Merge branch 'linus' into genirq
[pandora-kernel.git] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Fiber)
32  * 82571EB Dual Port Gigabit Mezzanine Adapter
33  * 82571EB Quad Port Gigabit Mezzanine Adapter
34  * 82571PT Gigabit PT Quad Port Server ExpressModule
35  * 82572EI Gigabit Ethernet Controller (Copper)
36  * 82572EI Gigabit Ethernet Controller (Fiber)
37  * 82572EI Gigabit Ethernet Controller
38  * 82573V Gigabit Ethernet Controller (Copper)
39  * 82573E Gigabit Ethernet Controller (Copper)
40  * 82573L Gigabit Ethernet Controller
41  * 82574L Gigabit Network Connection
42  */
43
44 #include <linux/netdevice.h>
45 #include <linux/delay.h>
46 #include <linux/pci.h>
47
48 #include "e1000.h"
49
50 #define ID_LED_RESERVED_F746 0xF746
51 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
52                               (ID_LED_OFF1_ON2  <<  8) | \
53                               (ID_LED_DEF1_DEF2 <<  4) | \
54                               (ID_LED_DEF1_DEF2))
55
56 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
57
58 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
59
60 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
61 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
62 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
63 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
64                                       u16 words, u16 *data);
65 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
66 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
67 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
68 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
69 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
70 static s32 e1000_led_on_82574(struct e1000_hw *hw);
71
72 /**
73  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
74  *  @hw: pointer to the HW structure
75  *
76  *  This is a function pointer entry point called by the api module.
77  **/
78 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
79 {
80         struct e1000_phy_info *phy = &hw->phy;
81         s32 ret_val;
82
83         if (hw->phy.media_type != e1000_media_type_copper) {
84                 phy->type = e1000_phy_none;
85                 return 0;
86         }
87
88         phy->addr                        = 1;
89         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
90         phy->reset_delay_us              = 100;
91
92         switch (hw->mac.type) {
93         case e1000_82571:
94         case e1000_82572:
95                 phy->type                = e1000_phy_igp_2;
96                 break;
97         case e1000_82573:
98                 phy->type                = e1000_phy_m88;
99                 break;
100         case e1000_82574:
101                 phy->type                = e1000_phy_bm;
102                 break;
103         default:
104                 return -E1000_ERR_PHY;
105                 break;
106         }
107
108         /* This can only be done after all function pointers are setup. */
109         ret_val = e1000_get_phy_id_82571(hw);
110
111         /* Verify phy id */
112         switch (hw->mac.type) {
113         case e1000_82571:
114         case e1000_82572:
115                 if (phy->id != IGP01E1000_I_PHY_ID)
116                         return -E1000_ERR_PHY;
117                 break;
118         case e1000_82573:
119                 if (phy->id != M88E1111_I_PHY_ID)
120                         return -E1000_ERR_PHY;
121                 break;
122         case e1000_82574:
123                 if (phy->id != BME1000_E_PHY_ID_R2)
124                         return -E1000_ERR_PHY;
125                 break;
126         default:
127                 return -E1000_ERR_PHY;
128                 break;
129         }
130
131         return 0;
132 }
133
134 /**
135  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
136  *  @hw: pointer to the HW structure
137  *
138  *  This is a function pointer entry point called by the api module.
139  **/
140 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
141 {
142         struct e1000_nvm_info *nvm = &hw->nvm;
143         u32 eecd = er32(EECD);
144         u16 size;
145
146         nvm->opcode_bits = 8;
147         nvm->delay_usec = 1;
148         switch (nvm->override) {
149         case e1000_nvm_override_spi_large:
150                 nvm->page_size = 32;
151                 nvm->address_bits = 16;
152                 break;
153         case e1000_nvm_override_spi_small:
154                 nvm->page_size = 8;
155                 nvm->address_bits = 8;
156                 break;
157         default:
158                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
159                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
160                 break;
161         }
162
163         switch (hw->mac.type) {
164         case e1000_82573:
165         case e1000_82574:
166                 if (((eecd >> 15) & 0x3) == 0x3) {
167                         nvm->type = e1000_nvm_flash_hw;
168                         nvm->word_size = 2048;
169                         /*
170                          * Autonomous Flash update bit must be cleared due
171                          * to Flash update issue.
172                          */
173                         eecd &= ~E1000_EECD_AUPDEN;
174                         ew32(EECD, eecd);
175                         break;
176                 }
177                 /* Fall Through */
178         default:
179                 nvm->type = e1000_nvm_eeprom_spi;
180                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
181                                   E1000_EECD_SIZE_EX_SHIFT);
182                 /*
183                  * Added to a constant, "size" becomes the left-shift value
184                  * for setting word_size.
185                  */
186                 size += NVM_WORD_SIZE_BASE_SHIFT;
187
188                 /* EEPROM access above 16k is unsupported */
189                 if (size > 14)
190                         size = 14;
191                 nvm->word_size  = 1 << size;
192                 break;
193         }
194
195         return 0;
196 }
197
198 /**
199  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
200  *  @hw: pointer to the HW structure
201  *
202  *  This is a function pointer entry point called by the api module.
203  **/
204 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
205 {
206         struct e1000_hw *hw = &adapter->hw;
207         struct e1000_mac_info *mac = &hw->mac;
208         struct e1000_mac_operations *func = &mac->ops;
209
210         /* Set media type */
211         switch (adapter->pdev->device) {
212         case E1000_DEV_ID_82571EB_FIBER:
213         case E1000_DEV_ID_82572EI_FIBER:
214         case E1000_DEV_ID_82571EB_QUAD_FIBER:
215                 hw->phy.media_type = e1000_media_type_fiber;
216                 break;
217         case E1000_DEV_ID_82571EB_SERDES:
218         case E1000_DEV_ID_82572EI_SERDES:
219         case E1000_DEV_ID_82571EB_SERDES_DUAL:
220         case E1000_DEV_ID_82571EB_SERDES_QUAD:
221                 hw->phy.media_type = e1000_media_type_internal_serdes;
222                 break;
223         default:
224                 hw->phy.media_type = e1000_media_type_copper;
225                 break;
226         }
227
228         /* Set mta register count */
229         mac->mta_reg_count = 128;
230         /* Set rar entry count */
231         mac->rar_entry_count = E1000_RAR_ENTRIES;
232         /* Set if manageability features are enabled. */
233         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
234
235         /* check for link */
236         switch (hw->phy.media_type) {
237         case e1000_media_type_copper:
238                 func->setup_physical_interface = e1000_setup_copper_link_82571;
239                 func->check_for_link = e1000e_check_for_copper_link;
240                 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
241                 break;
242         case e1000_media_type_fiber:
243                 func->setup_physical_interface =
244                         e1000_setup_fiber_serdes_link_82571;
245                 func->check_for_link = e1000e_check_for_fiber_link;
246                 func->get_link_up_info =
247                         e1000e_get_speed_and_duplex_fiber_serdes;
248                 break;
249         case e1000_media_type_internal_serdes:
250                 func->setup_physical_interface =
251                         e1000_setup_fiber_serdes_link_82571;
252                 func->check_for_link = e1000e_check_for_serdes_link;
253                 func->get_link_up_info =
254                         e1000e_get_speed_and_duplex_fiber_serdes;
255                 break;
256         default:
257                 return -E1000_ERR_CONFIG;
258                 break;
259         }
260
261         switch (hw->mac.type) {
262         case e1000_82574:
263                 func->check_mng_mode = e1000_check_mng_mode_82574;
264                 func->led_on = e1000_led_on_82574;
265                 break;
266         default:
267                 func->check_mng_mode = e1000e_check_mng_mode_generic;
268                 func->led_on = e1000e_led_on_generic;
269                 break;
270         }
271
272         return 0;
273 }
274
275 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
276 {
277         struct e1000_hw *hw = &adapter->hw;
278         static int global_quad_port_a; /* global port a indication */
279         struct pci_dev *pdev = adapter->pdev;
280         u16 eeprom_data = 0;
281         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
282         s32 rc;
283
284         rc = e1000_init_mac_params_82571(adapter);
285         if (rc)
286                 return rc;
287
288         rc = e1000_init_nvm_params_82571(hw);
289         if (rc)
290                 return rc;
291
292         rc = e1000_init_phy_params_82571(hw);
293         if (rc)
294                 return rc;
295
296         /* tag quad port adapters first, it's used below */
297         switch (pdev->device) {
298         case E1000_DEV_ID_82571EB_QUAD_COPPER:
299         case E1000_DEV_ID_82571EB_QUAD_FIBER:
300         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
301         case E1000_DEV_ID_82571PT_QUAD_COPPER:
302                 adapter->flags |= FLAG_IS_QUAD_PORT;
303                 /* mark the first port */
304                 if (global_quad_port_a == 0)
305                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
306                 /* Reset for multiple quad port adapters */
307                 global_quad_port_a++;
308                 if (global_quad_port_a == 4)
309                         global_quad_port_a = 0;
310                 break;
311         default:
312                 break;
313         }
314
315         switch (adapter->hw.mac.type) {
316         case e1000_82571:
317                 /* these dual ports don't have WoL on port B at all */
318                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
319                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
320                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
321                     (is_port_b))
322                         adapter->flags &= ~FLAG_HAS_WOL;
323                 /* quad ports only support WoL on port A */
324                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
325                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
326                         adapter->flags &= ~FLAG_HAS_WOL;
327                 /* Does not support WoL on any port */
328                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
329                         adapter->flags &= ~FLAG_HAS_WOL;
330                 break;
331
332         case e1000_82573:
333                 if (pdev->device == E1000_DEV_ID_82573L) {
334                         e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1,
335                                        &eeprom_data);
336                         if (eeprom_data & NVM_WORD1A_ASPM_MASK)
337                                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
338                 }
339                 break;
340         default:
341                 break;
342         }
343
344         return 0;
345 }
346
347 /**
348  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
349  *  @hw: pointer to the HW structure
350  *
351  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
352  *  revision in the hardware structure.
353  **/
354 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
355 {
356         struct e1000_phy_info *phy = &hw->phy;
357         s32 ret_val;
358         u16 phy_id = 0;
359
360         switch (hw->mac.type) {
361         case e1000_82571:
362         case e1000_82572:
363                 /*
364                  * The 82571 firmware may still be configuring the PHY.
365                  * In this case, we cannot access the PHY until the
366                  * configuration is done.  So we explicitly set the
367                  * PHY ID.
368                  */
369                 phy->id = IGP01E1000_I_PHY_ID;
370                 break;
371         case e1000_82573:
372                 return e1000e_get_phy_id(hw);
373                 break;
374         case e1000_82574:
375                 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
376                 if (ret_val)
377                         return ret_val;
378
379                 phy->id = (u32)(phy_id << 16);
380                 udelay(20);
381                 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
382                 if (ret_val)
383                         return ret_val;
384
385                 phy->id |= (u32)(phy_id);
386                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
387                 break;
388         default:
389                 return -E1000_ERR_PHY;
390                 break;
391         }
392
393         return 0;
394 }
395
396 /**
397  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
398  *  @hw: pointer to the HW structure
399  *
400  *  Acquire the HW semaphore to access the PHY or NVM
401  **/
402 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
403 {
404         u32 swsm;
405         s32 timeout = hw->nvm.word_size + 1;
406         s32 i = 0;
407
408         /* Get the FW semaphore. */
409         for (i = 0; i < timeout; i++) {
410                 swsm = er32(SWSM);
411                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
412
413                 /* Semaphore acquired if bit latched */
414                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
415                         break;
416
417                 udelay(50);
418         }
419
420         if (i == timeout) {
421                 /* Release semaphores */
422                 e1000e_put_hw_semaphore(hw);
423                 hw_dbg(hw, "Driver can't access the NVM\n");
424                 return -E1000_ERR_NVM;
425         }
426
427         return 0;
428 }
429
430 /**
431  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
432  *  @hw: pointer to the HW structure
433  *
434  *  Release hardware semaphore used to access the PHY or NVM
435  **/
436 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
437 {
438         u32 swsm;
439
440         swsm = er32(SWSM);
441
442         swsm &= ~E1000_SWSM_SWESMBI;
443
444         ew32(SWSM, swsm);
445 }
446
447 /**
448  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
449  *  @hw: pointer to the HW structure
450  *
451  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
452  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
453  *  for EEPROM access grant bit.  If the access grant bit is not set, release
454  *  hardware semaphore.
455  **/
456 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
457 {
458         s32 ret_val;
459
460         ret_val = e1000_get_hw_semaphore_82571(hw);
461         if (ret_val)
462                 return ret_val;
463
464         if (hw->mac.type != e1000_82573 && hw->mac.type != e1000_82574)
465                 ret_val = e1000e_acquire_nvm(hw);
466
467         if (ret_val)
468                 e1000_put_hw_semaphore_82571(hw);
469
470         return ret_val;
471 }
472
473 /**
474  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
475  *  @hw: pointer to the HW structure
476  *
477  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
478  **/
479 static void e1000_release_nvm_82571(struct e1000_hw *hw)
480 {
481         e1000e_release_nvm(hw);
482         e1000_put_hw_semaphore_82571(hw);
483 }
484
485 /**
486  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
487  *  @hw: pointer to the HW structure
488  *  @offset: offset within the EEPROM to be written to
489  *  @words: number of words to write
490  *  @data: 16 bit word(s) to be written to the EEPROM
491  *
492  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
493  *
494  *  If e1000e_update_nvm_checksum is not called after this function, the
495  *  EEPROM will most likely contain an invalid checksum.
496  **/
497 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
498                                  u16 *data)
499 {
500         s32 ret_val;
501
502         switch (hw->mac.type) {
503         case e1000_82573:
504         case e1000_82574:
505                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
506                 break;
507         case e1000_82571:
508         case e1000_82572:
509                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
510                 break;
511         default:
512                 ret_val = -E1000_ERR_NVM;
513                 break;
514         }
515
516         return ret_val;
517 }
518
519 /**
520  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
521  *  @hw: pointer to the HW structure
522  *
523  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
524  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
525  *  value to the EEPROM.
526  **/
527 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
528 {
529         u32 eecd;
530         s32 ret_val;
531         u16 i;
532
533         ret_val = e1000e_update_nvm_checksum_generic(hw);
534         if (ret_val)
535                 return ret_val;
536
537         /*
538          * If our nvm is an EEPROM, then we're done
539          * otherwise, commit the checksum to the flash NVM.
540          */
541         if (hw->nvm.type != e1000_nvm_flash_hw)
542                 return ret_val;
543
544         /* Check for pending operations. */
545         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
546                 msleep(1);
547                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
548                         break;
549         }
550
551         if (i == E1000_FLASH_UPDATES)
552                 return -E1000_ERR_NVM;
553
554         /* Reset the firmware if using STM opcode. */
555         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
556                 /*
557                  * The enabling of and the actual reset must be done
558                  * in two write cycles.
559                  */
560                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
561                 e1e_flush();
562                 ew32(HICR, E1000_HICR_FW_RESET);
563         }
564
565         /* Commit the write to flash */
566         eecd = er32(EECD) | E1000_EECD_FLUPD;
567         ew32(EECD, eecd);
568
569         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
570                 msleep(1);
571                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
572                         break;
573         }
574
575         if (i == E1000_FLASH_UPDATES)
576                 return -E1000_ERR_NVM;
577
578         return 0;
579 }
580
581 /**
582  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
583  *  @hw: pointer to the HW structure
584  *
585  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
586  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
587  **/
588 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
589 {
590         if (hw->nvm.type == e1000_nvm_flash_hw)
591                 e1000_fix_nvm_checksum_82571(hw);
592
593         return e1000e_validate_nvm_checksum_generic(hw);
594 }
595
596 /**
597  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
598  *  @hw: pointer to the HW structure
599  *  @offset: offset within the EEPROM to be written to
600  *  @words: number of words to write
601  *  @data: 16 bit word(s) to be written to the EEPROM
602  *
603  *  After checking for invalid values, poll the EEPROM to ensure the previous
604  *  command has completed before trying to write the next word.  After write
605  *  poll for completion.
606  *
607  *  If e1000e_update_nvm_checksum is not called after this function, the
608  *  EEPROM will most likely contain an invalid checksum.
609  **/
610 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
611                                       u16 words, u16 *data)
612 {
613         struct e1000_nvm_info *nvm = &hw->nvm;
614         u32 i;
615         u32 eewr = 0;
616         s32 ret_val = 0;
617
618         /*
619          * A check for invalid values:  offset too large, too many words,
620          * and not enough words.
621          */
622         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
623             (words == 0)) {
624                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
625                 return -E1000_ERR_NVM;
626         }
627
628         for (i = 0; i < words; i++) {
629                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
630                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
631                        E1000_NVM_RW_REG_START;
632
633                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
634                 if (ret_val)
635                         break;
636
637                 ew32(EEWR, eewr);
638
639                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
640                 if (ret_val)
641                         break;
642         }
643
644         return ret_val;
645 }
646
647 /**
648  *  e1000_get_cfg_done_82571 - Poll for configuration done
649  *  @hw: pointer to the HW structure
650  *
651  *  Reads the management control register for the config done bit to be set.
652  **/
653 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
654 {
655         s32 timeout = PHY_CFG_TIMEOUT;
656
657         while (timeout) {
658                 if (er32(EEMNGCTL) &
659                     E1000_NVM_CFG_DONE_PORT_0)
660                         break;
661                 msleep(1);
662                 timeout--;
663         }
664         if (!timeout) {
665                 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
666                 return -E1000_ERR_RESET;
667         }
668
669         return 0;
670 }
671
672 /**
673  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
674  *  @hw: pointer to the HW structure
675  *  @active: TRUE to enable LPLU, FALSE to disable
676  *
677  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
678  *  this function also disables smart speed and vice versa.  LPLU will not be
679  *  activated unless the device autonegotiation advertisement meets standards
680  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
681  *  pointer entry point only called by PHY setup routines.
682  **/
683 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
684 {
685         struct e1000_phy_info *phy = &hw->phy;
686         s32 ret_val;
687         u16 data;
688
689         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
690         if (ret_val)
691                 return ret_val;
692
693         if (active) {
694                 data |= IGP02E1000_PM_D0_LPLU;
695                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
696                 if (ret_val)
697                         return ret_val;
698
699                 /* When LPLU is enabled, we should disable SmartSpeed */
700                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
701                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
702                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
703                 if (ret_val)
704                         return ret_val;
705         } else {
706                 data &= ~IGP02E1000_PM_D0_LPLU;
707                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
708                 /*
709                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
710                  * during Dx states where the power conservation is most
711                  * important.  During driver activity we should enable
712                  * SmartSpeed, so performance is maintained.
713                  */
714                 if (phy->smart_speed == e1000_smart_speed_on) {
715                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
716                                            &data);
717                         if (ret_val)
718                                 return ret_val;
719
720                         data |= IGP01E1000_PSCFR_SMART_SPEED;
721                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
722                                            data);
723                         if (ret_val)
724                                 return ret_val;
725                 } else if (phy->smart_speed == e1000_smart_speed_off) {
726                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
727                                            &data);
728                         if (ret_val)
729                                 return ret_val;
730
731                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
732                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
733                                            data);
734                         if (ret_val)
735                                 return ret_val;
736                 }
737         }
738
739         return 0;
740 }
741
742 /**
743  *  e1000_reset_hw_82571 - Reset hardware
744  *  @hw: pointer to the HW structure
745  *
746  *  This resets the hardware into a known state.  This is a
747  *  function pointer entry point called by the api module.
748  **/
749 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
750 {
751         u32 ctrl;
752         u32 extcnf_ctrl;
753         u32 ctrl_ext;
754         u32 icr;
755         s32 ret_val;
756         u16 i = 0;
757
758         /*
759          * Prevent the PCI-E bus from sticking if there is no TLP connection
760          * on the last TLP read/write transaction when MAC is reset.
761          */
762         ret_val = e1000e_disable_pcie_master(hw);
763         if (ret_val)
764                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
765
766         hw_dbg(hw, "Masking off all interrupts\n");
767         ew32(IMC, 0xffffffff);
768
769         ew32(RCTL, 0);
770         ew32(TCTL, E1000_TCTL_PSP);
771         e1e_flush();
772
773         msleep(10);
774
775         /*
776          * Must acquire the MDIO ownership before MAC reset.
777          * Ownership defaults to firmware after a reset.
778          */
779         if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
780                 extcnf_ctrl = er32(EXTCNF_CTRL);
781                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
782
783                 do {
784                         ew32(EXTCNF_CTRL, extcnf_ctrl);
785                         extcnf_ctrl = er32(EXTCNF_CTRL);
786
787                         if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
788                                 break;
789
790                         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
791
792                         msleep(2);
793                         i++;
794                 } while (i < MDIO_OWNERSHIP_TIMEOUT);
795         }
796
797         ctrl = er32(CTRL);
798
799         hw_dbg(hw, "Issuing a global reset to MAC\n");
800         ew32(CTRL, ctrl | E1000_CTRL_RST);
801
802         if (hw->nvm.type == e1000_nvm_flash_hw) {
803                 udelay(10);
804                 ctrl_ext = er32(CTRL_EXT);
805                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
806                 ew32(CTRL_EXT, ctrl_ext);
807                 e1e_flush();
808         }
809
810         ret_val = e1000e_get_auto_rd_done(hw);
811         if (ret_val)
812                 /* We don't want to continue accessing MAC registers. */
813                 return ret_val;
814
815         /*
816          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
817          * Need to wait for Phy configuration completion before accessing
818          * NVM and Phy.
819          */
820         if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574)
821                 msleep(25);
822
823         /* Clear any pending interrupt events. */
824         ew32(IMC, 0xffffffff);
825         icr = er32(ICR);
826
827         if (hw->mac.type == e1000_82571 &&
828                 hw->dev_spec.e82571.alt_mac_addr_is_present)
829                         e1000e_set_laa_state_82571(hw, true);
830
831         return 0;
832 }
833
834 /**
835  *  e1000_init_hw_82571 - Initialize hardware
836  *  @hw: pointer to the HW structure
837  *
838  *  This inits the hardware readying it for operation.
839  **/
840 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
841 {
842         struct e1000_mac_info *mac = &hw->mac;
843         u32 reg_data;
844         s32 ret_val;
845         u16 i;
846         u16 rar_count = mac->rar_entry_count;
847
848         e1000_initialize_hw_bits_82571(hw);
849
850         /* Initialize identification LED */
851         ret_val = e1000e_id_led_init(hw);
852         if (ret_val) {
853                 hw_dbg(hw, "Error initializing identification LED\n");
854                 return ret_val;
855         }
856
857         /* Disabling VLAN filtering */
858         hw_dbg(hw, "Initializing the IEEE VLAN\n");
859         e1000e_clear_vfta(hw);
860
861         /* Setup the receive address. */
862         /*
863          * If, however, a locally administered address was assigned to the
864          * 82571, we must reserve a RAR for it to work around an issue where
865          * resetting one port will reload the MAC on the other port.
866          */
867         if (e1000e_get_laa_state_82571(hw))
868                 rar_count--;
869         e1000e_init_rx_addrs(hw, rar_count);
870
871         /* Zero out the Multicast HASH table */
872         hw_dbg(hw, "Zeroing the MTA\n");
873         for (i = 0; i < mac->mta_reg_count; i++)
874                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
875
876         /* Setup link and flow control */
877         ret_val = e1000_setup_link_82571(hw);
878
879         /* Set the transmit descriptor write-back policy */
880         reg_data = er32(TXDCTL(0));
881         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
882                    E1000_TXDCTL_FULL_TX_DESC_WB |
883                    E1000_TXDCTL_COUNT_DESC;
884         ew32(TXDCTL(0), reg_data);
885
886         /* ...for both queues. */
887         if (mac->type != e1000_82573 && mac->type != e1000_82574) {
888                 reg_data = er32(TXDCTL(1));
889                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
890                            E1000_TXDCTL_FULL_TX_DESC_WB |
891                            E1000_TXDCTL_COUNT_DESC;
892                 ew32(TXDCTL(1), reg_data);
893         } else {
894                 e1000e_enable_tx_pkt_filtering(hw);
895                 reg_data = er32(GCR);
896                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
897                 ew32(GCR, reg_data);
898         }
899
900         /*
901          * Clear all of the statistics registers (clear on read).  It is
902          * important that we do this after we have tried to establish link
903          * because the symbol error count will increment wildly if there
904          * is no link.
905          */
906         e1000_clear_hw_cntrs_82571(hw);
907
908         return ret_val;
909 }
910
911 /**
912  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
913  *  @hw: pointer to the HW structure
914  *
915  *  Initializes required hardware-dependent bits needed for normal operation.
916  **/
917 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
918 {
919         u32 reg;
920
921         /* Transmit Descriptor Control 0 */
922         reg = er32(TXDCTL(0));
923         reg |= (1 << 22);
924         ew32(TXDCTL(0), reg);
925
926         /* Transmit Descriptor Control 1 */
927         reg = er32(TXDCTL(1));
928         reg |= (1 << 22);
929         ew32(TXDCTL(1), reg);
930
931         /* Transmit Arbitration Control 0 */
932         reg = er32(TARC(0));
933         reg &= ~(0xF << 27); /* 30:27 */
934         switch (hw->mac.type) {
935         case e1000_82571:
936         case e1000_82572:
937                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
938                 break;
939         default:
940                 break;
941         }
942         ew32(TARC(0), reg);
943
944         /* Transmit Arbitration Control 1 */
945         reg = er32(TARC(1));
946         switch (hw->mac.type) {
947         case e1000_82571:
948         case e1000_82572:
949                 reg &= ~((1 << 29) | (1 << 30));
950                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
951                 if (er32(TCTL) & E1000_TCTL_MULR)
952                         reg &= ~(1 << 28);
953                 else
954                         reg |= (1 << 28);
955                 ew32(TARC(1), reg);
956                 break;
957         default:
958                 break;
959         }
960
961         /* Device Control */
962         if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
963                 reg = er32(CTRL);
964                 reg &= ~(1 << 29);
965                 ew32(CTRL, reg);
966         }
967
968         /* Extended Device Control */
969         if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
970                 reg = er32(CTRL_EXT);
971                 reg &= ~(1 << 23);
972                 reg |= (1 << 22);
973                 ew32(CTRL_EXT, reg);
974         }
975
976         /* PCI-Ex Control Register */
977         if (hw->mac.type == e1000_82574) {
978                 reg = er32(GCR);
979                 reg |= (1 << 22);
980                 ew32(GCR, reg);
981         }
982
983         return;
984 }
985
986 /**
987  *  e1000e_clear_vfta - Clear VLAN filter table
988  *  @hw: pointer to the HW structure
989  *
990  *  Clears the register array which contains the VLAN filter table by
991  *  setting all the values to 0.
992  **/
993 void e1000e_clear_vfta(struct e1000_hw *hw)
994 {
995         u32 offset;
996         u32 vfta_value = 0;
997         u32 vfta_offset = 0;
998         u32 vfta_bit_in_reg = 0;
999
1000         if (hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) {
1001                 if (hw->mng_cookie.vlan_id != 0) {
1002                         /*
1003                          * The VFTA is a 4096b bit-field, each identifying
1004                          * a single VLAN ID.  The following operations
1005                          * determine which 32b entry (i.e. offset) into the
1006                          * array we want to set the VLAN ID (i.e. bit) of
1007                          * the manageability unit.
1008                          */
1009                         vfta_offset = (hw->mng_cookie.vlan_id >>
1010                                        E1000_VFTA_ENTRY_SHIFT) &
1011                                       E1000_VFTA_ENTRY_MASK;
1012                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1013                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1014                 }
1015         }
1016         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1017                 /*
1018                  * If the offset we want to clear is the same offset of the
1019                  * manageability VLAN ID, then clear all bits except that of
1020                  * the manageability unit.
1021                  */
1022                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1023                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1024                 e1e_flush();
1025         }
1026 }
1027
1028 /**
1029  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1030  *  @hw: pointer to the HW structure
1031  *
1032  *  Reads the NVM Initialization Control Word 2 and returns true
1033  *  (>0) if any manageability is enabled, else false (0).
1034  **/
1035 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1036 {
1037         u16 data;
1038
1039         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1040         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1041 }
1042
1043 /**
1044  *  e1000_led_on_82574 - Turn LED on
1045  *  @hw: pointer to the HW structure
1046  *
1047  *  Turn LED on.
1048  **/
1049 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1050 {
1051         u32 ctrl;
1052         u32 i;
1053
1054         ctrl = hw->mac.ledctl_mode2;
1055         if (!(E1000_STATUS_LU & er32(STATUS))) {
1056                 /*
1057                  * If no link, then turn LED on by setting the invert bit
1058                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1059                  */
1060                 for (i = 0; i < 4; i++)
1061                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1062                             E1000_LEDCTL_MODE_LED_ON)
1063                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1064         }
1065         ew32(LEDCTL, ctrl);
1066
1067         return 0;
1068 }
1069
1070 /**
1071  *  e1000_update_mc_addr_list_82571 - Update Multicast addresses
1072  *  @hw: pointer to the HW structure
1073  *  @mc_addr_list: array of multicast addresses to program
1074  *  @mc_addr_count: number of multicast addresses to program
1075  *  @rar_used_count: the first RAR register free to program
1076  *  @rar_count: total number of supported Receive Address Registers
1077  *
1078  *  Updates the Receive Address Registers and Multicast Table Array.
1079  *  The caller must have a packed mc_addr_list of multicast addresses.
1080  *  The parameter rar_count will usually be hw->mac.rar_entry_count
1081  *  unless there are workarounds that change this.
1082  **/
1083 static void e1000_update_mc_addr_list_82571(struct e1000_hw *hw,
1084                                             u8 *mc_addr_list,
1085                                             u32 mc_addr_count,
1086                                             u32 rar_used_count,
1087                                             u32 rar_count)
1088 {
1089         if (e1000e_get_laa_state_82571(hw))
1090                 rar_count--;
1091
1092         e1000e_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count,
1093                                            rar_used_count, rar_count);
1094 }
1095
1096 /**
1097  *  e1000_setup_link_82571 - Setup flow control and link settings
1098  *  @hw: pointer to the HW structure
1099  *
1100  *  Determines which flow control settings to use, then configures flow
1101  *  control.  Calls the appropriate media-specific link configuration
1102  *  function.  Assuming the adapter has a valid link partner, a valid link
1103  *  should be established.  Assumes the hardware has previously been reset
1104  *  and the transmitter and receiver are not enabled.
1105  **/
1106 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1107 {
1108         /*
1109          * 82573 does not have a word in the NVM to determine
1110          * the default flow control setting, so we explicitly
1111          * set it to full.
1112          */
1113         if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) &&
1114             hw->fc.type == e1000_fc_default)
1115                 hw->fc.type = e1000_fc_full;
1116
1117         return e1000e_setup_link(hw);
1118 }
1119
1120 /**
1121  *  e1000_setup_copper_link_82571 - Configure copper link settings
1122  *  @hw: pointer to the HW structure
1123  *
1124  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1125  *  for link, once link is established calls to configure collision distance
1126  *  and flow control are called.
1127  **/
1128 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1129 {
1130         u32 ctrl;
1131         u32 led_ctrl;
1132         s32 ret_val;
1133
1134         ctrl = er32(CTRL);
1135         ctrl |= E1000_CTRL_SLU;
1136         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1137         ew32(CTRL, ctrl);
1138
1139         switch (hw->phy.type) {
1140         case e1000_phy_m88:
1141         case e1000_phy_bm:
1142                 ret_val = e1000e_copper_link_setup_m88(hw);
1143                 break;
1144         case e1000_phy_igp_2:
1145                 ret_val = e1000e_copper_link_setup_igp(hw);
1146                 /* Setup activity LED */
1147                 led_ctrl = er32(LEDCTL);
1148                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1149                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1150                 ew32(LEDCTL, led_ctrl);
1151                 break;
1152         default:
1153                 return -E1000_ERR_PHY;
1154                 break;
1155         }
1156
1157         if (ret_val)
1158                 return ret_val;
1159
1160         ret_val = e1000e_setup_copper_link(hw);
1161
1162         return ret_val;
1163 }
1164
1165 /**
1166  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1167  *  @hw: pointer to the HW structure
1168  *
1169  *  Configures collision distance and flow control for fiber and serdes links.
1170  *  Upon successful setup, poll for link.
1171  **/
1172 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1173 {
1174         switch (hw->mac.type) {
1175         case e1000_82571:
1176         case e1000_82572:
1177                 /*
1178                  * If SerDes loopback mode is entered, there is no form
1179                  * of reset to take the adapter out of that mode.  So we
1180                  * have to explicitly take the adapter out of loopback
1181                  * mode.  This prevents drivers from twiddling their thumbs
1182                  * if another tool failed to take it out of loopback mode.
1183                  */
1184                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1185                 break;
1186         default:
1187                 break;
1188         }
1189
1190         return e1000e_setup_fiber_serdes_link(hw);
1191 }
1192
1193 /**
1194  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1195  *  @hw: pointer to the HW structure
1196  *  @data: pointer to the NVM (EEPROM)
1197  *
1198  *  Read the EEPROM for the current default LED configuration.  If the
1199  *  LED configuration is not valid, set to a valid LED configuration.
1200  **/
1201 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1202 {
1203         s32 ret_val;
1204
1205         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1206         if (ret_val) {
1207                 hw_dbg(hw, "NVM Read Error\n");
1208                 return ret_val;
1209         }
1210
1211         if ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574) &&
1212             *data == ID_LED_RESERVED_F746)
1213                 *data = ID_LED_DEFAULT_82573;
1214         else if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1215                 *data = ID_LED_DEFAULT;
1216
1217         return 0;
1218 }
1219
1220 /**
1221  *  e1000e_get_laa_state_82571 - Get locally administered address state
1222  *  @hw: pointer to the HW structure
1223  *
1224  *  Retrieve and return the current locally administered address state.
1225  **/
1226 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1227 {
1228         if (hw->mac.type != e1000_82571)
1229                 return 0;
1230
1231         return hw->dev_spec.e82571.laa_is_present;
1232 }
1233
1234 /**
1235  *  e1000e_set_laa_state_82571 - Set locally administered address state
1236  *  @hw: pointer to the HW structure
1237  *  @state: enable/disable locally administered address
1238  *
1239  *  Enable/Disable the current locally administers address state.
1240  **/
1241 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1242 {
1243         if (hw->mac.type != e1000_82571)
1244                 return;
1245
1246         hw->dev_spec.e82571.laa_is_present = state;
1247
1248         /* If workaround is activated... */
1249         if (state)
1250                 /*
1251                  * Hold a copy of the LAA in RAR[14] This is done so that
1252                  * between the time RAR[0] gets clobbered and the time it
1253                  * gets fixed, the actual LAA is in one of the RARs and no
1254                  * incoming packets directed to this port are dropped.
1255                  * Eventually the LAA will be in RAR[0] and RAR[14].
1256                  */
1257                 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1258 }
1259
1260 /**
1261  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1262  *  @hw: pointer to the HW structure
1263  *
1264  *  Verifies that the EEPROM has completed the update.  After updating the
1265  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1266  *  the checksum fix is not implemented, we need to set the bit and update
1267  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1268  *  we need to return bad checksum.
1269  **/
1270 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1271 {
1272         struct e1000_nvm_info *nvm = &hw->nvm;
1273         s32 ret_val;
1274         u16 data;
1275
1276         if (nvm->type != e1000_nvm_flash_hw)
1277                 return 0;
1278
1279         /*
1280          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1281          * 10h-12h.  Checksum may need to be fixed.
1282          */
1283         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1284         if (ret_val)
1285                 return ret_val;
1286
1287         if (!(data & 0x10)) {
1288                 /*
1289                  * Read 0x23 and check bit 15.  This bit is a 1
1290                  * when the checksum has already been fixed.  If
1291                  * the checksum is still wrong and this bit is a
1292                  * 1, we need to return bad checksum.  Otherwise,
1293                  * we need to set this bit to a 1 and update the
1294                  * checksum.
1295                  */
1296                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1297                 if (ret_val)
1298                         return ret_val;
1299
1300                 if (!(data & 0x8000)) {
1301                         data |= 0x8000;
1302                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1303                         if (ret_val)
1304                                 return ret_val;
1305                         ret_val = e1000e_update_nvm_checksum(hw);
1306                 }
1307         }
1308
1309         return 0;
1310 }
1311
1312 /**
1313  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1314  *  @hw: pointer to the HW structure
1315  *
1316  *  Clears the hardware counters by reading the counter registers.
1317  **/
1318 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1319 {
1320         u32 temp;
1321
1322         e1000e_clear_hw_cntrs_base(hw);
1323
1324         temp = er32(PRC64);
1325         temp = er32(PRC127);
1326         temp = er32(PRC255);
1327         temp = er32(PRC511);
1328         temp = er32(PRC1023);
1329         temp = er32(PRC1522);
1330         temp = er32(PTC64);
1331         temp = er32(PTC127);
1332         temp = er32(PTC255);
1333         temp = er32(PTC511);
1334         temp = er32(PTC1023);
1335         temp = er32(PTC1522);
1336
1337         temp = er32(ALGNERRC);
1338         temp = er32(RXERRC);
1339         temp = er32(TNCRS);
1340         temp = er32(CEXTERR);
1341         temp = er32(TSCTC);
1342         temp = er32(TSCTFC);
1343
1344         temp = er32(MGTPRC);
1345         temp = er32(MGTPDC);
1346         temp = er32(MGTPTC);
1347
1348         temp = er32(IAC);
1349         temp = er32(ICRXOC);
1350
1351         temp = er32(ICRXPTC);
1352         temp = er32(ICRXATC);
1353         temp = er32(ICTXPTC);
1354         temp = er32(ICTXATC);
1355         temp = er32(ICTXQEC);
1356         temp = er32(ICTXQMTC);
1357         temp = er32(ICRXDMTC);
1358 }
1359
1360 static struct e1000_mac_operations e82571_mac_ops = {
1361         /* .check_mng_mode: mac type dependent */
1362         /* .check_for_link: media type dependent */
1363         .cleanup_led            = e1000e_cleanup_led_generic,
1364         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1365         .get_bus_info           = e1000e_get_bus_info_pcie,
1366         /* .get_link_up_info: media type dependent */
1367         /* .led_on: mac type dependent */
1368         .led_off                = e1000e_led_off_generic,
1369         .update_mc_addr_list    = e1000_update_mc_addr_list_82571,
1370         .reset_hw               = e1000_reset_hw_82571,
1371         .init_hw                = e1000_init_hw_82571,
1372         .setup_link             = e1000_setup_link_82571,
1373         /* .setup_physical_interface: media type dependent */
1374 };
1375
1376 static struct e1000_phy_operations e82_phy_ops_igp = {
1377         .acquire_phy            = e1000_get_hw_semaphore_82571,
1378         .check_reset_block      = e1000e_check_reset_block_generic,
1379         .commit_phy             = NULL,
1380         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1381         .get_cfg_done           = e1000_get_cfg_done_82571,
1382         .get_cable_length       = e1000e_get_cable_length_igp_2,
1383         .get_phy_info           = e1000e_get_phy_info_igp,
1384         .read_phy_reg           = e1000e_read_phy_reg_igp,
1385         .release_phy            = e1000_put_hw_semaphore_82571,
1386         .reset_phy              = e1000e_phy_hw_reset_generic,
1387         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1388         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1389         .write_phy_reg          = e1000e_write_phy_reg_igp,
1390 };
1391
1392 static struct e1000_phy_operations e82_phy_ops_m88 = {
1393         .acquire_phy            = e1000_get_hw_semaphore_82571,
1394         .check_reset_block      = e1000e_check_reset_block_generic,
1395         .commit_phy             = e1000e_phy_sw_reset,
1396         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1397         .get_cfg_done           = e1000e_get_cfg_done,
1398         .get_cable_length       = e1000e_get_cable_length_m88,
1399         .get_phy_info           = e1000e_get_phy_info_m88,
1400         .read_phy_reg           = e1000e_read_phy_reg_m88,
1401         .release_phy            = e1000_put_hw_semaphore_82571,
1402         .reset_phy              = e1000e_phy_hw_reset_generic,
1403         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1404         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1405         .write_phy_reg          = e1000e_write_phy_reg_m88,
1406 };
1407
1408 static struct e1000_phy_operations e82_phy_ops_bm = {
1409         .acquire_phy            = e1000_get_hw_semaphore_82571,
1410         .check_reset_block      = e1000e_check_reset_block_generic,
1411         .commit_phy             = e1000e_phy_sw_reset,
1412         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1413         .get_cfg_done           = e1000e_get_cfg_done,
1414         .get_cable_length       = e1000e_get_cable_length_m88,
1415         .get_phy_info           = e1000e_get_phy_info_m88,
1416         .read_phy_reg           = e1000e_read_phy_reg_bm2,
1417         .release_phy            = e1000_put_hw_semaphore_82571,
1418         .reset_phy              = e1000e_phy_hw_reset_generic,
1419         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1420         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1421         .write_phy_reg          = e1000e_write_phy_reg_bm2,
1422 };
1423
1424 static struct e1000_nvm_operations e82571_nvm_ops = {
1425         .acquire_nvm            = e1000_acquire_nvm_82571,
1426         .read_nvm               = e1000e_read_nvm_eerd,
1427         .release_nvm            = e1000_release_nvm_82571,
1428         .update_nvm             = e1000_update_nvm_checksum_82571,
1429         .valid_led_default      = e1000_valid_led_default_82571,
1430         .validate_nvm           = e1000_validate_nvm_checksum_82571,
1431         .write_nvm              = e1000_write_nvm_82571,
1432 };
1433
1434 struct e1000_info e1000_82571_info = {
1435         .mac                    = e1000_82571,
1436         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1437                                   | FLAG_HAS_JUMBO_FRAMES
1438                                   | FLAG_HAS_WOL
1439                                   | FLAG_APME_IN_CTRL3
1440                                   | FLAG_RX_CSUM_ENABLED
1441                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1442                                   | FLAG_HAS_SMART_POWER_DOWN
1443                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1444                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1445                                   | FLAG_APME_CHECK_PORT_B,
1446         .pba                    = 38,
1447         .get_variants           = e1000_get_variants_82571,
1448         .mac_ops                = &e82571_mac_ops,
1449         .phy_ops                = &e82_phy_ops_igp,
1450         .nvm_ops                = &e82571_nvm_ops,
1451 };
1452
1453 struct e1000_info e1000_82572_info = {
1454         .mac                    = e1000_82572,
1455         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1456                                   | FLAG_HAS_JUMBO_FRAMES
1457                                   | FLAG_HAS_WOL
1458                                   | FLAG_APME_IN_CTRL3
1459                                   | FLAG_RX_CSUM_ENABLED
1460                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1461                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1462         .pba                    = 38,
1463         .get_variants           = e1000_get_variants_82571,
1464         .mac_ops                = &e82571_mac_ops,
1465         .phy_ops                = &e82_phy_ops_igp,
1466         .nvm_ops                = &e82571_nvm_ops,
1467 };
1468
1469 struct e1000_info e1000_82573_info = {
1470         .mac                    = e1000_82573,
1471         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1472                                   | FLAG_HAS_JUMBO_FRAMES
1473                                   | FLAG_HAS_WOL
1474                                   | FLAG_APME_IN_CTRL3
1475                                   | FLAG_RX_CSUM_ENABLED
1476                                   | FLAG_HAS_SMART_POWER_DOWN
1477                                   | FLAG_HAS_AMT
1478                                   | FLAG_HAS_ERT
1479                                   | FLAG_HAS_SWSM_ON_LOAD,
1480         .pba                    = 20,
1481         .get_variants           = e1000_get_variants_82571,
1482         .mac_ops                = &e82571_mac_ops,
1483         .phy_ops                = &e82_phy_ops_m88,
1484         .nvm_ops                = &e82571_nvm_ops,
1485 };
1486
1487 struct e1000_info e1000_82574_info = {
1488         .mac                    = e1000_82574,
1489         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1490                                   | FLAG_HAS_MSIX
1491                                   | FLAG_HAS_JUMBO_FRAMES
1492                                   | FLAG_HAS_WOL
1493                                   | FLAG_APME_IN_CTRL3
1494                                   | FLAG_RX_CSUM_ENABLED
1495                                   | FLAG_HAS_SMART_POWER_DOWN
1496                                   | FLAG_HAS_AMT
1497                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1498         .pba                    = 20,
1499         .get_variants           = e1000_get_variants_82571,
1500         .mac_ops                = &e82571_mac_ops,
1501         .phy_ops                = &e82_phy_ops_bm,
1502         .nvm_ops                = &e82571_nvm_ops,
1503 };
1504