Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52
53 #include "e1000.h"
54
55 #define DRV_EXTRAVERSION "-k2"
56
57 #define DRV_VERSION "1.2.20" DRV_EXTRAVERSION
58 char e1000e_driver_name[] = "e1000e";
59 const char e1000e_driver_version[] = DRV_VERSION;
60
61 static const struct e1000_info *e1000_info_tbl[] = {
62         [board_82571]           = &e1000_82571_info,
63         [board_82572]           = &e1000_82572_info,
64         [board_82573]           = &e1000_82573_info,
65         [board_82574]           = &e1000_82574_info,
66         [board_82583]           = &e1000_82583_info,
67         [board_80003es2lan]     = &e1000_es2_info,
68         [board_ich8lan]         = &e1000_ich8_info,
69         [board_ich9lan]         = &e1000_ich9_info,
70         [board_ich10lan]        = &e1000_ich10_info,
71         [board_pchlan]          = &e1000_pch_info,
72         [board_pch2lan]         = &e1000_pch2_info,
73 };
74
75 struct e1000_reg_info {
76         u32 ofs;
77         char *name;
78 };
79
80 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
85
86 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
91
92 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
93
94         /* General Registers */
95         {E1000_CTRL, "CTRL"},
96         {E1000_STATUS, "STATUS"},
97         {E1000_CTRL_EXT, "CTRL_EXT"},
98
99         /* Interrupt Registers */
100         {E1000_ICR, "ICR"},
101
102         /* RX Registers */
103         {E1000_RCTL, "RCTL"},
104         {E1000_RDLEN, "RDLEN"},
105         {E1000_RDH, "RDH"},
106         {E1000_RDT, "RDT"},
107         {E1000_RDTR, "RDTR"},
108         {E1000_RXDCTL(0), "RXDCTL"},
109         {E1000_ERT, "ERT"},
110         {E1000_RDBAL, "RDBAL"},
111         {E1000_RDBAH, "RDBAH"},
112         {E1000_RDFH, "RDFH"},
113         {E1000_RDFT, "RDFT"},
114         {E1000_RDFHS, "RDFHS"},
115         {E1000_RDFTS, "RDFTS"},
116         {E1000_RDFPC, "RDFPC"},
117
118         /* TX Registers */
119         {E1000_TCTL, "TCTL"},
120         {E1000_TDBAL, "TDBAL"},
121         {E1000_TDBAH, "TDBAH"},
122         {E1000_TDLEN, "TDLEN"},
123         {E1000_TDH, "TDH"},
124         {E1000_TDT, "TDT"},
125         {E1000_TIDV, "TIDV"},
126         {E1000_TXDCTL(0), "TXDCTL"},
127         {E1000_TADV, "TADV"},
128         {E1000_TARC(0), "TARC"},
129         {E1000_TDFH, "TDFH"},
130         {E1000_TDFT, "TDFT"},
131         {E1000_TDFHS, "TDFHS"},
132         {E1000_TDFTS, "TDFTS"},
133         {E1000_TDFPC, "TDFPC"},
134
135         /* List Terminator */
136         {}
137 };
138
139 /*
140  * e1000_regdump - register printout routine
141  */
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
143 {
144         int n = 0;
145         char rname[16];
146         u32 regs[8];
147
148         switch (reginfo->ofs) {
149         case E1000_RXDCTL(0):
150                 for (n = 0; n < 2; n++)
151                         regs[n] = __er32(hw, E1000_RXDCTL(n));
152                 break;
153         case E1000_TXDCTL(0):
154                 for (n = 0; n < 2; n++)
155                         regs[n] = __er32(hw, E1000_TXDCTL(n));
156                 break;
157         case E1000_TARC(0):
158                 for (n = 0; n < 2; n++)
159                         regs[n] = __er32(hw, E1000_TARC(n));
160                 break;
161         default:
162                 printk(KERN_INFO "%-15s %08x\n",
163                         reginfo->name, __er32(hw, reginfo->ofs));
164                 return;
165         }
166
167         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168         printk(KERN_INFO "%-15s ", rname);
169         for (n = 0; n < 2; n++)
170                 printk(KERN_CONT "%08x ", regs[n]);
171         printk(KERN_CONT "\n");
172 }
173
174
175 /*
176  * e1000e_dump - Print registers, tx-ring and rx-ring
177  */
178 static void e1000e_dump(struct e1000_adapter *adapter)
179 {
180         struct net_device *netdev = adapter->netdev;
181         struct e1000_hw *hw = &adapter->hw;
182         struct e1000_reg_info *reginfo;
183         struct e1000_ring *tx_ring = adapter->tx_ring;
184         struct e1000_tx_desc *tx_desc;
185         struct my_u0 { u64 a; u64 b; } *u0;
186         struct e1000_buffer *buffer_info;
187         struct e1000_ring *rx_ring = adapter->rx_ring;
188         union e1000_rx_desc_packet_split *rx_desc_ps;
189         struct e1000_rx_desc *rx_desc;
190         struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
191         u32 staterr;
192         int i = 0;
193
194         if (!netif_msg_hw(adapter))
195                 return;
196
197         /* Print netdevice Info */
198         if (netdev) {
199                 dev_info(&adapter->pdev->dev, "Net device Info\n");
200                 printk(KERN_INFO "Device Name     state            "
201                         "trans_start      last_rx\n");
202                 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
203                         netdev->name,
204                         netdev->state,
205                         netdev->trans_start,
206                         netdev->last_rx);
207         }
208
209         /* Print Registers */
210         dev_info(&adapter->pdev->dev, "Register Dump\n");
211         printk(KERN_INFO " Register Name   Value\n");
212         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
213              reginfo->name; reginfo++) {
214                 e1000_regdump(hw, reginfo);
215         }
216
217         /* Print TX Ring Summary */
218         if (!netdev || !netif_running(netdev))
219                 goto exit;
220
221         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
222         printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
223                 " leng ntw timestamp\n");
224         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
225         printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
226                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
227                 (unsigned long long)buffer_info->dma,
228                 buffer_info->length,
229                 buffer_info->next_to_watch,
230                 (unsigned long long)buffer_info->time_stamp);
231
232         /* Print TX Rings */
233         if (!netif_msg_tx_done(adapter))
234                 goto rx_ring_summary;
235
236         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
237
238         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
239          *
240          * Legacy Transmit Descriptor
241          *   +--------------------------------------------------------------+
242          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
243          *   +--------------------------------------------------------------+
244          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
245          *   +--------------------------------------------------------------+
246          *   63       48 47        36 35    32 31     24 23    16 15        0
247          *
248          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
249          *   63      48 47    40 39       32 31             16 15    8 7      0
250          *   +----------------------------------------------------------------+
251          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
252          *   +----------------------------------------------------------------+
253          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
254          *   +----------------------------------------------------------------+
255          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
256          *
257          * Extended Data Descriptor (DTYP=0x1)
258          *   +----------------------------------------------------------------+
259          * 0 |                     Buffer Address [63:0]                      |
260          *   +----------------------------------------------------------------+
261          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
262          *   +----------------------------------------------------------------+
263          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
264          */
265         printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
266                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
267                 "<-- Legacy format\n");
268         printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
269                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
270                 "<-- Ext Context format\n");
271         printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
272                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
273                 "<-- Ext Data format\n");
274         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
275                 tx_desc = E1000_TX_DESC(*tx_ring, i);
276                 buffer_info = &tx_ring->buffer_info[i];
277                 u0 = (struct my_u0 *)tx_desc;
278                 printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
279                         "%04X  %3X %016llX %p",
280                        (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
281                         ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
282                        (unsigned long long)le64_to_cpu(u0->a),
283                        (unsigned long long)le64_to_cpu(u0->b),
284                        (unsigned long long)buffer_info->dma,
285                        buffer_info->length, buffer_info->next_to_watch,
286                        (unsigned long long)buffer_info->time_stamp,
287                        buffer_info->skb);
288                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
289                         printk(KERN_CONT " NTC/U\n");
290                 else if (i == tx_ring->next_to_use)
291                         printk(KERN_CONT " NTU\n");
292                 else if (i == tx_ring->next_to_clean)
293                         printk(KERN_CONT " NTC\n");
294                 else
295                         printk(KERN_CONT "\n");
296
297                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
298                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
299                                         16, 1, phys_to_virt(buffer_info->dma),
300                                         buffer_info->length, true);
301         }
302
303         /* Print RX Rings Summary */
304 rx_ring_summary:
305         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
306         printk(KERN_INFO "Queue [NTU] [NTC]\n");
307         printk(KERN_INFO " %5d %5X %5X\n", 0,
308                 rx_ring->next_to_use, rx_ring->next_to_clean);
309
310         /* Print RX Rings */
311         if (!netif_msg_rx_status(adapter))
312                 goto exit;
313
314         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
315         switch (adapter->rx_ps_pages) {
316         case 1:
317         case 2:
318         case 3:
319                 /* [Extended] Packet Split Receive Descriptor Format
320                  *
321                  *    +-----------------------------------------------------+
322                  *  0 |                Buffer Address 0 [63:0]              |
323                  *    +-----------------------------------------------------+
324                  *  8 |                Buffer Address 1 [63:0]              |
325                  *    +-----------------------------------------------------+
326                  * 16 |                Buffer Address 2 [63:0]              |
327                  *    +-----------------------------------------------------+
328                  * 24 |                Buffer Address 3 [63:0]              |
329                  *    +-----------------------------------------------------+
330                  */
331                 printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
332                         "[buffer 1 63:0 ] "
333                        "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
334                        "[bi->skb] <-- Ext Pkt Split format\n");
335                 /* [Extended] Receive Descriptor (Write-Back) Format
336                  *
337                  *   63       48 47    32 31     13 12    8 7    4 3        0
338                  *   +------------------------------------------------------+
339                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
340                  *   | Checksum | Ident  |         | Queue |      |  Type   |
341                  *   +------------------------------------------------------+
342                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
343                  *   +------------------------------------------------------+
344                  *   63       48 47    32 31            20 19               0
345                  */
346                 printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
347                         "[vl   l0 ee  es] "
348                        "[ l3  l2  l1 hs] [reserved      ] ---------------- "
349                        "[bi->skb] <-- Ext Rx Write-Back format\n");
350                 for (i = 0; i < rx_ring->count; i++) {
351                         buffer_info = &rx_ring->buffer_info[i];
352                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353                         u1 = (struct my_u1 *)rx_desc_ps;
354                         staterr =
355                                 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356                         if (staterr & E1000_RXD_STAT_DD) {
357                                 /* Descriptor Done */
358                                 printk(KERN_INFO "RWB[0x%03X]     %016llX "
359                                         "%016llX %016llX %016llX "
360                                         "---------------- %p", i,
361                                         (unsigned long long)le64_to_cpu(u1->a),
362                                         (unsigned long long)le64_to_cpu(u1->b),
363                                         (unsigned long long)le64_to_cpu(u1->c),
364                                         (unsigned long long)le64_to_cpu(u1->d),
365                                         buffer_info->skb);
366                         } else {
367                                 printk(KERN_INFO "R  [0x%03X]     %016llX "
368                                         "%016llX %016llX %016llX %016llX %p", i,
369                                         (unsigned long long)le64_to_cpu(u1->a),
370                                         (unsigned long long)le64_to_cpu(u1->b),
371                                         (unsigned long long)le64_to_cpu(u1->c),
372                                         (unsigned long long)le64_to_cpu(u1->d),
373                                         (unsigned long long)buffer_info->dma,
374                                         buffer_info->skb);
375
376                                 if (netif_msg_pktdata(adapter))
377                                         print_hex_dump(KERN_INFO, "",
378                                                 DUMP_PREFIX_ADDRESS, 16, 1,
379                                                 phys_to_virt(buffer_info->dma),
380                                                 adapter->rx_ps_bsize0, true);
381                         }
382
383                         if (i == rx_ring->next_to_use)
384                                 printk(KERN_CONT " NTU\n");
385                         else if (i == rx_ring->next_to_clean)
386                                 printk(KERN_CONT " NTC\n");
387                         else
388                                 printk(KERN_CONT "\n");
389                 }
390                 break;
391         default:
392         case 0:
393                 /* Legacy Receive Descriptor Format
394                  *
395                  * +-----------------------------------------------------+
396                  * |                Buffer Address [63:0]                |
397                  * +-----------------------------------------------------+
398                  * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
399                  * +-----------------------------------------------------+
400                  * 63       48 47    40 39      32 31         16 15      0
401                  */
402                 printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
403                         "[vl er S cks ln] [bi->dma       ] [bi->skb] "
404                         "<-- Legacy format\n");
405                 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
406                         rx_desc = E1000_RX_DESC(*rx_ring, i);
407                         buffer_info = &rx_ring->buffer_info[i];
408                         u0 = (struct my_u0 *)rx_desc;
409                         printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
410                                 "%016llX %p", i,
411                                 (unsigned long long)le64_to_cpu(u0->a),
412                                 (unsigned long long)le64_to_cpu(u0->b),
413                                 (unsigned long long)buffer_info->dma,
414                                 buffer_info->skb);
415                         if (i == rx_ring->next_to_use)
416                                 printk(KERN_CONT " NTU\n");
417                         else if (i == rx_ring->next_to_clean)
418                                 printk(KERN_CONT " NTC\n");
419                         else
420                                 printk(KERN_CONT "\n");
421
422                         if (netif_msg_pktdata(adapter))
423                                 print_hex_dump(KERN_INFO, "",
424                                         DUMP_PREFIX_ADDRESS,
425                                         16, 1, phys_to_virt(buffer_info->dma),
426                                         adapter->rx_buffer_len, true);
427                 }
428         }
429
430 exit:
431         return;
432 }
433
434 /**
435  * e1000_desc_unused - calculate if we have unused descriptors
436  **/
437 static int e1000_desc_unused(struct e1000_ring *ring)
438 {
439         if (ring->next_to_clean > ring->next_to_use)
440                 return ring->next_to_clean - ring->next_to_use - 1;
441
442         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
443 }
444
445 /**
446  * e1000_receive_skb - helper function to handle Rx indications
447  * @adapter: board private structure
448  * @status: descriptor status field as written by hardware
449  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
450  * @skb: pointer to sk_buff to be indicated to stack
451  **/
452 static void e1000_receive_skb(struct e1000_adapter *adapter,
453                               struct net_device *netdev,
454                               struct sk_buff *skb,
455                               u8 status, __le16 vlan)
456 {
457         skb->protocol = eth_type_trans(skb, netdev);
458
459         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
460                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
461                                  le16_to_cpu(vlan), skb);
462         else
463                 napi_gro_receive(&adapter->napi, skb);
464 }
465
466 /**
467  * e1000_rx_checksum - Receive Checksum Offload for 82543
468  * @adapter:     board private structure
469  * @status_err:  receive descriptor status and error fields
470  * @csum:       receive descriptor csum field
471  * @sk_buff:     socket buffer with received data
472  **/
473 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
474                               u32 csum, struct sk_buff *skb)
475 {
476         u16 status = (u16)status_err;
477         u8 errors = (u8)(status_err >> 24);
478
479         skb_checksum_none_assert(skb);
480
481         /* Ignore Checksum bit is set */
482         if (status & E1000_RXD_STAT_IXSM)
483                 return;
484         /* TCP/UDP checksum error bit is set */
485         if (errors & E1000_RXD_ERR_TCPE) {
486                 /* let the stack verify checksum errors */
487                 adapter->hw_csum_err++;
488                 return;
489         }
490
491         /* TCP/UDP Checksum has not been calculated */
492         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
493                 return;
494
495         /* It must be a TCP or UDP packet with a valid checksum */
496         if (status & E1000_RXD_STAT_TCPCS) {
497                 /* TCP checksum is good */
498                 skb->ip_summed = CHECKSUM_UNNECESSARY;
499         } else {
500                 /*
501                  * IP fragment with UDP payload
502                  * Hardware complements the payload checksum, so we undo it
503                  * and then put the value in host order for further stack use.
504                  */
505                 __sum16 sum = (__force __sum16)htons(csum);
506                 skb->csum = csum_unfold(~sum);
507                 skb->ip_summed = CHECKSUM_COMPLETE;
508         }
509         adapter->hw_csum_good++;
510 }
511
512 /**
513  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
514  * @adapter: address of board private structure
515  **/
516 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
517                                    int cleaned_count)
518 {
519         struct net_device *netdev = adapter->netdev;
520         struct pci_dev *pdev = adapter->pdev;
521         struct e1000_ring *rx_ring = adapter->rx_ring;
522         struct e1000_rx_desc *rx_desc;
523         struct e1000_buffer *buffer_info;
524         struct sk_buff *skb;
525         unsigned int i;
526         unsigned int bufsz = adapter->rx_buffer_len;
527
528         i = rx_ring->next_to_use;
529         buffer_info = &rx_ring->buffer_info[i];
530
531         while (cleaned_count--) {
532                 skb = buffer_info->skb;
533                 if (skb) {
534                         skb_trim(skb, 0);
535                         goto map_skb;
536                 }
537
538                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
539                 if (!skb) {
540                         /* Better luck next round */
541                         adapter->alloc_rx_buff_failed++;
542                         break;
543                 }
544
545                 buffer_info->skb = skb;
546 map_skb:
547                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
548                                                   adapter->rx_buffer_len,
549                                                   DMA_FROM_DEVICE);
550                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
551                         dev_err(&pdev->dev, "RX DMA map failed\n");
552                         adapter->rx_dma_failed++;
553                         break;
554                 }
555
556                 rx_desc = E1000_RX_DESC(*rx_ring, i);
557                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
558
559                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
560                         /*
561                          * Force memory writes to complete before letting h/w
562                          * know there are new descriptors to fetch.  (Only
563                          * applicable for weak-ordered memory model archs,
564                          * such as IA-64).
565                          */
566                         wmb();
567                         writel(i, adapter->hw.hw_addr + rx_ring->tail);
568                 }
569                 i++;
570                 if (i == rx_ring->count)
571                         i = 0;
572                 buffer_info = &rx_ring->buffer_info[i];
573         }
574
575         rx_ring->next_to_use = i;
576 }
577
578 /**
579  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
580  * @adapter: address of board private structure
581  **/
582 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
583                                       int cleaned_count)
584 {
585         struct net_device *netdev = adapter->netdev;
586         struct pci_dev *pdev = adapter->pdev;
587         union e1000_rx_desc_packet_split *rx_desc;
588         struct e1000_ring *rx_ring = adapter->rx_ring;
589         struct e1000_buffer *buffer_info;
590         struct e1000_ps_page *ps_page;
591         struct sk_buff *skb;
592         unsigned int i, j;
593
594         i = rx_ring->next_to_use;
595         buffer_info = &rx_ring->buffer_info[i];
596
597         while (cleaned_count--) {
598                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
599
600                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
601                         ps_page = &buffer_info->ps_pages[j];
602                         if (j >= adapter->rx_ps_pages) {
603                                 /* all unused desc entries get hw null ptr */
604                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
605                                 continue;
606                         }
607                         if (!ps_page->page) {
608                                 ps_page->page = alloc_page(GFP_ATOMIC);
609                                 if (!ps_page->page) {
610                                         adapter->alloc_rx_buff_failed++;
611                                         goto no_buffers;
612                                 }
613                                 ps_page->dma = dma_map_page(&pdev->dev,
614                                                             ps_page->page,
615                                                             0, PAGE_SIZE,
616                                                             DMA_FROM_DEVICE);
617                                 if (dma_mapping_error(&pdev->dev,
618                                                       ps_page->dma)) {
619                                         dev_err(&adapter->pdev->dev,
620                                           "RX DMA page map failed\n");
621                                         adapter->rx_dma_failed++;
622                                         goto no_buffers;
623                                 }
624                         }
625                         /*
626                          * Refresh the desc even if buffer_addrs
627                          * didn't change because each write-back
628                          * erases this info.
629                          */
630                         rx_desc->read.buffer_addr[j+1] =
631                              cpu_to_le64(ps_page->dma);
632                 }
633
634                 skb = netdev_alloc_skb_ip_align(netdev,
635                                                 adapter->rx_ps_bsize0);
636
637                 if (!skb) {
638                         adapter->alloc_rx_buff_failed++;
639                         break;
640                 }
641
642                 buffer_info->skb = skb;
643                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
644                                                   adapter->rx_ps_bsize0,
645                                                   DMA_FROM_DEVICE);
646                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
647                         dev_err(&pdev->dev, "RX DMA map failed\n");
648                         adapter->rx_dma_failed++;
649                         /* cleanup skb */
650                         dev_kfree_skb_any(skb);
651                         buffer_info->skb = NULL;
652                         break;
653                 }
654
655                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
656
657                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
658                         /*
659                          * Force memory writes to complete before letting h/w
660                          * know there are new descriptors to fetch.  (Only
661                          * applicable for weak-ordered memory model archs,
662                          * such as IA-64).
663                          */
664                         wmb();
665                         writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
666                 }
667
668                 i++;
669                 if (i == rx_ring->count)
670                         i = 0;
671                 buffer_info = &rx_ring->buffer_info[i];
672         }
673
674 no_buffers:
675         rx_ring->next_to_use = i;
676 }
677
678 /**
679  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
680  * @adapter: address of board private structure
681  * @cleaned_count: number of buffers to allocate this pass
682  **/
683
684 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
685                                          int cleaned_count)
686 {
687         struct net_device *netdev = adapter->netdev;
688         struct pci_dev *pdev = adapter->pdev;
689         struct e1000_rx_desc *rx_desc;
690         struct e1000_ring *rx_ring = adapter->rx_ring;
691         struct e1000_buffer *buffer_info;
692         struct sk_buff *skb;
693         unsigned int i;
694         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
695
696         i = rx_ring->next_to_use;
697         buffer_info = &rx_ring->buffer_info[i];
698
699         while (cleaned_count--) {
700                 skb = buffer_info->skb;
701                 if (skb) {
702                         skb_trim(skb, 0);
703                         goto check_page;
704                 }
705
706                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
707                 if (unlikely(!skb)) {
708                         /* Better luck next round */
709                         adapter->alloc_rx_buff_failed++;
710                         break;
711                 }
712
713                 buffer_info->skb = skb;
714 check_page:
715                 /* allocate a new page if necessary */
716                 if (!buffer_info->page) {
717                         buffer_info->page = alloc_page(GFP_ATOMIC);
718                         if (unlikely(!buffer_info->page)) {
719                                 adapter->alloc_rx_buff_failed++;
720                                 break;
721                         }
722                 }
723
724                 if (!buffer_info->dma)
725                         buffer_info->dma = dma_map_page(&pdev->dev,
726                                                         buffer_info->page, 0,
727                                                         PAGE_SIZE,
728                                                         DMA_FROM_DEVICE);
729
730                 rx_desc = E1000_RX_DESC(*rx_ring, i);
731                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
732
733                 if (unlikely(++i == rx_ring->count))
734                         i = 0;
735                 buffer_info = &rx_ring->buffer_info[i];
736         }
737
738         if (likely(rx_ring->next_to_use != i)) {
739                 rx_ring->next_to_use = i;
740                 if (unlikely(i-- == 0))
741                         i = (rx_ring->count - 1);
742
743                 /* Force memory writes to complete before letting h/w
744                  * know there are new descriptors to fetch.  (Only
745                  * applicable for weak-ordered memory model archs,
746                  * such as IA-64). */
747                 wmb();
748                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
749         }
750 }
751
752 /**
753  * e1000_clean_rx_irq - Send received data up the network stack; legacy
754  * @adapter: board private structure
755  *
756  * the return value indicates whether actual cleaning was done, there
757  * is no guarantee that everything was cleaned
758  **/
759 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
760                                int *work_done, int work_to_do)
761 {
762         struct net_device *netdev = adapter->netdev;
763         struct pci_dev *pdev = adapter->pdev;
764         struct e1000_hw *hw = &adapter->hw;
765         struct e1000_ring *rx_ring = adapter->rx_ring;
766         struct e1000_rx_desc *rx_desc, *next_rxd;
767         struct e1000_buffer *buffer_info, *next_buffer;
768         u32 length;
769         unsigned int i;
770         int cleaned_count = 0;
771         bool cleaned = 0;
772         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
773
774         i = rx_ring->next_to_clean;
775         rx_desc = E1000_RX_DESC(*rx_ring, i);
776         buffer_info = &rx_ring->buffer_info[i];
777
778         while (rx_desc->status & E1000_RXD_STAT_DD) {
779                 struct sk_buff *skb;
780                 u8 status;
781
782                 if (*work_done >= work_to_do)
783                         break;
784                 (*work_done)++;
785                 rmb();  /* read descriptor and rx_buffer_info after status DD */
786
787                 status = rx_desc->status;
788                 skb = buffer_info->skb;
789                 buffer_info->skb = NULL;
790
791                 prefetch(skb->data - NET_IP_ALIGN);
792
793                 i++;
794                 if (i == rx_ring->count)
795                         i = 0;
796                 next_rxd = E1000_RX_DESC(*rx_ring, i);
797                 prefetch(next_rxd);
798
799                 next_buffer = &rx_ring->buffer_info[i];
800
801                 cleaned = 1;
802                 cleaned_count++;
803                 dma_unmap_single(&pdev->dev,
804                                  buffer_info->dma,
805                                  adapter->rx_buffer_len,
806                                  DMA_FROM_DEVICE);
807                 buffer_info->dma = 0;
808
809                 length = le16_to_cpu(rx_desc->length);
810
811                 /*
812                  * !EOP means multiple descriptors were used to store a single
813                  * packet, if that's the case we need to toss it.  In fact, we
814                  * need to toss every packet with the EOP bit clear and the
815                  * next frame that _does_ have the EOP bit set, as it is by
816                  * definition only a frame fragment
817                  */
818                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
819                         adapter->flags2 |= FLAG2_IS_DISCARDING;
820
821                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
822                         /* All receives must fit into a single buffer */
823                         e_dbg("Receive packet consumed multiple buffers\n");
824                         /* recycle */
825                         buffer_info->skb = skb;
826                         if (status & E1000_RXD_STAT_EOP)
827                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
828                         goto next_desc;
829                 }
830
831                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
832                         /* recycle */
833                         buffer_info->skb = skb;
834                         goto next_desc;
835                 }
836
837                 /* adjust length to remove Ethernet CRC */
838                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
839                         length -= 4;
840
841                 total_rx_bytes += length;
842                 total_rx_packets++;
843
844                 /*
845                  * code added for copybreak, this should improve
846                  * performance for small packets with large amounts
847                  * of reassembly being done in the stack
848                  */
849                 if (length < copybreak) {
850                         struct sk_buff *new_skb =
851                             netdev_alloc_skb_ip_align(netdev, length);
852                         if (new_skb) {
853                                 skb_copy_to_linear_data_offset(new_skb,
854                                                                -NET_IP_ALIGN,
855                                                                (skb->data -
856                                                                 NET_IP_ALIGN),
857                                                                (length +
858                                                                 NET_IP_ALIGN));
859                                 /* save the skb in buffer_info as good */
860                                 buffer_info->skb = skb;
861                                 skb = new_skb;
862                         }
863                         /* else just continue with the old one */
864                 }
865                 /* end copybreak code */
866                 skb_put(skb, length);
867
868                 /* Receive Checksum Offload */
869                 e1000_rx_checksum(adapter,
870                                   (u32)(status) |
871                                   ((u32)(rx_desc->errors) << 24),
872                                   le16_to_cpu(rx_desc->csum), skb);
873
874                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
875
876 next_desc:
877                 rx_desc->status = 0;
878
879                 /* return some buffers to hardware, one at a time is too slow */
880                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
881                         adapter->alloc_rx_buf(adapter, cleaned_count);
882                         cleaned_count = 0;
883                 }
884
885                 /* use prefetched values */
886                 rx_desc = next_rxd;
887                 buffer_info = next_buffer;
888         }
889         rx_ring->next_to_clean = i;
890
891         cleaned_count = e1000_desc_unused(rx_ring);
892         if (cleaned_count)
893                 adapter->alloc_rx_buf(adapter, cleaned_count);
894
895         adapter->total_rx_bytes += total_rx_bytes;
896         adapter->total_rx_packets += total_rx_packets;
897         netdev->stats.rx_bytes += total_rx_bytes;
898         netdev->stats.rx_packets += total_rx_packets;
899         return cleaned;
900 }
901
902 static void e1000_put_txbuf(struct e1000_adapter *adapter,
903                              struct e1000_buffer *buffer_info)
904 {
905         if (buffer_info->dma) {
906                 if (buffer_info->mapped_as_page)
907                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
908                                        buffer_info->length, DMA_TO_DEVICE);
909                 else
910                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
911                                          buffer_info->length, DMA_TO_DEVICE);
912                 buffer_info->dma = 0;
913         }
914         if (buffer_info->skb) {
915                 dev_kfree_skb_any(buffer_info->skb);
916                 buffer_info->skb = NULL;
917         }
918         buffer_info->time_stamp = 0;
919 }
920
921 static void e1000_print_hw_hang(struct work_struct *work)
922 {
923         struct e1000_adapter *adapter = container_of(work,
924                                                      struct e1000_adapter,
925                                                      print_hang_task);
926         struct e1000_ring *tx_ring = adapter->tx_ring;
927         unsigned int i = tx_ring->next_to_clean;
928         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
929         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
930         struct e1000_hw *hw = &adapter->hw;
931         u16 phy_status, phy_1000t_status, phy_ext_status;
932         u16 pci_status;
933
934         e1e_rphy(hw, PHY_STATUS, &phy_status);
935         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
936         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
937
938         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
939
940         /* detected Hardware unit hang */
941         e_err("Detected Hardware Unit Hang:\n"
942               "  TDH                  <%x>\n"
943               "  TDT                  <%x>\n"
944               "  next_to_use          <%x>\n"
945               "  next_to_clean        <%x>\n"
946               "buffer_info[next_to_clean]:\n"
947               "  time_stamp           <%lx>\n"
948               "  next_to_watch        <%x>\n"
949               "  jiffies              <%lx>\n"
950               "  next_to_watch.status <%x>\n"
951               "MAC Status             <%x>\n"
952               "PHY Status             <%x>\n"
953               "PHY 1000BASE-T Status  <%x>\n"
954               "PHY Extended Status    <%x>\n"
955               "PCI Status             <%x>\n",
956               readl(adapter->hw.hw_addr + tx_ring->head),
957               readl(adapter->hw.hw_addr + tx_ring->tail),
958               tx_ring->next_to_use,
959               tx_ring->next_to_clean,
960               tx_ring->buffer_info[eop].time_stamp,
961               eop,
962               jiffies,
963               eop_desc->upper.fields.status,
964               er32(STATUS),
965               phy_status,
966               phy_1000t_status,
967               phy_ext_status,
968               pci_status);
969 }
970
971 /**
972  * e1000_clean_tx_irq - Reclaim resources after transmit completes
973  * @adapter: board private structure
974  *
975  * the return value indicates whether actual cleaning was done, there
976  * is no guarantee that everything was cleaned
977  **/
978 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
979 {
980         struct net_device *netdev = adapter->netdev;
981         struct e1000_hw *hw = &adapter->hw;
982         struct e1000_ring *tx_ring = adapter->tx_ring;
983         struct e1000_tx_desc *tx_desc, *eop_desc;
984         struct e1000_buffer *buffer_info;
985         unsigned int i, eop;
986         unsigned int count = 0;
987         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
988
989         i = tx_ring->next_to_clean;
990         eop = tx_ring->buffer_info[i].next_to_watch;
991         eop_desc = E1000_TX_DESC(*tx_ring, eop);
992
993         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
994                (count < tx_ring->count)) {
995                 bool cleaned = false;
996                 rmb(); /* read buffer_info after eop_desc */
997                 for (; !cleaned; count++) {
998                         tx_desc = E1000_TX_DESC(*tx_ring, i);
999                         buffer_info = &tx_ring->buffer_info[i];
1000                         cleaned = (i == eop);
1001
1002                         if (cleaned) {
1003                                 total_tx_packets += buffer_info->segs;
1004                                 total_tx_bytes += buffer_info->bytecount;
1005                         }
1006
1007                         e1000_put_txbuf(adapter, buffer_info);
1008                         tx_desc->upper.data = 0;
1009
1010                         i++;
1011                         if (i == tx_ring->count)
1012                                 i = 0;
1013                 }
1014
1015                 if (i == tx_ring->next_to_use)
1016                         break;
1017                 eop = tx_ring->buffer_info[i].next_to_watch;
1018                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1019         }
1020
1021         tx_ring->next_to_clean = i;
1022
1023 #define TX_WAKE_THRESHOLD 32
1024         if (count && netif_carrier_ok(netdev) &&
1025             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1026                 /* Make sure that anybody stopping the queue after this
1027                  * sees the new next_to_clean.
1028                  */
1029                 smp_mb();
1030
1031                 if (netif_queue_stopped(netdev) &&
1032                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1033                         netif_wake_queue(netdev);
1034                         ++adapter->restart_queue;
1035                 }
1036         }
1037
1038         if (adapter->detect_tx_hung) {
1039                 /*
1040                  * Detect a transmit hang in hardware, this serializes the
1041                  * check with the clearing of time_stamp and movement of i
1042                  */
1043                 adapter->detect_tx_hung = 0;
1044                 if (tx_ring->buffer_info[i].time_stamp &&
1045                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1046                                + (adapter->tx_timeout_factor * HZ)) &&
1047                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1048                         schedule_work(&adapter->print_hang_task);
1049                         netif_stop_queue(netdev);
1050                 }
1051         }
1052         adapter->total_tx_bytes += total_tx_bytes;
1053         adapter->total_tx_packets += total_tx_packets;
1054         netdev->stats.tx_bytes += total_tx_bytes;
1055         netdev->stats.tx_packets += total_tx_packets;
1056         return count < tx_ring->count;
1057 }
1058
1059 /**
1060  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1061  * @adapter: board private structure
1062  *
1063  * the return value indicates whether actual cleaning was done, there
1064  * is no guarantee that everything was cleaned
1065  **/
1066 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1067                                   int *work_done, int work_to_do)
1068 {
1069         struct e1000_hw *hw = &adapter->hw;
1070         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1071         struct net_device *netdev = adapter->netdev;
1072         struct pci_dev *pdev = adapter->pdev;
1073         struct e1000_ring *rx_ring = adapter->rx_ring;
1074         struct e1000_buffer *buffer_info, *next_buffer;
1075         struct e1000_ps_page *ps_page;
1076         struct sk_buff *skb;
1077         unsigned int i, j;
1078         u32 length, staterr;
1079         int cleaned_count = 0;
1080         bool cleaned = 0;
1081         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1082
1083         i = rx_ring->next_to_clean;
1084         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1085         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1086         buffer_info = &rx_ring->buffer_info[i];
1087
1088         while (staterr & E1000_RXD_STAT_DD) {
1089                 if (*work_done >= work_to_do)
1090                         break;
1091                 (*work_done)++;
1092                 skb = buffer_info->skb;
1093                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1094
1095                 /* in the packet split case this is header only */
1096                 prefetch(skb->data - NET_IP_ALIGN);
1097
1098                 i++;
1099                 if (i == rx_ring->count)
1100                         i = 0;
1101                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1102                 prefetch(next_rxd);
1103
1104                 next_buffer = &rx_ring->buffer_info[i];
1105
1106                 cleaned = 1;
1107                 cleaned_count++;
1108                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1109                                  adapter->rx_ps_bsize0,
1110                                  DMA_FROM_DEVICE);
1111                 buffer_info->dma = 0;
1112
1113                 /* see !EOP comment in other rx routine */
1114                 if (!(staterr & E1000_RXD_STAT_EOP))
1115                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1116
1117                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1118                         e_dbg("Packet Split buffers didn't pick up the full "
1119                               "packet\n");
1120                         dev_kfree_skb_irq(skb);
1121                         if (staterr & E1000_RXD_STAT_EOP)
1122                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1123                         goto next_desc;
1124                 }
1125
1126                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1127                         dev_kfree_skb_irq(skb);
1128                         goto next_desc;
1129                 }
1130
1131                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1132
1133                 if (!length) {
1134                         e_dbg("Last part of the packet spanning multiple "
1135                               "descriptors\n");
1136                         dev_kfree_skb_irq(skb);
1137                         goto next_desc;
1138                 }
1139
1140                 /* Good Receive */
1141                 skb_put(skb, length);
1142
1143                 {
1144                 /*
1145                  * this looks ugly, but it seems compiler issues make it
1146                  * more efficient than reusing j
1147                  */
1148                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1149
1150                 /*
1151                  * page alloc/put takes too long and effects small packet
1152                  * throughput, so unsplit small packets and save the alloc/put
1153                  * only valid in softirq (napi) context to call kmap_*
1154                  */
1155                 if (l1 && (l1 <= copybreak) &&
1156                     ((length + l1) <= adapter->rx_ps_bsize0)) {
1157                         u8 *vaddr;
1158
1159                         ps_page = &buffer_info->ps_pages[0];
1160
1161                         /*
1162                          * there is no documentation about how to call
1163                          * kmap_atomic, so we can't hold the mapping
1164                          * very long
1165                          */
1166                         dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1167                                                 PAGE_SIZE, DMA_FROM_DEVICE);
1168                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1169                         memcpy(skb_tail_pointer(skb), vaddr, l1);
1170                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1171                         dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1172                                                    PAGE_SIZE, DMA_FROM_DEVICE);
1173
1174                         /* remove the CRC */
1175                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1176                                 l1 -= 4;
1177
1178                         skb_put(skb, l1);
1179                         goto copydone;
1180                 } /* if */
1181                 }
1182
1183                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1184                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1185                         if (!length)
1186                                 break;
1187
1188                         ps_page = &buffer_info->ps_pages[j];
1189                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1190                                        DMA_FROM_DEVICE);
1191                         ps_page->dma = 0;
1192                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1193                         ps_page->page = NULL;
1194                         skb->len += length;
1195                         skb->data_len += length;
1196                         skb->truesize += length;
1197                 }
1198
1199                 /* strip the ethernet crc, problem is we're using pages now so
1200                  * this whole operation can get a little cpu intensive
1201                  */
1202                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1203                         pskb_trim(skb, skb->len - 4);
1204
1205 copydone:
1206                 total_rx_bytes += skb->len;
1207                 total_rx_packets++;
1208
1209                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1210                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1211
1212                 if (rx_desc->wb.upper.header_status &
1213                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1214                         adapter->rx_hdr_split++;
1215
1216                 e1000_receive_skb(adapter, netdev, skb,
1217                                   staterr, rx_desc->wb.middle.vlan);
1218
1219 next_desc:
1220                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1221                 buffer_info->skb = NULL;
1222
1223                 /* return some buffers to hardware, one at a time is too slow */
1224                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1225                         adapter->alloc_rx_buf(adapter, cleaned_count);
1226                         cleaned_count = 0;
1227                 }
1228
1229                 /* use prefetched values */
1230                 rx_desc = next_rxd;
1231                 buffer_info = next_buffer;
1232
1233                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1234         }
1235         rx_ring->next_to_clean = i;
1236
1237         cleaned_count = e1000_desc_unused(rx_ring);
1238         if (cleaned_count)
1239                 adapter->alloc_rx_buf(adapter, cleaned_count);
1240
1241         adapter->total_rx_bytes += total_rx_bytes;
1242         adapter->total_rx_packets += total_rx_packets;
1243         netdev->stats.rx_bytes += total_rx_bytes;
1244         netdev->stats.rx_packets += total_rx_packets;
1245         return cleaned;
1246 }
1247
1248 /**
1249  * e1000_consume_page - helper function
1250  **/
1251 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1252                                u16 length)
1253 {
1254         bi->page = NULL;
1255         skb->len += length;
1256         skb->data_len += length;
1257         skb->truesize += length;
1258 }
1259
1260 /**
1261  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1262  * @adapter: board private structure
1263  *
1264  * the return value indicates whether actual cleaning was done, there
1265  * is no guarantee that everything was cleaned
1266  **/
1267
1268 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1269                                      int *work_done, int work_to_do)
1270 {
1271         struct net_device *netdev = adapter->netdev;
1272         struct pci_dev *pdev = adapter->pdev;
1273         struct e1000_ring *rx_ring = adapter->rx_ring;
1274         struct e1000_rx_desc *rx_desc, *next_rxd;
1275         struct e1000_buffer *buffer_info, *next_buffer;
1276         u32 length;
1277         unsigned int i;
1278         int cleaned_count = 0;
1279         bool cleaned = false;
1280         unsigned int total_rx_bytes=0, total_rx_packets=0;
1281
1282         i = rx_ring->next_to_clean;
1283         rx_desc = E1000_RX_DESC(*rx_ring, i);
1284         buffer_info = &rx_ring->buffer_info[i];
1285
1286         while (rx_desc->status & E1000_RXD_STAT_DD) {
1287                 struct sk_buff *skb;
1288                 u8 status;
1289
1290                 if (*work_done >= work_to_do)
1291                         break;
1292                 (*work_done)++;
1293                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1294
1295                 status = rx_desc->status;
1296                 skb = buffer_info->skb;
1297                 buffer_info->skb = NULL;
1298
1299                 ++i;
1300                 if (i == rx_ring->count)
1301                         i = 0;
1302                 next_rxd = E1000_RX_DESC(*rx_ring, i);
1303                 prefetch(next_rxd);
1304
1305                 next_buffer = &rx_ring->buffer_info[i];
1306
1307                 cleaned = true;
1308                 cleaned_count++;
1309                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1310                                DMA_FROM_DEVICE);
1311                 buffer_info->dma = 0;
1312
1313                 length = le16_to_cpu(rx_desc->length);
1314
1315                 /* errors is only valid for DD + EOP descriptors */
1316                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1317                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1318                                 /* recycle both page and skb */
1319                                 buffer_info->skb = skb;
1320                                 /* an error means any chain goes out the window
1321                                  * too */
1322                                 if (rx_ring->rx_skb_top)
1323                                         dev_kfree_skb(rx_ring->rx_skb_top);
1324                                 rx_ring->rx_skb_top = NULL;
1325                                 goto next_desc;
1326                 }
1327
1328 #define rxtop (rx_ring->rx_skb_top)
1329                 if (!(status & E1000_RXD_STAT_EOP)) {
1330                         /* this descriptor is only the beginning (or middle) */
1331                         if (!rxtop) {
1332                                 /* this is the beginning of a chain */
1333                                 rxtop = skb;
1334                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1335                                                    0, length);
1336                         } else {
1337                                 /* this is the middle of a chain */
1338                                 skb_fill_page_desc(rxtop,
1339                                     skb_shinfo(rxtop)->nr_frags,
1340                                     buffer_info->page, 0, length);
1341                                 /* re-use the skb, only consumed the page */
1342                                 buffer_info->skb = skb;
1343                         }
1344                         e1000_consume_page(buffer_info, rxtop, length);
1345                         goto next_desc;
1346                 } else {
1347                         if (rxtop) {
1348                                 /* end of the chain */
1349                                 skb_fill_page_desc(rxtop,
1350                                     skb_shinfo(rxtop)->nr_frags,
1351                                     buffer_info->page, 0, length);
1352                                 /* re-use the current skb, we only consumed the
1353                                  * page */
1354                                 buffer_info->skb = skb;
1355                                 skb = rxtop;
1356                                 rxtop = NULL;
1357                                 e1000_consume_page(buffer_info, skb, length);
1358                         } else {
1359                                 /* no chain, got EOP, this buf is the packet
1360                                  * copybreak to save the put_page/alloc_page */
1361                                 if (length <= copybreak &&
1362                                     skb_tailroom(skb) >= length) {
1363                                         u8 *vaddr;
1364                                         vaddr = kmap_atomic(buffer_info->page,
1365                                                            KM_SKB_DATA_SOFTIRQ);
1366                                         memcpy(skb_tail_pointer(skb), vaddr,
1367                                                length);
1368                                         kunmap_atomic(vaddr,
1369                                                       KM_SKB_DATA_SOFTIRQ);
1370                                         /* re-use the page, so don't erase
1371                                          * buffer_info->page */
1372                                         skb_put(skb, length);
1373                                 } else {
1374                                         skb_fill_page_desc(skb, 0,
1375                                                            buffer_info->page, 0,
1376                                                            length);
1377                                         e1000_consume_page(buffer_info, skb,
1378                                                            length);
1379                                 }
1380                         }
1381                 }
1382
1383                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1384                 e1000_rx_checksum(adapter,
1385                                   (u32)(status) |
1386                                   ((u32)(rx_desc->errors) << 24),
1387                                   le16_to_cpu(rx_desc->csum), skb);
1388
1389                 /* probably a little skewed due to removing CRC */
1390                 total_rx_bytes += skb->len;
1391                 total_rx_packets++;
1392
1393                 /* eth type trans needs skb->data to point to something */
1394                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1395                         e_err("pskb_may_pull failed.\n");
1396                         dev_kfree_skb(skb);
1397                         goto next_desc;
1398                 }
1399
1400                 e1000_receive_skb(adapter, netdev, skb, status,
1401                                   rx_desc->special);
1402
1403 next_desc:
1404                 rx_desc->status = 0;
1405
1406                 /* return some buffers to hardware, one at a time is too slow */
1407                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1408                         adapter->alloc_rx_buf(adapter, cleaned_count);
1409                         cleaned_count = 0;
1410                 }
1411
1412                 /* use prefetched values */
1413                 rx_desc = next_rxd;
1414                 buffer_info = next_buffer;
1415         }
1416         rx_ring->next_to_clean = i;
1417
1418         cleaned_count = e1000_desc_unused(rx_ring);
1419         if (cleaned_count)
1420                 adapter->alloc_rx_buf(adapter, cleaned_count);
1421
1422         adapter->total_rx_bytes += total_rx_bytes;
1423         adapter->total_rx_packets += total_rx_packets;
1424         netdev->stats.rx_bytes += total_rx_bytes;
1425         netdev->stats.rx_packets += total_rx_packets;
1426         return cleaned;
1427 }
1428
1429 /**
1430  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1431  * @adapter: board private structure
1432  **/
1433 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1434 {
1435         struct e1000_ring *rx_ring = adapter->rx_ring;
1436         struct e1000_buffer *buffer_info;
1437         struct e1000_ps_page *ps_page;
1438         struct pci_dev *pdev = adapter->pdev;
1439         unsigned int i, j;
1440
1441         /* Free all the Rx ring sk_buffs */
1442         for (i = 0; i < rx_ring->count; i++) {
1443                 buffer_info = &rx_ring->buffer_info[i];
1444                 if (buffer_info->dma) {
1445                         if (adapter->clean_rx == e1000_clean_rx_irq)
1446                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1447                                                  adapter->rx_buffer_len,
1448                                                  DMA_FROM_DEVICE);
1449                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1450                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1451                                                PAGE_SIZE,
1452                                                DMA_FROM_DEVICE);
1453                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1454                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1455                                                  adapter->rx_ps_bsize0,
1456                                                  DMA_FROM_DEVICE);
1457                         buffer_info->dma = 0;
1458                 }
1459
1460                 if (buffer_info->page) {
1461                         put_page(buffer_info->page);
1462                         buffer_info->page = NULL;
1463                 }
1464
1465                 if (buffer_info->skb) {
1466                         dev_kfree_skb(buffer_info->skb);
1467                         buffer_info->skb = NULL;
1468                 }
1469
1470                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1471                         ps_page = &buffer_info->ps_pages[j];
1472                         if (!ps_page->page)
1473                                 break;
1474                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1475                                        DMA_FROM_DEVICE);
1476                         ps_page->dma = 0;
1477                         put_page(ps_page->page);
1478                         ps_page->page = NULL;
1479                 }
1480         }
1481
1482         /* there also may be some cached data from a chained receive */
1483         if (rx_ring->rx_skb_top) {
1484                 dev_kfree_skb(rx_ring->rx_skb_top);
1485                 rx_ring->rx_skb_top = NULL;
1486         }
1487
1488         /* Zero out the descriptor ring */
1489         memset(rx_ring->desc, 0, rx_ring->size);
1490
1491         rx_ring->next_to_clean = 0;
1492         rx_ring->next_to_use = 0;
1493         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1494
1495         writel(0, adapter->hw.hw_addr + rx_ring->head);
1496         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1497 }
1498
1499 static void e1000e_downshift_workaround(struct work_struct *work)
1500 {
1501         struct e1000_adapter *adapter = container_of(work,
1502                                         struct e1000_adapter, downshift_task);
1503
1504         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1505 }
1506
1507 /**
1508  * e1000_intr_msi - Interrupt Handler
1509  * @irq: interrupt number
1510  * @data: pointer to a network interface device structure
1511  **/
1512 static irqreturn_t e1000_intr_msi(int irq, void *data)
1513 {
1514         struct net_device *netdev = data;
1515         struct e1000_adapter *adapter = netdev_priv(netdev);
1516         struct e1000_hw *hw = &adapter->hw;
1517         u32 icr = er32(ICR);
1518
1519         /*
1520          * read ICR disables interrupts using IAM
1521          */
1522
1523         if (icr & E1000_ICR_LSC) {
1524                 hw->mac.get_link_status = 1;
1525                 /*
1526                  * ICH8 workaround-- Call gig speed drop workaround on cable
1527                  * disconnect (LSC) before accessing any PHY registers
1528                  */
1529                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1530                     (!(er32(STATUS) & E1000_STATUS_LU)))
1531                         schedule_work(&adapter->downshift_task);
1532
1533                 /*
1534                  * 80003ES2LAN workaround-- For packet buffer work-around on
1535                  * link down event; disable receives here in the ISR and reset
1536                  * adapter in watchdog
1537                  */
1538                 if (netif_carrier_ok(netdev) &&
1539                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1540                         /* disable receives */
1541                         u32 rctl = er32(RCTL);
1542                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1543                         adapter->flags |= FLAG_RX_RESTART_NOW;
1544                 }
1545                 /* guard against interrupt when we're going down */
1546                 if (!test_bit(__E1000_DOWN, &adapter->state))
1547                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1548         }
1549
1550         if (napi_schedule_prep(&adapter->napi)) {
1551                 adapter->total_tx_bytes = 0;
1552                 adapter->total_tx_packets = 0;
1553                 adapter->total_rx_bytes = 0;
1554                 adapter->total_rx_packets = 0;
1555                 __napi_schedule(&adapter->napi);
1556         }
1557
1558         return IRQ_HANDLED;
1559 }
1560
1561 /**
1562  * e1000_intr - Interrupt Handler
1563  * @irq: interrupt number
1564  * @data: pointer to a network interface device structure
1565  **/
1566 static irqreturn_t e1000_intr(int irq, void *data)
1567 {
1568         struct net_device *netdev = data;
1569         struct e1000_adapter *adapter = netdev_priv(netdev);
1570         struct e1000_hw *hw = &adapter->hw;
1571         u32 rctl, icr = er32(ICR);
1572
1573         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1574                 return IRQ_NONE;  /* Not our interrupt */
1575
1576         /*
1577          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1578          * not set, then the adapter didn't send an interrupt
1579          */
1580         if (!(icr & E1000_ICR_INT_ASSERTED))
1581                 return IRQ_NONE;
1582
1583         /*
1584          * Interrupt Auto-Mask...upon reading ICR,
1585          * interrupts are masked.  No need for the
1586          * IMC write
1587          */
1588
1589         if (icr & E1000_ICR_LSC) {
1590                 hw->mac.get_link_status = 1;
1591                 /*
1592                  * ICH8 workaround-- Call gig speed drop workaround on cable
1593                  * disconnect (LSC) before accessing any PHY registers
1594                  */
1595                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1596                     (!(er32(STATUS) & E1000_STATUS_LU)))
1597                         schedule_work(&adapter->downshift_task);
1598
1599                 /*
1600                  * 80003ES2LAN workaround--
1601                  * For packet buffer work-around on link down event;
1602                  * disable receives here in the ISR and
1603                  * reset adapter in watchdog
1604                  */
1605                 if (netif_carrier_ok(netdev) &&
1606                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1607                         /* disable receives */
1608                         rctl = er32(RCTL);
1609                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1610                         adapter->flags |= FLAG_RX_RESTART_NOW;
1611                 }
1612                 /* guard against interrupt when we're going down */
1613                 if (!test_bit(__E1000_DOWN, &adapter->state))
1614                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1615         }
1616
1617         if (napi_schedule_prep(&adapter->napi)) {
1618                 adapter->total_tx_bytes = 0;
1619                 adapter->total_tx_packets = 0;
1620                 adapter->total_rx_bytes = 0;
1621                 adapter->total_rx_packets = 0;
1622                 __napi_schedule(&adapter->napi);
1623         }
1624
1625         return IRQ_HANDLED;
1626 }
1627
1628 static irqreturn_t e1000_msix_other(int irq, void *data)
1629 {
1630         struct net_device *netdev = data;
1631         struct e1000_adapter *adapter = netdev_priv(netdev);
1632         struct e1000_hw *hw = &adapter->hw;
1633         u32 icr = er32(ICR);
1634
1635         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1636                 if (!test_bit(__E1000_DOWN, &adapter->state))
1637                         ew32(IMS, E1000_IMS_OTHER);
1638                 return IRQ_NONE;
1639         }
1640
1641         if (icr & adapter->eiac_mask)
1642                 ew32(ICS, (icr & adapter->eiac_mask));
1643
1644         if (icr & E1000_ICR_OTHER) {
1645                 if (!(icr & E1000_ICR_LSC))
1646                         goto no_link_interrupt;
1647                 hw->mac.get_link_status = 1;
1648                 /* guard against interrupt when we're going down */
1649                 if (!test_bit(__E1000_DOWN, &adapter->state))
1650                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1651         }
1652
1653 no_link_interrupt:
1654         if (!test_bit(__E1000_DOWN, &adapter->state))
1655                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1656
1657         return IRQ_HANDLED;
1658 }
1659
1660
1661 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1662 {
1663         struct net_device *netdev = data;
1664         struct e1000_adapter *adapter = netdev_priv(netdev);
1665         struct e1000_hw *hw = &adapter->hw;
1666         struct e1000_ring *tx_ring = adapter->tx_ring;
1667
1668
1669         adapter->total_tx_bytes = 0;
1670         adapter->total_tx_packets = 0;
1671
1672         if (!e1000_clean_tx_irq(adapter))
1673                 /* Ring was not completely cleaned, so fire another interrupt */
1674                 ew32(ICS, tx_ring->ims_val);
1675
1676         return IRQ_HANDLED;
1677 }
1678
1679 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1680 {
1681         struct net_device *netdev = data;
1682         struct e1000_adapter *adapter = netdev_priv(netdev);
1683
1684         /* Write the ITR value calculated at the end of the
1685          * previous interrupt.
1686          */
1687         if (adapter->rx_ring->set_itr) {
1688                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1689                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1690                 adapter->rx_ring->set_itr = 0;
1691         }
1692
1693         if (napi_schedule_prep(&adapter->napi)) {
1694                 adapter->total_rx_bytes = 0;
1695                 adapter->total_rx_packets = 0;
1696                 __napi_schedule(&adapter->napi);
1697         }
1698         return IRQ_HANDLED;
1699 }
1700
1701 /**
1702  * e1000_configure_msix - Configure MSI-X hardware
1703  *
1704  * e1000_configure_msix sets up the hardware to properly
1705  * generate MSI-X interrupts.
1706  **/
1707 static void e1000_configure_msix(struct e1000_adapter *adapter)
1708 {
1709         struct e1000_hw *hw = &adapter->hw;
1710         struct e1000_ring *rx_ring = adapter->rx_ring;
1711         struct e1000_ring *tx_ring = adapter->tx_ring;
1712         int vector = 0;
1713         u32 ctrl_ext, ivar = 0;
1714
1715         adapter->eiac_mask = 0;
1716
1717         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1718         if (hw->mac.type == e1000_82574) {
1719                 u32 rfctl = er32(RFCTL);
1720                 rfctl |= E1000_RFCTL_ACK_DIS;
1721                 ew32(RFCTL, rfctl);
1722         }
1723
1724 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1725         /* Configure Rx vector */
1726         rx_ring->ims_val = E1000_IMS_RXQ0;
1727         adapter->eiac_mask |= rx_ring->ims_val;
1728         if (rx_ring->itr_val)
1729                 writel(1000000000 / (rx_ring->itr_val * 256),
1730                        hw->hw_addr + rx_ring->itr_register);
1731         else
1732                 writel(1, hw->hw_addr + rx_ring->itr_register);
1733         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1734
1735         /* Configure Tx vector */
1736         tx_ring->ims_val = E1000_IMS_TXQ0;
1737         vector++;
1738         if (tx_ring->itr_val)
1739                 writel(1000000000 / (tx_ring->itr_val * 256),
1740                        hw->hw_addr + tx_ring->itr_register);
1741         else
1742                 writel(1, hw->hw_addr + tx_ring->itr_register);
1743         adapter->eiac_mask |= tx_ring->ims_val;
1744         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1745
1746         /* set vector for Other Causes, e.g. link changes */
1747         vector++;
1748         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1749         if (rx_ring->itr_val)
1750                 writel(1000000000 / (rx_ring->itr_val * 256),
1751                        hw->hw_addr + E1000_EITR_82574(vector));
1752         else
1753                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1754
1755         /* Cause Tx interrupts on every write back */
1756         ivar |= (1 << 31);
1757
1758         ew32(IVAR, ivar);
1759
1760         /* enable MSI-X PBA support */
1761         ctrl_ext = er32(CTRL_EXT);
1762         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1763
1764         /* Auto-Mask Other interrupts upon ICR read */
1765 #define E1000_EIAC_MASK_82574   0x01F00000
1766         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1767         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1768         ew32(CTRL_EXT, ctrl_ext);
1769         e1e_flush();
1770 }
1771
1772 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1773 {
1774         if (adapter->msix_entries) {
1775                 pci_disable_msix(adapter->pdev);
1776                 kfree(adapter->msix_entries);
1777                 adapter->msix_entries = NULL;
1778         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1779                 pci_disable_msi(adapter->pdev);
1780                 adapter->flags &= ~FLAG_MSI_ENABLED;
1781         }
1782 }
1783
1784 /**
1785  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1786  *
1787  * Attempt to configure interrupts using the best available
1788  * capabilities of the hardware and kernel.
1789  **/
1790 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1791 {
1792         int err;
1793         int i;
1794
1795         switch (adapter->int_mode) {
1796         case E1000E_INT_MODE_MSIX:
1797                 if (adapter->flags & FLAG_HAS_MSIX) {
1798                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1799                         adapter->msix_entries = kcalloc(adapter->num_vectors,
1800                                                       sizeof(struct msix_entry),
1801                                                       GFP_KERNEL);
1802                         if (adapter->msix_entries) {
1803                                 for (i = 0; i < adapter->num_vectors; i++)
1804                                         adapter->msix_entries[i].entry = i;
1805
1806                                 err = pci_enable_msix(adapter->pdev,
1807                                                       adapter->msix_entries,
1808                                                       adapter->num_vectors);
1809                                 if (err == 0)
1810                                         return;
1811                         }
1812                         /* MSI-X failed, so fall through and try MSI */
1813                         e_err("Failed to initialize MSI-X interrupts.  "
1814                               "Falling back to MSI interrupts.\n");
1815                         e1000e_reset_interrupt_capability(adapter);
1816                 }
1817                 adapter->int_mode = E1000E_INT_MODE_MSI;
1818                 /* Fall through */
1819         case E1000E_INT_MODE_MSI:
1820                 if (!pci_enable_msi(adapter->pdev)) {
1821                         adapter->flags |= FLAG_MSI_ENABLED;
1822                 } else {
1823                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1824                         e_err("Failed to initialize MSI interrupts.  Falling "
1825                               "back to legacy interrupts.\n");
1826                 }
1827                 /* Fall through */
1828         case E1000E_INT_MODE_LEGACY:
1829                 /* Don't do anything; this is the system default */
1830                 break;
1831         }
1832
1833         /* store the number of vectors being used */
1834         adapter->num_vectors = 1;
1835 }
1836
1837 /**
1838  * e1000_request_msix - Initialize MSI-X interrupts
1839  *
1840  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1841  * kernel.
1842  **/
1843 static int e1000_request_msix(struct e1000_adapter *adapter)
1844 {
1845         struct net_device *netdev = adapter->netdev;
1846         int err = 0, vector = 0;
1847
1848         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1849                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1850         else
1851                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1852         err = request_irq(adapter->msix_entries[vector].vector,
1853                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1854                           netdev);
1855         if (err)
1856                 goto out;
1857         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1858         adapter->rx_ring->itr_val = adapter->itr;
1859         vector++;
1860
1861         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1862                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1863         else
1864                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1865         err = request_irq(adapter->msix_entries[vector].vector,
1866                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1867                           netdev);
1868         if (err)
1869                 goto out;
1870         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1871         adapter->tx_ring->itr_val = adapter->itr;
1872         vector++;
1873
1874         err = request_irq(adapter->msix_entries[vector].vector,
1875                           e1000_msix_other, 0, netdev->name, netdev);
1876         if (err)
1877                 goto out;
1878
1879         e1000_configure_msix(adapter);
1880         return 0;
1881 out:
1882         return err;
1883 }
1884
1885 /**
1886  * e1000_request_irq - initialize interrupts
1887  *
1888  * Attempts to configure interrupts using the best available
1889  * capabilities of the hardware and kernel.
1890  **/
1891 static int e1000_request_irq(struct e1000_adapter *adapter)
1892 {
1893         struct net_device *netdev = adapter->netdev;
1894         int err;
1895
1896         if (adapter->msix_entries) {
1897                 err = e1000_request_msix(adapter);
1898                 if (!err)
1899                         return err;
1900                 /* fall back to MSI */
1901                 e1000e_reset_interrupt_capability(adapter);
1902                 adapter->int_mode = E1000E_INT_MODE_MSI;
1903                 e1000e_set_interrupt_capability(adapter);
1904         }
1905         if (adapter->flags & FLAG_MSI_ENABLED) {
1906                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1907                                   netdev->name, netdev);
1908                 if (!err)
1909                         return err;
1910
1911                 /* fall back to legacy interrupt */
1912                 e1000e_reset_interrupt_capability(adapter);
1913                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1914         }
1915
1916         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1917                           netdev->name, netdev);
1918         if (err)
1919                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1920
1921         return err;
1922 }
1923
1924 static void e1000_free_irq(struct e1000_adapter *adapter)
1925 {
1926         struct net_device *netdev = adapter->netdev;
1927
1928         if (adapter->msix_entries) {
1929                 int vector = 0;
1930
1931                 free_irq(adapter->msix_entries[vector].vector, netdev);
1932                 vector++;
1933
1934                 free_irq(adapter->msix_entries[vector].vector, netdev);
1935                 vector++;
1936
1937                 /* Other Causes interrupt vector */
1938                 free_irq(adapter->msix_entries[vector].vector, netdev);
1939                 return;
1940         }
1941
1942         free_irq(adapter->pdev->irq, netdev);
1943 }
1944
1945 /**
1946  * e1000_irq_disable - Mask off interrupt generation on the NIC
1947  **/
1948 static void e1000_irq_disable(struct e1000_adapter *adapter)
1949 {
1950         struct e1000_hw *hw = &adapter->hw;
1951
1952         ew32(IMC, ~0);
1953         if (adapter->msix_entries)
1954                 ew32(EIAC_82574, 0);
1955         e1e_flush();
1956
1957         if (adapter->msix_entries) {
1958                 int i;
1959                 for (i = 0; i < adapter->num_vectors; i++)
1960                         synchronize_irq(adapter->msix_entries[i].vector);
1961         } else {
1962                 synchronize_irq(adapter->pdev->irq);
1963         }
1964 }
1965
1966 /**
1967  * e1000_irq_enable - Enable default interrupt generation settings
1968  **/
1969 static void e1000_irq_enable(struct e1000_adapter *adapter)
1970 {
1971         struct e1000_hw *hw = &adapter->hw;
1972
1973         if (adapter->msix_entries) {
1974                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1975                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1976         } else {
1977                 ew32(IMS, IMS_ENABLE_MASK);
1978         }
1979         e1e_flush();
1980 }
1981
1982 /**
1983  * e1000_get_hw_control - get control of the h/w from f/w
1984  * @adapter: address of board private structure
1985  *
1986  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1987  * For ASF and Pass Through versions of f/w this means that
1988  * the driver is loaded. For AMT version (only with 82573)
1989  * of the f/w this means that the network i/f is open.
1990  **/
1991 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1992 {
1993         struct e1000_hw *hw = &adapter->hw;
1994         u32 ctrl_ext;
1995         u32 swsm;
1996
1997         /* Let firmware know the driver has taken over */
1998         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1999                 swsm = er32(SWSM);
2000                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2001         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2002                 ctrl_ext = er32(CTRL_EXT);
2003                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2004         }
2005 }
2006
2007 /**
2008  * e1000_release_hw_control - release control of the h/w to f/w
2009  * @adapter: address of board private structure
2010  *
2011  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2012  * For ASF and Pass Through versions of f/w this means that the
2013  * driver is no longer loaded. For AMT version (only with 82573) i
2014  * of the f/w this means that the network i/f is closed.
2015  *
2016  **/
2017 static void e1000_release_hw_control(struct e1000_adapter *adapter)
2018 {
2019         struct e1000_hw *hw = &adapter->hw;
2020         u32 ctrl_ext;
2021         u32 swsm;
2022
2023         /* Let firmware taken over control of h/w */
2024         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2025                 swsm = er32(SWSM);
2026                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2027         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2028                 ctrl_ext = er32(CTRL_EXT);
2029                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2030         }
2031 }
2032
2033 /**
2034  * @e1000_alloc_ring - allocate memory for a ring structure
2035  **/
2036 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2037                                 struct e1000_ring *ring)
2038 {
2039         struct pci_dev *pdev = adapter->pdev;
2040
2041         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2042                                         GFP_KERNEL);
2043         if (!ring->desc)
2044                 return -ENOMEM;
2045
2046         return 0;
2047 }
2048
2049 /**
2050  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2051  * @adapter: board private structure
2052  *
2053  * Return 0 on success, negative on failure
2054  **/
2055 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2056 {
2057         struct e1000_ring *tx_ring = adapter->tx_ring;
2058         int err = -ENOMEM, size;
2059
2060         size = sizeof(struct e1000_buffer) * tx_ring->count;
2061         tx_ring->buffer_info = vzalloc(size);
2062         if (!tx_ring->buffer_info)
2063                 goto err;
2064
2065         /* round up to nearest 4K */
2066         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2067         tx_ring->size = ALIGN(tx_ring->size, 4096);
2068
2069         err = e1000_alloc_ring_dma(adapter, tx_ring);
2070         if (err)
2071                 goto err;
2072
2073         tx_ring->next_to_use = 0;
2074         tx_ring->next_to_clean = 0;
2075
2076         return 0;
2077 err:
2078         vfree(tx_ring->buffer_info);
2079         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2080         return err;
2081 }
2082
2083 /**
2084  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2085  * @adapter: board private structure
2086  *
2087  * Returns 0 on success, negative on failure
2088  **/
2089 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2090 {
2091         struct e1000_ring *rx_ring = adapter->rx_ring;
2092         struct e1000_buffer *buffer_info;
2093         int i, size, desc_len, err = -ENOMEM;
2094
2095         size = sizeof(struct e1000_buffer) * rx_ring->count;
2096         rx_ring->buffer_info = vzalloc(size);
2097         if (!rx_ring->buffer_info)
2098                 goto err;
2099
2100         for (i = 0; i < rx_ring->count; i++) {
2101                 buffer_info = &rx_ring->buffer_info[i];
2102                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2103                                                 sizeof(struct e1000_ps_page),
2104                                                 GFP_KERNEL);
2105                 if (!buffer_info->ps_pages)
2106                         goto err_pages;
2107         }
2108
2109         desc_len = sizeof(union e1000_rx_desc_packet_split);
2110
2111         /* Round up to nearest 4K */
2112         rx_ring->size = rx_ring->count * desc_len;
2113         rx_ring->size = ALIGN(rx_ring->size, 4096);
2114
2115         err = e1000_alloc_ring_dma(adapter, rx_ring);
2116         if (err)
2117                 goto err_pages;
2118
2119         rx_ring->next_to_clean = 0;
2120         rx_ring->next_to_use = 0;
2121         rx_ring->rx_skb_top = NULL;
2122
2123         return 0;
2124
2125 err_pages:
2126         for (i = 0; i < rx_ring->count; i++) {
2127                 buffer_info = &rx_ring->buffer_info[i];
2128                 kfree(buffer_info->ps_pages);
2129         }
2130 err:
2131         vfree(rx_ring->buffer_info);
2132         e_err("Unable to allocate memory for the receive descriptor ring\n");
2133         return err;
2134 }
2135
2136 /**
2137  * e1000_clean_tx_ring - Free Tx Buffers
2138  * @adapter: board private structure
2139  **/
2140 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2141 {
2142         struct e1000_ring *tx_ring = adapter->tx_ring;
2143         struct e1000_buffer *buffer_info;
2144         unsigned long size;
2145         unsigned int i;
2146
2147         for (i = 0; i < tx_ring->count; i++) {
2148                 buffer_info = &tx_ring->buffer_info[i];
2149                 e1000_put_txbuf(adapter, buffer_info);
2150         }
2151
2152         size = sizeof(struct e1000_buffer) * tx_ring->count;
2153         memset(tx_ring->buffer_info, 0, size);
2154
2155         memset(tx_ring->desc, 0, tx_ring->size);
2156
2157         tx_ring->next_to_use = 0;
2158         tx_ring->next_to_clean = 0;
2159
2160         writel(0, adapter->hw.hw_addr + tx_ring->head);
2161         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2162 }
2163
2164 /**
2165  * e1000e_free_tx_resources - Free Tx Resources per Queue
2166  * @adapter: board private structure
2167  *
2168  * Free all transmit software resources
2169  **/
2170 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2171 {
2172         struct pci_dev *pdev = adapter->pdev;
2173         struct e1000_ring *tx_ring = adapter->tx_ring;
2174
2175         e1000_clean_tx_ring(adapter);
2176
2177         vfree(tx_ring->buffer_info);
2178         tx_ring->buffer_info = NULL;
2179
2180         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2181                           tx_ring->dma);
2182         tx_ring->desc = NULL;
2183 }
2184
2185 /**
2186  * e1000e_free_rx_resources - Free Rx Resources
2187  * @adapter: board private structure
2188  *
2189  * Free all receive software resources
2190  **/
2191
2192 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2193 {
2194         struct pci_dev *pdev = adapter->pdev;
2195         struct e1000_ring *rx_ring = adapter->rx_ring;
2196         int i;
2197
2198         e1000_clean_rx_ring(adapter);
2199
2200         for (i = 0; i < rx_ring->count; i++)
2201                 kfree(rx_ring->buffer_info[i].ps_pages);
2202
2203         vfree(rx_ring->buffer_info);
2204         rx_ring->buffer_info = NULL;
2205
2206         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2207                           rx_ring->dma);
2208         rx_ring->desc = NULL;
2209 }
2210
2211 /**
2212  * e1000_update_itr - update the dynamic ITR value based on statistics
2213  * @adapter: pointer to adapter
2214  * @itr_setting: current adapter->itr
2215  * @packets: the number of packets during this measurement interval
2216  * @bytes: the number of bytes during this measurement interval
2217  *
2218  *      Stores a new ITR value based on packets and byte
2219  *      counts during the last interrupt.  The advantage of per interrupt
2220  *      computation is faster updates and more accurate ITR for the current
2221  *      traffic pattern.  Constants in this function were computed
2222  *      based on theoretical maximum wire speed and thresholds were set based
2223  *      on testing data as well as attempting to minimize response time
2224  *      while increasing bulk throughput.  This functionality is controlled
2225  *      by the InterruptThrottleRate module parameter.
2226  **/
2227 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2228                                      u16 itr_setting, int packets,
2229                                      int bytes)
2230 {
2231         unsigned int retval = itr_setting;
2232
2233         if (packets == 0)
2234                 goto update_itr_done;
2235
2236         switch (itr_setting) {
2237         case lowest_latency:
2238                 /* handle TSO and jumbo frames */
2239                 if (bytes/packets > 8000)
2240                         retval = bulk_latency;
2241                 else if ((packets < 5) && (bytes > 512))
2242                         retval = low_latency;
2243                 break;
2244         case low_latency:  /* 50 usec aka 20000 ints/s */
2245                 if (bytes > 10000) {
2246                         /* this if handles the TSO accounting */
2247                         if (bytes/packets > 8000)
2248                                 retval = bulk_latency;
2249                         else if ((packets < 10) || ((bytes/packets) > 1200))
2250                                 retval = bulk_latency;
2251                         else if ((packets > 35))
2252                                 retval = lowest_latency;
2253                 } else if (bytes/packets > 2000) {
2254                         retval = bulk_latency;
2255                 } else if (packets <= 2 && bytes < 512) {
2256                         retval = lowest_latency;
2257                 }
2258                 break;
2259         case bulk_latency: /* 250 usec aka 4000 ints/s */
2260                 if (bytes > 25000) {
2261                         if (packets > 35)
2262                                 retval = low_latency;
2263                 } else if (bytes < 6000) {
2264                         retval = low_latency;
2265                 }
2266                 break;
2267         }
2268
2269 update_itr_done:
2270         return retval;
2271 }
2272
2273 static void e1000_set_itr(struct e1000_adapter *adapter)
2274 {
2275         struct e1000_hw *hw = &adapter->hw;
2276         u16 current_itr;
2277         u32 new_itr = adapter->itr;
2278
2279         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2280         if (adapter->link_speed != SPEED_1000) {
2281                 current_itr = 0;
2282                 new_itr = 4000;
2283                 goto set_itr_now;
2284         }
2285
2286         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2287                 new_itr = 0;
2288                 goto set_itr_now;
2289         }
2290
2291         adapter->tx_itr = e1000_update_itr(adapter,
2292                                     adapter->tx_itr,
2293                                     adapter->total_tx_packets,
2294                                     adapter->total_tx_bytes);
2295         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2296         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2297                 adapter->tx_itr = low_latency;
2298
2299         adapter->rx_itr = e1000_update_itr(adapter,
2300                                     adapter->rx_itr,
2301                                     adapter->total_rx_packets,
2302                                     adapter->total_rx_bytes);
2303         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2304         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2305                 adapter->rx_itr = low_latency;
2306
2307         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2308
2309         switch (current_itr) {
2310         /* counts and packets in update_itr are dependent on these numbers */
2311         case lowest_latency:
2312                 new_itr = 70000;
2313                 break;
2314         case low_latency:
2315                 new_itr = 20000; /* aka hwitr = ~200 */
2316                 break;
2317         case bulk_latency:
2318                 new_itr = 4000;
2319                 break;
2320         default:
2321                 break;
2322         }
2323
2324 set_itr_now:
2325         if (new_itr != adapter->itr) {
2326                 /*
2327                  * this attempts to bias the interrupt rate towards Bulk
2328                  * by adding intermediate steps when interrupt rate is
2329                  * increasing
2330                  */
2331                 new_itr = new_itr > adapter->itr ?
2332                              min(adapter->itr + (new_itr >> 2), new_itr) :
2333                              new_itr;
2334                 adapter->itr = new_itr;
2335                 adapter->rx_ring->itr_val = new_itr;
2336                 if (adapter->msix_entries)
2337                         adapter->rx_ring->set_itr = 1;
2338                 else
2339                         if (new_itr)
2340                                 ew32(ITR, 1000000000 / (new_itr * 256));
2341                         else
2342                                 ew32(ITR, 0);
2343         }
2344 }
2345
2346 /**
2347  * e1000_alloc_queues - Allocate memory for all rings
2348  * @adapter: board private structure to initialize
2349  **/
2350 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2351 {
2352         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2353         if (!adapter->tx_ring)
2354                 goto err;
2355
2356         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2357         if (!adapter->rx_ring)
2358                 goto err;
2359
2360         return 0;
2361 err:
2362         e_err("Unable to allocate memory for queues\n");
2363         kfree(adapter->rx_ring);
2364         kfree(adapter->tx_ring);
2365         return -ENOMEM;
2366 }
2367
2368 /**
2369  * e1000_clean - NAPI Rx polling callback
2370  * @napi: struct associated with this polling callback
2371  * @budget: amount of packets driver is allowed to process this poll
2372  **/
2373 static int e1000_clean(struct napi_struct *napi, int budget)
2374 {
2375         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2376         struct e1000_hw *hw = &adapter->hw;
2377         struct net_device *poll_dev = adapter->netdev;
2378         int tx_cleaned = 1, work_done = 0;
2379
2380         adapter = netdev_priv(poll_dev);
2381
2382         if (adapter->msix_entries &&
2383             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2384                 goto clean_rx;
2385
2386         tx_cleaned = e1000_clean_tx_irq(adapter);
2387
2388 clean_rx:
2389         adapter->clean_rx(adapter, &work_done, budget);
2390
2391         if (!tx_cleaned)
2392                 work_done = budget;
2393
2394         /* If budget not fully consumed, exit the polling mode */
2395         if (work_done < budget) {
2396                 if (adapter->itr_setting & 3)
2397                         e1000_set_itr(adapter);
2398                 napi_complete(napi);
2399                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2400                         if (adapter->msix_entries)
2401                                 ew32(IMS, adapter->rx_ring->ims_val);
2402                         else
2403                                 e1000_irq_enable(adapter);
2404                 }
2405         }
2406
2407         return work_done;
2408 }
2409
2410 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2411 {
2412         struct e1000_adapter *adapter = netdev_priv(netdev);
2413         struct e1000_hw *hw = &adapter->hw;
2414         u32 vfta, index;
2415
2416         /* don't update vlan cookie if already programmed */
2417         if ((adapter->hw.mng_cookie.status &
2418              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2419             (vid == adapter->mng_vlan_id))
2420                 return;
2421
2422         /* add VID to filter table */
2423         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2424                 index = (vid >> 5) & 0x7F;
2425                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2426                 vfta |= (1 << (vid & 0x1F));
2427                 hw->mac.ops.write_vfta(hw, index, vfta);
2428         }
2429 }
2430
2431 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2432 {
2433         struct e1000_adapter *adapter = netdev_priv(netdev);
2434         struct e1000_hw *hw = &adapter->hw;
2435         u32 vfta, index;
2436
2437         if (!test_bit(__E1000_DOWN, &adapter->state))
2438                 e1000_irq_disable(adapter);
2439         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2440
2441         if (!test_bit(__E1000_DOWN, &adapter->state))
2442                 e1000_irq_enable(adapter);
2443
2444         if ((adapter->hw.mng_cookie.status &
2445              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2446             (vid == adapter->mng_vlan_id)) {
2447                 /* release control to f/w */
2448                 e1000_release_hw_control(adapter);
2449                 return;
2450         }
2451
2452         /* remove VID from filter table */
2453         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2454                 index = (vid >> 5) & 0x7F;
2455                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2456                 vfta &= ~(1 << (vid & 0x1F));
2457                 hw->mac.ops.write_vfta(hw, index, vfta);
2458         }
2459 }
2460
2461 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2462 {
2463         struct net_device *netdev = adapter->netdev;
2464         u16 vid = adapter->hw.mng_cookie.vlan_id;
2465         u16 old_vid = adapter->mng_vlan_id;
2466
2467         if (!adapter->vlgrp)
2468                 return;
2469
2470         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2471                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2472                 if (adapter->hw.mng_cookie.status &
2473                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2474                         e1000_vlan_rx_add_vid(netdev, vid);
2475                         adapter->mng_vlan_id = vid;
2476                 }
2477
2478                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2479                                 (vid != old_vid) &&
2480                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2481                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2482         } else {
2483                 adapter->mng_vlan_id = vid;
2484         }
2485 }
2486
2487
2488 static void e1000_vlan_rx_register(struct net_device *netdev,
2489                                    struct vlan_group *grp)
2490 {
2491         struct e1000_adapter *adapter = netdev_priv(netdev);
2492         struct e1000_hw *hw = &adapter->hw;
2493         u32 ctrl, rctl;
2494
2495         if (!test_bit(__E1000_DOWN, &adapter->state))
2496                 e1000_irq_disable(adapter);
2497         adapter->vlgrp = grp;
2498
2499         if (grp) {
2500                 /* enable VLAN tag insert/strip */
2501                 ctrl = er32(CTRL);
2502                 ctrl |= E1000_CTRL_VME;
2503                 ew32(CTRL, ctrl);
2504
2505                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2506                         /* enable VLAN receive filtering */
2507                         rctl = er32(RCTL);
2508                         rctl &= ~E1000_RCTL_CFIEN;
2509                         ew32(RCTL, rctl);
2510                         e1000_update_mng_vlan(adapter);
2511                 }
2512         } else {
2513                 /* disable VLAN tag insert/strip */
2514                 ctrl = er32(CTRL);
2515                 ctrl &= ~E1000_CTRL_VME;
2516                 ew32(CTRL, ctrl);
2517
2518                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2519                         if (adapter->mng_vlan_id !=
2520                             (u16)E1000_MNG_VLAN_NONE) {
2521                                 e1000_vlan_rx_kill_vid(netdev,
2522                                                        adapter->mng_vlan_id);
2523                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2524                         }
2525                 }
2526         }
2527
2528         if (!test_bit(__E1000_DOWN, &adapter->state))
2529                 e1000_irq_enable(adapter);
2530 }
2531
2532 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2533 {
2534         u16 vid;
2535
2536         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2537
2538         if (!adapter->vlgrp)
2539                 return;
2540
2541         for (vid = 0; vid < VLAN_N_VID; vid++) {
2542                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2543                         continue;
2544                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2545         }
2546 }
2547
2548 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2549 {
2550         struct e1000_hw *hw = &adapter->hw;
2551         u32 manc, manc2h, mdef, i, j;
2552
2553         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2554                 return;
2555
2556         manc = er32(MANC);
2557
2558         /*
2559          * enable receiving management packets to the host. this will probably
2560          * generate destination unreachable messages from the host OS, but
2561          * the packets will be handled on SMBUS
2562          */
2563         manc |= E1000_MANC_EN_MNG2HOST;
2564         manc2h = er32(MANC2H);
2565
2566         switch (hw->mac.type) {
2567         default:
2568                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2569                 break;
2570         case e1000_82574:
2571         case e1000_82583:
2572                 /*
2573                  * Check if IPMI pass-through decision filter already exists;
2574                  * if so, enable it.
2575                  */
2576                 for (i = 0, j = 0; i < 8; i++) {
2577                         mdef = er32(MDEF(i));
2578
2579                         /* Ignore filters with anything other than IPMI ports */
2580                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2581                                 continue;
2582
2583                         /* Enable this decision filter in MANC2H */
2584                         if (mdef)
2585                                 manc2h |= (1 << i);
2586
2587                         j |= mdef;
2588                 }
2589
2590                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2591                         break;
2592
2593                 /* Create new decision filter in an empty filter */
2594                 for (i = 0, j = 0; i < 8; i++)
2595                         if (er32(MDEF(i)) == 0) {
2596                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2597                                                E1000_MDEF_PORT_664));
2598                                 manc2h |= (1 << 1);
2599                                 j++;
2600                                 break;
2601                         }
2602
2603                 if (!j)
2604                         e_warn("Unable to create IPMI pass-through filter\n");
2605                 break;
2606         }
2607
2608         ew32(MANC2H, manc2h);
2609         ew32(MANC, manc);
2610 }
2611
2612 /**
2613  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2614  * @adapter: board private structure
2615  *
2616  * Configure the Tx unit of the MAC after a reset.
2617  **/
2618 static void e1000_configure_tx(struct e1000_adapter *adapter)
2619 {
2620         struct e1000_hw *hw = &adapter->hw;
2621         struct e1000_ring *tx_ring = adapter->tx_ring;
2622         u64 tdba;
2623         u32 tdlen, tctl, tipg, tarc;
2624         u32 ipgr1, ipgr2;
2625
2626         /* Setup the HW Tx Head and Tail descriptor pointers */
2627         tdba = tx_ring->dma;
2628         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2629         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2630         ew32(TDBAH, (tdba >> 32));
2631         ew32(TDLEN, tdlen);
2632         ew32(TDH, 0);
2633         ew32(TDT, 0);
2634         tx_ring->head = E1000_TDH;
2635         tx_ring->tail = E1000_TDT;
2636
2637         /* Set the default values for the Tx Inter Packet Gap timer */
2638         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2639         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2640         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2641
2642         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2643                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2644
2645         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2646         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2647         ew32(TIPG, tipg);
2648
2649         /* Set the Tx Interrupt Delay register */
2650         ew32(TIDV, adapter->tx_int_delay);
2651         /* Tx irq moderation */
2652         ew32(TADV, adapter->tx_abs_int_delay);
2653
2654         if (adapter->flags2 & FLAG2_DMA_BURST) {
2655                 u32 txdctl = er32(TXDCTL(0));
2656                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2657                             E1000_TXDCTL_WTHRESH);
2658                 /*
2659                  * set up some performance related parameters to encourage the
2660                  * hardware to use the bus more efficiently in bursts, depends
2661                  * on the tx_int_delay to be enabled,
2662                  * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2663                  * hthresh = 1 ==> prefetch when one or more available
2664                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2665                  * BEWARE: this seems to work but should be considered first if
2666                  * there are tx hangs or other tx related bugs
2667                  */
2668                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2669                 ew32(TXDCTL(0), txdctl);
2670                 /* erratum work around: set txdctl the same for both queues */
2671                 ew32(TXDCTL(1), txdctl);
2672         }
2673
2674         /* Program the Transmit Control Register */
2675         tctl = er32(TCTL);
2676         tctl &= ~E1000_TCTL_CT;
2677         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2678                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2679
2680         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2681                 tarc = er32(TARC(0));
2682                 /*
2683                  * set the speed mode bit, we'll clear it if we're not at
2684                  * gigabit link later
2685                  */
2686 #define SPEED_MODE_BIT (1 << 21)
2687                 tarc |= SPEED_MODE_BIT;
2688                 ew32(TARC(0), tarc);
2689         }
2690
2691         /* errata: program both queues to unweighted RR */
2692         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2693                 tarc = er32(TARC(0));
2694                 tarc |= 1;
2695                 ew32(TARC(0), tarc);
2696                 tarc = er32(TARC(1));
2697                 tarc |= 1;
2698                 ew32(TARC(1), tarc);
2699         }
2700
2701         /* Setup Transmit Descriptor Settings for eop descriptor */
2702         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2703
2704         /* only set IDE if we are delaying interrupts using the timers */
2705         if (adapter->tx_int_delay)
2706                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2707
2708         /* enable Report Status bit */
2709         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2710
2711         ew32(TCTL, tctl);
2712
2713         e1000e_config_collision_dist(hw);
2714 }
2715
2716 /**
2717  * e1000_setup_rctl - configure the receive control registers
2718  * @adapter: Board private structure
2719  **/
2720 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2721                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2722 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2723 {
2724         struct e1000_hw *hw = &adapter->hw;
2725         u32 rctl, rfctl;
2726         u32 psrctl = 0;
2727         u32 pages = 0;
2728
2729         /* Workaround Si errata on 82579 - configure jumbo frame flow */
2730         if (hw->mac.type == e1000_pch2lan) {
2731                 s32 ret_val;
2732
2733                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2734                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2735                 else
2736                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2737         }
2738
2739         /* Program MC offset vector base */
2740         rctl = er32(RCTL);
2741         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2742         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2743                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2744                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2745
2746         /* Do not Store bad packets */
2747         rctl &= ~E1000_RCTL_SBP;
2748
2749         /* Enable Long Packet receive */
2750         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2751                 rctl &= ~E1000_RCTL_LPE;
2752         else
2753                 rctl |= E1000_RCTL_LPE;
2754
2755         /* Some systems expect that the CRC is included in SMBUS traffic. The
2756          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2757          * host memory when this is enabled
2758          */
2759         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2760                 rctl |= E1000_RCTL_SECRC;
2761
2762         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2763         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2764                 u16 phy_data;
2765
2766                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2767                 phy_data &= 0xfff8;
2768                 phy_data |= (1 << 2);
2769                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2770
2771                 e1e_rphy(hw, 22, &phy_data);
2772                 phy_data &= 0x0fff;
2773                 phy_data |= (1 << 14);
2774                 e1e_wphy(hw, 0x10, 0x2823);
2775                 e1e_wphy(hw, 0x11, 0x0003);
2776                 e1e_wphy(hw, 22, phy_data);
2777         }
2778
2779         /* Setup buffer sizes */
2780         rctl &= ~E1000_RCTL_SZ_4096;
2781         rctl |= E1000_RCTL_BSEX;
2782         switch (adapter->rx_buffer_len) {
2783         case 2048:
2784         default:
2785                 rctl |= E1000_RCTL_SZ_2048;
2786                 rctl &= ~E1000_RCTL_BSEX;
2787                 break;
2788         case 4096:
2789                 rctl |= E1000_RCTL_SZ_4096;
2790                 break;
2791         case 8192:
2792                 rctl |= E1000_RCTL_SZ_8192;
2793                 break;
2794         case 16384:
2795                 rctl |= E1000_RCTL_SZ_16384;
2796                 break;
2797         }
2798
2799         /*
2800          * 82571 and greater support packet-split where the protocol
2801          * header is placed in skb->data and the packet data is
2802          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2803          * In the case of a non-split, skb->data is linearly filled,
2804          * followed by the page buffers.  Therefore, skb->data is
2805          * sized to hold the largest protocol header.
2806          *
2807          * allocations using alloc_page take too long for regular MTU
2808          * so only enable packet split for jumbo frames
2809          *
2810          * Using pages when the page size is greater than 16k wastes
2811          * a lot of memory, since we allocate 3 pages at all times
2812          * per packet.
2813          */
2814         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2815         if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2816             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2817                 adapter->rx_ps_pages = pages;
2818         else
2819                 adapter->rx_ps_pages = 0;
2820
2821         if (adapter->rx_ps_pages) {
2822                 /* Configure extra packet-split registers */
2823                 rfctl = er32(RFCTL);
2824                 rfctl |= E1000_RFCTL_EXTEN;
2825                 /*
2826                  * disable packet split support for IPv6 extension headers,
2827                  * because some malformed IPv6 headers can hang the Rx
2828                  */
2829                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2830                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2831
2832                 ew32(RFCTL, rfctl);
2833
2834                 /* Enable Packet split descriptors */
2835                 rctl |= E1000_RCTL_DTYP_PS;
2836
2837                 psrctl |= adapter->rx_ps_bsize0 >>
2838                         E1000_PSRCTL_BSIZE0_SHIFT;
2839
2840                 switch (adapter->rx_ps_pages) {
2841                 case 3:
2842                         psrctl |= PAGE_SIZE <<
2843                                 E1000_PSRCTL_BSIZE3_SHIFT;
2844                 case 2:
2845                         psrctl |= PAGE_SIZE <<
2846                                 E1000_PSRCTL_BSIZE2_SHIFT;
2847                 case 1:
2848                         psrctl |= PAGE_SIZE >>
2849                                 E1000_PSRCTL_BSIZE1_SHIFT;
2850                         break;
2851                 }
2852
2853                 ew32(PSRCTL, psrctl);
2854         }
2855
2856         ew32(RCTL, rctl);
2857         /* just started the receive unit, no need to restart */
2858         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2859 }
2860
2861 /**
2862  * e1000_configure_rx - Configure Receive Unit after Reset
2863  * @adapter: board private structure
2864  *
2865  * Configure the Rx unit of the MAC after a reset.
2866  **/
2867 static void e1000_configure_rx(struct e1000_adapter *adapter)
2868 {
2869         struct e1000_hw *hw = &adapter->hw;
2870         struct e1000_ring *rx_ring = adapter->rx_ring;
2871         u64 rdba;
2872         u32 rdlen, rctl, rxcsum, ctrl_ext;
2873
2874         if (adapter->rx_ps_pages) {
2875                 /* this is a 32 byte descriptor */
2876                 rdlen = rx_ring->count *
2877                         sizeof(union e1000_rx_desc_packet_split);
2878                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2879                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2880         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2881                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2882                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2883                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2884         } else {
2885                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2886                 adapter->clean_rx = e1000_clean_rx_irq;
2887                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2888         }
2889
2890         /* disable receives while setting up the descriptors */
2891         rctl = er32(RCTL);
2892         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2893         e1e_flush();
2894         msleep(10);
2895
2896         if (adapter->flags2 & FLAG2_DMA_BURST) {
2897                 /*
2898                  * set the writeback threshold (only takes effect if the RDTR
2899                  * is set). set GRAN=1 and write back up to 0x4 worth, and
2900                  * enable prefetching of 0x20 rx descriptors
2901                  * granularity = 01
2902                  * wthresh = 04,
2903                  * hthresh = 04,
2904                  * pthresh = 0x20
2905                  */
2906                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
2907                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
2908
2909                 /*
2910                  * override the delay timers for enabling bursting, only if
2911                  * the value was not set by the user via module options
2912                  */
2913                 if (adapter->rx_int_delay == DEFAULT_RDTR)
2914                         adapter->rx_int_delay = BURST_RDTR;
2915                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
2916                         adapter->rx_abs_int_delay = BURST_RADV;
2917         }
2918
2919         /* set the Receive Delay Timer Register */
2920         ew32(RDTR, adapter->rx_int_delay);
2921
2922         /* irq moderation */
2923         ew32(RADV, adapter->rx_abs_int_delay);
2924         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
2925                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2926
2927         ctrl_ext = er32(CTRL_EXT);
2928         /* Auto-Mask interrupts upon ICR access */
2929         ctrl_ext |= E1000_CTRL_EXT_IAME;
2930         ew32(IAM, 0xffffffff);
2931         ew32(CTRL_EXT, ctrl_ext);
2932         e1e_flush();
2933
2934         /*
2935          * Setup the HW Rx Head and Tail Descriptor Pointers and
2936          * the Base and Length of the Rx Descriptor Ring
2937          */
2938         rdba = rx_ring->dma;
2939         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2940         ew32(RDBAH, (rdba >> 32));
2941         ew32(RDLEN, rdlen);
2942         ew32(RDH, 0);
2943         ew32(RDT, 0);
2944         rx_ring->head = E1000_RDH;
2945         rx_ring->tail = E1000_RDT;
2946
2947         /* Enable Receive Checksum Offload for TCP and UDP */
2948         rxcsum = er32(RXCSUM);
2949         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2950                 rxcsum |= E1000_RXCSUM_TUOFL;
2951
2952                 /*
2953                  * IPv4 payload checksum for UDP fragments must be
2954                  * used in conjunction with packet-split.
2955                  */
2956                 if (adapter->rx_ps_pages)
2957                         rxcsum |= E1000_RXCSUM_IPPCSE;
2958         } else {
2959                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2960                 /* no need to clear IPPCSE as it defaults to 0 */
2961         }
2962         ew32(RXCSUM, rxcsum);
2963
2964         /*
2965          * Enable early receives on supported devices, only takes effect when
2966          * packet size is equal or larger than the specified value (in 8 byte
2967          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2968          */
2969         if ((adapter->flags & FLAG_HAS_ERT) ||
2970             (adapter->hw.mac.type == e1000_pch2lan)) {
2971                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2972                         u32 rxdctl = er32(RXDCTL(0));
2973                         ew32(RXDCTL(0), rxdctl | 0x3);
2974                         if (adapter->flags & FLAG_HAS_ERT)
2975                                 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2976                         /*
2977                          * With jumbo frames and early-receive enabled,
2978                          * excessive C-state transition latencies result in
2979                          * dropped transactions.
2980                          */
2981                         pm_qos_update_request(
2982                                 &adapter->netdev->pm_qos_req, 55);
2983                 } else {
2984                         pm_qos_update_request(
2985                                 &adapter->netdev->pm_qos_req,
2986                                 PM_QOS_DEFAULT_VALUE);
2987                 }
2988         }
2989
2990         /* Enable Receives */
2991         ew32(RCTL, rctl);
2992 }
2993
2994 /**
2995  *  e1000_update_mc_addr_list - Update Multicast addresses
2996  *  @hw: pointer to the HW structure
2997  *  @mc_addr_list: array of multicast addresses to program
2998  *  @mc_addr_count: number of multicast addresses to program
2999  *
3000  *  Updates the Multicast Table Array.
3001  *  The caller must have a packed mc_addr_list of multicast addresses.
3002  **/
3003 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3004                                       u32 mc_addr_count)
3005 {
3006         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3007 }
3008
3009 /**
3010  * e1000_set_multi - Multicast and Promiscuous mode set
3011  * @netdev: network interface device structure
3012  *
3013  * The set_multi entry point is called whenever the multicast address
3014  * list or the network interface flags are updated.  This routine is
3015  * responsible for configuring the hardware for proper multicast,
3016  * promiscuous mode, and all-multi behavior.
3017  **/
3018 static void e1000_set_multi(struct net_device *netdev)
3019 {
3020         struct e1000_adapter *adapter = netdev_priv(netdev);
3021         struct e1000_hw *hw = &adapter->hw;
3022         struct netdev_hw_addr *ha;
3023         u8  *mta_list;
3024         u32 rctl;
3025         int i;
3026
3027         /* Check for Promiscuous and All Multicast modes */
3028
3029         rctl = er32(RCTL);
3030
3031         if (netdev->flags & IFF_PROMISC) {
3032                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3033                 rctl &= ~E1000_RCTL_VFE;
3034         } else {
3035                 if (netdev->flags & IFF_ALLMULTI) {
3036                         rctl |= E1000_RCTL_MPE;
3037                         rctl &= ~E1000_RCTL_UPE;
3038                 } else {
3039                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3040                 }
3041                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3042                         rctl |= E1000_RCTL_VFE;
3043         }
3044
3045         ew32(RCTL, rctl);
3046
3047         if (!netdev_mc_empty(netdev)) {
3048                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3049                 if (!mta_list)
3050                         return;
3051
3052                 /* prepare a packed array of only addresses. */
3053                 i = 0;
3054                 netdev_for_each_mc_addr(ha, netdev)
3055                         memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3056
3057                 e1000_update_mc_addr_list(hw, mta_list, i);
3058                 kfree(mta_list);
3059         } else {
3060                 /*
3061                  * if we're called from probe, we might not have
3062                  * anything to do here, so clear out the list
3063                  */
3064                 e1000_update_mc_addr_list(hw, NULL, 0);
3065         }
3066 }
3067
3068 /**
3069  * e1000_configure - configure the hardware for Rx and Tx
3070  * @adapter: private board structure
3071  **/
3072 static void e1000_configure(struct e1000_adapter *adapter)
3073 {
3074         e1000_set_multi(adapter->netdev);
3075
3076         e1000_restore_vlan(adapter);
3077         e1000_init_manageability_pt(adapter);
3078
3079         e1000_configure_tx(adapter);
3080         e1000_setup_rctl(adapter);
3081         e1000_configure_rx(adapter);
3082         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3083 }
3084
3085 /**
3086  * e1000e_power_up_phy - restore link in case the phy was powered down
3087  * @adapter: address of board private structure
3088  *
3089  * The phy may be powered down to save power and turn off link when the
3090  * driver is unloaded and wake on lan is not enabled (among others)
3091  * *** this routine MUST be followed by a call to e1000e_reset ***
3092  **/
3093 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3094 {
3095         if (adapter->hw.phy.ops.power_up)
3096                 adapter->hw.phy.ops.power_up(&adapter->hw);
3097
3098         adapter->hw.mac.ops.setup_link(&adapter->hw);
3099 }
3100
3101 /**
3102  * e1000_power_down_phy - Power down the PHY
3103  *
3104  * Power down the PHY so no link is implied when interface is down.
3105  * The PHY cannot be powered down if management or WoL is active.
3106  */
3107 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3108 {
3109         /* WoL is enabled */
3110         if (adapter->wol)
3111                 return;
3112
3113         if (adapter->hw.phy.ops.power_down)
3114                 adapter->hw.phy.ops.power_down(&adapter->hw);
3115 }
3116
3117 /**
3118  * e1000e_reset - bring the hardware into a known good state
3119  *
3120  * This function boots the hardware and enables some settings that
3121  * require a configuration cycle of the hardware - those cannot be
3122  * set/changed during runtime. After reset the device needs to be
3123  * properly configured for Rx, Tx etc.
3124  */
3125 void e1000e_reset(struct e1000_adapter *adapter)
3126 {
3127         struct e1000_mac_info *mac = &adapter->hw.mac;
3128         struct e1000_fc_info *fc = &adapter->hw.fc;
3129         struct e1000_hw *hw = &adapter->hw;
3130         u32 tx_space, min_tx_space, min_rx_space;
3131         u32 pba = adapter->pba;
3132         u16 hwm;
3133
3134         /* reset Packet Buffer Allocation to default */
3135         ew32(PBA, pba);
3136
3137         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3138                 /*
3139                  * To maintain wire speed transmits, the Tx FIFO should be
3140                  * large enough to accommodate two full transmit packets,
3141                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3142                  * the Rx FIFO should be large enough to accommodate at least
3143                  * one full receive packet and is similarly rounded up and
3144                  * expressed in KB.
3145                  */
3146                 pba = er32(PBA);
3147                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3148                 tx_space = pba >> 16;
3149                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3150                 pba &= 0xffff;
3151                 /*
3152                  * the Tx fifo also stores 16 bytes of information about the tx
3153                  * but don't include ethernet FCS because hardware appends it
3154                  */
3155                 min_tx_space = (adapter->max_frame_size +
3156                                 sizeof(struct e1000_tx_desc) -
3157                                 ETH_FCS_LEN) * 2;
3158                 min_tx_space = ALIGN(min_tx_space, 1024);
3159                 min_tx_space >>= 10;
3160                 /* software strips receive CRC, so leave room for it */
3161                 min_rx_space = adapter->max_frame_size;
3162                 min_rx_space = ALIGN(min_rx_space, 1024);
3163                 min_rx_space >>= 10;
3164
3165                 /*
3166                  * If current Tx allocation is less than the min Tx FIFO size,
3167                  * and the min Tx FIFO size is less than the current Rx FIFO
3168                  * allocation, take space away from current Rx allocation
3169                  */
3170                 if ((tx_space < min_tx_space) &&
3171                     ((min_tx_space - tx_space) < pba)) {
3172                         pba -= min_tx_space - tx_space;
3173
3174                         /*
3175                          * if short on Rx space, Rx wins and must trump tx
3176                          * adjustment or use Early Receive if available
3177                          */
3178                         if ((pba < min_rx_space) &&
3179                             (!(adapter->flags & FLAG_HAS_ERT)))
3180                                 /* ERT enabled in e1000_configure_rx */
3181                                 pba = min_rx_space;
3182                 }
3183
3184                 ew32(PBA, pba);
3185         }
3186
3187
3188         /*
3189          * flow control settings
3190          *
3191          * The high water mark must be low enough to fit one full frame
3192          * (or the size used for early receive) above it in the Rx FIFO.
3193          * Set it to the lower of:
3194          * - 90% of the Rx FIFO size, and
3195          * - the full Rx FIFO size minus the early receive size (for parts
3196          *   with ERT support assuming ERT set to E1000_ERT_2048), or
3197          * - the full Rx FIFO size minus one full frame
3198          */
3199         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3200                 fc->pause_time = 0xFFFF;
3201         else
3202                 fc->pause_time = E1000_FC_PAUSE_TIME;
3203         fc->send_xon = 1;
3204         fc->current_mode = fc->requested_mode;
3205
3206         switch (hw->mac.type) {
3207         default:
3208                 if ((adapter->flags & FLAG_HAS_ERT) &&
3209                     (adapter->netdev->mtu > ETH_DATA_LEN))
3210                         hwm = min(((pba << 10) * 9 / 10),
3211                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
3212                 else
3213                         hwm = min(((pba << 10) * 9 / 10),
3214                                   ((pba << 10) - adapter->max_frame_size));
3215
3216                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3217                 fc->low_water = fc->high_water - 8;
3218                 break;
3219         case e1000_pchlan:
3220                 /*
3221                  * Workaround PCH LOM adapter hangs with certain network
3222                  * loads.  If hangs persist, try disabling Tx flow control.
3223                  */
3224                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3225                         fc->high_water = 0x3500;
3226                         fc->low_water  = 0x1500;
3227                 } else {
3228                         fc->high_water = 0x5000;
3229                         fc->low_water  = 0x3000;
3230                 }
3231                 fc->refresh_time = 0x1000;
3232                 break;
3233         case e1000_pch2lan:
3234                 fc->high_water = 0x05C20;
3235                 fc->low_water = 0x05048;
3236                 fc->pause_time = 0x0650;
3237                 fc->refresh_time = 0x0400;
3238                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3239                         pba = 14;
3240                         ew32(PBA, pba);
3241                 }
3242                 break;
3243         }
3244
3245         /*
3246          * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3247          * fit in receive buffer and early-receive not supported.
3248          */
3249         if (adapter->itr_setting & 0x3) {
3250                 if (((adapter->max_frame_size * 2) > (pba << 10)) &&
3251                     !(adapter->flags & FLAG_HAS_ERT)) {
3252                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3253                                 dev_info(&adapter->pdev->dev,
3254                                         "Interrupt Throttle Rate turned off\n");
3255                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3256                                 ew32(ITR, 0);
3257                         }
3258                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3259                         dev_info(&adapter->pdev->dev,
3260                                  "Interrupt Throttle Rate turned on\n");
3261                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3262                         adapter->itr = 20000;
3263                         ew32(ITR, 1000000000 / (adapter->itr * 256));
3264                 }
3265         }
3266
3267         /* Allow time for pending master requests to run */
3268         mac->ops.reset_hw(hw);
3269
3270         /*
3271          * For parts with AMT enabled, let the firmware know
3272          * that the network interface is in control
3273          */
3274         if (adapter->flags & FLAG_HAS_AMT)
3275                 e1000_get_hw_control(adapter);
3276
3277         ew32(WUC, 0);
3278
3279         if (mac->ops.init_hw(hw))
3280                 e_err("Hardware Error\n");
3281
3282         e1000_update_mng_vlan(adapter);
3283
3284         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3285         ew32(VET, ETH_P_8021Q);
3286
3287         e1000e_reset_adaptive(hw);
3288         e1000_get_phy_info(hw);
3289
3290         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3291             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3292                 u16 phy_data = 0;
3293                 /*
3294                  * speed up time to link by disabling smart power down, ignore
3295                  * the return value of this function because there is nothing
3296                  * different we would do if it failed
3297                  */
3298                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3299                 phy_data &= ~IGP02E1000_PM_SPD;
3300                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3301         }
3302 }
3303
3304 int e1000e_up(struct e1000_adapter *adapter)
3305 {
3306         struct e1000_hw *hw = &adapter->hw;
3307
3308         /* hardware has been reset, we need to reload some things */
3309         e1000_configure(adapter);
3310
3311         clear_bit(__E1000_DOWN, &adapter->state);
3312
3313         napi_enable(&adapter->napi);
3314         if (adapter->msix_entries)
3315                 e1000_configure_msix(adapter);
3316         e1000_irq_enable(adapter);
3317
3318         netif_wake_queue(adapter->netdev);
3319
3320         /* fire a link change interrupt to start the watchdog */
3321         if (adapter->msix_entries)
3322                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3323         else
3324                 ew32(ICS, E1000_ICS_LSC);
3325
3326         return 0;
3327 }
3328
3329 void e1000e_down(struct e1000_adapter *adapter)
3330 {
3331         struct net_device *netdev = adapter->netdev;
3332         struct e1000_hw *hw = &adapter->hw;
3333         u32 tctl, rctl;
3334
3335         /*
3336          * signal that we're down so the interrupt handler does not
3337          * reschedule our watchdog timer
3338          */
3339         set_bit(__E1000_DOWN, &adapter->state);
3340
3341         /* disable receives in the hardware */
3342         rctl = er32(RCTL);
3343         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3344         /* flush and sleep below */
3345
3346         netif_stop_queue(netdev);
3347
3348         /* disable transmits in the hardware */
3349         tctl = er32(TCTL);
3350         tctl &= ~E1000_TCTL_EN;
3351         ew32(TCTL, tctl);
3352         /* flush both disables and wait for them to finish */
3353         e1e_flush();
3354         msleep(10);
3355
3356         napi_disable(&adapter->napi);
3357         e1000_irq_disable(adapter);
3358
3359         del_timer_sync(&adapter->watchdog_timer);
3360         del_timer_sync(&adapter->phy_info_timer);
3361
3362         netif_carrier_off(netdev);
3363         adapter->link_speed = 0;
3364         adapter->link_duplex = 0;
3365
3366         if (!pci_channel_offline(adapter->pdev))
3367                 e1000e_reset(adapter);
3368         e1000_clean_tx_ring(adapter);
3369         e1000_clean_rx_ring(adapter);
3370
3371         /*
3372          * TODO: for power management, we could drop the link and
3373          * pci_disable_device here.
3374          */
3375 }
3376
3377 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3378 {
3379         might_sleep();
3380         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3381                 msleep(1);
3382         e1000e_down(adapter);
3383         e1000e_up(adapter);
3384         clear_bit(__E1000_RESETTING, &adapter->state);
3385 }
3386
3387 /**
3388  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3389  * @adapter: board private structure to initialize
3390  *
3391  * e1000_sw_init initializes the Adapter private data structure.
3392  * Fields are initialized based on PCI device information and
3393  * OS network device settings (MTU size).
3394  **/
3395 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3396 {
3397         struct net_device *netdev = adapter->netdev;
3398
3399         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3400         adapter->rx_ps_bsize0 = 128;
3401         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3402         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3403
3404         e1000e_set_interrupt_capability(adapter);
3405
3406         if (e1000_alloc_queues(adapter))
3407                 return -ENOMEM;
3408
3409         /* Explicitly disable IRQ since the NIC can be in any state. */
3410         e1000_irq_disable(adapter);
3411
3412         set_bit(__E1000_DOWN, &adapter->state);
3413         return 0;
3414 }
3415
3416 /**
3417  * e1000_intr_msi_test - Interrupt Handler
3418  * @irq: interrupt number
3419  * @data: pointer to a network interface device structure
3420  **/
3421 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3422 {
3423         struct net_device *netdev = data;
3424         struct e1000_adapter *adapter = netdev_priv(netdev);
3425         struct e1000_hw *hw = &adapter->hw;
3426         u32 icr = er32(ICR);
3427
3428         e_dbg("icr is %08X\n", icr);
3429         if (icr & E1000_ICR_RXSEQ) {
3430                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3431                 wmb();
3432         }
3433
3434         return IRQ_HANDLED;
3435 }
3436
3437 /**
3438  * e1000_test_msi_interrupt - Returns 0 for successful test
3439  * @adapter: board private struct
3440  *
3441  * code flow taken from tg3.c
3442  **/
3443 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3444 {
3445         struct net_device *netdev = adapter->netdev;
3446         struct e1000_hw *hw = &adapter->hw;
3447         int err;
3448
3449         /* poll_enable hasn't been called yet, so don't need disable */
3450         /* clear any pending events */
3451         er32(ICR);
3452
3453         /* free the real vector and request a test handler */
3454         e1000_free_irq(adapter);
3455         e1000e_reset_interrupt_capability(adapter);
3456
3457         /* Assume that the test fails, if it succeeds then the test
3458          * MSI irq handler will unset this flag */
3459         adapter->flags |= FLAG_MSI_TEST_FAILED;
3460
3461         err = pci_enable_msi(adapter->pdev);
3462         if (err)
3463                 goto msi_test_failed;
3464
3465         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3466                           netdev->name, netdev);
3467         if (err) {
3468                 pci_disable_msi(adapter->pdev);
3469                 goto msi_test_failed;
3470         }
3471
3472         wmb();
3473
3474         e1000_irq_enable(adapter);
3475
3476         /* fire an unusual interrupt on the test handler */
3477         ew32(ICS, E1000_ICS_RXSEQ);
3478         e1e_flush();
3479         msleep(50);
3480
3481         e1000_irq_disable(adapter);
3482
3483         rmb();
3484
3485         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3486                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3487                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3488         } else
3489                 e_dbg("MSI interrupt test succeeded!\n");
3490
3491         free_irq(adapter->pdev->irq, netdev);
3492         pci_disable_msi(adapter->pdev);
3493
3494 msi_test_failed:
3495         e1000e_set_interrupt_capability(adapter);
3496         return e1000_request_irq(adapter);
3497 }
3498
3499 /**
3500  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3501  * @adapter: board private struct
3502  *
3503  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3504  **/
3505 static int e1000_test_msi(struct e1000_adapter *adapter)
3506 {
3507         int err;
3508         u16 pci_cmd;
3509
3510         if (!(adapter->flags & FLAG_MSI_ENABLED))
3511                 return 0;
3512
3513         /* disable SERR in case the MSI write causes a master abort */
3514         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3515         if (pci_cmd & PCI_COMMAND_SERR)
3516                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3517                                       pci_cmd & ~PCI_COMMAND_SERR);
3518
3519         err = e1000_test_msi_interrupt(adapter);
3520
3521         /* re-enable SERR */
3522         if (pci_cmd & PCI_COMMAND_SERR) {
3523                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3524                 pci_cmd |= PCI_COMMAND_SERR;
3525                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3526         }
3527
3528         return err;
3529 }
3530
3531 /**
3532  * e1000_open - Called when a network interface is made active
3533  * @netdev: network interface device structure
3534  *
3535  * Returns 0 on success, negative value on failure
3536  *
3537  * The open entry point is called when a network interface is made
3538  * active by the system (IFF_UP).  At this point all resources needed
3539  * for transmit and receive operations are allocated, the interrupt
3540  * handler is registered with the OS, the watchdog timer is started,
3541  * and the stack is notified that the interface is ready.
3542  **/
3543 static int e1000_open(struct net_device *netdev)
3544 {
3545         struct e1000_adapter *adapter = netdev_priv(netdev);
3546         struct e1000_hw *hw = &adapter->hw;
3547         struct pci_dev *pdev = adapter->pdev;
3548         int err;
3549
3550         /* disallow open during test */
3551         if (test_bit(__E1000_TESTING, &adapter->state))
3552                 return -EBUSY;
3553
3554         pm_runtime_get_sync(&pdev->dev);
3555
3556         netif_carrier_off(netdev);
3557
3558         /* allocate transmit descriptors */
3559         err = e1000e_setup_tx_resources(adapter);
3560         if (err)
3561                 goto err_setup_tx;
3562
3563         /* allocate receive descriptors */
3564         err = e1000e_setup_rx_resources(adapter);
3565         if (err)
3566                 goto err_setup_rx;
3567
3568         /*
3569          * If AMT is enabled, let the firmware know that the network
3570          * interface is now open and reset the part to a known state.
3571          */
3572         if (adapter->flags & FLAG_HAS_AMT) {
3573                 e1000_get_hw_control(adapter);
3574                 e1000e_reset(adapter);
3575         }
3576
3577         e1000e_power_up_phy(adapter);
3578
3579         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3580         if ((adapter->hw.mng_cookie.status &
3581              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3582                 e1000_update_mng_vlan(adapter);
3583
3584         /* DMA latency requirement to workaround early-receive/jumbo issue */
3585         if ((adapter->flags & FLAG_HAS_ERT) ||
3586             (adapter->hw.mac.type == e1000_pch2lan))
3587                 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3588                                    PM_QOS_CPU_DMA_LATENCY,
3589                                    PM_QOS_DEFAULT_VALUE);
3590
3591         /*
3592          * before we allocate an interrupt, we must be ready to handle it.
3593          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3594          * as soon as we call pci_request_irq, so we have to setup our
3595          * clean_rx handler before we do so.
3596          */
3597         e1000_configure(adapter);
3598
3599         err = e1000_request_irq(adapter);
3600         if (err)
3601                 goto err_req_irq;
3602
3603         /*
3604          * Work around PCIe errata with MSI interrupts causing some chipsets to
3605          * ignore e1000e MSI messages, which means we need to test our MSI
3606          * interrupt now
3607          */
3608         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3609                 err = e1000_test_msi(adapter);
3610                 if (err) {
3611                         e_err("Interrupt allocation failed\n");
3612                         goto err_req_irq;
3613                 }
3614         }
3615
3616         /* From here on the code is the same as e1000e_up() */
3617         clear_bit(__E1000_DOWN, &adapter->state);
3618
3619         napi_enable(&adapter->napi);
3620
3621         e1000_irq_enable(adapter);
3622
3623         netif_start_queue(netdev);
3624
3625         adapter->idle_check = true;
3626         pm_runtime_put(&pdev->dev);
3627
3628         /* fire a link status change interrupt to start the watchdog */
3629         if (adapter->msix_entries)
3630                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3631         else
3632                 ew32(ICS, E1000_ICS_LSC);
3633
3634         return 0;
3635
3636 err_req_irq:
3637         e1000_release_hw_control(adapter);
3638         e1000_power_down_phy(adapter);
3639         e1000e_free_rx_resources(adapter);
3640 err_setup_rx:
3641         e1000e_free_tx_resources(adapter);
3642 err_setup_tx:
3643         e1000e_reset(adapter);
3644         pm_runtime_put_sync(&pdev->dev);
3645
3646         return err;
3647 }
3648
3649 /**
3650  * e1000_close - Disables a network interface
3651  * @netdev: network interface device structure
3652  *
3653  * Returns 0, this is not allowed to fail
3654  *
3655  * The close entry point is called when an interface is de-activated
3656  * by the OS.  The hardware is still under the drivers control, but
3657  * needs to be disabled.  A global MAC reset is issued to stop the
3658  * hardware, and all transmit and receive resources are freed.
3659  **/
3660 static int e1000_close(struct net_device *netdev)
3661 {
3662         struct e1000_adapter *adapter = netdev_priv(netdev);
3663         struct pci_dev *pdev = adapter->pdev;
3664
3665         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3666
3667         pm_runtime_get_sync(&pdev->dev);
3668
3669         if (!test_bit(__E1000_DOWN, &adapter->state)) {
3670                 e1000e_down(adapter);
3671                 e1000_free_irq(adapter);
3672         }
3673         e1000_power_down_phy(adapter);
3674
3675         e1000e_free_tx_resources(adapter);
3676         e1000e_free_rx_resources(adapter);
3677
3678         /*
3679          * kill manageability vlan ID if supported, but not if a vlan with
3680          * the same ID is registered on the host OS (let 8021q kill it)
3681          */
3682         if ((adapter->hw.mng_cookie.status &
3683                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3684              !(adapter->vlgrp &&
3685                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3686                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3687
3688         /*
3689          * If AMT is enabled, let the firmware know that the network
3690          * interface is now closed
3691          */
3692         if (adapter->flags & FLAG_HAS_AMT)
3693                 e1000_release_hw_control(adapter);
3694
3695         if ((adapter->flags & FLAG_HAS_ERT) ||
3696             (adapter->hw.mac.type == e1000_pch2lan))
3697                 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3698
3699         pm_runtime_put_sync(&pdev->dev);
3700
3701         return 0;
3702 }
3703 /**
3704  * e1000_set_mac - Change the Ethernet Address of the NIC
3705  * @netdev: network interface device structure
3706  * @p: pointer to an address structure
3707  *
3708  * Returns 0 on success, negative on failure
3709  **/
3710 static int e1000_set_mac(struct net_device *netdev, void *p)
3711 {
3712         struct e1000_adapter *adapter = netdev_priv(netdev);
3713         struct sockaddr *addr = p;
3714
3715         if (!is_valid_ether_addr(addr->sa_data))
3716                 return -EADDRNOTAVAIL;
3717
3718         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3719         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3720
3721         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3722
3723         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3724                 /* activate the work around */
3725                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3726
3727                 /*
3728                  * Hold a copy of the LAA in RAR[14] This is done so that
3729                  * between the time RAR[0] gets clobbered  and the time it
3730                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3731                  * of the RARs and no incoming packets directed to this port
3732                  * are dropped. Eventually the LAA will be in RAR[0] and
3733                  * RAR[14]
3734                  */
3735                 e1000e_rar_set(&adapter->hw,
3736                               adapter->hw.mac.addr,
3737                               adapter->hw.mac.rar_entry_count - 1);
3738         }
3739
3740         return 0;
3741 }
3742
3743 /**
3744  * e1000e_update_phy_task - work thread to update phy
3745  * @work: pointer to our work struct
3746  *
3747  * this worker thread exists because we must acquire a
3748  * semaphore to read the phy, which we could msleep while
3749  * waiting for it, and we can't msleep in a timer.
3750  **/
3751 static void e1000e_update_phy_task(struct work_struct *work)
3752 {
3753         struct e1000_adapter *adapter = container_of(work,
3754                                         struct e1000_adapter, update_phy_task);
3755         e1000_get_phy_info(&adapter->hw);
3756 }
3757
3758 /*
3759  * Need to wait a few seconds after link up to get diagnostic information from
3760  * the phy
3761  */
3762 static void e1000_update_phy_info(unsigned long data)
3763 {
3764         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3765         schedule_work(&adapter->update_phy_task);
3766 }
3767
3768 /**
3769  * e1000e_update_phy_stats - Update the PHY statistics counters
3770  * @adapter: board private structure
3771  **/
3772 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3773 {
3774         struct e1000_hw *hw = &adapter->hw;
3775         s32 ret_val;
3776         u16 phy_data;
3777
3778         ret_val = hw->phy.ops.acquire(hw);
3779         if (ret_val)
3780                 return;
3781
3782         hw->phy.addr = 1;
3783
3784 #define HV_PHY_STATS_PAGE       778
3785         /*
3786          * A page set is expensive so check if already on desired page.
3787          * If not, set to the page with the PHY status registers.
3788          */
3789         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3790                                            &phy_data);
3791         if (ret_val)
3792                 goto release;
3793         if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
3794                 ret_val = e1000e_write_phy_reg_mdic(hw,
3795                                                     IGP01E1000_PHY_PAGE_SELECT,
3796                                                     (HV_PHY_STATS_PAGE <<
3797                                                      IGP_PAGE_SHIFT));
3798                 if (ret_val)
3799                         goto release;
3800         }
3801
3802         /* Read/clear the upper 16-bit registers and read/accumulate lower */
3803
3804         /* Single Collision Count */
3805         e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
3806                                  &phy_data);
3807         ret_val = e1000e_read_phy_reg_mdic(hw,
3808                                            HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
3809                                            &phy_data);
3810         if (!ret_val)
3811                 adapter->stats.scc += phy_data;
3812
3813         /* Excessive Collision Count */
3814         e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
3815                                  &phy_data);
3816         ret_val = e1000e_read_phy_reg_mdic(hw,
3817                                            HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
3818                                            &phy_data);
3819         if (!ret_val)
3820                 adapter->stats.ecol += phy_data;
3821
3822         /* Multiple Collision Count */
3823         e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
3824                                  &phy_data);
3825         ret_val = e1000e_read_phy_reg_mdic(hw,
3826                                            HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
3827                                            &phy_data);
3828         if (!ret_val)
3829                 adapter->stats.mcc += phy_data;
3830
3831         /* Late Collision Count */
3832         e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
3833                                  &phy_data);
3834         ret_val = e1000e_read_phy_reg_mdic(hw,
3835                                            HV_LATECOL_LOWER &
3836                                            MAX_PHY_REG_ADDRESS,
3837                                            &phy_data);
3838         if (!ret_val)
3839                 adapter->stats.latecol += phy_data;
3840
3841         /* Collision Count - also used for adaptive IFS */
3842         e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
3843                                  &phy_data);
3844         ret_val = e1000e_read_phy_reg_mdic(hw,
3845                                            HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
3846                                            &phy_data);
3847         if (!ret_val)
3848                 hw->mac.collision_delta = phy_data;
3849
3850         /* Defer Count */
3851         e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
3852                                  &phy_data);
3853         ret_val = e1000e_read_phy_reg_mdic(hw,
3854                                            HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
3855                                            &phy_data);
3856         if (!ret_val)
3857                 adapter->stats.dc += phy_data;
3858
3859         /* Transmit with no CRS */
3860         e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
3861                                  &phy_data);
3862         ret_val = e1000e_read_phy_reg_mdic(hw,
3863                                            HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
3864                                            &phy_data);
3865         if (!ret_val)
3866                 adapter->stats.tncrs += phy_data;
3867
3868 release:
3869         hw->phy.ops.release(hw);
3870 }
3871
3872 /**
3873  * e1000e_update_stats - Update the board statistics counters
3874  * @adapter: board private structure
3875  **/
3876 void e1000e_update_stats(struct e1000_adapter *adapter)
3877 {
3878         struct net_device *netdev = adapter->netdev;
3879         struct e1000_hw *hw = &adapter->hw;
3880         struct pci_dev *pdev = adapter->pdev;
3881
3882         /*
3883          * Prevent stats update while adapter is being reset, or if the pci
3884          * connection is down.
3885          */
3886         if (adapter->link_speed == 0)
3887                 return;
3888         if (pci_channel_offline(pdev))
3889                 return;
3890
3891         adapter->stats.crcerrs += er32(CRCERRS);
3892         adapter->stats.gprc += er32(GPRC);
3893         adapter->stats.gorc += er32(GORCL);
3894         er32(GORCH); /* Clear gorc */
3895         adapter->stats.bprc += er32(BPRC);
3896         adapter->stats.mprc += er32(MPRC);
3897         adapter->stats.roc += er32(ROC);
3898
3899         adapter->stats.mpc += er32(MPC);
3900
3901         /* Half-duplex statistics */
3902         if (adapter->link_duplex == HALF_DUPLEX) {
3903                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
3904                         e1000e_update_phy_stats(adapter);
3905                 } else {
3906                         adapter->stats.scc += er32(SCC);
3907                         adapter->stats.ecol += er32(ECOL);
3908                         adapter->stats.mcc += er32(MCC);
3909                         adapter->stats.latecol += er32(LATECOL);
3910                         adapter->stats.dc += er32(DC);
3911
3912                         hw->mac.collision_delta = er32(COLC);
3913
3914                         if ((hw->mac.type != e1000_82574) &&
3915                             (hw->mac.type != e1000_82583))
3916                                 adapter->stats.tncrs += er32(TNCRS);
3917                 }
3918                 adapter->stats.colc += hw->mac.collision_delta;
3919         }
3920
3921         adapter->stats.xonrxc += er32(XONRXC);
3922         adapter->stats.xontxc += er32(XONTXC);
3923         adapter->stats.xoffrxc += er32(XOFFRXC);
3924         adapter->stats.xofftxc += er32(XOFFTXC);
3925         adapter->stats.gptc += er32(GPTC);
3926         adapter->stats.gotc += er32(GOTCL);
3927         er32(GOTCH); /* Clear gotc */
3928         adapter->stats.rnbc += er32(RNBC);
3929         adapter->stats.ruc += er32(RUC);
3930
3931         adapter->stats.mptc += er32(MPTC);
3932         adapter->stats.bptc += er32(BPTC);
3933
3934         /* used for adaptive IFS */
3935
3936         hw->mac.tx_packet_delta = er32(TPT);
3937         adapter->stats.tpt += hw->mac.tx_packet_delta;
3938
3939         adapter->stats.algnerrc += er32(ALGNERRC);
3940         adapter->stats.rxerrc += er32(RXERRC);
3941         adapter->stats.cexterr += er32(CEXTERR);
3942         adapter->stats.tsctc += er32(TSCTC);
3943         adapter->stats.tsctfc += er32(TSCTFC);
3944
3945         /* Fill out the OS statistics structure */
3946         netdev->stats.multicast = adapter->stats.mprc;
3947         netdev->stats.collisions = adapter->stats.colc;
3948
3949         /* Rx Errors */
3950
3951         /*
3952          * RLEC on some newer hardware can be incorrect so build
3953          * our own version based on RUC and ROC
3954          */
3955         netdev->stats.rx_errors = adapter->stats.rxerrc +
3956                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3957                 adapter->stats.ruc + adapter->stats.roc +
3958                 adapter->stats.cexterr;
3959         netdev->stats.rx_length_errors = adapter->stats.ruc +
3960                                               adapter->stats.roc;
3961         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3962         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3963         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3964
3965         /* Tx Errors */
3966         netdev->stats.tx_errors = adapter->stats.ecol +
3967                                        adapter->stats.latecol;
3968         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3969         netdev->stats.tx_window_errors = adapter->stats.latecol;
3970         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3971
3972         /* Tx Dropped needs to be maintained elsewhere */
3973
3974         /* Management Stats */
3975         adapter->stats.mgptc += er32(MGTPTC);
3976         adapter->stats.mgprc += er32(MGTPRC);
3977         adapter->stats.mgpdc += er32(MGTPDC);
3978 }
3979
3980 /**
3981  * e1000_phy_read_status - Update the PHY register status snapshot
3982  * @adapter: board private structure
3983  **/
3984 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3985 {
3986         struct e1000_hw *hw = &adapter->hw;
3987         struct e1000_phy_regs *phy = &adapter->phy_regs;
3988         int ret_val;
3989
3990         if ((er32(STATUS) & E1000_STATUS_LU) &&
3991             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3992                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3993                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3994                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3995                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3996                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3997                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3998                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3999                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4000                 if (ret_val)
4001                         e_warn("Error reading PHY register\n");
4002         } else {
4003                 /*
4004                  * Do not read PHY registers if link is not up
4005                  * Set values to typical power-on defaults
4006                  */
4007                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4008                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4009                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4010                              BMSR_ERCAP);
4011                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4012                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4013                 phy->lpa = 0;
4014                 phy->expansion = EXPANSION_ENABLENPAGE;
4015                 phy->ctrl1000 = ADVERTISE_1000FULL;
4016                 phy->stat1000 = 0;
4017                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4018         }
4019 }
4020
4021 static void e1000_print_link_info(struct e1000_adapter *adapter)
4022 {
4023         struct e1000_hw *hw = &adapter->hw;
4024         u32 ctrl = er32(CTRL);
4025
4026         /* Link status message must follow this format for user tools */
4027         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
4028                "Flow Control: %s\n",
4029                adapter->netdev->name,
4030                adapter->link_speed,
4031                (adapter->link_duplex == FULL_DUPLEX) ?
4032                                 "Full Duplex" : "Half Duplex",
4033                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4034                                 "RX/TX" :
4035                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
4036                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
4037 }
4038
4039 static bool e1000e_has_link(struct e1000_adapter *adapter)
4040 {
4041         struct e1000_hw *hw = &adapter->hw;
4042         bool link_active = 0;
4043         s32 ret_val = 0;
4044
4045         /*
4046          * get_link_status is set on LSC (link status) interrupt or
4047          * Rx sequence error interrupt.  get_link_status will stay
4048          * false until the check_for_link establishes link
4049          * for copper adapters ONLY
4050          */
4051         switch (hw->phy.media_type) {
4052         case e1000_media_type_copper:
4053                 if (hw->mac.get_link_status) {
4054                         ret_val = hw->mac.ops.check_for_link(hw);
4055                         link_active = !hw->mac.get_link_status;
4056                 } else {
4057                         link_active = 1;
4058                 }
4059                 break;
4060         case e1000_media_type_fiber:
4061                 ret_val = hw->mac.ops.check_for_link(hw);
4062                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4063                 break;
4064         case e1000_media_type_internal_serdes:
4065                 ret_val = hw->mac.ops.check_for_link(hw);
4066                 link_active = adapter->hw.mac.serdes_has_link;
4067                 break;
4068         default:
4069         case e1000_media_type_unknown:
4070                 break;
4071         }
4072
4073         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4074             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4075                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4076                 e_info("Gigabit has been disabled, downgrading speed\n");
4077         }
4078
4079         return link_active;
4080 }
4081
4082 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4083 {
4084         /* make sure the receive unit is started */
4085         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4086             (adapter->flags & FLAG_RX_RESTART_NOW)) {
4087                 struct e1000_hw *hw = &adapter->hw;
4088                 u32 rctl = er32(RCTL);
4089                 ew32(RCTL, rctl | E1000_RCTL_EN);
4090                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4091         }
4092 }
4093
4094 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4095 {
4096         struct e1000_hw *hw = &adapter->hw;
4097
4098         /*
4099          * With 82574 controllers, PHY needs to be checked periodically
4100          * for hung state and reset, if two calls return true
4101          */
4102         if (e1000_check_phy_82574(hw))
4103                 adapter->phy_hang_count++;
4104         else
4105                 adapter->phy_hang_count = 0;
4106
4107         if (adapter->phy_hang_count > 1) {
4108                 adapter->phy_hang_count = 0;
4109                 schedule_work(&adapter->reset_task);
4110         }
4111 }
4112
4113 /**
4114  * e1000_watchdog - Timer Call-back
4115  * @data: pointer to adapter cast into an unsigned long
4116  **/
4117 static void e1000_watchdog(unsigned long data)
4118 {
4119         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4120
4121         /* Do the rest outside of interrupt context */
4122         schedule_work(&adapter->watchdog_task);
4123
4124         /* TODO: make this use queue_delayed_work() */
4125 }
4126
4127 static void e1000_watchdog_task(struct work_struct *work)
4128 {
4129         struct e1000_adapter *adapter = container_of(work,
4130                                         struct e1000_adapter, watchdog_task);
4131         struct net_device *netdev = adapter->netdev;
4132         struct e1000_mac_info *mac = &adapter->hw.mac;
4133         struct e1000_phy_info *phy = &adapter->hw.phy;
4134         struct e1000_ring *tx_ring = adapter->tx_ring;
4135         struct e1000_hw *hw = &adapter->hw;
4136         u32 link, tctl;
4137         int tx_pending = 0;
4138
4139         link = e1000e_has_link(adapter);
4140         if ((netif_carrier_ok(netdev)) && link) {
4141                 /* Cancel scheduled suspend requests. */
4142                 pm_runtime_resume(netdev->dev.parent);
4143
4144                 e1000e_enable_receives(adapter);
4145                 goto link_up;
4146         }
4147
4148         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4149             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4150                 e1000_update_mng_vlan(adapter);
4151
4152         if (link) {
4153                 if (!netif_carrier_ok(netdev)) {
4154                         bool txb2b = 1;
4155
4156                         /* Cancel scheduled suspend requests. */
4157                         pm_runtime_resume(netdev->dev.parent);
4158
4159                         /* update snapshot of PHY registers on LSC */
4160                         e1000_phy_read_status(adapter);
4161                         mac->ops.get_link_up_info(&adapter->hw,
4162                                                    &adapter->link_speed,
4163                                                    &adapter->link_duplex);
4164                         e1000_print_link_info(adapter);
4165                         /*
4166                          * On supported PHYs, check for duplex mismatch only
4167                          * if link has autonegotiated at 10/100 half
4168                          */
4169                         if ((hw->phy.type == e1000_phy_igp_3 ||
4170                              hw->phy.type == e1000_phy_bm) &&
4171                             (hw->mac.autoneg == true) &&
4172                             (adapter->link_speed == SPEED_10 ||
4173                              adapter->link_speed == SPEED_100) &&
4174                             (adapter->link_duplex == HALF_DUPLEX)) {
4175                                 u16 autoneg_exp;
4176
4177                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4178
4179                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4180                                         e_info("Autonegotiated half duplex but"
4181                                                " link partner cannot autoneg. "
4182                                                " Try forcing full duplex if "
4183                                                "link gets many collisions.\n");
4184                         }
4185
4186                         /* adjust timeout factor according to speed/duplex */
4187                         adapter->tx_timeout_factor = 1;
4188                         switch (adapter->link_speed) {
4189                         case SPEED_10:
4190                                 txb2b = 0;
4191                                 adapter->tx_timeout_factor = 16;
4192                                 break;
4193                         case SPEED_100:
4194                                 txb2b = 0;
4195                                 adapter->tx_timeout_factor = 10;
4196                                 break;
4197                         }
4198
4199                         /*
4200                          * workaround: re-program speed mode bit after
4201                          * link-up event
4202                          */
4203                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4204                             !txb2b) {
4205                                 u32 tarc0;
4206                                 tarc0 = er32(TARC(0));
4207                                 tarc0 &= ~SPEED_MODE_BIT;
4208                                 ew32(TARC(0), tarc0);
4209                         }
4210
4211                         /*
4212                          * disable TSO for pcie and 10/100 speeds, to avoid
4213                          * some hardware issues
4214                          */
4215                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4216                                 switch (adapter->link_speed) {
4217                                 case SPEED_10:
4218                                 case SPEED_100:
4219                                         e_info("10/100 speed: disabling TSO\n");
4220                                         netdev->features &= ~NETIF_F_TSO;
4221                                         netdev->features &= ~NETIF_F_TSO6;
4222                                         break;
4223                                 case SPEED_1000:
4224                                         netdev->features |= NETIF_F_TSO;
4225                                         netdev->features |= NETIF_F_TSO6;
4226                                         break;
4227                                 default:
4228                                         /* oops */
4229                                         break;
4230                                 }
4231                         }
4232
4233                         /*
4234                          * enable transmits in the hardware, need to do this
4235                          * after setting TARC(0)
4236                          */
4237                         tctl = er32(TCTL);
4238                         tctl |= E1000_TCTL_EN;
4239                         ew32(TCTL, tctl);
4240
4241                         /*
4242                          * Perform any post-link-up configuration before
4243                          * reporting link up.
4244                          */
4245                         if (phy->ops.cfg_on_link_up)
4246                                 phy->ops.cfg_on_link_up(hw);
4247
4248                         netif_carrier_on(netdev);
4249
4250                         if (!test_bit(__E1000_DOWN, &adapter->state))
4251                                 mod_timer(&adapter->phy_info_timer,
4252                                           round_jiffies(jiffies + 2 * HZ));
4253                 }
4254         } else {
4255                 if (netif_carrier_ok(netdev)) {
4256                         adapter->link_speed = 0;
4257                         adapter->link_duplex = 0;
4258                         /* Link status message must follow this format */
4259                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4260                                adapter->netdev->name);
4261                         netif_carrier_off(netdev);
4262                         if (!test_bit(__E1000_DOWN, &adapter->state))
4263                                 mod_timer(&adapter->phy_info_timer,
4264                                           round_jiffies(jiffies + 2 * HZ));
4265
4266                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4267                                 schedule_work(&adapter->reset_task);
4268                         else
4269                                 pm_schedule_suspend(netdev->dev.parent,
4270                                                         LINK_TIMEOUT);
4271                 }
4272         }
4273
4274 link_up:
4275         e1000e_update_stats(adapter);
4276
4277         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4278         adapter->tpt_old = adapter->stats.tpt;
4279         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4280         adapter->colc_old = adapter->stats.colc;
4281
4282         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4283         adapter->gorc_old = adapter->stats.gorc;
4284         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4285         adapter->gotc_old = adapter->stats.gotc;
4286
4287         e1000e_update_adaptive(&adapter->hw);
4288
4289         if (!netif_carrier_ok(netdev)) {
4290                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
4291                                tx_ring->count);
4292                 if (tx_pending) {
4293                         /*
4294                          * We've lost link, so the controller stops DMA,
4295                          * but we've got queued Tx work that's never going
4296                          * to get done, so reset controller to flush Tx.
4297                          * (Do the reset outside of interrupt context).
4298                          */
4299                         adapter->tx_timeout_count++;
4300                         schedule_work(&adapter->reset_task);
4301                         /* return immediately since reset is imminent */
4302                         return;
4303                 }
4304         }
4305
4306         /* Simple mode for Interrupt Throttle Rate (ITR) */
4307         if (adapter->itr_setting == 4) {
4308                 /*
4309                  * Symmetric Tx/Rx gets a reduced ITR=2000;
4310                  * Total asymmetrical Tx or Rx gets ITR=8000;
4311                  * everyone else is between 2000-8000.
4312                  */
4313                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4314                 u32 dif = (adapter->gotc > adapter->gorc ?
4315                             adapter->gotc - adapter->gorc :
4316                             adapter->gorc - adapter->gotc) / 10000;
4317                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4318
4319                 ew32(ITR, 1000000000 / (itr * 256));
4320         }
4321
4322         /* Cause software interrupt to ensure Rx ring is cleaned */
4323         if (adapter->msix_entries)
4324                 ew32(ICS, adapter->rx_ring->ims_val);
4325         else
4326                 ew32(ICS, E1000_ICS_RXDMT0);
4327
4328         /* Force detection of hung controller every watchdog period */
4329         adapter->detect_tx_hung = 1;
4330
4331         /* flush partial descriptors to memory before detecting tx hang */
4332         if (adapter->flags2 & FLAG2_DMA_BURST) {
4333                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4334                 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4335                 /*
4336                  * no need to flush the writes because the timeout code does
4337                  * an er32 first thing
4338                  */
4339         }
4340
4341         /*
4342          * With 82571 controllers, LAA may be overwritten due to controller
4343          * reset from the other port. Set the appropriate LAA in RAR[0]
4344          */
4345         if (e1000e_get_laa_state_82571(hw))
4346                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4347
4348         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4349                 e1000e_check_82574_phy_workaround(adapter);
4350
4351         /* Reset the timer */
4352         if (!test_bit(__E1000_DOWN, &adapter->state))
4353                 mod_timer(&adapter->watchdog_timer,
4354                           round_jiffies(jiffies + 2 * HZ));
4355 }
4356
4357 #define E1000_TX_FLAGS_CSUM             0x00000001
4358 #define E1000_TX_FLAGS_VLAN             0x00000002
4359 #define E1000_TX_FLAGS_TSO              0x00000004
4360 #define E1000_TX_FLAGS_IPV4             0x00000008
4361 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
4362 #define E1000_TX_FLAGS_VLAN_SHIFT       16
4363
4364 static int e1000_tso(struct e1000_adapter *adapter,
4365                      struct sk_buff *skb)
4366 {
4367         struct e1000_ring *tx_ring = adapter->tx_ring;
4368         struct e1000_context_desc *context_desc;
4369         struct e1000_buffer *buffer_info;
4370         unsigned int i;
4371         u32 cmd_length = 0;
4372         u16 ipcse = 0, tucse, mss;
4373         u8 ipcss, ipcso, tucss, tucso, hdr_len;
4374         int err;
4375
4376         if (!skb_is_gso(skb))
4377                 return 0;
4378
4379         if (skb_header_cloned(skb)) {
4380                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4381                 if (err)
4382                         return err;
4383         }
4384
4385         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4386         mss = skb_shinfo(skb)->gso_size;
4387         if (skb->protocol == htons(ETH_P_IP)) {
4388                 struct iphdr *iph = ip_hdr(skb);
4389                 iph->tot_len = 0;
4390                 iph->check = 0;
4391                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4392                                                          0, IPPROTO_TCP, 0);
4393                 cmd_length = E1000_TXD_CMD_IP;
4394                 ipcse = skb_transport_offset(skb) - 1;
4395         } else if (skb_is_gso_v6(skb)) {
4396                 ipv6_hdr(skb)->payload_len = 0;
4397                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4398                                                        &ipv6_hdr(skb)->daddr,
4399                                                        0, IPPROTO_TCP, 0);
4400                 ipcse = 0;
4401         }
4402         ipcss = skb_network_offset(skb);
4403         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4404         tucss = skb_transport_offset(skb);
4405         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4406         tucse = 0;
4407
4408         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4409                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4410
4411         i = tx_ring->next_to_use;
4412         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4413         buffer_info = &tx_ring->buffer_info[i];
4414
4415         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4416         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4417         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4418         context_desc->upper_setup.tcp_fields.tucss = tucss;
4419         context_desc->upper_setup.tcp_fields.tucso = tucso;
4420         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4421         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4422         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4423         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4424
4425         buffer_info->time_stamp = jiffies;
4426         buffer_info->next_to_watch = i;
4427
4428         i++;
4429         if (i == tx_ring->count)
4430                 i = 0;
4431         tx_ring->next_to_use = i;
4432
4433         return 1;
4434 }
4435
4436 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4437 {
4438         struct e1000_ring *tx_ring = adapter->tx_ring;
4439         struct e1000_context_desc *context_desc;
4440         struct e1000_buffer *buffer_info;
4441         unsigned int i;
4442         u8 css;
4443         u32 cmd_len = E1000_TXD_CMD_DEXT;
4444         __be16 protocol;
4445
4446         if (skb->ip_summed != CHECKSUM_PARTIAL)
4447                 return 0;
4448
4449         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4450                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4451         else
4452                 protocol = skb->protocol;
4453
4454         switch (protocol) {
4455         case cpu_to_be16(ETH_P_IP):
4456                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4457                         cmd_len |= E1000_TXD_CMD_TCP;
4458                 break;
4459         case cpu_to_be16(ETH_P_IPV6):
4460                 /* XXX not handling all IPV6 headers */
4461                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4462                         cmd_len |= E1000_TXD_CMD_TCP;
4463                 break;
4464         default:
4465                 if (unlikely(net_ratelimit()))
4466                         e_warn("checksum_partial proto=%x!\n",
4467                                be16_to_cpu(protocol));
4468                 break;
4469         }
4470
4471         css = skb_checksum_start_offset(skb);
4472
4473         i = tx_ring->next_to_use;
4474         buffer_info = &tx_ring->buffer_info[i];
4475         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4476
4477         context_desc->lower_setup.ip_config = 0;
4478         context_desc->upper_setup.tcp_fields.tucss = css;
4479         context_desc->upper_setup.tcp_fields.tucso =
4480                                 css + skb->csum_offset;
4481         context_desc->upper_setup.tcp_fields.tucse = 0;
4482         context_desc->tcp_seg_setup.data = 0;
4483         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4484
4485         buffer_info->time_stamp = jiffies;
4486         buffer_info->next_to_watch = i;
4487
4488         i++;
4489         if (i == tx_ring->count)
4490                 i = 0;
4491         tx_ring->next_to_use = i;
4492
4493         return 1;
4494 }
4495
4496 #define E1000_MAX_PER_TXD       8192
4497 #define E1000_MAX_TXD_PWR       12
4498
4499 static int e1000_tx_map(struct e1000_adapter *adapter,
4500                         struct sk_buff *skb, unsigned int first,
4501                         unsigned int max_per_txd, unsigned int nr_frags,
4502                         unsigned int mss)
4503 {
4504         struct e1000_ring *tx_ring = adapter->tx_ring;
4505         struct pci_dev *pdev = adapter->pdev;
4506         struct e1000_buffer *buffer_info;
4507         unsigned int len = skb_headlen(skb);
4508         unsigned int offset = 0, size, count = 0, i;
4509         unsigned int f, bytecount, segs;
4510
4511         i = tx_ring->next_to_use;
4512
4513         while (len) {
4514                 buffer_info = &tx_ring->buffer_info[i];
4515                 size = min(len, max_per_txd);
4516
4517                 buffer_info->length = size;
4518                 buffer_info->time_stamp = jiffies;
4519                 buffer_info->next_to_watch = i;
4520                 buffer_info->dma = dma_map_single(&pdev->dev,
4521                                                   skb->data + offset,
4522                                                   size, DMA_TO_DEVICE);
4523                 buffer_info->mapped_as_page = false;
4524                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4525                         goto dma_error;
4526
4527                 len -= size;
4528                 offset += size;
4529                 count++;
4530
4531                 if (len) {
4532                         i++;
4533                         if (i == tx_ring->count)
4534                                 i = 0;
4535                 }
4536         }
4537
4538         for (f = 0; f < nr_frags; f++) {
4539                 struct skb_frag_struct *frag;
4540
4541                 frag = &skb_shinfo(skb)->frags[f];
4542                 len = frag->size;
4543                 offset = frag->page_offset;
4544
4545                 while (len) {
4546                         i++;
4547                         if (i == tx_ring->count)
4548                                 i = 0;
4549
4550                         buffer_info = &tx_ring->buffer_info[i];
4551                         size = min(len, max_per_txd);
4552
4553                         buffer_info->length = size;
4554                         buffer_info->time_stamp = jiffies;
4555                         buffer_info->next_to_watch = i;
4556                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4557                                                         offset, size,
4558                                                         DMA_TO_DEVICE);
4559                         buffer_info->mapped_as_page = true;
4560                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4561                                 goto dma_error;
4562
4563                         len -= size;
4564                         offset += size;
4565                         count++;
4566                 }
4567         }
4568
4569         segs = skb_shinfo(skb)->gso_segs ?: 1;
4570         /* multiply data chunks by size of headers */
4571         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4572
4573         tx_ring->buffer_info[i].skb = skb;
4574         tx_ring->buffer_info[i].segs = segs;
4575         tx_ring->buffer_info[i].bytecount = bytecount;
4576         tx_ring->buffer_info[first].next_to_watch = i;
4577
4578         return count;
4579
4580 dma_error:
4581         dev_err(&pdev->dev, "TX DMA map failed\n");
4582         buffer_info->dma = 0;
4583         if (count)
4584                 count--;
4585
4586         while (count--) {
4587                 if (i==0)
4588                         i += tx_ring->count;
4589                 i--;
4590                 buffer_info = &tx_ring->buffer_info[i];
4591                 e1000_put_txbuf(adapter, buffer_info);
4592         }
4593
4594         return 0;
4595 }
4596
4597 static void e1000_tx_queue(struct e1000_adapter *adapter,
4598                            int tx_flags, int count)
4599 {
4600         struct e1000_ring *tx_ring = adapter->tx_ring;
4601         struct e1000_tx_desc *tx_desc = NULL;
4602         struct e1000_buffer *buffer_info;
4603         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4604         unsigned int i;
4605
4606         if (tx_flags & E1000_TX_FLAGS_TSO) {
4607                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4608                              E1000_TXD_CMD_TSE;
4609                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4610
4611                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4612                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4613         }
4614
4615         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4616                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4617                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4618         }
4619
4620         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4621                 txd_lower |= E1000_TXD_CMD_VLE;
4622                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4623         }
4624
4625         i = tx_ring->next_to_use;
4626
4627         do {
4628                 buffer_info = &tx_ring->buffer_info[i];
4629                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4630                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4631                 tx_desc->lower.data =
4632                         cpu_to_le32(txd_lower | buffer_info->length);
4633                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4634
4635                 i++;
4636                 if (i == tx_ring->count)
4637                         i = 0;
4638         } while (--count > 0);
4639
4640         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4641
4642         /*
4643          * Force memory writes to complete before letting h/w
4644          * know there are new descriptors to fetch.  (Only
4645          * applicable for weak-ordered memory model archs,
4646          * such as IA-64).
4647          */
4648         wmb();
4649
4650         tx_ring->next_to_use = i;
4651         writel(i, adapter->hw.hw_addr + tx_ring->tail);
4652         /*
4653          * we need this if more than one processor can write to our tail
4654          * at a time, it synchronizes IO on IA64/Altix systems
4655          */
4656         mmiowb();
4657 }
4658
4659 #define MINIMUM_DHCP_PACKET_SIZE 282
4660 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4661                                     struct sk_buff *skb)
4662 {
4663         struct e1000_hw *hw =  &adapter->hw;
4664         u16 length, offset;
4665
4666         if (vlan_tx_tag_present(skb)) {
4667                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4668                     (adapter->hw.mng_cookie.status &
4669                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4670                         return 0;
4671         }
4672
4673         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4674                 return 0;
4675
4676         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4677                 return 0;
4678
4679         {
4680                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4681                 struct udphdr *udp;
4682
4683                 if (ip->protocol != IPPROTO_UDP)
4684                         return 0;
4685
4686                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4687                 if (ntohs(udp->dest) != 67)
4688                         return 0;
4689
4690                 offset = (u8 *)udp + 8 - skb->data;
4691                 length = skb->len - offset;
4692                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4693         }
4694
4695         return 0;
4696 }
4697
4698 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4699 {
4700         struct e1000_adapter *adapter = netdev_priv(netdev);
4701
4702         netif_stop_queue(netdev);
4703         /*
4704          * Herbert's original patch had:
4705          *  smp_mb__after_netif_stop_queue();
4706          * but since that doesn't exist yet, just open code it.
4707          */
4708         smp_mb();
4709
4710         /*
4711          * We need to check again in a case another CPU has just
4712          * made room available.
4713          */
4714         if (e1000_desc_unused(adapter->tx_ring) < size)
4715                 return -EBUSY;
4716
4717         /* A reprieve! */
4718         netif_start_queue(netdev);
4719         ++adapter->restart_queue;
4720         return 0;
4721 }
4722
4723 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4724 {
4725         struct e1000_adapter *adapter = netdev_priv(netdev);
4726
4727         if (e1000_desc_unused(adapter->tx_ring) >= size)
4728                 return 0;
4729         return __e1000_maybe_stop_tx(netdev, size);
4730 }
4731
4732 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4733 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4734                                     struct net_device *netdev)
4735 {
4736         struct e1000_adapter *adapter = netdev_priv(netdev);
4737         struct e1000_ring *tx_ring = adapter->tx_ring;
4738         unsigned int first;
4739         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4740         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4741         unsigned int tx_flags = 0;
4742         unsigned int len = skb_headlen(skb);
4743         unsigned int nr_frags;
4744         unsigned int mss;
4745         int count = 0;
4746         int tso;
4747         unsigned int f;
4748
4749         if (test_bit(__E1000_DOWN, &adapter->state)) {
4750                 dev_kfree_skb_any(skb);
4751                 return NETDEV_TX_OK;
4752         }
4753
4754         if (skb->len <= 0) {
4755                 dev_kfree_skb_any(skb);
4756                 return NETDEV_TX_OK;
4757         }
4758
4759         mss = skb_shinfo(skb)->gso_size;
4760         /*
4761          * The controller does a simple calculation to
4762          * make sure there is enough room in the FIFO before
4763          * initiating the DMA for each buffer.  The calc is:
4764          * 4 = ceil(buffer len/mss).  To make sure we don't
4765          * overrun the FIFO, adjust the max buffer len if mss
4766          * drops.
4767          */
4768         if (mss) {
4769                 u8 hdr_len;
4770                 max_per_txd = min(mss << 2, max_per_txd);
4771                 max_txd_pwr = fls(max_per_txd) - 1;
4772
4773                 /*
4774                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4775                  * points to just header, pull a few bytes of payload from
4776                  * frags into skb->data
4777                  */
4778                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4779                 /*
4780                  * we do this workaround for ES2LAN, but it is un-necessary,
4781                  * avoiding it could save a lot of cycles
4782                  */
4783                 if (skb->data_len && (hdr_len == len)) {
4784                         unsigned int pull_size;
4785
4786                         pull_size = min((unsigned int)4, skb->data_len);
4787                         if (!__pskb_pull_tail(skb, pull_size)) {
4788                                 e_err("__pskb_pull_tail failed.\n");
4789                                 dev_kfree_skb_any(skb);
4790                                 return NETDEV_TX_OK;
4791                         }
4792                         len = skb_headlen(skb);
4793                 }
4794         }
4795
4796         /* reserve a descriptor for the offload context */
4797         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4798                 count++;
4799         count++;
4800
4801         count += TXD_USE_COUNT(len, max_txd_pwr);
4802
4803         nr_frags = skb_shinfo(skb)->nr_frags;
4804         for (f = 0; f < nr_frags; f++)
4805                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4806                                        max_txd_pwr);
4807
4808         if (adapter->hw.mac.tx_pkt_filtering)
4809                 e1000_transfer_dhcp_info(adapter, skb);
4810
4811         /*
4812          * need: count + 2 desc gap to keep tail from touching
4813          * head, otherwise try next time
4814          */
4815         if (e1000_maybe_stop_tx(netdev, count + 2))
4816                 return NETDEV_TX_BUSY;
4817
4818         if (vlan_tx_tag_present(skb)) {
4819                 tx_flags |= E1000_TX_FLAGS_VLAN;
4820                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4821         }
4822
4823         first = tx_ring->next_to_use;
4824
4825         tso = e1000_tso(adapter, skb);
4826         if (tso < 0) {
4827                 dev_kfree_skb_any(skb);
4828                 return NETDEV_TX_OK;
4829         }
4830
4831         if (tso)
4832                 tx_flags |= E1000_TX_FLAGS_TSO;
4833         else if (e1000_tx_csum(adapter, skb))
4834                 tx_flags |= E1000_TX_FLAGS_CSUM;
4835
4836         /*
4837          * Old method was to assume IPv4 packet by default if TSO was enabled.
4838          * 82571 hardware supports TSO capabilities for IPv6 as well...
4839          * no longer assume, we must.
4840          */
4841         if (skb->protocol == htons(ETH_P_IP))
4842                 tx_flags |= E1000_TX_FLAGS_IPV4;
4843
4844         /* if count is 0 then mapping error has occured */
4845         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4846         if (count) {
4847                 e1000_tx_queue(adapter, tx_flags, count);
4848                 /* Make sure there is space in the ring for the next send. */
4849                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4850
4851         } else {
4852                 dev_kfree_skb_any(skb);
4853                 tx_ring->buffer_info[first].time_stamp = 0;
4854                 tx_ring->next_to_use = first;
4855         }
4856
4857         return NETDEV_TX_OK;
4858 }
4859
4860 /**
4861  * e1000_tx_timeout - Respond to a Tx Hang
4862  * @netdev: network interface device structure
4863  **/
4864 static void e1000_tx_timeout(struct net_device *netdev)
4865 {
4866         struct e1000_adapter *adapter = netdev_priv(netdev);
4867
4868         /* Do the reset outside of interrupt context */
4869         adapter->tx_timeout_count++;
4870         schedule_work(&adapter->reset_task);
4871 }
4872
4873 static void e1000_reset_task(struct work_struct *work)
4874 {
4875         struct e1000_adapter *adapter;
4876         adapter = container_of(work, struct e1000_adapter, reset_task);
4877
4878         if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4879               (adapter->flags & FLAG_RX_RESTART_NOW))) {
4880                 e1000e_dump(adapter);
4881                 e_err("Reset adapter\n");
4882         }
4883         e1000e_reinit_locked(adapter);
4884 }
4885
4886 /**
4887  * e1000_get_stats - Get System Network Statistics
4888  * @netdev: network interface device structure
4889  *
4890  * Returns the address of the device statistics structure.
4891  * The statistics are actually updated from the timer callback.
4892  **/
4893 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4894 {
4895         /* only return the current stats */
4896         return &netdev->stats;
4897 }
4898
4899 /**
4900  * e1000_change_mtu - Change the Maximum Transfer Unit
4901  * @netdev: network interface device structure
4902  * @new_mtu: new value for maximum frame size
4903  *
4904  * Returns 0 on success, negative on failure
4905  **/
4906 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4907 {
4908         struct e1000_adapter *adapter = netdev_priv(netdev);
4909         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4910
4911         /* Jumbo frame support */
4912         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4913             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4914                 e_err("Jumbo Frames not supported.\n");
4915                 return -EINVAL;
4916         }
4917
4918         /* Supported frame sizes */
4919         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4920             (max_frame > adapter->max_hw_frame_size)) {
4921                 e_err("Unsupported MTU setting\n");
4922                 return -EINVAL;
4923         }
4924
4925         /* Jumbo frame workaround on 82579 requires CRC be stripped */
4926         if ((adapter->hw.mac.type == e1000_pch2lan) &&
4927             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
4928             (new_mtu > ETH_DATA_LEN)) {
4929                 e_err("Jumbo Frames not supported on 82579 when CRC "
4930                       "stripping is disabled.\n");
4931                 return -EINVAL;
4932         }
4933
4934         /* 82573 Errata 17 */
4935         if (((adapter->hw.mac.type == e1000_82573) ||
4936              (adapter->hw.mac.type == e1000_82574)) &&
4937             (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
4938                 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
4939                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
4940         }
4941
4942         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4943                 msleep(1);
4944         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4945         adapter->max_frame_size = max_frame;
4946         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4947         netdev->mtu = new_mtu;
4948         if (netif_running(netdev))
4949                 e1000e_down(adapter);
4950
4951         /*
4952          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4953          * means we reserve 2 more, this pushes us to allocate from the next
4954          * larger slab size.
4955          * i.e. RXBUFFER_2048 --> size-4096 slab
4956          * However with the new *_jumbo_rx* routines, jumbo receives will use
4957          * fragmented skbs
4958          */
4959
4960         if (max_frame <= 2048)
4961                 adapter->rx_buffer_len = 2048;
4962         else
4963                 adapter->rx_buffer_len = 4096;
4964
4965         /* adjust allocation if LPE protects us, and we aren't using SBP */
4966         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4967              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4968                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4969                                          + ETH_FCS_LEN;
4970
4971         if (netif_running(netdev))
4972                 e1000e_up(adapter);
4973         else
4974                 e1000e_reset(adapter);
4975
4976         clear_bit(__E1000_RESETTING, &adapter->state);
4977
4978         return 0;
4979 }
4980
4981 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4982                            int cmd)
4983 {
4984         struct e1000_adapter *adapter = netdev_priv(netdev);
4985         struct mii_ioctl_data *data = if_mii(ifr);
4986
4987         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4988                 return -EOPNOTSUPP;
4989
4990         switch (cmd) {
4991         case SIOCGMIIPHY:
4992                 data->phy_id = adapter->hw.phy.addr;
4993                 break;
4994         case SIOCGMIIREG:
4995                 e1000_phy_read_status(adapter);
4996
4997                 switch (data->reg_num & 0x1F) {
4998                 case MII_BMCR:
4999                         data->val_out = adapter->phy_regs.bmcr;
5000                         break;
5001                 case MII_BMSR:
5002                         data->val_out = adapter->phy_regs.bmsr;
5003                         break;
5004                 case MII_PHYSID1:
5005                         data->val_out = (adapter->hw.phy.id >> 16);
5006                         break;
5007                 case MII_PHYSID2:
5008                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5009                         break;
5010                 case MII_ADVERTISE:
5011                         data->val_out = adapter->phy_regs.advertise;
5012                         break;
5013                 case MII_LPA:
5014                         data->val_out = adapter->phy_regs.lpa;
5015                         break;
5016                 case MII_EXPANSION:
5017                         data->val_out = adapter->phy_regs.expansion;
5018                         break;
5019                 case MII_CTRL1000:
5020                         data->val_out = adapter->phy_regs.ctrl1000;
5021                         break;
5022                 case MII_STAT1000:
5023                         data->val_out = adapter->phy_regs.stat1000;
5024                         break;
5025                 case MII_ESTATUS:
5026                         data->val_out = adapter->phy_regs.estatus;
5027                         break;
5028                 default:
5029                         return -EIO;
5030                 }
5031                 break;
5032         case SIOCSMIIREG:
5033         default:
5034                 return -EOPNOTSUPP;
5035         }
5036         return 0;
5037 }
5038
5039 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5040 {
5041         switch (cmd) {
5042         case SIOCGMIIPHY:
5043         case SIOCGMIIREG:
5044         case SIOCSMIIREG:
5045                 return e1000_mii_ioctl(netdev, ifr, cmd);
5046         default:
5047                 return -EOPNOTSUPP;
5048         }
5049 }
5050
5051 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5052 {
5053         struct e1000_hw *hw = &adapter->hw;
5054         u32 i, mac_reg;
5055         u16 phy_reg;
5056         int retval = 0;
5057
5058         /* copy MAC RARs to PHY RARs */
5059         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5060
5061         /* copy MAC MTA to PHY MTA */
5062         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5063                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5064                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
5065                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
5066         }
5067
5068         /* configure PHY Rx Control register */
5069         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
5070         mac_reg = er32(RCTL);
5071         if (mac_reg & E1000_RCTL_UPE)
5072                 phy_reg |= BM_RCTL_UPE;
5073         if (mac_reg & E1000_RCTL_MPE)
5074                 phy_reg |= BM_RCTL_MPE;
5075         phy_reg &= ~(BM_RCTL_MO_MASK);
5076         if (mac_reg & E1000_RCTL_MO_3)
5077                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5078                                 << BM_RCTL_MO_SHIFT);
5079         if (mac_reg & E1000_RCTL_BAM)
5080                 phy_reg |= BM_RCTL_BAM;
5081         if (mac_reg & E1000_RCTL_PMCF)
5082                 phy_reg |= BM_RCTL_PMCF;
5083         mac_reg = er32(CTRL);
5084         if (mac_reg & E1000_CTRL_RFCE)
5085                 phy_reg |= BM_RCTL_RFCE;
5086         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
5087
5088         /* enable PHY wakeup in MAC register */
5089         ew32(WUFC, wufc);
5090         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5091
5092         /* configure and enable PHY wakeup in PHY registers */
5093         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
5094         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5095
5096         /* activate PHY wakeup */
5097         retval = hw->phy.ops.acquire(hw);
5098         if (retval) {
5099                 e_err("Could not acquire PHY\n");
5100                 return retval;
5101         }
5102         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
5103                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
5104         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
5105         if (retval) {
5106                 e_err("Could not read PHY page 769\n");
5107                 goto out;
5108         }
5109         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5110         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
5111         if (retval)
5112                 e_err("Could not set PHY Host Wakeup bit\n");
5113 out:
5114         hw->phy.ops.release(hw);
5115
5116         return retval;
5117 }
5118
5119 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5120                             bool runtime)
5121 {
5122         struct net_device *netdev = pci_get_drvdata(pdev);
5123         struct e1000_adapter *adapter = netdev_priv(netdev);
5124         struct e1000_hw *hw = &adapter->hw;
5125         u32 ctrl, ctrl_ext, rctl, status;
5126         /* Runtime suspend should only enable wakeup for link changes */
5127         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5128         int retval = 0;
5129
5130         netif_device_detach(netdev);
5131
5132         if (netif_running(netdev)) {
5133                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5134                 e1000e_down(adapter);
5135                 e1000_free_irq(adapter);
5136         }
5137         e1000e_reset_interrupt_capability(adapter);
5138
5139         retval = pci_save_state(pdev);
5140         if (retval)
5141                 return retval;
5142
5143         status = er32(STATUS);
5144         if (status & E1000_STATUS_LU)
5145                 wufc &= ~E1000_WUFC_LNKC;
5146
5147         if (wufc) {
5148                 e1000_setup_rctl(adapter);
5149                 e1000_set_multi(netdev);
5150
5151                 /* turn on all-multi mode if wake on multicast is enabled */
5152                 if (wufc & E1000_WUFC_MC) {
5153                         rctl = er32(RCTL);
5154                         rctl |= E1000_RCTL_MPE;
5155                         ew32(RCTL, rctl);
5156                 }
5157
5158                 ctrl = er32(CTRL);
5159                 /* advertise wake from D3Cold */
5160                 #define E1000_CTRL_ADVD3WUC 0x00100000
5161                 /* phy power management enable */
5162                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5163                 ctrl |= E1000_CTRL_ADVD3WUC;
5164                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5165                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5166                 ew32(CTRL, ctrl);
5167
5168                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5169                     adapter->hw.phy.media_type ==
5170                     e1000_media_type_internal_serdes) {
5171                         /* keep the laser running in D3 */
5172                         ctrl_ext = er32(CTRL_EXT);
5173                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5174                         ew32(CTRL_EXT, ctrl_ext);
5175                 }
5176
5177                 if (adapter->flags & FLAG_IS_ICH)
5178                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
5179
5180                 /* Allow time for pending master requests to run */
5181                 e1000e_disable_pcie_master(&adapter->hw);
5182
5183                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5184                         /* enable wakeup by the PHY */
5185                         retval = e1000_init_phy_wakeup(adapter, wufc);
5186                         if (retval)
5187                                 return retval;
5188                 } else {
5189                         /* enable wakeup by the MAC */
5190                         ew32(WUFC, wufc);
5191                         ew32(WUC, E1000_WUC_PME_EN);
5192                 }
5193         } else {
5194                 ew32(WUC, 0);
5195                 ew32(WUFC, 0);
5196         }
5197
5198         *enable_wake = !!wufc;
5199
5200         /* make sure adapter isn't asleep if manageability is enabled */
5201         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5202             (hw->mac.ops.check_mng_mode(hw)))
5203                 *enable_wake = true;
5204
5205         if (adapter->hw.phy.type == e1000_phy_igp_3)
5206                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5207
5208         /*
5209          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5210          * would have already happened in close and is redundant.
5211          */
5212         e1000_release_hw_control(adapter);
5213
5214         pci_disable_device(pdev);
5215
5216         return 0;
5217 }
5218
5219 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5220 {
5221         if (sleep && wake) {
5222                 pci_prepare_to_sleep(pdev);
5223                 return;
5224         }
5225
5226         pci_wake_from_d3(pdev, wake);
5227         pci_set_power_state(pdev, PCI_D3hot);
5228 }
5229
5230 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5231                                     bool wake)
5232 {
5233         struct net_device *netdev = pci_get_drvdata(pdev);
5234         struct e1000_adapter *adapter = netdev_priv(netdev);
5235
5236         /*
5237          * The pci-e switch on some quad port adapters will report a
5238          * correctable error when the MAC transitions from D0 to D3.  To
5239          * prevent this we need to mask off the correctable errors on the
5240          * downstream port of the pci-e switch.
5241          */
5242         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5243                 struct pci_dev *us_dev = pdev->bus->self;
5244                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
5245                 u16 devctl;
5246
5247                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5248                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5249                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
5250
5251                 e1000_power_off(pdev, sleep, wake);
5252
5253                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5254         } else {
5255                 e1000_power_off(pdev, sleep, wake);
5256         }
5257 }
5258
5259 #ifdef CONFIG_PCIEASPM
5260 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5261 {
5262         pci_disable_link_state(pdev, state);
5263 }
5264 #else
5265 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5266 {
5267         int pos;
5268         u16 reg16;
5269
5270         /*
5271          * Both device and parent should have the same ASPM setting.
5272          * Disable ASPM in downstream component first and then upstream.
5273          */
5274         pos = pci_pcie_cap(pdev);
5275         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5276         reg16 &= ~state;
5277         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5278
5279         if (!pdev->bus->self)
5280                 return;
5281
5282         pos = pci_pcie_cap(pdev->bus->self);
5283         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5284         reg16 &= ~state;
5285         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5286 }
5287 #endif
5288 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5289 {
5290         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5291                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5292                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5293
5294         __e1000e_disable_aspm(pdev, state);
5295 }
5296
5297 #ifdef CONFIG_PM_OPS
5298 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5299 {
5300         return !!adapter->tx_ring->buffer_info;
5301 }
5302
5303 static int __e1000_resume(struct pci_dev *pdev)
5304 {
5305         struct net_device *netdev = pci_get_drvdata(pdev);
5306         struct e1000_adapter *adapter = netdev_priv(netdev);
5307         struct e1000_hw *hw = &adapter->hw;
5308         u32 err;
5309
5310         pci_set_power_state(pdev, PCI_D0);
5311         pci_restore_state(pdev);
5312         pci_save_state(pdev);
5313         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5314                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5315
5316         e1000e_set_interrupt_capability(adapter);
5317         if (netif_running(netdev)) {
5318                 err = e1000_request_irq(adapter);
5319                 if (err)
5320                         return err;
5321         }
5322
5323         e1000e_power_up_phy(adapter);
5324
5325         /* report the system wakeup cause from S3/S4 */
5326         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5327                 u16 phy_data;
5328
5329                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5330                 if (phy_data) {
5331                         e_info("PHY Wakeup cause - %s\n",
5332                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5333                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5334                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5335                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5336                                 phy_data & E1000_WUS_LNKC ? "Link Status "
5337                                 " Change" : "other");
5338                 }
5339                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5340         } else {
5341                 u32 wus = er32(WUS);
5342                 if (wus) {
5343                         e_info("MAC Wakeup cause - %s\n",
5344                                 wus & E1000_WUS_EX ? "Unicast Packet" :
5345                                 wus & E1000_WUS_MC ? "Multicast Packet" :
5346                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
5347                                 wus & E1000_WUS_MAG ? "Magic Packet" :
5348                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
5349                                 "other");
5350                 }
5351                 ew32(WUS, ~0);
5352         }
5353
5354         e1000e_reset(adapter);
5355
5356         e1000_init_manageability_pt(adapter);
5357
5358         if (netif_running(netdev))
5359                 e1000e_up(adapter);
5360
5361         netif_device_attach(netdev);
5362
5363         /*
5364          * If the controller has AMT, do not set DRV_LOAD until the interface
5365          * is up.  For all other cases, let the f/w know that the h/w is now
5366          * under the control of the driver.
5367          */
5368         if (!(adapter->flags & FLAG_HAS_AMT))
5369                 e1000_get_hw_control(adapter);
5370
5371         return 0;
5372 }
5373
5374 #ifdef CONFIG_PM_SLEEP
5375 static int e1000_suspend(struct device *dev)
5376 {
5377         struct pci_dev *pdev = to_pci_dev(dev);
5378         int retval;
5379         bool wake;
5380
5381         retval = __e1000_shutdown(pdev, &wake, false);
5382         if (!retval)
5383                 e1000_complete_shutdown(pdev, true, wake);
5384
5385         return retval;
5386 }
5387
5388 static int e1000_resume(struct device *dev)
5389 {
5390         struct pci_dev *pdev = to_pci_dev(dev);
5391         struct net_device *netdev = pci_get_drvdata(pdev);
5392         struct e1000_adapter *adapter = netdev_priv(netdev);
5393
5394         if (e1000e_pm_ready(adapter))
5395                 adapter->idle_check = true;
5396
5397         return __e1000_resume(pdev);
5398 }
5399 #endif /* CONFIG_PM_SLEEP */
5400
5401 #ifdef CONFIG_PM_RUNTIME
5402 static int e1000_runtime_suspend(struct device *dev)
5403 {
5404         struct pci_dev *pdev = to_pci_dev(dev);
5405         struct net_device *netdev = pci_get_drvdata(pdev);
5406         struct e1000_adapter *adapter = netdev_priv(netdev);
5407
5408         if (e1000e_pm_ready(adapter)) {
5409                 bool wake;
5410
5411                 __e1000_shutdown(pdev, &wake, true);
5412         }
5413
5414         return 0;
5415 }
5416
5417 static int e1000_idle(struct device *dev)
5418 {
5419         struct pci_dev *pdev = to_pci_dev(dev);
5420         struct net_device *netdev = pci_get_drvdata(pdev);
5421         struct e1000_adapter *adapter = netdev_priv(netdev);
5422
5423         if (!e1000e_pm_ready(adapter))
5424                 return 0;
5425
5426         if (adapter->idle_check) {
5427                 adapter->idle_check = false;
5428                 if (!e1000e_has_link(adapter))
5429                         pm_schedule_suspend(dev, MSEC_PER_SEC);
5430         }
5431
5432         return -EBUSY;
5433 }
5434
5435 static int e1000_runtime_resume(struct device *dev)
5436 {
5437         struct pci_dev *pdev = to_pci_dev(dev);
5438         struct net_device *netdev = pci_get_drvdata(pdev);
5439         struct e1000_adapter *adapter = netdev_priv(netdev);
5440
5441         if (!e1000e_pm_ready(adapter))
5442                 return 0;
5443
5444         adapter->idle_check = !dev->power.runtime_auto;
5445         return __e1000_resume(pdev);
5446 }
5447 #endif /* CONFIG_PM_RUNTIME */
5448 #endif /* CONFIG_PM_OPS */
5449
5450 static void e1000_shutdown(struct pci_dev *pdev)
5451 {
5452         bool wake = false;
5453
5454         __e1000_shutdown(pdev, &wake, false);
5455
5456         if (system_state == SYSTEM_POWER_OFF)
5457                 e1000_complete_shutdown(pdev, false, wake);
5458 }
5459
5460 #ifdef CONFIG_NET_POLL_CONTROLLER
5461
5462 static irqreturn_t e1000_intr_msix(int irq, void *data)
5463 {
5464         struct net_device *netdev = data;
5465         struct e1000_adapter *adapter = netdev_priv(netdev);
5466         int vector, msix_irq;
5467
5468         if (adapter->msix_entries) {
5469                 vector = 0;
5470                 msix_irq = adapter->msix_entries[vector].vector;
5471                 disable_irq(msix_irq);
5472                 e1000_intr_msix_rx(msix_irq, netdev);
5473                 enable_irq(msix_irq);
5474
5475                 vector++;
5476                 msix_irq = adapter->msix_entries[vector].vector;
5477                 disable_irq(msix_irq);
5478                 e1000_intr_msix_tx(msix_irq, netdev);
5479                 enable_irq(msix_irq);
5480
5481                 vector++;
5482                 msix_irq = adapter->msix_entries[vector].vector;
5483                 disable_irq(msix_irq);
5484                 e1000_msix_other(msix_irq, netdev);
5485                 enable_irq(msix_irq);
5486         }
5487
5488         return IRQ_HANDLED;
5489 }
5490
5491 /*
5492  * Polling 'interrupt' - used by things like netconsole to send skbs
5493  * without having to re-enable interrupts. It's not called while
5494  * the interrupt routine is executing.
5495  */
5496 static void e1000_netpoll(struct net_device *netdev)
5497 {
5498         struct e1000_adapter *adapter = netdev_priv(netdev);
5499
5500         switch (adapter->int_mode) {
5501         case E1000E_INT_MODE_MSIX:
5502                 e1000_intr_msix(adapter->pdev->irq, netdev);
5503                 break;
5504         case E1000E_INT_MODE_MSI:
5505                 disable_irq(adapter->pdev->irq);
5506                 e1000_intr_msi(adapter->pdev->irq, netdev);
5507                 enable_irq(adapter->pdev->irq);
5508                 break;
5509         default: /* E1000E_INT_MODE_LEGACY */
5510                 disable_irq(adapter->pdev->irq);
5511                 e1000_intr(adapter->pdev->irq, netdev);
5512                 enable_irq(adapter->pdev->irq);
5513                 break;
5514         }
5515 }
5516 #endif
5517
5518 /**
5519  * e1000_io_error_detected - called when PCI error is detected
5520  * @pdev: Pointer to PCI device
5521  * @state: The current pci connection state
5522  *
5523  * This function is called after a PCI bus error affecting
5524  * this device has been detected.
5525  */
5526 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5527                                                 pci_channel_state_t state)
5528 {
5529         struct net_device *netdev = pci_get_drvdata(pdev);
5530         struct e1000_adapter *adapter = netdev_priv(netdev);
5531
5532         netif_device_detach(netdev);
5533
5534         if (state == pci_channel_io_perm_failure)
5535                 return PCI_ERS_RESULT_DISCONNECT;
5536
5537         if (netif_running(netdev))
5538                 e1000e_down(adapter);
5539         pci_disable_device(pdev);
5540
5541         /* Request a slot slot reset. */
5542         return PCI_ERS_RESULT_NEED_RESET;
5543 }
5544
5545 /**
5546  * e1000_io_slot_reset - called after the pci bus has been reset.
5547  * @pdev: Pointer to PCI device
5548  *
5549  * Restart the card from scratch, as if from a cold-boot. Implementation
5550  * resembles the first-half of the e1000_resume routine.
5551  */
5552 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5553 {
5554         struct net_device *netdev = pci_get_drvdata(pdev);
5555         struct e1000_adapter *adapter = netdev_priv(netdev);
5556         struct e1000_hw *hw = &adapter->hw;
5557         int err;
5558         pci_ers_result_t result;
5559
5560         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5561                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5562         err = pci_enable_device_mem(pdev);
5563         if (err) {
5564                 dev_err(&pdev->dev,
5565                         "Cannot re-enable PCI device after reset.\n");
5566                 result = PCI_ERS_RESULT_DISCONNECT;
5567         } else {
5568                 pci_set_master(pdev);
5569                 pdev->state_saved = true;
5570                 pci_restore_state(pdev);
5571
5572                 pci_enable_wake(pdev, PCI_D3hot, 0);
5573                 pci_enable_wake(pdev, PCI_D3cold, 0);
5574
5575                 e1000e_reset(adapter);
5576                 ew32(WUS, ~0);
5577                 result = PCI_ERS_RESULT_RECOVERED;
5578         }
5579
5580         pci_cleanup_aer_uncorrect_error_status(pdev);
5581
5582         return result;
5583 }
5584
5585 /**
5586  * e1000_io_resume - called when traffic can start flowing again.
5587  * @pdev: Pointer to PCI device
5588  *
5589  * This callback is called when the error recovery driver tells us that
5590  * its OK to resume normal operation. Implementation resembles the
5591  * second-half of the e1000_resume routine.
5592  */
5593 static void e1000_io_resume(struct pci_dev *pdev)
5594 {
5595         struct net_device *netdev = pci_get_drvdata(pdev);
5596         struct e1000_adapter *adapter = netdev_priv(netdev);
5597
5598         e1000_init_manageability_pt(adapter);
5599
5600         if (netif_running(netdev)) {
5601                 if (e1000e_up(adapter)) {
5602                         dev_err(&pdev->dev,
5603                                 "can't bring device back up after reset\n");
5604                         return;
5605                 }
5606         }
5607
5608         netif_device_attach(netdev);
5609
5610         /*
5611          * If the controller has AMT, do not set DRV_LOAD until the interface
5612          * is up.  For all other cases, let the f/w know that the h/w is now
5613          * under the control of the driver.
5614          */
5615         if (!(adapter->flags & FLAG_HAS_AMT))
5616                 e1000_get_hw_control(adapter);
5617
5618 }
5619
5620 static void e1000_print_device_info(struct e1000_adapter *adapter)
5621 {
5622         struct e1000_hw *hw = &adapter->hw;
5623         struct net_device *netdev = adapter->netdev;
5624         u32 ret_val;
5625         u8 pba_str[E1000_PBANUM_LENGTH];
5626
5627         /* print bus type/speed/width info */
5628         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5629                /* bus width */
5630                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5631                 "Width x1"),
5632                /* MAC address */
5633                netdev->dev_addr);
5634         e_info("Intel(R) PRO/%s Network Connection\n",
5635                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5636         ret_val = e1000_read_pba_string_generic(hw, pba_str,
5637                                                 E1000_PBANUM_LENGTH);
5638         if (ret_val)
5639                 strcpy(pba_str, "Unknown");
5640         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5641                hw->mac.type, hw->phy.type, pba_str);
5642 }
5643
5644 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5645 {
5646         struct e1000_hw *hw = &adapter->hw;
5647         int ret_val;
5648         u16 buf = 0;
5649
5650         if (hw->mac.type != e1000_82573)
5651                 return;
5652
5653         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5654         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5655                 /* Deep Smart Power Down (DSPD) */
5656                 dev_warn(&adapter->pdev->dev,
5657                          "Warning: detected DSPD enabled in EEPROM\n");
5658         }
5659 }
5660
5661 static const struct net_device_ops e1000e_netdev_ops = {
5662         .ndo_open               = e1000_open,
5663         .ndo_stop               = e1000_close,
5664         .ndo_start_xmit         = e1000_xmit_frame,
5665         .ndo_get_stats          = e1000_get_stats,
5666         .ndo_set_multicast_list = e1000_set_multi,
5667         .ndo_set_mac_address    = e1000_set_mac,
5668         .ndo_change_mtu         = e1000_change_mtu,
5669         .ndo_do_ioctl           = e1000_ioctl,
5670         .ndo_tx_timeout         = e1000_tx_timeout,
5671         .ndo_validate_addr      = eth_validate_addr,
5672
5673         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
5674         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
5675         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
5676 #ifdef CONFIG_NET_POLL_CONTROLLER
5677         .ndo_poll_controller    = e1000_netpoll,
5678 #endif
5679 };
5680
5681 /**
5682  * e1000_probe - Device Initialization Routine
5683  * @pdev: PCI device information struct
5684  * @ent: entry in e1000_pci_tbl
5685  *
5686  * Returns 0 on success, negative on failure
5687  *
5688  * e1000_probe initializes an adapter identified by a pci_dev structure.
5689  * The OS initialization, configuring of the adapter private structure,
5690  * and a hardware reset occur.
5691  **/
5692 static int __devinit e1000_probe(struct pci_dev *pdev,
5693                                  const struct pci_device_id *ent)
5694 {
5695         struct net_device *netdev;
5696         struct e1000_adapter *adapter;
5697         struct e1000_hw *hw;
5698         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5699         resource_size_t mmio_start, mmio_len;
5700         resource_size_t flash_start, flash_len;
5701
5702         static int cards_found;
5703         int i, err, pci_using_dac;
5704         u16 eeprom_data = 0;
5705         u16 eeprom_apme_mask = E1000_EEPROM_APME;
5706
5707         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5708                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5709
5710         err = pci_enable_device_mem(pdev);
5711         if (err)
5712                 return err;
5713
5714         pci_using_dac = 0;
5715         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5716         if (!err) {
5717                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5718                 if (!err)
5719                         pci_using_dac = 1;
5720         } else {
5721                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5722                 if (err) {
5723                         err = dma_set_coherent_mask(&pdev->dev,
5724                                                     DMA_BIT_MASK(32));
5725                         if (err) {
5726                                 dev_err(&pdev->dev, "No usable DMA "
5727                                         "configuration, aborting\n");
5728                                 goto err_dma;
5729                         }
5730                 }
5731         }
5732
5733         err = pci_request_selected_regions_exclusive(pdev,
5734                                           pci_select_bars(pdev, IORESOURCE_MEM),
5735                                           e1000e_driver_name);
5736         if (err)
5737                 goto err_pci_reg;
5738
5739         /* AER (Advanced Error Reporting) hooks */
5740         pci_enable_pcie_error_reporting(pdev);
5741
5742         pci_set_master(pdev);
5743         /* PCI config space info */
5744         err = pci_save_state(pdev);
5745         if (err)
5746                 goto err_alloc_etherdev;
5747
5748         err = -ENOMEM;
5749         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5750         if (!netdev)
5751                 goto err_alloc_etherdev;
5752
5753         SET_NETDEV_DEV(netdev, &pdev->dev);
5754
5755         netdev->irq = pdev->irq;
5756
5757         pci_set_drvdata(pdev, netdev);
5758         adapter = netdev_priv(netdev);
5759         hw = &adapter->hw;
5760         adapter->netdev = netdev;
5761         adapter->pdev = pdev;
5762         adapter->ei = ei;
5763         adapter->pba = ei->pba;
5764         adapter->flags = ei->flags;
5765         adapter->flags2 = ei->flags2;
5766         adapter->hw.adapter = adapter;
5767         adapter->hw.mac.type = ei->mac;
5768         adapter->max_hw_frame_size = ei->max_hw_frame_size;
5769         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5770
5771         mmio_start = pci_resource_start(pdev, 0);
5772         mmio_len = pci_resource_len(pdev, 0);
5773
5774         err = -EIO;
5775         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5776         if (!adapter->hw.hw_addr)
5777                 goto err_ioremap;
5778
5779         if ((adapter->flags & FLAG_HAS_FLASH) &&
5780             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5781                 flash_start = pci_resource_start(pdev, 1);
5782                 flash_len = pci_resource_len(pdev, 1);
5783                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5784                 if (!adapter->hw.flash_address)
5785                         goto err_flashmap;
5786         }
5787
5788         /* construct the net_device struct */
5789         netdev->netdev_ops              = &e1000e_netdev_ops;
5790         e1000e_set_ethtool_ops(netdev);
5791         netdev->watchdog_timeo          = 5 * HZ;
5792         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5793         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5794
5795         netdev->mem_start = mmio_start;
5796         netdev->mem_end = mmio_start + mmio_len;
5797
5798         adapter->bd_number = cards_found++;
5799
5800         e1000e_check_options(adapter);
5801
5802         /* setup adapter struct */
5803         err = e1000_sw_init(adapter);
5804         if (err)
5805                 goto err_sw_init;
5806
5807         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5808         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5809         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5810
5811         err = ei->get_variants(adapter);
5812         if (err)
5813                 goto err_hw_init;
5814
5815         if ((adapter->flags & FLAG_IS_ICH) &&
5816             (adapter->flags & FLAG_READ_ONLY_NVM))
5817                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5818
5819         hw->mac.ops.get_bus_info(&adapter->hw);
5820
5821         adapter->hw.phy.autoneg_wait_to_complete = 0;
5822
5823         /* Copper options */
5824         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5825                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5826                 adapter->hw.phy.disable_polarity_correction = 0;
5827                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5828         }
5829
5830         if (e1000_check_reset_block(&adapter->hw))
5831                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5832
5833         netdev->features = NETIF_F_SG |
5834                            NETIF_F_HW_CSUM |
5835                            NETIF_F_HW_VLAN_TX |
5836                            NETIF_F_HW_VLAN_RX;
5837
5838         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5839                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5840
5841         netdev->features |= NETIF_F_TSO;
5842         netdev->features |= NETIF_F_TSO6;
5843
5844         netdev->vlan_features |= NETIF_F_TSO;
5845         netdev->vlan_features |= NETIF_F_TSO6;
5846         netdev->vlan_features |= NETIF_F_HW_CSUM;
5847         netdev->vlan_features |= NETIF_F_SG;
5848
5849         if (pci_using_dac) {
5850                 netdev->features |= NETIF_F_HIGHDMA;
5851                 netdev->vlan_features |= NETIF_F_HIGHDMA;
5852         }
5853
5854         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5855                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5856
5857         /*
5858          * before reading the NVM, reset the controller to
5859          * put the device in a known good starting state
5860          */
5861         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5862
5863         /*
5864          * systems with ASPM and others may see the checksum fail on the first
5865          * attempt. Let's give it a few tries
5866          */
5867         for (i = 0;; i++) {
5868                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5869                         break;
5870                 if (i == 2) {
5871                         e_err("The NVM Checksum Is Not Valid\n");
5872                         err = -EIO;
5873                         goto err_eeprom;
5874                 }
5875         }
5876
5877         e1000_eeprom_checks(adapter);
5878
5879         /* copy the MAC address */
5880         if (e1000e_read_mac_addr(&adapter->hw))
5881                 e_err("NVM Read Error while reading MAC address\n");
5882
5883         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5884         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5885
5886         if (!is_valid_ether_addr(netdev->perm_addr)) {
5887                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5888                 err = -EIO;
5889                 goto err_eeprom;
5890         }
5891
5892         init_timer(&adapter->watchdog_timer);
5893         adapter->watchdog_timer.function = e1000_watchdog;
5894         adapter->watchdog_timer.data = (unsigned long) adapter;
5895
5896         init_timer(&adapter->phy_info_timer);
5897         adapter->phy_info_timer.function = e1000_update_phy_info;
5898         adapter->phy_info_timer.data = (unsigned long) adapter;
5899
5900         INIT_WORK(&adapter->reset_task, e1000_reset_task);
5901         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5902         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5903         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5904         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5905         INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
5906
5907         /* Initialize link parameters. User can change them with ethtool */
5908         adapter->hw.mac.autoneg = 1;
5909         adapter->fc_autoneg = 1;
5910         adapter->hw.fc.requested_mode = e1000_fc_default;
5911         adapter->hw.fc.current_mode = e1000_fc_default;
5912         adapter->hw.phy.autoneg_advertised = 0x2f;
5913
5914         /* ring size defaults */
5915         adapter->rx_ring->count = 256;
5916         adapter->tx_ring->count = 256;
5917
5918         /*
5919          * Initial Wake on LAN setting - If APM wake is enabled in
5920          * the EEPROM, enable the ACPI Magic Packet filter
5921          */
5922         if (adapter->flags & FLAG_APME_IN_WUC) {
5923                 /* APME bit in EEPROM is mapped to WUC.APME */
5924                 eeprom_data = er32(WUC);
5925                 eeprom_apme_mask = E1000_WUC_APME;
5926                 if (eeprom_data & E1000_WUC_PHY_WAKE)
5927                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5928         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5929                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5930                     (adapter->hw.bus.func == 1))
5931                         e1000_read_nvm(&adapter->hw,
5932                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5933                 else
5934                         e1000_read_nvm(&adapter->hw,
5935                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5936         }
5937
5938         /* fetch WoL from EEPROM */
5939         if (eeprom_data & eeprom_apme_mask)
5940                 adapter->eeprom_wol |= E1000_WUFC_MAG;
5941
5942         /*
5943          * now that we have the eeprom settings, apply the special cases
5944          * where the eeprom may be wrong or the board simply won't support
5945          * wake on lan on a particular port
5946          */
5947         if (!(adapter->flags & FLAG_HAS_WOL))
5948                 adapter->eeprom_wol = 0;
5949
5950         /* initialize the wol settings based on the eeprom settings */
5951         adapter->wol = adapter->eeprom_wol;
5952         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5953
5954         /* save off EEPROM version number */
5955         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5956
5957         /* reset the hardware with the new settings */
5958         e1000e_reset(adapter);
5959
5960         /*
5961          * If the controller has AMT, do not set DRV_LOAD until the interface
5962          * is up.  For all other cases, let the f/w know that the h/w is now
5963          * under the control of the driver.
5964          */
5965         if (!(adapter->flags & FLAG_HAS_AMT))
5966                 e1000_get_hw_control(adapter);
5967
5968         strcpy(netdev->name, "eth%d");
5969         err = register_netdev(netdev);
5970         if (err)
5971                 goto err_register;
5972
5973         /* carrier off reporting is important to ethtool even BEFORE open */
5974         netif_carrier_off(netdev);
5975
5976         e1000_print_device_info(adapter);
5977
5978         if (pci_dev_run_wake(pdev))
5979                 pm_runtime_put_noidle(&pdev->dev);
5980
5981         return 0;
5982
5983 err_register:
5984         if (!(adapter->flags & FLAG_HAS_AMT))
5985                 e1000_release_hw_control(adapter);
5986 err_eeprom:
5987         if (!e1000_check_reset_block(&adapter->hw))
5988                 e1000_phy_hw_reset(&adapter->hw);
5989 err_hw_init:
5990
5991         kfree(adapter->tx_ring);
5992         kfree(adapter->rx_ring);
5993 err_sw_init:
5994         if (adapter->hw.flash_address)
5995                 iounmap(adapter->hw.flash_address);
5996         e1000e_reset_interrupt_capability(adapter);
5997 err_flashmap:
5998         iounmap(adapter->hw.hw_addr);
5999 err_ioremap:
6000         free_netdev(netdev);
6001 err_alloc_etherdev:
6002         pci_release_selected_regions(pdev,
6003                                      pci_select_bars(pdev, IORESOURCE_MEM));
6004 err_pci_reg:
6005 err_dma:
6006         pci_disable_device(pdev);
6007         return err;
6008 }
6009
6010 /**
6011  * e1000_remove - Device Removal Routine
6012  * @pdev: PCI device information struct
6013  *
6014  * e1000_remove is called by the PCI subsystem to alert the driver
6015  * that it should release a PCI device.  The could be caused by a
6016  * Hot-Plug event, or because the driver is going to be removed from
6017  * memory.
6018  **/
6019 static void __devexit e1000_remove(struct pci_dev *pdev)
6020 {
6021         struct net_device *netdev = pci_get_drvdata(pdev);
6022         struct e1000_adapter *adapter = netdev_priv(netdev);
6023         bool down = test_bit(__E1000_DOWN, &adapter->state);
6024
6025         /*
6026          * The timers may be rescheduled, so explicitly disable them
6027          * from being rescheduled.
6028          */
6029         if (!down)
6030                 set_bit(__E1000_DOWN, &adapter->state);
6031         del_timer_sync(&adapter->watchdog_timer);
6032         del_timer_sync(&adapter->phy_info_timer);
6033
6034         cancel_work_sync(&adapter->reset_task);
6035         cancel_work_sync(&adapter->watchdog_task);
6036         cancel_work_sync(&adapter->downshift_task);
6037         cancel_work_sync(&adapter->update_phy_task);
6038         cancel_work_sync(&adapter->led_blink_task);
6039         cancel_work_sync(&adapter->print_hang_task);
6040
6041         if (!(netdev->flags & IFF_UP))
6042                 e1000_power_down_phy(adapter);
6043
6044         /* Don't lie to e1000_close() down the road. */
6045         if (!down)
6046                 clear_bit(__E1000_DOWN, &adapter->state);
6047         unregister_netdev(netdev);
6048
6049         if (pci_dev_run_wake(pdev))
6050                 pm_runtime_get_noresume(&pdev->dev);
6051
6052         /*
6053          * Release control of h/w to f/w.  If f/w is AMT enabled, this
6054          * would have already happened in close and is redundant.
6055          */
6056         e1000_release_hw_control(adapter);
6057
6058         e1000e_reset_interrupt_capability(adapter);
6059         kfree(adapter->tx_ring);
6060         kfree(adapter->rx_ring);
6061
6062         iounmap(adapter->hw.hw_addr);
6063         if (adapter->hw.flash_address)
6064                 iounmap(adapter->hw.flash_address);
6065         pci_release_selected_regions(pdev,
6066                                      pci_select_bars(pdev, IORESOURCE_MEM));
6067
6068         free_netdev(netdev);
6069
6070         /* AER disable */
6071         pci_disable_pcie_error_reporting(pdev);
6072
6073         pci_disable_device(pdev);
6074 }
6075
6076 /* PCI Error Recovery (ERS) */
6077 static struct pci_error_handlers e1000_err_handler = {
6078         .error_detected = e1000_io_error_detected,
6079         .slot_reset = e1000_io_slot_reset,
6080         .resume = e1000_io_resume,
6081 };
6082
6083 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6084         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6085         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6086         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6087         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6088         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6089         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6090         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6091         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6092         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6093
6094         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6095         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6096         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6097         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6098
6099         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6102
6103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6106
6107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6108           board_80003es2lan },
6109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6110           board_80003es2lan },
6111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6112           board_80003es2lan },
6113         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6114           board_80003es2lan },
6115
6116         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6117         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6118         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6119         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6120         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6121         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6122         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6123         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6124
6125         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6126         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6127         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6128         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6129         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6130         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6131         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6132         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6133         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6134
6135         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6136         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6137         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6138
6139         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6140         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6141         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6142
6143         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6144         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6145         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6146         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6147
6148         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6149         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6150
6151         { }     /* terminate list */
6152 };
6153 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6154
6155 #ifdef CONFIG_PM_OPS
6156 static const struct dev_pm_ops e1000_pm_ops = {
6157         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6158         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6159                                 e1000_runtime_resume, e1000_idle)
6160 };
6161 #endif
6162
6163 /* PCI Device API Driver */
6164 static struct pci_driver e1000_driver = {
6165         .name     = e1000e_driver_name,
6166         .id_table = e1000_pci_tbl,
6167         .probe    = e1000_probe,
6168         .remove   = __devexit_p(e1000_remove),
6169 #ifdef CONFIG_PM_OPS
6170         .driver.pm = &e1000_pm_ops,
6171 #endif
6172         .shutdown = e1000_shutdown,
6173         .err_handler = &e1000_err_handler
6174 };
6175
6176 /**
6177  * e1000_init_module - Driver Registration Routine
6178  *
6179  * e1000_init_module is the first routine called when the driver is
6180  * loaded. All it does is register with the PCI subsystem.
6181  **/
6182 static int __init e1000_init_module(void)
6183 {
6184         int ret;
6185         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6186                 e1000e_driver_version);
6187         pr_info("Copyright (c) 1999 - 2010 Intel Corporation.\n");
6188         ret = pci_register_driver(&e1000_driver);
6189
6190         return ret;
6191 }
6192 module_init(e1000_init_module);
6193
6194 /**
6195  * e1000_exit_module - Driver Exit Cleanup Routine
6196  *
6197  * e1000_exit_module is called just before the driver is removed
6198  * from memory.
6199  **/
6200 static void __exit e1000_exit_module(void)
6201 {
6202         pci_unregister_driver(&e1000_driver);
6203 }
6204 module_exit(e1000_exit_module);
6205
6206
6207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6209 MODULE_LICENSE("GPL");
6210 MODULE_VERSION(DRV_VERSION);
6211
6212 /* e1000_main.c */