Merge branch 'movieboard' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[pandora-kernel.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
53
54 #include "e1000.h"
55
56 #define DRV_EXTRAVERSION "-k2"
57
58 #define DRV_VERSION "1.3.10" DRV_EXTRAVERSION
59 char e1000e_driver_name[] = "e1000e";
60 const char e1000e_driver_version[] = DRV_VERSION;
61
62 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
63
64 static const struct e1000_info *e1000_info_tbl[] = {
65         [board_82571]           = &e1000_82571_info,
66         [board_82572]           = &e1000_82572_info,
67         [board_82573]           = &e1000_82573_info,
68         [board_82574]           = &e1000_82574_info,
69         [board_82583]           = &e1000_82583_info,
70         [board_80003es2lan]     = &e1000_es2_info,
71         [board_ich8lan]         = &e1000_ich8_info,
72         [board_ich9lan]         = &e1000_ich9_info,
73         [board_ich10lan]        = &e1000_ich10_info,
74         [board_pchlan]          = &e1000_pch_info,
75         [board_pch2lan]         = &e1000_pch2_info,
76 };
77
78 struct e1000_reg_info {
79         u32 ofs;
80         char *name;
81 };
82
83 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
84 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
85 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
86 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
87 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
88
89 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
90 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
91 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
92 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
93 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
94
95 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
96
97         /* General Registers */
98         {E1000_CTRL, "CTRL"},
99         {E1000_STATUS, "STATUS"},
100         {E1000_CTRL_EXT, "CTRL_EXT"},
101
102         /* Interrupt Registers */
103         {E1000_ICR, "ICR"},
104
105         /* Rx Registers */
106         {E1000_RCTL, "RCTL"},
107         {E1000_RDLEN, "RDLEN"},
108         {E1000_RDH, "RDH"},
109         {E1000_RDT, "RDT"},
110         {E1000_RDTR, "RDTR"},
111         {E1000_RXDCTL(0), "RXDCTL"},
112         {E1000_ERT, "ERT"},
113         {E1000_RDBAL, "RDBAL"},
114         {E1000_RDBAH, "RDBAH"},
115         {E1000_RDFH, "RDFH"},
116         {E1000_RDFT, "RDFT"},
117         {E1000_RDFHS, "RDFHS"},
118         {E1000_RDFTS, "RDFTS"},
119         {E1000_RDFPC, "RDFPC"},
120
121         /* Tx Registers */
122         {E1000_TCTL, "TCTL"},
123         {E1000_TDBAL, "TDBAL"},
124         {E1000_TDBAH, "TDBAH"},
125         {E1000_TDLEN, "TDLEN"},
126         {E1000_TDH, "TDH"},
127         {E1000_TDT, "TDT"},
128         {E1000_TIDV, "TIDV"},
129         {E1000_TXDCTL(0), "TXDCTL"},
130         {E1000_TADV, "TADV"},
131         {E1000_TARC(0), "TARC"},
132         {E1000_TDFH, "TDFH"},
133         {E1000_TDFT, "TDFT"},
134         {E1000_TDFHS, "TDFHS"},
135         {E1000_TDFTS, "TDFTS"},
136         {E1000_TDFPC, "TDFPC"},
137
138         /* List Terminator */
139         {}
140 };
141
142 /*
143  * e1000_regdump - register printout routine
144  */
145 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
146 {
147         int n = 0;
148         char rname[16];
149         u32 regs[8];
150
151         switch (reginfo->ofs) {
152         case E1000_RXDCTL(0):
153                 for (n = 0; n < 2; n++)
154                         regs[n] = __er32(hw, E1000_RXDCTL(n));
155                 break;
156         case E1000_TXDCTL(0):
157                 for (n = 0; n < 2; n++)
158                         regs[n] = __er32(hw, E1000_TXDCTL(n));
159                 break;
160         case E1000_TARC(0):
161                 for (n = 0; n < 2; n++)
162                         regs[n] = __er32(hw, E1000_TARC(n));
163                 break;
164         default:
165                 printk(KERN_INFO "%-15s %08x\n",
166                        reginfo->name, __er32(hw, reginfo->ofs));
167                 return;
168         }
169
170         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
171         printk(KERN_INFO "%-15s ", rname);
172         for (n = 0; n < 2; n++)
173                 printk(KERN_CONT "%08x ", regs[n]);
174         printk(KERN_CONT "\n");
175 }
176
177 /*
178  * e1000e_dump - Print registers, Tx-ring and Rx-ring
179  */
180 static void e1000e_dump(struct e1000_adapter *adapter)
181 {
182         struct net_device *netdev = adapter->netdev;
183         struct e1000_hw *hw = &adapter->hw;
184         struct e1000_reg_info *reginfo;
185         struct e1000_ring *tx_ring = adapter->tx_ring;
186         struct e1000_tx_desc *tx_desc;
187         struct my_u0 {
188                 u64 a;
189                 u64 b;
190         } *u0;
191         struct e1000_buffer *buffer_info;
192         struct e1000_ring *rx_ring = adapter->rx_ring;
193         union e1000_rx_desc_packet_split *rx_desc_ps;
194         struct e1000_rx_desc *rx_desc;
195         struct my_u1 {
196                 u64 a;
197                 u64 b;
198                 u64 c;
199                 u64 d;
200         } *u1;
201         u32 staterr;
202         int i = 0;
203
204         if (!netif_msg_hw(adapter))
205                 return;
206
207         /* Print netdevice Info */
208         if (netdev) {
209                 dev_info(&adapter->pdev->dev, "Net device Info\n");
210                 printk(KERN_INFO "Device Name     state            "
211                        "trans_start      last_rx\n");
212                 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
213                        netdev->name, netdev->state, netdev->trans_start,
214                        netdev->last_rx);
215         }
216
217         /* Print Registers */
218         dev_info(&adapter->pdev->dev, "Register Dump\n");
219         printk(KERN_INFO " Register Name   Value\n");
220         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
221              reginfo->name; reginfo++) {
222                 e1000_regdump(hw, reginfo);
223         }
224
225         /* Print Tx Ring Summary */
226         if (!netdev || !netif_running(netdev))
227                 goto exit;
228
229         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
230         printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
231                " leng ntw timestamp\n");
232         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
233         printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
234                0, tx_ring->next_to_use, tx_ring->next_to_clean,
235                (unsigned long long)buffer_info->dma,
236                buffer_info->length,
237                buffer_info->next_to_watch,
238                (unsigned long long)buffer_info->time_stamp);
239
240         /* Print Tx Ring */
241         if (!netif_msg_tx_done(adapter))
242                 goto rx_ring_summary;
243
244         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
245
246         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
247          *
248          * Legacy Transmit Descriptor
249          *   +--------------------------------------------------------------+
250          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
251          *   +--------------------------------------------------------------+
252          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
253          *   +--------------------------------------------------------------+
254          *   63       48 47        36 35    32 31     24 23    16 15        0
255          *
256          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
257          *   63      48 47    40 39       32 31             16 15    8 7      0
258          *   +----------------------------------------------------------------+
259          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
260          *   +----------------------------------------------------------------+
261          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
262          *   +----------------------------------------------------------------+
263          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
264          *
265          * Extended Data Descriptor (DTYP=0x1)
266          *   +----------------------------------------------------------------+
267          * 0 |                     Buffer Address [63:0]                      |
268          *   +----------------------------------------------------------------+
269          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
270          *   +----------------------------------------------------------------+
271          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
272          */
273         printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
274                " [bi->dma       ] leng  ntw timestamp        bi->skb "
275                "<-- Legacy format\n");
276         printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
277                " [bi->dma       ] leng  ntw timestamp        bi->skb "
278                "<-- Ext Context format\n");
279         printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
280                " [bi->dma       ] leng  ntw timestamp        bi->skb "
281                "<-- Ext Data format\n");
282         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
283                 tx_desc = E1000_TX_DESC(*tx_ring, i);
284                 buffer_info = &tx_ring->buffer_info[i];
285                 u0 = (struct my_u0 *)tx_desc;
286                 printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
287                        "%04X  %3X %016llX %p",
288                        (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
289                         ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
290                        (unsigned long long)le64_to_cpu(u0->a),
291                        (unsigned long long)le64_to_cpu(u0->b),
292                        (unsigned long long)buffer_info->dma,
293                        buffer_info->length, buffer_info->next_to_watch,
294                        (unsigned long long)buffer_info->time_stamp,
295                        buffer_info->skb);
296                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
297                         printk(KERN_CONT " NTC/U\n");
298                 else if (i == tx_ring->next_to_use)
299                         printk(KERN_CONT " NTU\n");
300                 else if (i == tx_ring->next_to_clean)
301                         printk(KERN_CONT " NTC\n");
302                 else
303                         printk(KERN_CONT "\n");
304
305                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
306                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
307                                        16, 1, phys_to_virt(buffer_info->dma),
308                                        buffer_info->length, true);
309         }
310
311         /* Print Rx Ring Summary */
312 rx_ring_summary:
313         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
314         printk(KERN_INFO "Queue [NTU] [NTC]\n");
315         printk(KERN_INFO " %5d %5X %5X\n", 0,
316                rx_ring->next_to_use, rx_ring->next_to_clean);
317
318         /* Print Rx Ring */
319         if (!netif_msg_rx_status(adapter))
320                 goto exit;
321
322         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
323         switch (adapter->rx_ps_pages) {
324         case 1:
325         case 2:
326         case 3:
327                 /* [Extended] Packet Split Receive Descriptor Format
328                  *
329                  *    +-----------------------------------------------------+
330                  *  0 |                Buffer Address 0 [63:0]              |
331                  *    +-----------------------------------------------------+
332                  *  8 |                Buffer Address 1 [63:0]              |
333                  *    +-----------------------------------------------------+
334                  * 16 |                Buffer Address 2 [63:0]              |
335                  *    +-----------------------------------------------------+
336                  * 24 |                Buffer Address 3 [63:0]              |
337                  *    +-----------------------------------------------------+
338                  */
339                 printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
340                        "[buffer 1 63:0 ] "
341                        "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
342                        "[bi->skb] <-- Ext Pkt Split format\n");
343                 /* [Extended] Receive Descriptor (Write-Back) Format
344                  *
345                  *   63       48 47    32 31     13 12    8 7    4 3        0
346                  *   +------------------------------------------------------+
347                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
348                  *   | Checksum | Ident  |         | Queue |      |  Type   |
349                  *   +------------------------------------------------------+
350                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
351                  *   +------------------------------------------------------+
352                  *   63       48 47    32 31            20 19               0
353                  */
354                 printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
355                        "[vl   l0 ee  es] "
356                        "[ l3  l2  l1 hs] [reserved      ] ---------------- "
357                        "[bi->skb] <-- Ext Rx Write-Back format\n");
358                 for (i = 0; i < rx_ring->count; i++) {
359                         buffer_info = &rx_ring->buffer_info[i];
360                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
361                         u1 = (struct my_u1 *)rx_desc_ps;
362                         staterr =
363                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
364                         if (staterr & E1000_RXD_STAT_DD) {
365                                 /* Descriptor Done */
366                                 printk(KERN_INFO "RWB[0x%03X]     %016llX "
367                                        "%016llX %016llX %016llX "
368                                        "---------------- %p", i,
369                                        (unsigned long long)le64_to_cpu(u1->a),
370                                        (unsigned long long)le64_to_cpu(u1->b),
371                                        (unsigned long long)le64_to_cpu(u1->c),
372                                        (unsigned long long)le64_to_cpu(u1->d),
373                                        buffer_info->skb);
374                         } else {
375                                 printk(KERN_INFO "R  [0x%03X]     %016llX "
376                                        "%016llX %016llX %016llX %016llX %p", i,
377                                        (unsigned long long)le64_to_cpu(u1->a),
378                                        (unsigned long long)le64_to_cpu(u1->b),
379                                        (unsigned long long)le64_to_cpu(u1->c),
380                                        (unsigned long long)le64_to_cpu(u1->d),
381                                        (unsigned long long)buffer_info->dma,
382                                        buffer_info->skb);
383
384                                 if (netif_msg_pktdata(adapter))
385                                         print_hex_dump(KERN_INFO, "",
386                                                 DUMP_PREFIX_ADDRESS, 16, 1,
387                                                 phys_to_virt(buffer_info->dma),
388                                                 adapter->rx_ps_bsize0, true);
389                         }
390
391                         if (i == rx_ring->next_to_use)
392                                 printk(KERN_CONT " NTU\n");
393                         else if (i == rx_ring->next_to_clean)
394                                 printk(KERN_CONT " NTC\n");
395                         else
396                                 printk(KERN_CONT "\n");
397                 }
398                 break;
399         default:
400         case 0:
401                 /* Legacy Receive Descriptor Format
402                  *
403                  * +-----------------------------------------------------+
404                  * |                Buffer Address [63:0]                |
405                  * +-----------------------------------------------------+
406                  * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
407                  * +-----------------------------------------------------+
408                  * 63       48 47    40 39      32 31         16 15      0
409                  */
410                 printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
411                        "[vl er S cks ln] [bi->dma       ] [bi->skb] "
412                        "<-- Legacy format\n");
413                 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
414                         rx_desc = E1000_RX_DESC(*rx_ring, i);
415                         buffer_info = &rx_ring->buffer_info[i];
416                         u0 = (struct my_u0 *)rx_desc;
417                         printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
418                                "%016llX %p", i,
419                                (unsigned long long)le64_to_cpu(u0->a),
420                                (unsigned long long)le64_to_cpu(u0->b),
421                                (unsigned long long)buffer_info->dma,
422                                buffer_info->skb);
423                         if (i == rx_ring->next_to_use)
424                                 printk(KERN_CONT " NTU\n");
425                         else if (i == rx_ring->next_to_clean)
426                                 printk(KERN_CONT " NTC\n");
427                         else
428                                 printk(KERN_CONT "\n");
429
430                         if (netif_msg_pktdata(adapter))
431                                 print_hex_dump(KERN_INFO, "",
432                                                DUMP_PREFIX_ADDRESS,
433                                                16, 1,
434                                                phys_to_virt(buffer_info->dma),
435                                                adapter->rx_buffer_len, true);
436                 }
437         }
438
439 exit:
440         return;
441 }
442
443 /**
444  * e1000_desc_unused - calculate if we have unused descriptors
445  **/
446 static int e1000_desc_unused(struct e1000_ring *ring)
447 {
448         if (ring->next_to_clean > ring->next_to_use)
449                 return ring->next_to_clean - ring->next_to_use - 1;
450
451         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
452 }
453
454 /**
455  * e1000_receive_skb - helper function to handle Rx indications
456  * @adapter: board private structure
457  * @status: descriptor status field as written by hardware
458  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
459  * @skb: pointer to sk_buff to be indicated to stack
460  **/
461 static void e1000_receive_skb(struct e1000_adapter *adapter,
462                               struct net_device *netdev, struct sk_buff *skb,
463                               u8 status, __le16 vlan)
464 {
465         u16 tag = le16_to_cpu(vlan);
466         skb->protocol = eth_type_trans(skb, netdev);
467
468         if (status & E1000_RXD_STAT_VP)
469                 __vlan_hwaccel_put_tag(skb, tag);
470
471         napi_gro_receive(&adapter->napi, skb);
472 }
473
474 /**
475  * e1000_rx_checksum - Receive Checksum Offload
476  * @adapter:     board private structure
477  * @status_err:  receive descriptor status and error fields
478  * @csum:       receive descriptor csum field
479  * @sk_buff:     socket buffer with received data
480  **/
481 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
482                               u32 csum, struct sk_buff *skb)
483 {
484         u16 status = (u16)status_err;
485         u8 errors = (u8)(status_err >> 24);
486
487         skb_checksum_none_assert(skb);
488
489         /* Ignore Checksum bit is set */
490         if (status & E1000_RXD_STAT_IXSM)
491                 return;
492         /* TCP/UDP checksum error bit is set */
493         if (errors & E1000_RXD_ERR_TCPE) {
494                 /* let the stack verify checksum errors */
495                 adapter->hw_csum_err++;
496                 return;
497         }
498
499         /* TCP/UDP Checksum has not been calculated */
500         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
501                 return;
502
503         /* It must be a TCP or UDP packet with a valid checksum */
504         if (status & E1000_RXD_STAT_TCPCS) {
505                 /* TCP checksum is good */
506                 skb->ip_summed = CHECKSUM_UNNECESSARY;
507         } else {
508                 /*
509                  * IP fragment with UDP payload
510                  * Hardware complements the payload checksum, so we undo it
511                  * and then put the value in host order for further stack use.
512                  */
513                 __sum16 sum = (__force __sum16)htons(csum);
514                 skb->csum = csum_unfold(~sum);
515                 skb->ip_summed = CHECKSUM_COMPLETE;
516         }
517         adapter->hw_csum_good++;
518 }
519
520 /**
521  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
522  * @adapter: address of board private structure
523  **/
524 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
525                                    int cleaned_count)
526 {
527         struct net_device *netdev = adapter->netdev;
528         struct pci_dev *pdev = adapter->pdev;
529         struct e1000_ring *rx_ring = adapter->rx_ring;
530         struct e1000_rx_desc *rx_desc;
531         struct e1000_buffer *buffer_info;
532         struct sk_buff *skb;
533         unsigned int i;
534         unsigned int bufsz = adapter->rx_buffer_len;
535
536         i = rx_ring->next_to_use;
537         buffer_info = &rx_ring->buffer_info[i];
538
539         while (cleaned_count--) {
540                 skb = buffer_info->skb;
541                 if (skb) {
542                         skb_trim(skb, 0);
543                         goto map_skb;
544                 }
545
546                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
547                 if (!skb) {
548                         /* Better luck next round */
549                         adapter->alloc_rx_buff_failed++;
550                         break;
551                 }
552
553                 buffer_info->skb = skb;
554 map_skb:
555                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
556                                                   adapter->rx_buffer_len,
557                                                   DMA_FROM_DEVICE);
558                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
559                         dev_err(&pdev->dev, "Rx DMA map failed\n");
560                         adapter->rx_dma_failed++;
561                         break;
562                 }
563
564                 rx_desc = E1000_RX_DESC(*rx_ring, i);
565                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
566
567                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
568                         /*
569                          * Force memory writes to complete before letting h/w
570                          * know there are new descriptors to fetch.  (Only
571                          * applicable for weak-ordered memory model archs,
572                          * such as IA-64).
573                          */
574                         wmb();
575                         writel(i, adapter->hw.hw_addr + rx_ring->tail);
576                 }
577                 i++;
578                 if (i == rx_ring->count)
579                         i = 0;
580                 buffer_info = &rx_ring->buffer_info[i];
581         }
582
583         rx_ring->next_to_use = i;
584 }
585
586 /**
587  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
588  * @adapter: address of board private structure
589  **/
590 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
591                                       int cleaned_count)
592 {
593         struct net_device *netdev = adapter->netdev;
594         struct pci_dev *pdev = adapter->pdev;
595         union e1000_rx_desc_packet_split *rx_desc;
596         struct e1000_ring *rx_ring = adapter->rx_ring;
597         struct e1000_buffer *buffer_info;
598         struct e1000_ps_page *ps_page;
599         struct sk_buff *skb;
600         unsigned int i, j;
601
602         i = rx_ring->next_to_use;
603         buffer_info = &rx_ring->buffer_info[i];
604
605         while (cleaned_count--) {
606                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
607
608                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
609                         ps_page = &buffer_info->ps_pages[j];
610                         if (j >= adapter->rx_ps_pages) {
611                                 /* all unused desc entries get hw null ptr */
612                                 rx_desc->read.buffer_addr[j + 1] =
613                                     ~cpu_to_le64(0);
614                                 continue;
615                         }
616                         if (!ps_page->page) {
617                                 ps_page->page = alloc_page(GFP_ATOMIC);
618                                 if (!ps_page->page) {
619                                         adapter->alloc_rx_buff_failed++;
620                                         goto no_buffers;
621                                 }
622                                 ps_page->dma = dma_map_page(&pdev->dev,
623                                                             ps_page->page,
624                                                             0, PAGE_SIZE,
625                                                             DMA_FROM_DEVICE);
626                                 if (dma_mapping_error(&pdev->dev,
627                                                       ps_page->dma)) {
628                                         dev_err(&adapter->pdev->dev,
629                                                 "Rx DMA page map failed\n");
630                                         adapter->rx_dma_failed++;
631                                         goto no_buffers;
632                                 }
633                         }
634                         /*
635                          * Refresh the desc even if buffer_addrs
636                          * didn't change because each write-back
637                          * erases this info.
638                          */
639                         rx_desc->read.buffer_addr[j + 1] =
640                             cpu_to_le64(ps_page->dma);
641                 }
642
643                 skb = netdev_alloc_skb_ip_align(netdev,
644                                                 adapter->rx_ps_bsize0);
645
646                 if (!skb) {
647                         adapter->alloc_rx_buff_failed++;
648                         break;
649                 }
650
651                 buffer_info->skb = skb;
652                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
653                                                   adapter->rx_ps_bsize0,
654                                                   DMA_FROM_DEVICE);
655                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
656                         dev_err(&pdev->dev, "Rx DMA map failed\n");
657                         adapter->rx_dma_failed++;
658                         /* cleanup skb */
659                         dev_kfree_skb_any(skb);
660                         buffer_info->skb = NULL;
661                         break;
662                 }
663
664                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
665
666                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
667                         /*
668                          * Force memory writes to complete before letting h/w
669                          * know there are new descriptors to fetch.  (Only
670                          * applicable for weak-ordered memory model archs,
671                          * such as IA-64).
672                          */
673                         wmb();
674                         writel(i << 1, adapter->hw.hw_addr + rx_ring->tail);
675                 }
676
677                 i++;
678                 if (i == rx_ring->count)
679                         i = 0;
680                 buffer_info = &rx_ring->buffer_info[i];
681         }
682
683 no_buffers:
684         rx_ring->next_to_use = i;
685 }
686
687 /**
688  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
689  * @adapter: address of board private structure
690  * @cleaned_count: number of buffers to allocate this pass
691  **/
692
693 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
694                                          int cleaned_count)
695 {
696         struct net_device *netdev = adapter->netdev;
697         struct pci_dev *pdev = adapter->pdev;
698         struct e1000_rx_desc *rx_desc;
699         struct e1000_ring *rx_ring = adapter->rx_ring;
700         struct e1000_buffer *buffer_info;
701         struct sk_buff *skb;
702         unsigned int i;
703         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
704
705         i = rx_ring->next_to_use;
706         buffer_info = &rx_ring->buffer_info[i];
707
708         while (cleaned_count--) {
709                 skb = buffer_info->skb;
710                 if (skb) {
711                         skb_trim(skb, 0);
712                         goto check_page;
713                 }
714
715                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
716                 if (unlikely(!skb)) {
717                         /* Better luck next round */
718                         adapter->alloc_rx_buff_failed++;
719                         break;
720                 }
721
722                 buffer_info->skb = skb;
723 check_page:
724                 /* allocate a new page if necessary */
725                 if (!buffer_info->page) {
726                         buffer_info->page = alloc_page(GFP_ATOMIC);
727                         if (unlikely(!buffer_info->page)) {
728                                 adapter->alloc_rx_buff_failed++;
729                                 break;
730                         }
731                 }
732
733                 if (!buffer_info->dma)
734                         buffer_info->dma = dma_map_page(&pdev->dev,
735                                                         buffer_info->page, 0,
736                                                         PAGE_SIZE,
737                                                         DMA_FROM_DEVICE);
738
739                 rx_desc = E1000_RX_DESC(*rx_ring, i);
740                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
741
742                 if (unlikely(++i == rx_ring->count))
743                         i = 0;
744                 buffer_info = &rx_ring->buffer_info[i];
745         }
746
747         if (likely(rx_ring->next_to_use != i)) {
748                 rx_ring->next_to_use = i;
749                 if (unlikely(i-- == 0))
750                         i = (rx_ring->count - 1);
751
752                 /* Force memory writes to complete before letting h/w
753                  * know there are new descriptors to fetch.  (Only
754                  * applicable for weak-ordered memory model archs,
755                  * such as IA-64). */
756                 wmb();
757                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
758         }
759 }
760
761 /**
762  * e1000_clean_rx_irq - Send received data up the network stack; legacy
763  * @adapter: board private structure
764  *
765  * the return value indicates whether actual cleaning was done, there
766  * is no guarantee that everything was cleaned
767  **/
768 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
769                                int *work_done, int work_to_do)
770 {
771         struct net_device *netdev = adapter->netdev;
772         struct pci_dev *pdev = adapter->pdev;
773         struct e1000_hw *hw = &adapter->hw;
774         struct e1000_ring *rx_ring = adapter->rx_ring;
775         struct e1000_rx_desc *rx_desc, *next_rxd;
776         struct e1000_buffer *buffer_info, *next_buffer;
777         u32 length;
778         unsigned int i;
779         int cleaned_count = 0;
780         bool cleaned = 0;
781         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
782
783         i = rx_ring->next_to_clean;
784         rx_desc = E1000_RX_DESC(*rx_ring, i);
785         buffer_info = &rx_ring->buffer_info[i];
786
787         while (rx_desc->status & E1000_RXD_STAT_DD) {
788                 struct sk_buff *skb;
789                 u8 status;
790
791                 if (*work_done >= work_to_do)
792                         break;
793                 (*work_done)++;
794                 rmb();  /* read descriptor and rx_buffer_info after status DD */
795
796                 status = rx_desc->status;
797                 skb = buffer_info->skb;
798                 buffer_info->skb = NULL;
799
800                 prefetch(skb->data - NET_IP_ALIGN);
801
802                 i++;
803                 if (i == rx_ring->count)
804                         i = 0;
805                 next_rxd = E1000_RX_DESC(*rx_ring, i);
806                 prefetch(next_rxd);
807
808                 next_buffer = &rx_ring->buffer_info[i];
809
810                 cleaned = 1;
811                 cleaned_count++;
812                 dma_unmap_single(&pdev->dev,
813                                  buffer_info->dma,
814                                  adapter->rx_buffer_len,
815                                  DMA_FROM_DEVICE);
816                 buffer_info->dma = 0;
817
818                 length = le16_to_cpu(rx_desc->length);
819
820                 /*
821                  * !EOP means multiple descriptors were used to store a single
822                  * packet, if that's the case we need to toss it.  In fact, we
823                  * need to toss every packet with the EOP bit clear and the
824                  * next frame that _does_ have the EOP bit set, as it is by
825                  * definition only a frame fragment
826                  */
827                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
828                         adapter->flags2 |= FLAG2_IS_DISCARDING;
829
830                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
831                         /* All receives must fit into a single buffer */
832                         e_dbg("Receive packet consumed multiple buffers\n");
833                         /* recycle */
834                         buffer_info->skb = skb;
835                         if (status & E1000_RXD_STAT_EOP)
836                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
837                         goto next_desc;
838                 }
839
840                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
841                         /* recycle */
842                         buffer_info->skb = skb;
843                         goto next_desc;
844                 }
845
846                 /* adjust length to remove Ethernet CRC */
847                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
848                         length -= 4;
849
850                 total_rx_bytes += length;
851                 total_rx_packets++;
852
853                 /*
854                  * code added for copybreak, this should improve
855                  * performance for small packets with large amounts
856                  * of reassembly being done in the stack
857                  */
858                 if (length < copybreak) {
859                         struct sk_buff *new_skb =
860                             netdev_alloc_skb_ip_align(netdev, length);
861                         if (new_skb) {
862                                 skb_copy_to_linear_data_offset(new_skb,
863                                                                -NET_IP_ALIGN,
864                                                                (skb->data -
865                                                                 NET_IP_ALIGN),
866                                                                (length +
867                                                                 NET_IP_ALIGN));
868                                 /* save the skb in buffer_info as good */
869                                 buffer_info->skb = skb;
870                                 skb = new_skb;
871                         }
872                         /* else just continue with the old one */
873                 }
874                 /* end copybreak code */
875                 skb_put(skb, length);
876
877                 /* Receive Checksum Offload */
878                 e1000_rx_checksum(adapter,
879                                   (u32)(status) |
880                                   ((u32)(rx_desc->errors) << 24),
881                                   le16_to_cpu(rx_desc->csum), skb);
882
883                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
884
885 next_desc:
886                 rx_desc->status = 0;
887
888                 /* return some buffers to hardware, one at a time is too slow */
889                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
890                         adapter->alloc_rx_buf(adapter, cleaned_count);
891                         cleaned_count = 0;
892                 }
893
894                 /* use prefetched values */
895                 rx_desc = next_rxd;
896                 buffer_info = next_buffer;
897         }
898         rx_ring->next_to_clean = i;
899
900         cleaned_count = e1000_desc_unused(rx_ring);
901         if (cleaned_count)
902                 adapter->alloc_rx_buf(adapter, cleaned_count);
903
904         adapter->total_rx_bytes += total_rx_bytes;
905         adapter->total_rx_packets += total_rx_packets;
906         return cleaned;
907 }
908
909 static void e1000_put_txbuf(struct e1000_adapter *adapter,
910                              struct e1000_buffer *buffer_info)
911 {
912         if (buffer_info->dma) {
913                 if (buffer_info->mapped_as_page)
914                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
915                                        buffer_info->length, DMA_TO_DEVICE);
916                 else
917                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
918                                          buffer_info->length, DMA_TO_DEVICE);
919                 buffer_info->dma = 0;
920         }
921         if (buffer_info->skb) {
922                 dev_kfree_skb_any(buffer_info->skb);
923                 buffer_info->skb = NULL;
924         }
925         buffer_info->time_stamp = 0;
926 }
927
928 static void e1000_print_hw_hang(struct work_struct *work)
929 {
930         struct e1000_adapter *adapter = container_of(work,
931                                                      struct e1000_adapter,
932                                                      print_hang_task);
933         struct e1000_ring *tx_ring = adapter->tx_ring;
934         unsigned int i = tx_ring->next_to_clean;
935         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
936         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
937         struct e1000_hw *hw = &adapter->hw;
938         u16 phy_status, phy_1000t_status, phy_ext_status;
939         u16 pci_status;
940
941         if (test_bit(__E1000_DOWN, &adapter->state))
942                 return;
943
944         e1e_rphy(hw, PHY_STATUS, &phy_status);
945         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
946         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
947
948         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
949
950         /* detected Hardware unit hang */
951         e_err("Detected Hardware Unit Hang:\n"
952               "  TDH                  <%x>\n"
953               "  TDT                  <%x>\n"
954               "  next_to_use          <%x>\n"
955               "  next_to_clean        <%x>\n"
956               "buffer_info[next_to_clean]:\n"
957               "  time_stamp           <%lx>\n"
958               "  next_to_watch        <%x>\n"
959               "  jiffies              <%lx>\n"
960               "  next_to_watch.status <%x>\n"
961               "MAC Status             <%x>\n"
962               "PHY Status             <%x>\n"
963               "PHY 1000BASE-T Status  <%x>\n"
964               "PHY Extended Status    <%x>\n"
965               "PCI Status             <%x>\n",
966               readl(adapter->hw.hw_addr + tx_ring->head),
967               readl(adapter->hw.hw_addr + tx_ring->tail),
968               tx_ring->next_to_use,
969               tx_ring->next_to_clean,
970               tx_ring->buffer_info[eop].time_stamp,
971               eop,
972               jiffies,
973               eop_desc->upper.fields.status,
974               er32(STATUS),
975               phy_status,
976               phy_1000t_status,
977               phy_ext_status,
978               pci_status);
979 }
980
981 /**
982  * e1000_clean_tx_irq - Reclaim resources after transmit completes
983  * @adapter: board private structure
984  *
985  * the return value indicates whether actual cleaning was done, there
986  * is no guarantee that everything was cleaned
987  **/
988 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
989 {
990         struct net_device *netdev = adapter->netdev;
991         struct e1000_hw *hw = &adapter->hw;
992         struct e1000_ring *tx_ring = adapter->tx_ring;
993         struct e1000_tx_desc *tx_desc, *eop_desc;
994         struct e1000_buffer *buffer_info;
995         unsigned int i, eop;
996         unsigned int count = 0;
997         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
998
999         i = tx_ring->next_to_clean;
1000         eop = tx_ring->buffer_info[i].next_to_watch;
1001         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1002
1003         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1004                (count < tx_ring->count)) {
1005                 bool cleaned = false;
1006                 rmb(); /* read buffer_info after eop_desc */
1007                 for (; !cleaned; count++) {
1008                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1009                         buffer_info = &tx_ring->buffer_info[i];
1010                         cleaned = (i == eop);
1011
1012                         if (cleaned) {
1013                                 total_tx_packets += buffer_info->segs;
1014                                 total_tx_bytes += buffer_info->bytecount;
1015                         }
1016
1017                         e1000_put_txbuf(adapter, buffer_info);
1018                         tx_desc->upper.data = 0;
1019
1020                         i++;
1021                         if (i == tx_ring->count)
1022                                 i = 0;
1023                 }
1024
1025                 if (i == tx_ring->next_to_use)
1026                         break;
1027                 eop = tx_ring->buffer_info[i].next_to_watch;
1028                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1029         }
1030
1031         tx_ring->next_to_clean = i;
1032
1033 #define TX_WAKE_THRESHOLD 32
1034         if (count && netif_carrier_ok(netdev) &&
1035             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1036                 /* Make sure that anybody stopping the queue after this
1037                  * sees the new next_to_clean.
1038                  */
1039                 smp_mb();
1040
1041                 if (netif_queue_stopped(netdev) &&
1042                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1043                         netif_wake_queue(netdev);
1044                         ++adapter->restart_queue;
1045                 }
1046         }
1047
1048         if (adapter->detect_tx_hung) {
1049                 /*
1050                  * Detect a transmit hang in hardware, this serializes the
1051                  * check with the clearing of time_stamp and movement of i
1052                  */
1053                 adapter->detect_tx_hung = 0;
1054                 if (tx_ring->buffer_info[i].time_stamp &&
1055                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1056                                + (adapter->tx_timeout_factor * HZ)) &&
1057                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1058                         schedule_work(&adapter->print_hang_task);
1059                         netif_stop_queue(netdev);
1060                 }
1061         }
1062         adapter->total_tx_bytes += total_tx_bytes;
1063         adapter->total_tx_packets += total_tx_packets;
1064         return count < tx_ring->count;
1065 }
1066
1067 /**
1068  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1069  * @adapter: board private structure
1070  *
1071  * the return value indicates whether actual cleaning was done, there
1072  * is no guarantee that everything was cleaned
1073  **/
1074 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1075                                   int *work_done, int work_to_do)
1076 {
1077         struct e1000_hw *hw = &adapter->hw;
1078         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1079         struct net_device *netdev = adapter->netdev;
1080         struct pci_dev *pdev = adapter->pdev;
1081         struct e1000_ring *rx_ring = adapter->rx_ring;
1082         struct e1000_buffer *buffer_info, *next_buffer;
1083         struct e1000_ps_page *ps_page;
1084         struct sk_buff *skb;
1085         unsigned int i, j;
1086         u32 length, staterr;
1087         int cleaned_count = 0;
1088         bool cleaned = 0;
1089         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1090
1091         i = rx_ring->next_to_clean;
1092         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1093         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1094         buffer_info = &rx_ring->buffer_info[i];
1095
1096         while (staterr & E1000_RXD_STAT_DD) {
1097                 if (*work_done >= work_to_do)
1098                         break;
1099                 (*work_done)++;
1100                 skb = buffer_info->skb;
1101                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1102
1103                 /* in the packet split case this is header only */
1104                 prefetch(skb->data - NET_IP_ALIGN);
1105
1106                 i++;
1107                 if (i == rx_ring->count)
1108                         i = 0;
1109                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1110                 prefetch(next_rxd);
1111
1112                 next_buffer = &rx_ring->buffer_info[i];
1113
1114                 cleaned = 1;
1115                 cleaned_count++;
1116                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1117                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1118                 buffer_info->dma = 0;
1119
1120                 /* see !EOP comment in other Rx routine */
1121                 if (!(staterr & E1000_RXD_STAT_EOP))
1122                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1123
1124                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1125                         e_dbg("Packet Split buffers didn't pick up the full "
1126                               "packet\n");
1127                         dev_kfree_skb_irq(skb);
1128                         if (staterr & E1000_RXD_STAT_EOP)
1129                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1130                         goto next_desc;
1131                 }
1132
1133                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1134                         dev_kfree_skb_irq(skb);
1135                         goto next_desc;
1136                 }
1137
1138                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1139
1140                 if (!length) {
1141                         e_dbg("Last part of the packet spanning multiple "
1142                               "descriptors\n");
1143                         dev_kfree_skb_irq(skb);
1144                         goto next_desc;
1145                 }
1146
1147                 /* Good Receive */
1148                 skb_put(skb, length);
1149
1150                 {
1151                 /*
1152                  * this looks ugly, but it seems compiler issues make it
1153                  * more efficient than reusing j
1154                  */
1155                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1156
1157                 /*
1158                  * page alloc/put takes too long and effects small packet
1159                  * throughput, so unsplit small packets and save the alloc/put
1160                  * only valid in softirq (napi) context to call kmap_*
1161                  */
1162                 if (l1 && (l1 <= copybreak) &&
1163                     ((length + l1) <= adapter->rx_ps_bsize0)) {
1164                         u8 *vaddr;
1165
1166                         ps_page = &buffer_info->ps_pages[0];
1167
1168                         /*
1169                          * there is no documentation about how to call
1170                          * kmap_atomic, so we can't hold the mapping
1171                          * very long
1172                          */
1173                         dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1174                                                 PAGE_SIZE, DMA_FROM_DEVICE);
1175                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1176                         memcpy(skb_tail_pointer(skb), vaddr, l1);
1177                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1178                         dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1179                                                    PAGE_SIZE, DMA_FROM_DEVICE);
1180
1181                         /* remove the CRC */
1182                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1183                                 l1 -= 4;
1184
1185                         skb_put(skb, l1);
1186                         goto copydone;
1187                 } /* if */
1188                 }
1189
1190                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1191                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1192                         if (!length)
1193                                 break;
1194
1195                         ps_page = &buffer_info->ps_pages[j];
1196                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1197                                        DMA_FROM_DEVICE);
1198                         ps_page->dma = 0;
1199                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1200                         ps_page->page = NULL;
1201                         skb->len += length;
1202                         skb->data_len += length;
1203                         skb->truesize += length;
1204                 }
1205
1206                 /* strip the ethernet crc, problem is we're using pages now so
1207                  * this whole operation can get a little cpu intensive
1208                  */
1209                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1210                         pskb_trim(skb, skb->len - 4);
1211
1212 copydone:
1213                 total_rx_bytes += skb->len;
1214                 total_rx_packets++;
1215
1216                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1217                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1218
1219                 if (rx_desc->wb.upper.header_status &
1220                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1221                         adapter->rx_hdr_split++;
1222
1223                 e1000_receive_skb(adapter, netdev, skb,
1224                                   staterr, rx_desc->wb.middle.vlan);
1225
1226 next_desc:
1227                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1228                 buffer_info->skb = NULL;
1229
1230                 /* return some buffers to hardware, one at a time is too slow */
1231                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1232                         adapter->alloc_rx_buf(adapter, cleaned_count);
1233                         cleaned_count = 0;
1234                 }
1235
1236                 /* use prefetched values */
1237                 rx_desc = next_rxd;
1238                 buffer_info = next_buffer;
1239
1240                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1241         }
1242         rx_ring->next_to_clean = i;
1243
1244         cleaned_count = e1000_desc_unused(rx_ring);
1245         if (cleaned_count)
1246                 adapter->alloc_rx_buf(adapter, cleaned_count);
1247
1248         adapter->total_rx_bytes += total_rx_bytes;
1249         adapter->total_rx_packets += total_rx_packets;
1250         return cleaned;
1251 }
1252
1253 /**
1254  * e1000_consume_page - helper function
1255  **/
1256 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1257                                u16 length)
1258 {
1259         bi->page = NULL;
1260         skb->len += length;
1261         skb->data_len += length;
1262         skb->truesize += length;
1263 }
1264
1265 /**
1266  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1267  * @adapter: board private structure
1268  *
1269  * the return value indicates whether actual cleaning was done, there
1270  * is no guarantee that everything was cleaned
1271  **/
1272
1273 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1274                                      int *work_done, int work_to_do)
1275 {
1276         struct net_device *netdev = adapter->netdev;
1277         struct pci_dev *pdev = adapter->pdev;
1278         struct e1000_ring *rx_ring = adapter->rx_ring;
1279         struct e1000_rx_desc *rx_desc, *next_rxd;
1280         struct e1000_buffer *buffer_info, *next_buffer;
1281         u32 length;
1282         unsigned int i;
1283         int cleaned_count = 0;
1284         bool cleaned = false;
1285         unsigned int total_rx_bytes=0, total_rx_packets=0;
1286
1287         i = rx_ring->next_to_clean;
1288         rx_desc = E1000_RX_DESC(*rx_ring, i);
1289         buffer_info = &rx_ring->buffer_info[i];
1290
1291         while (rx_desc->status & E1000_RXD_STAT_DD) {
1292                 struct sk_buff *skb;
1293                 u8 status;
1294
1295                 if (*work_done >= work_to_do)
1296                         break;
1297                 (*work_done)++;
1298                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1299
1300                 status = rx_desc->status;
1301                 skb = buffer_info->skb;
1302                 buffer_info->skb = NULL;
1303
1304                 ++i;
1305                 if (i == rx_ring->count)
1306                         i = 0;
1307                 next_rxd = E1000_RX_DESC(*rx_ring, i);
1308                 prefetch(next_rxd);
1309
1310                 next_buffer = &rx_ring->buffer_info[i];
1311
1312                 cleaned = true;
1313                 cleaned_count++;
1314                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1315                                DMA_FROM_DEVICE);
1316                 buffer_info->dma = 0;
1317
1318                 length = le16_to_cpu(rx_desc->length);
1319
1320                 /* errors is only valid for DD + EOP descriptors */
1321                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1322                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1323                                 /* recycle both page and skb */
1324                                 buffer_info->skb = skb;
1325                                 /* an error means any chain goes out the window
1326                                  * too */
1327                                 if (rx_ring->rx_skb_top)
1328                                         dev_kfree_skb_irq(rx_ring->rx_skb_top);
1329                                 rx_ring->rx_skb_top = NULL;
1330                                 goto next_desc;
1331                 }
1332
1333 #define rxtop (rx_ring->rx_skb_top)
1334                 if (!(status & E1000_RXD_STAT_EOP)) {
1335                         /* this descriptor is only the beginning (or middle) */
1336                         if (!rxtop) {
1337                                 /* this is the beginning of a chain */
1338                                 rxtop = skb;
1339                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1340                                                    0, length);
1341                         } else {
1342                                 /* this is the middle of a chain */
1343                                 skb_fill_page_desc(rxtop,
1344                                     skb_shinfo(rxtop)->nr_frags,
1345                                     buffer_info->page, 0, length);
1346                                 /* re-use the skb, only consumed the page */
1347                                 buffer_info->skb = skb;
1348                         }
1349                         e1000_consume_page(buffer_info, rxtop, length);
1350                         goto next_desc;
1351                 } else {
1352                         if (rxtop) {
1353                                 /* end of the chain */
1354                                 skb_fill_page_desc(rxtop,
1355                                     skb_shinfo(rxtop)->nr_frags,
1356                                     buffer_info->page, 0, length);
1357                                 /* re-use the current skb, we only consumed the
1358                                  * page */
1359                                 buffer_info->skb = skb;
1360                                 skb = rxtop;
1361                                 rxtop = NULL;
1362                                 e1000_consume_page(buffer_info, skb, length);
1363                         } else {
1364                                 /* no chain, got EOP, this buf is the packet
1365                                  * copybreak to save the put_page/alloc_page */
1366                                 if (length <= copybreak &&
1367                                     skb_tailroom(skb) >= length) {
1368                                         u8 *vaddr;
1369                                         vaddr = kmap_atomic(buffer_info->page,
1370                                                            KM_SKB_DATA_SOFTIRQ);
1371                                         memcpy(skb_tail_pointer(skb), vaddr,
1372                                                length);
1373                                         kunmap_atomic(vaddr,
1374                                                       KM_SKB_DATA_SOFTIRQ);
1375                                         /* re-use the page, so don't erase
1376                                          * buffer_info->page */
1377                                         skb_put(skb, length);
1378                                 } else {
1379                                         skb_fill_page_desc(skb, 0,
1380                                                            buffer_info->page, 0,
1381                                                            length);
1382                                         e1000_consume_page(buffer_info, skb,
1383                                                            length);
1384                                 }
1385                         }
1386                 }
1387
1388                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1389                 e1000_rx_checksum(adapter,
1390                                   (u32)(status) |
1391                                   ((u32)(rx_desc->errors) << 24),
1392                                   le16_to_cpu(rx_desc->csum), skb);
1393
1394                 /* probably a little skewed due to removing CRC */
1395                 total_rx_bytes += skb->len;
1396                 total_rx_packets++;
1397
1398                 /* eth type trans needs skb->data to point to something */
1399                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1400                         e_err("pskb_may_pull failed.\n");
1401                         dev_kfree_skb_irq(skb);
1402                         goto next_desc;
1403                 }
1404
1405                 e1000_receive_skb(adapter, netdev, skb, status,
1406                                   rx_desc->special);
1407
1408 next_desc:
1409                 rx_desc->status = 0;
1410
1411                 /* return some buffers to hardware, one at a time is too slow */
1412                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1413                         adapter->alloc_rx_buf(adapter, cleaned_count);
1414                         cleaned_count = 0;
1415                 }
1416
1417                 /* use prefetched values */
1418                 rx_desc = next_rxd;
1419                 buffer_info = next_buffer;
1420         }
1421         rx_ring->next_to_clean = i;
1422
1423         cleaned_count = e1000_desc_unused(rx_ring);
1424         if (cleaned_count)
1425                 adapter->alloc_rx_buf(adapter, cleaned_count);
1426
1427         adapter->total_rx_bytes += total_rx_bytes;
1428         adapter->total_rx_packets += total_rx_packets;
1429         return cleaned;
1430 }
1431
1432 /**
1433  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1434  * @adapter: board private structure
1435  **/
1436 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1437 {
1438         struct e1000_ring *rx_ring = adapter->rx_ring;
1439         struct e1000_buffer *buffer_info;
1440         struct e1000_ps_page *ps_page;
1441         struct pci_dev *pdev = adapter->pdev;
1442         unsigned int i, j;
1443
1444         /* Free all the Rx ring sk_buffs */
1445         for (i = 0; i < rx_ring->count; i++) {
1446                 buffer_info = &rx_ring->buffer_info[i];
1447                 if (buffer_info->dma) {
1448                         if (adapter->clean_rx == e1000_clean_rx_irq)
1449                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1450                                                  adapter->rx_buffer_len,
1451                                                  DMA_FROM_DEVICE);
1452                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1453                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1454                                                PAGE_SIZE,
1455                                                DMA_FROM_DEVICE);
1456                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1457                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1458                                                  adapter->rx_ps_bsize0,
1459                                                  DMA_FROM_DEVICE);
1460                         buffer_info->dma = 0;
1461                 }
1462
1463                 if (buffer_info->page) {
1464                         put_page(buffer_info->page);
1465                         buffer_info->page = NULL;
1466                 }
1467
1468                 if (buffer_info->skb) {
1469                         dev_kfree_skb(buffer_info->skb);
1470                         buffer_info->skb = NULL;
1471                 }
1472
1473                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1474                         ps_page = &buffer_info->ps_pages[j];
1475                         if (!ps_page->page)
1476                                 break;
1477                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1478                                        DMA_FROM_DEVICE);
1479                         ps_page->dma = 0;
1480                         put_page(ps_page->page);
1481                         ps_page->page = NULL;
1482                 }
1483         }
1484
1485         /* there also may be some cached data from a chained receive */
1486         if (rx_ring->rx_skb_top) {
1487                 dev_kfree_skb(rx_ring->rx_skb_top);
1488                 rx_ring->rx_skb_top = NULL;
1489         }
1490
1491         /* Zero out the descriptor ring */
1492         memset(rx_ring->desc, 0, rx_ring->size);
1493
1494         rx_ring->next_to_clean = 0;
1495         rx_ring->next_to_use = 0;
1496         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1497
1498         writel(0, adapter->hw.hw_addr + rx_ring->head);
1499         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1500 }
1501
1502 static void e1000e_downshift_workaround(struct work_struct *work)
1503 {
1504         struct e1000_adapter *adapter = container_of(work,
1505                                         struct e1000_adapter, downshift_task);
1506
1507         if (test_bit(__E1000_DOWN, &adapter->state))
1508                 return;
1509
1510         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1511 }
1512
1513 /**
1514  * e1000_intr_msi - Interrupt Handler
1515  * @irq: interrupt number
1516  * @data: pointer to a network interface device structure
1517  **/
1518 static irqreturn_t e1000_intr_msi(int irq, void *data)
1519 {
1520         struct net_device *netdev = data;
1521         struct e1000_adapter *adapter = netdev_priv(netdev);
1522         struct e1000_hw *hw = &adapter->hw;
1523         u32 icr = er32(ICR);
1524
1525         /*
1526          * read ICR disables interrupts using IAM
1527          */
1528
1529         if (icr & E1000_ICR_LSC) {
1530                 hw->mac.get_link_status = 1;
1531                 /*
1532                  * ICH8 workaround-- Call gig speed drop workaround on cable
1533                  * disconnect (LSC) before accessing any PHY registers
1534                  */
1535                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1536                     (!(er32(STATUS) & E1000_STATUS_LU)))
1537                         schedule_work(&adapter->downshift_task);
1538
1539                 /*
1540                  * 80003ES2LAN workaround-- For packet buffer work-around on
1541                  * link down event; disable receives here in the ISR and reset
1542                  * adapter in watchdog
1543                  */
1544                 if (netif_carrier_ok(netdev) &&
1545                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1546                         /* disable receives */
1547                         u32 rctl = er32(RCTL);
1548                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1549                         adapter->flags |= FLAG_RX_RESTART_NOW;
1550                 }
1551                 /* guard against interrupt when we're going down */
1552                 if (!test_bit(__E1000_DOWN, &adapter->state))
1553                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1554         }
1555
1556         if (napi_schedule_prep(&adapter->napi)) {
1557                 adapter->total_tx_bytes = 0;
1558                 adapter->total_tx_packets = 0;
1559                 adapter->total_rx_bytes = 0;
1560                 adapter->total_rx_packets = 0;
1561                 __napi_schedule(&adapter->napi);
1562         }
1563
1564         return IRQ_HANDLED;
1565 }
1566
1567 /**
1568  * e1000_intr - Interrupt Handler
1569  * @irq: interrupt number
1570  * @data: pointer to a network interface device structure
1571  **/
1572 static irqreturn_t e1000_intr(int irq, void *data)
1573 {
1574         struct net_device *netdev = data;
1575         struct e1000_adapter *adapter = netdev_priv(netdev);
1576         struct e1000_hw *hw = &adapter->hw;
1577         u32 rctl, icr = er32(ICR);
1578
1579         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1580                 return IRQ_NONE;  /* Not our interrupt */
1581
1582         /*
1583          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1584          * not set, then the adapter didn't send an interrupt
1585          */
1586         if (!(icr & E1000_ICR_INT_ASSERTED))
1587                 return IRQ_NONE;
1588
1589         /*
1590          * Interrupt Auto-Mask...upon reading ICR,
1591          * interrupts are masked.  No need for the
1592          * IMC write
1593          */
1594
1595         if (icr & E1000_ICR_LSC) {
1596                 hw->mac.get_link_status = 1;
1597                 /*
1598                  * ICH8 workaround-- Call gig speed drop workaround on cable
1599                  * disconnect (LSC) before accessing any PHY registers
1600                  */
1601                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1602                     (!(er32(STATUS) & E1000_STATUS_LU)))
1603                         schedule_work(&adapter->downshift_task);
1604
1605                 /*
1606                  * 80003ES2LAN workaround--
1607                  * For packet buffer work-around on link down event;
1608                  * disable receives here in the ISR and
1609                  * reset adapter in watchdog
1610                  */
1611                 if (netif_carrier_ok(netdev) &&
1612                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1613                         /* disable receives */
1614                         rctl = er32(RCTL);
1615                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1616                         adapter->flags |= FLAG_RX_RESTART_NOW;
1617                 }
1618                 /* guard against interrupt when we're going down */
1619                 if (!test_bit(__E1000_DOWN, &adapter->state))
1620                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1621         }
1622
1623         if (napi_schedule_prep(&adapter->napi)) {
1624                 adapter->total_tx_bytes = 0;
1625                 adapter->total_tx_packets = 0;
1626                 adapter->total_rx_bytes = 0;
1627                 adapter->total_rx_packets = 0;
1628                 __napi_schedule(&adapter->napi);
1629         }
1630
1631         return IRQ_HANDLED;
1632 }
1633
1634 static irqreturn_t e1000_msix_other(int irq, void *data)
1635 {
1636         struct net_device *netdev = data;
1637         struct e1000_adapter *adapter = netdev_priv(netdev);
1638         struct e1000_hw *hw = &adapter->hw;
1639         u32 icr = er32(ICR);
1640
1641         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1642                 if (!test_bit(__E1000_DOWN, &adapter->state))
1643                         ew32(IMS, E1000_IMS_OTHER);
1644                 return IRQ_NONE;
1645         }
1646
1647         if (icr & adapter->eiac_mask)
1648                 ew32(ICS, (icr & adapter->eiac_mask));
1649
1650         if (icr & E1000_ICR_OTHER) {
1651                 if (!(icr & E1000_ICR_LSC))
1652                         goto no_link_interrupt;
1653                 hw->mac.get_link_status = 1;
1654                 /* guard against interrupt when we're going down */
1655                 if (!test_bit(__E1000_DOWN, &adapter->state))
1656                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1657         }
1658
1659 no_link_interrupt:
1660         if (!test_bit(__E1000_DOWN, &adapter->state))
1661                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1662
1663         return IRQ_HANDLED;
1664 }
1665
1666
1667 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1668 {
1669         struct net_device *netdev = data;
1670         struct e1000_adapter *adapter = netdev_priv(netdev);
1671         struct e1000_hw *hw = &adapter->hw;
1672         struct e1000_ring *tx_ring = adapter->tx_ring;
1673
1674
1675         adapter->total_tx_bytes = 0;
1676         adapter->total_tx_packets = 0;
1677
1678         if (!e1000_clean_tx_irq(adapter))
1679                 /* Ring was not completely cleaned, so fire another interrupt */
1680                 ew32(ICS, tx_ring->ims_val);
1681
1682         return IRQ_HANDLED;
1683 }
1684
1685 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1686 {
1687         struct net_device *netdev = data;
1688         struct e1000_adapter *adapter = netdev_priv(netdev);
1689
1690         /* Write the ITR value calculated at the end of the
1691          * previous interrupt.
1692          */
1693         if (adapter->rx_ring->set_itr) {
1694                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1695                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1696                 adapter->rx_ring->set_itr = 0;
1697         }
1698
1699         if (napi_schedule_prep(&adapter->napi)) {
1700                 adapter->total_rx_bytes = 0;
1701                 adapter->total_rx_packets = 0;
1702                 __napi_schedule(&adapter->napi);
1703         }
1704         return IRQ_HANDLED;
1705 }
1706
1707 /**
1708  * e1000_configure_msix - Configure MSI-X hardware
1709  *
1710  * e1000_configure_msix sets up the hardware to properly
1711  * generate MSI-X interrupts.
1712  **/
1713 static void e1000_configure_msix(struct e1000_adapter *adapter)
1714 {
1715         struct e1000_hw *hw = &adapter->hw;
1716         struct e1000_ring *rx_ring = adapter->rx_ring;
1717         struct e1000_ring *tx_ring = adapter->tx_ring;
1718         int vector = 0;
1719         u32 ctrl_ext, ivar = 0;
1720
1721         adapter->eiac_mask = 0;
1722
1723         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1724         if (hw->mac.type == e1000_82574) {
1725                 u32 rfctl = er32(RFCTL);
1726                 rfctl |= E1000_RFCTL_ACK_DIS;
1727                 ew32(RFCTL, rfctl);
1728         }
1729
1730 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1731         /* Configure Rx vector */
1732         rx_ring->ims_val = E1000_IMS_RXQ0;
1733         adapter->eiac_mask |= rx_ring->ims_val;
1734         if (rx_ring->itr_val)
1735                 writel(1000000000 / (rx_ring->itr_val * 256),
1736                        hw->hw_addr + rx_ring->itr_register);
1737         else
1738                 writel(1, hw->hw_addr + rx_ring->itr_register);
1739         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1740
1741         /* Configure Tx vector */
1742         tx_ring->ims_val = E1000_IMS_TXQ0;
1743         vector++;
1744         if (tx_ring->itr_val)
1745                 writel(1000000000 / (tx_ring->itr_val * 256),
1746                        hw->hw_addr + tx_ring->itr_register);
1747         else
1748                 writel(1, hw->hw_addr + tx_ring->itr_register);
1749         adapter->eiac_mask |= tx_ring->ims_val;
1750         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1751
1752         /* set vector for Other Causes, e.g. link changes */
1753         vector++;
1754         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1755         if (rx_ring->itr_val)
1756                 writel(1000000000 / (rx_ring->itr_val * 256),
1757                        hw->hw_addr + E1000_EITR_82574(vector));
1758         else
1759                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1760
1761         /* Cause Tx interrupts on every write back */
1762         ivar |= (1 << 31);
1763
1764         ew32(IVAR, ivar);
1765
1766         /* enable MSI-X PBA support */
1767         ctrl_ext = er32(CTRL_EXT);
1768         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1769
1770         /* Auto-Mask Other interrupts upon ICR read */
1771 #define E1000_EIAC_MASK_82574   0x01F00000
1772         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1773         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1774         ew32(CTRL_EXT, ctrl_ext);
1775         e1e_flush();
1776 }
1777
1778 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1779 {
1780         if (adapter->msix_entries) {
1781                 pci_disable_msix(adapter->pdev);
1782                 kfree(adapter->msix_entries);
1783                 adapter->msix_entries = NULL;
1784         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1785                 pci_disable_msi(adapter->pdev);
1786                 adapter->flags &= ~FLAG_MSI_ENABLED;
1787         }
1788 }
1789
1790 /**
1791  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1792  *
1793  * Attempt to configure interrupts using the best available
1794  * capabilities of the hardware and kernel.
1795  **/
1796 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1797 {
1798         int err;
1799         int i;
1800
1801         switch (adapter->int_mode) {
1802         case E1000E_INT_MODE_MSIX:
1803                 if (adapter->flags & FLAG_HAS_MSIX) {
1804                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1805                         adapter->msix_entries = kcalloc(adapter->num_vectors,
1806                                                       sizeof(struct msix_entry),
1807                                                       GFP_KERNEL);
1808                         if (adapter->msix_entries) {
1809                                 for (i = 0; i < adapter->num_vectors; i++)
1810                                         adapter->msix_entries[i].entry = i;
1811
1812                                 err = pci_enable_msix(adapter->pdev,
1813                                                       adapter->msix_entries,
1814                                                       adapter->num_vectors);
1815                                 if (err == 0)
1816                                         return;
1817                         }
1818                         /* MSI-X failed, so fall through and try MSI */
1819                         e_err("Failed to initialize MSI-X interrupts.  "
1820                               "Falling back to MSI interrupts.\n");
1821                         e1000e_reset_interrupt_capability(adapter);
1822                 }
1823                 adapter->int_mode = E1000E_INT_MODE_MSI;
1824                 /* Fall through */
1825         case E1000E_INT_MODE_MSI:
1826                 if (!pci_enable_msi(adapter->pdev)) {
1827                         adapter->flags |= FLAG_MSI_ENABLED;
1828                 } else {
1829                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1830                         e_err("Failed to initialize MSI interrupts.  Falling "
1831                               "back to legacy interrupts.\n");
1832                 }
1833                 /* Fall through */
1834         case E1000E_INT_MODE_LEGACY:
1835                 /* Don't do anything; this is the system default */
1836                 break;
1837         }
1838
1839         /* store the number of vectors being used */
1840         adapter->num_vectors = 1;
1841 }
1842
1843 /**
1844  * e1000_request_msix - Initialize MSI-X interrupts
1845  *
1846  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1847  * kernel.
1848  **/
1849 static int e1000_request_msix(struct e1000_adapter *adapter)
1850 {
1851         struct net_device *netdev = adapter->netdev;
1852         int err = 0, vector = 0;
1853
1854         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1855                 snprintf(adapter->rx_ring->name,
1856                          sizeof(adapter->rx_ring->name) - 1,
1857                          "%s-rx-0", netdev->name);
1858         else
1859                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1860         err = request_irq(adapter->msix_entries[vector].vector,
1861                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1862                           netdev);
1863         if (err)
1864                 goto out;
1865         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1866         adapter->rx_ring->itr_val = adapter->itr;
1867         vector++;
1868
1869         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1870                 snprintf(adapter->tx_ring->name,
1871                          sizeof(adapter->tx_ring->name) - 1,
1872                          "%s-tx-0", netdev->name);
1873         else
1874                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1875         err = request_irq(adapter->msix_entries[vector].vector,
1876                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1877                           netdev);
1878         if (err)
1879                 goto out;
1880         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1881         adapter->tx_ring->itr_val = adapter->itr;
1882         vector++;
1883
1884         err = request_irq(adapter->msix_entries[vector].vector,
1885                           e1000_msix_other, 0, netdev->name, netdev);
1886         if (err)
1887                 goto out;
1888
1889         e1000_configure_msix(adapter);
1890         return 0;
1891 out:
1892         return err;
1893 }
1894
1895 /**
1896  * e1000_request_irq - initialize interrupts
1897  *
1898  * Attempts to configure interrupts using the best available
1899  * capabilities of the hardware and kernel.
1900  **/
1901 static int e1000_request_irq(struct e1000_adapter *adapter)
1902 {
1903         struct net_device *netdev = adapter->netdev;
1904         int err;
1905
1906         if (adapter->msix_entries) {
1907                 err = e1000_request_msix(adapter);
1908                 if (!err)
1909                         return err;
1910                 /* fall back to MSI */
1911                 e1000e_reset_interrupt_capability(adapter);
1912                 adapter->int_mode = E1000E_INT_MODE_MSI;
1913                 e1000e_set_interrupt_capability(adapter);
1914         }
1915         if (adapter->flags & FLAG_MSI_ENABLED) {
1916                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1917                                   netdev->name, netdev);
1918                 if (!err)
1919                         return err;
1920
1921                 /* fall back to legacy interrupt */
1922                 e1000e_reset_interrupt_capability(adapter);
1923                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1924         }
1925
1926         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1927                           netdev->name, netdev);
1928         if (err)
1929                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1930
1931         return err;
1932 }
1933
1934 static void e1000_free_irq(struct e1000_adapter *adapter)
1935 {
1936         struct net_device *netdev = adapter->netdev;
1937
1938         if (adapter->msix_entries) {
1939                 int vector = 0;
1940
1941                 free_irq(adapter->msix_entries[vector].vector, netdev);
1942                 vector++;
1943
1944                 free_irq(adapter->msix_entries[vector].vector, netdev);
1945                 vector++;
1946
1947                 /* Other Causes interrupt vector */
1948                 free_irq(adapter->msix_entries[vector].vector, netdev);
1949                 return;
1950         }
1951
1952         free_irq(adapter->pdev->irq, netdev);
1953 }
1954
1955 /**
1956  * e1000_irq_disable - Mask off interrupt generation on the NIC
1957  **/
1958 static void e1000_irq_disable(struct e1000_adapter *adapter)
1959 {
1960         struct e1000_hw *hw = &adapter->hw;
1961
1962         ew32(IMC, ~0);
1963         if (adapter->msix_entries)
1964                 ew32(EIAC_82574, 0);
1965         e1e_flush();
1966
1967         if (adapter->msix_entries) {
1968                 int i;
1969                 for (i = 0; i < adapter->num_vectors; i++)
1970                         synchronize_irq(adapter->msix_entries[i].vector);
1971         } else {
1972                 synchronize_irq(adapter->pdev->irq);
1973         }
1974 }
1975
1976 /**
1977  * e1000_irq_enable - Enable default interrupt generation settings
1978  **/
1979 static void e1000_irq_enable(struct e1000_adapter *adapter)
1980 {
1981         struct e1000_hw *hw = &adapter->hw;
1982
1983         if (adapter->msix_entries) {
1984                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1985                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1986         } else {
1987                 ew32(IMS, IMS_ENABLE_MASK);
1988         }
1989         e1e_flush();
1990 }
1991
1992 /**
1993  * e1000e_get_hw_control - get control of the h/w from f/w
1994  * @adapter: address of board private structure
1995  *
1996  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1997  * For ASF and Pass Through versions of f/w this means that
1998  * the driver is loaded. For AMT version (only with 82573)
1999  * of the f/w this means that the network i/f is open.
2000  **/
2001 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2002 {
2003         struct e1000_hw *hw = &adapter->hw;
2004         u32 ctrl_ext;
2005         u32 swsm;
2006
2007         /* Let firmware know the driver has taken over */
2008         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2009                 swsm = er32(SWSM);
2010                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2011         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2012                 ctrl_ext = er32(CTRL_EXT);
2013                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2014         }
2015 }
2016
2017 /**
2018  * e1000e_release_hw_control - release control of the h/w to f/w
2019  * @adapter: address of board private structure
2020  *
2021  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2022  * For ASF and Pass Through versions of f/w this means that the
2023  * driver is no longer loaded. For AMT version (only with 82573) i
2024  * of the f/w this means that the network i/f is closed.
2025  *
2026  **/
2027 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2028 {
2029         struct e1000_hw *hw = &adapter->hw;
2030         u32 ctrl_ext;
2031         u32 swsm;
2032
2033         /* Let firmware taken over control of h/w */
2034         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2035                 swsm = er32(SWSM);
2036                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2037         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2038                 ctrl_ext = er32(CTRL_EXT);
2039                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2040         }
2041 }
2042
2043 /**
2044  * @e1000_alloc_ring - allocate memory for a ring structure
2045  **/
2046 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2047                                 struct e1000_ring *ring)
2048 {
2049         struct pci_dev *pdev = adapter->pdev;
2050
2051         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2052                                         GFP_KERNEL);
2053         if (!ring->desc)
2054                 return -ENOMEM;
2055
2056         return 0;
2057 }
2058
2059 /**
2060  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2061  * @adapter: board private structure
2062  *
2063  * Return 0 on success, negative on failure
2064  **/
2065 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2066 {
2067         struct e1000_ring *tx_ring = adapter->tx_ring;
2068         int err = -ENOMEM, size;
2069
2070         size = sizeof(struct e1000_buffer) * tx_ring->count;
2071         tx_ring->buffer_info = vzalloc(size);
2072         if (!tx_ring->buffer_info)
2073                 goto err;
2074
2075         /* round up to nearest 4K */
2076         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2077         tx_ring->size = ALIGN(tx_ring->size, 4096);
2078
2079         err = e1000_alloc_ring_dma(adapter, tx_ring);
2080         if (err)
2081                 goto err;
2082
2083         tx_ring->next_to_use = 0;
2084         tx_ring->next_to_clean = 0;
2085
2086         return 0;
2087 err:
2088         vfree(tx_ring->buffer_info);
2089         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2090         return err;
2091 }
2092
2093 /**
2094  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2095  * @adapter: board private structure
2096  *
2097  * Returns 0 on success, negative on failure
2098  **/
2099 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2100 {
2101         struct e1000_ring *rx_ring = adapter->rx_ring;
2102         struct e1000_buffer *buffer_info;
2103         int i, size, desc_len, err = -ENOMEM;
2104
2105         size = sizeof(struct e1000_buffer) * rx_ring->count;
2106         rx_ring->buffer_info = vzalloc(size);
2107         if (!rx_ring->buffer_info)
2108                 goto err;
2109
2110         for (i = 0; i < rx_ring->count; i++) {
2111                 buffer_info = &rx_ring->buffer_info[i];
2112                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2113                                                 sizeof(struct e1000_ps_page),
2114                                                 GFP_KERNEL);
2115                 if (!buffer_info->ps_pages)
2116                         goto err_pages;
2117         }
2118
2119         desc_len = sizeof(union e1000_rx_desc_packet_split);
2120
2121         /* Round up to nearest 4K */
2122         rx_ring->size = rx_ring->count * desc_len;
2123         rx_ring->size = ALIGN(rx_ring->size, 4096);
2124
2125         err = e1000_alloc_ring_dma(adapter, rx_ring);
2126         if (err)
2127                 goto err_pages;
2128
2129         rx_ring->next_to_clean = 0;
2130         rx_ring->next_to_use = 0;
2131         rx_ring->rx_skb_top = NULL;
2132
2133         return 0;
2134
2135 err_pages:
2136         for (i = 0; i < rx_ring->count; i++) {
2137                 buffer_info = &rx_ring->buffer_info[i];
2138                 kfree(buffer_info->ps_pages);
2139         }
2140 err:
2141         vfree(rx_ring->buffer_info);
2142         e_err("Unable to allocate memory for the receive descriptor ring\n");
2143         return err;
2144 }
2145
2146 /**
2147  * e1000_clean_tx_ring - Free Tx Buffers
2148  * @adapter: board private structure
2149  **/
2150 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2151 {
2152         struct e1000_ring *tx_ring = adapter->tx_ring;
2153         struct e1000_buffer *buffer_info;
2154         unsigned long size;
2155         unsigned int i;
2156
2157         for (i = 0; i < tx_ring->count; i++) {
2158                 buffer_info = &tx_ring->buffer_info[i];
2159                 e1000_put_txbuf(adapter, buffer_info);
2160         }
2161
2162         size = sizeof(struct e1000_buffer) * tx_ring->count;
2163         memset(tx_ring->buffer_info, 0, size);
2164
2165         memset(tx_ring->desc, 0, tx_ring->size);
2166
2167         tx_ring->next_to_use = 0;
2168         tx_ring->next_to_clean = 0;
2169
2170         writel(0, adapter->hw.hw_addr + tx_ring->head);
2171         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2172 }
2173
2174 /**
2175  * e1000e_free_tx_resources - Free Tx Resources per Queue
2176  * @adapter: board private structure
2177  *
2178  * Free all transmit software resources
2179  **/
2180 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2181 {
2182         struct pci_dev *pdev = adapter->pdev;
2183         struct e1000_ring *tx_ring = adapter->tx_ring;
2184
2185         e1000_clean_tx_ring(adapter);
2186
2187         vfree(tx_ring->buffer_info);
2188         tx_ring->buffer_info = NULL;
2189
2190         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2191                           tx_ring->dma);
2192         tx_ring->desc = NULL;
2193 }
2194
2195 /**
2196  * e1000e_free_rx_resources - Free Rx Resources
2197  * @adapter: board private structure
2198  *
2199  * Free all receive software resources
2200  **/
2201
2202 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2203 {
2204         struct pci_dev *pdev = adapter->pdev;
2205         struct e1000_ring *rx_ring = adapter->rx_ring;
2206         int i;
2207
2208         e1000_clean_rx_ring(adapter);
2209
2210         for (i = 0; i < rx_ring->count; i++)
2211                 kfree(rx_ring->buffer_info[i].ps_pages);
2212
2213         vfree(rx_ring->buffer_info);
2214         rx_ring->buffer_info = NULL;
2215
2216         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2217                           rx_ring->dma);
2218         rx_ring->desc = NULL;
2219 }
2220
2221 /**
2222  * e1000_update_itr - update the dynamic ITR value based on statistics
2223  * @adapter: pointer to adapter
2224  * @itr_setting: current adapter->itr
2225  * @packets: the number of packets during this measurement interval
2226  * @bytes: the number of bytes during this measurement interval
2227  *
2228  *      Stores a new ITR value based on packets and byte
2229  *      counts during the last interrupt.  The advantage of per interrupt
2230  *      computation is faster updates and more accurate ITR for the current
2231  *      traffic pattern.  Constants in this function were computed
2232  *      based on theoretical maximum wire speed and thresholds were set based
2233  *      on testing data as well as attempting to minimize response time
2234  *      while increasing bulk throughput.  This functionality is controlled
2235  *      by the InterruptThrottleRate module parameter.
2236  **/
2237 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2238                                      u16 itr_setting, int packets,
2239                                      int bytes)
2240 {
2241         unsigned int retval = itr_setting;
2242
2243         if (packets == 0)
2244                 goto update_itr_done;
2245
2246         switch (itr_setting) {
2247         case lowest_latency:
2248                 /* handle TSO and jumbo frames */
2249                 if (bytes/packets > 8000)
2250                         retval = bulk_latency;
2251                 else if ((packets < 5) && (bytes > 512))
2252                         retval = low_latency;
2253                 break;
2254         case low_latency:  /* 50 usec aka 20000 ints/s */
2255                 if (bytes > 10000) {
2256                         /* this if handles the TSO accounting */
2257                         if (bytes/packets > 8000)
2258                                 retval = bulk_latency;
2259                         else if ((packets < 10) || ((bytes/packets) > 1200))
2260                                 retval = bulk_latency;
2261                         else if ((packets > 35))
2262                                 retval = lowest_latency;
2263                 } else if (bytes/packets > 2000) {
2264                         retval = bulk_latency;
2265                 } else if (packets <= 2 && bytes < 512) {
2266                         retval = lowest_latency;
2267                 }
2268                 break;
2269         case bulk_latency: /* 250 usec aka 4000 ints/s */
2270                 if (bytes > 25000) {
2271                         if (packets > 35)
2272                                 retval = low_latency;
2273                 } else if (bytes < 6000) {
2274                         retval = low_latency;
2275                 }
2276                 break;
2277         }
2278
2279 update_itr_done:
2280         return retval;
2281 }
2282
2283 static void e1000_set_itr(struct e1000_adapter *adapter)
2284 {
2285         struct e1000_hw *hw = &adapter->hw;
2286         u16 current_itr;
2287         u32 new_itr = adapter->itr;
2288
2289         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2290         if (adapter->link_speed != SPEED_1000) {
2291                 current_itr = 0;
2292                 new_itr = 4000;
2293                 goto set_itr_now;
2294         }
2295
2296         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2297                 new_itr = 0;
2298                 goto set_itr_now;
2299         }
2300
2301         adapter->tx_itr = e1000_update_itr(adapter,
2302                                     adapter->tx_itr,
2303                                     adapter->total_tx_packets,
2304                                     adapter->total_tx_bytes);
2305         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2306         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2307                 adapter->tx_itr = low_latency;
2308
2309         adapter->rx_itr = e1000_update_itr(adapter,
2310                                     adapter->rx_itr,
2311                                     adapter->total_rx_packets,
2312                                     adapter->total_rx_bytes);
2313         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2314         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2315                 adapter->rx_itr = low_latency;
2316
2317         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2318
2319         switch (current_itr) {
2320         /* counts and packets in update_itr are dependent on these numbers */
2321         case lowest_latency:
2322                 new_itr = 70000;
2323                 break;
2324         case low_latency:
2325                 new_itr = 20000; /* aka hwitr = ~200 */
2326                 break;
2327         case bulk_latency:
2328                 new_itr = 4000;
2329                 break;
2330         default:
2331                 break;
2332         }
2333
2334 set_itr_now:
2335         if (new_itr != adapter->itr) {
2336                 /*
2337                  * this attempts to bias the interrupt rate towards Bulk
2338                  * by adding intermediate steps when interrupt rate is
2339                  * increasing
2340                  */
2341                 new_itr = new_itr > adapter->itr ?
2342                              min(adapter->itr + (new_itr >> 2), new_itr) :
2343                              new_itr;
2344                 adapter->itr = new_itr;
2345                 adapter->rx_ring->itr_val = new_itr;
2346                 if (adapter->msix_entries)
2347                         adapter->rx_ring->set_itr = 1;
2348                 else
2349                         if (new_itr)
2350                                 ew32(ITR, 1000000000 / (new_itr * 256));
2351                         else
2352                                 ew32(ITR, 0);
2353         }
2354 }
2355
2356 /**
2357  * e1000_alloc_queues - Allocate memory for all rings
2358  * @adapter: board private structure to initialize
2359  **/
2360 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2361 {
2362         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2363         if (!adapter->tx_ring)
2364                 goto err;
2365
2366         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2367         if (!adapter->rx_ring)
2368                 goto err;
2369
2370         return 0;
2371 err:
2372         e_err("Unable to allocate memory for queues\n");
2373         kfree(adapter->rx_ring);
2374         kfree(adapter->tx_ring);
2375         return -ENOMEM;
2376 }
2377
2378 /**
2379  * e1000_clean - NAPI Rx polling callback
2380  * @napi: struct associated with this polling callback
2381  * @budget: amount of packets driver is allowed to process this poll
2382  **/
2383 static int e1000_clean(struct napi_struct *napi, int budget)
2384 {
2385         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2386         struct e1000_hw *hw = &adapter->hw;
2387         struct net_device *poll_dev = adapter->netdev;
2388         int tx_cleaned = 1, work_done = 0;
2389
2390         adapter = netdev_priv(poll_dev);
2391
2392         if (adapter->msix_entries &&
2393             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2394                 goto clean_rx;
2395
2396         tx_cleaned = e1000_clean_tx_irq(adapter);
2397
2398 clean_rx:
2399         adapter->clean_rx(adapter, &work_done, budget);
2400
2401         if (!tx_cleaned)
2402                 work_done = budget;
2403
2404         /* If budget not fully consumed, exit the polling mode */
2405         if (work_done < budget) {
2406                 if (adapter->itr_setting & 3)
2407                         e1000_set_itr(adapter);
2408                 napi_complete(napi);
2409                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2410                         if (adapter->msix_entries)
2411                                 ew32(IMS, adapter->rx_ring->ims_val);
2412                         else
2413                                 e1000_irq_enable(adapter);
2414                 }
2415         }
2416
2417         return work_done;
2418 }
2419
2420 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2421 {
2422         struct e1000_adapter *adapter = netdev_priv(netdev);
2423         struct e1000_hw *hw = &adapter->hw;
2424         u32 vfta, index;
2425
2426         /* don't update vlan cookie if already programmed */
2427         if ((adapter->hw.mng_cookie.status &
2428              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2429             (vid == adapter->mng_vlan_id))
2430                 return;
2431
2432         /* add VID to filter table */
2433         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2434                 index = (vid >> 5) & 0x7F;
2435                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2436                 vfta |= (1 << (vid & 0x1F));
2437                 hw->mac.ops.write_vfta(hw, index, vfta);
2438         }
2439
2440         set_bit(vid, adapter->active_vlans);
2441 }
2442
2443 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2444 {
2445         struct e1000_adapter *adapter = netdev_priv(netdev);
2446         struct e1000_hw *hw = &adapter->hw;
2447         u32 vfta, index;
2448
2449         if ((adapter->hw.mng_cookie.status &
2450              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2451             (vid == adapter->mng_vlan_id)) {
2452                 /* release control to f/w */
2453                 e1000e_release_hw_control(adapter);
2454                 return;
2455         }
2456
2457         /* remove VID from filter table */
2458         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2459                 index = (vid >> 5) & 0x7F;
2460                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2461                 vfta &= ~(1 << (vid & 0x1F));
2462                 hw->mac.ops.write_vfta(hw, index, vfta);
2463         }
2464
2465         clear_bit(vid, adapter->active_vlans);
2466 }
2467
2468 /**
2469  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2470  * @adapter: board private structure to initialize
2471  **/
2472 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2473 {
2474         struct net_device *netdev = adapter->netdev;
2475         struct e1000_hw *hw = &adapter->hw;
2476         u32 rctl;
2477
2478         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2479                 /* disable VLAN receive filtering */
2480                 rctl = er32(RCTL);
2481                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2482                 ew32(RCTL, rctl);
2483
2484                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2485                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2486                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2487                 }
2488         }
2489 }
2490
2491 /**
2492  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2493  * @adapter: board private structure to initialize
2494  **/
2495 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2496 {
2497         struct e1000_hw *hw = &adapter->hw;
2498         u32 rctl;
2499
2500         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2501                 /* enable VLAN receive filtering */
2502                 rctl = er32(RCTL);
2503                 rctl |= E1000_RCTL_VFE;
2504                 rctl &= ~E1000_RCTL_CFIEN;
2505                 ew32(RCTL, rctl);
2506         }
2507 }
2508
2509 /**
2510  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2511  * @adapter: board private structure to initialize
2512  **/
2513 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2514 {
2515         struct e1000_hw *hw = &adapter->hw;
2516         u32 ctrl;
2517
2518         /* disable VLAN tag insert/strip */
2519         ctrl = er32(CTRL);
2520         ctrl &= ~E1000_CTRL_VME;
2521         ew32(CTRL, ctrl);
2522 }
2523
2524 /**
2525  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2526  * @adapter: board private structure to initialize
2527  **/
2528 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2529 {
2530         struct e1000_hw *hw = &adapter->hw;
2531         u32 ctrl;
2532
2533         /* enable VLAN tag insert/strip */
2534         ctrl = er32(CTRL);
2535         ctrl |= E1000_CTRL_VME;
2536         ew32(CTRL, ctrl);
2537 }
2538
2539 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2540 {
2541         struct net_device *netdev = adapter->netdev;
2542         u16 vid = adapter->hw.mng_cookie.vlan_id;
2543         u16 old_vid = adapter->mng_vlan_id;
2544
2545         if (adapter->hw.mng_cookie.status &
2546             E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2547                 e1000_vlan_rx_add_vid(netdev, vid);
2548                 adapter->mng_vlan_id = vid;
2549         }
2550
2551         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2552                 e1000_vlan_rx_kill_vid(netdev, old_vid);
2553 }
2554
2555 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2556 {
2557         u16 vid;
2558
2559         e1000_vlan_rx_add_vid(adapter->netdev, 0);
2560
2561         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2562                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2563 }
2564
2565 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2566 {
2567         struct e1000_hw *hw = &adapter->hw;
2568         u32 manc, manc2h, mdef, i, j;
2569
2570         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2571                 return;
2572
2573         manc = er32(MANC);
2574
2575         /*
2576          * enable receiving management packets to the host. this will probably
2577          * generate destination unreachable messages from the host OS, but
2578          * the packets will be handled on SMBUS
2579          */
2580         manc |= E1000_MANC_EN_MNG2HOST;
2581         manc2h = er32(MANC2H);
2582
2583         switch (hw->mac.type) {
2584         default:
2585                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2586                 break;
2587         case e1000_82574:
2588         case e1000_82583:
2589                 /*
2590                  * Check if IPMI pass-through decision filter already exists;
2591                  * if so, enable it.
2592                  */
2593                 for (i = 0, j = 0; i < 8; i++) {
2594                         mdef = er32(MDEF(i));
2595
2596                         /* Ignore filters with anything other than IPMI ports */
2597                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2598                                 continue;
2599
2600                         /* Enable this decision filter in MANC2H */
2601                         if (mdef)
2602                                 manc2h |= (1 << i);
2603
2604                         j |= mdef;
2605                 }
2606
2607                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2608                         break;
2609
2610                 /* Create new decision filter in an empty filter */
2611                 for (i = 0, j = 0; i < 8; i++)
2612                         if (er32(MDEF(i)) == 0) {
2613                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2614                                                E1000_MDEF_PORT_664));
2615                                 manc2h |= (1 << 1);
2616                                 j++;
2617                                 break;
2618                         }
2619
2620                 if (!j)
2621                         e_warn("Unable to create IPMI pass-through filter\n");
2622                 break;
2623         }
2624
2625         ew32(MANC2H, manc2h);
2626         ew32(MANC, manc);
2627 }
2628
2629 /**
2630  * e1000_configure_tx - Configure Transmit Unit after Reset
2631  * @adapter: board private structure
2632  *
2633  * Configure the Tx unit of the MAC after a reset.
2634  **/
2635 static void e1000_configure_tx(struct e1000_adapter *adapter)
2636 {
2637         struct e1000_hw *hw = &adapter->hw;
2638         struct e1000_ring *tx_ring = adapter->tx_ring;
2639         u64 tdba;
2640         u32 tdlen, tctl, tipg, tarc;
2641         u32 ipgr1, ipgr2;
2642
2643         /* Setup the HW Tx Head and Tail descriptor pointers */
2644         tdba = tx_ring->dma;
2645         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2646         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2647         ew32(TDBAH, (tdba >> 32));
2648         ew32(TDLEN, tdlen);
2649         ew32(TDH, 0);
2650         ew32(TDT, 0);
2651         tx_ring->head = E1000_TDH;
2652         tx_ring->tail = E1000_TDT;
2653
2654         /* Set the default values for the Tx Inter Packet Gap timer */
2655         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2656         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2657         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2658
2659         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2660                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2661
2662         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2663         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2664         ew32(TIPG, tipg);
2665
2666         /* Set the Tx Interrupt Delay register */
2667         ew32(TIDV, adapter->tx_int_delay);
2668         /* Tx irq moderation */
2669         ew32(TADV, adapter->tx_abs_int_delay);
2670
2671         if (adapter->flags2 & FLAG2_DMA_BURST) {
2672                 u32 txdctl = er32(TXDCTL(0));
2673                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2674                             E1000_TXDCTL_WTHRESH);
2675                 /*
2676                  * set up some performance related parameters to encourage the
2677                  * hardware to use the bus more efficiently in bursts, depends
2678                  * on the tx_int_delay to be enabled,
2679                  * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2680                  * hthresh = 1 ==> prefetch when one or more available
2681                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2682                  * BEWARE: this seems to work but should be considered first if
2683                  * there are Tx hangs or other Tx related bugs
2684                  */
2685                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2686                 ew32(TXDCTL(0), txdctl);
2687                 /* erratum work around: set txdctl the same for both queues */
2688                 ew32(TXDCTL(1), txdctl);
2689         }
2690
2691         /* Program the Transmit Control Register */
2692         tctl = er32(TCTL);
2693         tctl &= ~E1000_TCTL_CT;
2694         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2695                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2696
2697         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2698                 tarc = er32(TARC(0));
2699                 /*
2700                  * set the speed mode bit, we'll clear it if we're not at
2701                  * gigabit link later
2702                  */
2703 #define SPEED_MODE_BIT (1 << 21)
2704                 tarc |= SPEED_MODE_BIT;
2705                 ew32(TARC(0), tarc);
2706         }
2707
2708         /* errata: program both queues to unweighted RR */
2709         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2710                 tarc = er32(TARC(0));
2711                 tarc |= 1;
2712                 ew32(TARC(0), tarc);
2713                 tarc = er32(TARC(1));
2714                 tarc |= 1;
2715                 ew32(TARC(1), tarc);
2716         }
2717
2718         /* Setup Transmit Descriptor Settings for eop descriptor */
2719         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2720
2721         /* only set IDE if we are delaying interrupts using the timers */
2722         if (adapter->tx_int_delay)
2723                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2724
2725         /* enable Report Status bit */
2726         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2727
2728         ew32(TCTL, tctl);
2729
2730         e1000e_config_collision_dist(hw);
2731 }
2732
2733 /**
2734  * e1000_setup_rctl - configure the receive control registers
2735  * @adapter: Board private structure
2736  **/
2737 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2738                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2739 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2740 {
2741         struct e1000_hw *hw = &adapter->hw;
2742         u32 rctl, rfctl;
2743         u32 pages = 0;
2744
2745         /* Workaround Si errata on 82579 - configure jumbo frame flow */
2746         if (hw->mac.type == e1000_pch2lan) {
2747                 s32 ret_val;
2748
2749                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2750                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2751                 else
2752                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2753
2754                 if (ret_val)
2755                         e_dbg("failed to enable jumbo frame workaround mode\n");
2756         }
2757
2758         /* Program MC offset vector base */
2759         rctl = er32(RCTL);
2760         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2761         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2762                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2763                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2764
2765         /* Do not Store bad packets */
2766         rctl &= ~E1000_RCTL_SBP;
2767
2768         /* Enable Long Packet receive */
2769         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2770                 rctl &= ~E1000_RCTL_LPE;
2771         else
2772                 rctl |= E1000_RCTL_LPE;
2773
2774         /* Some systems expect that the CRC is included in SMBUS traffic. The
2775          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2776          * host memory when this is enabled
2777          */
2778         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2779                 rctl |= E1000_RCTL_SECRC;
2780
2781         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2782         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2783                 u16 phy_data;
2784
2785                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2786                 phy_data &= 0xfff8;
2787                 phy_data |= (1 << 2);
2788                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2789
2790                 e1e_rphy(hw, 22, &phy_data);
2791                 phy_data &= 0x0fff;
2792                 phy_data |= (1 << 14);
2793                 e1e_wphy(hw, 0x10, 0x2823);
2794                 e1e_wphy(hw, 0x11, 0x0003);
2795                 e1e_wphy(hw, 22, phy_data);
2796         }
2797
2798         /* Setup buffer sizes */
2799         rctl &= ~E1000_RCTL_SZ_4096;
2800         rctl |= E1000_RCTL_BSEX;
2801         switch (adapter->rx_buffer_len) {
2802         case 2048:
2803         default:
2804                 rctl |= E1000_RCTL_SZ_2048;
2805                 rctl &= ~E1000_RCTL_BSEX;
2806                 break;
2807         case 4096:
2808                 rctl |= E1000_RCTL_SZ_4096;
2809                 break;
2810         case 8192:
2811                 rctl |= E1000_RCTL_SZ_8192;
2812                 break;
2813         case 16384:
2814                 rctl |= E1000_RCTL_SZ_16384;
2815                 break;
2816         }
2817
2818         /*
2819          * 82571 and greater support packet-split where the protocol
2820          * header is placed in skb->data and the packet data is
2821          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2822          * In the case of a non-split, skb->data is linearly filled,
2823          * followed by the page buffers.  Therefore, skb->data is
2824          * sized to hold the largest protocol header.
2825          *
2826          * allocations using alloc_page take too long for regular MTU
2827          * so only enable packet split for jumbo frames
2828          *
2829          * Using pages when the page size is greater than 16k wastes
2830          * a lot of memory, since we allocate 3 pages at all times
2831          * per packet.
2832          */
2833         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2834         if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2835             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2836                 adapter->rx_ps_pages = pages;
2837         else
2838                 adapter->rx_ps_pages = 0;
2839
2840         if (adapter->rx_ps_pages) {
2841                 u32 psrctl = 0;
2842
2843                 /* Configure extra packet-split registers */
2844                 rfctl = er32(RFCTL);
2845                 rfctl |= E1000_RFCTL_EXTEN;
2846                 /*
2847                  * disable packet split support for IPv6 extension headers,
2848                  * because some malformed IPv6 headers can hang the Rx
2849                  */
2850                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2851                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2852
2853                 ew32(RFCTL, rfctl);
2854
2855                 /* Enable Packet split descriptors */
2856                 rctl |= E1000_RCTL_DTYP_PS;
2857
2858                 psrctl |= adapter->rx_ps_bsize0 >>
2859                         E1000_PSRCTL_BSIZE0_SHIFT;
2860
2861                 switch (adapter->rx_ps_pages) {
2862                 case 3:
2863                         psrctl |= PAGE_SIZE <<
2864                                 E1000_PSRCTL_BSIZE3_SHIFT;
2865                 case 2:
2866                         psrctl |= PAGE_SIZE <<
2867                                 E1000_PSRCTL_BSIZE2_SHIFT;
2868                 case 1:
2869                         psrctl |= PAGE_SIZE >>
2870                                 E1000_PSRCTL_BSIZE1_SHIFT;
2871                         break;
2872                 }
2873
2874                 ew32(PSRCTL, psrctl);
2875         }
2876
2877         ew32(RCTL, rctl);
2878         /* just started the receive unit, no need to restart */
2879         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2880 }
2881
2882 /**
2883  * e1000_configure_rx - Configure Receive Unit after Reset
2884  * @adapter: board private structure
2885  *
2886  * Configure the Rx unit of the MAC after a reset.
2887  **/
2888 static void e1000_configure_rx(struct e1000_adapter *adapter)
2889 {
2890         struct e1000_hw *hw = &adapter->hw;
2891         struct e1000_ring *rx_ring = adapter->rx_ring;
2892         u64 rdba;
2893         u32 rdlen, rctl, rxcsum, ctrl_ext;
2894
2895         if (adapter->rx_ps_pages) {
2896                 /* this is a 32 byte descriptor */
2897                 rdlen = rx_ring->count *
2898                     sizeof(union e1000_rx_desc_packet_split);
2899                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2900                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2901         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2902                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2903                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2904                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2905         } else {
2906                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2907                 adapter->clean_rx = e1000_clean_rx_irq;
2908                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2909         }
2910
2911         /* disable receives while setting up the descriptors */
2912         rctl = er32(RCTL);
2913         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2914         e1e_flush();
2915         usleep_range(10000, 20000);
2916
2917         if (adapter->flags2 & FLAG2_DMA_BURST) {
2918                 /*
2919                  * set the writeback threshold (only takes effect if the RDTR
2920                  * is set). set GRAN=1 and write back up to 0x4 worth, and
2921                  * enable prefetching of 0x20 Rx descriptors
2922                  * granularity = 01
2923                  * wthresh = 04,
2924                  * hthresh = 04,
2925                  * pthresh = 0x20
2926                  */
2927                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
2928                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
2929
2930                 /*
2931                  * override the delay timers for enabling bursting, only if
2932                  * the value was not set by the user via module options
2933                  */
2934                 if (adapter->rx_int_delay == DEFAULT_RDTR)
2935                         adapter->rx_int_delay = BURST_RDTR;
2936                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
2937                         adapter->rx_abs_int_delay = BURST_RADV;
2938         }
2939
2940         /* set the Receive Delay Timer Register */
2941         ew32(RDTR, adapter->rx_int_delay);
2942
2943         /* irq moderation */
2944         ew32(RADV, adapter->rx_abs_int_delay);
2945         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
2946                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2947
2948         ctrl_ext = er32(CTRL_EXT);
2949         /* Auto-Mask interrupts upon ICR access */
2950         ctrl_ext |= E1000_CTRL_EXT_IAME;
2951         ew32(IAM, 0xffffffff);
2952         ew32(CTRL_EXT, ctrl_ext);
2953         e1e_flush();
2954
2955         /*
2956          * Setup the HW Rx Head and Tail Descriptor Pointers and
2957          * the Base and Length of the Rx Descriptor Ring
2958          */
2959         rdba = rx_ring->dma;
2960         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2961         ew32(RDBAH, (rdba >> 32));
2962         ew32(RDLEN, rdlen);
2963         ew32(RDH, 0);
2964         ew32(RDT, 0);
2965         rx_ring->head = E1000_RDH;
2966         rx_ring->tail = E1000_RDT;
2967
2968         /* Enable Receive Checksum Offload for TCP and UDP */
2969         rxcsum = er32(RXCSUM);
2970         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2971                 rxcsum |= E1000_RXCSUM_TUOFL;
2972
2973                 /*
2974                  * IPv4 payload checksum for UDP fragments must be
2975                  * used in conjunction with packet-split.
2976                  */
2977                 if (adapter->rx_ps_pages)
2978                         rxcsum |= E1000_RXCSUM_IPPCSE;
2979         } else {
2980                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2981                 /* no need to clear IPPCSE as it defaults to 0 */
2982         }
2983         ew32(RXCSUM, rxcsum);
2984
2985         /*
2986          * Enable early receives on supported devices, only takes effect when
2987          * packet size is equal or larger than the specified value (in 8 byte
2988          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2989          */
2990         if ((adapter->flags & FLAG_HAS_ERT) ||
2991             (adapter->hw.mac.type == e1000_pch2lan)) {
2992                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2993                         u32 rxdctl = er32(RXDCTL(0));
2994                         ew32(RXDCTL(0), rxdctl | 0x3);
2995                         if (adapter->flags & FLAG_HAS_ERT)
2996                                 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2997                         /*
2998                          * With jumbo frames and early-receive enabled,
2999                          * excessive C-state transition latencies result in
3000                          * dropped transactions.
3001                          */
3002                         pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3003                 } else {
3004                         pm_qos_update_request(&adapter->netdev->pm_qos_req,
3005                                               PM_QOS_DEFAULT_VALUE);
3006                 }
3007         }
3008
3009         /* Enable Receives */
3010         ew32(RCTL, rctl);
3011 }
3012
3013 /**
3014  *  e1000_update_mc_addr_list - Update Multicast addresses
3015  *  @hw: pointer to the HW structure
3016  *  @mc_addr_list: array of multicast addresses to program
3017  *  @mc_addr_count: number of multicast addresses to program
3018  *
3019  *  Updates the Multicast Table Array.
3020  *  The caller must have a packed mc_addr_list of multicast addresses.
3021  **/
3022 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3023                                       u32 mc_addr_count)
3024 {
3025         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3026 }
3027
3028 /**
3029  * e1000_set_multi - Multicast and Promiscuous mode set
3030  * @netdev: network interface device structure
3031  *
3032  * The set_multi entry point is called whenever the multicast address
3033  * list or the network interface flags are updated.  This routine is
3034  * responsible for configuring the hardware for proper multicast,
3035  * promiscuous mode, and all-multi behavior.
3036  **/
3037 static void e1000_set_multi(struct net_device *netdev)
3038 {
3039         struct e1000_adapter *adapter = netdev_priv(netdev);
3040         struct e1000_hw *hw = &adapter->hw;
3041         struct netdev_hw_addr *ha;
3042         u8  *mta_list;
3043         u32 rctl;
3044
3045         /* Check for Promiscuous and All Multicast modes */
3046
3047         rctl = er32(RCTL);
3048
3049         if (netdev->flags & IFF_PROMISC) {
3050                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3051                 rctl &= ~E1000_RCTL_VFE;
3052                 /* Do not hardware filter VLANs in promisc mode */
3053                 e1000e_vlan_filter_disable(adapter);
3054         } else {
3055                 if (netdev->flags & IFF_ALLMULTI) {
3056                         rctl |= E1000_RCTL_MPE;
3057                         rctl &= ~E1000_RCTL_UPE;
3058                 } else {
3059                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3060                 }
3061                 e1000e_vlan_filter_enable(adapter);
3062         }
3063
3064         ew32(RCTL, rctl);
3065
3066         if (!netdev_mc_empty(netdev)) {
3067                 int i = 0;
3068
3069                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3070                 if (!mta_list)
3071                         return;
3072
3073                 /* prepare a packed array of only addresses. */
3074                 netdev_for_each_mc_addr(ha, netdev)
3075                         memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3076
3077                 e1000_update_mc_addr_list(hw, mta_list, i);
3078                 kfree(mta_list);
3079         } else {
3080                 /*
3081                  * if we're called from probe, we might not have
3082                  * anything to do here, so clear out the list
3083                  */
3084                 e1000_update_mc_addr_list(hw, NULL, 0);
3085         }
3086
3087         if (netdev->features & NETIF_F_HW_VLAN_RX)
3088                 e1000e_vlan_strip_enable(adapter);
3089         else
3090                 e1000e_vlan_strip_disable(adapter);
3091 }
3092
3093 /**
3094  * e1000_configure - configure the hardware for Rx and Tx
3095  * @adapter: private board structure
3096  **/
3097 static void e1000_configure(struct e1000_adapter *adapter)
3098 {
3099         e1000_set_multi(adapter->netdev);
3100
3101         e1000_restore_vlan(adapter);
3102         e1000_init_manageability_pt(adapter);
3103
3104         e1000_configure_tx(adapter);
3105         e1000_setup_rctl(adapter);
3106         e1000_configure_rx(adapter);
3107         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3108 }
3109
3110 /**
3111  * e1000e_power_up_phy - restore link in case the phy was powered down
3112  * @adapter: address of board private structure
3113  *
3114  * The phy may be powered down to save power and turn off link when the
3115  * driver is unloaded and wake on lan is not enabled (among others)
3116  * *** this routine MUST be followed by a call to e1000e_reset ***
3117  **/
3118 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3119 {
3120         if (adapter->hw.phy.ops.power_up)
3121                 adapter->hw.phy.ops.power_up(&adapter->hw);
3122
3123         adapter->hw.mac.ops.setup_link(&adapter->hw);
3124 }
3125
3126 /**
3127  * e1000_power_down_phy - Power down the PHY
3128  *
3129  * Power down the PHY so no link is implied when interface is down.
3130  * The PHY cannot be powered down if management or WoL is active.
3131  */
3132 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3133 {
3134         /* WoL is enabled */
3135         if (adapter->wol)
3136                 return;
3137
3138         if (adapter->hw.phy.ops.power_down)
3139                 adapter->hw.phy.ops.power_down(&adapter->hw);
3140 }
3141
3142 /**
3143  * e1000e_reset - bring the hardware into a known good state
3144  *
3145  * This function boots the hardware and enables some settings that
3146  * require a configuration cycle of the hardware - those cannot be
3147  * set/changed during runtime. After reset the device needs to be
3148  * properly configured for Rx, Tx etc.
3149  */
3150 void e1000e_reset(struct e1000_adapter *adapter)
3151 {
3152         struct e1000_mac_info *mac = &adapter->hw.mac;
3153         struct e1000_fc_info *fc = &adapter->hw.fc;
3154         struct e1000_hw *hw = &adapter->hw;
3155         u32 tx_space, min_tx_space, min_rx_space;
3156         u32 pba = adapter->pba;
3157         u16 hwm;
3158
3159         /* reset Packet Buffer Allocation to default */
3160         ew32(PBA, pba);
3161
3162         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3163                 /*
3164                  * To maintain wire speed transmits, the Tx FIFO should be
3165                  * large enough to accommodate two full transmit packets,
3166                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3167                  * the Rx FIFO should be large enough to accommodate at least
3168                  * one full receive packet and is similarly rounded up and
3169                  * expressed in KB.
3170                  */
3171                 pba = er32(PBA);
3172                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3173                 tx_space = pba >> 16;
3174                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3175                 pba &= 0xffff;
3176                 /*
3177                  * the Tx fifo also stores 16 bytes of information about the Tx
3178                  * but don't include ethernet FCS because hardware appends it
3179                  */
3180                 min_tx_space = (adapter->max_frame_size +
3181                                 sizeof(struct e1000_tx_desc) -
3182                                 ETH_FCS_LEN) * 2;
3183                 min_tx_space = ALIGN(min_tx_space, 1024);
3184                 min_tx_space >>= 10;
3185                 /* software strips receive CRC, so leave room for it */
3186                 min_rx_space = adapter->max_frame_size;
3187                 min_rx_space = ALIGN(min_rx_space, 1024);
3188                 min_rx_space >>= 10;
3189
3190                 /*
3191                  * If current Tx allocation is less than the min Tx FIFO size,
3192                  * and the min Tx FIFO size is less than the current Rx FIFO
3193                  * allocation, take space away from current Rx allocation
3194                  */
3195                 if ((tx_space < min_tx_space) &&
3196                     ((min_tx_space - tx_space) < pba)) {
3197                         pba -= min_tx_space - tx_space;
3198
3199                         /*
3200                          * if short on Rx space, Rx wins and must trump Tx
3201                          * adjustment or use Early Receive if available
3202                          */
3203                         if ((pba < min_rx_space) &&
3204                             (!(adapter->flags & FLAG_HAS_ERT)))
3205                                 /* ERT enabled in e1000_configure_rx */
3206                                 pba = min_rx_space;
3207                 }
3208
3209                 ew32(PBA, pba);
3210         }
3211
3212         /*
3213          * flow control settings
3214          *
3215          * The high water mark must be low enough to fit one full frame
3216          * (or the size used for early receive) above it in the Rx FIFO.
3217          * Set it to the lower of:
3218          * - 90% of the Rx FIFO size, and
3219          * - the full Rx FIFO size minus the early receive size (for parts
3220          *   with ERT support assuming ERT set to E1000_ERT_2048), or
3221          * - the full Rx FIFO size minus one full frame
3222          */
3223         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3224                 fc->pause_time = 0xFFFF;
3225         else
3226                 fc->pause_time = E1000_FC_PAUSE_TIME;
3227         fc->send_xon = 1;
3228         fc->current_mode = fc->requested_mode;
3229
3230         switch (hw->mac.type) {
3231         default:
3232                 if ((adapter->flags & FLAG_HAS_ERT) &&
3233                     (adapter->netdev->mtu > ETH_DATA_LEN))
3234                         hwm = min(((pba << 10) * 9 / 10),
3235                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
3236                 else
3237                         hwm = min(((pba << 10) * 9 / 10),
3238                                   ((pba << 10) - adapter->max_frame_size));
3239
3240                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3241                 fc->low_water = fc->high_water - 8;
3242                 break;
3243         case e1000_pchlan:
3244                 /*
3245                  * Workaround PCH LOM adapter hangs with certain network
3246                  * loads.  If hangs persist, try disabling Tx flow control.
3247                  */
3248                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3249                         fc->high_water = 0x3500;
3250                         fc->low_water  = 0x1500;
3251                 } else {
3252                         fc->high_water = 0x5000;
3253                         fc->low_water  = 0x3000;
3254                 }
3255                 fc->refresh_time = 0x1000;
3256                 break;
3257         case e1000_pch2lan:
3258                 fc->high_water = 0x05C20;
3259                 fc->low_water = 0x05048;
3260                 fc->pause_time = 0x0650;
3261                 fc->refresh_time = 0x0400;
3262                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3263                         pba = 14;
3264                         ew32(PBA, pba);
3265                 }
3266                 break;
3267         }
3268
3269         /*
3270          * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3271          * fit in receive buffer and early-receive not supported.
3272          */
3273         if (adapter->itr_setting & 0x3) {
3274                 if (((adapter->max_frame_size * 2) > (pba << 10)) &&
3275                     !(adapter->flags & FLAG_HAS_ERT)) {
3276                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3277                                 dev_info(&adapter->pdev->dev,
3278                                         "Interrupt Throttle Rate turned off\n");
3279                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3280                                 ew32(ITR, 0);
3281                         }
3282                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3283                         dev_info(&adapter->pdev->dev,
3284                                  "Interrupt Throttle Rate turned on\n");
3285                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3286                         adapter->itr = 20000;
3287                         ew32(ITR, 1000000000 / (adapter->itr * 256));
3288                 }
3289         }
3290
3291         /* Allow time for pending master requests to run */
3292         mac->ops.reset_hw(hw);
3293
3294         /*
3295          * For parts with AMT enabled, let the firmware know
3296          * that the network interface is in control
3297          */
3298         if (adapter->flags & FLAG_HAS_AMT)
3299                 e1000e_get_hw_control(adapter);
3300
3301         ew32(WUC, 0);
3302
3303         if (mac->ops.init_hw(hw))
3304                 e_err("Hardware Error\n");
3305
3306         e1000_update_mng_vlan(adapter);
3307
3308         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3309         ew32(VET, ETH_P_8021Q);
3310
3311         e1000e_reset_adaptive(hw);
3312
3313         if (!netif_running(adapter->netdev) &&
3314             !test_bit(__E1000_TESTING, &adapter->state)) {
3315                 e1000_power_down_phy(adapter);
3316                 return;
3317         }
3318
3319         e1000_get_phy_info(hw);
3320
3321         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3322             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3323                 u16 phy_data = 0;
3324                 /*
3325                  * speed up time to link by disabling smart power down, ignore
3326                  * the return value of this function because there is nothing
3327                  * different we would do if it failed
3328                  */
3329                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3330                 phy_data &= ~IGP02E1000_PM_SPD;
3331                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3332         }
3333 }
3334
3335 int e1000e_up(struct e1000_adapter *adapter)
3336 {
3337         struct e1000_hw *hw = &adapter->hw;
3338
3339         /* hardware has been reset, we need to reload some things */
3340         e1000_configure(adapter);
3341
3342         clear_bit(__E1000_DOWN, &adapter->state);
3343
3344         napi_enable(&adapter->napi);
3345         if (adapter->msix_entries)
3346                 e1000_configure_msix(adapter);
3347         e1000_irq_enable(adapter);
3348
3349         netif_wake_queue(adapter->netdev);
3350
3351         /* fire a link change interrupt to start the watchdog */
3352         if (adapter->msix_entries)
3353                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3354         else
3355                 ew32(ICS, E1000_ICS_LSC);
3356
3357         return 0;
3358 }
3359
3360 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3361 {
3362         struct e1000_hw *hw = &adapter->hw;
3363
3364         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3365                 return;
3366
3367         /* flush pending descriptor writebacks to memory */
3368         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3369         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3370
3371         /* execute the writes immediately */
3372         e1e_flush();
3373 }
3374
3375 static void e1000e_update_stats(struct e1000_adapter *adapter);
3376
3377 void e1000e_down(struct e1000_adapter *adapter)
3378 {
3379         struct net_device *netdev = adapter->netdev;
3380         struct e1000_hw *hw = &adapter->hw;
3381         u32 tctl, rctl;
3382
3383         /*
3384          * signal that we're down so the interrupt handler does not
3385          * reschedule our watchdog timer
3386          */
3387         set_bit(__E1000_DOWN, &adapter->state);
3388
3389         /* disable receives in the hardware */
3390         rctl = er32(RCTL);
3391         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3392         /* flush and sleep below */
3393
3394         netif_stop_queue(netdev);
3395
3396         /* disable transmits in the hardware */
3397         tctl = er32(TCTL);
3398         tctl &= ~E1000_TCTL_EN;
3399         ew32(TCTL, tctl);
3400         /* flush both disables and wait for them to finish */
3401         e1e_flush();
3402         usleep_range(10000, 20000);
3403
3404         napi_disable(&adapter->napi);
3405         e1000_irq_disable(adapter);
3406
3407         del_timer_sync(&adapter->watchdog_timer);
3408         del_timer_sync(&adapter->phy_info_timer);
3409
3410         netif_carrier_off(netdev);
3411
3412         spin_lock(&adapter->stats64_lock);
3413         e1000e_update_stats(adapter);
3414         spin_unlock(&adapter->stats64_lock);
3415
3416         adapter->link_speed = 0;
3417         adapter->link_duplex = 0;
3418
3419         if (!pci_channel_offline(adapter->pdev))
3420                 e1000e_reset(adapter);
3421
3422         e1000e_flush_descriptors(adapter);
3423
3424         e1000_clean_tx_ring(adapter);
3425         e1000_clean_rx_ring(adapter);
3426
3427         /*
3428          * TODO: for power management, we could drop the link and
3429          * pci_disable_device here.
3430          */
3431 }
3432
3433 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3434 {
3435         might_sleep();
3436         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3437                 usleep_range(1000, 2000);
3438         e1000e_down(adapter);
3439         e1000e_up(adapter);
3440         clear_bit(__E1000_RESETTING, &adapter->state);
3441 }
3442
3443 /**
3444  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3445  * @adapter: board private structure to initialize
3446  *
3447  * e1000_sw_init initializes the Adapter private data structure.
3448  * Fields are initialized based on PCI device information and
3449  * OS network device settings (MTU size).
3450  **/
3451 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3452 {
3453         struct net_device *netdev = adapter->netdev;
3454
3455         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3456         adapter->rx_ps_bsize0 = 128;
3457         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3458         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3459
3460         spin_lock_init(&adapter->stats64_lock);
3461
3462         e1000e_set_interrupt_capability(adapter);
3463
3464         if (e1000_alloc_queues(adapter))
3465                 return -ENOMEM;
3466
3467         /* Explicitly disable IRQ since the NIC can be in any state. */
3468         e1000_irq_disable(adapter);
3469
3470         set_bit(__E1000_DOWN, &adapter->state);
3471         return 0;
3472 }
3473
3474 /**
3475  * e1000_intr_msi_test - Interrupt Handler
3476  * @irq: interrupt number
3477  * @data: pointer to a network interface device structure
3478  **/
3479 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3480 {
3481         struct net_device *netdev = data;
3482         struct e1000_adapter *adapter = netdev_priv(netdev);
3483         struct e1000_hw *hw = &adapter->hw;
3484         u32 icr = er32(ICR);
3485
3486         e_dbg("icr is %08X\n", icr);
3487         if (icr & E1000_ICR_RXSEQ) {
3488                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3489                 wmb();
3490         }
3491
3492         return IRQ_HANDLED;
3493 }
3494
3495 /**
3496  * e1000_test_msi_interrupt - Returns 0 for successful test
3497  * @adapter: board private struct
3498  *
3499  * code flow taken from tg3.c
3500  **/
3501 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3502 {
3503         struct net_device *netdev = adapter->netdev;
3504         struct e1000_hw *hw = &adapter->hw;
3505         int err;
3506
3507         /* poll_enable hasn't been called yet, so don't need disable */
3508         /* clear any pending events */
3509         er32(ICR);
3510
3511         /* free the real vector and request a test handler */
3512         e1000_free_irq(adapter);
3513         e1000e_reset_interrupt_capability(adapter);
3514
3515         /* Assume that the test fails, if it succeeds then the test
3516          * MSI irq handler will unset this flag */
3517         adapter->flags |= FLAG_MSI_TEST_FAILED;
3518
3519         err = pci_enable_msi(adapter->pdev);
3520         if (err)
3521                 goto msi_test_failed;
3522
3523         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3524                           netdev->name, netdev);
3525         if (err) {
3526                 pci_disable_msi(adapter->pdev);
3527                 goto msi_test_failed;
3528         }
3529
3530         wmb();
3531
3532         e1000_irq_enable(adapter);
3533
3534         /* fire an unusual interrupt on the test handler */
3535         ew32(ICS, E1000_ICS_RXSEQ);
3536         e1e_flush();
3537         msleep(50);
3538
3539         e1000_irq_disable(adapter);
3540
3541         rmb();
3542
3543         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3544                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3545                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3546         } else
3547                 e_dbg("MSI interrupt test succeeded!\n");
3548
3549         free_irq(adapter->pdev->irq, netdev);
3550         pci_disable_msi(adapter->pdev);
3551
3552 msi_test_failed:
3553         e1000e_set_interrupt_capability(adapter);
3554         return e1000_request_irq(adapter);
3555 }
3556
3557 /**
3558  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3559  * @adapter: board private struct
3560  *
3561  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3562  **/
3563 static int e1000_test_msi(struct e1000_adapter *adapter)
3564 {
3565         int err;
3566         u16 pci_cmd;
3567
3568         if (!(adapter->flags & FLAG_MSI_ENABLED))
3569                 return 0;
3570
3571         /* disable SERR in case the MSI write causes a master abort */
3572         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3573         if (pci_cmd & PCI_COMMAND_SERR)
3574                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3575                                       pci_cmd & ~PCI_COMMAND_SERR);
3576
3577         err = e1000_test_msi_interrupt(adapter);
3578
3579         /* re-enable SERR */
3580         if (pci_cmd & PCI_COMMAND_SERR) {
3581                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3582                 pci_cmd |= PCI_COMMAND_SERR;
3583                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3584         }
3585
3586         return err;
3587 }
3588
3589 /**
3590  * e1000_open - Called when a network interface is made active
3591  * @netdev: network interface device structure
3592  *
3593  * Returns 0 on success, negative value on failure
3594  *
3595  * The open entry point is called when a network interface is made
3596  * active by the system (IFF_UP).  At this point all resources needed
3597  * for transmit and receive operations are allocated, the interrupt
3598  * handler is registered with the OS, the watchdog timer is started,
3599  * and the stack is notified that the interface is ready.
3600  **/
3601 static int e1000_open(struct net_device *netdev)
3602 {
3603         struct e1000_adapter *adapter = netdev_priv(netdev);
3604         struct e1000_hw *hw = &adapter->hw;
3605         struct pci_dev *pdev = adapter->pdev;
3606         int err;
3607
3608         /* disallow open during test */
3609         if (test_bit(__E1000_TESTING, &adapter->state))
3610                 return -EBUSY;
3611
3612         pm_runtime_get_sync(&pdev->dev);
3613
3614         netif_carrier_off(netdev);
3615
3616         /* allocate transmit descriptors */
3617         err = e1000e_setup_tx_resources(adapter);
3618         if (err)
3619                 goto err_setup_tx;
3620
3621         /* allocate receive descriptors */
3622         err = e1000e_setup_rx_resources(adapter);
3623         if (err)
3624                 goto err_setup_rx;
3625
3626         /*
3627          * If AMT is enabled, let the firmware know that the network
3628          * interface is now open and reset the part to a known state.
3629          */
3630         if (adapter->flags & FLAG_HAS_AMT) {
3631                 e1000e_get_hw_control(adapter);
3632                 e1000e_reset(adapter);
3633         }
3634
3635         e1000e_power_up_phy(adapter);
3636
3637         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3638         if ((adapter->hw.mng_cookie.status &
3639              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3640                 e1000_update_mng_vlan(adapter);
3641
3642         /* DMA latency requirement to workaround early-receive/jumbo issue */
3643         if ((adapter->flags & FLAG_HAS_ERT) ||
3644             (adapter->hw.mac.type == e1000_pch2lan))
3645                 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3646                                    PM_QOS_CPU_DMA_LATENCY,
3647                                    PM_QOS_DEFAULT_VALUE);
3648
3649         /*
3650          * before we allocate an interrupt, we must be ready to handle it.
3651          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3652          * as soon as we call pci_request_irq, so we have to setup our
3653          * clean_rx handler before we do so.
3654          */
3655         e1000_configure(adapter);
3656
3657         err = e1000_request_irq(adapter);
3658         if (err)
3659                 goto err_req_irq;
3660
3661         /*
3662          * Work around PCIe errata with MSI interrupts causing some chipsets to
3663          * ignore e1000e MSI messages, which means we need to test our MSI
3664          * interrupt now
3665          */
3666         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3667                 err = e1000_test_msi(adapter);
3668                 if (err) {
3669                         e_err("Interrupt allocation failed\n");
3670                         goto err_req_irq;
3671                 }
3672         }
3673
3674         /* From here on the code is the same as e1000e_up() */
3675         clear_bit(__E1000_DOWN, &adapter->state);
3676
3677         napi_enable(&adapter->napi);
3678
3679         e1000_irq_enable(adapter);
3680
3681         netif_start_queue(netdev);
3682
3683         adapter->idle_check = true;
3684         pm_runtime_put(&pdev->dev);
3685
3686         /* fire a link status change interrupt to start the watchdog */
3687         if (adapter->msix_entries)
3688                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3689         else
3690                 ew32(ICS, E1000_ICS_LSC);
3691
3692         return 0;
3693
3694 err_req_irq:
3695         e1000e_release_hw_control(adapter);
3696         e1000_power_down_phy(adapter);
3697         e1000e_free_rx_resources(adapter);
3698 err_setup_rx:
3699         e1000e_free_tx_resources(adapter);
3700 err_setup_tx:
3701         e1000e_reset(adapter);
3702         pm_runtime_put_sync(&pdev->dev);
3703
3704         return err;
3705 }
3706
3707 /**
3708  * e1000_close - Disables a network interface
3709  * @netdev: network interface device structure
3710  *
3711  * Returns 0, this is not allowed to fail
3712  *
3713  * The close entry point is called when an interface is de-activated
3714  * by the OS.  The hardware is still under the drivers control, but
3715  * needs to be disabled.  A global MAC reset is issued to stop the
3716  * hardware, and all transmit and receive resources are freed.
3717  **/
3718 static int e1000_close(struct net_device *netdev)
3719 {
3720         struct e1000_adapter *adapter = netdev_priv(netdev);
3721         struct pci_dev *pdev = adapter->pdev;
3722
3723         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3724
3725         pm_runtime_get_sync(&pdev->dev);
3726
3727         if (!test_bit(__E1000_DOWN, &adapter->state)) {
3728                 e1000e_down(adapter);
3729                 e1000_free_irq(adapter);
3730         }
3731         e1000_power_down_phy(adapter);
3732
3733         e1000e_free_tx_resources(adapter);
3734         e1000e_free_rx_resources(adapter);
3735
3736         /*
3737          * kill manageability vlan ID if supported, but not if a vlan with
3738          * the same ID is registered on the host OS (let 8021q kill it)
3739          */
3740         if (adapter->hw.mng_cookie.status &
3741             E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3742                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3743
3744         /*
3745          * If AMT is enabled, let the firmware know that the network
3746          * interface is now closed
3747          */
3748         if ((adapter->flags & FLAG_HAS_AMT) &&
3749             !test_bit(__E1000_TESTING, &adapter->state))
3750                 e1000e_release_hw_control(adapter);
3751
3752         if ((adapter->flags & FLAG_HAS_ERT) ||
3753             (adapter->hw.mac.type == e1000_pch2lan))
3754                 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3755
3756         pm_runtime_put_sync(&pdev->dev);
3757
3758         return 0;
3759 }
3760 /**
3761  * e1000_set_mac - Change the Ethernet Address of the NIC
3762  * @netdev: network interface device structure
3763  * @p: pointer to an address structure
3764  *
3765  * Returns 0 on success, negative on failure
3766  **/
3767 static int e1000_set_mac(struct net_device *netdev, void *p)
3768 {
3769         struct e1000_adapter *adapter = netdev_priv(netdev);
3770         struct sockaddr *addr = p;
3771
3772         if (!is_valid_ether_addr(addr->sa_data))
3773                 return -EADDRNOTAVAIL;
3774
3775         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3776         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3777
3778         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3779
3780         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3781                 /* activate the work around */
3782                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3783
3784                 /*
3785                  * Hold a copy of the LAA in RAR[14] This is done so that
3786                  * between the time RAR[0] gets clobbered  and the time it
3787                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3788                  * of the RARs and no incoming packets directed to this port
3789                  * are dropped. Eventually the LAA will be in RAR[0] and
3790                  * RAR[14]
3791                  */
3792                 e1000e_rar_set(&adapter->hw,
3793                               adapter->hw.mac.addr,
3794                               adapter->hw.mac.rar_entry_count - 1);
3795         }
3796
3797         return 0;
3798 }
3799
3800 /**
3801  * e1000e_update_phy_task - work thread to update phy
3802  * @work: pointer to our work struct
3803  *
3804  * this worker thread exists because we must acquire a
3805  * semaphore to read the phy, which we could msleep while
3806  * waiting for it, and we can't msleep in a timer.
3807  **/
3808 static void e1000e_update_phy_task(struct work_struct *work)
3809 {
3810         struct e1000_adapter *adapter = container_of(work,
3811                                         struct e1000_adapter, update_phy_task);
3812
3813         if (test_bit(__E1000_DOWN, &adapter->state))
3814                 return;
3815
3816         e1000_get_phy_info(&adapter->hw);
3817 }
3818
3819 /*
3820  * Need to wait a few seconds after link up to get diagnostic information from
3821  * the phy
3822  */
3823 static void e1000_update_phy_info(unsigned long data)
3824 {
3825         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3826
3827         if (test_bit(__E1000_DOWN, &adapter->state))
3828                 return;
3829
3830         schedule_work(&adapter->update_phy_task);
3831 }
3832
3833 /**
3834  * e1000e_update_phy_stats - Update the PHY statistics counters
3835  * @adapter: board private structure
3836  **/
3837 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3838 {
3839         struct e1000_hw *hw = &adapter->hw;
3840         s32 ret_val;
3841         u16 phy_data;
3842
3843         ret_val = hw->phy.ops.acquire(hw);
3844         if (ret_val)
3845                 return;
3846
3847         hw->phy.addr = 1;
3848
3849 #define HV_PHY_STATS_PAGE       778
3850         /*
3851          * A page set is expensive so check if already on desired page.
3852          * If not, set to the page with the PHY status registers.
3853          */
3854         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3855                                            &phy_data);
3856         if (ret_val)
3857                 goto release;
3858         if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
3859                 ret_val = e1000e_write_phy_reg_mdic(hw,
3860                                                     IGP01E1000_PHY_PAGE_SELECT,
3861                                                     (HV_PHY_STATS_PAGE <<
3862                                                      IGP_PAGE_SHIFT));
3863                 if (ret_val)
3864                         goto release;
3865         }
3866
3867         /* Read/clear the upper 16-bit registers and read/accumulate lower */
3868
3869         /* Single Collision Count */
3870         e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
3871                                  &phy_data);
3872         ret_val = e1000e_read_phy_reg_mdic(hw,
3873                                            HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
3874                                            &phy_data);
3875         if (!ret_val)
3876                 adapter->stats.scc += phy_data;
3877
3878         /* Excessive Collision Count */
3879         e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
3880                                  &phy_data);
3881         ret_val = e1000e_read_phy_reg_mdic(hw,
3882                                            HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
3883                                            &phy_data);
3884         if (!ret_val)
3885                 adapter->stats.ecol += phy_data;
3886
3887         /* Multiple Collision Count */
3888         e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
3889                                  &phy_data);
3890         ret_val = e1000e_read_phy_reg_mdic(hw,
3891                                            HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
3892                                            &phy_data);
3893         if (!ret_val)
3894                 adapter->stats.mcc += phy_data;
3895
3896         /* Late Collision Count */
3897         e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
3898                                  &phy_data);
3899         ret_val = e1000e_read_phy_reg_mdic(hw,
3900                                            HV_LATECOL_LOWER &
3901                                            MAX_PHY_REG_ADDRESS,
3902                                            &phy_data);
3903         if (!ret_val)
3904                 adapter->stats.latecol += phy_data;
3905
3906         /* Collision Count - also used for adaptive IFS */
3907         e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
3908                                  &phy_data);
3909         ret_val = e1000e_read_phy_reg_mdic(hw,
3910                                            HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
3911                                            &phy_data);
3912         if (!ret_val)
3913                 hw->mac.collision_delta = phy_data;
3914
3915         /* Defer Count */
3916         e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
3917                                  &phy_data);
3918         ret_val = e1000e_read_phy_reg_mdic(hw,
3919                                            HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
3920                                            &phy_data);
3921         if (!ret_val)
3922                 adapter->stats.dc += phy_data;
3923
3924         /* Transmit with no CRS */
3925         e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
3926                                  &phy_data);
3927         ret_val = e1000e_read_phy_reg_mdic(hw,
3928                                            HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
3929                                            &phy_data);
3930         if (!ret_val)
3931                 adapter->stats.tncrs += phy_data;
3932
3933 release:
3934         hw->phy.ops.release(hw);
3935 }
3936
3937 /**
3938  * e1000e_update_stats - Update the board statistics counters
3939  * @adapter: board private structure
3940  **/
3941 static void e1000e_update_stats(struct e1000_adapter *adapter)
3942 {
3943         struct net_device *netdev = adapter->netdev;
3944         struct e1000_hw *hw = &adapter->hw;
3945         struct pci_dev *pdev = adapter->pdev;
3946
3947         /*
3948          * Prevent stats update while adapter is being reset, or if the pci
3949          * connection is down.
3950          */
3951         if (adapter->link_speed == 0)
3952                 return;
3953         if (pci_channel_offline(pdev))
3954                 return;
3955
3956         adapter->stats.crcerrs += er32(CRCERRS);
3957         adapter->stats.gprc += er32(GPRC);
3958         adapter->stats.gorc += er32(GORCL);
3959         er32(GORCH); /* Clear gorc */
3960         adapter->stats.bprc += er32(BPRC);
3961         adapter->stats.mprc += er32(MPRC);
3962         adapter->stats.roc += er32(ROC);
3963
3964         adapter->stats.mpc += er32(MPC);
3965
3966         /* Half-duplex statistics */
3967         if (adapter->link_duplex == HALF_DUPLEX) {
3968                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
3969                         e1000e_update_phy_stats(adapter);
3970                 } else {
3971                         adapter->stats.scc += er32(SCC);
3972                         adapter->stats.ecol += er32(ECOL);
3973                         adapter->stats.mcc += er32(MCC);
3974                         adapter->stats.latecol += er32(LATECOL);
3975                         adapter->stats.dc += er32(DC);
3976
3977                         hw->mac.collision_delta = er32(COLC);
3978
3979                         if ((hw->mac.type != e1000_82574) &&
3980                             (hw->mac.type != e1000_82583))
3981                                 adapter->stats.tncrs += er32(TNCRS);
3982                 }
3983                 adapter->stats.colc += hw->mac.collision_delta;
3984         }
3985
3986         adapter->stats.xonrxc += er32(XONRXC);
3987         adapter->stats.xontxc += er32(XONTXC);
3988         adapter->stats.xoffrxc += er32(XOFFRXC);
3989         adapter->stats.xofftxc += er32(XOFFTXC);
3990         adapter->stats.gptc += er32(GPTC);
3991         adapter->stats.gotc += er32(GOTCL);
3992         er32(GOTCH); /* Clear gotc */
3993         adapter->stats.rnbc += er32(RNBC);
3994         adapter->stats.ruc += er32(RUC);
3995
3996         adapter->stats.mptc += er32(MPTC);
3997         adapter->stats.bptc += er32(BPTC);
3998
3999         /* used for adaptive IFS */
4000
4001         hw->mac.tx_packet_delta = er32(TPT);
4002         adapter->stats.tpt += hw->mac.tx_packet_delta;
4003
4004         adapter->stats.algnerrc += er32(ALGNERRC);
4005         adapter->stats.rxerrc += er32(RXERRC);
4006         adapter->stats.cexterr += er32(CEXTERR);
4007         adapter->stats.tsctc += er32(TSCTC);
4008         adapter->stats.tsctfc += er32(TSCTFC);
4009
4010         /* Fill out the OS statistics structure */
4011         netdev->stats.multicast = adapter->stats.mprc;
4012         netdev->stats.collisions = adapter->stats.colc;
4013
4014         /* Rx Errors */
4015
4016         /*
4017          * RLEC on some newer hardware can be incorrect so build
4018          * our own version based on RUC and ROC
4019          */
4020         netdev->stats.rx_errors = adapter->stats.rxerrc +
4021                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4022                 adapter->stats.ruc + adapter->stats.roc +
4023                 adapter->stats.cexterr;
4024         netdev->stats.rx_length_errors = adapter->stats.ruc +
4025                                               adapter->stats.roc;
4026         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4027         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4028         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4029
4030         /* Tx Errors */
4031         netdev->stats.tx_errors = adapter->stats.ecol +
4032                                        adapter->stats.latecol;
4033         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4034         netdev->stats.tx_window_errors = adapter->stats.latecol;
4035         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4036
4037         /* Tx Dropped needs to be maintained elsewhere */
4038
4039         /* Management Stats */
4040         adapter->stats.mgptc += er32(MGTPTC);
4041         adapter->stats.mgprc += er32(MGTPRC);
4042         adapter->stats.mgpdc += er32(MGTPDC);
4043 }
4044
4045 /**
4046  * e1000_phy_read_status - Update the PHY register status snapshot
4047  * @adapter: board private structure
4048  **/
4049 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4050 {
4051         struct e1000_hw *hw = &adapter->hw;
4052         struct e1000_phy_regs *phy = &adapter->phy_regs;
4053
4054         if ((er32(STATUS) & E1000_STATUS_LU) &&
4055             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4056                 int ret_val;
4057
4058                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4059                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4060                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4061                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4062                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4063                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4064                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4065                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4066                 if (ret_val)
4067                         e_warn("Error reading PHY register\n");
4068         } else {
4069                 /*
4070                  * Do not read PHY registers if link is not up
4071                  * Set values to typical power-on defaults
4072                  */
4073                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4074                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4075                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4076                              BMSR_ERCAP);
4077                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4078                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4079                 phy->lpa = 0;
4080                 phy->expansion = EXPANSION_ENABLENPAGE;
4081                 phy->ctrl1000 = ADVERTISE_1000FULL;
4082                 phy->stat1000 = 0;
4083                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4084         }
4085 }
4086
4087 static void e1000_print_link_info(struct e1000_adapter *adapter)
4088 {
4089         struct e1000_hw *hw = &adapter->hw;
4090         u32 ctrl = er32(CTRL);
4091
4092         /* Link status message must follow this format for user tools */
4093         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
4094                "Flow Control: %s\n",
4095                adapter->netdev->name,
4096                adapter->link_speed,
4097                (adapter->link_duplex == FULL_DUPLEX) ?
4098                "Full Duplex" : "Half Duplex",
4099                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4100                "Rx/Tx" :
4101                ((ctrl & E1000_CTRL_RFCE) ? "Rx" :
4102                 ((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
4103 }
4104
4105 static bool e1000e_has_link(struct e1000_adapter *adapter)
4106 {
4107         struct e1000_hw *hw = &adapter->hw;
4108         bool link_active = 0;
4109         s32 ret_val = 0;
4110
4111         /*
4112          * get_link_status is set on LSC (link status) interrupt or
4113          * Rx sequence error interrupt.  get_link_status will stay
4114          * false until the check_for_link establishes link
4115          * for copper adapters ONLY
4116          */
4117         switch (hw->phy.media_type) {
4118         case e1000_media_type_copper:
4119                 if (hw->mac.get_link_status) {
4120                         ret_val = hw->mac.ops.check_for_link(hw);
4121                         link_active = !hw->mac.get_link_status;
4122                 } else {
4123                         link_active = 1;
4124                 }
4125                 break;
4126         case e1000_media_type_fiber:
4127                 ret_val = hw->mac.ops.check_for_link(hw);
4128                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4129                 break;
4130         case e1000_media_type_internal_serdes:
4131                 ret_val = hw->mac.ops.check_for_link(hw);
4132                 link_active = adapter->hw.mac.serdes_has_link;
4133                 break;
4134         default:
4135         case e1000_media_type_unknown:
4136                 break;
4137         }
4138
4139         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4140             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4141                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4142                 e_info("Gigabit has been disabled, downgrading speed\n");
4143         }
4144
4145         return link_active;
4146 }
4147
4148 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4149 {
4150         /* make sure the receive unit is started */
4151         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4152             (adapter->flags & FLAG_RX_RESTART_NOW)) {
4153                 struct e1000_hw *hw = &adapter->hw;
4154                 u32 rctl = er32(RCTL);
4155                 ew32(RCTL, rctl | E1000_RCTL_EN);
4156                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4157         }
4158 }
4159
4160 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4161 {
4162         struct e1000_hw *hw = &adapter->hw;
4163
4164         /*
4165          * With 82574 controllers, PHY needs to be checked periodically
4166          * for hung state and reset, if two calls return true
4167          */
4168         if (e1000_check_phy_82574(hw))
4169                 adapter->phy_hang_count++;
4170         else
4171                 adapter->phy_hang_count = 0;
4172
4173         if (adapter->phy_hang_count > 1) {
4174                 adapter->phy_hang_count = 0;
4175                 schedule_work(&adapter->reset_task);
4176         }
4177 }
4178
4179 /**
4180  * e1000_watchdog - Timer Call-back
4181  * @data: pointer to adapter cast into an unsigned long
4182  **/
4183 static void e1000_watchdog(unsigned long data)
4184 {
4185         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4186
4187         /* Do the rest outside of interrupt context */
4188         schedule_work(&adapter->watchdog_task);
4189
4190         /* TODO: make this use queue_delayed_work() */
4191 }
4192
4193 static void e1000_watchdog_task(struct work_struct *work)
4194 {
4195         struct e1000_adapter *adapter = container_of(work,
4196                                         struct e1000_adapter, watchdog_task);
4197         struct net_device *netdev = adapter->netdev;
4198         struct e1000_mac_info *mac = &adapter->hw.mac;
4199         struct e1000_phy_info *phy = &adapter->hw.phy;
4200         struct e1000_ring *tx_ring = adapter->tx_ring;
4201         struct e1000_hw *hw = &adapter->hw;
4202         u32 link, tctl;
4203
4204         if (test_bit(__E1000_DOWN, &adapter->state))
4205                 return;
4206
4207         link = e1000e_has_link(adapter);
4208         if ((netif_carrier_ok(netdev)) && link) {
4209                 /* Cancel scheduled suspend requests. */
4210                 pm_runtime_resume(netdev->dev.parent);
4211
4212                 e1000e_enable_receives(adapter);
4213                 goto link_up;
4214         }
4215
4216         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4217             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4218                 e1000_update_mng_vlan(adapter);
4219
4220         if (link) {
4221                 if (!netif_carrier_ok(netdev)) {
4222                         bool txb2b = 1;
4223
4224                         /* Cancel scheduled suspend requests. */
4225                         pm_runtime_resume(netdev->dev.parent);
4226
4227                         /* update snapshot of PHY registers on LSC */
4228                         e1000_phy_read_status(adapter);
4229                         mac->ops.get_link_up_info(&adapter->hw,
4230                                                    &adapter->link_speed,
4231                                                    &adapter->link_duplex);
4232                         e1000_print_link_info(adapter);
4233                         /*
4234                          * On supported PHYs, check for duplex mismatch only
4235                          * if link has autonegotiated at 10/100 half
4236                          */
4237                         if ((hw->phy.type == e1000_phy_igp_3 ||
4238                              hw->phy.type == e1000_phy_bm) &&
4239                             (hw->mac.autoneg == true) &&
4240                             (adapter->link_speed == SPEED_10 ||
4241                              adapter->link_speed == SPEED_100) &&
4242                             (adapter->link_duplex == HALF_DUPLEX)) {
4243                                 u16 autoneg_exp;
4244
4245                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4246
4247                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4248                                         e_info("Autonegotiated half duplex but"
4249                                                " link partner cannot autoneg. "
4250                                                " Try forcing full duplex if "
4251                                                "link gets many collisions.\n");
4252                         }
4253
4254                         /* adjust timeout factor according to speed/duplex */
4255                         adapter->tx_timeout_factor = 1;
4256                         switch (adapter->link_speed) {
4257                         case SPEED_10:
4258                                 txb2b = 0;
4259                                 adapter->tx_timeout_factor = 16;
4260                                 break;
4261                         case SPEED_100:
4262                                 txb2b = 0;
4263                                 adapter->tx_timeout_factor = 10;
4264                                 break;
4265                         }
4266
4267                         /*
4268                          * workaround: re-program speed mode bit after
4269                          * link-up event
4270                          */
4271                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4272                             !txb2b) {
4273                                 u32 tarc0;
4274                                 tarc0 = er32(TARC(0));
4275                                 tarc0 &= ~SPEED_MODE_BIT;
4276                                 ew32(TARC(0), tarc0);
4277                         }
4278
4279                         /*
4280                          * disable TSO for pcie and 10/100 speeds, to avoid
4281                          * some hardware issues
4282                          */
4283                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4284                                 switch (adapter->link_speed) {
4285                                 case SPEED_10:
4286                                 case SPEED_100:
4287                                         e_info("10/100 speed: disabling TSO\n");
4288                                         netdev->features &= ~NETIF_F_TSO;
4289                                         netdev->features &= ~NETIF_F_TSO6;
4290                                         break;
4291                                 case SPEED_1000:
4292                                         netdev->features |= NETIF_F_TSO;
4293                                         netdev->features |= NETIF_F_TSO6;
4294                                         break;
4295                                 default:
4296                                         /* oops */
4297                                         break;
4298                                 }
4299                         }
4300
4301                         /*
4302                          * enable transmits in the hardware, need to do this
4303                          * after setting TARC(0)
4304                          */
4305                         tctl = er32(TCTL);
4306                         tctl |= E1000_TCTL_EN;
4307                         ew32(TCTL, tctl);
4308
4309                         /*
4310                          * Perform any post-link-up configuration before
4311                          * reporting link up.
4312                          */
4313                         if (phy->ops.cfg_on_link_up)
4314                                 phy->ops.cfg_on_link_up(hw);
4315
4316                         netif_carrier_on(netdev);
4317
4318                         if (!test_bit(__E1000_DOWN, &adapter->state))
4319                                 mod_timer(&adapter->phy_info_timer,
4320                                           round_jiffies(jiffies + 2 * HZ));
4321                 }
4322         } else {
4323                 if (netif_carrier_ok(netdev)) {
4324                         adapter->link_speed = 0;
4325                         adapter->link_duplex = 0;
4326                         /* Link status message must follow this format */
4327                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4328                                adapter->netdev->name);
4329                         netif_carrier_off(netdev);
4330                         if (!test_bit(__E1000_DOWN, &adapter->state))
4331                                 mod_timer(&adapter->phy_info_timer,
4332                                           round_jiffies(jiffies + 2 * HZ));
4333
4334                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4335                                 schedule_work(&adapter->reset_task);
4336                         else
4337                                 pm_schedule_suspend(netdev->dev.parent,
4338                                                         LINK_TIMEOUT);
4339                 }
4340         }
4341
4342 link_up:
4343         spin_lock(&adapter->stats64_lock);
4344         e1000e_update_stats(adapter);
4345
4346         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4347         adapter->tpt_old = adapter->stats.tpt;
4348         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4349         adapter->colc_old = adapter->stats.colc;
4350
4351         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4352         adapter->gorc_old = adapter->stats.gorc;
4353         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4354         adapter->gotc_old = adapter->stats.gotc;
4355         spin_unlock(&adapter->stats64_lock);
4356
4357         e1000e_update_adaptive(&adapter->hw);
4358
4359         if (!netif_carrier_ok(netdev) &&
4360             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4361                 /*
4362                  * We've lost link, so the controller stops DMA,
4363                  * but we've got queued Tx work that's never going
4364                  * to get done, so reset controller to flush Tx.
4365                  * (Do the reset outside of interrupt context).
4366                  */
4367                 schedule_work(&adapter->reset_task);
4368                 /* return immediately since reset is imminent */
4369                 return;
4370         }
4371
4372         /* Simple mode for Interrupt Throttle Rate (ITR) */
4373         if (adapter->itr_setting == 4) {
4374                 /*
4375                  * Symmetric Tx/Rx gets a reduced ITR=2000;
4376                  * Total asymmetrical Tx or Rx gets ITR=8000;
4377                  * everyone else is between 2000-8000.
4378                  */
4379                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4380                 u32 dif = (adapter->gotc > adapter->gorc ?
4381                             adapter->gotc - adapter->gorc :
4382                             adapter->gorc - adapter->gotc) / 10000;
4383                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4384
4385                 ew32(ITR, 1000000000 / (itr * 256));
4386         }
4387
4388         /* Cause software interrupt to ensure Rx ring is cleaned */
4389         if (adapter->msix_entries)
4390                 ew32(ICS, adapter->rx_ring->ims_val);
4391         else
4392                 ew32(ICS, E1000_ICS_RXDMT0);
4393
4394         /* flush pending descriptors to memory before detecting Tx hang */
4395         e1000e_flush_descriptors(adapter);
4396
4397         /* Force detection of hung controller every watchdog period */
4398         adapter->detect_tx_hung = 1;
4399
4400         /*
4401          * With 82571 controllers, LAA may be overwritten due to controller
4402          * reset from the other port. Set the appropriate LAA in RAR[0]
4403          */
4404         if (e1000e_get_laa_state_82571(hw))
4405                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4406
4407         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4408                 e1000e_check_82574_phy_workaround(adapter);
4409
4410         /* Reset the timer */
4411         if (!test_bit(__E1000_DOWN, &adapter->state))
4412                 mod_timer(&adapter->watchdog_timer,
4413                           round_jiffies(jiffies + 2 * HZ));
4414 }
4415
4416 #define E1000_TX_FLAGS_CSUM             0x00000001
4417 #define E1000_TX_FLAGS_VLAN             0x00000002
4418 #define E1000_TX_FLAGS_TSO              0x00000004
4419 #define E1000_TX_FLAGS_IPV4             0x00000008
4420 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
4421 #define E1000_TX_FLAGS_VLAN_SHIFT       16
4422
4423 static int e1000_tso(struct e1000_adapter *adapter,
4424                      struct sk_buff *skb)
4425 {
4426         struct e1000_ring *tx_ring = adapter->tx_ring;
4427         struct e1000_context_desc *context_desc;
4428         struct e1000_buffer *buffer_info;
4429         unsigned int i;
4430         u32 cmd_length = 0;
4431         u16 ipcse = 0, tucse, mss;
4432         u8 ipcss, ipcso, tucss, tucso, hdr_len;
4433
4434         if (!skb_is_gso(skb))
4435                 return 0;
4436
4437         if (skb_header_cloned(skb)) {
4438                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4439
4440                 if (err)
4441                         return err;
4442         }
4443
4444         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4445         mss = skb_shinfo(skb)->gso_size;
4446         if (skb->protocol == htons(ETH_P_IP)) {
4447                 struct iphdr *iph = ip_hdr(skb);
4448                 iph->tot_len = 0;
4449                 iph->check = 0;
4450                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4451                                                          0, IPPROTO_TCP, 0);
4452                 cmd_length = E1000_TXD_CMD_IP;
4453                 ipcse = skb_transport_offset(skb) - 1;
4454         } else if (skb_is_gso_v6(skb)) {
4455                 ipv6_hdr(skb)->payload_len = 0;
4456                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4457                                                        &ipv6_hdr(skb)->daddr,
4458                                                        0, IPPROTO_TCP, 0);
4459                 ipcse = 0;
4460         }
4461         ipcss = skb_network_offset(skb);
4462         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4463         tucss = skb_transport_offset(skb);
4464         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4465         tucse = 0;
4466
4467         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4468                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4469
4470         i = tx_ring->next_to_use;
4471         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4472         buffer_info = &tx_ring->buffer_info[i];
4473
4474         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4475         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4476         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4477         context_desc->upper_setup.tcp_fields.tucss = tucss;
4478         context_desc->upper_setup.tcp_fields.tucso = tucso;
4479         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4480         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4481         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4482         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4483
4484         buffer_info->time_stamp = jiffies;
4485         buffer_info->next_to_watch = i;
4486
4487         i++;
4488         if (i == tx_ring->count)
4489                 i = 0;
4490         tx_ring->next_to_use = i;
4491
4492         return 1;
4493 }
4494
4495 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4496 {
4497         struct e1000_ring *tx_ring = adapter->tx_ring;
4498         struct e1000_context_desc *context_desc;
4499         struct e1000_buffer *buffer_info;
4500         unsigned int i;
4501         u8 css;
4502         u32 cmd_len = E1000_TXD_CMD_DEXT;
4503         __be16 protocol;
4504
4505         if (skb->ip_summed != CHECKSUM_PARTIAL)
4506                 return 0;
4507
4508         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4509                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4510         else
4511                 protocol = skb->protocol;
4512
4513         switch (protocol) {
4514         case cpu_to_be16(ETH_P_IP):
4515                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4516                         cmd_len |= E1000_TXD_CMD_TCP;
4517                 break;
4518         case cpu_to_be16(ETH_P_IPV6):
4519                 /* XXX not handling all IPV6 headers */
4520                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4521                         cmd_len |= E1000_TXD_CMD_TCP;
4522                 break;
4523         default:
4524                 if (unlikely(net_ratelimit()))
4525                         e_warn("checksum_partial proto=%x!\n",
4526                                be16_to_cpu(protocol));
4527                 break;
4528         }
4529
4530         css = skb_checksum_start_offset(skb);
4531
4532         i = tx_ring->next_to_use;
4533         buffer_info = &tx_ring->buffer_info[i];
4534         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4535
4536         context_desc->lower_setup.ip_config = 0;
4537         context_desc->upper_setup.tcp_fields.tucss = css;
4538         context_desc->upper_setup.tcp_fields.tucso =
4539                                 css + skb->csum_offset;
4540         context_desc->upper_setup.tcp_fields.tucse = 0;
4541         context_desc->tcp_seg_setup.data = 0;
4542         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4543
4544         buffer_info->time_stamp = jiffies;
4545         buffer_info->next_to_watch = i;
4546
4547         i++;
4548         if (i == tx_ring->count)
4549                 i = 0;
4550         tx_ring->next_to_use = i;
4551
4552         return 1;
4553 }
4554
4555 #define E1000_MAX_PER_TXD       8192
4556 #define E1000_MAX_TXD_PWR       12
4557
4558 static int e1000_tx_map(struct e1000_adapter *adapter,
4559                         struct sk_buff *skb, unsigned int first,
4560                         unsigned int max_per_txd, unsigned int nr_frags,
4561                         unsigned int mss)
4562 {
4563         struct e1000_ring *tx_ring = adapter->tx_ring;
4564         struct pci_dev *pdev = adapter->pdev;
4565         struct e1000_buffer *buffer_info;
4566         unsigned int len = skb_headlen(skb);
4567         unsigned int offset = 0, size, count = 0, i;
4568         unsigned int f, bytecount, segs;
4569
4570         i = tx_ring->next_to_use;
4571
4572         while (len) {
4573                 buffer_info = &tx_ring->buffer_info[i];
4574                 size = min(len, max_per_txd);
4575
4576                 buffer_info->length = size;
4577                 buffer_info->time_stamp = jiffies;
4578                 buffer_info->next_to_watch = i;
4579                 buffer_info->dma = dma_map_single(&pdev->dev,
4580                                                   skb->data + offset,
4581                                                   size, DMA_TO_DEVICE);
4582                 buffer_info->mapped_as_page = false;
4583                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4584                         goto dma_error;
4585
4586                 len -= size;
4587                 offset += size;
4588                 count++;
4589
4590                 if (len) {
4591                         i++;
4592                         if (i == tx_ring->count)
4593                                 i = 0;
4594                 }
4595         }
4596
4597         for (f = 0; f < nr_frags; f++) {
4598                 struct skb_frag_struct *frag;
4599
4600                 frag = &skb_shinfo(skb)->frags[f];
4601                 len = frag->size;
4602                 offset = frag->page_offset;
4603
4604                 while (len) {
4605                         i++;
4606                         if (i == tx_ring->count)
4607                                 i = 0;
4608
4609                         buffer_info = &tx_ring->buffer_info[i];
4610                         size = min(len, max_per_txd);
4611
4612                         buffer_info->length = size;
4613                         buffer_info->time_stamp = jiffies;
4614                         buffer_info->next_to_watch = i;
4615                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4616                                                         offset, size,
4617                                                         DMA_TO_DEVICE);
4618                         buffer_info->mapped_as_page = true;
4619                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4620                                 goto dma_error;
4621
4622                         len -= size;
4623                         offset += size;
4624                         count++;
4625                 }
4626         }
4627
4628         segs = skb_shinfo(skb)->gso_segs ? : 1;
4629         /* multiply data chunks by size of headers */
4630         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4631
4632         tx_ring->buffer_info[i].skb = skb;
4633         tx_ring->buffer_info[i].segs = segs;
4634         tx_ring->buffer_info[i].bytecount = bytecount;
4635         tx_ring->buffer_info[first].next_to_watch = i;
4636
4637         return count;
4638
4639 dma_error:
4640         dev_err(&pdev->dev, "Tx DMA map failed\n");
4641         buffer_info->dma = 0;
4642         if (count)
4643                 count--;
4644
4645         while (count--) {
4646                 if (i == 0)
4647                         i += tx_ring->count;
4648                 i--;
4649                 buffer_info = &tx_ring->buffer_info[i];
4650                 e1000_put_txbuf(adapter, buffer_info);
4651         }
4652
4653         return 0;
4654 }
4655
4656 static void e1000_tx_queue(struct e1000_adapter *adapter,
4657                            int tx_flags, int count)
4658 {
4659         struct e1000_ring *tx_ring = adapter->tx_ring;
4660         struct e1000_tx_desc *tx_desc = NULL;
4661         struct e1000_buffer *buffer_info;
4662         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4663         unsigned int i;
4664
4665         if (tx_flags & E1000_TX_FLAGS_TSO) {
4666                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4667                              E1000_TXD_CMD_TSE;
4668                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4669
4670                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4671                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4672         }
4673
4674         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4675                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4676                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4677         }
4678
4679         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4680                 txd_lower |= E1000_TXD_CMD_VLE;
4681                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4682         }
4683
4684         i = tx_ring->next_to_use;
4685
4686         do {
4687                 buffer_info = &tx_ring->buffer_info[i];
4688                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4689                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4690                 tx_desc->lower.data =
4691                         cpu_to_le32(txd_lower | buffer_info->length);
4692                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4693
4694                 i++;
4695                 if (i == tx_ring->count)
4696                         i = 0;
4697         } while (--count > 0);
4698
4699         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4700
4701         /*
4702          * Force memory writes to complete before letting h/w
4703          * know there are new descriptors to fetch.  (Only
4704          * applicable for weak-ordered memory model archs,
4705          * such as IA-64).
4706          */
4707         wmb();
4708
4709         tx_ring->next_to_use = i;
4710         writel(i, adapter->hw.hw_addr + tx_ring->tail);
4711         /*
4712          * we need this if more than one processor can write to our tail
4713          * at a time, it synchronizes IO on IA64/Altix systems
4714          */
4715         mmiowb();
4716 }
4717
4718 #define MINIMUM_DHCP_PACKET_SIZE 282
4719 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4720                                     struct sk_buff *skb)
4721 {
4722         struct e1000_hw *hw =  &adapter->hw;
4723         u16 length, offset;
4724
4725         if (vlan_tx_tag_present(skb)) {
4726                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4727                     (adapter->hw.mng_cookie.status &
4728                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4729                         return 0;
4730         }
4731
4732         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4733                 return 0;
4734
4735         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4736                 return 0;
4737
4738         {
4739                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4740                 struct udphdr *udp;
4741
4742                 if (ip->protocol != IPPROTO_UDP)
4743                         return 0;
4744
4745                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4746                 if (ntohs(udp->dest) != 67)
4747                         return 0;
4748
4749                 offset = (u8 *)udp + 8 - skb->data;
4750                 length = skb->len - offset;
4751                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4752         }
4753
4754         return 0;
4755 }
4756
4757 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4758 {
4759         struct e1000_adapter *adapter = netdev_priv(netdev);
4760
4761         netif_stop_queue(netdev);
4762         /*
4763          * Herbert's original patch had:
4764          *  smp_mb__after_netif_stop_queue();
4765          * but since that doesn't exist yet, just open code it.
4766          */
4767         smp_mb();
4768
4769         /*
4770          * We need to check again in a case another CPU has just
4771          * made room available.
4772          */
4773         if (e1000_desc_unused(adapter->tx_ring) < size)
4774                 return -EBUSY;
4775
4776         /* A reprieve! */
4777         netif_start_queue(netdev);
4778         ++adapter->restart_queue;
4779         return 0;
4780 }
4781
4782 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4783 {
4784         struct e1000_adapter *adapter = netdev_priv(netdev);
4785
4786         if (e1000_desc_unused(adapter->tx_ring) >= size)
4787                 return 0;
4788         return __e1000_maybe_stop_tx(netdev, size);
4789 }
4790
4791 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4792 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4793                                     struct net_device *netdev)
4794 {
4795         struct e1000_adapter *adapter = netdev_priv(netdev);
4796         struct e1000_ring *tx_ring = adapter->tx_ring;
4797         unsigned int first;
4798         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4799         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4800         unsigned int tx_flags = 0;
4801         unsigned int len = skb_headlen(skb);
4802         unsigned int nr_frags;
4803         unsigned int mss;
4804         int count = 0;
4805         int tso;
4806         unsigned int f;
4807
4808         if (test_bit(__E1000_DOWN, &adapter->state)) {
4809                 dev_kfree_skb_any(skb);
4810                 return NETDEV_TX_OK;
4811         }
4812
4813         if (skb->len <= 0) {
4814                 dev_kfree_skb_any(skb);
4815                 return NETDEV_TX_OK;
4816         }
4817
4818         mss = skb_shinfo(skb)->gso_size;
4819         /*
4820          * The controller does a simple calculation to
4821          * make sure there is enough room in the FIFO before
4822          * initiating the DMA for each buffer.  The calc is:
4823          * 4 = ceil(buffer len/mss).  To make sure we don't
4824          * overrun the FIFO, adjust the max buffer len if mss
4825          * drops.
4826          */
4827         if (mss) {
4828                 u8 hdr_len;
4829                 max_per_txd = min(mss << 2, max_per_txd);
4830                 max_txd_pwr = fls(max_per_txd) - 1;
4831
4832                 /*
4833                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4834                  * points to just header, pull a few bytes of payload from
4835                  * frags into skb->data
4836                  */
4837                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4838                 /*
4839                  * we do this workaround for ES2LAN, but it is un-necessary,
4840                  * avoiding it could save a lot of cycles
4841                  */
4842                 if (skb->data_len && (hdr_len == len)) {
4843                         unsigned int pull_size;
4844
4845                         pull_size = min((unsigned int)4, skb->data_len);
4846                         if (!__pskb_pull_tail(skb, pull_size)) {
4847                                 e_err("__pskb_pull_tail failed.\n");
4848                                 dev_kfree_skb_any(skb);
4849                                 return NETDEV_TX_OK;
4850                         }
4851                         len = skb_headlen(skb);
4852                 }
4853         }
4854
4855         /* reserve a descriptor for the offload context */
4856         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4857                 count++;
4858         count++;
4859
4860         count += TXD_USE_COUNT(len, max_txd_pwr);
4861
4862         nr_frags = skb_shinfo(skb)->nr_frags;
4863         for (f = 0; f < nr_frags; f++)
4864                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4865                                        max_txd_pwr);
4866
4867         if (adapter->hw.mac.tx_pkt_filtering)
4868                 e1000_transfer_dhcp_info(adapter, skb);
4869
4870         /*
4871          * need: count + 2 desc gap to keep tail from touching
4872          * head, otherwise try next time
4873          */
4874         if (e1000_maybe_stop_tx(netdev, count + 2))
4875                 return NETDEV_TX_BUSY;
4876
4877         if (vlan_tx_tag_present(skb)) {
4878                 tx_flags |= E1000_TX_FLAGS_VLAN;
4879                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4880         }
4881
4882         first = tx_ring->next_to_use;
4883
4884         tso = e1000_tso(adapter, skb);
4885         if (tso < 0) {
4886                 dev_kfree_skb_any(skb);
4887                 return NETDEV_TX_OK;
4888         }
4889
4890         if (tso)
4891                 tx_flags |= E1000_TX_FLAGS_TSO;
4892         else if (e1000_tx_csum(adapter, skb))
4893                 tx_flags |= E1000_TX_FLAGS_CSUM;
4894
4895         /*
4896          * Old method was to assume IPv4 packet by default if TSO was enabled.
4897          * 82571 hardware supports TSO capabilities for IPv6 as well...
4898          * no longer assume, we must.
4899          */
4900         if (skb->protocol == htons(ETH_P_IP))
4901                 tx_flags |= E1000_TX_FLAGS_IPV4;
4902
4903         /* if count is 0 then mapping error has occurred */
4904         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4905         if (count) {
4906                 e1000_tx_queue(adapter, tx_flags, count);
4907                 /* Make sure there is space in the ring for the next send. */
4908                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4909
4910         } else {
4911                 dev_kfree_skb_any(skb);
4912                 tx_ring->buffer_info[first].time_stamp = 0;
4913                 tx_ring->next_to_use = first;
4914         }
4915
4916         return NETDEV_TX_OK;
4917 }
4918
4919 /**
4920  * e1000_tx_timeout - Respond to a Tx Hang
4921  * @netdev: network interface device structure
4922  **/
4923 static void e1000_tx_timeout(struct net_device *netdev)
4924 {
4925         struct e1000_adapter *adapter = netdev_priv(netdev);
4926
4927         /* Do the reset outside of interrupt context */
4928         adapter->tx_timeout_count++;
4929         schedule_work(&adapter->reset_task);
4930 }
4931
4932 static void e1000_reset_task(struct work_struct *work)
4933 {
4934         struct e1000_adapter *adapter;
4935         adapter = container_of(work, struct e1000_adapter, reset_task);
4936
4937         /* don't run the task if already down */
4938         if (test_bit(__E1000_DOWN, &adapter->state))
4939                 return;
4940
4941         if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4942               (adapter->flags & FLAG_RX_RESTART_NOW))) {
4943                 e1000e_dump(adapter);
4944                 e_err("Reset adapter\n");
4945         }
4946         e1000e_reinit_locked(adapter);
4947 }
4948
4949 /**
4950  * e1000_get_stats64 - Get System Network Statistics
4951  * @netdev: network interface device structure
4952  * @stats: rtnl_link_stats64 pointer
4953  *
4954  * Returns the address of the device statistics structure.
4955  **/
4956 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
4957                                              struct rtnl_link_stats64 *stats)
4958 {
4959         struct e1000_adapter *adapter = netdev_priv(netdev);
4960
4961         memset(stats, 0, sizeof(struct rtnl_link_stats64));
4962         spin_lock(&adapter->stats64_lock);
4963         e1000e_update_stats(adapter);
4964         /* Fill out the OS statistics structure */
4965         stats->rx_bytes = adapter->stats.gorc;
4966         stats->rx_packets = adapter->stats.gprc;
4967         stats->tx_bytes = adapter->stats.gotc;
4968         stats->tx_packets = adapter->stats.gptc;
4969         stats->multicast = adapter->stats.mprc;
4970         stats->collisions = adapter->stats.colc;
4971
4972         /* Rx Errors */
4973
4974         /*
4975          * RLEC on some newer hardware can be incorrect so build
4976          * our own version based on RUC and ROC
4977          */
4978         stats->rx_errors = adapter->stats.rxerrc +
4979                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4980                 adapter->stats.ruc + adapter->stats.roc +
4981                 adapter->stats.cexterr;
4982         stats->rx_length_errors = adapter->stats.ruc +
4983                                               adapter->stats.roc;
4984         stats->rx_crc_errors = adapter->stats.crcerrs;
4985         stats->rx_frame_errors = adapter->stats.algnerrc;
4986         stats->rx_missed_errors = adapter->stats.mpc;
4987
4988         /* Tx Errors */
4989         stats->tx_errors = adapter->stats.ecol +
4990                                        adapter->stats.latecol;
4991         stats->tx_aborted_errors = adapter->stats.ecol;
4992         stats->tx_window_errors = adapter->stats.latecol;
4993         stats->tx_carrier_errors = adapter->stats.tncrs;
4994
4995         /* Tx Dropped needs to be maintained elsewhere */
4996
4997         spin_unlock(&adapter->stats64_lock);
4998         return stats;
4999 }
5000
5001 /**
5002  * e1000_change_mtu - Change the Maximum Transfer Unit
5003  * @netdev: network interface device structure
5004  * @new_mtu: new value for maximum frame size
5005  *
5006  * Returns 0 on success, negative on failure
5007  **/
5008 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5009 {
5010         struct e1000_adapter *adapter = netdev_priv(netdev);
5011         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5012
5013         /* Jumbo frame support */
5014         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5015             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5016                 e_err("Jumbo Frames not supported.\n");
5017                 return -EINVAL;
5018         }
5019
5020         /* Supported frame sizes */
5021         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5022             (max_frame > adapter->max_hw_frame_size)) {
5023                 e_err("Unsupported MTU setting\n");
5024                 return -EINVAL;
5025         }
5026
5027         /* Jumbo frame workaround on 82579 requires CRC be stripped */
5028         if ((adapter->hw.mac.type == e1000_pch2lan) &&
5029             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5030             (new_mtu > ETH_DATA_LEN)) {
5031                 e_err("Jumbo Frames not supported on 82579 when CRC "
5032                       "stripping is disabled.\n");
5033                 return -EINVAL;
5034         }
5035
5036         /* 82573 Errata 17 */
5037         if (((adapter->hw.mac.type == e1000_82573) ||
5038              (adapter->hw.mac.type == e1000_82574)) &&
5039             (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
5040                 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
5041                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
5042         }
5043
5044         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5045                 usleep_range(1000, 2000);
5046         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5047         adapter->max_frame_size = max_frame;
5048         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5049         netdev->mtu = new_mtu;
5050         if (netif_running(netdev))
5051                 e1000e_down(adapter);
5052
5053         /*
5054          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5055          * means we reserve 2 more, this pushes us to allocate from the next
5056          * larger slab size.
5057          * i.e. RXBUFFER_2048 --> size-4096 slab
5058          * However with the new *_jumbo_rx* routines, jumbo receives will use
5059          * fragmented skbs
5060          */
5061
5062         if (max_frame <= 2048)
5063                 adapter->rx_buffer_len = 2048;
5064         else
5065                 adapter->rx_buffer_len = 4096;
5066
5067         /* adjust allocation if LPE protects us, and we aren't using SBP */
5068         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5069              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5070                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5071                                          + ETH_FCS_LEN;
5072
5073         if (netif_running(netdev))
5074                 e1000e_up(adapter);
5075         else
5076                 e1000e_reset(adapter);
5077
5078         clear_bit(__E1000_RESETTING, &adapter->state);
5079
5080         return 0;
5081 }
5082
5083 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5084                            int cmd)
5085 {
5086         struct e1000_adapter *adapter = netdev_priv(netdev);
5087         struct mii_ioctl_data *data = if_mii(ifr);
5088
5089         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5090                 return -EOPNOTSUPP;
5091
5092         switch (cmd) {
5093         case SIOCGMIIPHY:
5094                 data->phy_id = adapter->hw.phy.addr;
5095                 break;
5096         case SIOCGMIIREG:
5097                 e1000_phy_read_status(adapter);
5098
5099                 switch (data->reg_num & 0x1F) {
5100                 case MII_BMCR:
5101                         data->val_out = adapter->phy_regs.bmcr;
5102                         break;
5103                 case MII_BMSR:
5104                         data->val_out = adapter->phy_regs.bmsr;
5105                         break;
5106                 case MII_PHYSID1:
5107                         data->val_out = (adapter->hw.phy.id >> 16);
5108                         break;
5109                 case MII_PHYSID2:
5110                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5111                         break;
5112                 case MII_ADVERTISE:
5113                         data->val_out = adapter->phy_regs.advertise;
5114                         break;
5115                 case MII_LPA:
5116                         data->val_out = adapter->phy_regs.lpa;
5117                         break;
5118                 case MII_EXPANSION:
5119                         data->val_out = adapter->phy_regs.expansion;
5120                         break;
5121                 case MII_CTRL1000:
5122                         data->val_out = adapter->phy_regs.ctrl1000;
5123                         break;
5124                 case MII_STAT1000:
5125                         data->val_out = adapter->phy_regs.stat1000;
5126                         break;
5127                 case MII_ESTATUS:
5128                         data->val_out = adapter->phy_regs.estatus;
5129                         break;
5130                 default:
5131                         return -EIO;
5132                 }
5133                 break;
5134         case SIOCSMIIREG:
5135         default:
5136                 return -EOPNOTSUPP;
5137         }
5138         return 0;
5139 }
5140
5141 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5142 {
5143         switch (cmd) {
5144         case SIOCGMIIPHY:
5145         case SIOCGMIIREG:
5146         case SIOCSMIIREG:
5147                 return e1000_mii_ioctl(netdev, ifr, cmd);
5148         default:
5149                 return -EOPNOTSUPP;
5150         }
5151 }
5152
5153 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5154 {
5155         struct e1000_hw *hw = &adapter->hw;
5156         u32 i, mac_reg;
5157         u16 phy_reg;
5158         int retval = 0;
5159
5160         /* copy MAC RARs to PHY RARs */
5161         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5162
5163         /* copy MAC MTA to PHY MTA */
5164         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5165                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5166                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
5167                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
5168         }
5169
5170         /* configure PHY Rx Control register */
5171         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
5172         mac_reg = er32(RCTL);
5173         if (mac_reg & E1000_RCTL_UPE)
5174                 phy_reg |= BM_RCTL_UPE;
5175         if (mac_reg & E1000_RCTL_MPE)
5176                 phy_reg |= BM_RCTL_MPE;
5177         phy_reg &= ~(BM_RCTL_MO_MASK);
5178         if (mac_reg & E1000_RCTL_MO_3)
5179                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5180                                 << BM_RCTL_MO_SHIFT);
5181         if (mac_reg & E1000_RCTL_BAM)
5182                 phy_reg |= BM_RCTL_BAM;
5183         if (mac_reg & E1000_RCTL_PMCF)
5184                 phy_reg |= BM_RCTL_PMCF;
5185         mac_reg = er32(CTRL);
5186         if (mac_reg & E1000_CTRL_RFCE)
5187                 phy_reg |= BM_RCTL_RFCE;
5188         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
5189
5190         /* enable PHY wakeup in MAC register */
5191         ew32(WUFC, wufc);
5192         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5193
5194         /* configure and enable PHY wakeup in PHY registers */
5195         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
5196         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5197
5198         /* activate PHY wakeup */
5199         retval = hw->phy.ops.acquire(hw);
5200         if (retval) {
5201                 e_err("Could not acquire PHY\n");
5202                 return retval;
5203         }
5204         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
5205                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
5206         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
5207         if (retval) {
5208                 e_err("Could not read PHY page 769\n");
5209                 goto out;
5210         }
5211         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5212         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
5213         if (retval)
5214                 e_err("Could not set PHY Host Wakeup bit\n");
5215 out:
5216         hw->phy.ops.release(hw);
5217
5218         return retval;
5219 }
5220
5221 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5222                             bool runtime)
5223 {
5224         struct net_device *netdev = pci_get_drvdata(pdev);
5225         struct e1000_adapter *adapter = netdev_priv(netdev);
5226         struct e1000_hw *hw = &adapter->hw;
5227         u32 ctrl, ctrl_ext, rctl, status;
5228         /* Runtime suspend should only enable wakeup for link changes */
5229         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5230         int retval = 0;
5231
5232         netif_device_detach(netdev);
5233
5234         if (netif_running(netdev)) {
5235                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5236                 e1000e_down(adapter);
5237                 e1000_free_irq(adapter);
5238         }
5239         e1000e_reset_interrupt_capability(adapter);
5240
5241         retval = pci_save_state(pdev);
5242         if (retval)
5243                 return retval;
5244
5245         status = er32(STATUS);
5246         if (status & E1000_STATUS_LU)
5247                 wufc &= ~E1000_WUFC_LNKC;
5248
5249         if (wufc) {
5250                 e1000_setup_rctl(adapter);
5251                 e1000_set_multi(netdev);
5252
5253                 /* turn on all-multi mode if wake on multicast is enabled */
5254                 if (wufc & E1000_WUFC_MC) {
5255                         rctl = er32(RCTL);
5256                         rctl |= E1000_RCTL_MPE;
5257                         ew32(RCTL, rctl);
5258                 }
5259
5260                 ctrl = er32(CTRL);
5261                 /* advertise wake from D3Cold */
5262                 #define E1000_CTRL_ADVD3WUC 0x00100000
5263                 /* phy power management enable */
5264                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5265                 ctrl |= E1000_CTRL_ADVD3WUC;
5266                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5267                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5268                 ew32(CTRL, ctrl);
5269
5270                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5271                     adapter->hw.phy.media_type ==
5272                     e1000_media_type_internal_serdes) {
5273                         /* keep the laser running in D3 */
5274                         ctrl_ext = er32(CTRL_EXT);
5275                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5276                         ew32(CTRL_EXT, ctrl_ext);
5277                 }
5278
5279                 if (adapter->flags & FLAG_IS_ICH)
5280                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
5281
5282                 /* Allow time for pending master requests to run */
5283                 e1000e_disable_pcie_master(&adapter->hw);
5284
5285                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5286                         /* enable wakeup by the PHY */
5287                         retval = e1000_init_phy_wakeup(adapter, wufc);
5288                         if (retval)
5289                                 return retval;
5290                 } else {
5291                         /* enable wakeup by the MAC */
5292                         ew32(WUFC, wufc);
5293                         ew32(WUC, E1000_WUC_PME_EN);
5294                 }
5295         } else {
5296                 ew32(WUC, 0);
5297                 ew32(WUFC, 0);
5298         }
5299
5300         *enable_wake = !!wufc;
5301
5302         /* make sure adapter isn't asleep if manageability is enabled */
5303         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5304             (hw->mac.ops.check_mng_mode(hw)))
5305                 *enable_wake = true;
5306
5307         if (adapter->hw.phy.type == e1000_phy_igp_3)
5308                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5309
5310         /*
5311          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5312          * would have already happened in close and is redundant.
5313          */
5314         e1000e_release_hw_control(adapter);
5315
5316         pci_disable_device(pdev);
5317
5318         return 0;
5319 }
5320
5321 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5322 {
5323         if (sleep && wake) {
5324                 pci_prepare_to_sleep(pdev);
5325                 return;
5326         }
5327
5328         pci_wake_from_d3(pdev, wake);
5329         pci_set_power_state(pdev, PCI_D3hot);
5330 }
5331
5332 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5333                                     bool wake)
5334 {
5335         struct net_device *netdev = pci_get_drvdata(pdev);
5336         struct e1000_adapter *adapter = netdev_priv(netdev);
5337
5338         /*
5339          * The pci-e switch on some quad port adapters will report a
5340          * correctable error when the MAC transitions from D0 to D3.  To
5341          * prevent this we need to mask off the correctable errors on the
5342          * downstream port of the pci-e switch.
5343          */
5344         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5345                 struct pci_dev *us_dev = pdev->bus->self;
5346                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
5347                 u16 devctl;
5348
5349                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5350                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5351                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
5352
5353                 e1000_power_off(pdev, sleep, wake);
5354
5355                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5356         } else {
5357                 e1000_power_off(pdev, sleep, wake);
5358         }
5359 }
5360
5361 #ifdef CONFIG_PCIEASPM
5362 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5363 {
5364         pci_disable_link_state_locked(pdev, state);
5365 }
5366 #else
5367 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5368 {
5369         int pos;
5370         u16 reg16;
5371
5372         /*
5373          * Both device and parent should have the same ASPM setting.
5374          * Disable ASPM in downstream component first and then upstream.
5375          */
5376         pos = pci_pcie_cap(pdev);
5377         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5378         reg16 &= ~state;
5379         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5380
5381         if (!pdev->bus->self)
5382                 return;
5383
5384         pos = pci_pcie_cap(pdev->bus->self);
5385         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5386         reg16 &= ~state;
5387         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5388 }
5389 #endif
5390 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5391 {
5392         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5393                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5394                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5395
5396         __e1000e_disable_aspm(pdev, state);
5397 }
5398
5399 #ifdef CONFIG_PM
5400 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5401 {
5402         return !!adapter->tx_ring->buffer_info;
5403 }
5404
5405 static int __e1000_resume(struct pci_dev *pdev)
5406 {
5407         struct net_device *netdev = pci_get_drvdata(pdev);
5408         struct e1000_adapter *adapter = netdev_priv(netdev);
5409         struct e1000_hw *hw = &adapter->hw;
5410         u16 aspm_disable_flag = 0;
5411         u32 err;
5412
5413         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5414                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5415         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5416                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5417         if (aspm_disable_flag)
5418                 e1000e_disable_aspm(pdev, aspm_disable_flag);
5419
5420         pci_set_power_state(pdev, PCI_D0);
5421         pci_restore_state(pdev);
5422         pci_save_state(pdev);
5423
5424         e1000e_set_interrupt_capability(adapter);
5425         if (netif_running(netdev)) {
5426                 err = e1000_request_irq(adapter);
5427                 if (err)
5428                         return err;
5429         }
5430
5431         e1000e_power_up_phy(adapter);
5432
5433         /* report the system wakeup cause from S3/S4 */
5434         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5435                 u16 phy_data;
5436
5437                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5438                 if (phy_data) {
5439                         e_info("PHY Wakeup cause - %s\n",
5440                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5441                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5442                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5443                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5444                                 phy_data & E1000_WUS_LNKC ? "Link Status "
5445                                 " Change" : "other");
5446                 }
5447                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5448         } else {
5449                 u32 wus = er32(WUS);
5450                 if (wus) {
5451                         e_info("MAC Wakeup cause - %s\n",
5452                                 wus & E1000_WUS_EX ? "Unicast Packet" :
5453                                 wus & E1000_WUS_MC ? "Multicast Packet" :
5454                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
5455                                 wus & E1000_WUS_MAG ? "Magic Packet" :
5456                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
5457                                 "other");
5458                 }
5459                 ew32(WUS, ~0);
5460         }
5461
5462         e1000e_reset(adapter);
5463
5464         e1000_init_manageability_pt(adapter);
5465
5466         if (netif_running(netdev))
5467                 e1000e_up(adapter);
5468
5469         netif_device_attach(netdev);
5470
5471         /*
5472          * If the controller has AMT, do not set DRV_LOAD until the interface
5473          * is up.  For all other cases, let the f/w know that the h/w is now
5474          * under the control of the driver.
5475          */
5476         if (!(adapter->flags & FLAG_HAS_AMT))
5477                 e1000e_get_hw_control(adapter);
5478
5479         return 0;
5480 }
5481
5482 #ifdef CONFIG_PM_SLEEP
5483 static int e1000_suspend(struct device *dev)
5484 {
5485         struct pci_dev *pdev = to_pci_dev(dev);
5486         int retval;
5487         bool wake;
5488
5489         retval = __e1000_shutdown(pdev, &wake, false);
5490         if (!retval)
5491                 e1000_complete_shutdown(pdev, true, wake);
5492
5493         return retval;
5494 }
5495
5496 static int e1000_resume(struct device *dev)
5497 {
5498         struct pci_dev *pdev = to_pci_dev(dev);
5499         struct net_device *netdev = pci_get_drvdata(pdev);
5500         struct e1000_adapter *adapter = netdev_priv(netdev);
5501
5502         if (e1000e_pm_ready(adapter))
5503                 adapter->idle_check = true;
5504
5505         return __e1000_resume(pdev);
5506 }
5507 #endif /* CONFIG_PM_SLEEP */
5508
5509 #ifdef CONFIG_PM_RUNTIME
5510 static int e1000_runtime_suspend(struct device *dev)
5511 {
5512         struct pci_dev *pdev = to_pci_dev(dev);
5513         struct net_device *netdev = pci_get_drvdata(pdev);
5514         struct e1000_adapter *adapter = netdev_priv(netdev);
5515
5516         if (e1000e_pm_ready(adapter)) {
5517                 bool wake;
5518
5519                 __e1000_shutdown(pdev, &wake, true);
5520         }
5521
5522         return 0;
5523 }
5524
5525 static int e1000_idle(struct device *dev)
5526 {
5527         struct pci_dev *pdev = to_pci_dev(dev);
5528         struct net_device *netdev = pci_get_drvdata(pdev);
5529         struct e1000_adapter *adapter = netdev_priv(netdev);
5530
5531         if (!e1000e_pm_ready(adapter))
5532                 return 0;
5533
5534         if (adapter->idle_check) {
5535                 adapter->idle_check = false;
5536                 if (!e1000e_has_link(adapter))
5537                         pm_schedule_suspend(dev, MSEC_PER_SEC);
5538         }
5539
5540         return -EBUSY;
5541 }
5542
5543 static int e1000_runtime_resume(struct device *dev)
5544 {
5545         struct pci_dev *pdev = to_pci_dev(dev);
5546         struct net_device *netdev = pci_get_drvdata(pdev);
5547         struct e1000_adapter *adapter = netdev_priv(netdev);
5548
5549         if (!e1000e_pm_ready(adapter))
5550                 return 0;
5551
5552         adapter->idle_check = !dev->power.runtime_auto;
5553         return __e1000_resume(pdev);
5554 }
5555 #endif /* CONFIG_PM_RUNTIME */
5556 #endif /* CONFIG_PM */
5557
5558 static void e1000_shutdown(struct pci_dev *pdev)
5559 {
5560         bool wake = false;
5561
5562         __e1000_shutdown(pdev, &wake, false);
5563
5564         if (system_state == SYSTEM_POWER_OFF)
5565                 e1000_complete_shutdown(pdev, false, wake);
5566 }
5567
5568 #ifdef CONFIG_NET_POLL_CONTROLLER
5569
5570 static irqreturn_t e1000_intr_msix(int irq, void *data)
5571 {
5572         struct net_device *netdev = data;
5573         struct e1000_adapter *adapter = netdev_priv(netdev);
5574
5575         if (adapter->msix_entries) {
5576                 int vector, msix_irq;
5577
5578                 vector = 0;
5579                 msix_irq = adapter->msix_entries[vector].vector;
5580                 disable_irq(msix_irq);
5581                 e1000_intr_msix_rx(msix_irq, netdev);
5582                 enable_irq(msix_irq);
5583
5584                 vector++;
5585                 msix_irq = adapter->msix_entries[vector].vector;
5586                 disable_irq(msix_irq);
5587                 e1000_intr_msix_tx(msix_irq, netdev);
5588                 enable_irq(msix_irq);
5589
5590                 vector++;
5591                 msix_irq = adapter->msix_entries[vector].vector;
5592                 disable_irq(msix_irq);
5593                 e1000_msix_other(msix_irq, netdev);
5594                 enable_irq(msix_irq);
5595         }
5596
5597         return IRQ_HANDLED;
5598 }
5599
5600 /*
5601  * Polling 'interrupt' - used by things like netconsole to send skbs
5602  * without having to re-enable interrupts. It's not called while
5603  * the interrupt routine is executing.
5604  */
5605 static void e1000_netpoll(struct net_device *netdev)
5606 {
5607         struct e1000_adapter *adapter = netdev_priv(netdev);
5608
5609         switch (adapter->int_mode) {
5610         case E1000E_INT_MODE_MSIX:
5611                 e1000_intr_msix(adapter->pdev->irq, netdev);
5612                 break;
5613         case E1000E_INT_MODE_MSI:
5614                 disable_irq(adapter->pdev->irq);
5615                 e1000_intr_msi(adapter->pdev->irq, netdev);
5616                 enable_irq(adapter->pdev->irq);
5617                 break;
5618         default: /* E1000E_INT_MODE_LEGACY */
5619                 disable_irq(adapter->pdev->irq);
5620                 e1000_intr(adapter->pdev->irq, netdev);
5621                 enable_irq(adapter->pdev->irq);
5622                 break;
5623         }
5624 }
5625 #endif
5626
5627 /**
5628  * e1000_io_error_detected - called when PCI error is detected
5629  * @pdev: Pointer to PCI device
5630  * @state: The current pci connection state
5631  *
5632  * This function is called after a PCI bus error affecting
5633  * this device has been detected.
5634  */
5635 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5636                                                 pci_channel_state_t state)
5637 {
5638         struct net_device *netdev = pci_get_drvdata(pdev);
5639         struct e1000_adapter *adapter = netdev_priv(netdev);
5640
5641         netif_device_detach(netdev);
5642
5643         if (state == pci_channel_io_perm_failure)
5644                 return PCI_ERS_RESULT_DISCONNECT;
5645
5646         if (netif_running(netdev))
5647                 e1000e_down(adapter);
5648         pci_disable_device(pdev);
5649
5650         /* Request a slot slot reset. */
5651         return PCI_ERS_RESULT_NEED_RESET;
5652 }
5653
5654 /**
5655  * e1000_io_slot_reset - called after the pci bus has been reset.
5656  * @pdev: Pointer to PCI device
5657  *
5658  * Restart the card from scratch, as if from a cold-boot. Implementation
5659  * resembles the first-half of the e1000_resume routine.
5660  */
5661 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5662 {
5663         struct net_device *netdev = pci_get_drvdata(pdev);
5664         struct e1000_adapter *adapter = netdev_priv(netdev);
5665         struct e1000_hw *hw = &adapter->hw;
5666         u16 aspm_disable_flag = 0;
5667         int err;
5668         pci_ers_result_t result;
5669
5670         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5671                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5672         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5673                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5674         if (aspm_disable_flag)
5675                 e1000e_disable_aspm(pdev, aspm_disable_flag);
5676
5677         err = pci_enable_device_mem(pdev);
5678         if (err) {
5679                 dev_err(&pdev->dev,
5680                         "Cannot re-enable PCI device after reset.\n");
5681                 result = PCI_ERS_RESULT_DISCONNECT;
5682         } else {
5683                 pci_set_master(pdev);
5684                 pdev->state_saved = true;
5685                 pci_restore_state(pdev);
5686
5687                 pci_enable_wake(pdev, PCI_D3hot, 0);
5688                 pci_enable_wake(pdev, PCI_D3cold, 0);
5689
5690                 e1000e_reset(adapter);
5691                 ew32(WUS, ~0);
5692                 result = PCI_ERS_RESULT_RECOVERED;
5693         }
5694
5695         pci_cleanup_aer_uncorrect_error_status(pdev);
5696
5697         return result;
5698 }
5699
5700 /**
5701  * e1000_io_resume - called when traffic can start flowing again.
5702  * @pdev: Pointer to PCI device
5703  *
5704  * This callback is called when the error recovery driver tells us that
5705  * its OK to resume normal operation. Implementation resembles the
5706  * second-half of the e1000_resume routine.
5707  */
5708 static void e1000_io_resume(struct pci_dev *pdev)
5709 {
5710         struct net_device *netdev = pci_get_drvdata(pdev);
5711         struct e1000_adapter *adapter = netdev_priv(netdev);
5712
5713         e1000_init_manageability_pt(adapter);
5714
5715         if (netif_running(netdev)) {
5716                 if (e1000e_up(adapter)) {
5717                         dev_err(&pdev->dev,
5718                                 "can't bring device back up after reset\n");
5719                         return;
5720                 }
5721         }
5722
5723         netif_device_attach(netdev);
5724
5725         /*
5726          * If the controller has AMT, do not set DRV_LOAD until the interface
5727          * is up.  For all other cases, let the f/w know that the h/w is now
5728          * under the control of the driver.
5729          */
5730         if (!(adapter->flags & FLAG_HAS_AMT))
5731                 e1000e_get_hw_control(adapter);
5732
5733 }
5734
5735 static void e1000_print_device_info(struct e1000_adapter *adapter)
5736 {
5737         struct e1000_hw *hw = &adapter->hw;
5738         struct net_device *netdev = adapter->netdev;
5739         u32 ret_val;
5740         u8 pba_str[E1000_PBANUM_LENGTH];
5741
5742         /* print bus type/speed/width info */
5743         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5744                /* bus width */
5745                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5746                 "Width x1"),
5747                /* MAC address */
5748                netdev->dev_addr);
5749         e_info("Intel(R) PRO/%s Network Connection\n",
5750                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5751         ret_val = e1000_read_pba_string_generic(hw, pba_str,
5752                                                 E1000_PBANUM_LENGTH);
5753         if (ret_val)
5754                 strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5755         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5756                hw->mac.type, hw->phy.type, pba_str);
5757 }
5758
5759 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5760 {
5761         struct e1000_hw *hw = &adapter->hw;
5762         int ret_val;
5763         u16 buf = 0;
5764
5765         if (hw->mac.type != e1000_82573)
5766                 return;
5767
5768         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5769         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5770                 /* Deep Smart Power Down (DSPD) */
5771                 dev_warn(&adapter->pdev->dev,
5772                          "Warning: detected DSPD enabled in EEPROM\n");
5773         }
5774 }
5775
5776 static const struct net_device_ops e1000e_netdev_ops = {
5777         .ndo_open               = e1000_open,
5778         .ndo_stop               = e1000_close,
5779         .ndo_start_xmit         = e1000_xmit_frame,
5780         .ndo_get_stats64        = e1000e_get_stats64,
5781         .ndo_set_multicast_list = e1000_set_multi,
5782         .ndo_set_mac_address    = e1000_set_mac,
5783         .ndo_change_mtu         = e1000_change_mtu,
5784         .ndo_do_ioctl           = e1000_ioctl,
5785         .ndo_tx_timeout         = e1000_tx_timeout,
5786         .ndo_validate_addr      = eth_validate_addr,
5787
5788         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
5789         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
5790 #ifdef CONFIG_NET_POLL_CONTROLLER
5791         .ndo_poll_controller    = e1000_netpoll,
5792 #endif
5793 };
5794
5795 /**
5796  * e1000_probe - Device Initialization Routine
5797  * @pdev: PCI device information struct
5798  * @ent: entry in e1000_pci_tbl
5799  *
5800  * Returns 0 on success, negative on failure
5801  *
5802  * e1000_probe initializes an adapter identified by a pci_dev structure.
5803  * The OS initialization, configuring of the adapter private structure,
5804  * and a hardware reset occur.
5805  **/
5806 static int __devinit e1000_probe(struct pci_dev *pdev,
5807                                  const struct pci_device_id *ent)
5808 {
5809         struct net_device *netdev;
5810         struct e1000_adapter *adapter;
5811         struct e1000_hw *hw;
5812         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5813         resource_size_t mmio_start, mmio_len;
5814         resource_size_t flash_start, flash_len;
5815
5816         static int cards_found;
5817         u16 aspm_disable_flag = 0;
5818         int i, err, pci_using_dac;
5819         u16 eeprom_data = 0;
5820         u16 eeprom_apme_mask = E1000_EEPROM_APME;
5821
5822         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
5823                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5824         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5825                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5826         if (aspm_disable_flag)
5827                 e1000e_disable_aspm(pdev, aspm_disable_flag);
5828
5829         err = pci_enable_device_mem(pdev);
5830         if (err)
5831                 return err;
5832
5833         pci_using_dac = 0;
5834         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5835         if (!err) {
5836                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5837                 if (!err)
5838                         pci_using_dac = 1;
5839         } else {
5840                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5841                 if (err) {
5842                         err = dma_set_coherent_mask(&pdev->dev,
5843                                                     DMA_BIT_MASK(32));
5844                         if (err) {
5845                                 dev_err(&pdev->dev, "No usable DMA "
5846                                         "configuration, aborting\n");
5847                                 goto err_dma;
5848                         }
5849                 }
5850         }
5851
5852         err = pci_request_selected_regions_exclusive(pdev,
5853                                           pci_select_bars(pdev, IORESOURCE_MEM),
5854                                           e1000e_driver_name);
5855         if (err)
5856                 goto err_pci_reg;
5857
5858         /* AER (Advanced Error Reporting) hooks */
5859         pci_enable_pcie_error_reporting(pdev);
5860
5861         pci_set_master(pdev);
5862         /* PCI config space info */
5863         err = pci_save_state(pdev);
5864         if (err)
5865                 goto err_alloc_etherdev;
5866
5867         err = -ENOMEM;
5868         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5869         if (!netdev)
5870                 goto err_alloc_etherdev;
5871
5872         SET_NETDEV_DEV(netdev, &pdev->dev);
5873
5874         netdev->irq = pdev->irq;
5875
5876         pci_set_drvdata(pdev, netdev);
5877         adapter = netdev_priv(netdev);
5878         hw = &adapter->hw;
5879         adapter->netdev = netdev;
5880         adapter->pdev = pdev;
5881         adapter->ei = ei;
5882         adapter->pba = ei->pba;
5883         adapter->flags = ei->flags;
5884         adapter->flags2 = ei->flags2;
5885         adapter->hw.adapter = adapter;
5886         adapter->hw.mac.type = ei->mac;
5887         adapter->max_hw_frame_size = ei->max_hw_frame_size;
5888         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5889
5890         mmio_start = pci_resource_start(pdev, 0);
5891         mmio_len = pci_resource_len(pdev, 0);
5892
5893         err = -EIO;
5894         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5895         if (!adapter->hw.hw_addr)
5896                 goto err_ioremap;
5897
5898         if ((adapter->flags & FLAG_HAS_FLASH) &&
5899             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5900                 flash_start = pci_resource_start(pdev, 1);
5901                 flash_len = pci_resource_len(pdev, 1);
5902                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5903                 if (!adapter->hw.flash_address)
5904                         goto err_flashmap;
5905         }
5906
5907         /* construct the net_device struct */
5908         netdev->netdev_ops              = &e1000e_netdev_ops;
5909         e1000e_set_ethtool_ops(netdev);
5910         netdev->watchdog_timeo          = 5 * HZ;
5911         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5912         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5913
5914         netdev->mem_start = mmio_start;
5915         netdev->mem_end = mmio_start + mmio_len;
5916
5917         adapter->bd_number = cards_found++;
5918
5919         e1000e_check_options(adapter);
5920
5921         /* setup adapter struct */
5922         err = e1000_sw_init(adapter);
5923         if (err)
5924                 goto err_sw_init;
5925
5926         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5927         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5928         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5929
5930         err = ei->get_variants(adapter);
5931         if (err)
5932                 goto err_hw_init;
5933
5934         if ((adapter->flags & FLAG_IS_ICH) &&
5935             (adapter->flags & FLAG_READ_ONLY_NVM))
5936                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5937
5938         hw->mac.ops.get_bus_info(&adapter->hw);
5939
5940         adapter->hw.phy.autoneg_wait_to_complete = 0;
5941
5942         /* Copper options */
5943         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5944                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5945                 adapter->hw.phy.disable_polarity_correction = 0;
5946                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5947         }
5948
5949         if (e1000_check_reset_block(&adapter->hw))
5950                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5951
5952         netdev->features = NETIF_F_SG |
5953                            NETIF_F_HW_CSUM |
5954                            NETIF_F_HW_VLAN_TX |
5955                            NETIF_F_HW_VLAN_RX;
5956
5957         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5958                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5959
5960         netdev->features |= NETIF_F_TSO;
5961         netdev->features |= NETIF_F_TSO6;
5962
5963         netdev->vlan_features |= NETIF_F_TSO;
5964         netdev->vlan_features |= NETIF_F_TSO6;
5965         netdev->vlan_features |= NETIF_F_HW_CSUM;
5966         netdev->vlan_features |= NETIF_F_SG;
5967
5968         if (pci_using_dac) {
5969                 netdev->features |= NETIF_F_HIGHDMA;
5970                 netdev->vlan_features |= NETIF_F_HIGHDMA;
5971         }
5972
5973         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5974                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5975
5976         /*
5977          * before reading the NVM, reset the controller to
5978          * put the device in a known good starting state
5979          */
5980         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5981
5982         /*
5983          * systems with ASPM and others may see the checksum fail on the first
5984          * attempt. Let's give it a few tries
5985          */
5986         for (i = 0;; i++) {
5987                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5988                         break;
5989                 if (i == 2) {
5990                         e_err("The NVM Checksum Is Not Valid\n");
5991                         err = -EIO;
5992                         goto err_eeprom;
5993                 }
5994         }
5995
5996         e1000_eeprom_checks(adapter);
5997
5998         /* copy the MAC address */
5999         if (e1000e_read_mac_addr(&adapter->hw))
6000                 e_err("NVM Read Error while reading MAC address\n");
6001
6002         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6003         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6004
6005         if (!is_valid_ether_addr(netdev->perm_addr)) {
6006                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6007                 err = -EIO;
6008                 goto err_eeprom;
6009         }
6010
6011         init_timer(&adapter->watchdog_timer);
6012         adapter->watchdog_timer.function = e1000_watchdog;
6013         adapter->watchdog_timer.data = (unsigned long) adapter;
6014
6015         init_timer(&adapter->phy_info_timer);
6016         adapter->phy_info_timer.function = e1000_update_phy_info;
6017         adapter->phy_info_timer.data = (unsigned long) adapter;
6018
6019         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6020         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6021         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6022         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6023         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6024
6025         /* Initialize link parameters. User can change them with ethtool */
6026         adapter->hw.mac.autoneg = 1;
6027         adapter->fc_autoneg = 1;
6028         adapter->hw.fc.requested_mode = e1000_fc_default;
6029         adapter->hw.fc.current_mode = e1000_fc_default;
6030         adapter->hw.phy.autoneg_advertised = 0x2f;
6031
6032         /* ring size defaults */
6033         adapter->rx_ring->count = 256;
6034         adapter->tx_ring->count = 256;
6035
6036         /*
6037          * Initial Wake on LAN setting - If APM wake is enabled in
6038          * the EEPROM, enable the ACPI Magic Packet filter
6039          */
6040         if (adapter->flags & FLAG_APME_IN_WUC) {
6041                 /* APME bit in EEPROM is mapped to WUC.APME */
6042                 eeprom_data = er32(WUC);
6043                 eeprom_apme_mask = E1000_WUC_APME;
6044                 if ((hw->mac.type > e1000_ich10lan) &&
6045                     (eeprom_data & E1000_WUC_PHY_WAKE))
6046                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6047         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6048                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6049                     (adapter->hw.bus.func == 1))
6050                         e1000_read_nvm(&adapter->hw,
6051                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
6052                 else
6053                         e1000_read_nvm(&adapter->hw,
6054                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6055         }
6056
6057         /* fetch WoL from EEPROM */
6058         if (eeprom_data & eeprom_apme_mask)
6059                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6060
6061         /*
6062          * now that we have the eeprom settings, apply the special cases
6063          * where the eeprom may be wrong or the board simply won't support
6064          * wake on lan on a particular port
6065          */
6066         if (!(adapter->flags & FLAG_HAS_WOL))
6067                 adapter->eeprom_wol = 0;
6068
6069         /* initialize the wol settings based on the eeprom settings */
6070         adapter->wol = adapter->eeprom_wol;
6071         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6072
6073         /* save off EEPROM version number */
6074         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6075
6076         /* reset the hardware with the new settings */
6077         e1000e_reset(adapter);
6078
6079         /*
6080          * If the controller has AMT, do not set DRV_LOAD until the interface
6081          * is up.  For all other cases, let the f/w know that the h/w is now
6082          * under the control of the driver.
6083          */
6084         if (!(adapter->flags & FLAG_HAS_AMT))
6085                 e1000e_get_hw_control(adapter);
6086
6087         strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
6088         err = register_netdev(netdev);
6089         if (err)
6090                 goto err_register;
6091
6092         /* carrier off reporting is important to ethtool even BEFORE open */
6093         netif_carrier_off(netdev);
6094
6095         e1000_print_device_info(adapter);
6096
6097         if (pci_dev_run_wake(pdev))
6098                 pm_runtime_put_noidle(&pdev->dev);
6099
6100         return 0;
6101
6102 err_register:
6103         if (!(adapter->flags & FLAG_HAS_AMT))
6104                 e1000e_release_hw_control(adapter);
6105 err_eeprom:
6106         if (!e1000_check_reset_block(&adapter->hw))
6107                 e1000_phy_hw_reset(&adapter->hw);
6108 err_hw_init:
6109         kfree(adapter->tx_ring);
6110         kfree(adapter->rx_ring);
6111 err_sw_init:
6112         if (adapter->hw.flash_address)
6113                 iounmap(adapter->hw.flash_address);
6114         e1000e_reset_interrupt_capability(adapter);
6115 err_flashmap:
6116         iounmap(adapter->hw.hw_addr);
6117 err_ioremap:
6118         free_netdev(netdev);
6119 err_alloc_etherdev:
6120         pci_release_selected_regions(pdev,
6121                                      pci_select_bars(pdev, IORESOURCE_MEM));
6122 err_pci_reg:
6123 err_dma:
6124         pci_disable_device(pdev);
6125         return err;
6126 }
6127
6128 /**
6129  * e1000_remove - Device Removal Routine
6130  * @pdev: PCI device information struct
6131  *
6132  * e1000_remove is called by the PCI subsystem to alert the driver
6133  * that it should release a PCI device.  The could be caused by a
6134  * Hot-Plug event, or because the driver is going to be removed from
6135  * memory.
6136  **/
6137 static void __devexit e1000_remove(struct pci_dev *pdev)
6138 {
6139         struct net_device *netdev = pci_get_drvdata(pdev);
6140         struct e1000_adapter *adapter = netdev_priv(netdev);
6141         bool down = test_bit(__E1000_DOWN, &adapter->state);
6142
6143         /*
6144          * The timers may be rescheduled, so explicitly disable them
6145          * from being rescheduled.
6146          */
6147         if (!down)
6148                 set_bit(__E1000_DOWN, &adapter->state);
6149         del_timer_sync(&adapter->watchdog_timer);
6150         del_timer_sync(&adapter->phy_info_timer);
6151
6152         cancel_work_sync(&adapter->reset_task);
6153         cancel_work_sync(&adapter->watchdog_task);
6154         cancel_work_sync(&adapter->downshift_task);
6155         cancel_work_sync(&adapter->update_phy_task);
6156         cancel_work_sync(&adapter->print_hang_task);
6157
6158         if (!(netdev->flags & IFF_UP))
6159                 e1000_power_down_phy(adapter);
6160
6161         /* Don't lie to e1000_close() down the road. */
6162         if (!down)
6163                 clear_bit(__E1000_DOWN, &adapter->state);
6164         unregister_netdev(netdev);
6165
6166         if (pci_dev_run_wake(pdev))
6167                 pm_runtime_get_noresume(&pdev->dev);
6168
6169         /*
6170          * Release control of h/w to f/w.  If f/w is AMT enabled, this
6171          * would have already happened in close and is redundant.
6172          */
6173         e1000e_release_hw_control(adapter);
6174
6175         e1000e_reset_interrupt_capability(adapter);
6176         kfree(adapter->tx_ring);
6177         kfree(adapter->rx_ring);
6178
6179         iounmap(adapter->hw.hw_addr);
6180         if (adapter->hw.flash_address)
6181                 iounmap(adapter->hw.flash_address);
6182         pci_release_selected_regions(pdev,
6183                                      pci_select_bars(pdev, IORESOURCE_MEM));
6184
6185         free_netdev(netdev);
6186
6187         /* AER disable */
6188         pci_disable_pcie_error_reporting(pdev);
6189
6190         pci_disable_device(pdev);
6191 }
6192
6193 /* PCI Error Recovery (ERS) */
6194 static struct pci_error_handlers e1000_err_handler = {
6195         .error_detected = e1000_io_error_detected,
6196         .slot_reset = e1000_io_slot_reset,
6197         .resume = e1000_io_resume,
6198 };
6199
6200 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6201         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6202         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6203         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6204         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6205         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6206         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6207         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6208         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6209         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6210
6211         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6212         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6213         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6214         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6215
6216         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6217         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6218         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6219
6220         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6221         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6222         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6223
6224         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6225           board_80003es2lan },
6226         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6227           board_80003es2lan },
6228         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6229           board_80003es2lan },
6230         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6231           board_80003es2lan },
6232
6233         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6234         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6235         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6236         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6237         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6238         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6239         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6240         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6241
6242         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6243         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6244         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6245         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6246         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6247         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6248         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6249         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6250         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6251
6252         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6253         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6254         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6255
6256         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6257         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6258         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6259
6260         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6261         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6262         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6263         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6264
6265         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6266         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6267
6268         { }     /* terminate list */
6269 };
6270 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6271
6272 #ifdef CONFIG_PM
6273 static const struct dev_pm_ops e1000_pm_ops = {
6274         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6275         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6276                                 e1000_runtime_resume, e1000_idle)
6277 };
6278 #endif
6279
6280 /* PCI Device API Driver */
6281 static struct pci_driver e1000_driver = {
6282         .name     = e1000e_driver_name,
6283         .id_table = e1000_pci_tbl,
6284         .probe    = e1000_probe,
6285         .remove   = __devexit_p(e1000_remove),
6286 #ifdef CONFIG_PM
6287         .driver.pm = &e1000_pm_ops,
6288 #endif
6289         .shutdown = e1000_shutdown,
6290         .err_handler = &e1000_err_handler
6291 };
6292
6293 /**
6294  * e1000_init_module - Driver Registration Routine
6295  *
6296  * e1000_init_module is the first routine called when the driver is
6297  * loaded. All it does is register with the PCI subsystem.
6298  **/
6299 static int __init e1000_init_module(void)
6300 {
6301         int ret;
6302         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6303                 e1000e_driver_version);
6304         pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6305         ret = pci_register_driver(&e1000_driver);
6306
6307         return ret;
6308 }
6309 module_init(e1000_init_module);
6310
6311 /**
6312  * e1000_exit_module - Driver Exit Cleanup Routine
6313  *
6314  * e1000_exit_module is called just before the driver is removed
6315  * from memory.
6316  **/
6317 static void __exit e1000_exit_module(void)
6318 {
6319         pci_unregister_driver(&e1000_driver);
6320 }
6321 module_exit(e1000_exit_module);
6322
6323
6324 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6325 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6326 MODULE_LICENSE("GPL");
6327 MODULE_VERSION(DRV_VERSION);
6328
6329 /* e1000_main.c */