e1000: FIX: Stop raw interrupts disabled nag from RT
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1049),
77         INTEL_E1000_ETHERNET_DEVICE(0x104A),
78         INTEL_E1000_ETHERNET_DEVICE(0x104B),
79         INTEL_E1000_ETHERNET_DEVICE(0x104C),
80         INTEL_E1000_ETHERNET_DEVICE(0x104D),
81         INTEL_E1000_ETHERNET_DEVICE(0x105E),
82         INTEL_E1000_ETHERNET_DEVICE(0x105F),
83         INTEL_E1000_ETHERNET_DEVICE(0x1060),
84         INTEL_E1000_ETHERNET_DEVICE(0x1075),
85         INTEL_E1000_ETHERNET_DEVICE(0x1076),
86         INTEL_E1000_ETHERNET_DEVICE(0x1077),
87         INTEL_E1000_ETHERNET_DEVICE(0x1078),
88         INTEL_E1000_ETHERNET_DEVICE(0x1079),
89         INTEL_E1000_ETHERNET_DEVICE(0x107A),
90         INTEL_E1000_ETHERNET_DEVICE(0x107B),
91         INTEL_E1000_ETHERNET_DEVICE(0x107C),
92         INTEL_E1000_ETHERNET_DEVICE(0x107D),
93         INTEL_E1000_ETHERNET_DEVICE(0x107E),
94         INTEL_E1000_ETHERNET_DEVICE(0x107F),
95         INTEL_E1000_ETHERNET_DEVICE(0x108A),
96         INTEL_E1000_ETHERNET_DEVICE(0x108B),
97         INTEL_E1000_ETHERNET_DEVICE(0x108C),
98         INTEL_E1000_ETHERNET_DEVICE(0x1096),
99         INTEL_E1000_ETHERNET_DEVICE(0x1098),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110         /* required last entry */
111         {0,}
112 };
113
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
115
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130                              struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132                              struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
134
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149                                 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151                                 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t e1000_intr_msi(int irq, void *data);
163 #endif
164 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
165                                     struct e1000_tx_ring *tx_ring);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device *poll_dev, int *budget);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring,
170                                     int *work_done, int work_to_do);
171 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
172                                        struct e1000_rx_ring *rx_ring,
173                                        int *work_done, int work_to_do);
174 #else
175 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
176                                     struct e1000_rx_ring *rx_ring);
177 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
178                                        struct e1000_rx_ring *rx_ring);
179 #endif
180 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
181                                    struct e1000_rx_ring *rx_ring,
182                                    int cleaned_count);
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
184                                       struct e1000_rx_ring *rx_ring,
185                                       int cleaned_count);
186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
187 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
188                            int cmd);
189 void e1000_set_ethtool_ops(struct net_device *netdev);
190 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_tx_timeout(struct net_device *dev);
193 static void e1000_reset_task(struct work_struct *work);
194 static void e1000_smartspeed(struct e1000_adapter *adapter);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
196                                        struct sk_buff *skb);
197
198 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
199 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_restore_vlan(struct e1000_adapter *adapter);
202
203 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
204 #ifdef CONFIG_PM
205 static int e1000_resume(struct pci_dev *pdev);
206 #endif
207 static void e1000_shutdown(struct pci_dev *pdev);
208
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device *netdev);
212 #endif
213
214 extern void e1000_check_options(struct e1000_adapter *adapter);
215
216 #define COPYBREAK_DEFAULT 256
217 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
218 module_param(copybreak, uint, 0644);
219 MODULE_PARM_DESC(copybreak,
220         "Maximum size of packet that is copied to a new buffer on receive");
221
222 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
223                      pci_channel_state_t state);
224 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
225 static void e1000_io_resume(struct pci_dev *pdev);
226
227 static struct pci_error_handlers e1000_err_handler = {
228         .error_detected = e1000_io_error_detected,
229         .slot_reset = e1000_io_slot_reset,
230         .resume = e1000_io_resume,
231 };
232
233 static struct pci_driver e1000_driver = {
234         .name     = e1000_driver_name,
235         .id_table = e1000_pci_tbl,
236         .probe    = e1000_probe,
237         .remove   = __devexit_p(e1000_remove),
238 #ifdef CONFIG_PM
239         /* Power Managment Hooks */
240         .suspend  = e1000_suspend,
241         .resume   = e1000_resume,
242 #endif
243         .shutdown = e1000_shutdown,
244         .err_handler = &e1000_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
248 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 /**
257  * e1000_init_module - Driver Registration Routine
258  *
259  * e1000_init_module is the first routine called when the driver is
260  * loaded. All it does is register with the PCI subsystem.
261  **/
262
263 static int __init
264 e1000_init_module(void)
265 {
266         int ret;
267         printk(KERN_INFO "%s - version %s\n",
268                e1000_driver_string, e1000_driver_version);
269
270         printk(KERN_INFO "%s\n", e1000_copyright);
271
272         ret = pci_register_driver(&e1000_driver);
273         if (copybreak != COPYBREAK_DEFAULT) {
274                 if (copybreak == 0)
275                         printk(KERN_INFO "e1000: copybreak disabled\n");
276                 else
277                         printk(KERN_INFO "e1000: copybreak enabled for "
278                                "packets <= %u bytes\n", copybreak);
279         }
280         return ret;
281 }
282
283 module_init(e1000_init_module);
284
285 /**
286  * e1000_exit_module - Driver Exit Cleanup Routine
287  *
288  * e1000_exit_module is called just before the driver is removed
289  * from memory.
290  **/
291
292 static void __exit
293 e1000_exit_module(void)
294 {
295         pci_unregister_driver(&e1000_driver);
296 }
297
298 module_exit(e1000_exit_module);
299
300 static int e1000_request_irq(struct e1000_adapter *adapter)
301 {
302         struct net_device *netdev = adapter->netdev;
303         int flags, err = 0;
304
305         flags = IRQF_SHARED;
306 #ifdef CONFIG_PCI_MSI
307         if (adapter->hw.mac_type >= e1000_82571) {
308                 adapter->have_msi = TRUE;
309                 if ((err = pci_enable_msi(adapter->pdev))) {
310                         DPRINTK(PROBE, ERR,
311                          "Unable to allocate MSI interrupt Error: %d\n", err);
312                         adapter->have_msi = FALSE;
313                 }
314         }
315         if (adapter->have_msi) {
316                 flags &= ~IRQF_SHARED;
317                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
318                                   netdev->name, netdev);
319                 if (err)
320                         DPRINTK(PROBE, ERR,
321                                "Unable to allocate interrupt Error: %d\n", err);
322         } else
323 #endif
324         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
325                                netdev->name, netdev)))
326                 DPRINTK(PROBE, ERR,
327                         "Unable to allocate interrupt Error: %d\n", err);
328
329         return err;
330 }
331
332 static void e1000_free_irq(struct e1000_adapter *adapter)
333 {
334         struct net_device *netdev = adapter->netdev;
335
336         free_irq(adapter->pdev->irq, netdev);
337
338 #ifdef CONFIG_PCI_MSI
339         if (adapter->have_msi)
340                 pci_disable_msi(adapter->pdev);
341 #endif
342 }
343
344 /**
345  * e1000_irq_disable - Mask off interrupt generation on the NIC
346  * @adapter: board private structure
347  **/
348
349 static void
350 e1000_irq_disable(struct e1000_adapter *adapter)
351 {
352         atomic_inc(&adapter->irq_sem);
353         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
354         E1000_WRITE_FLUSH(&adapter->hw);
355         synchronize_irq(adapter->pdev->irq);
356 }
357
358 /**
359  * e1000_irq_enable - Enable default interrupt generation settings
360  * @adapter: board private structure
361  **/
362
363 static void
364 e1000_irq_enable(struct e1000_adapter *adapter)
365 {
366         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
367                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
368                 E1000_WRITE_FLUSH(&adapter->hw);
369         }
370 }
371
372 static void
373 e1000_update_mng_vlan(struct e1000_adapter *adapter)
374 {
375         struct net_device *netdev = adapter->netdev;
376         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
377         uint16_t old_vid = adapter->mng_vlan_id;
378         if (adapter->vlgrp) {
379                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
380                         if (adapter->hw.mng_cookie.status &
381                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
382                                 e1000_vlan_rx_add_vid(netdev, vid);
383                                 adapter->mng_vlan_id = vid;
384                         } else
385                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
386
387                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
388                                         (vid != old_vid) &&
389                             !vlan_group_get_device(adapter->vlgrp, old_vid))
390                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
391                 } else
392                         adapter->mng_vlan_id = vid;
393         }
394 }
395
396 /**
397  * e1000_release_hw_control - release control of the h/w to f/w
398  * @adapter: address of board private structure
399  *
400  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
401  * For ASF and Pass Through versions of f/w this means that the
402  * driver is no longer loaded. For AMT version (only with 82573) i
403  * of the f/w this means that the network i/f is closed.
404  *
405  **/
406
407 static void
408 e1000_release_hw_control(struct e1000_adapter *adapter)
409 {
410         uint32_t ctrl_ext;
411         uint32_t swsm;
412
413         /* Let firmware taken over control of h/w */
414         switch (adapter->hw.mac_type) {
415         case e1000_82573:
416                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
417                 E1000_WRITE_REG(&adapter->hw, SWSM,
418                                 swsm & ~E1000_SWSM_DRV_LOAD);
419                 break;
420         case e1000_82571:
421         case e1000_82572:
422         case e1000_80003es2lan:
423         case e1000_ich8lan:
424                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
425                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
426                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
427                 break;
428         default:
429                 break;
430         }
431 }
432
433 /**
434  * e1000_get_hw_control - get control of the h/w from f/w
435  * @adapter: address of board private structure
436  *
437  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
438  * For ASF and Pass Through versions of f/w this means that
439  * the driver is loaded. For AMT version (only with 82573)
440  * of the f/w this means that the network i/f is open.
441  *
442  **/
443
444 static void
445 e1000_get_hw_control(struct e1000_adapter *adapter)
446 {
447         uint32_t ctrl_ext;
448         uint32_t swsm;
449
450         /* Let firmware know the driver has taken over */
451         switch (adapter->hw.mac_type) {
452         case e1000_82573:
453                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
454                 E1000_WRITE_REG(&adapter->hw, SWSM,
455                                 swsm | E1000_SWSM_DRV_LOAD);
456                 break;
457         case e1000_82571:
458         case e1000_82572:
459         case e1000_80003es2lan:
460         case e1000_ich8lan:
461                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
462                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
463                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
464                 break;
465         default:
466                 break;
467         }
468 }
469
470 static void
471 e1000_init_manageability(struct e1000_adapter *adapter)
472 {
473         if (adapter->en_mng_pt) {
474                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
475
476                 /* disable hardware interception of ARP */
477                 manc &= ~(E1000_MANC_ARP_EN);
478
479                 /* enable receiving management packets to the host */
480                 /* this will probably generate destination unreachable messages
481                  * from the host OS, but the packets will be handled on SMBUS */
482                 if (adapter->hw.has_manc2h) {
483                         uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
484
485                         manc |= E1000_MANC_EN_MNG2HOST;
486 #define E1000_MNG2HOST_PORT_623 (1 << 5)
487 #define E1000_MNG2HOST_PORT_664 (1 << 6)
488                         manc2h |= E1000_MNG2HOST_PORT_623;
489                         manc2h |= E1000_MNG2HOST_PORT_664;
490                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
491                 }
492
493                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
494         }
495 }
496
497 static void
498 e1000_release_manageability(struct e1000_adapter *adapter)
499 {
500         if (adapter->en_mng_pt) {
501                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
502
503                 /* re-enable hardware interception of ARP */
504                 manc |= E1000_MANC_ARP_EN;
505
506                 if (adapter->hw.has_manc2h)
507                         manc &= ~E1000_MANC_EN_MNG2HOST;
508
509                 /* don't explicitly have to mess with MANC2H since
510                  * MANC has an enable disable that gates MANC2H */
511
512                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
513         }
514 }
515
516 /**
517  * e1000_configure - configure the hardware for RX and TX
518  * @adapter = private board structure
519  **/
520 static void e1000_configure(struct e1000_adapter *adapter)
521 {
522         struct net_device *netdev = adapter->netdev;
523         int i;
524
525         e1000_set_multi(netdev);
526
527         e1000_restore_vlan(adapter);
528         e1000_init_manageability(adapter);
529
530         e1000_configure_tx(adapter);
531         e1000_setup_rctl(adapter);
532         e1000_configure_rx(adapter);
533         /* call E1000_DESC_UNUSED which always leaves
534          * at least 1 descriptor unused to make sure
535          * next_to_use != next_to_clean */
536         for (i = 0; i < adapter->num_rx_queues; i++) {
537                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
538                 adapter->alloc_rx_buf(adapter, ring,
539                                       E1000_DESC_UNUSED(ring));
540         }
541
542         adapter->tx_queue_len = netdev->tx_queue_len;
543 }
544
545 int e1000_up(struct e1000_adapter *adapter)
546 {
547         /* hardware has been reset, we need to reload some things */
548         e1000_configure(adapter);
549
550         clear_bit(__E1000_DOWN, &adapter->flags);
551
552 #ifdef CONFIG_E1000_NAPI
553         netif_poll_enable(adapter->netdev);
554 #endif
555         e1000_irq_enable(adapter);
556
557         /* fire a link change interrupt to start the watchdog */
558         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
559         return 0;
560 }
561
562 /**
563  * e1000_power_up_phy - restore link in case the phy was powered down
564  * @adapter: address of board private structure
565  *
566  * The phy may be powered down to save power and turn off link when the
567  * driver is unloaded and wake on lan is not enabled (among others)
568  * *** this routine MUST be followed by a call to e1000_reset ***
569  *
570  **/
571
572 void e1000_power_up_phy(struct e1000_adapter *adapter)
573 {
574         uint16_t mii_reg = 0;
575
576         /* Just clear the power down bit to wake the phy back up */
577         if (adapter->hw.media_type == e1000_media_type_copper) {
578                 /* according to the manual, the phy will retain its
579                  * settings across a power-down/up cycle */
580                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
581                 mii_reg &= ~MII_CR_POWER_DOWN;
582                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
583         }
584 }
585
586 static void e1000_power_down_phy(struct e1000_adapter *adapter)
587 {
588         /* Power down the PHY so no link is implied when interface is down *
589          * The PHY cannot be powered down if any of the following is TRUE *
590          * (a) WoL is enabled
591          * (b) AMT is active
592          * (c) SoL/IDER session is active */
593         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
594            adapter->hw.media_type == e1000_media_type_copper) {
595                 uint16_t mii_reg = 0;
596
597                 switch (adapter->hw.mac_type) {
598                 case e1000_82540:
599                 case e1000_82545:
600                 case e1000_82545_rev_3:
601                 case e1000_82546:
602                 case e1000_82546_rev_3:
603                 case e1000_82541:
604                 case e1000_82541_rev_2:
605                 case e1000_82547:
606                 case e1000_82547_rev_2:
607                         if (E1000_READ_REG(&adapter->hw, MANC) &
608                             E1000_MANC_SMBUS_EN)
609                                 goto out;
610                         break;
611                 case e1000_82571:
612                 case e1000_82572:
613                 case e1000_82573:
614                 case e1000_80003es2lan:
615                 case e1000_ich8lan:
616                         if (e1000_check_mng_mode(&adapter->hw) ||
617                             e1000_check_phy_reset_block(&adapter->hw))
618                                 goto out;
619                         break;
620                 default:
621                         goto out;
622                 }
623                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
624                 mii_reg |= MII_CR_POWER_DOWN;
625                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
626                 mdelay(1);
627         }
628 out:
629         return;
630 }
631
632 void
633 e1000_down(struct e1000_adapter *adapter)
634 {
635         struct net_device *netdev = adapter->netdev;
636
637         /* signal that we're down so the interrupt handler does not
638          * reschedule our watchdog timer */
639         set_bit(__E1000_DOWN, &adapter->flags);
640
641 #ifdef CONFIG_E1000_NAPI
642         netif_poll_disable(netdev);
643 #endif
644         e1000_irq_disable(adapter);
645
646         del_timer_sync(&adapter->tx_fifo_stall_timer);
647         del_timer_sync(&adapter->watchdog_timer);
648         del_timer_sync(&adapter->phy_info_timer);
649
650         netdev->tx_queue_len = adapter->tx_queue_len;
651         adapter->link_speed = 0;
652         adapter->link_duplex = 0;
653         netif_carrier_off(netdev);
654         netif_stop_queue(netdev);
655
656         e1000_reset(adapter);
657         e1000_clean_all_tx_rings(adapter);
658         e1000_clean_all_rx_rings(adapter);
659 }
660
661 void
662 e1000_reinit_locked(struct e1000_adapter *adapter)
663 {
664         WARN_ON(in_interrupt());
665         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
666                 msleep(1);
667         e1000_down(adapter);
668         e1000_up(adapter);
669         clear_bit(__E1000_RESETTING, &adapter->flags);
670 }
671
672 void
673 e1000_reset(struct e1000_adapter *adapter)
674 {
675         uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
676         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
677         boolean_t legacy_pba_adjust = FALSE;
678
679         /* Repartition Pba for greater than 9k mtu
680          * To take effect CTRL.RST is required.
681          */
682
683         switch (adapter->hw.mac_type) {
684         case e1000_82542_rev2_0:
685         case e1000_82542_rev2_1:
686         case e1000_82543:
687         case e1000_82544:
688         case e1000_82540:
689         case e1000_82541:
690         case e1000_82541_rev_2:
691                 legacy_pba_adjust = TRUE;
692                 pba = E1000_PBA_48K;
693                 break;
694         case e1000_82545:
695         case e1000_82545_rev_3:
696         case e1000_82546:
697         case e1000_82546_rev_3:
698                 pba = E1000_PBA_48K;
699                 break;
700         case e1000_82547:
701         case e1000_82547_rev_2:
702                 legacy_pba_adjust = TRUE;
703                 pba = E1000_PBA_30K;
704                 break;
705         case e1000_82571:
706         case e1000_82572:
707         case e1000_80003es2lan:
708                 pba = E1000_PBA_38K;
709                 break;
710         case e1000_82573:
711                 pba = E1000_PBA_20K;
712                 break;
713         case e1000_ich8lan:
714                 pba = E1000_PBA_8K;
715         case e1000_undefined:
716         case e1000_num_macs:
717                 break;
718         }
719
720         if (legacy_pba_adjust == TRUE) {
721                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
722                         pba -= 8; /* allocate more FIFO for Tx */
723
724                 if (adapter->hw.mac_type == e1000_82547) {
725                         adapter->tx_fifo_head = 0;
726                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
727                         adapter->tx_fifo_size =
728                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
729                         atomic_set(&adapter->tx_fifo_stall, 0);
730                 }
731         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
732                 /* adjust PBA for jumbo frames */
733                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
734
735                 /* To maintain wire speed transmits, the Tx FIFO should be
736                  * large enough to accomodate two full transmit packets,
737                  * rounded up to the next 1KB and expressed in KB.  Likewise,
738                  * the Rx FIFO should be large enough to accomodate at least
739                  * one full receive packet and is similarly rounded up and
740                  * expressed in KB. */
741                 pba = E1000_READ_REG(&adapter->hw, PBA);
742                 /* upper 16 bits has Tx packet buffer allocation size in KB */
743                 tx_space = pba >> 16;
744                 /* lower 16 bits has Rx packet buffer allocation size in KB */
745                 pba &= 0xffff;
746                 /* don't include ethernet FCS because hardware appends/strips */
747                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
748                                VLAN_TAG_SIZE;
749                 min_tx_space = min_rx_space;
750                 min_tx_space *= 2;
751                 E1000_ROUNDUP(min_tx_space, 1024);
752                 min_tx_space >>= 10;
753                 E1000_ROUNDUP(min_rx_space, 1024);
754                 min_rx_space >>= 10;
755
756                 /* If current Tx allocation is less than the min Tx FIFO size,
757                  * and the min Tx FIFO size is less than the current Rx FIFO
758                  * allocation, take space away from current Rx allocation */
759                 if (tx_space < min_tx_space &&
760                     ((min_tx_space - tx_space) < pba)) {
761                         pba = pba - (min_tx_space - tx_space);
762
763                         /* PCI/PCIx hardware has PBA alignment constraints */
764                         switch (adapter->hw.mac_type) {
765                         case e1000_82545 ... e1000_82546_rev_3:
766                                 pba &= ~(E1000_PBA_8K - 1);
767                                 break;
768                         default:
769                                 break;
770                         }
771
772                         /* if short on rx space, rx wins and must trump tx
773                          * adjustment or use Early Receive if available */
774                         if (pba < min_rx_space) {
775                                 switch (adapter->hw.mac_type) {
776                                 case e1000_82573:
777                                         /* ERT enabled in e1000_configure_rx */
778                                         break;
779                                 default:
780                                         pba = min_rx_space;
781                                         break;
782                                 }
783                         }
784                 }
785         }
786
787         E1000_WRITE_REG(&adapter->hw, PBA, pba);
788
789         /* flow control settings */
790         /* Set the FC high water mark to 90% of the FIFO size.
791          * Required to clear last 3 LSB */
792         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
793         /* We can't use 90% on small FIFOs because the remainder
794          * would be less than 1 full frame.  In this case, we size
795          * it to allow at least a full frame above the high water
796          *  mark. */
797         if (pba < E1000_PBA_16K)
798                 fc_high_water_mark = (pba * 1024) - 1600;
799
800         adapter->hw.fc_high_water = fc_high_water_mark;
801         adapter->hw.fc_low_water = fc_high_water_mark - 8;
802         if (adapter->hw.mac_type == e1000_80003es2lan)
803                 adapter->hw.fc_pause_time = 0xFFFF;
804         else
805                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
806         adapter->hw.fc_send_xon = 1;
807         adapter->hw.fc = adapter->hw.original_fc;
808
809         /* Allow time for pending master requests to run */
810         e1000_reset_hw(&adapter->hw);
811         if (adapter->hw.mac_type >= e1000_82544)
812                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
813
814         if (e1000_init_hw(&adapter->hw))
815                 DPRINTK(PROBE, ERR, "Hardware Error\n");
816         e1000_update_mng_vlan(adapter);
817
818         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
819         if (adapter->hw.mac_type >= e1000_82544 &&
820             adapter->hw.mac_type <= e1000_82547_rev_2 &&
821             adapter->hw.autoneg == 1 &&
822             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
823                 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
824                 /* clear phy power management bit if we are in gig only mode,
825                  * which if enabled will attempt negotiation to 100Mb, which
826                  * can cause a loss of link at power off or driver unload */
827                 ctrl &= ~E1000_CTRL_SWDPIN3;
828                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
829         }
830
831         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
832         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
833
834         e1000_reset_adaptive(&adapter->hw);
835         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
836
837         if (!adapter->smart_power_down &&
838             (adapter->hw.mac_type == e1000_82571 ||
839              adapter->hw.mac_type == e1000_82572)) {
840                 uint16_t phy_data = 0;
841                 /* speed up time to link by disabling smart power down, ignore
842                  * the return value of this function because there is nothing
843                  * different we would do if it failed */
844                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
845                                    &phy_data);
846                 phy_data &= ~IGP02E1000_PM_SPD;
847                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
848                                     phy_data);
849         }
850
851         e1000_release_manageability(adapter);
852 }
853
854 /**
855  * e1000_probe - Device Initialization Routine
856  * @pdev: PCI device information struct
857  * @ent: entry in e1000_pci_tbl
858  *
859  * Returns 0 on success, negative on failure
860  *
861  * e1000_probe initializes an adapter identified by a pci_dev structure.
862  * The OS initialization, configuring of the adapter private structure,
863  * and a hardware reset occur.
864  **/
865
866 static int __devinit
867 e1000_probe(struct pci_dev *pdev,
868             const struct pci_device_id *ent)
869 {
870         struct net_device *netdev;
871         struct e1000_adapter *adapter;
872         unsigned long mmio_start, mmio_len;
873         unsigned long flash_start, flash_len;
874
875         static int cards_found = 0;
876         static int global_quad_port_a = 0; /* global ksp3 port a indication */
877         int i, err, pci_using_dac;
878         uint16_t eeprom_data = 0;
879         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
880         if ((err = pci_enable_device(pdev)))
881                 return err;
882
883         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
884             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
885                 pci_using_dac = 1;
886         } else {
887                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
888                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
889                         E1000_ERR("No usable DMA configuration, aborting\n");
890                         goto err_dma;
891                 }
892                 pci_using_dac = 0;
893         }
894
895         if ((err = pci_request_regions(pdev, e1000_driver_name)))
896                 goto err_pci_reg;
897
898         pci_set_master(pdev);
899
900         err = -ENOMEM;
901         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
902         if (!netdev)
903                 goto err_alloc_etherdev;
904
905         SET_MODULE_OWNER(netdev);
906         SET_NETDEV_DEV(netdev, &pdev->dev);
907
908         pci_set_drvdata(pdev, netdev);
909         adapter = netdev_priv(netdev);
910         adapter->netdev = netdev;
911         adapter->pdev = pdev;
912         adapter->hw.back = adapter;
913         adapter->msg_enable = (1 << debug) - 1;
914
915         mmio_start = pci_resource_start(pdev, BAR_0);
916         mmio_len = pci_resource_len(pdev, BAR_0);
917
918         err = -EIO;
919         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
920         if (!adapter->hw.hw_addr)
921                 goto err_ioremap;
922
923         for (i = BAR_1; i <= BAR_5; i++) {
924                 if (pci_resource_len(pdev, i) == 0)
925                         continue;
926                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
927                         adapter->hw.io_base = pci_resource_start(pdev, i);
928                         break;
929                 }
930         }
931
932         netdev->open = &e1000_open;
933         netdev->stop = &e1000_close;
934         netdev->hard_start_xmit = &e1000_xmit_frame;
935         netdev->get_stats = &e1000_get_stats;
936         netdev->set_multicast_list = &e1000_set_multi;
937         netdev->set_mac_address = &e1000_set_mac;
938         netdev->change_mtu = &e1000_change_mtu;
939         netdev->do_ioctl = &e1000_ioctl;
940         e1000_set_ethtool_ops(netdev);
941         netdev->tx_timeout = &e1000_tx_timeout;
942         netdev->watchdog_timeo = 5 * HZ;
943 #ifdef CONFIG_E1000_NAPI
944         netdev->poll = &e1000_clean;
945         netdev->weight = 64;
946 #endif
947         netdev->vlan_rx_register = e1000_vlan_rx_register;
948         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
949         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
950 #ifdef CONFIG_NET_POLL_CONTROLLER
951         netdev->poll_controller = e1000_netpoll;
952 #endif
953         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
954
955         netdev->mem_start = mmio_start;
956         netdev->mem_end = mmio_start + mmio_len;
957         netdev->base_addr = adapter->hw.io_base;
958
959         adapter->bd_number = cards_found;
960
961         /* setup the private structure */
962
963         if ((err = e1000_sw_init(adapter)))
964                 goto err_sw_init;
965
966         err = -EIO;
967         /* Flash BAR mapping must happen after e1000_sw_init
968          * because it depends on mac_type */
969         if ((adapter->hw.mac_type == e1000_ich8lan) &&
970            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
971                 flash_start = pci_resource_start(pdev, 1);
972                 flash_len = pci_resource_len(pdev, 1);
973                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
974                 if (!adapter->hw.flash_address)
975                         goto err_flashmap;
976         }
977
978         if (e1000_check_phy_reset_block(&adapter->hw))
979                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
980
981         if (adapter->hw.mac_type >= e1000_82543) {
982                 netdev->features = NETIF_F_SG |
983                                    NETIF_F_HW_CSUM |
984                                    NETIF_F_HW_VLAN_TX |
985                                    NETIF_F_HW_VLAN_RX |
986                                    NETIF_F_HW_VLAN_FILTER;
987                 if (adapter->hw.mac_type == e1000_ich8lan)
988                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
989         }
990
991         if ((adapter->hw.mac_type >= e1000_82544) &&
992            (adapter->hw.mac_type != e1000_82547))
993                 netdev->features |= NETIF_F_TSO;
994
995         if (adapter->hw.mac_type > e1000_82547_rev_2)
996                 netdev->features |= NETIF_F_TSO6;
997         if (pci_using_dac)
998                 netdev->features |= NETIF_F_HIGHDMA;
999
1000         netdev->features |= NETIF_F_LLTX;
1001
1002         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1003
1004         /* initialize eeprom parameters */
1005
1006         if (e1000_init_eeprom_params(&adapter->hw)) {
1007                 E1000_ERR("EEPROM initialization failed\n");
1008                 goto err_eeprom;
1009         }
1010
1011         /* before reading the EEPROM, reset the controller to
1012          * put the device in a known good starting state */
1013
1014         e1000_reset_hw(&adapter->hw);
1015
1016         /* make sure the EEPROM is good */
1017
1018         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1019                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1020                 goto err_eeprom;
1021         }
1022
1023         /* copy the MAC address out of the EEPROM */
1024
1025         if (e1000_read_mac_addr(&adapter->hw))
1026                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1027         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1028         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1029
1030         if (!is_valid_ether_addr(netdev->perm_addr)) {
1031                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1032                 goto err_eeprom;
1033         }
1034
1035         e1000_get_bus_info(&adapter->hw);
1036
1037         init_timer(&adapter->tx_fifo_stall_timer);
1038         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1039         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1040
1041         init_timer(&adapter->watchdog_timer);
1042         adapter->watchdog_timer.function = &e1000_watchdog;
1043         adapter->watchdog_timer.data = (unsigned long) adapter;
1044
1045         init_timer(&adapter->phy_info_timer);
1046         adapter->phy_info_timer.function = &e1000_update_phy_info;
1047         adapter->phy_info_timer.data = (unsigned long) adapter;
1048
1049         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1050
1051         e1000_check_options(adapter);
1052
1053         /* Initial Wake on LAN setting
1054          * If APM wake is enabled in the EEPROM,
1055          * enable the ACPI Magic Packet filter
1056          */
1057
1058         switch (adapter->hw.mac_type) {
1059         case e1000_82542_rev2_0:
1060         case e1000_82542_rev2_1:
1061         case e1000_82543:
1062                 break;
1063         case e1000_82544:
1064                 e1000_read_eeprom(&adapter->hw,
1065                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1066                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1067                 break;
1068         case e1000_ich8lan:
1069                 e1000_read_eeprom(&adapter->hw,
1070                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1071                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1072                 break;
1073         case e1000_82546:
1074         case e1000_82546_rev_3:
1075         case e1000_82571:
1076         case e1000_80003es2lan:
1077                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1078                         e1000_read_eeprom(&adapter->hw,
1079                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1080                         break;
1081                 }
1082                 /* Fall Through */
1083         default:
1084                 e1000_read_eeprom(&adapter->hw,
1085                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1086                 break;
1087         }
1088         if (eeprom_data & eeprom_apme_mask)
1089                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1090
1091         /* now that we have the eeprom settings, apply the special cases
1092          * where the eeprom may be wrong or the board simply won't support
1093          * wake on lan on a particular port */
1094         switch (pdev->device) {
1095         case E1000_DEV_ID_82546GB_PCIE:
1096                 adapter->eeprom_wol = 0;
1097                 break;
1098         case E1000_DEV_ID_82546EB_FIBER:
1099         case E1000_DEV_ID_82546GB_FIBER:
1100         case E1000_DEV_ID_82571EB_FIBER:
1101                 /* Wake events only supported on port A for dual fiber
1102                  * regardless of eeprom setting */
1103                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1104                         adapter->eeprom_wol = 0;
1105                 break;
1106         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1107         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1108         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1109                 /* if quad port adapter, disable WoL on all but port A */
1110                 if (global_quad_port_a != 0)
1111                         adapter->eeprom_wol = 0;
1112                 else
1113                         adapter->quad_port_a = 1;
1114                 /* Reset for multiple quad port adapters */
1115                 if (++global_quad_port_a == 4)
1116                         global_quad_port_a = 0;
1117                 break;
1118         }
1119
1120         /* initialize the wol settings based on the eeprom settings */
1121         adapter->wol = adapter->eeprom_wol;
1122
1123         /* print bus type/speed/width info */
1124         {
1125         struct e1000_hw *hw = &adapter->hw;
1126         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1127                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1128                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1129                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1130                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1131                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1132                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1133                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1134                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1135                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1136                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1137                  "32-bit"));
1138         }
1139
1140         for (i = 0; i < 6; i++)
1141                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1142
1143         /* reset the hardware with the new settings */
1144         e1000_reset(adapter);
1145
1146         /* If the controller is 82573 and f/w is AMT, do not set
1147          * DRV_LOAD until the interface is up.  For all other cases,
1148          * let the f/w know that the h/w is now under the control
1149          * of the driver. */
1150         if (adapter->hw.mac_type != e1000_82573 ||
1151             !e1000_check_mng_mode(&adapter->hw))
1152                 e1000_get_hw_control(adapter);
1153
1154         strcpy(netdev->name, "eth%d");
1155         if ((err = register_netdev(netdev)))
1156                 goto err_register;
1157
1158         /* tell the stack to leave us alone until e1000_open() is called */
1159         netif_carrier_off(netdev);
1160         netif_stop_queue(netdev);
1161
1162         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1163
1164         cards_found++;
1165         return 0;
1166
1167 err_register:
1168         e1000_release_hw_control(adapter);
1169 err_eeprom:
1170         if (!e1000_check_phy_reset_block(&adapter->hw))
1171                 e1000_phy_hw_reset(&adapter->hw);
1172
1173         if (adapter->hw.flash_address)
1174                 iounmap(adapter->hw.flash_address);
1175 err_flashmap:
1176 #ifdef CONFIG_E1000_NAPI
1177         for (i = 0; i < adapter->num_rx_queues; i++)
1178                 dev_put(&adapter->polling_netdev[i]);
1179 #endif
1180
1181         kfree(adapter->tx_ring);
1182         kfree(adapter->rx_ring);
1183 #ifdef CONFIG_E1000_NAPI
1184         kfree(adapter->polling_netdev);
1185 #endif
1186 err_sw_init:
1187         iounmap(adapter->hw.hw_addr);
1188 err_ioremap:
1189         free_netdev(netdev);
1190 err_alloc_etherdev:
1191         pci_release_regions(pdev);
1192 err_pci_reg:
1193 err_dma:
1194         pci_disable_device(pdev);
1195         return err;
1196 }
1197
1198 /**
1199  * e1000_remove - Device Removal Routine
1200  * @pdev: PCI device information struct
1201  *
1202  * e1000_remove is called by the PCI subsystem to alert the driver
1203  * that it should release a PCI device.  The could be caused by a
1204  * Hot-Plug event, or because the driver is going to be removed from
1205  * memory.
1206  **/
1207
1208 static void __devexit
1209 e1000_remove(struct pci_dev *pdev)
1210 {
1211         struct net_device *netdev = pci_get_drvdata(pdev);
1212         struct e1000_adapter *adapter = netdev_priv(netdev);
1213 #ifdef CONFIG_E1000_NAPI
1214         int i;
1215 #endif
1216
1217         flush_scheduled_work();
1218
1219         e1000_release_manageability(adapter);
1220
1221         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1222          * would have already happened in close and is redundant. */
1223         e1000_release_hw_control(adapter);
1224
1225         unregister_netdev(netdev);
1226 #ifdef CONFIG_E1000_NAPI
1227         for (i = 0; i < adapter->num_rx_queues; i++)
1228                 dev_put(&adapter->polling_netdev[i]);
1229 #endif
1230
1231         if (!e1000_check_phy_reset_block(&adapter->hw))
1232                 e1000_phy_hw_reset(&adapter->hw);
1233
1234         kfree(adapter->tx_ring);
1235         kfree(adapter->rx_ring);
1236 #ifdef CONFIG_E1000_NAPI
1237         kfree(adapter->polling_netdev);
1238 #endif
1239
1240         iounmap(adapter->hw.hw_addr);
1241         if (adapter->hw.flash_address)
1242                 iounmap(adapter->hw.flash_address);
1243         pci_release_regions(pdev);
1244
1245         free_netdev(netdev);
1246
1247         pci_disable_device(pdev);
1248 }
1249
1250 /**
1251  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1252  * @adapter: board private structure to initialize
1253  *
1254  * e1000_sw_init initializes the Adapter private data structure.
1255  * Fields are initialized based on PCI device information and
1256  * OS network device settings (MTU size).
1257  **/
1258
1259 static int __devinit
1260 e1000_sw_init(struct e1000_adapter *adapter)
1261 {
1262         struct e1000_hw *hw = &adapter->hw;
1263         struct net_device *netdev = adapter->netdev;
1264         struct pci_dev *pdev = adapter->pdev;
1265 #ifdef CONFIG_E1000_NAPI
1266         int i;
1267 #endif
1268
1269         /* PCI config space info */
1270
1271         hw->vendor_id = pdev->vendor;
1272         hw->device_id = pdev->device;
1273         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1274         hw->subsystem_id = pdev->subsystem_device;
1275
1276         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1277
1278         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1279
1280         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1281         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1282         hw->max_frame_size = netdev->mtu +
1283                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1284         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1285
1286         /* identify the MAC */
1287
1288         if (e1000_set_mac_type(hw)) {
1289                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1290                 return -EIO;
1291         }
1292
1293         switch (hw->mac_type) {
1294         default:
1295                 break;
1296         case e1000_82541:
1297         case e1000_82547:
1298         case e1000_82541_rev_2:
1299         case e1000_82547_rev_2:
1300                 hw->phy_init_script = 1;
1301                 break;
1302         }
1303
1304         e1000_set_media_type(hw);
1305
1306         hw->wait_autoneg_complete = FALSE;
1307         hw->tbi_compatibility_en = TRUE;
1308         hw->adaptive_ifs = TRUE;
1309
1310         /* Copper options */
1311
1312         if (hw->media_type == e1000_media_type_copper) {
1313                 hw->mdix = AUTO_ALL_MODES;
1314                 hw->disable_polarity_correction = FALSE;
1315                 hw->master_slave = E1000_MASTER_SLAVE;
1316         }
1317
1318         adapter->num_tx_queues = 1;
1319         adapter->num_rx_queues = 1;
1320
1321         if (e1000_alloc_queues(adapter)) {
1322                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1323                 return -ENOMEM;
1324         }
1325
1326 #ifdef CONFIG_E1000_NAPI
1327         for (i = 0; i < adapter->num_rx_queues; i++) {
1328                 adapter->polling_netdev[i].priv = adapter;
1329                 adapter->polling_netdev[i].poll = &e1000_clean;
1330                 adapter->polling_netdev[i].weight = 64;
1331                 dev_hold(&adapter->polling_netdev[i]);
1332                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1333         }
1334         spin_lock_init(&adapter->tx_queue_lock);
1335 #endif
1336
1337         atomic_set(&adapter->irq_sem, 1);
1338         spin_lock_init(&adapter->stats_lock);
1339
1340         set_bit(__E1000_DOWN, &adapter->flags);
1341
1342         return 0;
1343 }
1344
1345 /**
1346  * e1000_alloc_queues - Allocate memory for all rings
1347  * @adapter: board private structure to initialize
1348  *
1349  * We allocate one ring per queue at run-time since we don't know the
1350  * number of queues at compile-time.  The polling_netdev array is
1351  * intended for Multiqueue, but should work fine with a single queue.
1352  **/
1353
1354 static int __devinit
1355 e1000_alloc_queues(struct e1000_adapter *adapter)
1356 {
1357         int size;
1358
1359         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1360         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1361         if (!adapter->tx_ring)
1362                 return -ENOMEM;
1363         memset(adapter->tx_ring, 0, size);
1364
1365         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1366         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1367         if (!adapter->rx_ring) {
1368                 kfree(adapter->tx_ring);
1369                 return -ENOMEM;
1370         }
1371         memset(adapter->rx_ring, 0, size);
1372
1373 #ifdef CONFIG_E1000_NAPI
1374         size = sizeof(struct net_device) * adapter->num_rx_queues;
1375         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1376         if (!adapter->polling_netdev) {
1377                 kfree(adapter->tx_ring);
1378                 kfree(adapter->rx_ring);
1379                 return -ENOMEM;
1380         }
1381         memset(adapter->polling_netdev, 0, size);
1382 #endif
1383
1384         return E1000_SUCCESS;
1385 }
1386
1387 /**
1388  * e1000_open - Called when a network interface is made active
1389  * @netdev: network interface device structure
1390  *
1391  * Returns 0 on success, negative value on failure
1392  *
1393  * The open entry point is called when a network interface is made
1394  * active by the system (IFF_UP).  At this point all resources needed
1395  * for transmit and receive operations are allocated, the interrupt
1396  * handler is registered with the OS, the watchdog timer is started,
1397  * and the stack is notified that the interface is ready.
1398  **/
1399
1400 static int
1401 e1000_open(struct net_device *netdev)
1402 {
1403         struct e1000_adapter *adapter = netdev_priv(netdev);
1404         int err;
1405
1406         /* disallow open during test */
1407         if (test_bit(__E1000_TESTING, &adapter->flags))
1408                 return -EBUSY;
1409
1410         /* allocate transmit descriptors */
1411         err = e1000_setup_all_tx_resources(adapter);
1412         if (err)
1413                 goto err_setup_tx;
1414
1415         /* allocate receive descriptors */
1416         err = e1000_setup_all_rx_resources(adapter);
1417         if (err)
1418                 goto err_setup_rx;
1419
1420         e1000_power_up_phy(adapter);
1421
1422         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1423         if ((adapter->hw.mng_cookie.status &
1424                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1425                 e1000_update_mng_vlan(adapter);
1426         }
1427
1428         /* If AMT is enabled, let the firmware know that the network
1429          * interface is now open */
1430         if (adapter->hw.mac_type == e1000_82573 &&
1431             e1000_check_mng_mode(&adapter->hw))
1432                 e1000_get_hw_control(adapter);
1433
1434         /* before we allocate an interrupt, we must be ready to handle it.
1435          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1436          * as soon as we call pci_request_irq, so we have to setup our
1437          * clean_rx handler before we do so.  */
1438         e1000_configure(adapter);
1439
1440         err = e1000_request_irq(adapter);
1441         if (err)
1442                 goto err_req_irq;
1443
1444         /* From here on the code is the same as e1000_up() */
1445         clear_bit(__E1000_DOWN, &adapter->flags);
1446
1447 #ifdef CONFIG_E1000_NAPI
1448         netif_poll_enable(netdev);
1449 #endif
1450
1451         e1000_irq_enable(adapter);
1452
1453         /* fire a link status change interrupt to start the watchdog */
1454         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1455
1456         return E1000_SUCCESS;
1457
1458 err_req_irq:
1459         e1000_release_hw_control(adapter);
1460         e1000_power_down_phy(adapter);
1461         e1000_free_all_rx_resources(adapter);
1462 err_setup_rx:
1463         e1000_free_all_tx_resources(adapter);
1464 err_setup_tx:
1465         e1000_reset(adapter);
1466
1467         return err;
1468 }
1469
1470 /**
1471  * e1000_close - Disables a network interface
1472  * @netdev: network interface device structure
1473  *
1474  * Returns 0, this is not allowed to fail
1475  *
1476  * The close entry point is called when an interface is de-activated
1477  * by the OS.  The hardware is still under the drivers control, but
1478  * needs to be disabled.  A global MAC reset is issued to stop the
1479  * hardware, and all transmit and receive resources are freed.
1480  **/
1481
1482 static int
1483 e1000_close(struct net_device *netdev)
1484 {
1485         struct e1000_adapter *adapter = netdev_priv(netdev);
1486
1487         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1488         e1000_down(adapter);
1489         e1000_power_down_phy(adapter);
1490         e1000_free_irq(adapter);
1491
1492         e1000_free_all_tx_resources(adapter);
1493         e1000_free_all_rx_resources(adapter);
1494
1495         /* kill manageability vlan ID if supported, but not if a vlan with
1496          * the same ID is registered on the host OS (let 8021q kill it) */
1497         if ((adapter->hw.mng_cookie.status &
1498                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1499              !(adapter->vlgrp &&
1500                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1501                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1502         }
1503
1504         /* If AMT is enabled, let the firmware know that the network
1505          * interface is now closed */
1506         if (adapter->hw.mac_type == e1000_82573 &&
1507             e1000_check_mng_mode(&adapter->hw))
1508                 e1000_release_hw_control(adapter);
1509
1510         return 0;
1511 }
1512
1513 /**
1514  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1515  * @adapter: address of board private structure
1516  * @start: address of beginning of memory
1517  * @len: length of memory
1518  **/
1519 static boolean_t
1520 e1000_check_64k_bound(struct e1000_adapter *adapter,
1521                       void *start, unsigned long len)
1522 {
1523         unsigned long begin = (unsigned long) start;
1524         unsigned long end = begin + len;
1525
1526         /* First rev 82545 and 82546 need to not allow any memory
1527          * write location to cross 64k boundary due to errata 23 */
1528         if (adapter->hw.mac_type == e1000_82545 ||
1529             adapter->hw.mac_type == e1000_82546) {
1530                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1531         }
1532
1533         return TRUE;
1534 }
1535
1536 /**
1537  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1538  * @adapter: board private structure
1539  * @txdr:    tx descriptor ring (for a specific queue) to setup
1540  *
1541  * Return 0 on success, negative on failure
1542  **/
1543
1544 static int
1545 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1546                          struct e1000_tx_ring *txdr)
1547 {
1548         struct pci_dev *pdev = adapter->pdev;
1549         int size;
1550
1551         size = sizeof(struct e1000_buffer) * txdr->count;
1552         txdr->buffer_info = vmalloc(size);
1553         if (!txdr->buffer_info) {
1554                 DPRINTK(PROBE, ERR,
1555                 "Unable to allocate memory for the transmit descriptor ring\n");
1556                 return -ENOMEM;
1557         }
1558         memset(txdr->buffer_info, 0, size);
1559
1560         /* round up to nearest 4K */
1561
1562         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1563         E1000_ROUNDUP(txdr->size, 4096);
1564
1565         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1566         if (!txdr->desc) {
1567 setup_tx_desc_die:
1568                 vfree(txdr->buffer_info);
1569                 DPRINTK(PROBE, ERR,
1570                 "Unable to allocate memory for the transmit descriptor ring\n");
1571                 return -ENOMEM;
1572         }
1573
1574         /* Fix for errata 23, can't cross 64kB boundary */
1575         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1576                 void *olddesc = txdr->desc;
1577                 dma_addr_t olddma = txdr->dma;
1578                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1579                                      "at %p\n", txdr->size, txdr->desc);
1580                 /* Try again, without freeing the previous */
1581                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1582                 /* Failed allocation, critical failure */
1583                 if (!txdr->desc) {
1584                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1585                         goto setup_tx_desc_die;
1586                 }
1587
1588                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1589                         /* give up */
1590                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1591                                             txdr->dma);
1592                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1593                         DPRINTK(PROBE, ERR,
1594                                 "Unable to allocate aligned memory "
1595                                 "for the transmit descriptor ring\n");
1596                         vfree(txdr->buffer_info);
1597                         return -ENOMEM;
1598                 } else {
1599                         /* Free old allocation, new allocation was successful */
1600                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1601                 }
1602         }
1603         memset(txdr->desc, 0, txdr->size);
1604
1605         txdr->next_to_use = 0;
1606         txdr->next_to_clean = 0;
1607         spin_lock_init(&txdr->tx_lock);
1608
1609         return 0;
1610 }
1611
1612 /**
1613  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1614  *                                (Descriptors) for all queues
1615  * @adapter: board private structure
1616  *
1617  * Return 0 on success, negative on failure
1618  **/
1619
1620 int
1621 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1622 {
1623         int i, err = 0;
1624
1625         for (i = 0; i < adapter->num_tx_queues; i++) {
1626                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1627                 if (err) {
1628                         DPRINTK(PROBE, ERR,
1629                                 "Allocation for Tx Queue %u failed\n", i);
1630                         for (i-- ; i >= 0; i--)
1631                                 e1000_free_tx_resources(adapter,
1632                                                         &adapter->tx_ring[i]);
1633                         break;
1634                 }
1635         }
1636
1637         return err;
1638 }
1639
1640 /**
1641  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1642  * @adapter: board private structure
1643  *
1644  * Configure the Tx unit of the MAC after a reset.
1645  **/
1646
1647 static void
1648 e1000_configure_tx(struct e1000_adapter *adapter)
1649 {
1650         uint64_t tdba;
1651         struct e1000_hw *hw = &adapter->hw;
1652         uint32_t tdlen, tctl, tipg, tarc;
1653         uint32_t ipgr1, ipgr2;
1654
1655         /* Setup the HW Tx Head and Tail descriptor pointers */
1656
1657         switch (adapter->num_tx_queues) {
1658         case 1:
1659         default:
1660                 tdba = adapter->tx_ring[0].dma;
1661                 tdlen = adapter->tx_ring[0].count *
1662                         sizeof(struct e1000_tx_desc);
1663                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1664                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1665                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1666                 E1000_WRITE_REG(hw, TDT, 0);
1667                 E1000_WRITE_REG(hw, TDH, 0);
1668                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1669                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1670                 break;
1671         }
1672
1673         /* Set the default values for the Tx Inter Packet Gap timer */
1674         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1675             (hw->media_type == e1000_media_type_fiber ||
1676              hw->media_type == e1000_media_type_internal_serdes))
1677                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1678         else
1679                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1680
1681         switch (hw->mac_type) {
1682         case e1000_82542_rev2_0:
1683         case e1000_82542_rev2_1:
1684                 tipg = DEFAULT_82542_TIPG_IPGT;
1685                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1686                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1687                 break;
1688         case e1000_80003es2lan:
1689                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1690                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1691                 break;
1692         default:
1693                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1694                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1695                 break;
1696         }
1697         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1698         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1699         E1000_WRITE_REG(hw, TIPG, tipg);
1700
1701         /* Set the Tx Interrupt Delay register */
1702
1703         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1704         if (hw->mac_type >= e1000_82540)
1705                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1706
1707         /* Program the Transmit Control Register */
1708
1709         tctl = E1000_READ_REG(hw, TCTL);
1710         tctl &= ~E1000_TCTL_CT;
1711         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1712                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1713
1714         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1715                 tarc = E1000_READ_REG(hw, TARC0);
1716                 /* set the speed mode bit, we'll clear it if we're not at
1717                  * gigabit link later */
1718                 tarc |= (1 << 21);
1719                 E1000_WRITE_REG(hw, TARC0, tarc);
1720         } else if (hw->mac_type == e1000_80003es2lan) {
1721                 tarc = E1000_READ_REG(hw, TARC0);
1722                 tarc |= 1;
1723                 E1000_WRITE_REG(hw, TARC0, tarc);
1724                 tarc = E1000_READ_REG(hw, TARC1);
1725                 tarc |= 1;
1726                 E1000_WRITE_REG(hw, TARC1, tarc);
1727         }
1728
1729         e1000_config_collision_dist(hw);
1730
1731         /* Setup Transmit Descriptor Settings for eop descriptor */
1732         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1733
1734         /* only set IDE if we are delaying interrupts using the timers */
1735         if (adapter->tx_int_delay)
1736                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1737
1738         if (hw->mac_type < e1000_82543)
1739                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1740         else
1741                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1742
1743         /* Cache if we're 82544 running in PCI-X because we'll
1744          * need this to apply a workaround later in the send path. */
1745         if (hw->mac_type == e1000_82544 &&
1746             hw->bus_type == e1000_bus_type_pcix)
1747                 adapter->pcix_82544 = 1;
1748
1749         E1000_WRITE_REG(hw, TCTL, tctl);
1750
1751 }
1752
1753 /**
1754  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1755  * @adapter: board private structure
1756  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1757  *
1758  * Returns 0 on success, negative on failure
1759  **/
1760
1761 static int
1762 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1763                          struct e1000_rx_ring *rxdr)
1764 {
1765         struct pci_dev *pdev = adapter->pdev;
1766         int size, desc_len;
1767
1768         size = sizeof(struct e1000_buffer) * rxdr->count;
1769         rxdr->buffer_info = vmalloc(size);
1770         if (!rxdr->buffer_info) {
1771                 DPRINTK(PROBE, ERR,
1772                 "Unable to allocate memory for the receive descriptor ring\n");
1773                 return -ENOMEM;
1774         }
1775         memset(rxdr->buffer_info, 0, size);
1776
1777         size = sizeof(struct e1000_ps_page) * rxdr->count;
1778         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1779         if (!rxdr->ps_page) {
1780                 vfree(rxdr->buffer_info);
1781                 DPRINTK(PROBE, ERR,
1782                 "Unable to allocate memory for the receive descriptor ring\n");
1783                 return -ENOMEM;
1784         }
1785         memset(rxdr->ps_page, 0, size);
1786
1787         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1788         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1789         if (!rxdr->ps_page_dma) {
1790                 vfree(rxdr->buffer_info);
1791                 kfree(rxdr->ps_page);
1792                 DPRINTK(PROBE, ERR,
1793                 "Unable to allocate memory for the receive descriptor ring\n");
1794                 return -ENOMEM;
1795         }
1796         memset(rxdr->ps_page_dma, 0, size);
1797
1798         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1799                 desc_len = sizeof(struct e1000_rx_desc);
1800         else
1801                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1802
1803         /* Round up to nearest 4K */
1804
1805         rxdr->size = rxdr->count * desc_len;
1806         E1000_ROUNDUP(rxdr->size, 4096);
1807
1808         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1809
1810         if (!rxdr->desc) {
1811                 DPRINTK(PROBE, ERR,
1812                 "Unable to allocate memory for the receive descriptor ring\n");
1813 setup_rx_desc_die:
1814                 vfree(rxdr->buffer_info);
1815                 kfree(rxdr->ps_page);
1816                 kfree(rxdr->ps_page_dma);
1817                 return -ENOMEM;
1818         }
1819
1820         /* Fix for errata 23, can't cross 64kB boundary */
1821         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1822                 void *olddesc = rxdr->desc;
1823                 dma_addr_t olddma = rxdr->dma;
1824                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1825                                      "at %p\n", rxdr->size, rxdr->desc);
1826                 /* Try again, without freeing the previous */
1827                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1828                 /* Failed allocation, critical failure */
1829                 if (!rxdr->desc) {
1830                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1831                         DPRINTK(PROBE, ERR,
1832                                 "Unable to allocate memory "
1833                                 "for the receive descriptor ring\n");
1834                         goto setup_rx_desc_die;
1835                 }
1836
1837                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1838                         /* give up */
1839                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1840                                             rxdr->dma);
1841                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1842                         DPRINTK(PROBE, ERR,
1843                                 "Unable to allocate aligned memory "
1844                                 "for the receive descriptor ring\n");
1845                         goto setup_rx_desc_die;
1846                 } else {
1847                         /* Free old allocation, new allocation was successful */
1848                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1849                 }
1850         }
1851         memset(rxdr->desc, 0, rxdr->size);
1852
1853         rxdr->next_to_clean = 0;
1854         rxdr->next_to_use = 0;
1855
1856         return 0;
1857 }
1858
1859 /**
1860  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1861  *                                (Descriptors) for all queues
1862  * @adapter: board private structure
1863  *
1864  * Return 0 on success, negative on failure
1865  **/
1866
1867 int
1868 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1869 {
1870         int i, err = 0;
1871
1872         for (i = 0; i < adapter->num_rx_queues; i++) {
1873                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1874                 if (err) {
1875                         DPRINTK(PROBE, ERR,
1876                                 "Allocation for Rx Queue %u failed\n", i);
1877                         for (i-- ; i >= 0; i--)
1878                                 e1000_free_rx_resources(adapter,
1879                                                         &adapter->rx_ring[i]);
1880                         break;
1881                 }
1882         }
1883
1884         return err;
1885 }
1886
1887 /**
1888  * e1000_setup_rctl - configure the receive control registers
1889  * @adapter: Board private structure
1890  **/
1891 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1892                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1893 static void
1894 e1000_setup_rctl(struct e1000_adapter *adapter)
1895 {
1896         uint32_t rctl, rfctl;
1897         uint32_t psrctl = 0;
1898 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1899         uint32_t pages = 0;
1900 #endif
1901
1902         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1903
1904         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1905
1906         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1907                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1908                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1909
1910         if (adapter->hw.tbi_compatibility_on == 1)
1911                 rctl |= E1000_RCTL_SBP;
1912         else
1913                 rctl &= ~E1000_RCTL_SBP;
1914
1915         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1916                 rctl &= ~E1000_RCTL_LPE;
1917         else
1918                 rctl |= E1000_RCTL_LPE;
1919
1920         /* Setup buffer sizes */
1921         rctl &= ~E1000_RCTL_SZ_4096;
1922         rctl |= E1000_RCTL_BSEX;
1923         switch (adapter->rx_buffer_len) {
1924                 case E1000_RXBUFFER_256:
1925                         rctl |= E1000_RCTL_SZ_256;
1926                         rctl &= ~E1000_RCTL_BSEX;
1927                         break;
1928                 case E1000_RXBUFFER_512:
1929                         rctl |= E1000_RCTL_SZ_512;
1930                         rctl &= ~E1000_RCTL_BSEX;
1931                         break;
1932                 case E1000_RXBUFFER_1024:
1933                         rctl |= E1000_RCTL_SZ_1024;
1934                         rctl &= ~E1000_RCTL_BSEX;
1935                         break;
1936                 case E1000_RXBUFFER_2048:
1937                 default:
1938                         rctl |= E1000_RCTL_SZ_2048;
1939                         rctl &= ~E1000_RCTL_BSEX;
1940                         break;
1941                 case E1000_RXBUFFER_4096:
1942                         rctl |= E1000_RCTL_SZ_4096;
1943                         break;
1944                 case E1000_RXBUFFER_8192:
1945                         rctl |= E1000_RCTL_SZ_8192;
1946                         break;
1947                 case E1000_RXBUFFER_16384:
1948                         rctl |= E1000_RCTL_SZ_16384;
1949                         break;
1950         }
1951
1952 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1953         /* 82571 and greater support packet-split where the protocol
1954          * header is placed in skb->data and the packet data is
1955          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1956          * In the case of a non-split, skb->data is linearly filled,
1957          * followed by the page buffers.  Therefore, skb->data is
1958          * sized to hold the largest protocol header.
1959          */
1960         /* allocations using alloc_page take too long for regular MTU
1961          * so only enable packet split for jumbo frames */
1962         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1963         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1964             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1965                 adapter->rx_ps_pages = pages;
1966         else
1967                 adapter->rx_ps_pages = 0;
1968 #endif
1969         if (adapter->rx_ps_pages) {
1970                 /* Configure extra packet-split registers */
1971                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1972                 rfctl |= E1000_RFCTL_EXTEN;
1973                 /* disable packet split support for IPv6 extension headers,
1974                  * because some malformed IPv6 headers can hang the RX */
1975                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1976                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1977
1978                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1979
1980                 rctl |= E1000_RCTL_DTYP_PS;
1981
1982                 psrctl |= adapter->rx_ps_bsize0 >>
1983                         E1000_PSRCTL_BSIZE0_SHIFT;
1984
1985                 switch (adapter->rx_ps_pages) {
1986                 case 3:
1987                         psrctl |= PAGE_SIZE <<
1988                                 E1000_PSRCTL_BSIZE3_SHIFT;
1989                 case 2:
1990                         psrctl |= PAGE_SIZE <<
1991                                 E1000_PSRCTL_BSIZE2_SHIFT;
1992                 case 1:
1993                         psrctl |= PAGE_SIZE >>
1994                                 E1000_PSRCTL_BSIZE1_SHIFT;
1995                         break;
1996                 }
1997
1998                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1999         }
2000
2001         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2002 }
2003
2004 /**
2005  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2006  * @adapter: board private structure
2007  *
2008  * Configure the Rx unit of the MAC after a reset.
2009  **/
2010
2011 static void
2012 e1000_configure_rx(struct e1000_adapter *adapter)
2013 {
2014         uint64_t rdba;
2015         struct e1000_hw *hw = &adapter->hw;
2016         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2017
2018         if (adapter->rx_ps_pages) {
2019                 /* this is a 32 byte descriptor */
2020                 rdlen = adapter->rx_ring[0].count *
2021                         sizeof(union e1000_rx_desc_packet_split);
2022                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2023                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2024         } else {
2025                 rdlen = adapter->rx_ring[0].count *
2026                         sizeof(struct e1000_rx_desc);
2027                 adapter->clean_rx = e1000_clean_rx_irq;
2028                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2029         }
2030
2031         /* disable receives while setting up the descriptors */
2032         rctl = E1000_READ_REG(hw, RCTL);
2033         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2034
2035         /* set the Receive Delay Timer Register */
2036         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2037
2038         if (hw->mac_type >= e1000_82540) {
2039                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2040                 if (adapter->itr_setting != 0)
2041                         E1000_WRITE_REG(hw, ITR,
2042                                 1000000000 / (adapter->itr * 256));
2043         }
2044
2045         if (hw->mac_type >= e1000_82571) {
2046                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2047                 /* Reset delay timers after every interrupt */
2048                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2049 #ifdef CONFIG_E1000_NAPI
2050                 /* Auto-Mask interrupts upon ICR access */
2051                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2052                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2053 #endif
2054                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2055                 E1000_WRITE_FLUSH(hw);
2056         }
2057
2058         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2059          * the Base and Length of the Rx Descriptor Ring */
2060         switch (adapter->num_rx_queues) {
2061         case 1:
2062         default:
2063                 rdba = adapter->rx_ring[0].dma;
2064                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2065                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2066                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2067                 E1000_WRITE_REG(hw, RDT, 0);
2068                 E1000_WRITE_REG(hw, RDH, 0);
2069                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2070                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2071                 break;
2072         }
2073
2074         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2075         if (hw->mac_type >= e1000_82543) {
2076                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2077                 if (adapter->rx_csum == TRUE) {
2078                         rxcsum |= E1000_RXCSUM_TUOFL;
2079
2080                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2081                          * Must be used in conjunction with packet-split. */
2082                         if ((hw->mac_type >= e1000_82571) &&
2083                             (adapter->rx_ps_pages)) {
2084                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2085                         }
2086                 } else {
2087                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2088                         /* don't need to clear IPPCSE as it defaults to 0 */
2089                 }
2090                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2091         }
2092
2093         /* enable early receives on 82573, only takes effect if using > 2048
2094          * byte total frame size.  for example only for jumbo frames */
2095 #define E1000_ERT_2048 0x100
2096         if (hw->mac_type == e1000_82573)
2097                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2098
2099         /* Enable Receives */
2100         E1000_WRITE_REG(hw, RCTL, rctl);
2101 }
2102
2103 /**
2104  * e1000_free_tx_resources - Free Tx Resources per Queue
2105  * @adapter: board private structure
2106  * @tx_ring: Tx descriptor ring for a specific queue
2107  *
2108  * Free all transmit software resources
2109  **/
2110
2111 static void
2112 e1000_free_tx_resources(struct e1000_adapter *adapter,
2113                         struct e1000_tx_ring *tx_ring)
2114 {
2115         struct pci_dev *pdev = adapter->pdev;
2116
2117         e1000_clean_tx_ring(adapter, tx_ring);
2118
2119         vfree(tx_ring->buffer_info);
2120         tx_ring->buffer_info = NULL;
2121
2122         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2123
2124         tx_ring->desc = NULL;
2125 }
2126
2127 /**
2128  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2129  * @adapter: board private structure
2130  *
2131  * Free all transmit software resources
2132  **/
2133
2134 void
2135 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2136 {
2137         int i;
2138
2139         for (i = 0; i < adapter->num_tx_queues; i++)
2140                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2141 }
2142
2143 static void
2144 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2145                         struct e1000_buffer *buffer_info)
2146 {
2147         if (buffer_info->dma) {
2148                 pci_unmap_page(adapter->pdev,
2149                                 buffer_info->dma,
2150                                 buffer_info->length,
2151                                 PCI_DMA_TODEVICE);
2152                 buffer_info->dma = 0;
2153         }
2154         if (buffer_info->skb) {
2155                 dev_kfree_skb_any(buffer_info->skb);
2156                 buffer_info->skb = NULL;
2157         }
2158         /* buffer_info must be completely set up in the transmit path */
2159 }
2160
2161 /**
2162  * e1000_clean_tx_ring - Free Tx Buffers
2163  * @adapter: board private structure
2164  * @tx_ring: ring to be cleaned
2165  **/
2166
2167 static void
2168 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2169                     struct e1000_tx_ring *tx_ring)
2170 {
2171         struct e1000_buffer *buffer_info;
2172         unsigned long size;
2173         unsigned int i;
2174
2175         /* Free all the Tx ring sk_buffs */
2176
2177         for (i = 0; i < tx_ring->count; i++) {
2178                 buffer_info = &tx_ring->buffer_info[i];
2179                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2180         }
2181
2182         size = sizeof(struct e1000_buffer) * tx_ring->count;
2183         memset(tx_ring->buffer_info, 0, size);
2184
2185         /* Zero out the descriptor ring */
2186
2187         memset(tx_ring->desc, 0, tx_ring->size);
2188
2189         tx_ring->next_to_use = 0;
2190         tx_ring->next_to_clean = 0;
2191         tx_ring->last_tx_tso = 0;
2192
2193         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2194         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2195 }
2196
2197 /**
2198  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2199  * @adapter: board private structure
2200  **/
2201
2202 static void
2203 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2204 {
2205         int i;
2206
2207         for (i = 0; i < adapter->num_tx_queues; i++)
2208                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2209 }
2210
2211 /**
2212  * e1000_free_rx_resources - Free Rx Resources
2213  * @adapter: board private structure
2214  * @rx_ring: ring to clean the resources from
2215  *
2216  * Free all receive software resources
2217  **/
2218
2219 static void
2220 e1000_free_rx_resources(struct e1000_adapter *adapter,
2221                         struct e1000_rx_ring *rx_ring)
2222 {
2223         struct pci_dev *pdev = adapter->pdev;
2224
2225         e1000_clean_rx_ring(adapter, rx_ring);
2226
2227         vfree(rx_ring->buffer_info);
2228         rx_ring->buffer_info = NULL;
2229         kfree(rx_ring->ps_page);
2230         rx_ring->ps_page = NULL;
2231         kfree(rx_ring->ps_page_dma);
2232         rx_ring->ps_page_dma = NULL;
2233
2234         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2235
2236         rx_ring->desc = NULL;
2237 }
2238
2239 /**
2240  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2241  * @adapter: board private structure
2242  *
2243  * Free all receive software resources
2244  **/
2245
2246 void
2247 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2248 {
2249         int i;
2250
2251         for (i = 0; i < adapter->num_rx_queues; i++)
2252                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2253 }
2254
2255 /**
2256  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2257  * @adapter: board private structure
2258  * @rx_ring: ring to free buffers from
2259  **/
2260
2261 static void
2262 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2263                     struct e1000_rx_ring *rx_ring)
2264 {
2265         struct e1000_buffer *buffer_info;
2266         struct e1000_ps_page *ps_page;
2267         struct e1000_ps_page_dma *ps_page_dma;
2268         struct pci_dev *pdev = adapter->pdev;
2269         unsigned long size;
2270         unsigned int i, j;
2271
2272         /* Free all the Rx ring sk_buffs */
2273         for (i = 0; i < rx_ring->count; i++) {
2274                 buffer_info = &rx_ring->buffer_info[i];
2275                 if (buffer_info->skb) {
2276                         pci_unmap_single(pdev,
2277                                          buffer_info->dma,
2278                                          buffer_info->length,
2279                                          PCI_DMA_FROMDEVICE);
2280
2281                         dev_kfree_skb(buffer_info->skb);
2282                         buffer_info->skb = NULL;
2283                 }
2284                 ps_page = &rx_ring->ps_page[i];
2285                 ps_page_dma = &rx_ring->ps_page_dma[i];
2286                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2287                         if (!ps_page->ps_page[j]) break;
2288                         pci_unmap_page(pdev,
2289                                        ps_page_dma->ps_page_dma[j],
2290                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2291                         ps_page_dma->ps_page_dma[j] = 0;
2292                         put_page(ps_page->ps_page[j]);
2293                         ps_page->ps_page[j] = NULL;
2294                 }
2295         }
2296
2297         size = sizeof(struct e1000_buffer) * rx_ring->count;
2298         memset(rx_ring->buffer_info, 0, size);
2299         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2300         memset(rx_ring->ps_page, 0, size);
2301         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2302         memset(rx_ring->ps_page_dma, 0, size);
2303
2304         /* Zero out the descriptor ring */
2305
2306         memset(rx_ring->desc, 0, rx_ring->size);
2307
2308         rx_ring->next_to_clean = 0;
2309         rx_ring->next_to_use = 0;
2310
2311         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2312         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2313 }
2314
2315 /**
2316  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2317  * @adapter: board private structure
2318  **/
2319
2320 static void
2321 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2322 {
2323         int i;
2324
2325         for (i = 0; i < adapter->num_rx_queues; i++)
2326                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2327 }
2328
2329 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2330  * and memory write and invalidate disabled for certain operations
2331  */
2332 static void
2333 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2334 {
2335         struct net_device *netdev = adapter->netdev;
2336         uint32_t rctl;
2337
2338         e1000_pci_clear_mwi(&adapter->hw);
2339
2340         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2341         rctl |= E1000_RCTL_RST;
2342         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2343         E1000_WRITE_FLUSH(&adapter->hw);
2344         mdelay(5);
2345
2346         if (netif_running(netdev))
2347                 e1000_clean_all_rx_rings(adapter);
2348 }
2349
2350 static void
2351 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2352 {
2353         struct net_device *netdev = adapter->netdev;
2354         uint32_t rctl;
2355
2356         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2357         rctl &= ~E1000_RCTL_RST;
2358         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2359         E1000_WRITE_FLUSH(&adapter->hw);
2360         mdelay(5);
2361
2362         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2363                 e1000_pci_set_mwi(&adapter->hw);
2364
2365         if (netif_running(netdev)) {
2366                 /* No need to loop, because 82542 supports only 1 queue */
2367                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2368                 e1000_configure_rx(adapter);
2369                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2370         }
2371 }
2372
2373 /**
2374  * e1000_set_mac - Change the Ethernet Address of the NIC
2375  * @netdev: network interface device structure
2376  * @p: pointer to an address structure
2377  *
2378  * Returns 0 on success, negative on failure
2379  **/
2380
2381 static int
2382 e1000_set_mac(struct net_device *netdev, void *p)
2383 {
2384         struct e1000_adapter *adapter = netdev_priv(netdev);
2385         struct sockaddr *addr = p;
2386
2387         if (!is_valid_ether_addr(addr->sa_data))
2388                 return -EADDRNOTAVAIL;
2389
2390         /* 82542 2.0 needs to be in reset to write receive address registers */
2391
2392         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2393                 e1000_enter_82542_rst(adapter);
2394
2395         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2396         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2397
2398         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2399
2400         /* With 82571 controllers, LAA may be overwritten (with the default)
2401          * due to controller reset from the other port. */
2402         if (adapter->hw.mac_type == e1000_82571) {
2403                 /* activate the work around */
2404                 adapter->hw.laa_is_present = 1;
2405
2406                 /* Hold a copy of the LAA in RAR[14] This is done so that
2407                  * between the time RAR[0] gets clobbered  and the time it
2408                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2409                  * of the RARs and no incoming packets directed to this port
2410                  * are dropped. Eventaully the LAA will be in RAR[0] and
2411                  * RAR[14] */
2412                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2413                                         E1000_RAR_ENTRIES - 1);
2414         }
2415
2416         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2417                 e1000_leave_82542_rst(adapter);
2418
2419         return 0;
2420 }
2421
2422 /**
2423  * e1000_set_multi - Multicast and Promiscuous mode set
2424  * @netdev: network interface device structure
2425  *
2426  * The set_multi entry point is called whenever the multicast address
2427  * list or the network interface flags are updated.  This routine is
2428  * responsible for configuring the hardware for proper multicast,
2429  * promiscuous mode, and all-multi behavior.
2430  **/
2431
2432 static void
2433 e1000_set_multi(struct net_device *netdev)
2434 {
2435         struct e1000_adapter *adapter = netdev_priv(netdev);
2436         struct e1000_hw *hw = &adapter->hw;
2437         struct dev_mc_list *mc_ptr;
2438         uint32_t rctl;
2439         uint32_t hash_value;
2440         int i, rar_entries = E1000_RAR_ENTRIES;
2441         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2442                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2443                                 E1000_NUM_MTA_REGISTERS;
2444
2445         if (adapter->hw.mac_type == e1000_ich8lan)
2446                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2447
2448         /* reserve RAR[14] for LAA over-write work-around */
2449         if (adapter->hw.mac_type == e1000_82571)
2450                 rar_entries--;
2451
2452         /* Check for Promiscuous and All Multicast modes */
2453
2454         rctl = E1000_READ_REG(hw, RCTL);
2455
2456         if (netdev->flags & IFF_PROMISC) {
2457                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2458         } else if (netdev->flags & IFF_ALLMULTI) {
2459                 rctl |= E1000_RCTL_MPE;
2460                 rctl &= ~E1000_RCTL_UPE;
2461         } else {
2462                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2463         }
2464
2465         E1000_WRITE_REG(hw, RCTL, rctl);
2466
2467         /* 82542 2.0 needs to be in reset to write receive address registers */
2468
2469         if (hw->mac_type == e1000_82542_rev2_0)
2470                 e1000_enter_82542_rst(adapter);
2471
2472         /* load the first 14 multicast address into the exact filters 1-14
2473          * RAR 0 is used for the station MAC adddress
2474          * if there are not 14 addresses, go ahead and clear the filters
2475          * -- with 82571 controllers only 0-13 entries are filled here
2476          */
2477         mc_ptr = netdev->mc_list;
2478
2479         for (i = 1; i < rar_entries; i++) {
2480                 if (mc_ptr) {
2481                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2482                         mc_ptr = mc_ptr->next;
2483                 } else {
2484                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2485                         E1000_WRITE_FLUSH(hw);
2486                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2487                         E1000_WRITE_FLUSH(hw);
2488                 }
2489         }
2490
2491         /* clear the old settings from the multicast hash table */
2492
2493         for (i = 0; i < mta_reg_count; i++) {
2494                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2495                 E1000_WRITE_FLUSH(hw);
2496         }
2497
2498         /* load any remaining addresses into the hash table */
2499
2500         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2501                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2502                 e1000_mta_set(hw, hash_value);
2503         }
2504
2505         if (hw->mac_type == e1000_82542_rev2_0)
2506                 e1000_leave_82542_rst(adapter);
2507 }
2508
2509 /* Need to wait a few seconds after link up to get diagnostic information from
2510  * the phy */
2511
2512 static void
2513 e1000_update_phy_info(unsigned long data)
2514 {
2515         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2516         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2517 }
2518
2519 /**
2520  * e1000_82547_tx_fifo_stall - Timer Call-back
2521  * @data: pointer to adapter cast into an unsigned long
2522  **/
2523
2524 static void
2525 e1000_82547_tx_fifo_stall(unsigned long data)
2526 {
2527         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2528         struct net_device *netdev = adapter->netdev;
2529         uint32_t tctl;
2530
2531         if (atomic_read(&adapter->tx_fifo_stall)) {
2532                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2533                     E1000_READ_REG(&adapter->hw, TDH)) &&
2534                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2535                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2536                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2537                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2538                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2539                         E1000_WRITE_REG(&adapter->hw, TCTL,
2540                                         tctl & ~E1000_TCTL_EN);
2541                         E1000_WRITE_REG(&adapter->hw, TDFT,
2542                                         adapter->tx_head_addr);
2543                         E1000_WRITE_REG(&adapter->hw, TDFH,
2544                                         adapter->tx_head_addr);
2545                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2546                                         adapter->tx_head_addr);
2547                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2548                                         adapter->tx_head_addr);
2549                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2550                         E1000_WRITE_FLUSH(&adapter->hw);
2551
2552                         adapter->tx_fifo_head = 0;
2553                         atomic_set(&adapter->tx_fifo_stall, 0);
2554                         netif_wake_queue(netdev);
2555                 } else {
2556                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2557                 }
2558         }
2559 }
2560
2561 /**
2562  * e1000_watchdog - Timer Call-back
2563  * @data: pointer to adapter cast into an unsigned long
2564  **/
2565 static void
2566 e1000_watchdog(unsigned long data)
2567 {
2568         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2569         struct net_device *netdev = adapter->netdev;
2570         struct e1000_tx_ring *txdr = adapter->tx_ring;
2571         uint32_t link, tctl;
2572         int32_t ret_val;
2573
2574         ret_val = e1000_check_for_link(&adapter->hw);
2575         if ((ret_val == E1000_ERR_PHY) &&
2576             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2577             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2578                 /* See e1000_kumeran_lock_loss_workaround() */
2579                 DPRINTK(LINK, INFO,
2580                         "Gigabit has been disabled, downgrading speed\n");
2581         }
2582
2583         if (adapter->hw.mac_type == e1000_82573) {
2584                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2585                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2586                         e1000_update_mng_vlan(adapter);
2587         }
2588
2589         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2590            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2591                 link = !adapter->hw.serdes_link_down;
2592         else
2593                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2594
2595         if (link) {
2596                 if (!netif_carrier_ok(netdev)) {
2597                         uint32_t ctrl;
2598                         boolean_t txb2b = 1;
2599                         e1000_get_speed_and_duplex(&adapter->hw,
2600                                                    &adapter->link_speed,
2601                                                    &adapter->link_duplex);
2602
2603                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2604                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2605                                 "Flow Control: %s\n",
2606                                 adapter->link_speed,
2607                                 adapter->link_duplex == FULL_DUPLEX ?
2608                                 "Full Duplex" : "Half Duplex",
2609                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2610                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2611                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2612                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2613
2614                         /* tweak tx_queue_len according to speed/duplex
2615                          * and adjust the timeout factor */
2616                         netdev->tx_queue_len = adapter->tx_queue_len;
2617                         adapter->tx_timeout_factor = 1;
2618                         switch (adapter->link_speed) {
2619                         case SPEED_10:
2620                                 txb2b = 0;
2621                                 netdev->tx_queue_len = 10;
2622                                 adapter->tx_timeout_factor = 8;
2623                                 break;
2624                         case SPEED_100:
2625                                 txb2b = 0;
2626                                 netdev->tx_queue_len = 100;
2627                                 /* maybe add some timeout factor ? */
2628                                 break;
2629                         }
2630
2631                         if ((adapter->hw.mac_type == e1000_82571 ||
2632                              adapter->hw.mac_type == e1000_82572) &&
2633                             txb2b == 0) {
2634                                 uint32_t tarc0;
2635                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2636                                 tarc0 &= ~(1 << 21);
2637                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2638                         }
2639
2640                         /* disable TSO for pcie and 10/100 speeds, to avoid
2641                          * some hardware issues */
2642                         if (!adapter->tso_force &&
2643                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2644                                 switch (adapter->link_speed) {
2645                                 case SPEED_10:
2646                                 case SPEED_100:
2647                                         DPRINTK(PROBE,INFO,
2648                                         "10/100 speed: disabling TSO\n");
2649                                         netdev->features &= ~NETIF_F_TSO;
2650                                         netdev->features &= ~NETIF_F_TSO6;
2651                                         break;
2652                                 case SPEED_1000:
2653                                         netdev->features |= NETIF_F_TSO;
2654                                         netdev->features |= NETIF_F_TSO6;
2655                                         break;
2656                                 default:
2657                                         /* oops */
2658                                         break;
2659                                 }
2660                         }
2661
2662                         /* enable transmits in the hardware, need to do this
2663                          * after setting TARC0 */
2664                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2665                         tctl |= E1000_TCTL_EN;
2666                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2667
2668                         netif_carrier_on(netdev);
2669                         netif_wake_queue(netdev);
2670                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2671                         adapter->smartspeed = 0;
2672                 } else {
2673                         /* make sure the receive unit is started */
2674                         if (adapter->hw.rx_needs_kicking) {
2675                                 struct e1000_hw *hw = &adapter->hw;
2676                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2677                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2678                         }
2679                 }
2680         } else {
2681                 if (netif_carrier_ok(netdev)) {
2682                         adapter->link_speed = 0;
2683                         adapter->link_duplex = 0;
2684                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2685                         netif_carrier_off(netdev);
2686                         netif_stop_queue(netdev);
2687                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2688
2689                         /* 80003ES2LAN workaround--
2690                          * For packet buffer work-around on link down event;
2691                          * disable receives in the ISR and
2692                          * reset device here in the watchdog
2693                          */
2694                         if (adapter->hw.mac_type == e1000_80003es2lan)
2695                                 /* reset device */
2696                                 schedule_work(&adapter->reset_task);
2697                 }
2698
2699                 e1000_smartspeed(adapter);
2700         }
2701
2702         e1000_update_stats(adapter);
2703
2704         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2705         adapter->tpt_old = adapter->stats.tpt;
2706         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2707         adapter->colc_old = adapter->stats.colc;
2708
2709         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2710         adapter->gorcl_old = adapter->stats.gorcl;
2711         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2712         adapter->gotcl_old = adapter->stats.gotcl;
2713
2714         e1000_update_adaptive(&adapter->hw);
2715
2716         if (!netif_carrier_ok(netdev)) {
2717                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2718                         /* We've lost link, so the controller stops DMA,
2719                          * but we've got queued Tx work that's never going
2720                          * to get done, so reset controller to flush Tx.
2721                          * (Do the reset outside of interrupt context). */
2722                         adapter->tx_timeout_count++;
2723                         schedule_work(&adapter->reset_task);
2724                 }
2725         }
2726
2727         /* Cause software interrupt to ensure rx ring is cleaned */
2728         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2729
2730         /* Force detection of hung controller every watchdog period */
2731         adapter->detect_tx_hung = TRUE;
2732
2733         /* With 82571 controllers, LAA may be overwritten due to controller
2734          * reset from the other port. Set the appropriate LAA in RAR[0] */
2735         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2736                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2737
2738         /* Reset the timer */
2739         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2740 }
2741
2742 enum latency_range {
2743         lowest_latency = 0,
2744         low_latency = 1,
2745         bulk_latency = 2,
2746         latency_invalid = 255
2747 };
2748
2749 /**
2750  * e1000_update_itr - update the dynamic ITR value based on statistics
2751  *      Stores a new ITR value based on packets and byte
2752  *      counts during the last interrupt.  The advantage of per interrupt
2753  *      computation is faster updates and more accurate ITR for the current
2754  *      traffic pattern.  Constants in this function were computed
2755  *      based on theoretical maximum wire speed and thresholds were set based
2756  *      on testing data as well as attempting to minimize response time
2757  *      while increasing bulk throughput.
2758  *      this functionality is controlled by the InterruptThrottleRate module
2759  *      parameter (see e1000_param.c)
2760  * @adapter: pointer to adapter
2761  * @itr_setting: current adapter->itr
2762  * @packets: the number of packets during this measurement interval
2763  * @bytes: the number of bytes during this measurement interval
2764  **/
2765 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2766                                    uint16_t itr_setting,
2767                                    int packets,
2768                                    int bytes)
2769 {
2770         unsigned int retval = itr_setting;
2771         struct e1000_hw *hw = &adapter->hw;
2772
2773         if (unlikely(hw->mac_type < e1000_82540))
2774                 goto update_itr_done;
2775
2776         if (packets == 0)
2777                 goto update_itr_done;
2778
2779         switch (itr_setting) {
2780         case lowest_latency:
2781                 /* jumbo frames get bulk treatment*/
2782                 if (bytes/packets > 8000)
2783                         retval = bulk_latency;
2784                 else if ((packets < 5) && (bytes > 512))
2785                         retval = low_latency;
2786                 break;
2787         case low_latency:  /* 50 usec aka 20000 ints/s */
2788                 if (bytes > 10000) {
2789                         /* jumbo frames need bulk latency setting */
2790                         if (bytes/packets > 8000)
2791                                 retval = bulk_latency;
2792                         else if ((packets < 10) || ((bytes/packets) > 1200))
2793                                 retval = bulk_latency;
2794                         else if ((packets > 35))
2795                                 retval = lowest_latency;
2796                 } else if (bytes/packets > 2000)
2797                         retval = bulk_latency;
2798                 else if (packets <= 2 && bytes < 512)
2799                         retval = lowest_latency;
2800                 break;
2801         case bulk_latency: /* 250 usec aka 4000 ints/s */
2802                 if (bytes > 25000) {
2803                         if (packets > 35)
2804                                 retval = low_latency;
2805                 } else if (bytes < 6000) {
2806                         retval = low_latency;
2807                 }
2808                 break;
2809         }
2810
2811 update_itr_done:
2812         return retval;
2813 }
2814
2815 static void e1000_set_itr(struct e1000_adapter *adapter)
2816 {
2817         struct e1000_hw *hw = &adapter->hw;
2818         uint16_t current_itr;
2819         uint32_t new_itr = adapter->itr;
2820
2821         if (unlikely(hw->mac_type < e1000_82540))
2822                 return;
2823
2824         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2825         if (unlikely(adapter->link_speed != SPEED_1000)) {
2826                 current_itr = 0;
2827                 new_itr = 4000;
2828                 goto set_itr_now;
2829         }
2830
2831         adapter->tx_itr = e1000_update_itr(adapter,
2832                                     adapter->tx_itr,
2833                                     adapter->total_tx_packets,
2834                                     adapter->total_tx_bytes);
2835         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2836         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2837                 adapter->tx_itr = low_latency;
2838
2839         adapter->rx_itr = e1000_update_itr(adapter,
2840                                     adapter->rx_itr,
2841                                     adapter->total_rx_packets,
2842                                     adapter->total_rx_bytes);
2843         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2844         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2845                 adapter->rx_itr = low_latency;
2846
2847         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2848
2849         switch (current_itr) {
2850         /* counts and packets in update_itr are dependent on these numbers */
2851         case lowest_latency:
2852                 new_itr = 70000;
2853                 break;
2854         case low_latency:
2855                 new_itr = 20000; /* aka hwitr = ~200 */
2856                 break;
2857         case bulk_latency:
2858                 new_itr = 4000;
2859                 break;
2860         default:
2861                 break;
2862         }
2863
2864 set_itr_now:
2865         if (new_itr != adapter->itr) {
2866                 /* this attempts to bias the interrupt rate towards Bulk
2867                  * by adding intermediate steps when interrupt rate is
2868                  * increasing */
2869                 new_itr = new_itr > adapter->itr ?
2870                              min(adapter->itr + (new_itr >> 2), new_itr) :
2871                              new_itr;
2872                 adapter->itr = new_itr;
2873                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2874         }
2875
2876         return;
2877 }
2878
2879 #define E1000_TX_FLAGS_CSUM             0x00000001
2880 #define E1000_TX_FLAGS_VLAN             0x00000002
2881 #define E1000_TX_FLAGS_TSO              0x00000004
2882 #define E1000_TX_FLAGS_IPV4             0x00000008
2883 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2884 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2885
2886 static int
2887 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2888           struct sk_buff *skb)
2889 {
2890         struct e1000_context_desc *context_desc;
2891         struct e1000_buffer *buffer_info;
2892         unsigned int i;
2893         uint32_t cmd_length = 0;
2894         uint16_t ipcse = 0, tucse, mss;
2895         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2896         int err;
2897
2898         if (skb_is_gso(skb)) {
2899                 if (skb_header_cloned(skb)) {
2900                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2901                         if (err)
2902                                 return err;
2903                 }
2904
2905                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2906                 mss = skb_shinfo(skb)->gso_size;
2907                 if (skb->protocol == htons(ETH_P_IP)) {
2908                         skb->nh.iph->tot_len = 0;
2909                         skb->nh.iph->check = 0;
2910                         skb->h.th->check =
2911                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2912                                                    skb->nh.iph->daddr,
2913                                                    0,
2914                                                    IPPROTO_TCP,
2915                                                    0);
2916                         cmd_length = E1000_TXD_CMD_IP;
2917                         ipcse = skb->h.raw - skb->data - 1;
2918                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2919                         skb->nh.ipv6h->payload_len = 0;
2920                         skb->h.th->check =
2921                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2922                                                  &skb->nh.ipv6h->daddr,
2923                                                  0,
2924                                                  IPPROTO_TCP,
2925                                                  0);
2926                         ipcse = 0;
2927                 }
2928                 ipcss = skb->nh.raw - skb->data;
2929                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2930                 tucss = skb->h.raw - skb->data;
2931                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2932                 tucse = 0;
2933
2934                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2935                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2936
2937                 i = tx_ring->next_to_use;
2938                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2939                 buffer_info = &tx_ring->buffer_info[i];
2940
2941                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2942                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2943                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2944                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2945                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2946                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2947                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2948                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2949                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2950
2951                 buffer_info->time_stamp = jiffies;
2952                 buffer_info->next_to_watch = i;
2953
2954                 if (++i == tx_ring->count) i = 0;
2955                 tx_ring->next_to_use = i;
2956
2957                 return TRUE;
2958         }
2959         return FALSE;
2960 }
2961
2962 static boolean_t
2963 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2964               struct sk_buff *skb)
2965 {
2966         struct e1000_context_desc *context_desc;
2967         struct e1000_buffer *buffer_info;
2968         unsigned int i;
2969         uint8_t css;
2970
2971         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2972                 css = skb->h.raw - skb->data;
2973
2974                 i = tx_ring->next_to_use;
2975                 buffer_info = &tx_ring->buffer_info[i];
2976                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2977
2978                 context_desc->lower_setup.ip_config = 0;
2979                 context_desc->upper_setup.tcp_fields.tucss = css;
2980                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2981                 context_desc->upper_setup.tcp_fields.tucse = 0;
2982                 context_desc->tcp_seg_setup.data = 0;
2983                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2984
2985                 buffer_info->time_stamp = jiffies;
2986                 buffer_info->next_to_watch = i;
2987
2988                 if (unlikely(++i == tx_ring->count)) i = 0;
2989                 tx_ring->next_to_use = i;
2990
2991                 return TRUE;
2992         }
2993
2994         return FALSE;
2995 }
2996
2997 #define E1000_MAX_TXD_PWR       12
2998 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2999
3000 static int
3001 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3002              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
3003              unsigned int nr_frags, unsigned int mss)
3004 {
3005         struct e1000_buffer *buffer_info;
3006         unsigned int len = skb->len;
3007         unsigned int offset = 0, size, count = 0, i;
3008         unsigned int f;
3009         len -= skb->data_len;
3010
3011         i = tx_ring->next_to_use;
3012
3013         while (len) {
3014                 buffer_info = &tx_ring->buffer_info[i];
3015                 size = min(len, max_per_txd);
3016                 /* Workaround for Controller erratum --
3017                  * descriptor for non-tso packet in a linear SKB that follows a
3018                  * tso gets written back prematurely before the data is fully
3019                  * DMA'd to the controller */
3020                 if (!skb->data_len && tx_ring->last_tx_tso &&
3021                     !skb_is_gso(skb)) {
3022                         tx_ring->last_tx_tso = 0;
3023                         size -= 4;
3024                 }
3025
3026                 /* Workaround for premature desc write-backs
3027                  * in TSO mode.  Append 4-byte sentinel desc */
3028                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3029                         size -= 4;
3030                 /* work-around for errata 10 and it applies
3031                  * to all controllers in PCI-X mode
3032                  * The fix is to make sure that the first descriptor of a
3033                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3034                  */
3035                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3036                                 (size > 2015) && count == 0))
3037                         size = 2015;
3038
3039                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3040                  * terminating buffers within evenly-aligned dwords. */
3041                 if (unlikely(adapter->pcix_82544 &&
3042                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3043                    size > 4))
3044                         size -= 4;
3045
3046                 buffer_info->length = size;
3047                 buffer_info->dma =
3048                         pci_map_single(adapter->pdev,
3049                                 skb->data + offset,
3050                                 size,
3051                                 PCI_DMA_TODEVICE);
3052                 buffer_info->time_stamp = jiffies;
3053                 buffer_info->next_to_watch = i;
3054
3055                 len -= size;
3056                 offset += size;
3057                 count++;
3058                 if (unlikely(++i == tx_ring->count)) i = 0;
3059         }
3060
3061         for (f = 0; f < nr_frags; f++) {
3062                 struct skb_frag_struct *frag;
3063
3064                 frag = &skb_shinfo(skb)->frags[f];
3065                 len = frag->size;
3066                 offset = frag->page_offset;
3067
3068                 while (len) {
3069                         buffer_info = &tx_ring->buffer_info[i];
3070                         size = min(len, max_per_txd);
3071                         /* Workaround for premature desc write-backs
3072                          * in TSO mode.  Append 4-byte sentinel desc */
3073                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3074                                 size -= 4;
3075                         /* Workaround for potential 82544 hang in PCI-X.
3076                          * Avoid terminating buffers within evenly-aligned
3077                          * dwords. */
3078                         if (unlikely(adapter->pcix_82544 &&
3079                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3080                            size > 4))
3081                                 size -= 4;
3082
3083                         buffer_info->length = size;
3084                         buffer_info->dma =
3085                                 pci_map_page(adapter->pdev,
3086                                         frag->page,
3087                                         offset,
3088                                         size,
3089                                         PCI_DMA_TODEVICE);
3090                         buffer_info->time_stamp = jiffies;
3091                         buffer_info->next_to_watch = i;
3092
3093                         len -= size;
3094                         offset += size;
3095                         count++;
3096                         if (unlikely(++i == tx_ring->count)) i = 0;
3097                 }
3098         }
3099
3100         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3101         tx_ring->buffer_info[i].skb = skb;
3102         tx_ring->buffer_info[first].next_to_watch = i;
3103
3104         return count;
3105 }
3106
3107 static void
3108 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3109                int tx_flags, int count)
3110 {
3111         struct e1000_tx_desc *tx_desc = NULL;
3112         struct e1000_buffer *buffer_info;
3113         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3114         unsigned int i;
3115
3116         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3117                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3118                              E1000_TXD_CMD_TSE;
3119                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3120
3121                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3122                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3123         }
3124
3125         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3126                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3127                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3128         }
3129
3130         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3131                 txd_lower |= E1000_TXD_CMD_VLE;
3132                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3133         }
3134
3135         i = tx_ring->next_to_use;
3136
3137         while (count--) {
3138                 buffer_info = &tx_ring->buffer_info[i];
3139                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3140                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3141                 tx_desc->lower.data =
3142                         cpu_to_le32(txd_lower | buffer_info->length);
3143                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3144                 if (unlikely(++i == tx_ring->count)) i = 0;
3145         }
3146
3147         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3148
3149         /* Force memory writes to complete before letting h/w
3150          * know there are new descriptors to fetch.  (Only
3151          * applicable for weak-ordered memory model archs,
3152          * such as IA-64). */
3153         wmb();
3154
3155         tx_ring->next_to_use = i;
3156         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3157         /* we need this if more than one processor can write to our tail
3158          * at a time, it syncronizes IO on IA64/Altix systems */
3159         mmiowb();
3160 }
3161
3162 /**
3163  * 82547 workaround to avoid controller hang in half-duplex environment.
3164  * The workaround is to avoid queuing a large packet that would span
3165  * the internal Tx FIFO ring boundary by notifying the stack to resend
3166  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3167  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3168  * to the beginning of the Tx FIFO.
3169  **/
3170
3171 #define E1000_FIFO_HDR                  0x10
3172 #define E1000_82547_PAD_LEN             0x3E0
3173
3174 static int
3175 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3176 {
3177         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3178         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3179
3180         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3181
3182         if (adapter->link_duplex != HALF_DUPLEX)
3183                 goto no_fifo_stall_required;
3184
3185         if (atomic_read(&adapter->tx_fifo_stall))
3186                 return 1;
3187
3188         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3189                 atomic_set(&adapter->tx_fifo_stall, 1);
3190                 return 1;
3191         }
3192
3193 no_fifo_stall_required:
3194         adapter->tx_fifo_head += skb_fifo_len;
3195         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3196                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3197         return 0;
3198 }
3199
3200 #define MINIMUM_DHCP_PACKET_SIZE 282
3201 static int
3202 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3203 {
3204         struct e1000_hw *hw =  &adapter->hw;
3205         uint16_t length, offset;
3206         if (vlan_tx_tag_present(skb)) {
3207                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3208                         ( adapter->hw.mng_cookie.status &
3209                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3210                         return 0;
3211         }
3212         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3213                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3214                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3215                         const struct iphdr *ip =
3216                                 (struct iphdr *)((uint8_t *)skb->data+14);
3217                         if (IPPROTO_UDP == ip->protocol) {
3218                                 struct udphdr *udp =
3219                                         (struct udphdr *)((uint8_t *)ip +
3220                                                 (ip->ihl << 2));
3221                                 if (ntohs(udp->dest) == 67) {
3222                                         offset = (uint8_t *)udp + 8 - skb->data;
3223                                         length = skb->len - offset;
3224
3225                                         return e1000_mng_write_dhcp_info(hw,
3226                                                         (uint8_t *)udp + 8,
3227                                                         length);
3228                                 }
3229                         }
3230                 }
3231         }
3232         return 0;
3233 }
3234
3235 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3236 {
3237         struct e1000_adapter *adapter = netdev_priv(netdev);
3238         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3239
3240         netif_stop_queue(netdev);
3241         /* Herbert's original patch had:
3242          *  smp_mb__after_netif_stop_queue();
3243          * but since that doesn't exist yet, just open code it. */
3244         smp_mb();
3245
3246         /* We need to check again in a case another CPU has just
3247          * made room available. */
3248         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3249                 return -EBUSY;
3250
3251         /* A reprieve! */
3252         netif_start_queue(netdev);
3253         ++adapter->restart_queue;
3254         return 0;
3255 }
3256
3257 static int e1000_maybe_stop_tx(struct net_device *netdev,
3258                                struct e1000_tx_ring *tx_ring, int size)
3259 {
3260         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3261                 return 0;
3262         return __e1000_maybe_stop_tx(netdev, size);
3263 }
3264
3265 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3266 static int
3267 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3268 {
3269         struct e1000_adapter *adapter = netdev_priv(netdev);
3270         struct e1000_tx_ring *tx_ring;
3271         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3272         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3273         unsigned int tx_flags = 0;
3274         unsigned int len = skb->len;
3275         unsigned long flags;
3276         unsigned int nr_frags = 0;
3277         unsigned int mss = 0;
3278         int count = 0;
3279         int tso;
3280         unsigned int f;
3281         len -= skb->data_len;
3282
3283         /* This goes back to the question of how to logically map a tx queue
3284          * to a flow.  Right now, performance is impacted slightly negatively
3285          * if using multiple tx queues.  If the stack breaks away from a
3286          * single qdisc implementation, we can look at this again. */
3287         tx_ring = adapter->tx_ring;
3288
3289         if (unlikely(skb->len <= 0)) {
3290                 dev_kfree_skb_any(skb);
3291                 return NETDEV_TX_OK;
3292         }
3293
3294         /* 82571 and newer doesn't need the workaround that limited descriptor
3295          * length to 4kB */
3296         if (adapter->hw.mac_type >= e1000_82571)
3297                 max_per_txd = 8192;
3298
3299         mss = skb_shinfo(skb)->gso_size;
3300         /* The controller does a simple calculation to
3301          * make sure there is enough room in the FIFO before
3302          * initiating the DMA for each buffer.  The calc is:
3303          * 4 = ceil(buffer len/mss).  To make sure we don't
3304          * overrun the FIFO, adjust the max buffer len if mss
3305          * drops. */
3306         if (mss) {
3307                 uint8_t hdr_len;
3308                 max_per_txd = min(mss << 2, max_per_txd);
3309                 max_txd_pwr = fls(max_per_txd) - 1;
3310
3311                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3312                 * points to just header, pull a few bytes of payload from
3313                 * frags into skb->data */
3314                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3315                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3316                         switch (adapter->hw.mac_type) {
3317                                 unsigned int pull_size;
3318                         case e1000_82544:
3319                                 /* Make sure we have room to chop off 4 bytes,
3320                                  * and that the end alignment will work out to
3321                                  * this hardware's requirements
3322                                  * NOTE: this is a TSO only workaround
3323                                  * if end byte alignment not correct move us
3324                                  * into the next dword */
3325                                 if ((unsigned long)(skb->tail - 1) & 4)
3326                                         break;
3327                                 /* fall through */
3328                         case e1000_82571:
3329                         case e1000_82572:
3330                         case e1000_82573:
3331                         case e1000_ich8lan:
3332                                 pull_size = min((unsigned int)4, skb->data_len);
3333                                 if (!__pskb_pull_tail(skb, pull_size)) {
3334                                         DPRINTK(DRV, ERR,
3335                                                 "__pskb_pull_tail failed.\n");
3336                                         dev_kfree_skb_any(skb);
3337                                         return NETDEV_TX_OK;
3338                                 }
3339                                 len = skb->len - skb->data_len;
3340                                 break;
3341                         default:
3342                                 /* do nothing */
3343                                 break;
3344                         }
3345                 }
3346         }
3347
3348         /* reserve a descriptor for the offload context */
3349         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3350                 count++;
3351         count++;
3352
3353         /* Controller Erratum workaround */
3354         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3355                 count++;
3356
3357         count += TXD_USE_COUNT(len, max_txd_pwr);
3358
3359         if (adapter->pcix_82544)
3360                 count++;
3361
3362         /* work-around for errata 10 and it applies to all controllers
3363          * in PCI-X mode, so add one more descriptor to the count
3364          */
3365         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3366                         (len > 2015)))
3367                 count++;
3368
3369         nr_frags = skb_shinfo(skb)->nr_frags;
3370         for (f = 0; f < nr_frags; f++)
3371                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3372                                        max_txd_pwr);
3373         if (adapter->pcix_82544)
3374                 count += nr_frags;
3375
3376
3377         if (adapter->hw.tx_pkt_filtering &&
3378             (adapter->hw.mac_type == e1000_82573))
3379                 e1000_transfer_dhcp_info(adapter, skb);
3380
3381         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3382                 /* Collision - tell upper layer to requeue */
3383                 return NETDEV_TX_LOCKED;
3384
3385         /* need: count + 2 desc gap to keep tail from touching
3386          * head, otherwise try next time */
3387         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3388                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3389                 return NETDEV_TX_BUSY;
3390         }
3391
3392         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3393                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3394                         netif_stop_queue(netdev);
3395                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3396                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3397                         return NETDEV_TX_BUSY;
3398                 }
3399         }
3400
3401         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3402                 tx_flags |= E1000_TX_FLAGS_VLAN;
3403                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3404         }
3405
3406         first = tx_ring->next_to_use;
3407
3408         tso = e1000_tso(adapter, tx_ring, skb);
3409         if (tso < 0) {
3410                 dev_kfree_skb_any(skb);
3411                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3412                 return NETDEV_TX_OK;
3413         }
3414
3415         if (likely(tso)) {
3416                 tx_ring->last_tx_tso = 1;
3417                 tx_flags |= E1000_TX_FLAGS_TSO;
3418         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3419                 tx_flags |= E1000_TX_FLAGS_CSUM;
3420
3421         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3422          * 82571 hardware supports TSO capabilities for IPv6 as well...
3423          * no longer assume, we must. */
3424         if (likely(skb->protocol == htons(ETH_P_IP)))
3425                 tx_flags |= E1000_TX_FLAGS_IPV4;
3426
3427         e1000_tx_queue(adapter, tx_ring, tx_flags,
3428                        e1000_tx_map(adapter, tx_ring, skb, first,
3429                                     max_per_txd, nr_frags, mss));
3430
3431         netdev->trans_start = jiffies;
3432
3433         /* Make sure there is space in the ring for the next send. */
3434         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3435
3436         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3437         return NETDEV_TX_OK;
3438 }
3439
3440 /**
3441  * e1000_tx_timeout - Respond to a Tx Hang
3442  * @netdev: network interface device structure
3443  **/
3444
3445 static void
3446 e1000_tx_timeout(struct net_device *netdev)
3447 {
3448         struct e1000_adapter *adapter = netdev_priv(netdev);
3449
3450         /* Do the reset outside of interrupt context */
3451         adapter->tx_timeout_count++;
3452         schedule_work(&adapter->reset_task);
3453 }
3454
3455 static void
3456 e1000_reset_task(struct work_struct *work)
3457 {
3458         struct e1000_adapter *adapter =
3459                 container_of(work, struct e1000_adapter, reset_task);
3460
3461         e1000_reinit_locked(adapter);
3462 }
3463
3464 /**
3465  * e1000_get_stats - Get System Network Statistics
3466  * @netdev: network interface device structure
3467  *
3468  * Returns the address of the device statistics structure.
3469  * The statistics are actually updated from the timer callback.
3470  **/
3471
3472 static struct net_device_stats *
3473 e1000_get_stats(struct net_device *netdev)
3474 {
3475         struct e1000_adapter *adapter = netdev_priv(netdev);
3476
3477         /* only return the current stats */
3478         return &adapter->net_stats;
3479 }
3480
3481 /**
3482  * e1000_change_mtu - Change the Maximum Transfer Unit
3483  * @netdev: network interface device structure
3484  * @new_mtu: new value for maximum frame size
3485  *
3486  * Returns 0 on success, negative on failure
3487  **/
3488
3489 static int
3490 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3491 {
3492         struct e1000_adapter *adapter = netdev_priv(netdev);
3493         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3494         uint16_t eeprom_data = 0;
3495
3496         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3497             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3498                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3499                 return -EINVAL;
3500         }
3501
3502         /* Adapter-specific max frame size limits. */
3503         switch (adapter->hw.mac_type) {
3504         case e1000_undefined ... e1000_82542_rev2_1:
3505         case e1000_ich8lan:
3506                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3507                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3508                         return -EINVAL;
3509                 }
3510                 break;
3511         case e1000_82573:
3512                 /* Jumbo Frames not supported if:
3513                  * - this is not an 82573L device
3514                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3515                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3516                                   &eeprom_data);
3517                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3518                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3519                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3520                                 DPRINTK(PROBE, ERR,
3521                                         "Jumbo Frames not supported.\n");
3522                                 return -EINVAL;
3523                         }
3524                         break;
3525                 }
3526                 /* ERT will be enabled later to enable wire speed receives */
3527
3528                 /* fall through to get support */
3529         case e1000_82571:
3530         case e1000_82572:
3531         case e1000_80003es2lan:
3532 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3533                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3534                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3535                         return -EINVAL;
3536                 }
3537                 break;
3538         default:
3539                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540                 break;
3541         }
3542
3543         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3544          * means we reserve 2 more, this pushes us to allocate from the next
3545          * larger slab size
3546          * i.e. RXBUFFER_2048 --> size-4096 slab */
3547
3548         if (max_frame <= E1000_RXBUFFER_256)
3549                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3550         else if (max_frame <= E1000_RXBUFFER_512)
3551                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3552         else if (max_frame <= E1000_RXBUFFER_1024)
3553                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3554         else if (max_frame <= E1000_RXBUFFER_2048)
3555                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3556         else if (max_frame <= E1000_RXBUFFER_4096)
3557                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3558         else if (max_frame <= E1000_RXBUFFER_8192)
3559                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3560         else if (max_frame <= E1000_RXBUFFER_16384)
3561                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3562
3563         /* adjust allocation if LPE protects us, and we aren't using SBP */
3564         if (!adapter->hw.tbi_compatibility_on &&
3565             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3566              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3567                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3568
3569         netdev->mtu = new_mtu;
3570         adapter->hw.max_frame_size = max_frame;
3571
3572         if (netif_running(netdev))
3573                 e1000_reinit_locked(adapter);
3574
3575         return 0;
3576 }
3577
3578 /**
3579  * e1000_update_stats - Update the board statistics counters
3580  * @adapter: board private structure
3581  **/
3582
3583 void
3584 e1000_update_stats(struct e1000_adapter *adapter)
3585 {
3586         struct e1000_hw *hw = &adapter->hw;
3587         struct pci_dev *pdev = adapter->pdev;
3588         unsigned long flags;
3589         uint16_t phy_tmp;
3590
3591 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3592
3593         /*
3594          * Prevent stats update while adapter is being reset, or if the pci
3595          * connection is down.
3596          */
3597         if (adapter->link_speed == 0)
3598                 return;
3599         if (pci_channel_offline(pdev))
3600                 return;
3601
3602         spin_lock_irqsave(&adapter->stats_lock, flags);
3603
3604         /* these counters are modified from e1000_adjust_tbi_stats,
3605          * called from the interrupt context, so they must only
3606          * be written while holding adapter->stats_lock
3607          */
3608
3609         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3610         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3611         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3612         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3613         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3614         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3615         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3616
3617         if (adapter->hw.mac_type != e1000_ich8lan) {
3618                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3619                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3620                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3621                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3622                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3623                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3624         }
3625
3626         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3627         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3628         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3629         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3630         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3631         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3632         adapter->stats.dc += E1000_READ_REG(hw, DC);
3633         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3634         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3635         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3636         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3637         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3638         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3639         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3640         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3641         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3642         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3643         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3644         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3645         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3646         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3647         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3648         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3649         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3650         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3651         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3652
3653         if (adapter->hw.mac_type != e1000_ich8lan) {
3654                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3655                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3656                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3657                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3658                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3659                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3660         }
3661
3662         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3663         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3664
3665         /* used for adaptive IFS */
3666
3667         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3668         adapter->stats.tpt += hw->tx_packet_delta;
3669         hw->collision_delta = E1000_READ_REG(hw, COLC);
3670         adapter->stats.colc += hw->collision_delta;
3671
3672         if (hw->mac_type >= e1000_82543) {
3673                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3674                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3675                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3676                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3677                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3678                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3679         }
3680         if (hw->mac_type > e1000_82547_rev_2) {
3681                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3682                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3683
3684                 if (adapter->hw.mac_type != e1000_ich8lan) {
3685                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3686                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3687                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3688                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3689                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3690                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3691                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3692                 }
3693         }
3694
3695         /* Fill out the OS statistics structure */
3696         adapter->net_stats.rx_packets = adapter->stats.gprc;
3697         adapter->net_stats.tx_packets = adapter->stats.gptc;
3698         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3699         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3700         adapter->net_stats.multicast = adapter->stats.mprc;
3701         adapter->net_stats.collisions = adapter->stats.colc;
3702
3703         /* Rx Errors */
3704
3705         /* RLEC on some newer hardware can be incorrect so build
3706         * our own version based on RUC and ROC */
3707         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3708                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3709                 adapter->stats.ruc + adapter->stats.roc +
3710                 adapter->stats.cexterr;
3711         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3712         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3713         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3714         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3715         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3716
3717         /* Tx Errors */
3718         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3719         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3720         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3721         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3722         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3723         if (adapter->hw.bad_tx_carr_stats_fd &&
3724             adapter->link_duplex == FULL_DUPLEX) {
3725                 adapter->net_stats.tx_carrier_errors = 0;
3726                 adapter->stats.tncrs = 0;
3727         }
3728
3729         /* Tx Dropped needs to be maintained elsewhere */
3730
3731         /* Phy Stats */
3732         if (hw->media_type == e1000_media_type_copper) {
3733                 if ((adapter->link_speed == SPEED_1000) &&
3734                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3735                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3736                         adapter->phy_stats.idle_errors += phy_tmp;
3737                 }
3738
3739                 if ((hw->mac_type <= e1000_82546) &&
3740                    (hw->phy_type == e1000_phy_m88) &&
3741                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3742                         adapter->phy_stats.receive_errors += phy_tmp;
3743         }
3744
3745         /* Management Stats */
3746         if (adapter->hw.has_smbus) {
3747                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3748                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3749                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3750         }
3751
3752         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3753 }
3754 #ifdef CONFIG_PCI_MSI
3755
3756 /**
3757  * e1000_intr_msi - Interrupt Handler
3758  * @irq: interrupt number
3759  * @data: pointer to a network interface device structure
3760  **/
3761
3762 static irqreturn_t
3763 e1000_intr_msi(int irq, void *data)
3764 {
3765         struct net_device *netdev = data;
3766         struct e1000_adapter *adapter = netdev_priv(netdev);
3767         struct e1000_hw *hw = &adapter->hw;
3768 #ifndef CONFIG_E1000_NAPI
3769         int i;
3770 #endif
3771         uint32_t icr = E1000_READ_REG(hw, ICR);
3772
3773 #ifdef CONFIG_E1000_NAPI
3774         /* read ICR disables interrupts using IAM, so keep up with our
3775          * enable/disable accounting */
3776         atomic_inc(&adapter->irq_sem);
3777 #endif
3778         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3779                 hw->get_link_status = 1;
3780                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3781                  * link down event; disable receives here in the ISR and reset
3782                  * adapter in watchdog */
3783                 if (netif_carrier_ok(netdev) &&
3784                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3785                         /* disable receives */
3786                         uint32_t rctl = E1000_READ_REG(hw, RCTL);
3787                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3788                 }
3789                 /* guard against interrupt when we're going down */
3790                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3791                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3792         }
3793
3794 #ifdef CONFIG_E1000_NAPI
3795         if (likely(netif_rx_schedule_prep(netdev))) {
3796                 adapter->total_tx_bytes = 0;
3797                 adapter->total_tx_packets = 0;
3798                 adapter->total_rx_bytes = 0;
3799                 adapter->total_rx_packets = 0;
3800                 __netif_rx_schedule(netdev);
3801         } else
3802                 e1000_irq_enable(adapter);
3803 #else
3804         adapter->total_tx_bytes = 0;
3805         adapter->total_rx_bytes = 0;
3806         adapter->total_tx_packets = 0;
3807         adapter->total_rx_packets = 0;
3808
3809         for (i = 0; i < E1000_MAX_INTR; i++)
3810                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3811                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3812                         break;
3813
3814         if (likely(adapter->itr_setting & 3))
3815                 e1000_set_itr(adapter);
3816 #endif
3817
3818         return IRQ_HANDLED;
3819 }
3820 #endif
3821
3822 /**
3823  * e1000_intr - Interrupt Handler
3824  * @irq: interrupt number
3825  * @data: pointer to a network interface device structure
3826  **/
3827
3828 static irqreturn_t
3829 e1000_intr(int irq, void *data)
3830 {
3831         struct net_device *netdev = data;
3832         struct e1000_adapter *adapter = netdev_priv(netdev);
3833         struct e1000_hw *hw = &adapter->hw;
3834         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3835 #ifndef CONFIG_E1000_NAPI
3836         int i;
3837 #endif
3838         if (unlikely(!icr))
3839                 return IRQ_NONE;  /* Not our interrupt */
3840
3841 #ifdef CONFIG_E1000_NAPI
3842         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3843          * not set, then the adapter didn't send an interrupt */
3844         if (unlikely(hw->mac_type >= e1000_82571 &&
3845                      !(icr & E1000_ICR_INT_ASSERTED)))
3846                 return IRQ_NONE;
3847
3848         /* Interrupt Auto-Mask...upon reading ICR,
3849          * interrupts are masked.  No need for the
3850          * IMC write, but it does mean we should
3851          * account for it ASAP. */
3852         if (likely(hw->mac_type >= e1000_82571))
3853                 atomic_inc(&adapter->irq_sem);
3854 #endif
3855
3856         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3857                 hw->get_link_status = 1;
3858                 /* 80003ES2LAN workaround--
3859                  * For packet buffer work-around on link down event;
3860                  * disable receives here in the ISR and
3861                  * reset adapter in watchdog
3862                  */
3863                 if (netif_carrier_ok(netdev) &&
3864                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3865                         /* disable receives */
3866                         rctl = E1000_READ_REG(hw, RCTL);
3867                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3868                 }
3869                 /* guard against interrupt when we're going down */
3870                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3871                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3872         }
3873
3874 #ifdef CONFIG_E1000_NAPI
3875         if (unlikely(hw->mac_type < e1000_82571)) {
3876                 /* disable interrupts, without the synchronize_irq bit */
3877                 atomic_inc(&adapter->irq_sem);
3878                 E1000_WRITE_REG(hw, IMC, ~0);
3879                 E1000_WRITE_FLUSH(hw);
3880         }
3881         if (likely(netif_rx_schedule_prep(netdev))) {
3882                 adapter->total_tx_bytes = 0;
3883                 adapter->total_tx_packets = 0;
3884                 adapter->total_rx_bytes = 0;
3885                 adapter->total_rx_packets = 0;
3886                 __netif_rx_schedule(netdev);
3887         } else
3888                 /* this really should not happen! if it does it is basically a
3889                  * bug, but not a hard error, so enable ints and continue */
3890                 e1000_irq_enable(adapter);
3891 #else
3892         /* Writing IMC and IMS is needed for 82547.
3893          * Due to Hub Link bus being occupied, an interrupt
3894          * de-assertion message is not able to be sent.
3895          * When an interrupt assertion message is generated later,
3896          * two messages are re-ordered and sent out.
3897          * That causes APIC to think 82547 is in de-assertion
3898          * state, while 82547 is in assertion state, resulting
3899          * in dead lock. Writing IMC forces 82547 into
3900          * de-assertion state.
3901          */
3902         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3903                 atomic_inc(&adapter->irq_sem);
3904                 E1000_WRITE_REG(hw, IMC, ~0);
3905         }
3906
3907         adapter->total_tx_bytes = 0;
3908         adapter->total_rx_bytes = 0;
3909         adapter->total_tx_packets = 0;
3910         adapter->total_rx_packets = 0;
3911
3912         for (i = 0; i < E1000_MAX_INTR; i++)
3913                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3914                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3915                         break;
3916
3917         if (likely(adapter->itr_setting & 3))
3918                 e1000_set_itr(adapter);
3919
3920         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3921                 e1000_irq_enable(adapter);
3922
3923 #endif
3924         return IRQ_HANDLED;
3925 }
3926
3927 #ifdef CONFIG_E1000_NAPI
3928 /**
3929  * e1000_clean - NAPI Rx polling callback
3930  * @adapter: board private structure
3931  **/
3932
3933 static int
3934 e1000_clean(struct net_device *poll_dev, int *budget)
3935 {
3936         struct e1000_adapter *adapter;
3937         int work_to_do = min(*budget, poll_dev->quota);
3938         int tx_cleaned = 0, work_done = 0;
3939
3940         /* Must NOT use netdev_priv macro here. */
3941         adapter = poll_dev->priv;
3942
3943         /* Keep link state information with original netdev */
3944         if (!netif_carrier_ok(poll_dev))
3945                 goto quit_polling;
3946
3947         /* e1000_clean is called per-cpu.  This lock protects
3948          * tx_ring[0] from being cleaned by multiple cpus
3949          * simultaneously.  A failure obtaining the lock means
3950          * tx_ring[0] is currently being cleaned anyway. */
3951         if (spin_trylock(&adapter->tx_queue_lock)) {
3952                 tx_cleaned = e1000_clean_tx_irq(adapter,
3953                                                 &adapter->tx_ring[0]);
3954                 spin_unlock(&adapter->tx_queue_lock);
3955         }
3956
3957         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3958                           &work_done, work_to_do);
3959
3960         *budget -= work_done;
3961         poll_dev->quota -= work_done;
3962
3963         /* If no Tx and not enough Rx work done, exit the polling mode */
3964         if ((!tx_cleaned && (work_done == 0)) ||
3965            !netif_running(poll_dev)) {
3966 quit_polling:
3967                 if (likely(adapter->itr_setting & 3))
3968                         e1000_set_itr(adapter);
3969                 netif_rx_complete(poll_dev);
3970                 e1000_irq_enable(adapter);
3971                 return 0;
3972         }
3973
3974         return 1;
3975 }
3976
3977 #endif
3978 /**
3979  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3980  * @adapter: board private structure
3981  **/
3982
3983 static boolean_t
3984 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3985                    struct e1000_tx_ring *tx_ring)
3986 {
3987         struct net_device *netdev = adapter->netdev;
3988         struct e1000_tx_desc *tx_desc, *eop_desc;
3989         struct e1000_buffer *buffer_info;
3990         unsigned int i, eop;
3991 #ifdef CONFIG_E1000_NAPI
3992         unsigned int count = 0;
3993 #endif
3994         boolean_t cleaned = FALSE;
3995         unsigned int total_tx_bytes=0, total_tx_packets=0;
3996
3997         i = tx_ring->next_to_clean;
3998         eop = tx_ring->buffer_info[i].next_to_watch;
3999         eop_desc = E1000_TX_DESC(*tx_ring, eop);
4000
4001         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
4002                 for (cleaned = FALSE; !cleaned; ) {
4003                         tx_desc = E1000_TX_DESC(*tx_ring, i);
4004                         buffer_info = &tx_ring->buffer_info[i];
4005                         cleaned = (i == eop);
4006
4007                         if (cleaned) {
4008                                 struct sk_buff *skb = buffer_info->skb;
4009                                 unsigned int segs, bytecount;
4010                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4011                                 /* multiply data chunks by size of headers */
4012                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4013                                             skb->len;
4014                                 total_tx_packets += segs;
4015                                 total_tx_bytes += bytecount;
4016                         }
4017                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4018                         tx_desc->upper.data = 0;
4019
4020                         if (unlikely(++i == tx_ring->count)) i = 0;
4021                 }
4022
4023                 eop = tx_ring->buffer_info[i].next_to_watch;
4024                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4025 #ifdef CONFIG_E1000_NAPI
4026 #define E1000_TX_WEIGHT 64
4027                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4028                 if (count++ == E1000_TX_WEIGHT) break;
4029 #endif
4030         }
4031
4032         tx_ring->next_to_clean = i;
4033
4034 #define TX_WAKE_THRESHOLD 32
4035         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4036                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4037                 /* Make sure that anybody stopping the queue after this
4038                  * sees the new next_to_clean.
4039                  */
4040                 smp_mb();
4041                 if (netif_queue_stopped(netdev)) {
4042                         netif_wake_queue(netdev);
4043                         ++adapter->restart_queue;
4044                 }
4045         }
4046
4047         if (adapter->detect_tx_hung) {
4048                 /* Detect a transmit hang in hardware, this serializes the
4049                  * check with the clearing of time_stamp and movement of i */
4050                 adapter->detect_tx_hung = FALSE;
4051                 if (tx_ring->buffer_info[eop].dma &&
4052                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4053                                (adapter->tx_timeout_factor * HZ))
4054                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4055                          E1000_STATUS_TXOFF)) {
4056
4057                         /* detected Tx unit hang */
4058                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4059                                         "  Tx Queue             <%lu>\n"
4060                                         "  TDH                  <%x>\n"
4061                                         "  TDT                  <%x>\n"
4062                                         "  next_to_use          <%x>\n"
4063                                         "  next_to_clean        <%x>\n"
4064                                         "buffer_info[next_to_clean]\n"
4065                                         "  time_stamp           <%lx>\n"
4066                                         "  next_to_watch        <%x>\n"
4067                                         "  jiffies              <%lx>\n"
4068                                         "  next_to_watch.status <%x>\n",
4069                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4070                                         sizeof(struct e1000_tx_ring)),
4071                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4072                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4073                                 tx_ring->next_to_use,
4074                                 tx_ring->next_to_clean,
4075                                 tx_ring->buffer_info[eop].time_stamp,
4076                                 eop,
4077                                 jiffies,
4078                                 eop_desc->upper.fields.status);
4079                         netif_stop_queue(netdev);
4080                 }
4081         }
4082         adapter->total_tx_bytes += total_tx_bytes;
4083         adapter->total_tx_packets += total_tx_packets;
4084         return cleaned;
4085 }
4086
4087 /**
4088  * e1000_rx_checksum - Receive Checksum Offload for 82543
4089  * @adapter:     board private structure
4090  * @status_err:  receive descriptor status and error fields
4091  * @csum:        receive descriptor csum field
4092  * @sk_buff:     socket buffer with received data
4093  **/
4094
4095 static void
4096 e1000_rx_checksum(struct e1000_adapter *adapter,
4097                   uint32_t status_err, uint32_t csum,
4098                   struct sk_buff *skb)
4099 {
4100         uint16_t status = (uint16_t)status_err;
4101         uint8_t errors = (uint8_t)(status_err >> 24);
4102         skb->ip_summed = CHECKSUM_NONE;
4103
4104         /* 82543 or newer only */
4105         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4106         /* Ignore Checksum bit is set */
4107         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4108         /* TCP/UDP checksum error bit is set */
4109         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4110                 /* let the stack verify checksum errors */
4111                 adapter->hw_csum_err++;
4112                 return;
4113         }
4114         /* TCP/UDP Checksum has not been calculated */
4115         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4116                 if (!(status & E1000_RXD_STAT_TCPCS))
4117                         return;
4118         } else {
4119                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4120                         return;
4121         }
4122         /* It must be a TCP or UDP packet with a valid checksum */
4123         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4124                 /* TCP checksum is good */
4125                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4126         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4127                 /* IP fragment with UDP payload */
4128                 /* Hardware complements the payload checksum, so we undo it
4129                  * and then put the value in host order for further stack use.
4130                  */
4131                 csum = ntohl(csum ^ 0xFFFF);
4132                 skb->csum = csum;
4133                 skb->ip_summed = CHECKSUM_COMPLETE;
4134         }
4135         adapter->hw_csum_good++;
4136 }
4137
4138 /**
4139  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4140  * @adapter: board private structure
4141  **/
4142
4143 static boolean_t
4144 #ifdef CONFIG_E1000_NAPI
4145 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4146                    struct e1000_rx_ring *rx_ring,
4147                    int *work_done, int work_to_do)
4148 #else
4149 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4150                    struct e1000_rx_ring *rx_ring)
4151 #endif
4152 {
4153         struct net_device *netdev = adapter->netdev;
4154         struct pci_dev *pdev = adapter->pdev;
4155         struct e1000_rx_desc *rx_desc, *next_rxd;
4156         struct e1000_buffer *buffer_info, *next_buffer;
4157         unsigned long flags;
4158         uint32_t length;
4159         uint8_t last_byte;
4160         unsigned int i;
4161         int cleaned_count = 0;
4162         boolean_t cleaned = FALSE;
4163         unsigned int total_rx_bytes=0, total_rx_packets=0;
4164
4165         i = rx_ring->next_to_clean;
4166         rx_desc = E1000_RX_DESC(*rx_ring, i);
4167         buffer_info = &rx_ring->buffer_info[i];
4168
4169         while (rx_desc->status & E1000_RXD_STAT_DD) {
4170                 struct sk_buff *skb;
4171                 u8 status;
4172
4173 #ifdef CONFIG_E1000_NAPI
4174                 if (*work_done >= work_to_do)
4175                         break;
4176                 (*work_done)++;
4177 #endif
4178                 status = rx_desc->status;
4179                 skb = buffer_info->skb;
4180                 buffer_info->skb = NULL;
4181
4182                 prefetch(skb->data - NET_IP_ALIGN);
4183
4184                 if (++i == rx_ring->count) i = 0;
4185                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4186                 prefetch(next_rxd);
4187
4188                 next_buffer = &rx_ring->buffer_info[i];
4189
4190                 cleaned = TRUE;
4191                 cleaned_count++;
4192                 pci_unmap_single(pdev,
4193                                  buffer_info->dma,
4194                                  buffer_info->length,
4195                                  PCI_DMA_FROMDEVICE);
4196
4197                 length = le16_to_cpu(rx_desc->length);
4198
4199                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4200                         /* All receives must fit into a single buffer */
4201                         E1000_DBG("%s: Receive packet consumed multiple"
4202                                   " buffers\n", netdev->name);
4203                         /* recycle */
4204                         buffer_info->skb = skb;
4205                         goto next_desc;
4206                 }
4207
4208                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4209                         last_byte = *(skb->data + length - 1);
4210                         if (TBI_ACCEPT(&adapter->hw, status,
4211                                       rx_desc->errors, length, last_byte)) {
4212                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4213                                 e1000_tbi_adjust_stats(&adapter->hw,
4214                                                        &adapter->stats,
4215                                                        length, skb->data);
4216                                 spin_unlock_irqrestore(&adapter->stats_lock,
4217                                                        flags);
4218                                 length--;
4219                         } else {
4220                                 /* recycle */
4221                                 buffer_info->skb = skb;
4222                                 goto next_desc;
4223                         }
4224                 }
4225
4226                 /* adjust length to remove Ethernet CRC, this must be
4227                  * done after the TBI_ACCEPT workaround above */
4228                 length -= 4;
4229
4230                 /* probably a little skewed due to removing CRC */
4231                 total_rx_bytes += length;
4232                 total_rx_packets++;
4233
4234                 /* code added for copybreak, this should improve
4235                  * performance for small packets with large amounts
4236                  * of reassembly being done in the stack */
4237                 if (length < copybreak) {
4238                         struct sk_buff *new_skb =
4239                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4240                         if (new_skb) {
4241                                 skb_reserve(new_skb, NET_IP_ALIGN);
4242                                 memcpy(new_skb->data - NET_IP_ALIGN,
4243                                        skb->data - NET_IP_ALIGN,
4244                                        length + NET_IP_ALIGN);
4245                                 /* save the skb in buffer_info as good */
4246                                 buffer_info->skb = skb;
4247                                 skb = new_skb;
4248                         }
4249                         /* else just continue with the old one */
4250                 }
4251                 /* end copybreak code */
4252                 skb_put(skb, length);
4253
4254                 /* Receive Checksum Offload */
4255                 e1000_rx_checksum(adapter,
4256                                   (uint32_t)(status) |
4257                                   ((uint32_t)(rx_desc->errors) << 24),
4258                                   le16_to_cpu(rx_desc->csum), skb);
4259
4260                 skb->protocol = eth_type_trans(skb, netdev);
4261 #ifdef CONFIG_E1000_NAPI
4262                 if (unlikely(adapter->vlgrp &&
4263                             (status & E1000_RXD_STAT_VP))) {
4264                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4265                                                  le16_to_cpu(rx_desc->special) &
4266                                                  E1000_RXD_SPC_VLAN_MASK);
4267                 } else {
4268                         netif_receive_skb(skb);
4269                 }
4270 #else /* CONFIG_E1000_NAPI */
4271                 if (unlikely(adapter->vlgrp &&
4272                             (status & E1000_RXD_STAT_VP))) {
4273                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4274                                         le16_to_cpu(rx_desc->special) &
4275                                         E1000_RXD_SPC_VLAN_MASK);
4276                 } else {
4277                         netif_rx(skb);
4278                 }
4279 #endif /* CONFIG_E1000_NAPI */
4280                 netdev->last_rx = jiffies;
4281
4282 next_desc:
4283                 rx_desc->status = 0;
4284
4285                 /* return some buffers to hardware, one at a time is too slow */
4286                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4287                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4288                         cleaned_count = 0;
4289                 }
4290
4291                 /* use prefetched values */
4292                 rx_desc = next_rxd;
4293                 buffer_info = next_buffer;
4294         }
4295         rx_ring->next_to_clean = i;
4296
4297         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4298         if (cleaned_count)
4299                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300
4301         adapter->total_rx_packets += total_rx_packets;
4302         adapter->total_rx_bytes += total_rx_bytes;
4303         return cleaned;
4304 }
4305
4306 /**
4307  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4308  * @adapter: board private structure
4309  **/
4310
4311 static boolean_t
4312 #ifdef CONFIG_E1000_NAPI
4313 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4314                       struct e1000_rx_ring *rx_ring,
4315                       int *work_done, int work_to_do)
4316 #else
4317 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4318                       struct e1000_rx_ring *rx_ring)
4319 #endif
4320 {
4321         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4322         struct net_device *netdev = adapter->netdev;
4323         struct pci_dev *pdev = adapter->pdev;
4324         struct e1000_buffer *buffer_info, *next_buffer;
4325         struct e1000_ps_page *ps_page;
4326         struct e1000_ps_page_dma *ps_page_dma;
4327         struct sk_buff *skb;
4328         unsigned int i, j;
4329         uint32_t length, staterr;
4330         int cleaned_count = 0;
4331         boolean_t cleaned = FALSE;
4332         unsigned int total_rx_bytes=0, total_rx_packets=0;
4333
4334         i = rx_ring->next_to_clean;
4335         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4336         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4337         buffer_info = &rx_ring->buffer_info[i];
4338
4339         while (staterr & E1000_RXD_STAT_DD) {
4340                 ps_page = &rx_ring->ps_page[i];
4341                 ps_page_dma = &rx_ring->ps_page_dma[i];
4342 #ifdef CONFIG_E1000_NAPI
4343                 if (unlikely(*work_done >= work_to_do))
4344                         break;
4345                 (*work_done)++;
4346 #endif
4347                 skb = buffer_info->skb;
4348
4349                 /* in the packet split case this is header only */
4350                 prefetch(skb->data - NET_IP_ALIGN);
4351
4352                 if (++i == rx_ring->count) i = 0;
4353                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4354                 prefetch(next_rxd);
4355
4356                 next_buffer = &rx_ring->buffer_info[i];
4357
4358                 cleaned = TRUE;
4359                 cleaned_count++;
4360                 pci_unmap_single(pdev, buffer_info->dma,
4361                                  buffer_info->length,
4362                                  PCI_DMA_FROMDEVICE);
4363
4364                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4365                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4366                                   " the full packet\n", netdev->name);
4367                         dev_kfree_skb_irq(skb);
4368                         goto next_desc;
4369                 }
4370
4371                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4372                         dev_kfree_skb_irq(skb);
4373                         goto next_desc;
4374                 }
4375
4376                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4377
4378                 if (unlikely(!length)) {
4379                         E1000_DBG("%s: Last part of the packet spanning"
4380                                   " multiple descriptors\n", netdev->name);
4381                         dev_kfree_skb_irq(skb);
4382                         goto next_desc;
4383                 }
4384
4385                 /* Good Receive */
4386                 skb_put(skb, length);
4387
4388                 {
4389                 /* this looks ugly, but it seems compiler issues make it
4390                    more efficient than reusing j */
4391                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4392
4393                 /* page alloc/put takes too long and effects small packet
4394                  * throughput, so unsplit small packets and save the alloc/put*/
4395                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4396                         u8 *vaddr;
4397                         /* there is no documentation about how to call
4398                          * kmap_atomic, so we can't hold the mapping
4399                          * very long */
4400                         pci_dma_sync_single_for_cpu(pdev,
4401                                 ps_page_dma->ps_page_dma[0],
4402                                 PAGE_SIZE,
4403                                 PCI_DMA_FROMDEVICE);
4404                         vaddr = kmap_atomic(ps_page->ps_page[0],
4405                                             KM_SKB_DATA_SOFTIRQ);
4406                         memcpy(skb->tail, vaddr, l1);
4407                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4408                         pci_dma_sync_single_for_device(pdev,
4409                                 ps_page_dma->ps_page_dma[0],
4410                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4411                         /* remove the CRC */
4412                         l1 -= 4;
4413                         skb_put(skb, l1);
4414                         goto copydone;
4415                 } /* if */
4416                 }
4417
4418                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4419                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4420                                 break;
4421                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4422                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4423                         ps_page_dma->ps_page_dma[j] = 0;
4424                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4425                                            length);
4426                         ps_page->ps_page[j] = NULL;
4427                         skb->len += length;
4428                         skb->data_len += length;
4429                         skb->truesize += length;
4430                 }
4431
4432                 /* strip the ethernet crc, problem is we're using pages now so
4433                  * this whole operation can get a little cpu intensive */
4434                 pskb_trim(skb, skb->len - 4);
4435
4436 copydone:
4437                 total_rx_bytes += skb->len;
4438                 total_rx_packets++;
4439
4440                 e1000_rx_checksum(adapter, staterr,
4441                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4442                 skb->protocol = eth_type_trans(skb, netdev);
4443
4444                 if (likely(rx_desc->wb.upper.header_status &
4445                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4446                         adapter->rx_hdr_split++;
4447 #ifdef CONFIG_E1000_NAPI
4448                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4449                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4450                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4451                                 E1000_RXD_SPC_VLAN_MASK);
4452                 } else {
4453                         netif_receive_skb(skb);
4454                 }
4455 #else /* CONFIG_E1000_NAPI */
4456                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4457                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4458                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4459                                 E1000_RXD_SPC_VLAN_MASK);
4460                 } else {
4461                         netif_rx(skb);
4462                 }
4463 #endif /* CONFIG_E1000_NAPI */
4464                 netdev->last_rx = jiffies;
4465
4466 next_desc:
4467                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4468                 buffer_info->skb = NULL;
4469
4470                 /* return some buffers to hardware, one at a time is too slow */
4471                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473                         cleaned_count = 0;
4474                 }
4475
4476                 /* use prefetched values */
4477                 rx_desc = next_rxd;
4478                 buffer_info = next_buffer;
4479
4480                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4481         }
4482         rx_ring->next_to_clean = i;
4483
4484         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4485         if (cleaned_count)
4486                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4487
4488         adapter->total_rx_packets += total_rx_packets;
4489         adapter->total_rx_bytes += total_rx_bytes;
4490         return cleaned;
4491 }
4492
4493 /**
4494  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4495  * @adapter: address of board private structure
4496  **/
4497
4498 static void
4499 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4500                        struct e1000_rx_ring *rx_ring,
4501                        int cleaned_count)
4502 {
4503         struct net_device *netdev = adapter->netdev;
4504         struct pci_dev *pdev = adapter->pdev;
4505         struct e1000_rx_desc *rx_desc;
4506         struct e1000_buffer *buffer_info;
4507         struct sk_buff *skb;
4508         unsigned int i;
4509         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4510
4511         i = rx_ring->next_to_use;
4512         buffer_info = &rx_ring->buffer_info[i];
4513
4514         while (cleaned_count--) {
4515                 skb = buffer_info->skb;
4516                 if (skb) {
4517                         skb_trim(skb, 0);
4518                         goto map_skb;
4519                 }
4520
4521                 skb = netdev_alloc_skb(netdev, bufsz);
4522                 if (unlikely(!skb)) {
4523                         /* Better luck next round */
4524                         adapter->alloc_rx_buff_failed++;
4525                         break;
4526                 }
4527
4528                 /* Fix for errata 23, can't cross 64kB boundary */
4529                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4530                         struct sk_buff *oldskb = skb;
4531                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4532                                              "at %p\n", bufsz, skb->data);
4533                         /* Try again, without freeing the previous */
4534                         skb = netdev_alloc_skb(netdev, bufsz);
4535                         /* Failed allocation, critical failure */
4536                         if (!skb) {
4537                                 dev_kfree_skb(oldskb);
4538                                 break;
4539                         }
4540
4541                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4542                                 /* give up */
4543                                 dev_kfree_skb(skb);
4544                                 dev_kfree_skb(oldskb);
4545                                 break; /* while !buffer_info->skb */
4546                         }
4547
4548                         /* Use new allocation */
4549                         dev_kfree_skb(oldskb);
4550                 }
4551                 /* Make buffer alignment 2 beyond a 16 byte boundary
4552                  * this will result in a 16 byte aligned IP header after
4553                  * the 14 byte MAC header is removed
4554                  */
4555                 skb_reserve(skb, NET_IP_ALIGN);
4556
4557                 buffer_info->skb = skb;
4558                 buffer_info->length = adapter->rx_buffer_len;
4559 map_skb:
4560                 buffer_info->dma = pci_map_single(pdev,
4561                                                   skb->data,
4562                                                   adapter->rx_buffer_len,
4563                                                   PCI_DMA_FROMDEVICE);
4564
4565                 /* Fix for errata 23, can't cross 64kB boundary */
4566                 if (!e1000_check_64k_bound(adapter,
4567                                         (void *)(unsigned long)buffer_info->dma,
4568                                         adapter->rx_buffer_len)) {
4569                         DPRINTK(RX_ERR, ERR,
4570                                 "dma align check failed: %u bytes at %p\n",
4571                                 adapter->rx_buffer_len,
4572                                 (void *)(unsigned long)buffer_info->dma);
4573                         dev_kfree_skb(skb);
4574                         buffer_info->skb = NULL;
4575
4576                         pci_unmap_single(pdev, buffer_info->dma,
4577                                          adapter->rx_buffer_len,
4578                                          PCI_DMA_FROMDEVICE);
4579
4580                         break; /* while !buffer_info->skb */
4581                 }
4582                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4583                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4584
4585                 if (unlikely(++i == rx_ring->count))
4586                         i = 0;
4587                 buffer_info = &rx_ring->buffer_info[i];
4588         }
4589
4590         if (likely(rx_ring->next_to_use != i)) {
4591                 rx_ring->next_to_use = i;
4592                 if (unlikely(i-- == 0))
4593                         i = (rx_ring->count - 1);
4594
4595                 /* Force memory writes to complete before letting h/w
4596                  * know there are new descriptors to fetch.  (Only
4597                  * applicable for weak-ordered memory model archs,
4598                  * such as IA-64). */
4599                 wmb();
4600                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4601         }
4602 }
4603
4604 /**
4605  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4606  * @adapter: address of board private structure
4607  **/
4608
4609 static void
4610 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4611                           struct e1000_rx_ring *rx_ring,
4612                           int cleaned_count)
4613 {
4614         struct net_device *netdev = adapter->netdev;
4615         struct pci_dev *pdev = adapter->pdev;
4616         union e1000_rx_desc_packet_split *rx_desc;
4617         struct e1000_buffer *buffer_info;
4618         struct e1000_ps_page *ps_page;
4619         struct e1000_ps_page_dma *ps_page_dma;
4620         struct sk_buff *skb;
4621         unsigned int i, j;
4622
4623         i = rx_ring->next_to_use;
4624         buffer_info = &rx_ring->buffer_info[i];
4625         ps_page = &rx_ring->ps_page[i];
4626         ps_page_dma = &rx_ring->ps_page_dma[i];
4627
4628         while (cleaned_count--) {
4629                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4630
4631                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4632                         if (j < adapter->rx_ps_pages) {
4633                                 if (likely(!ps_page->ps_page[j])) {
4634                                         ps_page->ps_page[j] =
4635                                                 alloc_page(GFP_ATOMIC);
4636                                         if (unlikely(!ps_page->ps_page[j])) {
4637                                                 adapter->alloc_rx_buff_failed++;
4638                                                 goto no_buffers;
4639                                         }
4640                                         ps_page_dma->ps_page_dma[j] =
4641                                                 pci_map_page(pdev,
4642                                                             ps_page->ps_page[j],
4643                                                             0, PAGE_SIZE,
4644                                                             PCI_DMA_FROMDEVICE);
4645                                 }
4646                                 /* Refresh the desc even if buffer_addrs didn't
4647                                  * change because each write-back erases
4648                                  * this info.
4649                                  */
4650                                 rx_desc->read.buffer_addr[j+1] =
4651                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4652                         } else
4653                                 rx_desc->read.buffer_addr[j+1] = ~0;
4654                 }
4655
4656                 skb = netdev_alloc_skb(netdev,
4657                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4658
4659                 if (unlikely(!skb)) {
4660                         adapter->alloc_rx_buff_failed++;
4661                         break;
4662                 }
4663
4664                 /* Make buffer alignment 2 beyond a 16 byte boundary
4665                  * this will result in a 16 byte aligned IP header after
4666                  * the 14 byte MAC header is removed
4667                  */
4668                 skb_reserve(skb, NET_IP_ALIGN);
4669
4670                 buffer_info->skb = skb;
4671                 buffer_info->length = adapter->rx_ps_bsize0;
4672                 buffer_info->dma = pci_map_single(pdev, skb->data,
4673                                                   adapter->rx_ps_bsize0,
4674                                                   PCI_DMA_FROMDEVICE);
4675
4676                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4677
4678                 if (unlikely(++i == rx_ring->count)) i = 0;
4679                 buffer_info = &rx_ring->buffer_info[i];
4680                 ps_page = &rx_ring->ps_page[i];
4681                 ps_page_dma = &rx_ring->ps_page_dma[i];
4682         }
4683
4684 no_buffers:
4685         if (likely(rx_ring->next_to_use != i)) {
4686                 rx_ring->next_to_use = i;
4687                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4688
4689                 /* Force memory writes to complete before letting h/w
4690                  * know there are new descriptors to fetch.  (Only
4691                  * applicable for weak-ordered memory model archs,
4692                  * such as IA-64). */
4693                 wmb();
4694                 /* Hardware increments by 16 bytes, but packet split
4695                  * descriptors are 32 bytes...so we increment tail
4696                  * twice as much.
4697                  */
4698                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4699         }
4700 }
4701
4702 /**
4703  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4704  * @adapter:
4705  **/
4706
4707 static void
4708 e1000_smartspeed(struct e1000_adapter *adapter)
4709 {
4710         uint16_t phy_status;
4711         uint16_t phy_ctrl;
4712
4713         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4714            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4715                 return;
4716
4717         if (adapter->smartspeed == 0) {
4718                 /* If Master/Slave config fault is asserted twice,
4719                  * we assume back-to-back */
4720                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4721                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4722                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4723                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4724                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4725                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4726                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4727                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4728                                             phy_ctrl);
4729                         adapter->smartspeed++;
4730                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4731                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4732                                                &phy_ctrl)) {
4733                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4734                                              MII_CR_RESTART_AUTO_NEG);
4735                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4736                                                     phy_ctrl);
4737                         }
4738                 }
4739                 return;
4740         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4741                 /* If still no link, perhaps using 2/3 pair cable */
4742                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4743                 phy_ctrl |= CR_1000T_MS_ENABLE;
4744                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4745                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4746                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4747                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4748                                      MII_CR_RESTART_AUTO_NEG);
4749                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4750                 }
4751         }
4752         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4753         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4754                 adapter->smartspeed = 0;
4755 }
4756
4757 /**
4758  * e1000_ioctl -
4759  * @netdev:
4760  * @ifreq:
4761  * @cmd:
4762  **/
4763
4764 static int
4765 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4766 {
4767         switch (cmd) {
4768         case SIOCGMIIPHY:
4769         case SIOCGMIIREG:
4770         case SIOCSMIIREG:
4771                 return e1000_mii_ioctl(netdev, ifr, cmd);
4772         default:
4773                 return -EOPNOTSUPP;
4774         }
4775 }
4776
4777 /**
4778  * e1000_mii_ioctl -
4779  * @netdev:
4780  * @ifreq:
4781  * @cmd:
4782  **/
4783
4784 static int
4785 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4786 {
4787         struct e1000_adapter *adapter = netdev_priv(netdev);
4788         struct mii_ioctl_data *data = if_mii(ifr);
4789         int retval;
4790         uint16_t mii_reg;
4791         uint16_t spddplx;
4792         unsigned long flags;
4793
4794         if (adapter->hw.media_type != e1000_media_type_copper)
4795                 return -EOPNOTSUPP;
4796
4797         switch (cmd) {
4798         case SIOCGMIIPHY:
4799                 data->phy_id = adapter->hw.phy_addr;
4800                 break;
4801         case SIOCGMIIREG:
4802                 if (!capable(CAP_NET_ADMIN))
4803                         return -EPERM;
4804                 spin_lock_irqsave(&adapter->stats_lock, flags);
4805                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4806                                    &data->val_out)) {
4807                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4808                         return -EIO;
4809                 }
4810                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4811                 break;
4812         case SIOCSMIIREG:
4813                 if (!capable(CAP_NET_ADMIN))
4814                         return -EPERM;
4815                 if (data->reg_num & ~(0x1F))
4816                         return -EFAULT;
4817                 mii_reg = data->val_in;
4818                 spin_lock_irqsave(&adapter->stats_lock, flags);
4819                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4820                                         mii_reg)) {
4821                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4822                         return -EIO;
4823                 }
4824                 if (adapter->hw.media_type == e1000_media_type_copper) {
4825                         switch (data->reg_num) {
4826                         case PHY_CTRL:
4827                                 if (mii_reg & MII_CR_POWER_DOWN)
4828                                         break;
4829                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4830                                         adapter->hw.autoneg = 1;
4831                                         adapter->hw.autoneg_advertised = 0x2F;
4832                                 } else {
4833                                         if (mii_reg & 0x40)
4834                                                 spddplx = SPEED_1000;
4835                                         else if (mii_reg & 0x2000)
4836                                                 spddplx = SPEED_100;
4837                                         else
4838                                                 spddplx = SPEED_10;
4839                                         spddplx += (mii_reg & 0x100)
4840                                                    ? DUPLEX_FULL :
4841                                                    DUPLEX_HALF;
4842                                         retval = e1000_set_spd_dplx(adapter,
4843                                                                     spddplx);
4844                                         if (retval) {
4845                                                 spin_unlock_irqrestore(
4846                                                         &adapter->stats_lock,
4847                                                         flags);
4848                                                 return retval;
4849                                         }
4850                                 }
4851                                 if (netif_running(adapter->netdev))
4852                                         e1000_reinit_locked(adapter);
4853                                 else
4854                                         e1000_reset(adapter);
4855                                 break;
4856                         case M88E1000_PHY_SPEC_CTRL:
4857                         case M88E1000_EXT_PHY_SPEC_CTRL:
4858                                 if (e1000_phy_reset(&adapter->hw)) {
4859                                         spin_unlock_irqrestore(
4860                                                 &adapter->stats_lock, flags);
4861                                         return -EIO;
4862                                 }
4863                                 break;
4864                         }
4865                 } else {
4866                         switch (data->reg_num) {
4867                         case PHY_CTRL:
4868                                 if (mii_reg & MII_CR_POWER_DOWN)
4869                                         break;
4870                                 if (netif_running(adapter->netdev))
4871                                         e1000_reinit_locked(adapter);
4872                                 else
4873                                         e1000_reset(adapter);
4874                                 break;
4875                         }
4876                 }
4877                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4878                 break;
4879         default:
4880                 return -EOPNOTSUPP;
4881         }
4882         return E1000_SUCCESS;
4883 }
4884
4885 void
4886 e1000_pci_set_mwi(struct e1000_hw *hw)
4887 {
4888         struct e1000_adapter *adapter = hw->back;
4889         int ret_val = pci_set_mwi(adapter->pdev);
4890
4891         if (ret_val)
4892                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4893 }
4894
4895 void
4896 e1000_pci_clear_mwi(struct e1000_hw *hw)
4897 {
4898         struct e1000_adapter *adapter = hw->back;
4899
4900         pci_clear_mwi(adapter->pdev);
4901 }
4902
4903 void
4904 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4905 {
4906         struct e1000_adapter *adapter = hw->back;
4907
4908         pci_read_config_word(adapter->pdev, reg, value);
4909 }
4910
4911 void
4912 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4913 {
4914         struct e1000_adapter *adapter = hw->back;
4915
4916         pci_write_config_word(adapter->pdev, reg, *value);
4917 }
4918
4919 int32_t
4920 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4921 {
4922     struct e1000_adapter *adapter = hw->back;
4923     uint16_t cap_offset;
4924
4925     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4926     if (!cap_offset)
4927         return -E1000_ERR_CONFIG;
4928
4929     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4930
4931     return E1000_SUCCESS;
4932 }
4933
4934 void
4935 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4936 {
4937         outl(value, port);
4938 }
4939
4940 static void
4941 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4942 {
4943         struct e1000_adapter *adapter = netdev_priv(netdev);
4944         uint32_t ctrl, rctl;
4945
4946         e1000_irq_disable(adapter);
4947         adapter->vlgrp = grp;
4948
4949         if (grp) {
4950                 /* enable VLAN tag insert/strip */
4951                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4952                 ctrl |= E1000_CTRL_VME;
4953                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4954
4955                 if (adapter->hw.mac_type != e1000_ich8lan) {
4956                         /* enable VLAN receive filtering */
4957                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4958                         rctl |= E1000_RCTL_VFE;
4959                         rctl &= ~E1000_RCTL_CFIEN;
4960                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4961                         e1000_update_mng_vlan(adapter);
4962                 }
4963         } else {
4964                 /* disable VLAN tag insert/strip */
4965                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4966                 ctrl &= ~E1000_CTRL_VME;
4967                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4968
4969                 if (adapter->hw.mac_type != e1000_ich8lan) {
4970                         /* disable VLAN filtering */
4971                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4972                         rctl &= ~E1000_RCTL_VFE;
4973                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4974                         if (adapter->mng_vlan_id !=
4975                             (uint16_t)E1000_MNG_VLAN_NONE) {
4976                                 e1000_vlan_rx_kill_vid(netdev,
4977                                                        adapter->mng_vlan_id);
4978                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4979                         }
4980                 }
4981         }
4982
4983         e1000_irq_enable(adapter);
4984 }
4985
4986 static void
4987 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4988 {
4989         struct e1000_adapter *adapter = netdev_priv(netdev);
4990         uint32_t vfta, index;
4991
4992         if ((adapter->hw.mng_cookie.status &
4993              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4994             (vid == adapter->mng_vlan_id))
4995                 return;
4996         /* add VID to filter table */
4997         index = (vid >> 5) & 0x7F;
4998         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4999         vfta |= (1 << (vid & 0x1F));
5000         e1000_write_vfta(&adapter->hw, index, vfta);
5001 }
5002
5003 static void
5004 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
5005 {
5006         struct e1000_adapter *adapter = netdev_priv(netdev);
5007         uint32_t vfta, index;
5008
5009         e1000_irq_disable(adapter);
5010         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5011         e1000_irq_enable(adapter);
5012
5013         if ((adapter->hw.mng_cookie.status &
5014              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5015             (vid == adapter->mng_vlan_id)) {
5016                 /* release control to f/w */
5017                 e1000_release_hw_control(adapter);
5018                 return;
5019         }
5020
5021         /* remove VID from filter table */
5022         index = (vid >> 5) & 0x7F;
5023         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5024         vfta &= ~(1 << (vid & 0x1F));
5025         e1000_write_vfta(&adapter->hw, index, vfta);
5026 }
5027
5028 static void
5029 e1000_restore_vlan(struct e1000_adapter *adapter)
5030 {
5031         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5032
5033         if (adapter->vlgrp) {
5034                 uint16_t vid;
5035                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5036                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5037                                 continue;
5038                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5039                 }
5040         }
5041 }
5042
5043 int
5044 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5045 {
5046         adapter->hw.autoneg = 0;
5047
5048         /* Fiber NICs only allow 1000 gbps Full duplex */
5049         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5050                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5051                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5052                 return -EINVAL;
5053         }
5054
5055         switch (spddplx) {
5056         case SPEED_10 + DUPLEX_HALF:
5057                 adapter->hw.forced_speed_duplex = e1000_10_half;
5058                 break;
5059         case SPEED_10 + DUPLEX_FULL:
5060                 adapter->hw.forced_speed_duplex = e1000_10_full;
5061                 break;
5062         case SPEED_100 + DUPLEX_HALF:
5063                 adapter->hw.forced_speed_duplex = e1000_100_half;
5064                 break;
5065         case SPEED_100 + DUPLEX_FULL:
5066                 adapter->hw.forced_speed_duplex = e1000_100_full;
5067                 break;
5068         case SPEED_1000 + DUPLEX_FULL:
5069                 adapter->hw.autoneg = 1;
5070                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5071                 break;
5072         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5073         default:
5074                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5075                 return -EINVAL;
5076         }
5077         return 0;
5078 }
5079
5080 static int
5081 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5082 {
5083         struct net_device *netdev = pci_get_drvdata(pdev);
5084         struct e1000_adapter *adapter = netdev_priv(netdev);
5085         uint32_t ctrl, ctrl_ext, rctl, status;
5086         uint32_t wufc = adapter->wol;
5087 #ifdef CONFIG_PM
5088         int retval = 0;
5089 #endif
5090
5091         netif_device_detach(netdev);
5092
5093         if (netif_running(netdev)) {
5094                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5095                 e1000_down(adapter);
5096         }
5097
5098 #ifdef CONFIG_PM
5099         retval = pci_save_state(pdev);
5100         if (retval)
5101                 return retval;
5102 #endif
5103
5104         status = E1000_READ_REG(&adapter->hw, STATUS);
5105         if (status & E1000_STATUS_LU)
5106                 wufc &= ~E1000_WUFC_LNKC;
5107
5108         if (wufc) {
5109                 e1000_setup_rctl(adapter);
5110                 e1000_set_multi(netdev);
5111
5112                 /* turn on all-multi mode if wake on multicast is enabled */
5113                 if (wufc & E1000_WUFC_MC) {
5114                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5115                         rctl |= E1000_RCTL_MPE;
5116                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5117                 }
5118
5119                 if (adapter->hw.mac_type >= e1000_82540) {
5120                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5121                         /* advertise wake from D3Cold */
5122                         #define E1000_CTRL_ADVD3WUC 0x00100000
5123                         /* phy power management enable */
5124                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5125                         ctrl |= E1000_CTRL_ADVD3WUC |
5126                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5127                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5128                 }
5129
5130                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5131                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5132                         /* keep the laser running in D3 */
5133                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5134                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5135                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5136                 }
5137
5138                 /* Allow time for pending master requests to run */
5139                 e1000_disable_pciex_master(&adapter->hw);
5140
5141                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5142                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5143                 pci_enable_wake(pdev, PCI_D3hot, 1);
5144                 pci_enable_wake(pdev, PCI_D3cold, 1);
5145         } else {
5146                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5147                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5148                 pci_enable_wake(pdev, PCI_D3hot, 0);
5149                 pci_enable_wake(pdev, PCI_D3cold, 0);
5150         }
5151
5152         e1000_release_manageability(adapter);
5153
5154         /* make sure adapter isn't asleep if manageability is enabled */
5155         if (adapter->en_mng_pt) {
5156                 pci_enable_wake(pdev, PCI_D3hot, 1);
5157                 pci_enable_wake(pdev, PCI_D3cold, 1);
5158         }
5159
5160         if (adapter->hw.phy_type == e1000_phy_igp_3)
5161                 e1000_phy_powerdown_workaround(&adapter->hw);
5162
5163         if (netif_running(netdev))
5164                 e1000_free_irq(adapter);
5165
5166         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5167          * would have already happened in close and is redundant. */
5168         e1000_release_hw_control(adapter);
5169
5170         pci_disable_device(pdev);
5171
5172         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5173
5174         return 0;
5175 }
5176
5177 #ifdef CONFIG_PM
5178 static int
5179 e1000_resume(struct pci_dev *pdev)
5180 {
5181         struct net_device *netdev = pci_get_drvdata(pdev);
5182         struct e1000_adapter *adapter = netdev_priv(netdev);
5183         uint32_t err;
5184
5185         pci_set_power_state(pdev, PCI_D0);
5186         pci_restore_state(pdev);
5187         if ((err = pci_enable_device(pdev))) {
5188                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5189                 return err;
5190         }
5191         pci_set_master(pdev);
5192
5193         pci_enable_wake(pdev, PCI_D3hot, 0);
5194         pci_enable_wake(pdev, PCI_D3cold, 0);
5195
5196         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5197                 return err;
5198
5199         e1000_power_up_phy(adapter);
5200         e1000_reset(adapter);
5201         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5202
5203         e1000_init_manageability(adapter);
5204
5205         if (netif_running(netdev))
5206                 e1000_up(adapter);
5207
5208         netif_device_attach(netdev);
5209
5210         /* If the controller is 82573 and f/w is AMT, do not set
5211          * DRV_LOAD until the interface is up.  For all other cases,
5212          * let the f/w know that the h/w is now under the control
5213          * of the driver. */
5214         if (adapter->hw.mac_type != e1000_82573 ||
5215             !e1000_check_mng_mode(&adapter->hw))
5216                 e1000_get_hw_control(adapter);
5217
5218         return 0;
5219 }
5220 #endif
5221
5222 static void e1000_shutdown(struct pci_dev *pdev)
5223 {
5224         e1000_suspend(pdev, PMSG_SUSPEND);
5225 }
5226
5227 #ifdef CONFIG_NET_POLL_CONTROLLER
5228 /*
5229  * Polling 'interrupt' - used by things like netconsole to send skbs
5230  * without having to re-enable interrupts. It's not called while
5231  * the interrupt routine is executing.
5232  */
5233 static void
5234 e1000_netpoll(struct net_device *netdev)
5235 {
5236         struct e1000_adapter *adapter = netdev_priv(netdev);
5237
5238         disable_irq(adapter->pdev->irq);
5239         e1000_intr(adapter->pdev->irq, netdev);
5240         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5241 #ifndef CONFIG_E1000_NAPI
5242         adapter->clean_rx(adapter, adapter->rx_ring);
5243 #endif
5244         enable_irq(adapter->pdev->irq);
5245 }
5246 #endif
5247
5248 /**
5249  * e1000_io_error_detected - called when PCI error is detected
5250  * @pdev: Pointer to PCI device
5251  * @state: The current pci conneection state
5252  *
5253  * This function is called after a PCI bus error affecting
5254  * this device has been detected.
5255  */
5256 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5257 {
5258         struct net_device *netdev = pci_get_drvdata(pdev);
5259         struct e1000_adapter *adapter = netdev->priv;
5260
5261         netif_device_detach(netdev);
5262
5263         if (netif_running(netdev))
5264                 e1000_down(adapter);
5265         pci_disable_device(pdev);
5266
5267         /* Request a slot slot reset. */
5268         return PCI_ERS_RESULT_NEED_RESET;
5269 }
5270
5271 /**
5272  * e1000_io_slot_reset - called after the pci bus has been reset.
5273  * @pdev: Pointer to PCI device
5274  *
5275  * Restart the card from scratch, as if from a cold-boot. Implementation
5276  * resembles the first-half of the e1000_resume routine.
5277  */
5278 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5279 {
5280         struct net_device *netdev = pci_get_drvdata(pdev);
5281         struct e1000_adapter *adapter = netdev->priv;
5282
5283         if (pci_enable_device(pdev)) {
5284                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5285                 return PCI_ERS_RESULT_DISCONNECT;
5286         }
5287         pci_set_master(pdev);
5288
5289         pci_enable_wake(pdev, PCI_D3hot, 0);
5290         pci_enable_wake(pdev, PCI_D3cold, 0);
5291
5292         e1000_reset(adapter);
5293         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5294
5295         return PCI_ERS_RESULT_RECOVERED;
5296 }
5297
5298 /**
5299  * e1000_io_resume - called when traffic can start flowing again.
5300  * @pdev: Pointer to PCI device
5301  *
5302  * This callback is called when the error recovery driver tells us that
5303  * its OK to resume normal operation. Implementation resembles the
5304  * second-half of the e1000_resume routine.
5305  */
5306 static void e1000_io_resume(struct pci_dev *pdev)
5307 {
5308         struct net_device *netdev = pci_get_drvdata(pdev);
5309         struct e1000_adapter *adapter = netdev->priv;
5310
5311         e1000_init_manageability(adapter);
5312
5313         if (netif_running(netdev)) {
5314                 if (e1000_up(adapter)) {
5315                         printk("e1000: can't bring device back up after reset\n");
5316                         return;
5317                 }
5318         }
5319
5320         netif_device_attach(netdev);
5321
5322         /* If the controller is 82573 and f/w is AMT, do not set
5323          * DRV_LOAD until the interface is up.  For all other cases,
5324          * let the f/w know that the h/w is now under the control
5325          * of the driver. */
5326         if (adapter->hw.mac_type != e1000_82573 ||
5327             !e1000_check_mng_mode(&adapter->hw))
5328                 e1000_get_hw_control(adapter);
5329
5330 }
5331
5332 /* e1000_main.c */