMD_READ);
3478         c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3479         c.ip_hi = *(__be64 *)(lip->s6_addr);
3480         c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3481         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3482 }
3483 EXPORT_SYMBOL(cxgb4_clip_release);
3484
3485 /**
3486  *      cxgb4_create_server - create an IP server
3487  *      @dev: the device
3488  *      @stid: the server TID
3489  *      @sip: local IP address to bind server to
3490  *      @sport: the server's TCP port
3491  *      @queue: queue to direct messages from this server to
3492  *
3493  *      Create an IP server for the given port and address.
3494  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3495  */
3496 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3497                         __be32 sip, __be16 sport, __be16 vlan,
3498                         unsigned int queue)
3499 {
3500         unsigned int chan;
3501         struct sk_buff *skb;
3502         struct adapter *adap;
3503         struct cpl_pass_open_req *req;
3504         int ret;
3505
3506         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3507         if (!skb)
3508                 return -ENOMEM;
3509
3510         adap = netdev2adap(dev);
3511         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3512         INIT_TP_WR(req, 0);
3513         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3514         req->local_port = sport;
3515         req->peer_port = htons(0);
3516         req->local_ip = sip;
3517         req->peer_ip = htonl(0);
3518         chan = rxq_to_chan(&adap->sge, queue);
3519         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3520         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3521                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3522         ret = t4_mgmt_tx(adap, skb);
3523         return net_xmit_eval(ret);
3524 }
3525 EXPORT_SYMBOL(cxgb4_create_server);
3526
3527 /*      cxgb4_create_server6 - create an IPv6 server
3528  *      @dev: the device
3529  *      @stid: the server TID
3530  *      @sip: local IPv6 address to bind server to
3531  *      @sport: the server's TCP port
3532  *      @queue: queue to direct messages from this server to
3533  *
3534  *      Create an IPv6 server for the given port and address.
3535  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
3536  */
3537 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3538                          const struct in6_addr *sip, __be16 sport,
3539                          unsigned int queue)
3540 {
3541         unsigned int chan;
3542         struct sk_buff *skb;
3543         struct adapter *adap;
3544         struct cpl_pass_open_req6 *req;
3545         int ret;
3546
3547         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3548         if (!skb)
3549                 return -ENOMEM;
3550
3551         adap = netdev2adap(dev);
3552         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3553         INIT_TP_WR(req, 0);
3554         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3555         req->local_port = sport;
3556         req->peer_port = htons(0);
3557         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3558         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3559         req->peer_ip_hi = cpu_to_be64(0);
3560         req->peer_ip_lo = cpu_to_be64(0);
3561         chan = rxq_to_chan(&adap->sge, queue);
3562         req->opt0 = cpu_to_be64(TX_CHAN(chan));
3563         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3564                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3565         ret = t4_mgmt_tx(adap, skb);
3566         return net_xmit_eval(ret);
3567 }
3568 EXPORT_SYMBOL(cxgb4_create_server6);
3569
3570 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3571                         unsigned int queue, bool ipv6)
3572 {
3573         struct sk_buff *skb;
3574         struct adapter *adap;
3575         struct cpl_close_listsvr_req *req;
3576         int ret;
3577
3578         adap = netdev2adap(dev);
3579
3580         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3581         if (!skb)
3582                 return -ENOMEM;
3583
3584         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3585         INIT_TP_WR(req, 0);
3586         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3587         req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3588                                 LISTSVR_IPV6(0)) | QUEUENO(queue));
3589         ret = t4_mgmt_tx(adap, skb);
3590         return net_xmit_eval(ret);
3591 }
3592 EXPORT_SYMBOL(cxgb4_remove_server);
3593
3594 /**
3595  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3596  *      @mtus: the HW MTU table
3597  *      @mtu: the target MTU
3598  *      @idx: index of selected entry in the MTU table
3599  *
3600  *      Returns the index and the value in the HW MTU table that is closest to
3601  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
3602  *      table, in which case that smallest available value is selected.
3603  */
3604 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3605                             unsigned int *idx)
3606 {
3607         unsigned int i = 0;
3608
3609         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3610                 ++i;
3611         if (idx)
3612                 *idx = i;
3613         return mtus[i];
3614 }
3615 EXPORT_SYMBOL(cxgb4_best_mtu);
3616
3617 /**
3618  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3619  *     @mtus: the HW MTU table
3620  *     @header_size: Header Size
3621  *     @data_size_max: maximum Data Segment Size
3622  *     @data_size_align: desired Data Segment Size Alignment (2^N)
3623  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3624  *
3625  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
3626  *     MTU Table based solely on a Maximum MTU parameter, we break that
3627  *     parameter up into a Header Size and Maximum Data Segment Size, and
3628  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
3629  *     the Hardware MTU Table which will result in a Data Segment Size with
3630  *     the requested alignment _and_ that MTU isn't "too far" from the
3631  *     closest MTU, then we'll return that rather than the closest MTU.
3632  */
3633 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3634                                     unsigned short header_size,
3635                                     unsigned short data_size_max,
3636                                     unsigned short data_size_align,
3637                                     unsigned int *mtu_idxp)
3638 {
3639         unsigned short max_mtu = header_size + data_size_max;
3640         unsigned short data_size_align_mask = data_size_align - 1;
3641         int mtu_idx, aligned_mtu_idx;
3642
3643         /* Scan the MTU Table till we find an MTU which is larger than our
3644          * Maximum MTU or we reach the end of the table.  Along the way,
3645          * record the last MTU found, if any, which will result in a Data
3646          * Segment Length matching the requested alignment.
3647          */
3648         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3649                 unsigned short data_size = mtus[mtu_idx] - header_size;
3650
3651                 /* If this MTU minus the Header Size would result in a
3652                  * Data Segment Size of the desired alignment, remember it.
3653                  */
3654                 if ((data_size & data_size_align_mask) == 0)
3655                         aligned_mtu_idx = mtu_idx;
3656
3657                 /* If we're not at the end of the Hardware MTU Table and the
3658                  * next element is larger than our Maximum MTU, drop out of
3659                  * the loop.
3660                  */
3661                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3662                         break;
3663         }
3664
3665         /* If we fell out of the loop because we ran to the end of the table,
3666          * then we just have to use the last [largest] entry.
3667          */
3668         if (mtu_idx == NMTUS)
3669                 mtu_idx--;
3670
3671         /* If we found an MTU which resulted in the requested Data Segment
3672          * Length alignment and that's "not far" from the largest MTU which is
3673          * less than or equal to the maximum MTU, then use that.
3674          */
3675         if (aligned_mtu_idx >= 0 &&
3676             mtu_idx - aligned_mtu_idx <= 1)
3677                 mtu_idx = aligned_mtu_idx;
3678
3679         /* If the caller has passed in an MTU Index pointer, pass the
3680          * MTU Index back.  Return the MTU value.
3681          */
3682         if (mtu_idxp)
3683                 *mtu_idxp = mtu_idx;
3684         return mtus[mtu_idx];
3685 }
3686 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3687
3688 /**
3689  *      cxgb4_port_chan - get the HW channel of a port
3690  *      @dev: the net device for the port
3691  *
3692  *      Return the HW Tx channel of the given port.
3693  */
3694 unsigned int cxgb4_port_chan(const struct net_device *dev)
3695 {
3696         return netdev2pinfo(dev)->tx_chan;
3697 }
3698 EXPORT_SYMBOL(cxgb4_port_chan);
3699
3700 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3701 {
3702         struct adapter *adap = netdev2adap(dev);
3703         u32 v1, v2, lp_count, hp_count;
3704
3705         v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3706         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3707         if (is_t4(adap->params.chip)) {
3708                 lp_count = G_LP_COUNT(v1);
3709                 hp_count = G_HP_COUNT(v1);
3710         } else {
3711                 lp_count = G_LP_COUNT_T5(v1);
3712                 hp_count = G_HP_COUNT_T5(v2);
3713         }
3714         return lpfifo ? lp_count : hp_count;
3715 }
3716 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3717
3718 /**
3719  *      cxgb4_port_viid - get the VI id of a port
3720  *      @dev: the net device for the port
3721  *
3722  *      Return the VI id of the given port.
3723  */
3724 unsigned int cxgb4_port_viid(const struct net_device *dev)
3725 {
3726         return netdev2pinfo(dev)->viid;
3727 }
3728 EXPORT_SYMBOL(cxgb4_port_viid);
3729
3730 /**
3731  *      cxgb4_port_idx - get the index of a port
3732  *      @dev: the net device for the port
3733  *
3734  *      Return the index of the given port.
3735  */
3736 unsigned int cxgb4_port_idx(const struct net_device *dev)
3737 {
3738         return netdev2pinfo(dev)->port_id;
3739 }
3740 EXPORT_SYMBOL(cxgb4_port_idx);
3741
3742 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3743                          struct tp_tcp_stats *v6)
3744 {
3745         struct adapter *adap = pci_get_drvdata(pdev);
3746
3747         spin_lock(&adap->stats_lock);
3748         t4_tp_get_tcp_stats(adap, v4, v6);
3749         spin_unlock(&adap->stats_lock);
3750 }
3751 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3752
3753 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3754                       const unsigned int *pgsz_order)
3755 {
3756         struct adapter *adap = netdev2adap(dev);
3757
3758         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3759         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3760                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3761                      HPZ3(pgsz_order[3]));
3762 }
3763 EXPORT_SYMBOL(cxgb4_iscsi_init);
3764
3765 int cxgb4_flush_eq_cache(struct net_device *dev)
3766 {
3767         struct adapter *adap = netdev2adap(dev);
3768         int ret;
3769
3770         ret = t4_fwaddrspace_write(adap, adap->mbox,
3771                                    0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3772         return ret;
3773 }
3774 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3775
3776 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3777 {
3778         u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3779         __be64 indices;
3780         int ret;
3781
3782         spin_lock(&adap->win0_lock);
3783         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3784                            sizeof(indices), (__be32 *)&indices,
3785                            T4_MEMORY_READ);
3786         spin_unlock(&adap->win0_lock);
3787         if (!ret) {
3788                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3789                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3790         }
3791         return ret;
3792 }
3793
3794 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3795                         u16 size)
3796 {
3797         struct adapter *adap = netdev2adap(dev);
3798         u16 hw_pidx, hw_cidx;
3799         int ret;
3800
3801         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3802         if (ret)
3803                 goto out;
3804
3805         if (pidx != hw_pidx) {
3806                 u16 delta;
3807
3808                 if (pidx >= hw_pidx)
3809                         delta = pidx - hw_pidx;
3810                 else
3811                         delta = size - hw_pidx + pidx;
3812                 wmb();
3813                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3814                              QID(qid) | PIDX(delta));
3815         }
3816 out:
3817         return ret;
3818 }
3819 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3820
3821 void cxgb4_disable_db_coalescing(struct net_device *dev)
3822 {
3823         struct adapter *adap;
3824
3825         adap = netdev2adap(dev);
3826         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3827                          F_NOCOALESCE);
3828 }
3829 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3830
3831 void cxgb4_enable_db_coalescing(struct net_device *dev)
3832 {
3833         struct adapter *adap;
3834
3835         adap = netdev2adap(dev);
3836         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3837 }
3838 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3839
3840 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3841 {
3842         struct adapter *adap;
3843         u32 offset, memtype, memaddr;
3844         u32 edc0_size, edc1_size, mc0_size, mc1_size;
3845         u32 edc0_end, edc1_end, mc0_end, mc1_end;
3846         int ret;
3847
3848         adap = netdev2adap(dev);
3849
3850         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3851
3852         /* Figure out where the offset lands in the Memory Type/Address scheme.
3853          * This code assumes that the memory is laid out starting at offset 0
3854          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3855          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
3856          * MC0, and some have both MC0 and MC1.
3857          */
3858         edc0_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR)) << 20;
3859         edc1_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM1_BAR)) << 20;
3860         mc0_size = EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)) << 20;
3861
3862         edc0_end = edc0_size;
3863         edc1_end = edc0_end + edc1_size;
3864         mc0_end = edc1_end + mc0_size;
3865
3866         if (offset < edc0_end) {
3867                 memtype = MEM_EDC0;
3868                 memaddr = offset;
3869         } else if (offset < edc1_end) {
3870                 memtype = MEM_EDC1;
3871                 memaddr = offset - edc0_end;
3872         } else {
3873                 if (offset < mc0_end) {
3874                         memtype = MEM_MC0;
3875                         memaddr = offset - edc1_end;
3876                 } else if (is_t4(adap->params.chip)) {
3877                         /* T4 only has a single memory channel */
3878                         goto err;
3879                 } else {
3880                         mc1_size = EXT_MEM_SIZE_GET(
3881                                         t4_read_reg(adap,
3882                                                     MA_EXT_MEMORY1_BAR)) << 20;
3883                         mc1_end = mc0_end + mc1_size;
3884                         if (offset < mc1_end) {
3885                                 memtype = MEM_MC1;
3886                                 memaddr = offset - mc0_end;
3887                         } else {
3888                                 /* offset beyond the end of any memory */
3889                                 goto err;
3890                         }
3891                 }
3892         }
3893
3894         spin_lock(&adap->win0_lock);
3895         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3896         spin_unlock(&adap->win0_lock);
3897         return ret;
3898
3899 err:
3900         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3901                 stag, offset);
3902         return -EINVAL;
3903 }
3904 EXPORT_SYMBOL(cxgb4_read_tpte);
3905
3906 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3907 {
3908         u32 hi, lo;
3909         struct adapter *adap;
3910
3911         adap = netdev2adap(dev);
3912         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3913         hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3914
3915         return ((u64)hi << 32) | (u64)lo;
3916 }
3917 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3918
3919 static struct pci_driver cxgb4_driver;
3920
3921 static void check_neigh_update(struct neighbour *neigh)
3922 {
3923         const struct device *parent;
3924         const struct net_device *netdev = neigh->dev;
3925
3926         if (netdev->priv_flags & IFF_802_1Q_VLAN)
3927                 netdev = vlan_dev_real_dev(netdev);
3928         parent = netdev->dev.parent;
3929         if (parent && parent->driver == &cxgb4_driver.driver)
3930                 t4_l2t_update(dev_get_drvdata(parent), neigh);
3931 }
3932
3933 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3934                        void *data)
3935 {
3936         switch (event) {
3937         case NETEVENT_NEIGH_UPDATE:
3938                 check_neigh_update(data);
3939                 break;
3940         case NETEVENT_REDIRECT:
3941         default:
3942                 break;
3943         }
3944         return 0;
3945 }
3946
3947 static bool netevent_registered;
3948 static struct notifier_block cxgb4_netevent_nb = {
3949         .notifier_call = netevent_cb
3950 };
3951
3952 static void drain_db_fifo(struct adapter *adap, int usecs)
3953 {
3954         u32 v1, v2, lp_count, hp_count;
3955
3956         do {
3957                 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3958                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3959                 if (is_t4(adap->params.chip)) {
3960                         lp_count = G_LP_COUNT(v1);
3961                         hp_count = G_HP_COUNT(v1);
3962                 } else {
3963                         lp_count = G_LP_COUNT_T5(v1);
3964                         hp_count = G_HP_COUNT_T5(v2);
3965                 }
3966
3967                 if (lp_count == 0 && hp_count == 0)
3968                         break;
3969                 set_current_state(TASK_UNINTERRUPTIBLE);
3970                 schedule_timeout(usecs_to_jiffies(usecs));
3971         } while (1);
3972 }
3973
3974 static void disable_txq_db(struct sge_txq *q)
3975 {
3976         unsigned long flags;
3977
3978         spin_lock_irqsave(&q->db_lock, flags);
3979         q->db_disabled = 1;
3980         spin_unlock_irqrestore(&q->db_lock, flags);
3981 }
3982
3983 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3984 {
3985         spin_lock_irq(&q->db_lock);
3986         if (q->db_pidx_inc) {
3987                 /* Make sure that all writes to the TX descriptors
3988                  * are committed before we tell HW about them.
3989                  */
3990                 wmb();
3991                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3992                              QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3993                 q->db_pidx_inc = 0;
3994         }
3995         q->db_disabled = 0;
3996         spin_unlock_irq(&q->db_lock);
3997 }
3998
3999 static void disable_dbs(struct adapter *adap)
4000 {
4001         int i;
4002
4003         for_each_ethrxq(&adap->sge, i)
4004                 disable_txq_db(&adap->sge.ethtxq[i].q);
4005         for_each_ofldrxq(&adap->sge, i)
4006                 disable_txq_db(&adap->sge.ofldtxq[i].q);
4007         for_each_port(adap, i)
4008                 disable_txq_db(&adap->sge.ctrlq[i].q);
4009 }
4010
4011 static void enable_dbs(struct adapter *adap)
4012 {
4013         int i;
4014
4015         for_each_ethrxq(&adap->sge, i)
4016                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
4017         for_each_ofldrxq(&adap->sge, i)
4018                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
4019         for_each_port(adap, i)
4020                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
4021 }
4022
4023 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
4024 {
4025         if (adap->uld_handle[CXGB4_ULD_RDMA])
4026                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
4027                                 cmd);
4028 }
4029
4030 static void process_db_full(struct work_struct *work)
4031 {
4032         struct adapter *adap;
4033
4034         adap = container_of(work, struct adapter, db_full_task);
4035
4036         drain_db_fifo(adap, dbfifo_drain_delay);
4037         enable_dbs(adap);
4038         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4039         t4_set_reg_field(adap, SGE_INT_ENABLE3,
4040                          DBFIFO_HP_INT | DBFIFO_LP_INT,
4041                          DBFIFO_HP_INT | DBFIFO_LP_INT);
4042 }
4043
4044 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4045 {
4046         u16 hw_pidx, hw_cidx;
4047         int ret;
4048
4049         spin_lock_irq(&q->db_lock);
4050         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4051         if (ret)
4052                 goto out;
4053         if (q->db_pidx != hw_pidx) {
4054                 u16 delta;
4055
4056                 if (q->db_pidx >= hw_pidx)
4057                         delta = q->db_pidx - hw_pidx;
4058                 else
4059                         delta = q->size - hw_pidx + q->db_pidx;
4060                 wmb();
4061                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4062                              QID(q->cntxt_id) | PIDX(delta));
4063         }
4064 out:
4065         q->db_disabled = 0;
4066         q->db_pidx_inc = 0;
4067         spin_unlock_irq(&q->db_lock);
4068         if (ret)
4069                 CH_WARN(adap, "DB drop recovery failed.\n");
4070 }
4071 static void recover_all_queues(struct adapter *adap)
4072 {
4073         int i;
4074
4075         for_each_ethrxq(&adap->sge, i)
4076                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4077         for_each_ofldrxq(&adap->sge, i)
4078                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4079         for_each_port(adap, i)
4080                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4081 }
4082
4083 static void process_db_drop(struct work_struct *work)
4084 {
4085         struct adapter *adap;
4086
4087         adap = container_of(work, struct adapter, db_drop_task);
4088
4089         if (is_t4(adap->params.chip)) {
4090                 drain_db_fifo(adap, dbfifo_drain_delay);
4091                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4092                 drain_db_fifo(adap, dbfifo_drain_delay);
4093                 recover_all_queues(adap);
4094                 drain_db_fifo(adap, dbfifo_drain_delay);
4095                 enable_dbs(adap);
4096                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4097         } else {
4098                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4099                 u16 qid = (dropped_db >> 15) & 0x1ffff;
4100                 u16 pidx_inc = dropped_db & 0x1fff;
4101                 unsigned int s_qpp;
4102                 unsigned short udb_density;
4103                 unsigned long qpshift;
4104                 int page;
4105                 u32 udb;
4106
4107                 dev_warn(adap->pdev_dev,
4108                          "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4109                          dropped_db, qid,
4110                          (dropped_db >> 14) & 1,
4111                          (dropped_db >> 13) & 1,
4112                          pidx_inc);
4113
4114                 drain_db_fifo(adap, 1);
4115
4116                 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4117                 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4118                                 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4119                 qpshift = PAGE_SHIFT - ilog2(udb_density);
4120                 udb = qid << qpshift;
4121                 udb &= PAGE_MASK;
4122                 page = udb / PAGE_SIZE;
4123                 udb += (qid - (page * udb_density)) * 128;
4124
4125                 writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
4126
4127                 /* Re-enable BAR2 WC */
4128                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4129         }
4130
4131         t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4132 }
4133
4134 void t4_db_full(struct adapter *adap)
4135 {
4136         if (is_t4(adap->params.chip)) {
4137                 disable_dbs(adap);
4138                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4139                 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4140                                  DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4141                 queue_work(workq, &adap->db_full_task);
4142         }
4143 }
4144
4145 void t4_db_dropped(struct adapter *adap)
4146 {
4147         if (is_t4(adap->params.chip)) {
4148                 disable_dbs(adap);
4149                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4150         }
4151         queue_work(workq, &adap->db_drop_task);
4152 }
4153
4154 static void uld_attach(struct adapter *adap, unsigned int uld)
4155 {
4156         void *handle;
4157         struct cxgb4_lld_info lli;
4158         unsigned short i;
4159
4160         lli.pdev = adap->pdev;
4161         lli.pf = adap->fn;
4162         lli.l2t = adap->l2t;
4163         lli.tids = &adap->tids;
4164         lli.ports = adap->port;
4165         lli.vr = &adap->vres;
4166         lli.mtus = adap->params.mtus;
4167         if (uld == CXGB4_ULD_RDMA) {
4168                 lli.rxq_ids = adap->sge.rdma_rxq;
4169                 lli.ciq_ids = adap->sge.rdma_ciq;
4170                 lli.nrxq = adap->sge.rdmaqs;
4171                 lli.nciq = adap->sge.rdmaciqs;
4172         } else if (uld == CXGB4_ULD_ISCSI) {
4173                 lli.rxq_ids = adap->sge.ofld_rxq;
4174                 lli.nrxq = adap->sge.ofldqsets;
4175         }
4176         lli.ntxq = adap->sge.ofldqsets;
4177         lli.nchan = adap->params.nports;
4178         lli.nports = adap->params.nports;
4179         lli.wr_cred = adap->params.ofldq_wr_cred;
4180         lli.adapter_type = adap->params.chip;
4181         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4182         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4183         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
4184                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4185                         (adap->fn * 4));
4186         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
4187                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4188                         (adap->fn * 4));
4189         lli.filt_mode = adap->params.tp.vlan_pri_map;
4190         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4191         for (i = 0; i < NCHAN; i++)
4192                 lli.tx_modq[i] = i;
4193         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4194         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4195         lli.fw_vers = adap->params.fw_vers;
4196         lli.dbfifo_int_thresh = dbfifo_int_thresh;
4197         lli.sge_ingpadboundary = adap->sge.fl_align;
4198         lli.sge_egrstatuspagesize = adap->sge.stat_len;
4199         lli.sge_pktshift = adap->sge.pktshift;
4200         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4201         lli.max_ordird_qp = adap->params.max_ordird_qp;
4202         lli.max_ird_adapter = adap->params.max_ird_adapter;
4203         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4204
4205         handle = ulds[uld].add(&lli);
4206         if (IS_ERR(handle)) {
4207                 dev_warn(adap->pdev_dev,
4208                          "could not attach to the %s driver, error %ld\n",
4209                          uld_str[uld], PTR_ERR(handle));
4210                 return;
4211         }
4212
4213         adap->uld_handle[uld] = handle;
4214
4215         if (!netevent_registered) {
4216                 register_netevent_notifier(&cxgb4_netevent_nb);
4217                 netevent_registered = true;
4218         }
4219
4220         if (adap->flags & FULL_INIT_DONE)
4221                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
4222 }
4223
4224 static void attach_ulds(struct adapter *adap)
4225 {
4226         unsigned int i;
4227
4228         spin_lock(&adap_rcu_lock);
4229         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4230         spin_unlock(&adap_rcu_lock);
4231
4232         mutex_lock(&uld_mutex);
4233         list_add_tail(&adap->list_node, &adapter_list);
4234         for (i = 0; i < CXGB4_ULD_MAX; i++)
4235                 if (ulds[i].add)
4236                         uld_attach(adap, i);
4237         mutex_unlock(&uld_mutex);
4238 }
4239
4240 static void detach_ulds(struct adapter *adap)
4241 {
4242         unsigned int i;
4243
4244         mutex_lock(&uld_mutex);
4245         list_del(&adap->list_node);
4246         for (i = 0; i < CXGB4_ULD_MAX; i++)
4247                 if (adap->uld_handle[i]) {
4248                         ulds[i].state_change(adap->uld_handle[i],
4249                                              CXGB4_STATE_DETACH);
4250                         adap->uld_handle[i] = NULL;
4251                 }
4252         if (netevent_registered && list_empty(&adapter_list)) {
4253                 unregister_netevent_notifier(&cxgb4_netevent_nb);
4254                 netevent_registered = false;
4255         }
4256         mutex_unlock(&uld_mutex);
4257
4258         spin_lock(&adap_rcu_lock);
4259         list_del_rcu(&adap->rcu_node);
4260         spin_unlock(&adap_rcu_lock);
4261 }
4262
4263 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4264 {
4265         unsigned int i;
4266
4267         mutex_lock(&uld_mutex);
4268         for (i = 0; i < CXGB4_ULD_MAX; i++)
4269                 if (adap->uld_handle[i])
4270                         ulds[i].state_change(adap->uld_handle[i], new_state);
4271         mutex_unlock(&uld_mutex);
4272 }
4273
4274 /**
4275  *      cxgb4_register_uld - register an upper-layer driver
4276  *      @type: the ULD type
4277  *      @p: the ULD methods
4278  *
4279  *      Registers an upper-layer driver with this driver and notifies the ULD
4280  *      about any presently available devices that support its type.  Returns
4281  *      %-EBUSY if a ULD of the same type is already registered.
4282  */
4283 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4284 {
4285         int ret = 0;
4286         struct adapter *adap;
4287
4288         if (type >= CXGB4_ULD_MAX)
4289                 return -EINVAL;
4290         mutex_lock(&uld_mutex);
4291         if (ulds[type].add) {
4292                 ret = -EBUSY;
4293                 goto out;
4294         }
4295         ulds[type] = *p;
4296         list_for_each_entry(adap, &adapter_list, list_node)
4297                 uld_attach(adap, type);
4298 out:    mutex_unlock(&uld_mutex);
4299         return ret;
4300 }
4301 EXPORT_SYMBOL(cxgb4_register_uld);
4302
4303 /**
4304  *      cxgb4_unregister_uld - unregister an upper-layer driver
4305  *      @type: the ULD type
4306  *
4307  *      Unregisters an existing upper-layer driver.
4308  */
4309 int cxgb4_unregister_uld(enum cxgb4_uld type)
4310 {
4311         struct adapter *adap;
4312
4313         if (type >= CXGB4_ULD_MAX)
4314                 return -EINVAL;
4315         mutex_lock(&uld_mutex);
4316         list_for_each_entry(adap, &adapter_list, list_node)
4317                 adap->uld_handle[type] = NULL;
4318         ulds[type].add = NULL;
4319         mutex_unlock(&uld_mutex);
4320         return 0;
4321 }
4322 EXPORT_SYMBOL(cxgb4_unregister_uld);
4323
4324 /* Check if netdev on which event is occured belongs to us or not. Return
4325  * success (true) if it belongs otherwise failure (false).
4326  * Called with rcu_read_lock() held.
4327  */
4328 static bool cxgb4_netdev(const struct net_device *netdev)
4329 {
4330         struct adapter *adap;
4331         int i;
4332
4333         list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4334                 for (i = 0; i < MAX_NPORTS; i++)
4335                         if (adap->port[i] == netdev)
4336                                 return true;
4337         return false;
4338 }
4339
4340 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4341                     unsigned long event)
4342 {
4343         int ret = NOTIFY_DONE;
4344
4345         rcu_read_lock();
4346         if (cxgb4_netdev(event_dev)) {
4347                 switch (event) {
4348                 case NETDEV_UP:
4349                         ret = cxgb4_clip_get(event_dev,
4350                                 (const struct in6_addr *)ifa->addr.s6_addr);
4351                         if (ret < 0) {
4352                                 rcu_read_unlock();
4353                                 return ret;
4354                         }
4355                         ret = NOTIFY_OK;
4356                         break;
4357                 case NETDEV_DOWN:
4358                         cxgb4_clip_release(event_dev,
4359                                 (const struct in6_addr *)ifa->addr.s6_addr);
4360                         ret = NOTIFY_OK;
4361                         break;
4362                 default:
4363                         break;
4364                 }
4365         }
4366         rcu_read_unlock();
4367         return ret;
4368 }
4369
4370 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4371                 unsigned long event, void *data)
4372 {
4373         struct inet6_ifaddr *ifa = data;
4374         struct net_device *event_dev;
4375         int ret = NOTIFY_DONE;
4376         struct bonding *bond = netdev_priv(ifa->idev->dev);
4377         struct list_head *iter;
4378         struct slave *slave;
4379         struct pci_dev *first_pdev = NULL;
4380
4381         if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4382                 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4383                 ret = clip_add(event_dev, ifa, event);
4384         } else if (ifa->idev->dev->flags & IFF_MASTER) {
4385                 /* It is possible that two different adapters are bonded in one
4386                  * bond. We need to find such different adapters and add clip
4387                  * in all of them only once.
4388                  */
4389                 read_lock(&bond->lock);
4390                 bond_for_each_slave(bond, slave, iter) {
4391                         if (!first_pdev) {
4392                                 ret = clip_add(slave->dev, ifa, event);
4393                                 /* If clip_add is success then only initialize
4394                                  * first_pdev since it means it is our device
4395                                  */
4396                                 if (ret == NOTIFY_OK)
4397                                         first_pdev = to_pci_dev(
4398                                                         slave->dev->dev.parent);
4399                         } else if (first_pdev !=
4400                                    to_pci_dev(slave->dev->dev.parent))
4401                                         ret = clip_add(slave->dev, ifa, event);
4402                 }
4403                 read_unlock(&bond->lock);
4404         } else
4405                 ret = clip_add(ifa->idev->dev, ifa, event);
4406
4407         return ret;
4408 }
4409
4410 static struct notifier_block cxgb4_inet6addr_notifier = {
4411         .notifier_call = cxgb4_inet6addr_handler
4412 };
4413
4414 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4415  * a physical device.
4416  * The physical device reference is needed to send the actul CLIP command.
4417  */
4418 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4419 {
4420         struct inet6_dev *idev = NULL;
4421         struct inet6_ifaddr *ifa;
4422         int ret = 0;
4423
4424         idev = __in6_dev_get(root_dev);
4425         if (!idev)
4426                 return ret;
4427
4428         read_lock_bh(&idev->lock);
4429         list_for_each_entry(ifa, &idev->addr_list, if_list) {
4430                 ret = cxgb4_clip_get(dev,
4431                                 (const struct in6_addr *)ifa->addr.s6_addr);
4432                 if (ret < 0)
4433                         break;
4434         }
4435         read_unlock_bh(&idev->lock);
4436
4437         return ret;
4438 }
4439
4440 static int update_root_dev_clip(struct net_device *dev)
4441 {
4442         struct net_device *root_dev = NULL;
4443         int i, ret = 0;
4444
4445         /* First populate the real net device's IPv6 addresses */
4446         ret = update_dev_clip(dev, dev);
4447         if (ret)
4448                 return ret;
4449
4450         /* Parse all bond and vlan devices layered on top of the physical dev */
4451         for (i = 0; i < VLAN_N_VID; i++) {
4452                 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4453                 if (!root_dev)
4454                         continue;
4455
4456                 ret = update_dev_clip(root_dev, dev);
4457                 if (ret)
4458                         break;
4459         }
4460         return ret;
4461 }
4462
4463 static void update_clip(const struct adapter *adap)
4464 {
4465         int i;
4466         struct net_device *dev;
4467         int ret;
4468
4469         rcu_read_lock();
4470
4471         for (i = 0; i < MAX_NPORTS; i++) {
4472                 dev = adap->port[i];
4473                 ret = 0;
4474
4475                 if (dev)
4476                         ret = update_root_dev_clip(dev);
4477
4478                 if (ret < 0)
4479                         break;
4480         }
4481         rcu_read_unlock();
4482 }
4483
4484 /**
4485  *      cxgb_up - enable the adapter
4486  *      @adap: adapter being enabled
4487  *
4488  *      Called when the first port is enabled, this function performs the
4489  *      actions necessary to make an adapter operational, such as completing
4490  *      the initialization of HW modules, and enabling interrupts.
4491  *
4492  *      Must be called with the rtnl lock held.
4493  */
4494 static int cxgb_up(struct adapter *adap)
4495 {
4496         int err;
4497
4498         err = setup_sge_queues(adap);
4499         if (err)
4500                 goto out;
4501         err = setup_rss(adap);
4502         if (err)
4503                 goto freeq;
4504
4505         if (adap->flags & USING_MSIX) {
4506                 name_msix_vecs(adap);
4507                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4508                                   adap->msix_info[0].desc, adap);
4509                 if (err)
4510                         goto irq_err;
4511
4512                 err = request_msix_queue_irqs(adap);
4513                 if (err) {
4514                         free_irq(adap->msix_info[0].vec, adap);
4515                         goto irq_err;
4516                 }
4517         } else {
4518                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4519                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4520                                   adap->port[0]->name, adap);
4521                 if (err)
4522                         goto irq_err;
4523         }
4524         enable_rx(adap);
4525         t4_sge_start(adap);
4526         t4_intr_enable(adap);
4527         adap->flags |= FULL_INIT_DONE;
4528         notify_ulds(adap, CXGB4_STATE_UP);
4529         update_clip(adap);
4530  out:
4531         return err;
4532  irq_err:
4533         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4534  freeq:
4535         t4_free_sge_resources(adap);
4536         goto out;
4537 }
4538
4539 static void cxgb_down(struct adapter *adapter)
4540 {
4541         t4_intr_disable(adapter);
4542         cancel_work_sync(&adapter->tid_release_task);
4543         cancel_work_sync(&adapter->db_full_task);
4544         cancel_work_sync(&adapter->db_drop_task);
4545         adapter->tid_release_task_busy = false;
4546         adapter->tid_release_head = NULL;
4547
4548         if (adapter->flags & USING_MSIX) {
4549                 free_msix_queue_irqs(adapter);
4550                 free_irq(adapter->msix_info[0].vec, adapter);
4551         } else
4552                 free_irq(adapter->pdev->irq, adapter);
4553         quiesce_rx(adapter);
4554         t4_sge_stop(adapter);
4555         t4_free_sge_resources(adapter);
4556         adapter->flags &= ~FULL_INIT_DONE;
4557 }
4558
4559 /*
4560  * net_device operations
4561  */
4562 static int cxgb_open(struct net_device *dev)
4563 {
4564         int err;
4565         struct port_info *pi = netdev_priv(dev);
4566         struct adapter *adapter = pi->adapter;
4567
4568         netif_carrier_off(dev);
4569
4570         if (!(adapter->flags & FULL_INIT_DONE)) {
4571                 err = cxgb_up(adapter);
4572                 if (err < 0)
4573                         return err;
4574         }
4575
4576         err = link_start(dev);
4577         if (!err)
4578                 netif_tx_start_all_queues(dev);
4579         return err;
4580 }
4581
4582 static int cxgb_close(struct net_device *dev)
4583 {
4584         struct port_info *pi = netdev_priv(dev);
4585         struct adapter *adapter = pi->adapter;
4586
4587         netif_tx_stop_all_queues(dev);
4588         netif_carrier_off(dev);
4589         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4590 }
4591
4592 /* Return an error number if the indicated filter isn't writable ...
4593  */
4594 static int writable_filter(struct filter_entry *f)
4595 {
4596         if (f->locked)
4597                 return -EPERM;
4598         if (f->pending)
4599                 return -EBUSY;
4600
4601         return 0;
4602 }
4603
4604 /* Delete the filter at the specified index (if valid).  The checks for all
4605  * the common problems with doing this like the filter being locked, currently
4606  * pending in another operation, etc.
4607  */
4608 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4609 {
4610         struct filter_entry *f;
4611         int ret;
4612
4613         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4614                 return -EINVAL;
4615
4616         f = &adapter->tids.ftid_tab[fidx];
4617         ret = writable_filter(f);
4618         if (ret)
4619                 return ret;
4620         if (f->valid)
4621                 return del_filter_wr(adapter, fidx);
4622
4623         return 0;
4624 }
4625
4626 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4627                 __be32 sip, __be16 sport, __be16 vlan,
4628                 unsigned int queue, unsigned char port, unsigned char mask)
4629 {
4630         int ret;
4631         struct filter_entry *f;
4632         struct adapter *adap;
4633         int i;
4634         u8 *val;
4635
4636         adap = netdev2adap(dev);
4637
4638         /* Adjust stid to correct filter index */
4639         stid -= adap->tids.sftid_base;
4640         stid += adap->tids.nftids;
4641
4642         /* Check to make sure the filter requested is writable ...
4643          */
4644         f = &adap->tids.ftid_tab[stid];
4645         ret = writable_filter(f);
4646         if (ret)
4647                 return ret;
4648
4649         /* Clear out any old resources being used by the filter before
4650          * we start constructing the new filter.
4651          */
4652         if (f->valid)
4653                 clear_filter(adap, f);
4654
4655         /* Clear out filter specifications */
4656         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4657         f->fs.val.lport = cpu_to_be16(sport);
4658         f->fs.mask.lport  = ~0;
4659         val = (u8 *)&sip;
4660         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4661                 for (i = 0; i < 4; i++) {
4662                         f->fs.val.lip[i] = val[i];
4663                         f->fs.mask.lip[i] = ~0;
4664                 }
4665                 if (adap->params.tp.vlan_pri_map & F_PORT) {
4666                         f->fs.val.iport = port;
4667                         f->fs.mask.iport = mask;
4668                 }
4669         }
4670
4671         if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4672                 f->fs.val.proto = IPPROTO_TCP;
4673                 f->fs.mask.proto = ~0;
4674         }
4675
4676         f->fs.dirsteer = 1;
4677         f->fs.iq = queue;
4678         /* Mark filter as locked */
4679         f->locked = 1;
4680         f->fs.rpttid = 1;
4681
4682         ret = set_filter_wr(adap, stid);
4683         if (ret) {
4684                 clear_filter(adap, f);
4685                 return ret;
4686         }
4687
4688         return 0;
4689 }
4690 EXPORT_SYMBOL(cxgb4_create_server_filter);
4691
4692 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4693                 unsigned int queue, bool ipv6)
4694 {
4695         int ret;
4696         struct filter_entry *f;
4697         struct adapter *adap;
4698
4699         adap = netdev2adap(dev);
4700
4701         /* Adjust stid to correct filter index */
4702         stid -= adap->tids.sftid_base;
4703         stid += adap->tids.nftids;
4704
4705         f = &adap->tids.ftid_tab[stid];
4706         /* Unlock the filter */
4707         f->locked = 0;
4708
4709         ret = delete_filter(adap, stid);
4710         if (ret)
4711                 return ret;
4712
4713         return 0;
4714 }
4715 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4716
4717 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4718                                                 struct rtnl_link_stats64 *ns)
4719 {
4720         struct port_stats stats;
4721         struct port_info *p = netdev_priv(dev);
4722         struct adapter *adapter = p->adapter;
4723
4724         /* Block retrieving statistics during EEH error
4725          * recovery. Otherwise, the recovery might fail
4726          * and the PCI device will be removed permanently
4727          */
4728         spin_lock(&adapter->stats_lock);
4729         if (!netif_device_present(dev)) {
4730                 spin_unlock(&adapter->stats_lock);
4731                 return ns;
4732         }
4733         t4_get_port_stats(adapter, p->tx_chan, &stats);
4734         spin_unlock(&adapter->stats_lock);
4735
4736         ns->tx_bytes   = stats.tx_octets;
4737         ns->tx_packets = stats.tx_frames;
4738         ns->rx_bytes   = stats.rx_octets;
4739         ns->rx_packets = stats.rx_frames;
4740         ns->multicast  = stats.rx_mcast_frames;
4741
4742         /* detailed rx_errors */
4743         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4744                                stats.rx_runt;
4745         ns->rx_over_errors   = 0;
4746         ns->rx_crc_errors    = stats.rx_fcs_err;
4747         ns->rx_frame_errors  = stats.rx_symbol_err;
4748         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
4749                                stats.rx_ovflow2 + stats.rx_ovflow3 +
4750                                stats.rx_trunc0 + stats.rx_trunc1 +
4751                                stats.rx_trunc2 + stats.rx_trunc3;
4752         ns->rx_missed_errors = 0;
4753
4754         /* detailed tx_errors */
4755         ns->tx_aborted_errors   = 0;
4756         ns->tx_carrier_errors   = 0;
4757         ns->tx_fifo_errors      = 0;
4758         ns->tx_heartbeat_errors = 0;
4759         ns->tx_window_errors    = 0;
4760
4761         ns->tx_errors = stats.tx_error_frames;
4762         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4763                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4764         return ns;
4765 }
4766
4767 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4768 {
4769         unsigned int mbox;
4770         int ret = 0, prtad, devad;
4771         struct port_info *pi = netdev_priv(dev);
4772         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4773
4774         switch (cmd) {
4775         case SIOCGMIIPHY:
4776                 if (pi->mdio_addr < 0)
4777                         return -EOPNOTSUPP;
4778                 data->phy_id = pi->mdio_addr;
4779                 break;
4780         case SIOCGMIIREG:
4781         case SIOCSMIIREG:
4782                 if (mdio_phy_id_is_c45(data->phy_id)) {
4783                         prtad = mdio_phy_id_prtad(data->phy_id);
4784                         devad = mdio_phy_id_devad(data->phy_id);
4785                 } else if (data->phy_id < 32) {
4786                         prtad = data->phy_id;
4787                         devad = 0;
4788                         data->reg_num &= 0x1f;
4789                 } else
4790                         return -EINVAL;
4791
4792                 mbox = pi->adapter->fn;
4793                 if (cmd == SIOCGMIIREG)
4794                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4795                                          data->reg_num, &data->val_out);
4796                 else
4797                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4798                                          data->reg_num, data->val_in);
4799                 break;
4800         default:
4801                 return -EOPNOTSUPP;
4802         }
4803         return ret;
4804 }
4805
4806 static void cxgb_set_rxmode(struct net_device *dev)
4807 {
4808         /* unfortunately we can't return errors to the stack */
4809         set_rxmode(dev, -1, false);
4810 }
4811
4812 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4813 {
4814         int ret;
4815         struct port_info *pi = netdev_priv(dev);
4816
4817         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4818                 return -EINVAL;
4819         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4820                             -1, -1, -1, true);
4821         if (!ret)
4822                 dev->mtu = new_mtu;
4823         return ret;
4824 }
4825
4826 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4827 {
4828         int ret;
4829         struct sockaddr *addr = p;
4830         struct port_info *pi = netdev_priv(dev);
4831
4832         if (!is_valid_ether_addr(addr->sa_data))
4833                 return -EADDRNOTAVAIL;
4834
4835         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4836                             pi->xact_addr_filt, addr->sa_data, true, true);
4837         if (ret < 0)
4838                 return ret;
4839
4840         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4841         pi->xact_addr_filt = ret;
4842         return 0;
4843 }
4844
4845 #ifdef CONFIG_NET_POLL_CONTROLLER
4846 static void cxgb_netpoll(struct net_device *dev)
4847 {
4848         struct port_info *pi = netdev_priv(dev);
4849         struct adapter *adap = pi->adapter;
4850
4851         if (adap->flags & USING_MSIX) {
4852                 int i;
4853                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4854
4855                 for (i = pi->nqsets; i; i--, rx++)
4856                         t4_sge_intr_msix(0, &rx->rspq);
4857         } else
4858                 t4_intr_handler(adap)(0, adap);
4859 }
4860 #endif
4861
4862 static const struct net_device_ops cxgb4_netdev_ops = {
4863         .ndo_open             = cxgb_open,
4864         .ndo_stop             = cxgb_close,
4865         .ndo_start_xmit       = t4_eth_xmit,
4866         .ndo_select_queue     = cxgb_select_queue,
4867         .ndo_get_stats64      = cxgb_get_stats,
4868         .ndo_set_rx_mode      = cxgb_set_rxmode,
4869         .ndo_set_mac_address  = cxgb_set_mac_addr,
4870         .ndo_set_features     = cxgb_set_features,
4871         .ndo_validate_addr    = eth_validate_addr,
4872         .ndo_do_ioctl         = cxgb_ioctl,
4873         .ndo_change_mtu       = cxgb_change_mtu,
4874 #ifdef CONFIG_NET_POLL_CONTROLLER
4875         .ndo_poll_controller  = cxgb_netpoll,
4876 #endif
4877 };
4878
4879 void t4_fatal_err(struct adapter *adap)
4880 {
4881         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4882         t4_intr_disable(adap);
4883         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4884 }
4885
4886 /* Return the specified PCI-E Configuration Space register from our Physical
4887  * Function.  We try first via a Firmware LDST Command since we prefer to let
4888  * the firmware own all of these registers, but if that fails we go for it
4889  * directly ourselves.
4890  */
4891 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4892 {
4893         struct fw_ldst_cmd ldst_cmd;
4894         u32 val;
4895         int ret;
4896
4897         /* Construct and send the Firmware LDST Command to retrieve the
4898          * specified PCI-E Configuration Space register.
4899          */
4900         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4901         ldst_cmd.op_to_addrspace =
4902                 htonl(FW_CMD_OP(FW_LDST_CMD) |
4903                       FW_CMD_REQUEST |
4904                       FW_CMD_READ |
4905                       FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4906         ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4907         ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4908         ldst_cmd.u.pcie.ctrl_to_fn =
4909                 (FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4910         ldst_cmd.u.pcie.r = reg;
4911         ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4912                          &ldst_cmd);
4913
4914         /* If the LDST Command suucceeded, exctract the returned register
4915          * value.  Otherwise read it directly ourself.
4916          */
4917         if (ret == 0)
4918                 val = ntohl(ldst_cmd.u.pcie.data[0]);
4919         else
4920                 t4_hw_pci_read_cfg4(adap, reg, &val);
4921
4922         return val;
4923 }
4924
4925 static void setup_memwin(struct adapter *adap)
4926 {
4927         u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4928
4929         if (is_t4(adap->params.chip)) {
4930                 u32 bar0;
4931
4932                 /* Truncation intentional: we only read the bottom 32-bits of
4933                  * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
4934                  * mechanism to read BAR0 instead of using
4935                  * pci_resource_start() because we could be operating from
4936                  * within a Virtual Machine which is trapping our accesses to
4937                  * our Configuration Space and we need to set up the PCI-E
4938                  * Memory Window decoders with the actual addresses which will
4939                  * be coming across the PCI-E link.
4940                  */
4941                 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4942                 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
4943                 adap->t4_bar0 = bar0;
4944
4945                 mem_win0_base = bar0 + MEMWIN0_BASE;
4946                 mem_win1_base = bar0 + MEMWIN1_BASE;
4947                 mem_win2_base = bar0 + MEMWIN2_BASE;
4948                 mem_win2_aperture = MEMWIN2_APERTURE;
4949         } else {
4950                 /* For T5, only relative offset inside the PCIe BAR is passed */
4951                 mem_win0_base = MEMWIN0_BASE;
4952                 mem_win1_base = MEMWIN1_BASE;
4953                 mem_win2_base = MEMWIN2_BASE_T5;
4954                 mem_win2_aperture = MEMWIN2_APERTURE_T5;
4955         }
4956         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4957                      mem_win0_base | BIR(0) |
4958                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4959         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4960                      mem_win1_base | BIR(0) |
4961                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4962         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4963                      mem_win2_base | BIR(0) |
4964                      WINDOW(ilog2(mem_win2_aperture) - 10));
4965         t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
4966 }
4967
4968 static void setup_memwin_rdma(struct adapter *adap)
4969 {
4970         if (adap->vres.ocq.size) {
4971                 u32 start;
4972                 unsigned int sz_kb;
4973
4974                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
4975                 start &= PCI_BASE_ADDRESS_MEM_MASK;
4976                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4977                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4978                 t4_write_reg(adap,
4979                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4980                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
4981                 t4_write_reg(adap,
4982                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4983                              adap->vres.ocq.start);
4984                 t4_read_reg(adap,
4985                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4986         }
4987 }
4988
4989 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4990 {
4991         u32 v;
4992         int ret;
4993
4994         /* get device capabilities */
4995         memset(c, 0, sizeof(*c));
4996         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4997                                FW_CMD_REQUEST | FW_CMD_READ);
4998         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4999         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
5000         if (ret < 0)
5001                 return ret;
5002
5003         /* select capabilities we'll be using */
5004         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5005                 if (!vf_acls)
5006                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5007                 else
5008                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5009         } else if (vf_acls) {
5010                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
5011                 return ret;
5012         }
5013         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5014                                FW_CMD_REQUEST | FW_CMD_WRITE);
5015         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
5016         if (ret < 0)
5017                 return ret;
5018
5019         ret = t4_config_glbl_rss(adap, adap->fn,
5020                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5021                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5022                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
5023         if (ret < 0)
5024                 return ret;
5025
5026         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
5027                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
5028         if (ret < 0)
5029                 return ret;
5030
5031         t4_sge_init(adap);
5032
5033         /* tweak some settings */
5034         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5035         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5036         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5037         v = t4_read_reg(adap, TP_PIO_DATA);
5038         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
5039
5040         /* first 4 Tx modulation queues point to consecutive Tx channels */
5041         adap->params.tp.tx_modq_map = 0xE4;
5042         t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5043                      V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5044
5045         /* associate each Tx modulation queue with consecutive Tx channels */
5046         v = 0x84218421;
5047         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5048                           &v, 1, A_TP_TX_SCHED_HDR);
5049         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5050                           &v, 1, A_TP_TX_SCHED_FIFO);
5051         t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5052                           &v, 1, A_TP_TX_SCHED_PCMD);
5053
5054 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5055         if (is_offload(adap)) {
5056                 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5057                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5058                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5059                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5060                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5061                 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5062                              V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5063                              V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5064                              V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5065                              V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5066         }
5067
5068         /* get basic stuff going */
5069         return t4_early_init(adap, adap->fn);
5070 }
5071
5072 /*
5073  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
5074  */
5075 #define MAX_ATIDS 8192U
5076
5077 /*
5078  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5079  *
5080  * If the firmware we're dealing with has Configuration File support, then
5081  * we use that to perform all configuration
5082  */
5083
5084 /*
5085  * Tweak configuration based on module parameters, etc.  Most of these have
5086  * defaults assigned to them by Firmware Configuration Files (if we're using
5087  * them) but need to be explicitly set if we're using hard-coded
5088  * initialization.  But even in the case of using Firmware Configuration
5089  * Files, we'd like to expose the ability to change these via module
5090  * parameters so these are essentially common tweaks/settings for
5091  * Configuration Files and hard-coded initialization ...
5092  */
5093 static int adap_init0_tweaks(struct adapter *adapter)
5094 {
5095         /*
5096          * Fix up various Host-Dependent Parameters like Page Size, Cache
5097          * Line Size, etc.  The firmware default is for a 4KB Page Size and
5098          * 64B Cache Line Size ...
5099          */
5100         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5101
5102         /*
5103          * Process module parameters which affect early initialization.
5104          */
5105         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5106                 dev_err(&adapter->pdev->dev,
5107                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
5108                         rx_dma_offset);
5109                 rx_dma_offset = 2;
5110         }
5111         t4_set_reg_field(adapter, SGE_CONTROL,
5112                          PKTSHIFT_MASK,
5113                          PKTSHIFT(rx_dma_offset));
5114
5115         /*
5116          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5117          * adds the pseudo header itself.
5118          */
5119         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5120                                CSUM_HAS_PSEUDO_HDR, 0);
5121
5122         return 0;
5123 }
5124
5125 /*
5126  * Attempt to initialize the adapter via a Firmware Configuration File.
5127  */
5128 static int adap_init0_config(struct adapter *adapter, int reset)
5129 {
5130         struct fw_caps_config_cmd caps_cmd;
5131         const struct firmware *cf;
5132         unsigned long mtype = 0, maddr = 0;
5133         u32 finiver, finicsum, cfcsum;
5134         int ret;
5135         int config_issued = 0;
5136         char *fw_config_file, fw_config_file_path[256];
5137         char *config_name = NULL;
5138
5139         /*
5140          * Reset device if necessary.
5141          */
5142         if (reset) {
5143                 ret = t4_fw_reset(adapter, adapter->mbox,
5144                                   PIORSTMODE | PIORST);
5145                 if (ret < 0)
5146                         goto bye;
5147         }
5148
5149         /*
5150          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5151          * then use that.  Otherwise, use the configuration file stored
5152          * in the adapter flash ...
5153          */
5154         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5155         case CHELSIO_T4:
5156                 fw_config_file = FW4_CFNAME;
5157                 break;
5158         case CHELSIO_T5:
5159                 fw_config_file = FW5_CFNAME;
5160                 break;
5161         default:
5162                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5163                        adapter->pdev->device);
5164                 ret = -EINVAL;
5165                 goto bye;
5166         }
5167
5168         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5169         if (ret < 0) {
5170                 config_name = "On FLASH";
5171                 mtype = FW_MEMTYPE_CF_FLASH;
5172                 maddr = t4_flash_cfg_addr(adapter);
5173         } else {
5174                 u32 params[7], val[7];
5175
5176                 sprintf(fw_config_file_path,
5177                         "/lib/firmware/%s", fw_config_file);
5178                 config_name = fw_config_file_path;
5179
5180                 if (cf->size >= FLASH_CFG_MAX_SIZE)
5181                         ret = -ENOMEM;
5182                 else {
5183                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5184                              FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5185                         ret = t4_query_params(adapter, adapter->mbox,
5186                                               adapter->fn, 0, 1, params, val);
5187                         if (ret == 0) {
5188                                 /*
5189                                  * For t4_memory_rw() below addresses and
5190                                  * sizes have to be in terms of multiples of 4
5191                                  * bytes.  So, if the Configuration File isn't
5192                                  * a multiple of 4 bytes in length we'll have
5193                                  * to write that out separately since we can't
5194                                  * guarantee that the bytes following the
5195                                  * residual byte in the buffer returned by
5196                                  * request_firmware() are zeroed out ...
5197                                  */
5198                                 size_t resid = cf->size & 0x3;
5199                                 size_t size = cf->size & ~0x3;
5200                                 __be32 *data = (__be32 *)cf->data;
5201
5202                                 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5203                                 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5204
5205                                 spin_lock(&adapter->win0_lock);
5206                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5207                                                    size, data, T4_MEMORY_WRITE);
5208                                 if (ret == 0 && resid != 0) {
5209                                         union {
5210                                                 __be32 word;
5211                                                 char buf[4];
5212                                         } last;
5213                                         int i;
5214
5215                                         last.word = data[size >> 2];
5216                                         for (i = resid; i < 4; i++)
5217                                                 last.buf[i] = 0;
5218                                         ret = t4_memory_rw(adapter, 0, mtype,
5219                                                            maddr + size,
5220                                                            4, &last.word,
5221                                                            T4_MEMORY_WRITE);
5222                                 }
5223                                 spin_unlock(&adapter->win0_lock);
5224                         }
5225                 }
5226
5227                 release_firmware(cf);
5228                 if (ret)
5229                         goto bye;
5230         }
5231
5232         /*
5233          * Issue a Capability Configuration command to the firmware to get it
5234          * to parse the Configuration File.  We don't use t4_fw_config_file()
5235          * because we want the ability to modify various features after we've
5236          * processed the configuration file ...
5237          */
5238         memset(&caps_cmd, 0, sizeof(caps_cmd));
5239         caps_cmd.op_to_write =
5240                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5241                       FW_CMD_REQUEST |
5242                       FW_CMD_READ);
5243         caps_cmd.cfvalid_to_len16 =
5244                 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5245                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5246                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5247                       FW_LEN16(caps_cmd));
5248         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5249                          &caps_cmd);
5250
5251         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5252          * Configuration File in FLASH), our last gasp effort is to use the
5253          * Firmware Configuration File which is embedded in the firmware.  A
5254          * very few early versions of the firmware didn't have one embedded
5255          * but we can ignore those.
5256          */
5257         if (ret == -ENOENT) {
5258                 memset(&caps_cmd, 0, sizeof(caps_cmd));
5259                 caps_cmd.op_to_write =
5260                         htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5261                                         FW_CMD_REQUEST |
5262                                         FW_CMD_READ);
5263                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5264                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5265                                 sizeof(caps_cmd), &caps_cmd);
5266                 config_name = "Firmware Default";
5267         }
5268
5269         config_issued = 1;
5270         if (ret < 0)
5271                 goto bye;
5272
5273         finiver = ntohl(caps_cmd.finiver);
5274         finicsum = ntohl(caps_cmd.finicsum);
5275         cfcsum = ntohl(caps_cmd.cfcsum);
5276         if (finicsum != cfcsum)
5277                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5278                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5279                          finicsum, cfcsum);
5280
5281         /*
5282          * And now tell the firmware to use the configuration we just loaded.
5283          */
5284         caps_cmd.op_to_write =
5285                 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5286                       FW_CMD_REQUEST |
5287                       FW_CMD_WRITE);
5288         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5289         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5290                          NULL);
5291         if (ret < 0)
5292                 goto bye;
5293
5294         /*
5295          * Tweak configuration based on system architecture, module
5296          * parameters, etc.
5297          */
5298         ret = adap_init0_tweaks(adapter);
5299         if (ret < 0)
5300                 goto bye;
5301
5302         /*
5303          * And finally tell the firmware to initialize itself using the
5304          * parameters from the Configuration File.
5305          */
5306         ret = t4_fw_initialize(adapter, adapter->mbox);
5307         if (ret < 0)
5308                 goto bye;
5309
5310         /*
5311          * Return successfully and note that we're operating with parameters
5312          * not supplied by the driver, rather than from hard-wired
5313          * initialization constants burried in the driver.
5314          */
5315         adapter->flags |= USING_SOFT_PARAMS;
5316         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5317                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5318                  config_name, finiver, cfcsum);
5319         return 0;
5320
5321         /*
5322          * Something bad happened.  Return the error ...  (If the "error"
5323          * is that there's no Configuration File on the adapter we don't
5324          * want to issue a warning since this is fairly common.)
5325          */
5326 bye:
5327         if (config_issued && ret != -ENOENT)
5328                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5329                          config_name, -ret);
5330         return ret;
5331 }
5332
5333 /*
5334  * Attempt to initialize the adapter via hard-coded, driver supplied
5335  * parameters ...
5336  */
5337 static int adap_init0_no_config(struct adapter *adapter, int reset)
5338 {
5339         struct sge *s = &adapter->sge;
5340         struct fw_caps_config_cmd caps_cmd;
5341         u32 v;
5342         int i, ret;
5343
5344         /*
5345          * Reset device if necessary
5346          */
5347         if (reset) {
5348                 ret = t4_fw_reset(adapter, adapter->mbox,
5349                                   PIORSTMODE | PIORST);
5350                 if (ret < 0)
5351                         goto bye;
5352         }
5353
5354         /*
5355          * Get device capabilities and select which we'll be using.
5356          */
5357         memset(&caps_cmd, 0, sizeof(caps_cmd));
5358         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5359                                      FW_CMD_REQUEST | FW_CMD_READ);
5360         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5361         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5362                          &caps_cmd);
5363         if (ret < 0)
5364                 goto bye;
5365
5366         if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5367                 if (!vf_acls)
5368                         caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5369                 else
5370                         caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5371         } else if (vf_acls) {
5372                 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5373                 goto bye;
5374         }
5375         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5376                               FW_CMD_REQUEST | FW_CMD_WRITE);
5377         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5378                          NULL);
5379         if (ret < 0)
5380                 goto bye;
5381
5382         /*
5383          * Tweak configuration based on system architecture, module
5384          * parameters, etc.
5385          */
5386         ret = adap_init0_tweaks(adapter);
5387         if (ret < 0)
5388                 goto bye;
5389
5390         /*
5391          * Select RSS Global Mode we want to use.  We use "Basic Virtual"
5392          * mode which maps each Virtual Interface to its own section of
5393          * the RSS Table and we turn on all map and hash enables ...
5394          */
5395         adapter->flags |= RSS_TNLALLLOOKUP;
5396         ret = t4_config_glbl_rss(adapter, adapter->mbox,
5397                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5398                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5399                                  FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5400                                  ((adapter->flags & RSS_TNLALLLOOKUP) ?
5401                                         FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5402         if (ret < 0)
5403                 goto bye;
5404
5405         /*
5406          * Set up our own fundamental resource provisioning ...
5407          */
5408         ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5409                           PFRES_NEQ, PFRES_NETHCTRL,
5410                           PFRES_NIQFLINT, PFRES_NIQ,
5411                           PFRES_TC, PFRES_NVI,
5412                           FW_PFVF_CMD_CMASK_MASK,
5413                           pfvfres_pmask(adapter, adapter->fn, 0),
5414                           PFRES_NEXACTF,
5415                           PFRES_R_CAPS, PFRES_WX_CAPS);
5416         if (ret < 0)
5417                 goto bye;
5418
5419         /*
5420          * Perform low level SGE initialization.  We need to do this before we
5421          * send the firmware the INITIALIZE command because that will cause
5422          * any other PF Drivers which are waiting for the Master
5423          * Initialization to proceed forward.
5424          */
5425         for (i = 0; i < SGE_NTIMERS - 1; i++)
5426                 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5427         s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5428         s->counter_val[0] = 1;
5429         for (i = 1; i < SGE_NCOUNTERS; i++)
5430                 s->counter_val[i] = min(intr_cnt[i - 1],
5431                                         THRESHOLD_0_GET(THRESHOLD_0_MASK));
5432         t4_sge_init(adapter);
5433
5434 #ifdef CONFIG_PCI_IOV
5435         /*
5436          * Provision resource limits for Virtual Functions.  We currently
5437          * grant them all the same static resource limits except for the Port
5438          * Access Rights Mask which we're assigning based on the PF.  All of
5439          * the static provisioning stuff for both the PF and VF really needs
5440          * to be managed in a persistent manner for each device which the
5441          * firmware controls.
5442          */
5443         {
5444                 int pf, vf;
5445
5446                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5447                         if (num_vf[pf] <= 0)
5448                                 continue;
5449
5450                         /* VF numbering starts at 1! */
5451                         for (vf = 1; vf <= num_vf[pf]; vf++) {
5452                                 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5453                                                   pf, vf,
5454                                                   VFRES_NEQ, VFRES_NETHCTRL,
5455                                                   VFRES_NIQFLINT, VFRES_NIQ,
5456                                                   VFRES_TC, VFRES_NVI,
5457                                                   FW_PFVF_CMD_CMASK_MASK,
5458                                                   pfvfres_pmask(
5459                                                   adapter, pf, vf),
5460                                                   VFRES_NEXACTF,
5461                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
5462                                 if (ret < 0)
5463                                         dev_warn(adapter->pdev_dev,
5464                                                  "failed to "\
5465                                                  "provision pf/vf=%d/%d; "
5466                                                  "err=%d\n", pf, vf, ret);
5467                         }
5468                 }
5469         }
5470 #endif
5471
5472         /*
5473          * Set up the default filter mode.  Later we'll want to implement this
5474          * via a firmware command, etc. ...  This needs to be done before the
5475          * firmare initialization command ...  If the selected set of fields
5476          * isn't equal to the default value, we'll need to make sure that the
5477          * field selections will fit in the 36-bit budget.
5478          */
5479         if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5480                 int j, bits = 0;
5481
5482                 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5483                         switch (tp_vlan_pri_map & (1 << j)) {
5484                         case 0:
5485                                 /* compressed filter field not enabled */
5486                                 break;
5487                         case FCOE_MASK:
5488                                 bits +=  1;
5489                                 break;
5490                         case PORT_MASK:
5491                                 bits +=  3;
5492                                 break;
5493                         case VNIC_ID_MASK:
5494                                 bits += 17;
5495                                 break;
5496                         case VLAN_MASK:
5497                                 bits += 17;
5498                                 break;
5499                         case TOS_MASK:
5500                                 bits +=  8;
5501                                 break;
5502                         case PROTOCOL_MASK:
5503                                 bits +=  8;
5504                                 break;
5505                         case ETHERTYPE_MASK:
5506                                 bits += 16;
5507                                 break;
5508                         case MACMATCH_MASK:
5509                                 bits +=  9;
5510                                 break;
5511                         case MPSHITTYPE_MASK:
5512                                 bits +=  3;
5513                                 break;
5514                         case FRAGMENTATION_MASK:
5515                                 bits +=  1;
5516                                 break;
5517                         }
5518
5519                 if (bits > 36) {
5520                         dev_err(adapter->pdev_dev,
5521                                 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5522                                 " using %#x\n", tp_vlan_pri_map, bits,
5523                                 TP_VLAN_PRI_MAP_DEFAULT);
5524                         tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5525                 }
5526         }
5527         v = tp_vlan_pri_map;
5528         t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5529                           &v, 1, TP_VLAN_PRI_MAP);
5530
5531         /*
5532          * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5533          * to support any of the compressed filter fields above.  Newer
5534          * versions of the firmware do this automatically but it doesn't hurt
5535          * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
5536          * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5537          * since the firmware automatically turns this on and off when we have
5538          * a non-zero number of filters active (since it does have a
5539          * performance impact).
5540          */
5541         if (tp_vlan_pri_map)
5542                 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5543                                  FIVETUPLELOOKUP_MASK,
5544                                  FIVETUPLELOOKUP_MASK);
5545
5546         /*
5547          * Tweak some settings.
5548          */
5549         t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5550                      RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5551                      PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5552                      KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5553
5554         /*
5555          * Get basic stuff going by issuing the Firmware Initialize command.
5556          * Note that this _must_ be after all PFVF commands ...
5557          */
5558         ret = t4_fw_initialize(adapter, adapter->mbox);
5559         if (ret < 0)
5560                 goto bye;
5561
5562         /*
5563          * Return successfully!
5564          */
5565         dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5566                  "driver parameters\n");
5567         return 0;
5568
5569         /*
5570          * Something bad happened.  Return the error ...
5571          */
5572 bye:
5573         return ret;
5574 }
5575
5576 static struct fw_info fw_info_array[] = {
5577         {
5578                 .chip = CHELSIO_T4,
5579                 .fs_name = FW4_CFNAME,
5580                 .fw_mod_name = FW4_FNAME,
5581                 .fw_hdr = {
5582                         .chip = FW_HDR_CHIP_T4,
5583                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5584                         .intfver_nic = FW_INTFVER(T4, NIC),
5585                         .intfver_vnic = FW_INTFVER(T4, VNIC),
5586                         .intfver_ri = FW_INTFVER(T4, RI),
5587                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5588                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
5589                 },
5590         }, {
5591                 .chip = CHELSIO_T5,
5592                 .fs_name = FW5_CFNAME,
5593                 .fw_mod_name = FW5_FNAME,
5594                 .fw_hdr = {
5595                         .chip = FW_HDR_CHIP_T5,
5596                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5597                         .intfver_nic = FW_INTFVER(T5, NIC),
5598                         .intfver_vnic = FW_INTFVER(T5, VNIC),
5599                         .intfver_ri = FW_INTFVER(T5, RI),
5600                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5601                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
5602                 },
5603         }
5604 };
5605
5606 static struct fw_info *find_fw_info(int chip)
5607 {
5608         int i;
5609
5610         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5611                 if (fw_info_array[i].chip == chip)
5612                         return &fw_info_array[i];
5613         }
5614         return NULL;
5615 }
5616
5617 /*
5618  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5619  */
5620 static int adap_init0(struct adapter *adap)
5621 {
5622         int ret;
5623         u32 v, port_vec;
5624         enum dev_state state;
5625         u32 params[7], val[7];
5626         struct fw_caps_config_cmd caps_cmd;
5627         int reset = 1;
5628
5629         /*
5630          * Contact FW, advertising Master capability (and potentially forcing
5631          * ourselves as the Master PF if our module parameter force_init is
5632          * set).
5633          */
5634         ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5635                           force_init ? MASTER_MUST : MASTER_MAY,
5636                           &state);
5637         if (ret < 0) {
5638                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5639                         ret);
5640                 return ret;
5641         }
5642         if (ret == adap->mbox)
5643                 adap->flags |= MASTER_PF;
5644         if (force_init && state == DEV_STATE_INIT)
5645                 state = DEV_STATE_UNINIT;
5646
5647         /*
5648          * If we're the Master PF Driver and the device is uninitialized,
5649          * then let's consider upgrading the firmware ...  (We always want
5650          * to check the firmware version number in order to A. get it for
5651          * later reporting and B. to warn if the currently loaded firmware
5652          * is excessively mismatched relative to the driver.)
5653          */
5654         t4_get_fw_version(adap, &adap->params.fw_vers);
5655         t4_get_tp_version(adap, &adap->params.tp_vers);
5656         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5657                 struct fw_info *fw_info;
5658                 struct fw_hdr *card_fw;
5659                 const struct firmware *fw;
5660                 const u8 *fw_data = NULL;
5661                 unsigned int fw_size = 0;
5662
5663                 /* This is the firmware whose headers the driver was compiled
5664                  * against
5665                  */
5666                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5667                 if (fw_info == NULL) {
5668                         dev_err(adap->pdev_dev,
5669                                 "unable to get firmware info for chip %d.\n",
5670                                 CHELSIO_CHIP_VERSION(adap->params.chip));
5671                         return -EINVAL;
5672                 }
5673
5674                 /* allocate memory to read the header of the firmware on the
5675                  * card
5676                  */
5677                 card_fw = t4_alloc_mem(sizeof(*card_fw));
5678
5679                 /* Get FW from from /lib/firmware/ */
5680                 ret = request_firmware(&fw, fw_info->fw_mod_name,
5681                                        adap->pdev_dev);
5682                 if (ret < 0) {
5683                         dev_err(adap->pdev_dev,
5684                                 "unable to load firmware image %s, error %d\n",
5685                                 fw_info->fw_mod_name, ret);
5686                 } else {
5687                         fw_data = fw->data;
5688                         fw_size = fw->size;
5689                 }
5690
5691                 /* upgrade FW logic */
5692                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5693                                  state, &reset);
5694
5695                 /* Cleaning up */
5696                 if (fw != NULL)
5697                         release_firmware(fw);
5698                 t4_free_mem(card_fw);
5699
5700                 if (ret < 0)
5701                         goto bye;
5702         }
5703
5704         /*
5705          * Grab VPD parameters.  This should be done after we establish a
5706          * connection to the firmware since some of the VPD parameters
5707          * (notably the Core Clock frequency) are retrieved via requests to
5708          * the firmware.  On the other hand, we need these fairly early on
5709          * so we do this right after getting ahold of the firmware.
5710          */
5711         ret = get_vpd_params(adap, &adap->params.vpd);
5712         if (ret < 0)
5713                 goto bye;
5714
5715         /*
5716          * Find out what ports are available to us.  Note that we need to do
5717          * this before calling adap_init0_no_config() since it needs nports
5718          * and portvec ...
5719          */
5720         v =
5721             FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5722             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5723         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5724         if (ret < 0)
5725                 goto bye;
5726
5727         adap->params.nports = hweight32(port_vec);
5728         adap->params.portvec = port_vec;
5729
5730         /*
5731          * If the firmware is initialized already (and we're not forcing a
5732          * master initialization), note that we're living with existing
5733          * adapter parameters.  Otherwise, it's time to try initializing the
5734          * adapter ...
5735          */
5736         if (state == DEV_STATE_INIT) {
5737                 dev_info(adap->pdev_dev, "Coming up as %s: "\
5738                          "Adapter already initialized\n",
5739                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5740                 adap->flags |= USING_SOFT_PARAMS;
5741         } else {
5742                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5743                          "Initializing adapter\n");
5744
5745                 /*
5746                  * If the firmware doesn't support Configuration
5747                  * Files warn user and exit,
5748                  */
5749                 if (ret < 0)
5750                         dev_warn(adap->pdev_dev, "Firmware doesn't support "
5751                                  "configuration file.\n");
5752                 if (force_old_init)
5753                         ret = adap_init0_no_config(adap, reset);
5754                 else {
5755                         /*
5756                          * Find out whether we're dealing with a version of
5757                          * the firmware which has configuration file support.
5758                          */
5759                         params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5760                                      FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5761                         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5762                                               params, val);
5763
5764                         /*
5765                          * If the firmware doesn't support Configuration
5766                          * Files, use the old Driver-based, hard-wired
5767                          * initialization.  Otherwise, try using the
5768                          * Configuration File support and fall back to the
5769                          * Driver-based initialization if there's no
5770                          * Configuration File found.
5771                          */
5772                         if (ret < 0)
5773                                 ret = adap_init0_no_config(adap, reset);
5774                         else {
5775                                 /*
5776                                  * The firmware provides us with a memory
5777                                  * buffer where we can load a Configuration
5778                                  * File from the host if we want to override
5779                                  * the Configuration File in flash.
5780                                  */
5781
5782                                 ret = adap_init0_config(adap, reset);
5783                                 if (ret == -ENOENT) {
5784                                         dev_info(adap->pdev_dev,
5785                                             "No Configuration File present "
5786                                             "on adapter. Using hard-wired "
5787                                             "configuration parameters.\n");
5788                                         ret = adap_init0_no_config(adap, reset);
5789                                 }
5790                         }
5791                 }
5792                 if (ret < 0) {
5793                         dev_err(adap->pdev_dev,
5794                                 "could not initialize adapter, error %d\n",
5795                                 -ret);
5796                         goto bye;
5797                 }
5798         }
5799
5800         /*
5801          * If we're living with non-hard-coded parameters (either from a
5802          * Firmware Configuration File or values programmed by a different PF
5803          * Driver), give the SGE code a chance to pull in anything that it
5804          * needs ...  Note that this must be called after we retrieve our VPD
5805          * parameters in order to know how to convert core ticks to seconds.
5806          */
5807         if (adap->flags & USING_SOFT_PARAMS) {
5808                 ret = t4_sge_init(adap);
5809                 if (ret < 0)
5810                         goto bye;
5811         }
5812
5813         if (is_bypass_device(adap->pdev->device))
5814                 adap->params.bypass = 1;
5815
5816         /*
5817          * Grab some of our basic fundamental operating parameters.
5818          */
5819 #define FW_PARAM_DEV(param) \
5820         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5821         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5822
5823 #define FW_PARAM_PFVF(param) \
5824         FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5825         FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
5826         FW_PARAMS_PARAM_Y(0) | \
5827         FW_PARAMS_PARAM_Z(0)
5828
5829         params[0] = FW_PARAM_PFVF(EQ_START);
5830         params[1] = FW_PARAM_PFVF(L2T_START);
5831         params[2] = FW_PARAM_PFVF(L2T_END);
5832         params[3] = FW_PARAM_PFVF(FILTER_START);
5833         params[4] = FW_PARAM_PFVF(FILTER_END);
5834         params[5] = FW_PARAM_PFVF(IQFLINT_START);
5835         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5836         if (ret < 0)
5837                 goto bye;
5838         adap->sge.egr_start = val[0];
5839         adap->l2t_start = val[1];
5840         adap->l2t_end = val[2];
5841         adap->tids.ftid_base = val[3];
5842         adap->tids.nftids = val[4] - val[3] + 1;
5843         adap->sge.ingr_start = val[5];
5844
5845         /* query params related to active filter region */
5846         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5847         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5848         ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5849         /* If Active filter size is set we enable establishing
5850          * offload connection through firmware work request
5851          */
5852         if ((val[0] != val[1]) && (ret >= 0)) {
5853                 adap->flags |= FW_OFLD_CONN;
5854                 adap->tids.aftid_base = val[0];
5855                 adap->tids.aftid_end = val[1];
5856         }
5857
5858         /* If we're running on newer firmware, let it know that we're
5859          * prepared to deal with encapsulated CPL messages.  Older
5860          * firmware won't understand this and we'll just get
5861          * unencapsulated messages ...
5862          */
5863         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5864         val[0] = 1;
5865         (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5866
5867         /*
5868          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5869          * capability.  Earlier versions of the firmware didn't have the
5870          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5871          * permission to use ULPTX MEMWRITE DSGL.
5872          */
5873         if (is_t4(adap->params.chip)) {
5874                 adap->params.ulptx_memwrite_dsgl = false;
5875         } else {
5876                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5877                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5878                                       1, params, val);
5879                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5880         }
5881
5882         /*
5883          * Get device capabilities so we can determine what resources we need
5884          * to manage.
5885          */
5886         memset(&caps_cmd, 0, sizeof(caps_cmd));
5887         caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5888                                      FW_CMD_REQUEST | FW_CMD_READ);
5889         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5890         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5891                          &caps_cmd);
5892         if (ret < 0)
5893                 goto bye;
5894
5895         if (caps_cmd.ofldcaps) {
5896                 /* query offload-related parameters */
5897                 params[0] = FW_PARAM_DEV(NTID);
5898                 params[1] = FW_PARAM_PFVF(SERVER_START);
5899                 params[2] = FW_PARAM_PFVF(SERVER_END);
5900                 params[3] = FW_PARAM_PFVF(TDDP_START);
5901                 params[4] = FW_PARAM_PFVF(TDDP_END);
5902                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5903                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5904                                       params, val);
5905                 if (ret < 0)
5906                         goto bye;
5907                 adap->tids.ntids = val[0];
5908                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5909                 adap->tids.stid_base = val[1];
5910                 adap->tids.nstids = val[2] - val[1] + 1;
5911                 /*
5912                  * Setup server filter region. Divide the availble filter
5913                  * region into two parts. Regular filters get 1/3rd and server
5914                  * filters get 2/3rd part. This is only enabled if workarond
5915                  * path is enabled.
5916                  * 1. For regular filters.
5917                  * 2. Server filter: This are special filters which are used
5918                  * to redirect SYN packets to offload queue.
5919                  */
5920                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5921                         adap->tids.sftid_base = adap->tids.ftid_base +
5922                                         DIV_ROUND_UP(adap->tids.nftids, 3);
5923                         adap->tids.nsftids = adap->tids.nftids -
5924                                          DIV_ROUND_UP(adap->tids.nftids, 3);
5925                         adap->tids.nftids = adap->tids.sftid_base -
5926                                                 adap->tids.ftid_base;
5927                 }
5928                 adap->vres.ddp.start = val[3];
5929                 adap->vres.ddp.size = val[4] - val[3] + 1;
5930                 adap->params.ofldq_wr_cred = val[5];
5931
5932                 adap->params.offload = 1;
5933         }
5934         if (caps_cmd.rdmacaps) {
5935                 params[0] = FW_PARAM_PFVF(STAG_START);
5936                 params[1] = FW_PARAM_PFVF(STAG_END);
5937                 params[2] = FW_PARAM_PFVF(RQ_START);
5938                 params[3] = FW_PARAM_PFVF(RQ_END);
5939                 params[4] = FW_PARAM_PFVF(PBL_START);
5940                 params[5] = FW_PARAM_PFVF(PBL_END);
5941                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5942                                       params, val);
5943                 if (ret < 0)
5944                         goto bye;
5945                 adap->vres.stag.start = val[0];
5946                 adap->vres.stag.size = val[1] - val[0] + 1;
5947                 adap->vres.rq.start = val[2];
5948                 adap->vres.rq.size = val[3] - val[2] + 1;
5949                 adap->vres.pbl.start = val[4];
5950                 adap->vres.pbl.size = val[5] - val[4] + 1;
5951
5952                 params[0] = FW_PARAM_PFVF(SQRQ_START);
5953                 params[1] = FW_PARAM_PFVF(SQRQ_END);
5954                 params[2] = FW_PARAM_PFVF(CQ_START);
5955                 params[3] = FW_PARAM_PFVF(CQ_END);
5956                 params[4] = FW_PARAM_PFVF(OCQ_START);
5957                 params[5] = FW_PARAM_PFVF(OCQ_END);
5958                 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
5959                 if (ret < 0)
5960                         goto bye;
5961                 adap->vres.qp.start = val[0];
5962                 adap->vres.qp.size = val[1] - val[0] + 1;
5963                 adap->vres.cq.start = val[2];
5964                 adap->vres.cq.size = val[3] - val[2] + 1;
5965                 adap->vres.ocq.start = val[4];
5966                 adap->vres.ocq.size = val[5] - val[4] + 1;
5967
5968                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5969                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5970                 ret = t4_query_params(adap, 0, 0, 0, 2, params, val);
5971                 if (ret < 0) {
5972                         adap->params.max_ordird_qp = 8;
5973                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5974                         ret = 0;
5975                 } else {
5976                         adap->params.max_ordird_qp = val[0];
5977                         adap->params.max_ird_adapter = val[1];
5978                 }
5979                 dev_info(adap->pdev_dev,
5980                          "max_ordird_qp %d max_ird_adapter %d\n",
5981                          adap->params.max_ordird_qp,
5982                          adap->params.max_ird_adapter);
5983         }
5984         if (caps_cmd.iscsicaps) {
5985                 params[0] = FW_PARAM_PFVF(ISCSI_START);
5986                 params[1] = FW_PARAM_PFVF(ISCSI_END);
5987                 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5988                                       params, val);
5989                 if (ret < 0)
5990                         goto bye;
5991                 adap->vres.iscsi.start = val[0];
5992                 adap->vres.iscsi.size = val[1] - val[0] + 1;
5993         }
5994 #undef FW_PARAM_PFVF
5995 #undef FW_PARAM_DEV
5996
5997         /* The MTU/MSS Table is initialized by now, so load their values.  If
5998          * we're initializing the adapter, then we'll make any modifications
5999          * we want to the MTU/MSS Table and also initialize the congestion
6000          * parameters.
6001          */
6002         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
6003         if (state != DEV_STATE_INIT) {
6004                 int i;
6005
6006                 /* The default MTU Table contains values 1492 and 1500.
6007                  * However, for TCP, it's better to have two values which are
6008                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
6009                  * This allows us to have a TCP Data Payload which is a
6010                  * multiple of 8 regardless of what combination of TCP Options
6011                  * are in use (always a multiple of 4 bytes) which is
6012                  * important for performance reasons.  For instance, if no
6013                  * options are in use, then we have a 20-byte IP header and a
6014                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
6015                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
6016                  * which is not a multiple of 8.  So using an MSS of 1488 in
6017                  * this case results in a TCP Data Payload of 1448 bytes which
6018                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
6019                  * Stamps have been negotiated, then an MTU of 1500 bytes
6020                  * results in a TCP Data Payload of 1448 bytes which, as
6021                  * above, is a multiple of 8 bytes ...
6022                  */
6023                 for (i = 0; i < NMTUS; i++)
6024                         if (adap->params.mtus[i] == 1492) {
6025                                 adap->params.mtus[i] = 1488;
6026                                 break;
6027                         }
6028
6029                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6030                              adap->params.b_wnd);
6031         }
6032         t4_init_tp_params(adap);
6033         adap->flags |= FW_OK;
6034         return 0;
6035
6036         /*
6037          * Something bad happened.  If a command timed out or failed with EIO
6038          * FW does not operate within its spec or something catastrophic
6039          * happened to HW/FW, stop issuing commands.
6040          */
6041 bye:
6042         if (ret != -ETIMEDOUT && ret != -EIO)
6043                 t4_fw_bye(adap, adap->mbox);
6044         return ret;
6045 }
6046
6047 /* EEH callbacks */
6048
6049 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6050                                          pci_channel_state_t state)
6051 {
6052         int i;
6053         struct adapter *adap = pci_get_drvdata(pdev);
6054
6055         if (!adap)
6056                 goto out;
6057
6058         rtnl_lock();
6059         adap->flags &= ~FW_OK;
6060         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
6061         spin_lock(&adap->stats_lock);
6062         for_each_port(adap, i) {
6063                 struct net_device *dev = adap->port[i];
6064
6065                 netif_device_detach(dev);
6066                 netif_carrier_off(dev);
6067         }
6068         spin_unlock(&adap->stats_lock);
6069         if (adap->flags & FULL_INIT_DONE)
6070                 cxgb_down(adap);
6071         rtnl_unlock();
6072         if ((adap->flags & DEV_ENABLED)) {
6073                 pci_disable_device(pdev);
6074                 adap->flags &= ~DEV_ENABLED;
6075         }
6076 out:    return state == pci_channel_io_perm_failure ?
6077                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6078 }
6079
6080 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6081 {
6082         int i, ret;
6083         struct fw_caps_config_cmd c;
6084         struct adapter *adap = pci_get_drvdata(pdev);
6085
6086         if (!adap) {
6087                 pci_restore_state(pdev);
6088                 pci_save_state(pdev);
6089                 return PCI_ERS_RESULT_RECOVERED;
6090         }
6091
6092         if (!(adap->flags & DEV_ENABLED)) {
6093                 if (pci_enable_device(pdev)) {
6094                         dev_err(&pdev->dev, "Cannot reenable PCI "
6095                                             "device after reset\n");
6096                         return PCI_ERS_RESULT_DISCONNECT;
6097                 }
6098                 adap->flags |= DEV_ENABLED;
6099         }
6100
6101         pci_set_master(pdev);
6102         pci_restore_state(pdev);
6103         pci_save_state(pdev);
6104         pci_cleanup_aer_uncorrect_error_status(pdev);
6105
6106         if (t4_wait_dev_ready(adap) < 0)
6107                 return PCI_ERS_RESULT_DISCONNECT;
6108         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6109                 return PCI_ERS_RESULT_DISCONNECT;
6110         adap->flags |= FW_OK;
6111         if (adap_init1(adap, &c))
6112                 return PCI_ERS_RESULT_DISCONNECT;
6113
6114         for_each_port(adap, i) {
6115                 struct port_info *p = adap2pinfo(adap, i);
6116
6117                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6118                                   NULL, NULL);
6119                 if (ret < 0)
6120                         return PCI_ERS_RESULT_DISCONNECT;
6121                 p->viid = ret;
6122                 p->xact_addr_filt = -1;
6123         }
6124
6125         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6126                      adap->params.b_wnd);
6127         setup_memwin(adap);
6128         if (cxgb_up(adap))
6129                 return PCI_ERS_RESULT_DISCONNECT;
6130         return PCI_ERS_RESULT_RECOVERED;
6131 }
6132
6133 static void eeh_resume(struct pci_dev *pdev)
6134 {
6135         int i;
6136         struct adapter *adap = pci_get_drvdata(pdev);
6137
6138         if (!adap)
6139                 return;
6140
6141         rtnl_lock();
6142         for_each_port(adap, i) {
6143                 struct net_device *dev = adap->port[i];
6144
6145                 if (netif_running(dev)) {
6146                         link_start(dev);
6147                         cxgb_set_rxmode(dev);
6148                 }
6149                 netif_device_attach(dev);
6150         }
6151         rtnl_unlock();
6152 }
6153
6154 static const struct pci_error_handlers cxgb4_eeh = {
6155         .error_detected = eeh_err_detected,
6156         .slot_reset     = eeh_slot_reset,
6157         .resume         = eeh_resume,
6158 };
6159
6160 static inline bool is_x_10g_port(const struct link_config *lc)
6161 {
6162         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6163                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6164 }
6165
6166 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6167                              unsigned int us, unsigned int cnt,
6168                              unsigned int size, unsigned int iqe_size)
6169 {
6170         q->adap = adap;
6171         set_rspq_intr_params(q, us, cnt);
6172         q->iqe_len = iqe_size;
6173         q->size = size;
6174 }
6175
6176 /*
6177  * Perform default configuration of DMA queues depending on the number and type
6178  * of ports we found and the number of available CPUs.  Most settings can be
6179  * modified by the admin prior to actual use.
6180  */
6181 static void cfg_queues(struct adapter *adap)
6182 {
6183         struct sge *s = &adap->sge;
6184         int i, n10g = 0, qidx = 0;
6185 #ifndef CONFIG_CHELSIO_T4_DCB
6186         int q10g = 0;
6187 #endif
6188         int ciq_size;
6189
6190         for_each_port(adap, i)
6191                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6192 #ifdef CONFIG_CHELSIO_T4_DCB
6193         /* For Data Center Bridging support we need to be able to support up
6194          * to 8 Traffic Priorities; each of which will be assigned to its
6195          * own TX Queue in order to prevent Head-Of-Line Blocking.
6196          */
6197         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6198                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6199                         MAX_ETH_QSETS, adap->params.nports * 8);
6200                 BUG_ON(1);
6201         }
6202
6203         for_each_port(adap, i) {
6204                 struct port_info *pi = adap2pinfo(adap, i);
6205
6206                 pi->first_qset = qidx;
6207                 pi->nqsets = 8;
6208                 qidx += pi->nqsets;
6209         }
6210 #else /* !CONFIG_CHELSIO_T4_DCB */
6211         /*
6212          * We default to 1 queue per non-10G port and up to # of cores queues
6213          * per 10G port.
6214          */
6215         if (n10g)
6216                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6217         if (q10g > netif_get_num_default_rss_queues())
6218                 q10g = netif_get_num_default_rss_queues();
6219
6220         for_each_port(adap, i) {
6221                 struct port_info *pi = adap2pinfo(adap, i);
6222
6223                 pi->first_qset = qidx;
6224                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6225                 qidx += pi->nqsets;
6226         }
6227 #endif /* !CONFIG_CHELSIO_T4_DCB */
6228
6229         s->ethqsets = qidx;
6230         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
6231
6232         if (is_offload(adap)) {
6233                 /*
6234                  * For offload we use 1 queue/channel if all ports are up to 1G,
6235                  * otherwise we divide all available queues amongst the channels
6236                  * capped by the number of available cores.
6237                  */
6238                 if (n10g) {
6239                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6240                                   num_online_cpus());
6241                         s->ofldqsets = roundup(i, adap->params.nports);
6242                 } else
6243                         s->ofldqsets = adap->params.nports;
6244                 /* For RDMA one Rx queue per channel suffices */
6245                 s->rdmaqs = adap->params.nports;
6246                 s->rdmaciqs = adap->params.nports;
6247         }
6248
6249         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6250                 struct sge_eth_rxq *r = &s->ethrxq[i];
6251
6252                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6253                 r->fl.size = 72;
6254         }
6255
6256         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6257                 s->ethtxq[i].q.size = 1024;
6258
6259         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6260                 s->ctrlq[i].q.size = 512;
6261
6262         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6263                 s->ofldtxq[i].q.size = 1024;
6264
6265         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6266                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6267
6268                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6269                 r->rspq.uld = CXGB4_ULD_ISCSI;
6270                 r->fl.size = 72;
6271         }
6272
6273         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6274                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6275
6276                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6277                 r->rspq.uld = CXGB4_ULD_RDMA;
6278                 r->fl.size = 72;
6279         }
6280
6281         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6282         if (ciq_size > SGE_MAX_IQ_SIZE) {
6283                 CH_WARN(adap, "CIQ size too small for available IQs\n");
6284                 ciq_size = SGE_MAX_IQ_SIZE;
6285         }
6286
6287         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6288                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6289
6290                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6291                 r->rspq.uld = CXGB4_ULD_RDMA;
6292         }
6293
6294         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6295         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6296 }
6297
6298 /*
6299  * Reduce the number of Ethernet queues across all ports to at most n.
6300  * n provides at least one queue per port.
6301  */
6302 static void reduce_ethqs(struct adapter *adap, int n)
6303 {
6304         int i;
6305         struct port_info *pi;
6306
6307         while (n < adap->sge.ethqsets)
6308                 for_each_port(adap, i) {
6309                         pi = adap2pinfo(adap, i);
6310                         if (pi->nqsets > 1) {
6311                                 pi->nqsets--;
6312                                 adap->sge.ethqsets--;
6313                                 if (adap->sge.ethqsets <= n)
6314                                         break;
6315                         }
6316                 }
6317
6318         n = 0;
6319         for_each_port(adap, i) {
6320                 pi = adap2pinfo(adap, i);
6321                 pi->first_qset = n;
6322                 n += pi->nqsets;
6323         }
6324 }
6325
6326 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6327 #define EXTRA_VECS 2
6328
6329 static int enable_msix(struct adapter *adap)
6330 {
6331         int ofld_need = 0;
6332         int i, want, need;
6333         struct sge *s = &adap->sge;
6334         unsigned int nchan = adap->params.nports;
6335         struct msix_entry entries[MAX_INGQ + 1];
6336
6337         for (i = 0; i < ARRAY_SIZE(entries); ++i)
6338                 entries[i].entry = i;
6339
6340         want = s->max_ethqsets + EXTRA_VECS;
6341         if (is_offload(adap)) {
6342                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6343                 /* need nchan for each possible ULD */
6344                 ofld_need = 3 * nchan;
6345         }
6346 #ifdef CONFIG_CHELSIO_T4_DCB
6347         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6348          * each port.
6349          */
6350         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6351 #else
6352         need = adap->params.nports + EXTRA_VECS + ofld_need;
6353 #endif
6354         want = pci_enable_msix_range(adap->pdev, entries, need, want);
6355         if (want < 0)
6356                 return want;
6357
6358         /*
6359          * Distribute available vectors to the various queue groups.
6360          * Every group gets its minimum requirement and NIC gets top
6361          * priority for leftovers.
6362          */
6363         i = want - EXTRA_VECS - ofld_need;
6364         if (i < s->max_ethqsets) {
6365                 s->max_ethqsets = i;
6366                 if (i < s->ethqsets)
6367                         reduce_ethqs(adap, i);
6368         }
6369         if (is_offload(adap)) {
6370                 i = want - EXTRA_VECS - s->max_ethqsets;
6371                 i -= ofld_need - nchan;
6372                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
6373         }
6374         for (i = 0; i < want; ++i)
6375                 adap->msix_info[i].vec = entries[i].vector;
6376
6377         return 0;
6378 }
6379
6380 #undef EXTRA_VECS
6381
6382 static int init_rss(struct adapter *adap)
6383 {
6384         unsigned int i, j;
6385
6386         for_each_port(adap, i) {
6387                 struct port_info *pi = adap2pinfo(adap, i);
6388
6389                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6390                 if (!pi->rss)
6391                         return -ENOMEM;
6392                 for (j = 0; j < pi->rss_size; j++)
6393                         pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6394         }
6395         return 0;
6396 }
6397
6398 static void print_port_info(const struct net_device *dev)
6399 {
6400         char buf[80];
6401         char *bufp = buf;
6402         const char *spd = "";
6403         const struct port_info *pi = netdev_priv(dev);
6404         const struct adapter *adap = pi->adapter;
6405
6406         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6407                 spd = " 2.5 GT/s";
6408         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6409                 spd = " 5 GT/s";
6410         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6411                 spd = " 8 GT/s";
6412
6413         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6414                 bufp += sprintf(bufp, "100/");
6415         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6416                 bufp += sprintf(bufp, "1000/");
6417         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6418                 bufp += sprintf(bufp, "10G/");
6419         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6420                 bufp += sprintf(bufp, "40G/");
6421         if (bufp != buf)
6422                 --bufp;
6423         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6424
6425         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6426                     adap->params.vpd.id,
6427                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6428                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6429                     (adap->flags & USING_MSIX) ? " MSI-X" :
6430                     (adap->flags & USING_MSI) ? " MSI" : "");
6431         netdev_info(dev, "S/N: %s, P/N: %s\n",
6432                     adap->params.vpd.sn, adap->params.vpd.pn);
6433 }
6434
6435 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6436 {
6437         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6438 }
6439
6440 /*
6441  * Free the following resources:
6442  * - memory used for tables
6443  * - MSI/MSI-X
6444  * - net devices
6445  * - resources FW is holding for us
6446  */
6447 static void free_some_resources(struct adapter *adapter)
6448 {
6449         unsigned int i;
6450
6451         t4_free_mem(adapter->l2t);
6452         t4_free_mem(adapter->tids.tid_tab);
6453         disable_msi(adapter);
6454
6455         for_each_port(adapter, i)
6456                 if (adapter->port[i]) {
6457                         kfree(adap2pinfo(adapter, i)->rss);
6458                         free_netdev(adapter->port[i]);
6459                 }
6460         if (adapter->flags & FW_OK)
6461                 t4_fw_bye(adapter, adapter->fn);
6462 }
6463
6464 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6465 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6466                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6467 #define SEGMENT_SIZE 128
6468
6469 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6470 {
6471         int func, i, err, s_qpp, qpp, num_seg;
6472         struct port_info *pi;
6473         bool highdma = false;
6474         struct adapter *adapter = NULL;
6475
6476         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6477
6478         err = pci_request_regions(pdev, KBUILD_MODNAME);
6479         if (err) {
6480                 /* Just info, some other driver may have claimed the device. */
6481                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6482                 return err;
6483         }
6484
6485         err = pci_enable_device(pdev);
6486         if (err) {
6487                 dev_err(&pdev->dev, "cannot enable PCI device\n");
6488                 goto out_release_regions;
6489         }
6490
6491         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6492                 highdma = true;
6493                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6494                 if (err) {
6495                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6496                                 "coherent allocations\n");
6497                         goto out_disable_device;
6498                 }
6499         } else {
6500                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6501                 if (err) {
6502                         dev_err(&pdev->dev, "no usable DMA configuration\n");
6503                         goto out_disable_device;
6504                 }
6505         }
6506
6507         pci_enable_pcie_error_reporting(pdev);
6508         enable_pcie_relaxed_ordering(pdev);
6509         pci_set_master(pdev);
6510         pci_save_state(pdev);
6511
6512         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6513         if (!adapter) {
6514                 err = -ENOMEM;
6515                 goto out_disable_device;
6516         }
6517
6518         /* PCI device has been enabled */
6519         adapter->flags |= DEV_ENABLED;
6520
6521         adapter->regs = pci_ioremap_bar(pdev, 0);
6522         if (!adapter->regs) {
6523                 dev_err(&pdev->dev, "cannot map device registers\n");
6524                 err = -ENOMEM;
6525                 goto out_free_adapter;
6526         }
6527
6528         /* We control everything through one PF */
6529         func = SOURCEPF_GET(readl(adapter->regs + PL_WHOAMI));
6530         if (func != ent->driver_data) {
6531                 pci_save_state(pdev);        /* to restore SR-IOV later */
6532                 goto sriov;
6533         }
6534
6535         adapter->pdev = pdev;
6536         adapter->pdev_dev = &pdev->dev;
6537         adapter->mbox = func;
6538         adapter->fn = func;
6539         adapter->msg_enable = dflt_msg_enable;
6540         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6541
6542         spin_lock_init(&adapter->stats_lock);
6543         spin_lock_init(&adapter->tid_release_lock);
6544
6545         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6546         INIT_WORK(&adapter->db_full_task, process_db_full);
6547         INIT_WORK(&adapter->db_drop_task, process_db_drop);
6548
6549         err = t4_prep_adapter(adapter);
6550         if (err)
6551                 goto out_unmap_bar0;
6552
6553         if (!is_t4(adapter->params.chip)) {
6554                 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6555                 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6556                       SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6557                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6558
6559                 /* Each segment size is 128B. Write coalescing is enabled only
6560                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6561                  * queue is less no of segments that can be accommodated in
6562                  * a page size.
6563                  */
6564                 if (qpp > num_seg) {
6565                         dev_err(&pdev->dev,
6566                                 "Incorrect number of egress queues per page\n");
6567                         err = -EINVAL;
6568                         goto out_unmap_bar0;
6569                 }
6570                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6571                 pci_resource_len(pdev, 2));
6572                 if (!adapter->bar2) {
6573                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
6574                         err = -ENOMEM;
6575                         goto out_unmap_bar0;
6576                 }
6577         }
6578
6579         setup_memwin(adapter);
6580         err = adap_init0(adapter);
6581         setup_memwin_rdma(adapter);
6582         if (err)
6583                 goto out_unmap_bar;
6584
6585         for_each_port(adapter, i) {
6586                 struct net_device *netdev;
6587
6588                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6589                                            MAX_ETH_QSETS);
6590                 if (!netdev) {
6591                         err = -ENOMEM;
6592                         goto out_free_dev;
6593                 }
6594
6595                 SET_NETDEV_DEV(netdev, &pdev->dev);
6596
6597                 adapter->port[i] = netdev;
6598                 pi = netdev_priv(netdev);
6599                 pi->adapter = adapter;
6600                 pi->xact_addr_filt = -1;
6601                 pi->port_id = i;
6602                 netdev->irq = pdev->irq;
6603
6604                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6605                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6606                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
6607                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6608                 if (highdma)
6609                         netdev->hw_features |= NETIF_F_HIGHDMA;
6610                 netdev->features |= netdev->hw_features;
6611                 netdev->vlan_features = netdev->features & VLAN_FEAT;
6612
6613                 netdev->priv_flags |= IFF_UNICAST_FLT;
6614
6615                 netdev->netdev_ops = &cxgb4_netdev_ops;
6616 #ifdef CONFIG_CHELSIO_T4_DCB
6617                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6618                 cxgb4_dcb_state_init(netdev);
6619 #endif
6620                 netdev->ethtool_ops = &cxgb_ethtool_ops;
6621         }
6622
6623         pci_set_drvdata(pdev, adapter);
6624
6625         if (adapter->flags & FW_OK) {
6626                 err = t4_port_init(adapter, func, func, 0);
6627                 if (err)
6628                         goto out_free_dev;
6629         }
6630
6631         /*
6632          * Configure queues and allocate tables now, they can be needed as
6633          * soon as the first register_netdev completes.
6634          */
6635         cfg_queues(adapter);
6636
6637         adapter->l2t = t4_init_l2t();
6638         if (!adapter->l2t) {
6639                 /* We tolerate a lack of L2T, giving up some functionality */
6640                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6641                 adapter->params.offload = 0;
6642         }
6643
6644         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6645                 dev_warn(&pdev->dev, "could not allocate TID table, "
6646                          "continuing\n");
6647                 adapter->params.offload = 0;
6648         }
6649
6650         /* See what interrupts we'll be using */
6651         if (msi > 1 && enable_msix(adapter) == 0)
6652                 adapter->flags |= USING_MSIX;
6653         else if (msi > 0 && pci_enable_msi(pdev) == 0)
6654                 adapter->flags |= USING_MSI;
6655
6656         err = init_rss(adapter);
6657         if (err)
6658                 goto out_free_dev;
6659
6660         /*
6661          * The card is now ready to go.  If any errors occur during device
6662          * registration we do not fail the whole card but rather proceed only
6663          * with the ports we manage to register successfully.  However we must
6664          * register at least one net device.
6665          */
6666         for_each_port(adapter, i) {
6667                 pi = adap2pinfo(adapter, i);
6668                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6669                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6670
6671                 err = register_netdev(adapter->port[i]);
6672                 if (err)
6673                         break;
6674                 adapter->chan_map[pi->tx_chan] = i;
6675                 print_port_info(adapter->port[i]);
6676         }
6677         if (i == 0) {
6678                 dev_err(&pdev->dev, "could not register any net devices\n");
6679                 goto out_free_dev;
6680         }
6681         if (err) {
6682                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6683                 err = 0;
6684         }
6685
6686         if (cxgb4_debugfs_root) {
6687                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6688                                                            cxgb4_debugfs_root);
6689                 setup_debugfs(adapter);
6690         }
6691
6692         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6693         pdev->needs_freset = 1;
6694
6695         if (is_offload(adapter))
6696                 attach_ulds(adapter);
6697
6698 sriov:
6699 #ifdef CONFIG_PCI_IOV
6700         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6701                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6702                         dev_info(&pdev->dev,
6703                                  "instantiated %u virtual functions\n",
6704                                  num_vf[func]);
6705 #endif
6706         return 0;
6707
6708  out_free_dev:
6709         free_some_resources(adapter);
6710  out_unmap_bar:
6711         if (!is_t4(adapter->params.chip))
6712                 iounmap(adapter->bar2);
6713  out_unmap_bar0:
6714         iounmap(adapter->regs);
6715  out_free_adapter:
6716         kfree(adapter);
6717  out_disable_device:
6718         pci_disable_pcie_error_reporting(pdev);
6719         pci_disable_device(pdev);
6720  out_release_regions:
6721         pci_release_regions(pdev);
6722         return err;
6723 }
6724
6725 static void remove_one(struct pci_dev *pdev)
6726 {
6727         struct adapter *adapter = pci_get_drvdata(pdev);
6728
6729 #ifdef CONFIG_PCI_IOV
6730         pci_disable_sriov(pdev);
6731
6732 #endif
6733
6734         if (adapter) {
6735                 int i;
6736
6737                 if (is_offload(adapter))
6738                         detach_ulds(adapter);
6739
6740                 for_each_port(adapter, i)
6741                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6742                                 unregister_netdev(adapter->port[i]);
6743
6744                 debugfs_remove_recursive(adapter->debugfs_root);
6745
6746                 /* If we allocated filters, free up state associated with any
6747                  * valid filters ...
6748                  */
6749                 if (adapter->tids.ftid_tab) {
6750                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
6751                         for (i = 0; i < (adapter->tids.nftids +
6752                                         adapter->tids.nsftids); i++, f++)
6753                                 if (f->valid)
6754                                         clear_filter(adapter, f);
6755                 }
6756
6757                 if (adapter->flags & FULL_INIT_DONE)
6758                         cxgb_down(adapter);
6759
6760                 free_some_resources(adapter);
6761                 iounmap(adapter->regs);
6762                 if (!is_t4(adapter->params.chip))
6763                         iounmap(adapter->bar2);
6764                 pci_disable_pcie_error_reporting(pdev);
6765                 if ((adapter->flags & DEV_ENABLED)) {
6766                         pci_disable_device(pdev);
6767                         adapter->flags &= ~DEV_ENABLED;
6768                 }
6769                 pci_release_regions(pdev);
6770                 synchronize_rcu();
6771                 kfree(adapter);
6772         } else
6773                 pci_release_regions(pdev);
6774 }
6775
6776 static struct pci_driver cxgb4_driver = {
6777         .name     = KBUILD_MODNAME,
6778         .id_table = cxgb4_pci_tbl,
6779         .probe    = init_one,
6780         .remove   = remove_one,
6781         .shutdown = remove_one,
6782         .err_handler = &cxgb4_eeh,
6783 };
6784
6785 static int __init cxgb4_init_module(void)
6786 {
6787         int ret;
6788
6789         workq = create_singlethread_workqueue("cxgb4");
6790         if (!workq)
6791                 return -ENOMEM;
6792
6793         /* Debugfs support is optional, just warn if this fails */
6794         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6795         if (!cxgb4_debugfs_root)
6796                 pr_warn("could not create debugfs entry, continuing\n");
6797
6798         ret = pci_register_driver(&cxgb4_driver);
6799         if (ret < 0) {
6800                 debugfs_remove(cxgb4_debugfs_root);
6801                 destroy_workqueue(workq);
6802         }
6803
6804         register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6805
6806         return ret;
6807 }
6808
6809 static void __exit cxgb4_cleanup_module(void)
6810 {
6811         unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6812         pci_unregister_driver(&cxgb4_driver);
6813         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6814         flush_workqueue(workq);
6815         destroy_workqueue(workq);
6816 }
6817
6818 module_init(cxgb4_init_module);
6819 module_exit(cxgb4_cleanup_module);