Merge branch 'for-rmk' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene/linux...
[pandora-kernel.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36
37 #include "e1000.h"
38
39 enum {NETDEV_STATS, E1000_STATS};
40
41 struct e1000_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int type;
44         int sizeof_stat;
45         int stat_offset;
46 };
47
48 #define E1000_STAT(str, m) { \
49                 .stat_string = str, \
50                 .type = E1000_STATS, \
51                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
52                 .stat_offset = offsetof(struct e1000_adapter, m) }
53 #define E1000_NETDEV_STAT(str, m) { \
54                 .stat_string = str, \
55                 .type = NETDEV_STATS, \
56                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
57                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
58
59 static const struct e1000_stats e1000_gstrings_stats[] = {
60         E1000_STAT("rx_packets", stats.gprc),
61         E1000_STAT("tx_packets", stats.gptc),
62         E1000_STAT("rx_bytes", stats.gorc),
63         E1000_STAT("tx_bytes", stats.gotc),
64         E1000_STAT("rx_broadcast", stats.bprc),
65         E1000_STAT("tx_broadcast", stats.bptc),
66         E1000_STAT("rx_multicast", stats.mprc),
67         E1000_STAT("tx_multicast", stats.mptc),
68         E1000_NETDEV_STAT("rx_errors", rx_errors),
69         E1000_NETDEV_STAT("tx_errors", tx_errors),
70         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
71         E1000_STAT("multicast", stats.mprc),
72         E1000_STAT("collisions", stats.colc),
73         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
74         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
75         E1000_STAT("rx_crc_errors", stats.crcerrs),
76         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
77         E1000_STAT("rx_no_buffer_count", stats.rnbc),
78         E1000_STAT("rx_missed_errors", stats.mpc),
79         E1000_STAT("tx_aborted_errors", stats.ecol),
80         E1000_STAT("tx_carrier_errors", stats.tncrs),
81         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
82         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
83         E1000_STAT("tx_window_errors", stats.latecol),
84         E1000_STAT("tx_abort_late_coll", stats.latecol),
85         E1000_STAT("tx_deferred_ok", stats.dc),
86         E1000_STAT("tx_single_coll_ok", stats.scc),
87         E1000_STAT("tx_multi_coll_ok", stats.mcc),
88         E1000_STAT("tx_timeout_count", tx_timeout_count),
89         E1000_STAT("tx_restart_queue", restart_queue),
90         E1000_STAT("rx_long_length_errors", stats.roc),
91         E1000_STAT("rx_short_length_errors", stats.ruc),
92         E1000_STAT("rx_align_errors", stats.algnerrc),
93         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
94         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
95         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
96         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
97         E1000_STAT("tx_flow_control_xon", stats.xontxc),
98         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
99         E1000_STAT("rx_long_byte_count", stats.gorc),
100         E1000_STAT("rx_csum_offload_good", hw_csum_good),
101         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
102         E1000_STAT("rx_header_split", rx_hdr_split),
103         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
104         E1000_STAT("tx_smbus", stats.mgptc),
105         E1000_STAT("rx_smbus", stats.mgprc),
106         E1000_STAT("dropped_smbus", stats.mgpdc),
107         E1000_STAT("rx_dma_failed", rx_dma_failed),
108         E1000_STAT("tx_dma_failed", tx_dma_failed),
109 };
110
111 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
112 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
113 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
114         "Register test  (offline)", "Eeprom test    (offline)",
115         "Interrupt test (offline)", "Loopback test  (offline)",
116         "Link test   (on/offline)"
117 };
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119
120 static int e1000_get_settings(struct net_device *netdev,
121                               struct ethtool_cmd *ecmd)
122 {
123         struct e1000_adapter *adapter = netdev_priv(netdev);
124         struct e1000_hw *hw = &adapter->hw;
125         u32 speed;
126
127         if (hw->phy.media_type == e1000_media_type_copper) {
128
129                 ecmd->supported = (SUPPORTED_10baseT_Half |
130                                    SUPPORTED_10baseT_Full |
131                                    SUPPORTED_100baseT_Half |
132                                    SUPPORTED_100baseT_Full |
133                                    SUPPORTED_1000baseT_Full |
134                                    SUPPORTED_Autoneg |
135                                    SUPPORTED_TP);
136                 if (hw->phy.type == e1000_phy_ife)
137                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
138                 ecmd->advertising = ADVERTISED_TP;
139
140                 if (hw->mac.autoneg == 1) {
141                         ecmd->advertising |= ADVERTISED_Autoneg;
142                         /* the e1000 autoneg seems to match ethtool nicely */
143                         ecmd->advertising |= hw->phy.autoneg_advertised;
144                 }
145
146                 ecmd->port = PORT_TP;
147                 ecmd->phy_address = hw->phy.addr;
148                 ecmd->transceiver = XCVR_INTERNAL;
149
150         } else {
151                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
152                                      SUPPORTED_FIBRE |
153                                      SUPPORTED_Autoneg);
154
155                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
156                                      ADVERTISED_FIBRE |
157                                      ADVERTISED_Autoneg);
158
159                 ecmd->port = PORT_FIBRE;
160                 ecmd->transceiver = XCVR_EXTERNAL;
161         }
162
163         speed = -1;
164         ecmd->duplex = -1;
165
166         if (netif_running(netdev)) {
167                 if (netif_carrier_ok(netdev)) {
168                         speed = adapter->link_speed;
169                         ecmd->duplex = adapter->link_duplex - 1;
170                 }
171         } else {
172                 u32 status = er32(STATUS);
173                 if (status & E1000_STATUS_LU) {
174                         if (status & E1000_STATUS_SPEED_1000)
175                                 speed = SPEED_1000;
176                         else if (status & E1000_STATUS_SPEED_100)
177                                 speed = SPEED_100;
178                         else
179                                 speed = SPEED_10;
180
181                         if (status & E1000_STATUS_FD)
182                                 ecmd->duplex = DUPLEX_FULL;
183                         else
184                                 ecmd->duplex = DUPLEX_HALF;
185                 }
186         }
187
188         ethtool_cmd_speed_set(ecmd, speed);
189         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
190                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
191
192         /* MDI-X => 2; MDI =>1; Invalid =>0 */
193         if ((hw->phy.media_type == e1000_media_type_copper) &&
194             netif_carrier_ok(netdev))
195                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
196                                                       ETH_TP_MDI;
197         else
198                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
199
200         return 0;
201 }
202
203 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
204 {
205         struct e1000_mac_info *mac = &adapter->hw.mac;
206
207         mac->autoneg = 0;
208
209         /* Make sure dplx is at most 1 bit and lsb of speed is not set
210          * for the switch() below to work */
211         if ((spd & 1) || (dplx & ~1))
212                 goto err_inval;
213
214         /* Fiber NICs only allow 1000 gbps Full duplex */
215         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
216             spd != SPEED_1000 &&
217             dplx != DUPLEX_FULL) {
218                 goto err_inval;
219         }
220
221         switch (spd + dplx) {
222         case SPEED_10 + DUPLEX_HALF:
223                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
224                 break;
225         case SPEED_10 + DUPLEX_FULL:
226                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
227                 break;
228         case SPEED_100 + DUPLEX_HALF:
229                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
230                 break;
231         case SPEED_100 + DUPLEX_FULL:
232                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
233                 break;
234         case SPEED_1000 + DUPLEX_FULL:
235                 mac->autoneg = 1;
236                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
237                 break;
238         case SPEED_1000 + DUPLEX_HALF: /* not supported */
239         default:
240                 goto err_inval;
241         }
242         return 0;
243
244 err_inval:
245         e_err("Unsupported Speed/Duplex configuration\n");
246         return -EINVAL;
247 }
248
249 static int e1000_set_settings(struct net_device *netdev,
250                               struct ethtool_cmd *ecmd)
251 {
252         struct e1000_adapter *adapter = netdev_priv(netdev);
253         struct e1000_hw *hw = &adapter->hw;
254
255         /*
256          * When SoL/IDER sessions are active, autoneg/speed/duplex
257          * cannot be changed
258          */
259         if (e1000_check_reset_block(hw)) {
260                 e_err("Cannot change link characteristics when SoL/IDER is "
261                       "active.\n");
262                 return -EINVAL;
263         }
264
265         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
266                 usleep_range(1000, 2000);
267
268         if (ecmd->autoneg == AUTONEG_ENABLE) {
269                 hw->mac.autoneg = 1;
270                 if (hw->phy.media_type == e1000_media_type_fiber)
271                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
272                                                      ADVERTISED_FIBRE |
273                                                      ADVERTISED_Autoneg;
274                 else
275                         hw->phy.autoneg_advertised = ecmd->advertising |
276                                                      ADVERTISED_TP |
277                                                      ADVERTISED_Autoneg;
278                 ecmd->advertising = hw->phy.autoneg_advertised;
279                 if (adapter->fc_autoneg)
280                         hw->fc.requested_mode = e1000_fc_default;
281         } else {
282                 u32 speed = ethtool_cmd_speed(ecmd);
283                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
284                         clear_bit(__E1000_RESETTING, &adapter->state);
285                         return -EINVAL;
286                 }
287         }
288
289         /* reset the link */
290
291         if (netif_running(adapter->netdev)) {
292                 e1000e_down(adapter);
293                 e1000e_up(adapter);
294         } else {
295                 e1000e_reset(adapter);
296         }
297
298         clear_bit(__E1000_RESETTING, &adapter->state);
299         return 0;
300 }
301
302 static void e1000_get_pauseparam(struct net_device *netdev,
303                                  struct ethtool_pauseparam *pause)
304 {
305         struct e1000_adapter *adapter = netdev_priv(netdev);
306         struct e1000_hw *hw = &adapter->hw;
307
308         pause->autoneg =
309                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
310
311         if (hw->fc.current_mode == e1000_fc_rx_pause) {
312                 pause->rx_pause = 1;
313         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
314                 pause->tx_pause = 1;
315         } else if (hw->fc.current_mode == e1000_fc_full) {
316                 pause->rx_pause = 1;
317                 pause->tx_pause = 1;
318         }
319 }
320
321 static int e1000_set_pauseparam(struct net_device *netdev,
322                                 struct ethtool_pauseparam *pause)
323 {
324         struct e1000_adapter *adapter = netdev_priv(netdev);
325         struct e1000_hw *hw = &adapter->hw;
326         int retval = 0;
327
328         adapter->fc_autoneg = pause->autoneg;
329
330         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
331                 usleep_range(1000, 2000);
332
333         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
334                 hw->fc.requested_mode = e1000_fc_default;
335                 if (netif_running(adapter->netdev)) {
336                         e1000e_down(adapter);
337                         e1000e_up(adapter);
338                 } else {
339                         e1000e_reset(adapter);
340                 }
341         } else {
342                 if (pause->rx_pause && pause->tx_pause)
343                         hw->fc.requested_mode = e1000_fc_full;
344                 else if (pause->rx_pause && !pause->tx_pause)
345                         hw->fc.requested_mode = e1000_fc_rx_pause;
346                 else if (!pause->rx_pause && pause->tx_pause)
347                         hw->fc.requested_mode = e1000_fc_tx_pause;
348                 else if (!pause->rx_pause && !pause->tx_pause)
349                         hw->fc.requested_mode = e1000_fc_none;
350
351                 hw->fc.current_mode = hw->fc.requested_mode;
352
353                 if (hw->phy.media_type == e1000_media_type_fiber) {
354                         retval = hw->mac.ops.setup_link(hw);
355                         /* implicit goto out */
356                 } else {
357                         retval = e1000e_force_mac_fc(hw);
358                         if (retval)
359                                 goto out;
360                         e1000e_set_fc_watermarks(hw);
361                 }
362         }
363
364 out:
365         clear_bit(__E1000_RESETTING, &adapter->state);
366         return retval;
367 }
368
369 static u32 e1000_get_rx_csum(struct net_device *netdev)
370 {
371         struct e1000_adapter *adapter = netdev_priv(netdev);
372         return adapter->flags & FLAG_RX_CSUM_ENABLED;
373 }
374
375 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
376 {
377         struct e1000_adapter *adapter = netdev_priv(netdev);
378
379         if (data)
380                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
381         else
382                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
383
384         if (netif_running(netdev))
385                 e1000e_reinit_locked(adapter);
386         else
387                 e1000e_reset(adapter);
388         return 0;
389 }
390
391 static u32 e1000_get_tx_csum(struct net_device *netdev)
392 {
393         return (netdev->features & NETIF_F_HW_CSUM) != 0;
394 }
395
396 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
397 {
398         if (data)
399                 netdev->features |= NETIF_F_HW_CSUM;
400         else
401                 netdev->features &= ~NETIF_F_HW_CSUM;
402
403         return 0;
404 }
405
406 static int e1000_set_tso(struct net_device *netdev, u32 data)
407 {
408         struct e1000_adapter *adapter = netdev_priv(netdev);
409
410         if (data) {
411                 netdev->features |= NETIF_F_TSO;
412                 netdev->features |= NETIF_F_TSO6;
413         } else {
414                 netdev->features &= ~NETIF_F_TSO;
415                 netdev->features &= ~NETIF_F_TSO6;
416         }
417
418         adapter->flags |= FLAG_TSO_FORCE;
419         return 0;
420 }
421
422 static u32 e1000_get_msglevel(struct net_device *netdev)
423 {
424         struct e1000_adapter *adapter = netdev_priv(netdev);
425         return adapter->msg_enable;
426 }
427
428 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
429 {
430         struct e1000_adapter *adapter = netdev_priv(netdev);
431         adapter->msg_enable = data;
432 }
433
434 static int e1000_get_regs_len(struct net_device *netdev)
435 {
436 #define E1000_REGS_LEN 32 /* overestimate */
437         return E1000_REGS_LEN * sizeof(u32);
438 }
439
440 static void e1000_get_regs(struct net_device *netdev,
441                            struct ethtool_regs *regs, void *p)
442 {
443         struct e1000_adapter *adapter = netdev_priv(netdev);
444         struct e1000_hw *hw = &adapter->hw;
445         u32 *regs_buff = p;
446         u16 phy_data;
447
448         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
449
450         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
451                         adapter->pdev->device;
452
453         regs_buff[0]  = er32(CTRL);
454         regs_buff[1]  = er32(STATUS);
455
456         regs_buff[2]  = er32(RCTL);
457         regs_buff[3]  = er32(RDLEN);
458         regs_buff[4]  = er32(RDH);
459         regs_buff[5]  = er32(RDT);
460         regs_buff[6]  = er32(RDTR);
461
462         regs_buff[7]  = er32(TCTL);
463         regs_buff[8]  = er32(TDLEN);
464         regs_buff[9]  = er32(TDH);
465         regs_buff[10] = er32(TDT);
466         regs_buff[11] = er32(TIDV);
467
468         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
469
470         /* ethtool doesn't use anything past this point, so all this
471          * code is likely legacy junk for apps that may or may not
472          * exist */
473         if (hw->phy.type == e1000_phy_m88) {
474                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
475                 regs_buff[13] = (u32)phy_data; /* cable length */
476                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
477                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
478                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
479                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
480                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
481                 regs_buff[18] = regs_buff[13]; /* cable polarity */
482                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
483                 regs_buff[20] = regs_buff[17]; /* polarity correction */
484                 /* phy receive errors */
485                 regs_buff[22] = adapter->phy_stats.receive_errors;
486                 regs_buff[23] = regs_buff[13]; /* mdix mode */
487         }
488         regs_buff[21] = 0; /* was idle_errors */
489         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
490         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
491         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
492 }
493
494 static int e1000_get_eeprom_len(struct net_device *netdev)
495 {
496         struct e1000_adapter *adapter = netdev_priv(netdev);
497         return adapter->hw.nvm.word_size * 2;
498 }
499
500 static int e1000_get_eeprom(struct net_device *netdev,
501                             struct ethtool_eeprom *eeprom, u8 *bytes)
502 {
503         struct e1000_adapter *adapter = netdev_priv(netdev);
504         struct e1000_hw *hw = &adapter->hw;
505         u16 *eeprom_buff;
506         int first_word;
507         int last_word;
508         int ret_val = 0;
509         u16 i;
510
511         if (eeprom->len == 0)
512                 return -EINVAL;
513
514         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
515
516         first_word = eeprom->offset >> 1;
517         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
518
519         eeprom_buff = kmalloc(sizeof(u16) *
520                         (last_word - first_word + 1), GFP_KERNEL);
521         if (!eeprom_buff)
522                 return -ENOMEM;
523
524         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
525                 ret_val = e1000_read_nvm(hw, first_word,
526                                          last_word - first_word + 1,
527                                          eeprom_buff);
528         } else {
529                 for (i = 0; i < last_word - first_word + 1; i++) {
530                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
531                                                       &eeprom_buff[i]);
532                         if (ret_val)
533                                 break;
534                 }
535         }
536
537         if (ret_val) {
538                 /* a read error occurred, throw away the result */
539                 memset(eeprom_buff, 0xff, sizeof(u16) *
540                        (last_word - first_word + 1));
541         } else {
542                 /* Device's eeprom is always little-endian, word addressable */
543                 for (i = 0; i < last_word - first_word + 1; i++)
544                         le16_to_cpus(&eeprom_buff[i]);
545         }
546
547         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
548         kfree(eeprom_buff);
549
550         return ret_val;
551 }
552
553 static int e1000_set_eeprom(struct net_device *netdev,
554                             struct ethtool_eeprom *eeprom, u8 *bytes)
555 {
556         struct e1000_adapter *adapter = netdev_priv(netdev);
557         struct e1000_hw *hw = &adapter->hw;
558         u16 *eeprom_buff;
559         void *ptr;
560         int max_len;
561         int first_word;
562         int last_word;
563         int ret_val = 0;
564         u16 i;
565
566         if (eeprom->len == 0)
567                 return -EOPNOTSUPP;
568
569         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
570                 return -EFAULT;
571
572         if (adapter->flags & FLAG_READ_ONLY_NVM)
573                 return -EINVAL;
574
575         max_len = hw->nvm.word_size * 2;
576
577         first_word = eeprom->offset >> 1;
578         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
579         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
580         if (!eeprom_buff)
581                 return -ENOMEM;
582
583         ptr = (void *)eeprom_buff;
584
585         if (eeprom->offset & 1) {
586                 /* need read/modify/write of first changed EEPROM word */
587                 /* only the second byte of the word is being modified */
588                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
589                 ptr++;
590         }
591         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
592                 /* need read/modify/write of last changed EEPROM word */
593                 /* only the first byte of the word is being modified */
594                 ret_val = e1000_read_nvm(hw, last_word, 1,
595                                   &eeprom_buff[last_word - first_word]);
596
597         if (ret_val)
598                 goto out;
599
600         /* Device's eeprom is always little-endian, word addressable */
601         for (i = 0; i < last_word - first_word + 1; i++)
602                 le16_to_cpus(&eeprom_buff[i]);
603
604         memcpy(ptr, bytes, eeprom->len);
605
606         for (i = 0; i < last_word - first_word + 1; i++)
607                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
608
609         ret_val = e1000_write_nvm(hw, first_word,
610                                   last_word - first_word + 1, eeprom_buff);
611
612         if (ret_val)
613                 goto out;
614
615         /*
616          * Update the checksum over the first part of the EEPROM if needed
617          * and flush shadow RAM for applicable controllers
618          */
619         if ((first_word <= NVM_CHECKSUM_REG) ||
620             (hw->mac.type == e1000_82583) ||
621             (hw->mac.type == e1000_82574) ||
622             (hw->mac.type == e1000_82573))
623                 ret_val = e1000e_update_nvm_checksum(hw);
624
625 out:
626         kfree(eeprom_buff);
627         return ret_val;
628 }
629
630 static void e1000_get_drvinfo(struct net_device *netdev,
631                               struct ethtool_drvinfo *drvinfo)
632 {
633         struct e1000_adapter *adapter = netdev_priv(netdev);
634         char firmware_version[32];
635
636         strncpy(drvinfo->driver,  e1000e_driver_name,
637                 sizeof(drvinfo->driver) - 1);
638         strncpy(drvinfo->version, e1000e_driver_version,
639                 sizeof(drvinfo->version) - 1);
640
641         /*
642          * EEPROM image version # is reported as firmware version # for
643          * PCI-E controllers
644          */
645         snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d",
646                 (adapter->eeprom_vers & 0xF000) >> 12,
647                 (adapter->eeprom_vers & 0x0FF0) >> 4,
648                 (adapter->eeprom_vers & 0x000F));
649
650         strncpy(drvinfo->fw_version, firmware_version,
651                 sizeof(drvinfo->fw_version) - 1);
652         strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
653                 sizeof(drvinfo->bus_info) - 1);
654         drvinfo->regdump_len = e1000_get_regs_len(netdev);
655         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
656 }
657
658 static void e1000_get_ringparam(struct net_device *netdev,
659                                 struct ethtool_ringparam *ring)
660 {
661         struct e1000_adapter *adapter = netdev_priv(netdev);
662         struct e1000_ring *tx_ring = adapter->tx_ring;
663         struct e1000_ring *rx_ring = adapter->rx_ring;
664
665         ring->rx_max_pending = E1000_MAX_RXD;
666         ring->tx_max_pending = E1000_MAX_TXD;
667         ring->rx_mini_max_pending = 0;
668         ring->rx_jumbo_max_pending = 0;
669         ring->rx_pending = rx_ring->count;
670         ring->tx_pending = tx_ring->count;
671         ring->rx_mini_pending = 0;
672         ring->rx_jumbo_pending = 0;
673 }
674
675 static int e1000_set_ringparam(struct net_device *netdev,
676                                struct ethtool_ringparam *ring)
677 {
678         struct e1000_adapter *adapter = netdev_priv(netdev);
679         struct e1000_ring *tx_ring, *tx_old;
680         struct e1000_ring *rx_ring, *rx_old;
681         int err;
682
683         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
684                 return -EINVAL;
685
686         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
687                 usleep_range(1000, 2000);
688
689         if (netif_running(adapter->netdev))
690                 e1000e_down(adapter);
691
692         tx_old = adapter->tx_ring;
693         rx_old = adapter->rx_ring;
694
695         err = -ENOMEM;
696         tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL);
697         if (!tx_ring)
698                 goto err_alloc_tx;
699
700         rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL);
701         if (!rx_ring)
702                 goto err_alloc_rx;
703
704         adapter->tx_ring = tx_ring;
705         adapter->rx_ring = rx_ring;
706
707         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
708         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
709         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
710
711         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
712         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
713         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
714
715         if (netif_running(adapter->netdev)) {
716                 /* Try to get new resources before deleting old */
717                 err = e1000e_setup_rx_resources(adapter);
718                 if (err)
719                         goto err_setup_rx;
720                 err = e1000e_setup_tx_resources(adapter);
721                 if (err)
722                         goto err_setup_tx;
723
724                 /*
725                  * restore the old in order to free it,
726                  * then add in the new
727                  */
728                 adapter->rx_ring = rx_old;
729                 adapter->tx_ring = tx_old;
730                 e1000e_free_rx_resources(adapter);
731                 e1000e_free_tx_resources(adapter);
732                 kfree(tx_old);
733                 kfree(rx_old);
734                 adapter->rx_ring = rx_ring;
735                 adapter->tx_ring = tx_ring;
736                 err = e1000e_up(adapter);
737                 if (err)
738                         goto err_setup;
739         }
740
741         clear_bit(__E1000_RESETTING, &adapter->state);
742         return 0;
743 err_setup_tx:
744         e1000e_free_rx_resources(adapter);
745 err_setup_rx:
746         adapter->rx_ring = rx_old;
747         adapter->tx_ring = tx_old;
748         kfree(rx_ring);
749 err_alloc_rx:
750         kfree(tx_ring);
751 err_alloc_tx:
752         e1000e_up(adapter);
753 err_setup:
754         clear_bit(__E1000_RESETTING, &adapter->state);
755         return err;
756 }
757
758 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
759                              int reg, int offset, u32 mask, u32 write)
760 {
761         u32 pat, val;
762         static const u32 test[] = {
763                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
764         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
765                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
766                                       (test[pat] & write));
767                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
768                 if (val != (test[pat] & write & mask)) {
769                         e_err("pattern test reg %04X failed: got 0x%08X "
770                               "expected 0x%08X\n", reg + offset, val,
771                               (test[pat] & write & mask));
772                         *data = reg;
773                         return 1;
774                 }
775         }
776         return 0;
777 }
778
779 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
780                               int reg, u32 mask, u32 write)
781 {
782         u32 val;
783         __ew32(&adapter->hw, reg, write & mask);
784         val = __er32(&adapter->hw, reg);
785         if ((write & mask) != (val & mask)) {
786                 e_err("set/check reg %04X test failed: got 0x%08X "
787                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
788                 *data = reg;
789                 return 1;
790         }
791         return 0;
792 }
793 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
794         do {                                                                   \
795                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
796                         return 1;                                              \
797         } while (0)
798 #define REG_PATTERN_TEST(reg, mask, write)                                     \
799         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
800
801 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
802         do {                                                                   \
803                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
804                         return 1;                                              \
805         } while (0)
806
807 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
808 {
809         struct e1000_hw *hw = &adapter->hw;
810         struct e1000_mac_info *mac = &adapter->hw.mac;
811         u32 value;
812         u32 before;
813         u32 after;
814         u32 i;
815         u32 toggle;
816         u32 mask;
817
818         /*
819          * The status register is Read Only, so a write should fail.
820          * Some bits that get toggled are ignored.
821          */
822         switch (mac->type) {
823         /* there are several bits on newer hardware that are r/w */
824         case e1000_82571:
825         case e1000_82572:
826         case e1000_80003es2lan:
827                 toggle = 0x7FFFF3FF;
828                 break;
829         default:
830                 toggle = 0x7FFFF033;
831                 break;
832         }
833
834         before = er32(STATUS);
835         value = (er32(STATUS) & toggle);
836         ew32(STATUS, toggle);
837         after = er32(STATUS) & toggle;
838         if (value != after) {
839                 e_err("failed STATUS register test got: 0x%08X expected: "
840                       "0x%08X\n", after, value);
841                 *data = 1;
842                 return 1;
843         }
844         /* restore previous status */
845         ew32(STATUS, before);
846
847         if (!(adapter->flags & FLAG_IS_ICH)) {
848                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
849                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
850                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
851                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
852         }
853
854         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
855         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
856         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
857         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
858         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
859         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
860         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
861         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
862         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
863         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
864
865         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
866
867         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
868         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
869         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
870
871         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
872         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
873         if (!(adapter->flags & FLAG_IS_ICH))
874                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
875         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
876         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
877         mask = 0x8003FFFF;
878         switch (mac->type) {
879         case e1000_ich10lan:
880         case e1000_pchlan:
881         case e1000_pch2lan:
882                 mask |= (1 << 18);
883                 break;
884         default:
885                 break;
886         }
887         for (i = 0; i < mac->rar_entry_count; i++)
888                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
889                                        mask, 0xFFFFFFFF);
890
891         for (i = 0; i < mac->mta_reg_count; i++)
892                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
893
894         *data = 0;
895         return 0;
896 }
897
898 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
899 {
900         u16 temp;
901         u16 checksum = 0;
902         u16 i;
903
904         *data = 0;
905         /* Read and add up the contents of the EEPROM */
906         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
907                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
908                         *data = 1;
909                         return *data;
910                 }
911                 checksum += temp;
912         }
913
914         /* If Checksum is not Correct return error else test passed */
915         if ((checksum != (u16) NVM_SUM) && !(*data))
916                 *data = 2;
917
918         return *data;
919 }
920
921 static irqreturn_t e1000_test_intr(int irq, void *data)
922 {
923         struct net_device *netdev = (struct net_device *) data;
924         struct e1000_adapter *adapter = netdev_priv(netdev);
925         struct e1000_hw *hw = &adapter->hw;
926
927         adapter->test_icr |= er32(ICR);
928
929         return IRQ_HANDLED;
930 }
931
932 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
933 {
934         struct net_device *netdev = adapter->netdev;
935         struct e1000_hw *hw = &adapter->hw;
936         u32 mask;
937         u32 shared_int = 1;
938         u32 irq = adapter->pdev->irq;
939         int i;
940         int ret_val = 0;
941         int int_mode = E1000E_INT_MODE_LEGACY;
942
943         *data = 0;
944
945         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
946         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
947                 int_mode = adapter->int_mode;
948                 e1000e_reset_interrupt_capability(adapter);
949                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
950                 e1000e_set_interrupt_capability(adapter);
951         }
952         /* Hook up test interrupt handler just for this test */
953         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
954                          netdev)) {
955                 shared_int = 0;
956         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
957                  netdev->name, netdev)) {
958                 *data = 1;
959                 ret_val = -1;
960                 goto out;
961         }
962         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
963
964         /* Disable all the interrupts */
965         ew32(IMC, 0xFFFFFFFF);
966         usleep_range(10000, 20000);
967
968         /* Test each interrupt */
969         for (i = 0; i < 10; i++) {
970                 /* Interrupt to test */
971                 mask = 1 << i;
972
973                 if (adapter->flags & FLAG_IS_ICH) {
974                         switch (mask) {
975                         case E1000_ICR_RXSEQ:
976                                 continue;
977                         case 0x00000100:
978                                 if (adapter->hw.mac.type == e1000_ich8lan ||
979                                     adapter->hw.mac.type == e1000_ich9lan)
980                                         continue;
981                                 break;
982                         default:
983                                 break;
984                         }
985                 }
986
987                 if (!shared_int) {
988                         /*
989                          * Disable the interrupt to be reported in
990                          * the cause register and then force the same
991                          * interrupt and see if one gets posted.  If
992                          * an interrupt was posted to the bus, the
993                          * test failed.
994                          */
995                         adapter->test_icr = 0;
996                         ew32(IMC, mask);
997                         ew32(ICS, mask);
998                         usleep_range(10000, 20000);
999
1000                         if (adapter->test_icr & mask) {
1001                                 *data = 3;
1002                                 break;
1003                         }
1004                 }
1005
1006                 /*
1007                  * Enable the interrupt to be reported in
1008                  * the cause register and then force the same
1009                  * interrupt and see if one gets posted.  If
1010                  * an interrupt was not posted to the bus, the
1011                  * test failed.
1012                  */
1013                 adapter->test_icr = 0;
1014                 ew32(IMS, mask);
1015                 ew32(ICS, mask);
1016                 usleep_range(10000, 20000);
1017
1018                 if (!(adapter->test_icr & mask)) {
1019                         *data = 4;
1020                         break;
1021                 }
1022
1023                 if (!shared_int) {
1024                         /*
1025                          * Disable the other interrupts to be reported in
1026                          * the cause register and then force the other
1027                          * interrupts and see if any get posted.  If
1028                          * an interrupt was posted to the bus, the
1029                          * test failed.
1030                          */
1031                         adapter->test_icr = 0;
1032                         ew32(IMC, ~mask & 0x00007FFF);
1033                         ew32(ICS, ~mask & 0x00007FFF);
1034                         usleep_range(10000, 20000);
1035
1036                         if (adapter->test_icr) {
1037                                 *data = 5;
1038                                 break;
1039                         }
1040                 }
1041         }
1042
1043         /* Disable all the interrupts */
1044         ew32(IMC, 0xFFFFFFFF);
1045         usleep_range(10000, 20000);
1046
1047         /* Unhook test interrupt handler */
1048         free_irq(irq, netdev);
1049
1050 out:
1051         if (int_mode == E1000E_INT_MODE_MSIX) {
1052                 e1000e_reset_interrupt_capability(adapter);
1053                 adapter->int_mode = int_mode;
1054                 e1000e_set_interrupt_capability(adapter);
1055         }
1056
1057         return ret_val;
1058 }
1059
1060 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1061 {
1062         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1063         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1064         struct pci_dev *pdev = adapter->pdev;
1065         int i;
1066
1067         if (tx_ring->desc && tx_ring->buffer_info) {
1068                 for (i = 0; i < tx_ring->count; i++) {
1069                         if (tx_ring->buffer_info[i].dma)
1070                                 dma_unmap_single(&pdev->dev,
1071                                         tx_ring->buffer_info[i].dma,
1072                                         tx_ring->buffer_info[i].length,
1073                                         DMA_TO_DEVICE);
1074                         if (tx_ring->buffer_info[i].skb)
1075                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1076                 }
1077         }
1078
1079         if (rx_ring->desc && rx_ring->buffer_info) {
1080                 for (i = 0; i < rx_ring->count; i++) {
1081                         if (rx_ring->buffer_info[i].dma)
1082                                 dma_unmap_single(&pdev->dev,
1083                                         rx_ring->buffer_info[i].dma,
1084                                         2048, DMA_FROM_DEVICE);
1085                         if (rx_ring->buffer_info[i].skb)
1086                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1087                 }
1088         }
1089
1090         if (tx_ring->desc) {
1091                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1092                                   tx_ring->dma);
1093                 tx_ring->desc = NULL;
1094         }
1095         if (rx_ring->desc) {
1096                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1097                                   rx_ring->dma);
1098                 rx_ring->desc = NULL;
1099         }
1100
1101         kfree(tx_ring->buffer_info);
1102         tx_ring->buffer_info = NULL;
1103         kfree(rx_ring->buffer_info);
1104         rx_ring->buffer_info = NULL;
1105 }
1106
1107 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1108 {
1109         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1110         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1111         struct pci_dev *pdev = adapter->pdev;
1112         struct e1000_hw *hw = &adapter->hw;
1113         u32 rctl;
1114         int i;
1115         int ret_val;
1116
1117         /* Setup Tx descriptor ring and Tx buffers */
1118
1119         if (!tx_ring->count)
1120                 tx_ring->count = E1000_DEFAULT_TXD;
1121
1122         tx_ring->buffer_info = kcalloc(tx_ring->count,
1123                                        sizeof(struct e1000_buffer),
1124                                        GFP_KERNEL);
1125         if (!(tx_ring->buffer_info)) {
1126                 ret_val = 1;
1127                 goto err_nomem;
1128         }
1129
1130         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1131         tx_ring->size = ALIGN(tx_ring->size, 4096);
1132         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1133                                            &tx_ring->dma, GFP_KERNEL);
1134         if (!tx_ring->desc) {
1135                 ret_val = 2;
1136                 goto err_nomem;
1137         }
1138         tx_ring->next_to_use = 0;
1139         tx_ring->next_to_clean = 0;
1140
1141         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1142         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1143         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1144         ew32(TDH, 0);
1145         ew32(TDT, 0);
1146         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1147              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1148              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1149
1150         for (i = 0; i < tx_ring->count; i++) {
1151                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1152                 struct sk_buff *skb;
1153                 unsigned int skb_size = 1024;
1154
1155                 skb = alloc_skb(skb_size, GFP_KERNEL);
1156                 if (!skb) {
1157                         ret_val = 3;
1158                         goto err_nomem;
1159                 }
1160                 skb_put(skb, skb_size);
1161                 tx_ring->buffer_info[i].skb = skb;
1162                 tx_ring->buffer_info[i].length = skb->len;
1163                 tx_ring->buffer_info[i].dma =
1164                         dma_map_single(&pdev->dev, skb->data, skb->len,
1165                                        DMA_TO_DEVICE);
1166                 if (dma_mapping_error(&pdev->dev,
1167                                       tx_ring->buffer_info[i].dma)) {
1168                         ret_val = 4;
1169                         goto err_nomem;
1170                 }
1171                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1172                 tx_desc->lower.data = cpu_to_le32(skb->len);
1173                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1174                                                    E1000_TXD_CMD_IFCS |
1175                                                    E1000_TXD_CMD_RS);
1176                 tx_desc->upper.data = 0;
1177         }
1178
1179         /* Setup Rx descriptor ring and Rx buffers */
1180
1181         if (!rx_ring->count)
1182                 rx_ring->count = E1000_DEFAULT_RXD;
1183
1184         rx_ring->buffer_info = kcalloc(rx_ring->count,
1185                                        sizeof(struct e1000_buffer),
1186                                        GFP_KERNEL);
1187         if (!(rx_ring->buffer_info)) {
1188                 ret_val = 5;
1189                 goto err_nomem;
1190         }
1191
1192         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1193         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1194                                            &rx_ring->dma, GFP_KERNEL);
1195         if (!rx_ring->desc) {
1196                 ret_val = 6;
1197                 goto err_nomem;
1198         }
1199         rx_ring->next_to_use = 0;
1200         rx_ring->next_to_clean = 0;
1201
1202         rctl = er32(RCTL);
1203         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1204         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1205         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1206         ew32(RDLEN, rx_ring->size);
1207         ew32(RDH, 0);
1208         ew32(RDT, 0);
1209         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1210                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1211                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1212                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1213                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1214         ew32(RCTL, rctl);
1215
1216         for (i = 0; i < rx_ring->count; i++) {
1217                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1218                 struct sk_buff *skb;
1219
1220                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1221                 if (!skb) {
1222                         ret_val = 7;
1223                         goto err_nomem;
1224                 }
1225                 skb_reserve(skb, NET_IP_ALIGN);
1226                 rx_ring->buffer_info[i].skb = skb;
1227                 rx_ring->buffer_info[i].dma =
1228                         dma_map_single(&pdev->dev, skb->data, 2048,
1229                                        DMA_FROM_DEVICE);
1230                 if (dma_mapping_error(&pdev->dev,
1231                                       rx_ring->buffer_info[i].dma)) {
1232                         ret_val = 8;
1233                         goto err_nomem;
1234                 }
1235                 rx_desc->buffer_addr =
1236                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1237                 memset(skb->data, 0x00, skb->len);
1238         }
1239
1240         return 0;
1241
1242 err_nomem:
1243         e1000_free_desc_rings(adapter);
1244         return ret_val;
1245 }
1246
1247 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1248 {
1249         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1250         e1e_wphy(&adapter->hw, 29, 0x001F);
1251         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1252         e1e_wphy(&adapter->hw, 29, 0x001A);
1253         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1254 }
1255
1256 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1257 {
1258         struct e1000_hw *hw = &adapter->hw;
1259         u32 ctrl_reg = 0;
1260         u16 phy_reg = 0;
1261         s32 ret_val = 0;
1262
1263         hw->mac.autoneg = 0;
1264
1265         if (hw->phy.type == e1000_phy_ife) {
1266                 /* force 100, set loopback */
1267                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1268
1269                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1270                 ctrl_reg = er32(CTRL);
1271                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1272                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1273                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1274                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1275                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1276
1277                 ew32(CTRL, ctrl_reg);
1278                 udelay(500);
1279
1280                 return 0;
1281         }
1282
1283         /* Specific PHY configuration for loopback */
1284         switch (hw->phy.type) {
1285         case e1000_phy_m88:
1286                 /* Auto-MDI/MDIX Off */
1287                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1288                 /* reset to update Auto-MDI/MDIX */
1289                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1290                 /* autoneg off */
1291                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1292                 break;
1293         case e1000_phy_gg82563:
1294                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1295                 break;
1296         case e1000_phy_bm:
1297                 /* Set Default MAC Interface speed to 1GB */
1298                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1299                 phy_reg &= ~0x0007;
1300                 phy_reg |= 0x006;
1301                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1302                 /* Assert SW reset for above settings to take effect */
1303                 e1000e_commit_phy(hw);
1304                 mdelay(1);
1305                 /* Force Full Duplex */
1306                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1307                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1308                 /* Set Link Up (in force link) */
1309                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1310                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1311                 /* Force Link */
1312                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1313                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1314                 /* Set Early Link Enable */
1315                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1316                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1317                 break;
1318         case e1000_phy_82577:
1319         case e1000_phy_82578:
1320                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1321                 ret_val = hw->phy.ops.acquire(hw);
1322                 if (ret_val) {
1323                         e_err("Cannot setup 1Gbps loopback.\n");
1324                         return ret_val;
1325                 }
1326                 e1000_configure_k1_ich8lan(hw, false);
1327                 hw->phy.ops.release(hw);
1328                 break;
1329         case e1000_phy_82579:
1330                 /* Disable PHY energy detect power down */
1331                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1332                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1333                 /* Disable full chip energy detect */
1334                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1335                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1336                 /* Enable loopback on the PHY */
1337 #define I82577_PHY_LBK_CTRL          19
1338                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1339                 break;
1340         default:
1341                 break;
1342         }
1343
1344         /* force 1000, set loopback */
1345         e1e_wphy(hw, PHY_CONTROL, 0x4140);
1346         mdelay(250);
1347
1348         /* Now set up the MAC to the same speed/duplex as the PHY. */
1349         ctrl_reg = er32(CTRL);
1350         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1351         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1352                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1353                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1354                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1355
1356         if (adapter->flags & FLAG_IS_ICH)
1357                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1358
1359         if (hw->phy.media_type == e1000_media_type_copper &&
1360             hw->phy.type == e1000_phy_m88) {
1361                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1362         } else {
1363                 /*
1364                  * Set the ILOS bit on the fiber Nic if half duplex link is
1365                  * detected.
1366                  */
1367                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1368                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1369         }
1370
1371         ew32(CTRL, ctrl_reg);
1372
1373         /*
1374          * Disable the receiver on the PHY so when a cable is plugged in, the
1375          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1376          */
1377         if (hw->phy.type == e1000_phy_m88)
1378                 e1000_phy_disable_receiver(adapter);
1379
1380         udelay(500);
1381
1382         return 0;
1383 }
1384
1385 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1386 {
1387         struct e1000_hw *hw = &adapter->hw;
1388         u32 ctrl = er32(CTRL);
1389         int link = 0;
1390
1391         /* special requirements for 82571/82572 fiber adapters */
1392
1393         /*
1394          * jump through hoops to make sure link is up because serdes
1395          * link is hardwired up
1396          */
1397         ctrl |= E1000_CTRL_SLU;
1398         ew32(CTRL, ctrl);
1399
1400         /* disable autoneg */
1401         ctrl = er32(TXCW);
1402         ctrl &= ~(1 << 31);
1403         ew32(TXCW, ctrl);
1404
1405         link = (er32(STATUS) & E1000_STATUS_LU);
1406
1407         if (!link) {
1408                 /* set invert loss of signal */
1409                 ctrl = er32(CTRL);
1410                 ctrl |= E1000_CTRL_ILOS;
1411                 ew32(CTRL, ctrl);
1412         }
1413
1414         /*
1415          * special write to serdes control register to enable SerDes analog
1416          * loopback
1417          */
1418 #define E1000_SERDES_LB_ON 0x410
1419         ew32(SCTL, E1000_SERDES_LB_ON);
1420         usleep_range(10000, 20000);
1421
1422         return 0;
1423 }
1424
1425 /* only call this for fiber/serdes connections to es2lan */
1426 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1427 {
1428         struct e1000_hw *hw = &adapter->hw;
1429         u32 ctrlext = er32(CTRL_EXT);
1430         u32 ctrl = er32(CTRL);
1431
1432         /*
1433          * save CTRL_EXT to restore later, reuse an empty variable (unused
1434          * on mac_type 80003es2lan)
1435          */
1436         adapter->tx_fifo_head = ctrlext;
1437
1438         /* clear the serdes mode bits, putting the device into mac loopback */
1439         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1440         ew32(CTRL_EXT, ctrlext);
1441
1442         /* force speed to 1000/FD, link up */
1443         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1444         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1445                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1446         ew32(CTRL, ctrl);
1447
1448         /* set mac loopback */
1449         ctrl = er32(RCTL);
1450         ctrl |= E1000_RCTL_LBM_MAC;
1451         ew32(RCTL, ctrl);
1452
1453         /* set testing mode parameters (no need to reset later) */
1454 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1455 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1456         ew32(KMRNCTRLSTA,
1457              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1458
1459         return 0;
1460 }
1461
1462 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1463 {
1464         struct e1000_hw *hw = &adapter->hw;
1465         u32 rctl;
1466
1467         if (hw->phy.media_type == e1000_media_type_fiber ||
1468             hw->phy.media_type == e1000_media_type_internal_serdes) {
1469                 switch (hw->mac.type) {
1470                 case e1000_80003es2lan:
1471                         return e1000_set_es2lan_mac_loopback(adapter);
1472                         break;
1473                 case e1000_82571:
1474                 case e1000_82572:
1475                         return e1000_set_82571_fiber_loopback(adapter);
1476                         break;
1477                 default:
1478                         rctl = er32(RCTL);
1479                         rctl |= E1000_RCTL_LBM_TCVR;
1480                         ew32(RCTL, rctl);
1481                         return 0;
1482                 }
1483         } else if (hw->phy.media_type == e1000_media_type_copper) {
1484                 return e1000_integrated_phy_loopback(adapter);
1485         }
1486
1487         return 7;
1488 }
1489
1490 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1491 {
1492         struct e1000_hw *hw = &adapter->hw;
1493         u32 rctl;
1494         u16 phy_reg;
1495
1496         rctl = er32(RCTL);
1497         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1498         ew32(RCTL, rctl);
1499
1500         switch (hw->mac.type) {
1501         case e1000_80003es2lan:
1502                 if (hw->phy.media_type == e1000_media_type_fiber ||
1503                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1504                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1505                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1506                         adapter->tx_fifo_head = 0;
1507                 }
1508                 /* fall through */
1509         case e1000_82571:
1510         case e1000_82572:
1511                 if (hw->phy.media_type == e1000_media_type_fiber ||
1512                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1513 #define E1000_SERDES_LB_OFF 0x400
1514                         ew32(SCTL, E1000_SERDES_LB_OFF);
1515                         usleep_range(10000, 20000);
1516                         break;
1517                 }
1518                 /* Fall Through */
1519         default:
1520                 hw->mac.autoneg = 1;
1521                 if (hw->phy.type == e1000_phy_gg82563)
1522                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1523                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1524                 if (phy_reg & MII_CR_LOOPBACK) {
1525                         phy_reg &= ~MII_CR_LOOPBACK;
1526                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1527                         e1000e_commit_phy(hw);
1528                 }
1529                 break;
1530         }
1531 }
1532
1533 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1534                                       unsigned int frame_size)
1535 {
1536         memset(skb->data, 0xFF, frame_size);
1537         frame_size &= ~1;
1538         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1539         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1540         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1541 }
1542
1543 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1544                                     unsigned int frame_size)
1545 {
1546         frame_size &= ~1;
1547         if (*(skb->data + 3) == 0xFF)
1548                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1549                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1550                         return 0;
1551         return 13;
1552 }
1553
1554 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1555 {
1556         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1557         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1558         struct pci_dev *pdev = adapter->pdev;
1559         struct e1000_hw *hw = &adapter->hw;
1560         int i, j, k, l;
1561         int lc;
1562         int good_cnt;
1563         int ret_val = 0;
1564         unsigned long time;
1565
1566         ew32(RDT, rx_ring->count - 1);
1567
1568         /*
1569          * Calculate the loop count based on the largest descriptor ring
1570          * The idea is to wrap the largest ring a number of times using 64
1571          * send/receive pairs during each loop
1572          */
1573
1574         if (rx_ring->count <= tx_ring->count)
1575                 lc = ((tx_ring->count / 64) * 2) + 1;
1576         else
1577                 lc = ((rx_ring->count / 64) * 2) + 1;
1578
1579         k = 0;
1580         l = 0;
1581         for (j = 0; j <= lc; j++) { /* loop count loop */
1582                 for (i = 0; i < 64; i++) { /* send the packets */
1583                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1584                                                   1024);
1585                         dma_sync_single_for_device(&pdev->dev,
1586                                         tx_ring->buffer_info[k].dma,
1587                                         tx_ring->buffer_info[k].length,
1588                                         DMA_TO_DEVICE);
1589                         k++;
1590                         if (k == tx_ring->count)
1591                                 k = 0;
1592                 }
1593                 ew32(TDT, k);
1594                 msleep(200);
1595                 time = jiffies; /* set the start time for the receive */
1596                 good_cnt = 0;
1597                 do { /* receive the sent packets */
1598                         dma_sync_single_for_cpu(&pdev->dev,
1599                                         rx_ring->buffer_info[l].dma, 2048,
1600                                         DMA_FROM_DEVICE);
1601
1602                         ret_val = e1000_check_lbtest_frame(
1603                                         rx_ring->buffer_info[l].skb, 1024);
1604                         if (!ret_val)
1605                                 good_cnt++;
1606                         l++;
1607                         if (l == rx_ring->count)
1608                                 l = 0;
1609                         /*
1610                          * time + 20 msecs (200 msecs on 2.4) is more than
1611                          * enough time to complete the receives, if it's
1612                          * exceeded, break and error off
1613                          */
1614                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1615                 if (good_cnt != 64) {
1616                         ret_val = 13; /* ret_val is the same as mis-compare */
1617                         break;
1618                 }
1619                 if (jiffies >= (time + 20)) {
1620                         ret_val = 14; /* error code for time out error */
1621                         break;
1622                 }
1623         } /* end loop count loop */
1624         return ret_val;
1625 }
1626
1627 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1628 {
1629         /*
1630          * PHY loopback cannot be performed if SoL/IDER
1631          * sessions are active
1632          */
1633         if (e1000_check_reset_block(&adapter->hw)) {
1634                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1635                 *data = 0;
1636                 goto out;
1637         }
1638
1639         *data = e1000_setup_desc_rings(adapter);
1640         if (*data)
1641                 goto out;
1642
1643         *data = e1000_setup_loopback_test(adapter);
1644         if (*data)
1645                 goto err_loopback;
1646
1647         *data = e1000_run_loopback_test(adapter);
1648         e1000_loopback_cleanup(adapter);
1649
1650 err_loopback:
1651         e1000_free_desc_rings(adapter);
1652 out:
1653         return *data;
1654 }
1655
1656 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1657 {
1658         struct e1000_hw *hw = &adapter->hw;
1659
1660         *data = 0;
1661         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1662                 int i = 0;
1663                 hw->mac.serdes_has_link = false;
1664
1665                 /*
1666                  * On some blade server designs, link establishment
1667                  * could take as long as 2-3 minutes
1668                  */
1669                 do {
1670                         hw->mac.ops.check_for_link(hw);
1671                         if (hw->mac.serdes_has_link)
1672                                 return *data;
1673                         msleep(20);
1674                 } while (i++ < 3750);
1675
1676                 *data = 1;
1677         } else {
1678                 hw->mac.ops.check_for_link(hw);
1679                 if (hw->mac.autoneg)
1680                         /*
1681                          * On some Phy/switch combinations, link establishment
1682                          * can take a few seconds more than expected.
1683                          */
1684                         msleep(5000);
1685
1686                 if (!(er32(STATUS) & E1000_STATUS_LU))
1687                         *data = 1;
1688         }
1689         return *data;
1690 }
1691
1692 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1693 {
1694         switch (sset) {
1695         case ETH_SS_TEST:
1696                 return E1000_TEST_LEN;
1697         case ETH_SS_STATS:
1698                 return E1000_STATS_LEN;
1699         default:
1700                 return -EOPNOTSUPP;
1701         }
1702 }
1703
1704 static void e1000_diag_test(struct net_device *netdev,
1705                             struct ethtool_test *eth_test, u64 *data)
1706 {
1707         struct e1000_adapter *adapter = netdev_priv(netdev);
1708         u16 autoneg_advertised;
1709         u8 forced_speed_duplex;
1710         u8 autoneg;
1711         bool if_running = netif_running(netdev);
1712
1713         set_bit(__E1000_TESTING, &adapter->state);
1714
1715         if (!if_running) {
1716                 /* Get control of and reset hardware */
1717                 if (adapter->flags & FLAG_HAS_AMT)
1718                         e1000e_get_hw_control(adapter);
1719
1720                 e1000e_power_up_phy(adapter);
1721
1722                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1723                 e1000e_reset(adapter);
1724                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1725         }
1726
1727         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1728                 /* Offline tests */
1729
1730                 /* save speed, duplex, autoneg settings */
1731                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1732                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1733                 autoneg = adapter->hw.mac.autoneg;
1734
1735                 e_info("offline testing starting\n");
1736
1737                 if (if_running)
1738                         /* indicate we're in test mode */
1739                         dev_close(netdev);
1740
1741                 if (e1000_reg_test(adapter, &data[0]))
1742                         eth_test->flags |= ETH_TEST_FL_FAILED;
1743
1744                 e1000e_reset(adapter);
1745                 if (e1000_eeprom_test(adapter, &data[1]))
1746                         eth_test->flags |= ETH_TEST_FL_FAILED;
1747
1748                 e1000e_reset(adapter);
1749                 if (e1000_intr_test(adapter, &data[2]))
1750                         eth_test->flags |= ETH_TEST_FL_FAILED;
1751
1752                 e1000e_reset(adapter);
1753                 if (e1000_loopback_test(adapter, &data[3]))
1754                         eth_test->flags |= ETH_TEST_FL_FAILED;
1755
1756                 /* force this routine to wait until autoneg complete/timeout */
1757                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1758                 e1000e_reset(adapter);
1759                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1760
1761                 if (e1000_link_test(adapter, &data[4]))
1762                         eth_test->flags |= ETH_TEST_FL_FAILED;
1763
1764                 /* restore speed, duplex, autoneg settings */
1765                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1766                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1767                 adapter->hw.mac.autoneg = autoneg;
1768                 e1000e_reset(adapter);
1769
1770                 clear_bit(__E1000_TESTING, &adapter->state);
1771                 if (if_running)
1772                         dev_open(netdev);
1773         } else {
1774                 /* Online tests */
1775
1776                 e_info("online testing starting\n");
1777
1778                 /* register, eeprom, intr and loopback tests not run online */
1779                 data[0] = 0;
1780                 data[1] = 0;
1781                 data[2] = 0;
1782                 data[3] = 0;
1783
1784                 if (e1000_link_test(adapter, &data[4]))
1785                         eth_test->flags |= ETH_TEST_FL_FAILED;
1786
1787                 clear_bit(__E1000_TESTING, &adapter->state);
1788         }
1789
1790         if (!if_running) {
1791                 e1000e_reset(adapter);
1792
1793                 if (adapter->flags & FLAG_HAS_AMT)
1794                         e1000e_release_hw_control(adapter);
1795         }
1796
1797         msleep_interruptible(4 * 1000);
1798 }
1799
1800 static void e1000_get_wol(struct net_device *netdev,
1801                           struct ethtool_wolinfo *wol)
1802 {
1803         struct e1000_adapter *adapter = netdev_priv(netdev);
1804
1805         wol->supported = 0;
1806         wol->wolopts = 0;
1807
1808         if (!(adapter->flags & FLAG_HAS_WOL) ||
1809             !device_can_wakeup(&adapter->pdev->dev))
1810                 return;
1811
1812         wol->supported = WAKE_UCAST | WAKE_MCAST |
1813             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1814
1815         /* apply any specific unsupported masks here */
1816         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1817                 wol->supported &= ~WAKE_UCAST;
1818
1819                 if (adapter->wol & E1000_WUFC_EX)
1820                         e_err("Interface does not support directed (unicast) "
1821                               "frame wake-up packets\n");
1822         }
1823
1824         if (adapter->wol & E1000_WUFC_EX)
1825                 wol->wolopts |= WAKE_UCAST;
1826         if (adapter->wol & E1000_WUFC_MC)
1827                 wol->wolopts |= WAKE_MCAST;
1828         if (adapter->wol & E1000_WUFC_BC)
1829                 wol->wolopts |= WAKE_BCAST;
1830         if (adapter->wol & E1000_WUFC_MAG)
1831                 wol->wolopts |= WAKE_MAGIC;
1832         if (adapter->wol & E1000_WUFC_LNKC)
1833                 wol->wolopts |= WAKE_PHY;
1834 }
1835
1836 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1837 {
1838         struct e1000_adapter *adapter = netdev_priv(netdev);
1839
1840         if (!(adapter->flags & FLAG_HAS_WOL) ||
1841             !device_can_wakeup(&adapter->pdev->dev) ||
1842             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1843                               WAKE_MAGIC | WAKE_PHY)))
1844                 return -EOPNOTSUPP;
1845
1846         /* these settings will always override what we currently have */
1847         adapter->wol = 0;
1848
1849         if (wol->wolopts & WAKE_UCAST)
1850                 adapter->wol |= E1000_WUFC_EX;
1851         if (wol->wolopts & WAKE_MCAST)
1852                 adapter->wol |= E1000_WUFC_MC;
1853         if (wol->wolopts & WAKE_BCAST)
1854                 adapter->wol |= E1000_WUFC_BC;
1855         if (wol->wolopts & WAKE_MAGIC)
1856                 adapter->wol |= E1000_WUFC_MAG;
1857         if (wol->wolopts & WAKE_PHY)
1858                 adapter->wol |= E1000_WUFC_LNKC;
1859
1860         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1861
1862         return 0;
1863 }
1864
1865 static int e1000_set_phys_id(struct net_device *netdev,
1866                              enum ethtool_phys_id_state state)
1867 {
1868         struct e1000_adapter *adapter = netdev_priv(netdev);
1869         struct e1000_hw *hw = &adapter->hw;
1870
1871         switch (state) {
1872         case ETHTOOL_ID_ACTIVE:
1873                 if (!hw->mac.ops.blink_led)
1874                         return 2;       /* cycle on/off twice per second */
1875
1876                 hw->mac.ops.blink_led(hw);
1877                 break;
1878
1879         case ETHTOOL_ID_INACTIVE:
1880                 if (hw->phy.type == e1000_phy_ife)
1881                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1882                 hw->mac.ops.led_off(hw);
1883                 hw->mac.ops.cleanup_led(hw);
1884                 break;
1885
1886         case ETHTOOL_ID_ON:
1887                 adapter->hw.mac.ops.led_on(&adapter->hw);
1888                 break;
1889
1890         case ETHTOOL_ID_OFF:
1891                 adapter->hw.mac.ops.led_off(&adapter->hw);
1892                 break;
1893         }
1894         return 0;
1895 }
1896
1897 static int e1000_get_coalesce(struct net_device *netdev,
1898                               struct ethtool_coalesce *ec)
1899 {
1900         struct e1000_adapter *adapter = netdev_priv(netdev);
1901
1902         if (adapter->itr_setting <= 4)
1903                 ec->rx_coalesce_usecs = adapter->itr_setting;
1904         else
1905                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1906
1907         return 0;
1908 }
1909
1910 static int e1000_set_coalesce(struct net_device *netdev,
1911                               struct ethtool_coalesce *ec)
1912 {
1913         struct e1000_adapter *adapter = netdev_priv(netdev);
1914         struct e1000_hw *hw = &adapter->hw;
1915
1916         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1917             ((ec->rx_coalesce_usecs > 4) &&
1918              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1919             (ec->rx_coalesce_usecs == 2))
1920                 return -EINVAL;
1921
1922         if (ec->rx_coalesce_usecs == 4) {
1923                 adapter->itr = adapter->itr_setting = 4;
1924         } else if (ec->rx_coalesce_usecs <= 3) {
1925                 adapter->itr = 20000;
1926                 adapter->itr_setting = ec->rx_coalesce_usecs;
1927         } else {
1928                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1929                 adapter->itr_setting = adapter->itr & ~3;
1930         }
1931
1932         if (adapter->itr_setting != 0)
1933                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1934         else
1935                 ew32(ITR, 0);
1936
1937         return 0;
1938 }
1939
1940 static int e1000_nway_reset(struct net_device *netdev)
1941 {
1942         struct e1000_adapter *adapter = netdev_priv(netdev);
1943
1944         if (!netif_running(netdev))
1945                 return -EAGAIN;
1946
1947         if (!adapter->hw.mac.autoneg)
1948                 return -EINVAL;
1949
1950         e1000e_reinit_locked(adapter);
1951
1952         return 0;
1953 }
1954
1955 static void e1000_get_ethtool_stats(struct net_device *netdev,
1956                                     struct ethtool_stats *stats,
1957                                     u64 *data)
1958 {
1959         struct e1000_adapter *adapter = netdev_priv(netdev);
1960         struct rtnl_link_stats64 net_stats;
1961         int i;
1962         char *p = NULL;
1963
1964         e1000e_get_stats64(netdev, &net_stats);
1965         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1966                 switch (e1000_gstrings_stats[i].type) {
1967                 case NETDEV_STATS:
1968                         p = (char *) &net_stats +
1969                                         e1000_gstrings_stats[i].stat_offset;
1970                         break;
1971                 case E1000_STATS:
1972                         p = (char *) adapter +
1973                                         e1000_gstrings_stats[i].stat_offset;
1974                         break;
1975                 default:
1976                         data[i] = 0;
1977                         continue;
1978                 }
1979
1980                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1981                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1982         }
1983 }
1984
1985 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1986                               u8 *data)
1987 {
1988         u8 *p = data;
1989         int i;
1990
1991         switch (stringset) {
1992         case ETH_SS_TEST:
1993                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1994                 break;
1995         case ETH_SS_STATS:
1996                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1997                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1998                                ETH_GSTRING_LEN);
1999                         p += ETH_GSTRING_LEN;
2000                 }
2001                 break;
2002         }
2003 }
2004
2005 static int e1000e_set_flags(struct net_device *netdev, u32 data)
2006 {
2007         struct e1000_adapter *adapter = netdev_priv(netdev);
2008         bool need_reset = false;
2009         int rc;
2010
2011         need_reset = (data & ETH_FLAG_RXVLAN) !=
2012                      (netdev->features & NETIF_F_HW_VLAN_RX);
2013
2014         rc = ethtool_op_set_flags(netdev, data, ETH_FLAG_RXVLAN |
2015                                   ETH_FLAG_TXVLAN);
2016
2017         if (rc)
2018                 return rc;
2019
2020         if (need_reset) {
2021                 if (netif_running(netdev))
2022                         e1000e_reinit_locked(adapter);
2023                 else
2024                         e1000e_reset(adapter);
2025         }
2026
2027         return 0;
2028 }
2029
2030 static const struct ethtool_ops e1000_ethtool_ops = {
2031         .get_settings           = e1000_get_settings,
2032         .set_settings           = e1000_set_settings,
2033         .get_drvinfo            = e1000_get_drvinfo,
2034         .get_regs_len           = e1000_get_regs_len,
2035         .get_regs               = e1000_get_regs,
2036         .get_wol                = e1000_get_wol,
2037         .set_wol                = e1000_set_wol,
2038         .get_msglevel           = e1000_get_msglevel,
2039         .set_msglevel           = e1000_set_msglevel,
2040         .nway_reset             = e1000_nway_reset,
2041         .get_link               = ethtool_op_get_link,
2042         .get_eeprom_len         = e1000_get_eeprom_len,
2043         .get_eeprom             = e1000_get_eeprom,
2044         .set_eeprom             = e1000_set_eeprom,
2045         .get_ringparam          = e1000_get_ringparam,
2046         .set_ringparam          = e1000_set_ringparam,
2047         .get_pauseparam         = e1000_get_pauseparam,
2048         .set_pauseparam         = e1000_set_pauseparam,
2049         .get_rx_csum            = e1000_get_rx_csum,
2050         .set_rx_csum            = e1000_set_rx_csum,
2051         .get_tx_csum            = e1000_get_tx_csum,
2052         .set_tx_csum            = e1000_set_tx_csum,
2053         .get_sg                 = ethtool_op_get_sg,
2054         .set_sg                 = ethtool_op_set_sg,
2055         .get_tso                = ethtool_op_get_tso,
2056         .set_tso                = e1000_set_tso,
2057         .self_test              = e1000_diag_test,
2058         .get_strings            = e1000_get_strings,
2059         .set_phys_id            = e1000_set_phys_id,
2060         .get_ethtool_stats      = e1000_get_ethtool_stats,
2061         .get_sset_count         = e1000e_get_sset_count,
2062         .get_coalesce           = e1000_get_coalesce,
2063         .set_coalesce           = e1000_set_coalesce,
2064         .get_flags              = ethtool_op_get_flags,
2065         .set_flags              = e1000e_set_flags,
2066 };
2067
2068 void e1000e_set_ethtool_ops(struct net_device *netdev)
2069 {
2070         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2071 }