Merge branch 'for-linus' of git://git.infradead.org/users/eparis/notify
[pandora-kernel.git] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  * 82583V Gigabit Network Connection
44  */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50                               (ID_LED_OFF1_ON2  <<  8) | \
51                               (ID_LED_DEF1_DEF2 <<  4) | \
52                               (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define E1000_BASE1000T_STATUS          10
56 #define E1000_IDLE_ERROR_COUNT_MASK     0xFF
57 #define E1000_RECEIVE_ERROR_COUNTER     21
58 #define E1000_RECEIVE_ERROR_MAX         0xFFFF
59
60 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
61
62 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
63 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
65 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
67                                       u16 words, u16 *data);
68 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
69 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
70 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
71 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
72 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
73 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
74 static s32 e1000_led_on_82574(struct e1000_hw *hw);
75 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
76 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
77
78 /**
79  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
80  *  @hw: pointer to the HW structure
81  **/
82 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
83 {
84         struct e1000_phy_info *phy = &hw->phy;
85         s32 ret_val;
86
87         if (hw->phy.media_type != e1000_media_type_copper) {
88                 phy->type = e1000_phy_none;
89                 return 0;
90         }
91
92         phy->addr                        = 1;
93         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94         phy->reset_delay_us              = 100;
95
96         phy->ops.power_up                = e1000_power_up_phy_copper;
97         phy->ops.power_down              = e1000_power_down_phy_copper_82571;
98
99         switch (hw->mac.type) {
100         case e1000_82571:
101         case e1000_82572:
102                 phy->type                = e1000_phy_igp_2;
103                 break;
104         case e1000_82573:
105                 phy->type                = e1000_phy_m88;
106                 break;
107         case e1000_82574:
108         case e1000_82583:
109                 phy->type                = e1000_phy_bm;
110                 break;
111         default:
112                 return -E1000_ERR_PHY;
113                 break;
114         }
115
116         /* This can only be done after all function pointers are setup. */
117         ret_val = e1000_get_phy_id_82571(hw);
118
119         /* Verify phy id */
120         switch (hw->mac.type) {
121         case e1000_82571:
122         case e1000_82572:
123                 if (phy->id != IGP01E1000_I_PHY_ID)
124                         return -E1000_ERR_PHY;
125                 break;
126         case e1000_82573:
127                 if (phy->id != M88E1111_I_PHY_ID)
128                         return -E1000_ERR_PHY;
129                 break;
130         case e1000_82574:
131         case e1000_82583:
132                 if (phy->id != BME1000_E_PHY_ID_R2)
133                         return -E1000_ERR_PHY;
134                 break;
135         default:
136                 return -E1000_ERR_PHY;
137                 break;
138         }
139
140         return 0;
141 }
142
143 /**
144  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
145  *  @hw: pointer to the HW structure
146  **/
147 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
148 {
149         struct e1000_nvm_info *nvm = &hw->nvm;
150         u32 eecd = er32(EECD);
151         u16 size;
152
153         nvm->opcode_bits = 8;
154         nvm->delay_usec = 1;
155         switch (nvm->override) {
156         case e1000_nvm_override_spi_large:
157                 nvm->page_size = 32;
158                 nvm->address_bits = 16;
159                 break;
160         case e1000_nvm_override_spi_small:
161                 nvm->page_size = 8;
162                 nvm->address_bits = 8;
163                 break;
164         default:
165                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
166                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
167                 break;
168         }
169
170         switch (hw->mac.type) {
171         case e1000_82573:
172         case e1000_82574:
173         case e1000_82583:
174                 if (((eecd >> 15) & 0x3) == 0x3) {
175                         nvm->type = e1000_nvm_flash_hw;
176                         nvm->word_size = 2048;
177                         /*
178                          * Autonomous Flash update bit must be cleared due
179                          * to Flash update issue.
180                          */
181                         eecd &= ~E1000_EECD_AUPDEN;
182                         ew32(EECD, eecd);
183                         break;
184                 }
185                 /* Fall Through */
186         default:
187                 nvm->type = e1000_nvm_eeprom_spi;
188                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
189                                   E1000_EECD_SIZE_EX_SHIFT);
190                 /*
191                  * Added to a constant, "size" becomes the left-shift value
192                  * for setting word_size.
193                  */
194                 size += NVM_WORD_SIZE_BASE_SHIFT;
195
196                 /* EEPROM access above 16k is unsupported */
197                 if (size > 14)
198                         size = 14;
199                 nvm->word_size  = 1 << size;
200                 break;
201         }
202
203         return 0;
204 }
205
206 /**
207  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
208  *  @hw: pointer to the HW structure
209  **/
210 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
211 {
212         struct e1000_hw *hw = &adapter->hw;
213         struct e1000_mac_info *mac = &hw->mac;
214         struct e1000_mac_operations *func = &mac->ops;
215         u32 swsm = 0;
216         u32 swsm2 = 0;
217         bool force_clear_smbi = false;
218
219         /* Set media type */
220         switch (adapter->pdev->device) {
221         case E1000_DEV_ID_82571EB_FIBER:
222         case E1000_DEV_ID_82572EI_FIBER:
223         case E1000_DEV_ID_82571EB_QUAD_FIBER:
224                 hw->phy.media_type = e1000_media_type_fiber;
225                 break;
226         case E1000_DEV_ID_82571EB_SERDES:
227         case E1000_DEV_ID_82572EI_SERDES:
228         case E1000_DEV_ID_82571EB_SERDES_DUAL:
229         case E1000_DEV_ID_82571EB_SERDES_QUAD:
230                 hw->phy.media_type = e1000_media_type_internal_serdes;
231                 break;
232         default:
233                 hw->phy.media_type = e1000_media_type_copper;
234                 break;
235         }
236
237         /* Set mta register count */
238         mac->mta_reg_count = 128;
239         /* Set rar entry count */
240         mac->rar_entry_count = E1000_RAR_ENTRIES;
241         /* Adaptive IFS supported */
242         mac->adaptive_ifs = true;
243
244         /* check for link */
245         switch (hw->phy.media_type) {
246         case e1000_media_type_copper:
247                 func->setup_physical_interface = e1000_setup_copper_link_82571;
248                 func->check_for_link = e1000e_check_for_copper_link;
249                 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
250                 break;
251         case e1000_media_type_fiber:
252                 func->setup_physical_interface =
253                         e1000_setup_fiber_serdes_link_82571;
254                 func->check_for_link = e1000e_check_for_fiber_link;
255                 func->get_link_up_info =
256                         e1000e_get_speed_and_duplex_fiber_serdes;
257                 break;
258         case e1000_media_type_internal_serdes:
259                 func->setup_physical_interface =
260                         e1000_setup_fiber_serdes_link_82571;
261                 func->check_for_link = e1000_check_for_serdes_link_82571;
262                 func->get_link_up_info =
263                         e1000e_get_speed_and_duplex_fiber_serdes;
264                 break;
265         default:
266                 return -E1000_ERR_CONFIG;
267                 break;
268         }
269
270         switch (hw->mac.type) {
271         case e1000_82573:
272                 func->set_lan_id = e1000_set_lan_id_single_port;
273                 func->check_mng_mode = e1000e_check_mng_mode_generic;
274                 func->led_on = e1000e_led_on_generic;
275
276                 /* FWSM register */
277                 mac->has_fwsm = true;
278                 /*
279                  * ARC supported; valid only if manageability features are
280                  * enabled.
281                  */
282                 mac->arc_subsystem_valid =
283                         (er32(FWSM) & E1000_FWSM_MODE_MASK)
284                         ? true : false;
285                 break;
286         case e1000_82574:
287         case e1000_82583:
288                 func->set_lan_id = e1000_set_lan_id_single_port;
289                 func->check_mng_mode = e1000_check_mng_mode_82574;
290                 func->led_on = e1000_led_on_82574;
291                 break;
292         default:
293                 func->check_mng_mode = e1000e_check_mng_mode_generic;
294                 func->led_on = e1000e_led_on_generic;
295
296                 /* FWSM register */
297                 mac->has_fwsm = true;
298                 break;
299         }
300
301         /*
302          * Ensure that the inter-port SWSM.SMBI lock bit is clear before
303          * first NVM or PHY acess. This should be done for single-port
304          * devices, and for one port only on dual-port devices so that
305          * for those devices we can still use the SMBI lock to synchronize
306          * inter-port accesses to the PHY & NVM.
307          */
308         switch (hw->mac.type) {
309         case e1000_82571:
310         case e1000_82572:
311                 swsm2 = er32(SWSM2);
312
313                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
314                         /* Only do this for the first interface on this card */
315                         ew32(SWSM2,
316                             swsm2 | E1000_SWSM2_LOCK);
317                         force_clear_smbi = true;
318                 } else
319                         force_clear_smbi = false;
320                 break;
321         default:
322                 force_clear_smbi = true;
323                 break;
324         }
325
326         if (force_clear_smbi) {
327                 /* Make sure SWSM.SMBI is clear */
328                 swsm = er32(SWSM);
329                 if (swsm & E1000_SWSM_SMBI) {
330                         /* This bit should not be set on a first interface, and
331                          * indicates that the bootagent or EFI code has
332                          * improperly left this bit enabled
333                          */
334                         e_dbg("Please update your 82571 Bootagent\n");
335                 }
336                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
337         }
338
339         /*
340          * Initialize device specific counter of SMBI acquisition
341          * timeouts.
342          */
343          hw->dev_spec.e82571.smb_counter = 0;
344
345         return 0;
346 }
347
348 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
349 {
350         struct e1000_hw *hw = &adapter->hw;
351         static int global_quad_port_a; /* global port a indication */
352         struct pci_dev *pdev = adapter->pdev;
353         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
354         s32 rc;
355
356         rc = e1000_init_mac_params_82571(adapter);
357         if (rc)
358                 return rc;
359
360         rc = e1000_init_nvm_params_82571(hw);
361         if (rc)
362                 return rc;
363
364         rc = e1000_init_phy_params_82571(hw);
365         if (rc)
366                 return rc;
367
368         /* tag quad port adapters first, it's used below */
369         switch (pdev->device) {
370         case E1000_DEV_ID_82571EB_QUAD_COPPER:
371         case E1000_DEV_ID_82571EB_QUAD_FIBER:
372         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
373         case E1000_DEV_ID_82571PT_QUAD_COPPER:
374                 adapter->flags |= FLAG_IS_QUAD_PORT;
375                 /* mark the first port */
376                 if (global_quad_port_a == 0)
377                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
378                 /* Reset for multiple quad port adapters */
379                 global_quad_port_a++;
380                 if (global_quad_port_a == 4)
381                         global_quad_port_a = 0;
382                 break;
383         default:
384                 break;
385         }
386
387         switch (adapter->hw.mac.type) {
388         case e1000_82571:
389                 /* these dual ports don't have WoL on port B at all */
390                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
391                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
392                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
393                     (is_port_b))
394                         adapter->flags &= ~FLAG_HAS_WOL;
395                 /* quad ports only support WoL on port A */
396                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
397                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
398                         adapter->flags &= ~FLAG_HAS_WOL;
399                 /* Does not support WoL on any port */
400                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
401                         adapter->flags &= ~FLAG_HAS_WOL;
402                 break;
403         case e1000_82573:
404         case e1000_82574:
405         case e1000_82583:
406                 /* Disable ASPM L0s due to hardware errata */
407                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
408
409                 if (pdev->device == E1000_DEV_ID_82573L) {
410                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
411                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
412                 }
413                 break;
414         default:
415                 break;
416         }
417
418         return 0;
419 }
420
421 /**
422  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
423  *  @hw: pointer to the HW structure
424  *
425  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
426  *  revision in the hardware structure.
427  **/
428 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
429 {
430         struct e1000_phy_info *phy = &hw->phy;
431         s32 ret_val;
432         u16 phy_id = 0;
433
434         switch (hw->mac.type) {
435         case e1000_82571:
436         case e1000_82572:
437                 /*
438                  * The 82571 firmware may still be configuring the PHY.
439                  * In this case, we cannot access the PHY until the
440                  * configuration is done.  So we explicitly set the
441                  * PHY ID.
442                  */
443                 phy->id = IGP01E1000_I_PHY_ID;
444                 break;
445         case e1000_82573:
446                 return e1000e_get_phy_id(hw);
447                 break;
448         case e1000_82574:
449         case e1000_82583:
450                 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
451                 if (ret_val)
452                         return ret_val;
453
454                 phy->id = (u32)(phy_id << 16);
455                 udelay(20);
456                 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
457                 if (ret_val)
458                         return ret_val;
459
460                 phy->id |= (u32)(phy_id);
461                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
462                 break;
463         default:
464                 return -E1000_ERR_PHY;
465                 break;
466         }
467
468         return 0;
469 }
470
471 /**
472  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
473  *  @hw: pointer to the HW structure
474  *
475  *  Acquire the HW semaphore to access the PHY or NVM
476  **/
477 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
478 {
479         u32 swsm;
480         s32 sw_timeout = hw->nvm.word_size + 1;
481         s32 fw_timeout = hw->nvm.word_size + 1;
482         s32 i = 0;
483
484         /*
485          * If we have timedout 3 times on trying to acquire
486          * the inter-port SMBI semaphore, there is old code
487          * operating on the other port, and it is not
488          * releasing SMBI. Modify the number of times that
489          * we try for the semaphore to interwork with this
490          * older code.
491          */
492         if (hw->dev_spec.e82571.smb_counter > 2)
493                 sw_timeout = 1;
494
495         /* Get the SW semaphore */
496         while (i < sw_timeout) {
497                 swsm = er32(SWSM);
498                 if (!(swsm & E1000_SWSM_SMBI))
499                         break;
500
501                 udelay(50);
502                 i++;
503         }
504
505         if (i == sw_timeout) {
506                 e_dbg("Driver can't access device - SMBI bit is set.\n");
507                 hw->dev_spec.e82571.smb_counter++;
508         }
509         /* Get the FW semaphore. */
510         for (i = 0; i < fw_timeout; i++) {
511                 swsm = er32(SWSM);
512                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
513
514                 /* Semaphore acquired if bit latched */
515                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
516                         break;
517
518                 udelay(50);
519         }
520
521         if (i == fw_timeout) {
522                 /* Release semaphores */
523                 e1000_put_hw_semaphore_82571(hw);
524                 e_dbg("Driver can't access the NVM\n");
525                 return -E1000_ERR_NVM;
526         }
527
528         return 0;
529 }
530
531 /**
532  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
533  *  @hw: pointer to the HW structure
534  *
535  *  Release hardware semaphore used to access the PHY or NVM
536  **/
537 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
538 {
539         u32 swsm;
540
541         swsm = er32(SWSM);
542         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
543         ew32(SWSM, swsm);
544 }
545
546 /**
547  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
548  *  @hw: pointer to the HW structure
549  *
550  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
551  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
552  *  for EEPROM access grant bit.  If the access grant bit is not set, release
553  *  hardware semaphore.
554  **/
555 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
556 {
557         s32 ret_val;
558
559         ret_val = e1000_get_hw_semaphore_82571(hw);
560         if (ret_val)
561                 return ret_val;
562
563         switch (hw->mac.type) {
564         case e1000_82573:
565         case e1000_82574:
566         case e1000_82583:
567                 break;
568         default:
569                 ret_val = e1000e_acquire_nvm(hw);
570                 break;
571         }
572
573         if (ret_val)
574                 e1000_put_hw_semaphore_82571(hw);
575
576         return ret_val;
577 }
578
579 /**
580  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
581  *  @hw: pointer to the HW structure
582  *
583  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
584  **/
585 static void e1000_release_nvm_82571(struct e1000_hw *hw)
586 {
587         e1000e_release_nvm(hw);
588         e1000_put_hw_semaphore_82571(hw);
589 }
590
591 /**
592  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
593  *  @hw: pointer to the HW structure
594  *  @offset: offset within the EEPROM to be written to
595  *  @words: number of words to write
596  *  @data: 16 bit word(s) to be written to the EEPROM
597  *
598  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
599  *
600  *  If e1000e_update_nvm_checksum is not called after this function, the
601  *  EEPROM will most likely contain an invalid checksum.
602  **/
603 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
604                                  u16 *data)
605 {
606         s32 ret_val;
607
608         switch (hw->mac.type) {
609         case e1000_82573:
610         case e1000_82574:
611         case e1000_82583:
612                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
613                 break;
614         case e1000_82571:
615         case e1000_82572:
616                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
617                 break;
618         default:
619                 ret_val = -E1000_ERR_NVM;
620                 break;
621         }
622
623         return ret_val;
624 }
625
626 /**
627  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
628  *  @hw: pointer to the HW structure
629  *
630  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
631  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
632  *  value to the EEPROM.
633  **/
634 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
635 {
636         u32 eecd;
637         s32 ret_val;
638         u16 i;
639
640         ret_val = e1000e_update_nvm_checksum_generic(hw);
641         if (ret_val)
642                 return ret_val;
643
644         /*
645          * If our nvm is an EEPROM, then we're done
646          * otherwise, commit the checksum to the flash NVM.
647          */
648         if (hw->nvm.type != e1000_nvm_flash_hw)
649                 return ret_val;
650
651         /* Check for pending operations. */
652         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
653                 msleep(1);
654                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
655                         break;
656         }
657
658         if (i == E1000_FLASH_UPDATES)
659                 return -E1000_ERR_NVM;
660
661         /* Reset the firmware if using STM opcode. */
662         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
663                 /*
664                  * The enabling of and the actual reset must be done
665                  * in two write cycles.
666                  */
667                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
668                 e1e_flush();
669                 ew32(HICR, E1000_HICR_FW_RESET);
670         }
671
672         /* Commit the write to flash */
673         eecd = er32(EECD) | E1000_EECD_FLUPD;
674         ew32(EECD, eecd);
675
676         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
677                 msleep(1);
678                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
679                         break;
680         }
681
682         if (i == E1000_FLASH_UPDATES)
683                 return -E1000_ERR_NVM;
684
685         return 0;
686 }
687
688 /**
689  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
690  *  @hw: pointer to the HW structure
691  *
692  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
693  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
694  **/
695 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
696 {
697         if (hw->nvm.type == e1000_nvm_flash_hw)
698                 e1000_fix_nvm_checksum_82571(hw);
699
700         return e1000e_validate_nvm_checksum_generic(hw);
701 }
702
703 /**
704  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
705  *  @hw: pointer to the HW structure
706  *  @offset: offset within the EEPROM to be written to
707  *  @words: number of words to write
708  *  @data: 16 bit word(s) to be written to the EEPROM
709  *
710  *  After checking for invalid values, poll the EEPROM to ensure the previous
711  *  command has completed before trying to write the next word.  After write
712  *  poll for completion.
713  *
714  *  If e1000e_update_nvm_checksum is not called after this function, the
715  *  EEPROM will most likely contain an invalid checksum.
716  **/
717 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
718                                       u16 words, u16 *data)
719 {
720         struct e1000_nvm_info *nvm = &hw->nvm;
721         u32 i, eewr = 0;
722         s32 ret_val = 0;
723
724         /*
725          * A check for invalid values:  offset too large, too many words,
726          * and not enough words.
727          */
728         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
729             (words == 0)) {
730                 e_dbg("nvm parameter(s) out of bounds\n");
731                 return -E1000_ERR_NVM;
732         }
733
734         for (i = 0; i < words; i++) {
735                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
736                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
737                        E1000_NVM_RW_REG_START;
738
739                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
740                 if (ret_val)
741                         break;
742
743                 ew32(EEWR, eewr);
744
745                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
746                 if (ret_val)
747                         break;
748         }
749
750         return ret_val;
751 }
752
753 /**
754  *  e1000_get_cfg_done_82571 - Poll for configuration done
755  *  @hw: pointer to the HW structure
756  *
757  *  Reads the management control register for the config done bit to be set.
758  **/
759 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
760 {
761         s32 timeout = PHY_CFG_TIMEOUT;
762
763         while (timeout) {
764                 if (er32(EEMNGCTL) &
765                     E1000_NVM_CFG_DONE_PORT_0)
766                         break;
767                 msleep(1);
768                 timeout--;
769         }
770         if (!timeout) {
771                 e_dbg("MNG configuration cycle has not completed.\n");
772                 return -E1000_ERR_RESET;
773         }
774
775         return 0;
776 }
777
778 /**
779  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
780  *  @hw: pointer to the HW structure
781  *  @active: true to enable LPLU, false to disable
782  *
783  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
784  *  this function also disables smart speed and vice versa.  LPLU will not be
785  *  activated unless the device autonegotiation advertisement meets standards
786  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
787  *  pointer entry point only called by PHY setup routines.
788  **/
789 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
790 {
791         struct e1000_phy_info *phy = &hw->phy;
792         s32 ret_val;
793         u16 data;
794
795         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
796         if (ret_val)
797                 return ret_val;
798
799         if (active) {
800                 data |= IGP02E1000_PM_D0_LPLU;
801                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
802                 if (ret_val)
803                         return ret_val;
804
805                 /* When LPLU is enabled, we should disable SmartSpeed */
806                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
807                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
808                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
809                 if (ret_val)
810                         return ret_val;
811         } else {
812                 data &= ~IGP02E1000_PM_D0_LPLU;
813                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
814                 /*
815                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
816                  * during Dx states where the power conservation is most
817                  * important.  During driver activity we should enable
818                  * SmartSpeed, so performance is maintained.
819                  */
820                 if (phy->smart_speed == e1000_smart_speed_on) {
821                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
822                                            &data);
823                         if (ret_val)
824                                 return ret_val;
825
826                         data |= IGP01E1000_PSCFR_SMART_SPEED;
827                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
828                                            data);
829                         if (ret_val)
830                                 return ret_val;
831                 } else if (phy->smart_speed == e1000_smart_speed_off) {
832                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
833                                            &data);
834                         if (ret_val)
835                                 return ret_val;
836
837                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
838                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
839                                            data);
840                         if (ret_val)
841                                 return ret_val;
842                 }
843         }
844
845         return 0;
846 }
847
848 /**
849  *  e1000_reset_hw_82571 - Reset hardware
850  *  @hw: pointer to the HW structure
851  *
852  *  This resets the hardware into a known state.
853  **/
854 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
855 {
856         u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
857         s32 ret_val;
858         u16 i = 0;
859
860         /*
861          * Prevent the PCI-E bus from sticking if there is no TLP connection
862          * on the last TLP read/write transaction when MAC is reset.
863          */
864         ret_val = e1000e_disable_pcie_master(hw);
865         if (ret_val)
866                 e_dbg("PCI-E Master disable polling has failed.\n");
867
868         e_dbg("Masking off all interrupts\n");
869         ew32(IMC, 0xffffffff);
870
871         ew32(RCTL, 0);
872         ew32(TCTL, E1000_TCTL_PSP);
873         e1e_flush();
874
875         msleep(10);
876
877         /*
878          * Must acquire the MDIO ownership before MAC reset.
879          * Ownership defaults to firmware after a reset.
880          */
881         switch (hw->mac.type) {
882         case e1000_82573:
883         case e1000_82574:
884         case e1000_82583:
885                 extcnf_ctrl = er32(EXTCNF_CTRL);
886                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
887
888                 do {
889                         ew32(EXTCNF_CTRL, extcnf_ctrl);
890                         extcnf_ctrl = er32(EXTCNF_CTRL);
891
892                         if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
893                                 break;
894
895                         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
896
897                         msleep(2);
898                         i++;
899                 } while (i < MDIO_OWNERSHIP_TIMEOUT);
900                 break;
901         default:
902                 break;
903         }
904
905         ctrl = er32(CTRL);
906
907         e_dbg("Issuing a global reset to MAC\n");
908         ew32(CTRL, ctrl | E1000_CTRL_RST);
909
910         if (hw->nvm.type == e1000_nvm_flash_hw) {
911                 udelay(10);
912                 ctrl_ext = er32(CTRL_EXT);
913                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
914                 ew32(CTRL_EXT, ctrl_ext);
915                 e1e_flush();
916         }
917
918         ret_val = e1000e_get_auto_rd_done(hw);
919         if (ret_val)
920                 /* We don't want to continue accessing MAC registers. */
921                 return ret_val;
922
923         /*
924          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
925          * Need to wait for Phy configuration completion before accessing
926          * NVM and Phy.
927          */
928
929         switch (hw->mac.type) {
930         case e1000_82573:
931         case e1000_82574:
932         case e1000_82583:
933                 msleep(25);
934                 break;
935         default:
936                 break;
937         }
938
939         /* Clear any pending interrupt events. */
940         ew32(IMC, 0xffffffff);
941         icr = er32(ICR);
942
943         if (hw->mac.type == e1000_82571) {
944                 /* Install any alternate MAC address into RAR0 */
945                 ret_val = e1000_check_alt_mac_addr_generic(hw);
946                 if (ret_val)
947                         return ret_val;
948
949                 e1000e_set_laa_state_82571(hw, true);
950         }
951
952         /* Reinitialize the 82571 serdes link state machine */
953         if (hw->phy.media_type == e1000_media_type_internal_serdes)
954                 hw->mac.serdes_link_state = e1000_serdes_link_down;
955
956         return 0;
957 }
958
959 /**
960  *  e1000_init_hw_82571 - Initialize hardware
961  *  @hw: pointer to the HW structure
962  *
963  *  This inits the hardware readying it for operation.
964  **/
965 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
966 {
967         struct e1000_mac_info *mac = &hw->mac;
968         u32 reg_data;
969         s32 ret_val;
970         u16 i, rar_count = mac->rar_entry_count;
971
972         e1000_initialize_hw_bits_82571(hw);
973
974         /* Initialize identification LED */
975         ret_val = e1000e_id_led_init(hw);
976         if (ret_val)
977                 e_dbg("Error initializing identification LED\n");
978                 /* This is not fatal and we should not stop init due to this */
979
980         /* Disabling VLAN filtering */
981         e_dbg("Initializing the IEEE VLAN\n");
982         mac->ops.clear_vfta(hw);
983
984         /* Setup the receive address. */
985         /*
986          * If, however, a locally administered address was assigned to the
987          * 82571, we must reserve a RAR for it to work around an issue where
988          * resetting one port will reload the MAC on the other port.
989          */
990         if (e1000e_get_laa_state_82571(hw))
991                 rar_count--;
992         e1000e_init_rx_addrs(hw, rar_count);
993
994         /* Zero out the Multicast HASH table */
995         e_dbg("Zeroing the MTA\n");
996         for (i = 0; i < mac->mta_reg_count; i++)
997                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
998
999         /* Setup link and flow control */
1000         ret_val = e1000_setup_link_82571(hw);
1001
1002         /* Set the transmit descriptor write-back policy */
1003         reg_data = er32(TXDCTL(0));
1004         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1005                    E1000_TXDCTL_FULL_TX_DESC_WB |
1006                    E1000_TXDCTL_COUNT_DESC;
1007         ew32(TXDCTL(0), reg_data);
1008
1009         /* ...for both queues. */
1010         switch (mac->type) {
1011         case e1000_82573:
1012                 e1000e_enable_tx_pkt_filtering(hw);
1013                 /* fall through */
1014         case e1000_82574:
1015         case e1000_82583:
1016                 reg_data = er32(GCR);
1017                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1018                 ew32(GCR, reg_data);
1019                 break;
1020         default:
1021                 reg_data = er32(TXDCTL(1));
1022                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1023                            E1000_TXDCTL_FULL_TX_DESC_WB |
1024                            E1000_TXDCTL_COUNT_DESC;
1025                 ew32(TXDCTL(1), reg_data);
1026                 break;
1027         }
1028
1029         /*
1030          * Clear all of the statistics registers (clear on read).  It is
1031          * important that we do this after we have tried to establish link
1032          * because the symbol error count will increment wildly if there
1033          * is no link.
1034          */
1035         e1000_clear_hw_cntrs_82571(hw);
1036
1037         return ret_val;
1038 }
1039
1040 /**
1041  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1042  *  @hw: pointer to the HW structure
1043  *
1044  *  Initializes required hardware-dependent bits needed for normal operation.
1045  **/
1046 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1047 {
1048         u32 reg;
1049
1050         /* Transmit Descriptor Control 0 */
1051         reg = er32(TXDCTL(0));
1052         reg |= (1 << 22);
1053         ew32(TXDCTL(0), reg);
1054
1055         /* Transmit Descriptor Control 1 */
1056         reg = er32(TXDCTL(1));
1057         reg |= (1 << 22);
1058         ew32(TXDCTL(1), reg);
1059
1060         /* Transmit Arbitration Control 0 */
1061         reg = er32(TARC(0));
1062         reg &= ~(0xF << 27); /* 30:27 */
1063         switch (hw->mac.type) {
1064         case e1000_82571:
1065         case e1000_82572:
1066                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1067                 break;
1068         default:
1069                 break;
1070         }
1071         ew32(TARC(0), reg);
1072
1073         /* Transmit Arbitration Control 1 */
1074         reg = er32(TARC(1));
1075         switch (hw->mac.type) {
1076         case e1000_82571:
1077         case e1000_82572:
1078                 reg &= ~((1 << 29) | (1 << 30));
1079                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1080                 if (er32(TCTL) & E1000_TCTL_MULR)
1081                         reg &= ~(1 << 28);
1082                 else
1083                         reg |= (1 << 28);
1084                 ew32(TARC(1), reg);
1085                 break;
1086         default:
1087                 break;
1088         }
1089
1090         /* Device Control */
1091         switch (hw->mac.type) {
1092         case e1000_82573:
1093         case e1000_82574:
1094         case e1000_82583:
1095                 reg = er32(CTRL);
1096                 reg &= ~(1 << 29);
1097                 ew32(CTRL, reg);
1098                 break;
1099         default:
1100                 break;
1101         }
1102
1103         /* Extended Device Control */
1104         switch (hw->mac.type) {
1105         case e1000_82573:
1106         case e1000_82574:
1107         case e1000_82583:
1108                 reg = er32(CTRL_EXT);
1109                 reg &= ~(1 << 23);
1110                 reg |= (1 << 22);
1111                 ew32(CTRL_EXT, reg);
1112                 break;
1113         default:
1114                 break;
1115         }
1116
1117         if (hw->mac.type == e1000_82571) {
1118                 reg = er32(PBA_ECC);
1119                 reg |= E1000_PBA_ECC_CORR_EN;
1120                 ew32(PBA_ECC, reg);
1121         }
1122         /*
1123          * Workaround for hardware errata.
1124          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1125          */
1126
1127         if ((hw->mac.type == e1000_82571) ||
1128            (hw->mac.type == e1000_82572)) {
1129                 reg = er32(CTRL_EXT);
1130                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1131                 ew32(CTRL_EXT, reg);
1132         }
1133
1134
1135         /* PCI-Ex Control Registers */
1136         switch (hw->mac.type) {
1137         case e1000_82574:
1138         case e1000_82583:
1139                 reg = er32(GCR);
1140                 reg |= (1 << 22);
1141                 ew32(GCR, reg);
1142
1143                 /*
1144                  * Workaround for hardware errata.
1145                  * apply workaround for hardware errata documented in errata
1146                  * docs Fixes issue where some error prone or unreliable PCIe
1147                  * completions are occurring, particularly with ASPM enabled.
1148                  * Without fix, issue can cause tx timeouts.
1149                  */
1150                 reg = er32(GCR2);
1151                 reg |= 1;
1152                 ew32(GCR2, reg);
1153                 break;
1154         default:
1155                 break;
1156         }
1157 }
1158
1159 /**
1160  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1161  *  @hw: pointer to the HW structure
1162  *
1163  *  Clears the register array which contains the VLAN filter table by
1164  *  setting all the values to 0.
1165  **/
1166 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1167 {
1168         u32 offset;
1169         u32 vfta_value = 0;
1170         u32 vfta_offset = 0;
1171         u32 vfta_bit_in_reg = 0;
1172
1173         switch (hw->mac.type) {
1174         case e1000_82573:
1175         case e1000_82574:
1176         case e1000_82583:
1177                 if (hw->mng_cookie.vlan_id != 0) {
1178                         /*
1179                          * The VFTA is a 4096b bit-field, each identifying
1180                          * a single VLAN ID.  The following operations
1181                          * determine which 32b entry (i.e. offset) into the
1182                          * array we want to set the VLAN ID (i.e. bit) of
1183                          * the manageability unit.
1184                          */
1185                         vfta_offset = (hw->mng_cookie.vlan_id >>
1186                                        E1000_VFTA_ENTRY_SHIFT) &
1187                                       E1000_VFTA_ENTRY_MASK;
1188                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1189                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1190                 }
1191                 break;
1192         default:
1193                 break;
1194         }
1195         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1196                 /*
1197                  * If the offset we want to clear is the same offset of the
1198                  * manageability VLAN ID, then clear all bits except that of
1199                  * the manageability unit.
1200                  */
1201                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1202                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1203                 e1e_flush();
1204         }
1205 }
1206
1207 /**
1208  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1209  *  @hw: pointer to the HW structure
1210  *
1211  *  Reads the NVM Initialization Control Word 2 and returns true
1212  *  (>0) if any manageability is enabled, else false (0).
1213  **/
1214 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1215 {
1216         u16 data;
1217
1218         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1219         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1220 }
1221
1222 /**
1223  *  e1000_led_on_82574 - Turn LED on
1224  *  @hw: pointer to the HW structure
1225  *
1226  *  Turn LED on.
1227  **/
1228 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1229 {
1230         u32 ctrl;
1231         u32 i;
1232
1233         ctrl = hw->mac.ledctl_mode2;
1234         if (!(E1000_STATUS_LU & er32(STATUS))) {
1235                 /*
1236                  * If no link, then turn LED on by setting the invert bit
1237                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1238                  */
1239                 for (i = 0; i < 4; i++)
1240                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1241                             E1000_LEDCTL_MODE_LED_ON)
1242                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1243         }
1244         ew32(LEDCTL, ctrl);
1245
1246         return 0;
1247 }
1248
1249 /**
1250  *  e1000_check_phy_82574 - check 82574 phy hung state
1251  *  @hw: pointer to the HW structure
1252  *
1253  *  Returns whether phy is hung or not
1254  **/
1255 bool e1000_check_phy_82574(struct e1000_hw *hw)
1256 {
1257         u16 status_1kbt = 0;
1258         u16 receive_errors = 0;
1259         bool phy_hung = false;
1260         s32 ret_val = 0;
1261
1262         /*
1263          * Read PHY Receive Error counter first, if its is max - all F's then
1264          * read the Base1000T status register If both are max then PHY is hung.
1265          */
1266         ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1267
1268         if (ret_val)
1269                 goto out;
1270         if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
1271                 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1272                 if (ret_val)
1273                         goto out;
1274                 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1275                     E1000_IDLE_ERROR_COUNT_MASK)
1276                         phy_hung = true;
1277         }
1278 out:
1279         return phy_hung;
1280 }
1281
1282 /**
1283  *  e1000_setup_link_82571 - Setup flow control and link settings
1284  *  @hw: pointer to the HW structure
1285  *
1286  *  Determines which flow control settings to use, then configures flow
1287  *  control.  Calls the appropriate media-specific link configuration
1288  *  function.  Assuming the adapter has a valid link partner, a valid link
1289  *  should be established.  Assumes the hardware has previously been reset
1290  *  and the transmitter and receiver are not enabled.
1291  **/
1292 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1293 {
1294         /*
1295          * 82573 does not have a word in the NVM to determine
1296          * the default flow control setting, so we explicitly
1297          * set it to full.
1298          */
1299         switch (hw->mac.type) {
1300         case e1000_82573:
1301         case e1000_82574:
1302         case e1000_82583:
1303                 if (hw->fc.requested_mode == e1000_fc_default)
1304                         hw->fc.requested_mode = e1000_fc_full;
1305                 break;
1306         default:
1307                 break;
1308         }
1309
1310         return e1000e_setup_link(hw);
1311 }
1312
1313 /**
1314  *  e1000_setup_copper_link_82571 - Configure copper link settings
1315  *  @hw: pointer to the HW structure
1316  *
1317  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1318  *  for link, once link is established calls to configure collision distance
1319  *  and flow control are called.
1320  **/
1321 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1322 {
1323         u32 ctrl;
1324         s32 ret_val;
1325
1326         ctrl = er32(CTRL);
1327         ctrl |= E1000_CTRL_SLU;
1328         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1329         ew32(CTRL, ctrl);
1330
1331         switch (hw->phy.type) {
1332         case e1000_phy_m88:
1333         case e1000_phy_bm:
1334                 ret_val = e1000e_copper_link_setup_m88(hw);
1335                 break;
1336         case e1000_phy_igp_2:
1337                 ret_val = e1000e_copper_link_setup_igp(hw);
1338                 break;
1339         default:
1340                 return -E1000_ERR_PHY;
1341                 break;
1342         }
1343
1344         if (ret_val)
1345                 return ret_val;
1346
1347         ret_val = e1000e_setup_copper_link(hw);
1348
1349         return ret_val;
1350 }
1351
1352 /**
1353  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1354  *  @hw: pointer to the HW structure
1355  *
1356  *  Configures collision distance and flow control for fiber and serdes links.
1357  *  Upon successful setup, poll for link.
1358  **/
1359 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1360 {
1361         switch (hw->mac.type) {
1362         case e1000_82571:
1363         case e1000_82572:
1364                 /*
1365                  * If SerDes loopback mode is entered, there is no form
1366                  * of reset to take the adapter out of that mode.  So we
1367                  * have to explicitly take the adapter out of loopback
1368                  * mode.  This prevents drivers from twiddling their thumbs
1369                  * if another tool failed to take it out of loopback mode.
1370                  */
1371                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1372                 break;
1373         default:
1374                 break;
1375         }
1376
1377         return e1000e_setup_fiber_serdes_link(hw);
1378 }
1379
1380 /**
1381  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1382  *  @hw: pointer to the HW structure
1383  *
1384  *  Reports the link state as up or down.
1385  *
1386  *  If autonegotiation is supported by the link partner, the link state is
1387  *  determined by the result of autonegotiation. This is the most likely case.
1388  *  If autonegotiation is not supported by the link partner, and the link
1389  *  has a valid signal, force the link up.
1390  *
1391  *  The link state is represented internally here by 4 states:
1392  *
1393  *  1) down
1394  *  2) autoneg_progress
1395  *  3) autoneg_complete (the link successfully autonegotiated)
1396  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1397  *
1398  **/
1399 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1400 {
1401         struct e1000_mac_info *mac = &hw->mac;
1402         u32 rxcw;
1403         u32 ctrl;
1404         u32 status;
1405         s32 ret_val = 0;
1406
1407         ctrl = er32(CTRL);
1408         status = er32(STATUS);
1409         rxcw = er32(RXCW);
1410
1411         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1412
1413                 /* Receiver is synchronized with no invalid bits.  */
1414                 switch (mac->serdes_link_state) {
1415                 case e1000_serdes_link_autoneg_complete:
1416                         if (!(status & E1000_STATUS_LU)) {
1417                                 /*
1418                                  * We have lost link, retry autoneg before
1419                                  * reporting link failure
1420                                  */
1421                                 mac->serdes_link_state =
1422                                     e1000_serdes_link_autoneg_progress;
1423                                 mac->serdes_has_link = false;
1424                                 e_dbg("AN_UP     -> AN_PROG\n");
1425                         }
1426                 break;
1427
1428                 case e1000_serdes_link_forced_up:
1429                         /*
1430                          * If we are receiving /C/ ordered sets, re-enable
1431                          * auto-negotiation in the TXCW register and disable
1432                          * forced link in the Device Control register in an
1433                          * attempt to auto-negotiate with our link partner.
1434                          */
1435                         if (rxcw & E1000_RXCW_C) {
1436                                 /* Enable autoneg, and unforce link up */
1437                                 ew32(TXCW, mac->txcw);
1438                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1439                                 mac->serdes_link_state =
1440                                     e1000_serdes_link_autoneg_progress;
1441                                 mac->serdes_has_link = false;
1442                                 e_dbg("FORCED_UP -> AN_PROG\n");
1443                         }
1444                         break;
1445
1446                 case e1000_serdes_link_autoneg_progress:
1447                         if (rxcw & E1000_RXCW_C) {
1448                                 /*
1449                                  * We received /C/ ordered sets, meaning the
1450                                  * link partner has autonegotiated, and we can
1451                                  * trust the Link Up (LU) status bit.
1452                                  */
1453                                 if (status & E1000_STATUS_LU) {
1454                                         mac->serdes_link_state =
1455                                             e1000_serdes_link_autoneg_complete;
1456                                         e_dbg("AN_PROG   -> AN_UP\n");
1457                                         mac->serdes_has_link = true;
1458                                 } else {
1459                                         /* Autoneg completed, but failed. */
1460                                         mac->serdes_link_state =
1461                                             e1000_serdes_link_down;
1462                                         e_dbg("AN_PROG   -> DOWN\n");
1463                                 }
1464                         } else {
1465                                 /*
1466                                  * The link partner did not autoneg.
1467                                  * Force link up and full duplex, and change
1468                                  * state to forced.
1469                                  */
1470                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1471                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1472                                 ew32(CTRL, ctrl);
1473
1474                                 /* Configure Flow Control after link up. */
1475                                 ret_val = e1000e_config_fc_after_link_up(hw);
1476                                 if (ret_val) {
1477                                         e_dbg("Error config flow control\n");
1478                                         break;
1479                                 }
1480                                 mac->serdes_link_state =
1481                                     e1000_serdes_link_forced_up;
1482                                 mac->serdes_has_link = true;
1483                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1484                         }
1485                         break;
1486
1487                 case e1000_serdes_link_down:
1488                 default:
1489                         /*
1490                          * The link was down but the receiver has now gained
1491                          * valid sync, so lets see if we can bring the link
1492                          * up.
1493                          */
1494                         ew32(TXCW, mac->txcw);
1495                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1496                         mac->serdes_link_state =
1497                             e1000_serdes_link_autoneg_progress;
1498                         e_dbg("DOWN      -> AN_PROG\n");
1499                         break;
1500                 }
1501         } else {
1502                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1503                         mac->serdes_has_link = false;
1504                         mac->serdes_link_state = e1000_serdes_link_down;
1505                         e_dbg("ANYSTATE  -> DOWN\n");
1506                 } else {
1507                         /*
1508                          * We have sync, and can tolerate one invalid (IV)
1509                          * codeword before declaring link down, so reread
1510                          * to look again.
1511                          */
1512                         udelay(10);
1513                         rxcw = er32(RXCW);
1514                         if (rxcw & E1000_RXCW_IV) {
1515                                 mac->serdes_link_state = e1000_serdes_link_down;
1516                                 mac->serdes_has_link = false;
1517                                 e_dbg("ANYSTATE  -> DOWN\n");
1518                         }
1519                 }
1520         }
1521
1522         return ret_val;
1523 }
1524
1525 /**
1526  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1527  *  @hw: pointer to the HW structure
1528  *  @data: pointer to the NVM (EEPROM)
1529  *
1530  *  Read the EEPROM for the current default LED configuration.  If the
1531  *  LED configuration is not valid, set to a valid LED configuration.
1532  **/
1533 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1534 {
1535         s32 ret_val;
1536
1537         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1538         if (ret_val) {
1539                 e_dbg("NVM Read Error\n");
1540                 return ret_val;
1541         }
1542
1543         switch (hw->mac.type) {
1544         case e1000_82573:
1545         case e1000_82574:
1546         case e1000_82583:
1547                 if (*data == ID_LED_RESERVED_F746)
1548                         *data = ID_LED_DEFAULT_82573;
1549                 break;
1550         default:
1551                 if (*data == ID_LED_RESERVED_0000 ||
1552                     *data == ID_LED_RESERVED_FFFF)
1553                         *data = ID_LED_DEFAULT;
1554                 break;
1555         }
1556
1557         return 0;
1558 }
1559
1560 /**
1561  *  e1000e_get_laa_state_82571 - Get locally administered address state
1562  *  @hw: pointer to the HW structure
1563  *
1564  *  Retrieve and return the current locally administered address state.
1565  **/
1566 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1567 {
1568         if (hw->mac.type != e1000_82571)
1569                 return false;
1570
1571         return hw->dev_spec.e82571.laa_is_present;
1572 }
1573
1574 /**
1575  *  e1000e_set_laa_state_82571 - Set locally administered address state
1576  *  @hw: pointer to the HW structure
1577  *  @state: enable/disable locally administered address
1578  *
1579  *  Enable/Disable the current locally administered address state.
1580  **/
1581 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1582 {
1583         if (hw->mac.type != e1000_82571)
1584                 return;
1585
1586         hw->dev_spec.e82571.laa_is_present = state;
1587
1588         /* If workaround is activated... */
1589         if (state)
1590                 /*
1591                  * Hold a copy of the LAA in RAR[14] This is done so that
1592                  * between the time RAR[0] gets clobbered and the time it
1593                  * gets fixed, the actual LAA is in one of the RARs and no
1594                  * incoming packets directed to this port are dropped.
1595                  * Eventually the LAA will be in RAR[0] and RAR[14].
1596                  */
1597                 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1598 }
1599
1600 /**
1601  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1602  *  @hw: pointer to the HW structure
1603  *
1604  *  Verifies that the EEPROM has completed the update.  After updating the
1605  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1606  *  the checksum fix is not implemented, we need to set the bit and update
1607  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1608  *  we need to return bad checksum.
1609  **/
1610 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1611 {
1612         struct e1000_nvm_info *nvm = &hw->nvm;
1613         s32 ret_val;
1614         u16 data;
1615
1616         if (nvm->type != e1000_nvm_flash_hw)
1617                 return 0;
1618
1619         /*
1620          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1621          * 10h-12h.  Checksum may need to be fixed.
1622          */
1623         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1624         if (ret_val)
1625                 return ret_val;
1626
1627         if (!(data & 0x10)) {
1628                 /*
1629                  * Read 0x23 and check bit 15.  This bit is a 1
1630                  * when the checksum has already been fixed.  If
1631                  * the checksum is still wrong and this bit is a
1632                  * 1, we need to return bad checksum.  Otherwise,
1633                  * we need to set this bit to a 1 and update the
1634                  * checksum.
1635                  */
1636                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1637                 if (ret_val)
1638                         return ret_val;
1639
1640                 if (!(data & 0x8000)) {
1641                         data |= 0x8000;
1642                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1643                         if (ret_val)
1644                                 return ret_val;
1645                         ret_val = e1000e_update_nvm_checksum(hw);
1646                 }
1647         }
1648
1649         return 0;
1650 }
1651
1652 /**
1653  *  e1000_read_mac_addr_82571 - Read device MAC address
1654  *  @hw: pointer to the HW structure
1655  **/
1656 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1657 {
1658         s32 ret_val = 0;
1659
1660         if (hw->mac.type == e1000_82571) {
1661                 /*
1662                  * If there's an alternate MAC address place it in RAR0
1663                  * so that it will override the Si installed default perm
1664                  * address.
1665                  */
1666                 ret_val = e1000_check_alt_mac_addr_generic(hw);
1667                 if (ret_val)
1668                         goto out;
1669         }
1670
1671         ret_val = e1000_read_mac_addr_generic(hw);
1672
1673 out:
1674         return ret_val;
1675 }
1676
1677 /**
1678  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1679  * @hw: pointer to the HW structure
1680  *
1681  * In the case of a PHY power down to save power, or to turn off link during a
1682  * driver unload, or wake on lan is not enabled, remove the link.
1683  **/
1684 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1685 {
1686         struct e1000_phy_info *phy = &hw->phy;
1687         struct e1000_mac_info *mac = &hw->mac;
1688
1689         if (!(phy->ops.check_reset_block))
1690                 return;
1691
1692         /* If the management interface is not enabled, then power down */
1693         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1694                 e1000_power_down_phy_copper(hw);
1695 }
1696
1697 /**
1698  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1699  *  @hw: pointer to the HW structure
1700  *
1701  *  Clears the hardware counters by reading the counter registers.
1702  **/
1703 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1704 {
1705         e1000e_clear_hw_cntrs_base(hw);
1706
1707         er32(PRC64);
1708         er32(PRC127);
1709         er32(PRC255);
1710         er32(PRC511);
1711         er32(PRC1023);
1712         er32(PRC1522);
1713         er32(PTC64);
1714         er32(PTC127);
1715         er32(PTC255);
1716         er32(PTC511);
1717         er32(PTC1023);
1718         er32(PTC1522);
1719
1720         er32(ALGNERRC);
1721         er32(RXERRC);
1722         er32(TNCRS);
1723         er32(CEXTERR);
1724         er32(TSCTC);
1725         er32(TSCTFC);
1726
1727         er32(MGTPRC);
1728         er32(MGTPDC);
1729         er32(MGTPTC);
1730
1731         er32(IAC);
1732         er32(ICRXOC);
1733
1734         er32(ICRXPTC);
1735         er32(ICRXATC);
1736         er32(ICTXPTC);
1737         er32(ICTXATC);
1738         er32(ICTXQEC);
1739         er32(ICTXQMTC);
1740         er32(ICRXDMTC);
1741 }
1742
1743 static struct e1000_mac_operations e82571_mac_ops = {
1744         /* .check_mng_mode: mac type dependent */
1745         /* .check_for_link: media type dependent */
1746         .id_led_init            = e1000e_id_led_init,
1747         .cleanup_led            = e1000e_cleanup_led_generic,
1748         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1749         .get_bus_info           = e1000e_get_bus_info_pcie,
1750         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1751         /* .get_link_up_info: media type dependent */
1752         /* .led_on: mac type dependent */
1753         .led_off                = e1000e_led_off_generic,
1754         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1755         .write_vfta             = e1000_write_vfta_generic,
1756         .clear_vfta             = e1000_clear_vfta_82571,
1757         .reset_hw               = e1000_reset_hw_82571,
1758         .init_hw                = e1000_init_hw_82571,
1759         .setup_link             = e1000_setup_link_82571,
1760         /* .setup_physical_interface: media type dependent */
1761         .setup_led              = e1000e_setup_led_generic,
1762         .read_mac_addr          = e1000_read_mac_addr_82571,
1763 };
1764
1765 static struct e1000_phy_operations e82_phy_ops_igp = {
1766         .acquire                = e1000_get_hw_semaphore_82571,
1767         .check_polarity         = e1000_check_polarity_igp,
1768         .check_reset_block      = e1000e_check_reset_block_generic,
1769         .commit                 = NULL,
1770         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1771         .get_cfg_done           = e1000_get_cfg_done_82571,
1772         .get_cable_length       = e1000e_get_cable_length_igp_2,
1773         .get_info               = e1000e_get_phy_info_igp,
1774         .read_reg               = e1000e_read_phy_reg_igp,
1775         .release                = e1000_put_hw_semaphore_82571,
1776         .reset                  = e1000e_phy_hw_reset_generic,
1777         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1778         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1779         .write_reg              = e1000e_write_phy_reg_igp,
1780         .cfg_on_link_up         = NULL,
1781 };
1782
1783 static struct e1000_phy_operations e82_phy_ops_m88 = {
1784         .acquire                = e1000_get_hw_semaphore_82571,
1785         .check_polarity         = e1000_check_polarity_m88,
1786         .check_reset_block      = e1000e_check_reset_block_generic,
1787         .commit                 = e1000e_phy_sw_reset,
1788         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1789         .get_cfg_done           = e1000e_get_cfg_done,
1790         .get_cable_length       = e1000e_get_cable_length_m88,
1791         .get_info               = e1000e_get_phy_info_m88,
1792         .read_reg               = e1000e_read_phy_reg_m88,
1793         .release                = e1000_put_hw_semaphore_82571,
1794         .reset                  = e1000e_phy_hw_reset_generic,
1795         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1796         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1797         .write_reg              = e1000e_write_phy_reg_m88,
1798         .cfg_on_link_up         = NULL,
1799 };
1800
1801 static struct e1000_phy_operations e82_phy_ops_bm = {
1802         .acquire                = e1000_get_hw_semaphore_82571,
1803         .check_polarity         = e1000_check_polarity_m88,
1804         .check_reset_block      = e1000e_check_reset_block_generic,
1805         .commit                 = e1000e_phy_sw_reset,
1806         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1807         .get_cfg_done           = e1000e_get_cfg_done,
1808         .get_cable_length       = e1000e_get_cable_length_m88,
1809         .get_info               = e1000e_get_phy_info_m88,
1810         .read_reg               = e1000e_read_phy_reg_bm2,
1811         .release                = e1000_put_hw_semaphore_82571,
1812         .reset                  = e1000e_phy_hw_reset_generic,
1813         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1814         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1815         .write_reg              = e1000e_write_phy_reg_bm2,
1816         .cfg_on_link_up         = NULL,
1817 };
1818
1819 static struct e1000_nvm_operations e82571_nvm_ops = {
1820         .acquire                = e1000_acquire_nvm_82571,
1821         .read                   = e1000e_read_nvm_eerd,
1822         .release                = e1000_release_nvm_82571,
1823         .update                 = e1000_update_nvm_checksum_82571,
1824         .valid_led_default      = e1000_valid_led_default_82571,
1825         .validate               = e1000_validate_nvm_checksum_82571,
1826         .write                  = e1000_write_nvm_82571,
1827 };
1828
1829 struct e1000_info e1000_82571_info = {
1830         .mac                    = e1000_82571,
1831         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1832                                   | FLAG_HAS_JUMBO_FRAMES
1833                                   | FLAG_HAS_WOL
1834                                   | FLAG_APME_IN_CTRL3
1835                                   | FLAG_RX_CSUM_ENABLED
1836                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1837                                   | FLAG_HAS_SMART_POWER_DOWN
1838                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1839                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1840                                   | FLAG_APME_CHECK_PORT_B,
1841         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1842                                   | FLAG2_DMA_BURST,
1843         .pba                    = 38,
1844         .max_hw_frame_size      = DEFAULT_JUMBO,
1845         .get_variants           = e1000_get_variants_82571,
1846         .mac_ops                = &e82571_mac_ops,
1847         .phy_ops                = &e82_phy_ops_igp,
1848         .nvm_ops                = &e82571_nvm_ops,
1849 };
1850
1851 struct e1000_info e1000_82572_info = {
1852         .mac                    = e1000_82572,
1853         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1854                                   | FLAG_HAS_JUMBO_FRAMES
1855                                   | FLAG_HAS_WOL
1856                                   | FLAG_APME_IN_CTRL3
1857                                   | FLAG_RX_CSUM_ENABLED
1858                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1859                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1860         .flags2                 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1861                                   | FLAG2_DMA_BURST,
1862         .pba                    = 38,
1863         .max_hw_frame_size      = DEFAULT_JUMBO,
1864         .get_variants           = e1000_get_variants_82571,
1865         .mac_ops                = &e82571_mac_ops,
1866         .phy_ops                = &e82_phy_ops_igp,
1867         .nvm_ops                = &e82571_nvm_ops,
1868 };
1869
1870 struct e1000_info e1000_82573_info = {
1871         .mac                    = e1000_82573,
1872         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1873                                   | FLAG_HAS_WOL
1874                                   | FLAG_APME_IN_CTRL3
1875                                   | FLAG_RX_CSUM_ENABLED
1876                                   | FLAG_HAS_SMART_POWER_DOWN
1877                                   | FLAG_HAS_AMT
1878                                   | FLAG_HAS_SWSM_ON_LOAD,
1879         .flags2                 = FLAG2_DISABLE_ASPM_L1,
1880         .pba                    = 20,
1881         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1882         .get_variants           = e1000_get_variants_82571,
1883         .mac_ops                = &e82571_mac_ops,
1884         .phy_ops                = &e82_phy_ops_m88,
1885         .nvm_ops                = &e82571_nvm_ops,
1886 };
1887
1888 struct e1000_info e1000_82574_info = {
1889         .mac                    = e1000_82574,
1890         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1891                                   | FLAG_HAS_MSIX
1892                                   | FLAG_HAS_JUMBO_FRAMES
1893                                   | FLAG_HAS_WOL
1894                                   | FLAG_APME_IN_CTRL3
1895                                   | FLAG_RX_CSUM_ENABLED
1896                                   | FLAG_HAS_SMART_POWER_DOWN
1897                                   | FLAG_HAS_AMT
1898                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1899         .flags2                   = FLAG2_CHECK_PHY_HANG,
1900         .pba                    = 36,
1901         .max_hw_frame_size      = DEFAULT_JUMBO,
1902         .get_variants           = e1000_get_variants_82571,
1903         .mac_ops                = &e82571_mac_ops,
1904         .phy_ops                = &e82_phy_ops_bm,
1905         .nvm_ops                = &e82571_nvm_ops,
1906 };
1907
1908 struct e1000_info e1000_82583_info = {
1909         .mac                    = e1000_82583,
1910         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1911                                   | FLAG_HAS_WOL
1912                                   | FLAG_APME_IN_CTRL3
1913                                   | FLAG_RX_CSUM_ENABLED
1914                                   | FLAG_HAS_SMART_POWER_DOWN
1915                                   | FLAG_HAS_AMT
1916                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1917         .pba                    = 36,
1918         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1919         .get_variants           = e1000_get_variants_82571,
1920         .mac_ops                = &e82571_mac_ops,
1921         .phy_ops                = &e82_phy_ops_bm,
1922         .nvm_ops                = &e82571_nvm_ops,
1923 };
1924