Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec...
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k8-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_update_phy_info_task(struct work_struct *work);
127 static void e1000_watchdog(unsigned long data);
128 static void e1000_82547_tx_fifo_stall(unsigned long data);
129 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
130 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
131                                     struct net_device *netdev);
132 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
133 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
134 static int e1000_set_mac(struct net_device *netdev, void *p);
135 static irqreturn_t e1000_intr(int irq, void *data);
136 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
137                                struct e1000_tx_ring *tx_ring);
138 static int e1000_clean(struct napi_struct *napi, int budget);
139 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
140                                struct e1000_rx_ring *rx_ring,
141                                int *work_done, int work_to_do);
142 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
143                                      struct e1000_rx_ring *rx_ring,
144                                      int *work_done, int work_to_do);
145 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
146                                    struct e1000_rx_ring *rx_ring,
147                                    int cleaned_count);
148 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
149                                          struct e1000_rx_ring *rx_ring,
150                                          int cleaned_count);
151 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
152 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
153                            int cmd);
154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
155 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
156 static void e1000_tx_timeout(struct net_device *dev);
157 static void e1000_reset_task(struct work_struct *work);
158 static void e1000_smartspeed(struct e1000_adapter *adapter);
159 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
160                                        struct sk_buff *skb);
161
162 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
163 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
164 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
165 static void e1000_restore_vlan(struct e1000_adapter *adapter);
166
167 #ifdef CONFIG_PM
168 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
169 static int e1000_resume(struct pci_dev *pdev);
170 #endif
171 static void e1000_shutdown(struct pci_dev *pdev);
172
173 #ifdef CONFIG_NET_POLL_CONTROLLER
174 /* for netdump / net console */
175 static void e1000_netpoll (struct net_device *netdev);
176 #endif
177
178 #define COPYBREAK_DEFAULT 256
179 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
180 module_param(copybreak, uint, 0644);
181 MODULE_PARM_DESC(copybreak,
182         "Maximum size of packet that is copied to a new buffer on receive");
183
184 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
185                      pci_channel_state_t state);
186 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
187 static void e1000_io_resume(struct pci_dev *pdev);
188
189 static struct pci_error_handlers e1000_err_handler = {
190         .error_detected = e1000_io_error_detected,
191         .slot_reset = e1000_io_slot_reset,
192         .resume = e1000_io_resume,
193 };
194
195 static struct pci_driver e1000_driver = {
196         .name     = e1000_driver_name,
197         .id_table = e1000_pci_tbl,
198         .probe    = e1000_probe,
199         .remove   = __devexit_p(e1000_remove),
200 #ifdef CONFIG_PM
201         /* Power Managment Hooks */
202         .suspend  = e1000_suspend,
203         .resume   = e1000_resume,
204 #endif
205         .shutdown = e1000_shutdown,
206         .err_handler = &e1000_err_handler
207 };
208
209 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
210 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
211 MODULE_LICENSE("GPL");
212 MODULE_VERSION(DRV_VERSION);
213
214 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
215 module_param(debug, int, 0);
216 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
217
218 /**
219  * e1000_get_hw_dev - return device
220  * used by hardware layer to print debugging information
221  *
222  **/
223 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
224 {
225         struct e1000_adapter *adapter = hw->back;
226         return adapter->netdev;
227 }
228
229 /**
230  * e1000_init_module - Driver Registration Routine
231  *
232  * e1000_init_module is the first routine called when the driver is
233  * loaded. All it does is register with the PCI subsystem.
234  **/
235
236 static int __init e1000_init_module(void)
237 {
238         int ret;
239         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
240
241         pr_info("%s\n", e1000_copyright);
242
243         ret = pci_register_driver(&e1000_driver);
244         if (copybreak != COPYBREAK_DEFAULT) {
245                 if (copybreak == 0)
246                         pr_info("copybreak disabled\n");
247                 else
248                         pr_info("copybreak enabled for "
249                                    "packets <= %u bytes\n", copybreak);
250         }
251         return ret;
252 }
253
254 module_init(e1000_init_module);
255
256 /**
257  * e1000_exit_module - Driver Exit Cleanup Routine
258  *
259  * e1000_exit_module is called just before the driver is removed
260  * from memory.
261  **/
262
263 static void __exit e1000_exit_module(void)
264 {
265         pci_unregister_driver(&e1000_driver);
266 }
267
268 module_exit(e1000_exit_module);
269
270 static int e1000_request_irq(struct e1000_adapter *adapter)
271 {
272         struct net_device *netdev = adapter->netdev;
273         irq_handler_t handler = e1000_intr;
274         int irq_flags = IRQF_SHARED;
275         int err;
276
277         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
278                           netdev);
279         if (err) {
280                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
281         }
282
283         return err;
284 }
285
286 static void e1000_free_irq(struct e1000_adapter *adapter)
287 {
288         struct net_device *netdev = adapter->netdev;
289
290         free_irq(adapter->pdev->irq, netdev);
291 }
292
293 /**
294  * e1000_irq_disable - Mask off interrupt generation on the NIC
295  * @adapter: board private structure
296  **/
297
298 static void e1000_irq_disable(struct e1000_adapter *adapter)
299 {
300         struct e1000_hw *hw = &adapter->hw;
301
302         ew32(IMC, ~0);
303         E1000_WRITE_FLUSH();
304         synchronize_irq(adapter->pdev->irq);
305 }
306
307 /**
308  * e1000_irq_enable - Enable default interrupt generation settings
309  * @adapter: board private structure
310  **/
311
312 static void e1000_irq_enable(struct e1000_adapter *adapter)
313 {
314         struct e1000_hw *hw = &adapter->hw;
315
316         ew32(IMS, IMS_ENABLE_MASK);
317         E1000_WRITE_FLUSH();
318 }
319
320 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
321 {
322         struct e1000_hw *hw = &adapter->hw;
323         struct net_device *netdev = adapter->netdev;
324         u16 vid = hw->mng_cookie.vlan_id;
325         u16 old_vid = adapter->mng_vlan_id;
326         if (adapter->vlgrp) {
327                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
328                         if (hw->mng_cookie.status &
329                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
330                                 e1000_vlan_rx_add_vid(netdev, vid);
331                                 adapter->mng_vlan_id = vid;
332                         } else
333                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
334
335                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
336                                         (vid != old_vid) &&
337                             !vlan_group_get_device(adapter->vlgrp, old_vid))
338                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
339                 } else
340                         adapter->mng_vlan_id = vid;
341         }
342 }
343
344 static void e1000_init_manageability(struct e1000_adapter *adapter)
345 {
346         struct e1000_hw *hw = &adapter->hw;
347
348         if (adapter->en_mng_pt) {
349                 u32 manc = er32(MANC);
350
351                 /* disable hardware interception of ARP */
352                 manc &= ~(E1000_MANC_ARP_EN);
353
354                 ew32(MANC, manc);
355         }
356 }
357
358 static void e1000_release_manageability(struct e1000_adapter *adapter)
359 {
360         struct e1000_hw *hw = &adapter->hw;
361
362         if (adapter->en_mng_pt) {
363                 u32 manc = er32(MANC);
364
365                 /* re-enable hardware interception of ARP */
366                 manc |= E1000_MANC_ARP_EN;
367
368                 ew32(MANC, manc);
369         }
370 }
371
372 /**
373  * e1000_configure - configure the hardware for RX and TX
374  * @adapter = private board structure
375  **/
376 static void e1000_configure(struct e1000_adapter *adapter)
377 {
378         struct net_device *netdev = adapter->netdev;
379         int i;
380
381         e1000_set_rx_mode(netdev);
382
383         e1000_restore_vlan(adapter);
384         e1000_init_manageability(adapter);
385
386         e1000_configure_tx(adapter);
387         e1000_setup_rctl(adapter);
388         e1000_configure_rx(adapter);
389         /* call E1000_DESC_UNUSED which always leaves
390          * at least 1 descriptor unused to make sure
391          * next_to_use != next_to_clean */
392         for (i = 0; i < adapter->num_rx_queues; i++) {
393                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
394                 adapter->alloc_rx_buf(adapter, ring,
395                                       E1000_DESC_UNUSED(ring));
396         }
397 }
398
399 int e1000_up(struct e1000_adapter *adapter)
400 {
401         struct e1000_hw *hw = &adapter->hw;
402
403         /* hardware has been reset, we need to reload some things */
404         e1000_configure(adapter);
405
406         clear_bit(__E1000_DOWN, &adapter->flags);
407
408         napi_enable(&adapter->napi);
409
410         e1000_irq_enable(adapter);
411
412         netif_wake_queue(adapter->netdev);
413
414         /* fire a link change interrupt to start the watchdog */
415         ew32(ICS, E1000_ICS_LSC);
416         return 0;
417 }
418
419 /**
420  * e1000_power_up_phy - restore link in case the phy was powered down
421  * @adapter: address of board private structure
422  *
423  * The phy may be powered down to save power and turn off link when the
424  * driver is unloaded and wake on lan is not enabled (among others)
425  * *** this routine MUST be followed by a call to e1000_reset ***
426  *
427  **/
428
429 void e1000_power_up_phy(struct e1000_adapter *adapter)
430 {
431         struct e1000_hw *hw = &adapter->hw;
432         u16 mii_reg = 0;
433
434         /* Just clear the power down bit to wake the phy back up */
435         if (hw->media_type == e1000_media_type_copper) {
436                 /* according to the manual, the phy will retain its
437                  * settings across a power-down/up cycle */
438                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
439                 mii_reg &= ~MII_CR_POWER_DOWN;
440                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
441         }
442 }
443
444 static void e1000_power_down_phy(struct e1000_adapter *adapter)
445 {
446         struct e1000_hw *hw = &adapter->hw;
447
448         /* Power down the PHY so no link is implied when interface is down *
449          * The PHY cannot be powered down if any of the following is true *
450          * (a) WoL is enabled
451          * (b) AMT is active
452          * (c) SoL/IDER session is active */
453         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
454            hw->media_type == e1000_media_type_copper) {
455                 u16 mii_reg = 0;
456
457                 switch (hw->mac_type) {
458                 case e1000_82540:
459                 case e1000_82545:
460                 case e1000_82545_rev_3:
461                 case e1000_82546:
462                 case e1000_82546_rev_3:
463                 case e1000_82541:
464                 case e1000_82541_rev_2:
465                 case e1000_82547:
466                 case e1000_82547_rev_2:
467                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
468                                 goto out;
469                         break;
470                 default:
471                         goto out;
472                 }
473                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
474                 mii_reg |= MII_CR_POWER_DOWN;
475                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
476                 mdelay(1);
477         }
478 out:
479         return;
480 }
481
482 void e1000_down(struct e1000_adapter *adapter)
483 {
484         struct e1000_hw *hw = &adapter->hw;
485         struct net_device *netdev = adapter->netdev;
486         u32 rctl, tctl;
487
488
489         /* disable receives in the hardware */
490         rctl = er32(RCTL);
491         ew32(RCTL, rctl & ~E1000_RCTL_EN);
492         /* flush and sleep below */
493
494         netif_tx_disable(netdev);
495
496         /* disable transmits in the hardware */
497         tctl = er32(TCTL);
498         tctl &= ~E1000_TCTL_EN;
499         ew32(TCTL, tctl);
500         /* flush both disables and wait for them to finish */
501         E1000_WRITE_FLUSH();
502         msleep(10);
503
504         napi_disable(&adapter->napi);
505
506         e1000_irq_disable(adapter);
507
508         /*
509          * Setting DOWN must be after irq_disable to prevent
510          * a screaming interrupt.  Setting DOWN also prevents
511          * timers and tasks from rescheduling.
512          */
513         set_bit(__E1000_DOWN, &adapter->flags);
514
515         del_timer_sync(&adapter->tx_fifo_stall_timer);
516         del_timer_sync(&adapter->watchdog_timer);
517         del_timer_sync(&adapter->phy_info_timer);
518
519         adapter->link_speed = 0;
520         adapter->link_duplex = 0;
521         netif_carrier_off(netdev);
522
523         e1000_reset(adapter);
524         e1000_clean_all_tx_rings(adapter);
525         e1000_clean_all_rx_rings(adapter);
526 }
527
528 static void e1000_reinit_safe(struct e1000_adapter *adapter)
529 {
530         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
531                 msleep(1);
532         rtnl_lock();
533         e1000_down(adapter);
534         e1000_up(adapter);
535         rtnl_unlock();
536         clear_bit(__E1000_RESETTING, &adapter->flags);
537 }
538
539 void e1000_reinit_locked(struct e1000_adapter *adapter)
540 {
541         /* if rtnl_lock is not held the call path is bogus */
542         ASSERT_RTNL();
543         WARN_ON(in_interrupt());
544         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
545                 msleep(1);
546         e1000_down(adapter);
547         e1000_up(adapter);
548         clear_bit(__E1000_RESETTING, &adapter->flags);
549 }
550
551 void e1000_reset(struct e1000_adapter *adapter)
552 {
553         struct e1000_hw *hw = &adapter->hw;
554         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
555         bool legacy_pba_adjust = false;
556         u16 hwm;
557
558         /* Repartition Pba for greater than 9k mtu
559          * To take effect CTRL.RST is required.
560          */
561
562         switch (hw->mac_type) {
563         case e1000_82542_rev2_0:
564         case e1000_82542_rev2_1:
565         case e1000_82543:
566         case e1000_82544:
567         case e1000_82540:
568         case e1000_82541:
569         case e1000_82541_rev_2:
570                 legacy_pba_adjust = true;
571                 pba = E1000_PBA_48K;
572                 break;
573         case e1000_82545:
574         case e1000_82545_rev_3:
575         case e1000_82546:
576         case e1000_82546_rev_3:
577                 pba = E1000_PBA_48K;
578                 break;
579         case e1000_82547:
580         case e1000_82547_rev_2:
581                 legacy_pba_adjust = true;
582                 pba = E1000_PBA_30K;
583                 break;
584         case e1000_undefined:
585         case e1000_num_macs:
586                 break;
587         }
588
589         if (legacy_pba_adjust) {
590                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
591                         pba -= 8; /* allocate more FIFO for Tx */
592
593                 if (hw->mac_type == e1000_82547) {
594                         adapter->tx_fifo_head = 0;
595                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596                         adapter->tx_fifo_size =
597                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598                         atomic_set(&adapter->tx_fifo_stall, 0);
599                 }
600         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
601                 /* adjust PBA for jumbo frames */
602                 ew32(PBA, pba);
603
604                 /* To maintain wire speed transmits, the Tx FIFO should be
605                  * large enough to accommodate two full transmit packets,
606                  * rounded up to the next 1KB and expressed in KB.  Likewise,
607                  * the Rx FIFO should be large enough to accommodate at least
608                  * one full receive packet and is similarly rounded up and
609                  * expressed in KB. */
610                 pba = er32(PBA);
611                 /* upper 16 bits has Tx packet buffer allocation size in KB */
612                 tx_space = pba >> 16;
613                 /* lower 16 bits has Rx packet buffer allocation size in KB */
614                 pba &= 0xffff;
615                 /*
616                  * the tx fifo also stores 16 bytes of information about the tx
617                  * but don't include ethernet FCS because hardware appends it
618                  */
619                 min_tx_space = (hw->max_frame_size +
620                                 sizeof(struct e1000_tx_desc) -
621                                 ETH_FCS_LEN) * 2;
622                 min_tx_space = ALIGN(min_tx_space, 1024);
623                 min_tx_space >>= 10;
624                 /* software strips receive CRC, so leave room for it */
625                 min_rx_space = hw->max_frame_size;
626                 min_rx_space = ALIGN(min_rx_space, 1024);
627                 min_rx_space >>= 10;
628
629                 /* If current Tx allocation is less than the min Tx FIFO size,
630                  * and the min Tx FIFO size is less than the current Rx FIFO
631                  * allocation, take space away from current Rx allocation */
632                 if (tx_space < min_tx_space &&
633                     ((min_tx_space - tx_space) < pba)) {
634                         pba = pba - (min_tx_space - tx_space);
635
636                         /* PCI/PCIx hardware has PBA alignment constraints */
637                         switch (hw->mac_type) {
638                         case e1000_82545 ... e1000_82546_rev_3:
639                                 pba &= ~(E1000_PBA_8K - 1);
640                                 break;
641                         default:
642                                 break;
643                         }
644
645                         /* if short on rx space, rx wins and must trump tx
646                          * adjustment or use Early Receive if available */
647                         if (pba < min_rx_space)
648                                 pba = min_rx_space;
649                 }
650         }
651
652         ew32(PBA, pba);
653
654         /*
655          * flow control settings:
656          * The high water mark must be low enough to fit one full frame
657          * (or the size used for early receive) above it in the Rx FIFO.
658          * Set it to the lower of:
659          * - 90% of the Rx FIFO size, and
660          * - the full Rx FIFO size minus the early receive size (for parts
661          *   with ERT support assuming ERT set to E1000_ERT_2048), or
662          * - the full Rx FIFO size minus one full frame
663          */
664         hwm = min(((pba << 10) * 9 / 10),
665                   ((pba << 10) - hw->max_frame_size));
666
667         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
668         hw->fc_low_water = hw->fc_high_water - 8;
669         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
670         hw->fc_send_xon = 1;
671         hw->fc = hw->original_fc;
672
673         /* Allow time for pending master requests to run */
674         e1000_reset_hw(hw);
675         if (hw->mac_type >= e1000_82544)
676                 ew32(WUC, 0);
677
678         if (e1000_init_hw(hw))
679                 e_dev_err("Hardware Error\n");
680         e1000_update_mng_vlan(adapter);
681
682         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
683         if (hw->mac_type >= e1000_82544 &&
684             hw->autoneg == 1 &&
685             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
686                 u32 ctrl = er32(CTRL);
687                 /* clear phy power management bit if we are in gig only mode,
688                  * which if enabled will attempt negotiation to 100Mb, which
689                  * can cause a loss of link at power off or driver unload */
690                 ctrl &= ~E1000_CTRL_SWDPIN3;
691                 ew32(CTRL, ctrl);
692         }
693
694         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
695         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
696
697         e1000_reset_adaptive(hw);
698         e1000_phy_get_info(hw, &adapter->phy_info);
699
700         e1000_release_manageability(adapter);
701 }
702
703 /**
704  *  Dump the eeprom for users having checksum issues
705  **/
706 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707 {
708         struct net_device *netdev = adapter->netdev;
709         struct ethtool_eeprom eeprom;
710         const struct ethtool_ops *ops = netdev->ethtool_ops;
711         u8 *data;
712         int i;
713         u16 csum_old, csum_new = 0;
714
715         eeprom.len = ops->get_eeprom_len(netdev);
716         eeprom.offset = 0;
717
718         data = kmalloc(eeprom.len, GFP_KERNEL);
719         if (!data) {
720                 pr_err("Unable to allocate memory to dump EEPROM data\n");
721                 return;
722         }
723
724         ops->get_eeprom(netdev, &eeprom, data);
725
726         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
727                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
728         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
729                 csum_new += data[i] + (data[i + 1] << 8);
730         csum_new = EEPROM_SUM - csum_new;
731
732         pr_err("/*********************/\n");
733         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
734         pr_err("Calculated              : 0x%04x\n", csum_new);
735
736         pr_err("Offset    Values\n");
737         pr_err("========  ======\n");
738         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
739
740         pr_err("Include this output when contacting your support provider.\n");
741         pr_err("This is not a software error! Something bad happened to\n");
742         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
743         pr_err("result in further problems, possibly loss of data,\n");
744         pr_err("corruption or system hangs!\n");
745         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
746         pr_err("which is invalid and requires you to set the proper MAC\n");
747         pr_err("address manually before continuing to enable this network\n");
748         pr_err("device. Please inspect the EEPROM dump and report the\n");
749         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
750         pr_err("/*********************/\n");
751
752         kfree(data);
753 }
754
755 /**
756  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
757  * @pdev: PCI device information struct
758  *
759  * Return true if an adapter needs ioport resources
760  **/
761 static int e1000_is_need_ioport(struct pci_dev *pdev)
762 {
763         switch (pdev->device) {
764         case E1000_DEV_ID_82540EM:
765         case E1000_DEV_ID_82540EM_LOM:
766         case E1000_DEV_ID_82540EP:
767         case E1000_DEV_ID_82540EP_LOM:
768         case E1000_DEV_ID_82540EP_LP:
769         case E1000_DEV_ID_82541EI:
770         case E1000_DEV_ID_82541EI_MOBILE:
771         case E1000_DEV_ID_82541ER:
772         case E1000_DEV_ID_82541ER_LOM:
773         case E1000_DEV_ID_82541GI:
774         case E1000_DEV_ID_82541GI_LF:
775         case E1000_DEV_ID_82541GI_MOBILE:
776         case E1000_DEV_ID_82544EI_COPPER:
777         case E1000_DEV_ID_82544EI_FIBER:
778         case E1000_DEV_ID_82544GC_COPPER:
779         case E1000_DEV_ID_82544GC_LOM:
780         case E1000_DEV_ID_82545EM_COPPER:
781         case E1000_DEV_ID_82545EM_FIBER:
782         case E1000_DEV_ID_82546EB_COPPER:
783         case E1000_DEV_ID_82546EB_FIBER:
784         case E1000_DEV_ID_82546EB_QUAD_COPPER:
785                 return true;
786         default:
787                 return false;
788         }
789 }
790
791 static const struct net_device_ops e1000_netdev_ops = {
792         .ndo_open               = e1000_open,
793         .ndo_stop               = e1000_close,
794         .ndo_start_xmit         = e1000_xmit_frame,
795         .ndo_get_stats          = e1000_get_stats,
796         .ndo_set_rx_mode        = e1000_set_rx_mode,
797         .ndo_set_mac_address    = e1000_set_mac,
798         .ndo_tx_timeout         = e1000_tx_timeout,
799         .ndo_change_mtu         = e1000_change_mtu,
800         .ndo_do_ioctl           = e1000_ioctl,
801         .ndo_validate_addr      = eth_validate_addr,
802
803         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
804         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
805         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
806 #ifdef CONFIG_NET_POLL_CONTROLLER
807         .ndo_poll_controller    = e1000_netpoll,
808 #endif
809 };
810
811 /**
812  * e1000_init_hw_struct - initialize members of hw struct
813  * @adapter: board private struct
814  * @hw: structure used by e1000_hw.c
815  *
816  * Factors out initialization of the e1000_hw struct to its own function
817  * that can be called very early at init (just after struct allocation).
818  * Fields are initialized based on PCI device information and
819  * OS network device settings (MTU size).
820  * Returns negative error codes if MAC type setup fails.
821  */
822 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
823                                 struct e1000_hw *hw)
824 {
825         struct pci_dev *pdev = adapter->pdev;
826
827         /* PCI config space info */
828         hw->vendor_id = pdev->vendor;
829         hw->device_id = pdev->device;
830         hw->subsystem_vendor_id = pdev->subsystem_vendor;
831         hw->subsystem_id = pdev->subsystem_device;
832         hw->revision_id = pdev->revision;
833
834         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
835
836         hw->max_frame_size = adapter->netdev->mtu +
837                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
838         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
839
840         /* identify the MAC */
841         if (e1000_set_mac_type(hw)) {
842                 e_err(probe, "Unknown MAC Type\n");
843                 return -EIO;
844         }
845
846         switch (hw->mac_type) {
847         default:
848                 break;
849         case e1000_82541:
850         case e1000_82547:
851         case e1000_82541_rev_2:
852         case e1000_82547_rev_2:
853                 hw->phy_init_script = 1;
854                 break;
855         }
856
857         e1000_set_media_type(hw);
858         e1000_get_bus_info(hw);
859
860         hw->wait_autoneg_complete = false;
861         hw->tbi_compatibility_en = true;
862         hw->adaptive_ifs = true;
863
864         /* Copper options */
865
866         if (hw->media_type == e1000_media_type_copper) {
867                 hw->mdix = AUTO_ALL_MODES;
868                 hw->disable_polarity_correction = false;
869                 hw->master_slave = E1000_MASTER_SLAVE;
870         }
871
872         return 0;
873 }
874
875 /**
876  * e1000_probe - Device Initialization Routine
877  * @pdev: PCI device information struct
878  * @ent: entry in e1000_pci_tbl
879  *
880  * Returns 0 on success, negative on failure
881  *
882  * e1000_probe initializes an adapter identified by a pci_dev structure.
883  * The OS initialization, configuring of the adapter private structure,
884  * and a hardware reset occur.
885  **/
886 static int __devinit e1000_probe(struct pci_dev *pdev,
887                                  const struct pci_device_id *ent)
888 {
889         struct net_device *netdev;
890         struct e1000_adapter *adapter;
891         struct e1000_hw *hw;
892
893         static int cards_found = 0;
894         static int global_quad_port_a = 0; /* global ksp3 port a indication */
895         int i, err, pci_using_dac;
896         u16 eeprom_data = 0;
897         u16 eeprom_apme_mask = E1000_EEPROM_APME;
898         int bars, need_ioport;
899
900         /* do not allocate ioport bars when not needed */
901         need_ioport = e1000_is_need_ioport(pdev);
902         if (need_ioport) {
903                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
904                 err = pci_enable_device(pdev);
905         } else {
906                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
907                 err = pci_enable_device_mem(pdev);
908         }
909         if (err)
910                 return err;
911
912         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
913         if (err)
914                 goto err_pci_reg;
915
916         pci_set_master(pdev);
917         err = pci_save_state(pdev);
918         if (err)
919                 goto err_alloc_etherdev;
920
921         err = -ENOMEM;
922         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
923         if (!netdev)
924                 goto err_alloc_etherdev;
925
926         SET_NETDEV_DEV(netdev, &pdev->dev);
927
928         pci_set_drvdata(pdev, netdev);
929         adapter = netdev_priv(netdev);
930         adapter->netdev = netdev;
931         adapter->pdev = pdev;
932         adapter->msg_enable = (1 << debug) - 1;
933         adapter->bars = bars;
934         adapter->need_ioport = need_ioport;
935
936         hw = &adapter->hw;
937         hw->back = adapter;
938
939         err = -EIO;
940         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
941         if (!hw->hw_addr)
942                 goto err_ioremap;
943
944         if (adapter->need_ioport) {
945                 for (i = BAR_1; i <= BAR_5; i++) {
946                         if (pci_resource_len(pdev, i) == 0)
947                                 continue;
948                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
949                                 hw->io_base = pci_resource_start(pdev, i);
950                                 break;
951                         }
952                 }
953         }
954
955         /* make ready for any if (hw->...) below */
956         err = e1000_init_hw_struct(adapter, hw);
957         if (err)
958                 goto err_sw_init;
959
960         /*
961          * there is a workaround being applied below that limits
962          * 64-bit DMA addresses to 64-bit hardware.  There are some
963          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
964          */
965         pci_using_dac = 0;
966         if ((hw->bus_type == e1000_bus_type_pcix) &&
967             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
968                 /*
969                  * according to DMA-API-HOWTO, coherent calls will always
970                  * succeed if the set call did
971                  */
972                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
973                 pci_using_dac = 1;
974         } else {
975                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
976                 if (err) {
977                         pr_err("No usable DMA config, aborting\n");
978                         goto err_dma;
979                 }
980                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
981         }
982
983         netdev->netdev_ops = &e1000_netdev_ops;
984         e1000_set_ethtool_ops(netdev);
985         netdev->watchdog_timeo = 5 * HZ;
986         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
987
988         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
989
990         adapter->bd_number = cards_found;
991
992         /* setup the private structure */
993
994         err = e1000_sw_init(adapter);
995         if (err)
996                 goto err_sw_init;
997
998         err = -EIO;
999
1000         if (hw->mac_type >= e1000_82543) {
1001                 netdev->features = NETIF_F_SG |
1002                                    NETIF_F_HW_CSUM |
1003                                    NETIF_F_HW_VLAN_TX |
1004                                    NETIF_F_HW_VLAN_RX |
1005                                    NETIF_F_HW_VLAN_FILTER;
1006         }
1007
1008         if ((hw->mac_type >= e1000_82544) &&
1009            (hw->mac_type != e1000_82547))
1010                 netdev->features |= NETIF_F_TSO;
1011
1012         if (pci_using_dac) {
1013                 netdev->features |= NETIF_F_HIGHDMA;
1014                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1015         }
1016
1017         netdev->vlan_features |= NETIF_F_TSO;
1018         netdev->vlan_features |= NETIF_F_HW_CSUM;
1019         netdev->vlan_features |= NETIF_F_SG;
1020
1021         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1022
1023         /* initialize eeprom parameters */
1024         if (e1000_init_eeprom_params(hw)) {
1025                 e_err(probe, "EEPROM initialization failed\n");
1026                 goto err_eeprom;
1027         }
1028
1029         /* before reading the EEPROM, reset the controller to
1030          * put the device in a known good starting state */
1031
1032         e1000_reset_hw(hw);
1033
1034         /* make sure the EEPROM is good */
1035         if (e1000_validate_eeprom_checksum(hw) < 0) {
1036                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1037                 e1000_dump_eeprom(adapter);
1038                 /*
1039                  * set MAC address to all zeroes to invalidate and temporary
1040                  * disable this device for the user. This blocks regular
1041                  * traffic while still permitting ethtool ioctls from reaching
1042                  * the hardware as well as allowing the user to run the
1043                  * interface after manually setting a hw addr using
1044                  * `ip set address`
1045                  */
1046                 memset(hw->mac_addr, 0, netdev->addr_len);
1047         } else {
1048                 /* copy the MAC address out of the EEPROM */
1049                 if (e1000_read_mac_addr(hw))
1050                         e_err(probe, "EEPROM Read Error\n");
1051         }
1052         /* don't block initalization here due to bad MAC address */
1053         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1054         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1055
1056         if (!is_valid_ether_addr(netdev->perm_addr))
1057                 e_err(probe, "Invalid MAC Address\n");
1058
1059         init_timer(&adapter->tx_fifo_stall_timer);
1060         adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
1061         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1062
1063         init_timer(&adapter->watchdog_timer);
1064         adapter->watchdog_timer.function = e1000_watchdog;
1065         adapter->watchdog_timer.data = (unsigned long) adapter;
1066
1067         init_timer(&adapter->phy_info_timer);
1068         adapter->phy_info_timer.function = e1000_update_phy_info;
1069         adapter->phy_info_timer.data = (unsigned long)adapter;
1070
1071         INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
1072         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1073         INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1074
1075         e1000_check_options(adapter);
1076
1077         /* Initial Wake on LAN setting
1078          * If APM wake is enabled in the EEPROM,
1079          * enable the ACPI Magic Packet filter
1080          */
1081
1082         switch (hw->mac_type) {
1083         case e1000_82542_rev2_0:
1084         case e1000_82542_rev2_1:
1085         case e1000_82543:
1086                 break;
1087         case e1000_82544:
1088                 e1000_read_eeprom(hw,
1089                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1090                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1091                 break;
1092         case e1000_82546:
1093         case e1000_82546_rev_3:
1094                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1095                         e1000_read_eeprom(hw,
1096                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1097                         break;
1098                 }
1099                 /* Fall Through */
1100         default:
1101                 e1000_read_eeprom(hw,
1102                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1103                 break;
1104         }
1105         if (eeprom_data & eeprom_apme_mask)
1106                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1107
1108         /* now that we have the eeprom settings, apply the special cases
1109          * where the eeprom may be wrong or the board simply won't support
1110          * wake on lan on a particular port */
1111         switch (pdev->device) {
1112         case E1000_DEV_ID_82546GB_PCIE:
1113                 adapter->eeprom_wol = 0;
1114                 break;
1115         case E1000_DEV_ID_82546EB_FIBER:
1116         case E1000_DEV_ID_82546GB_FIBER:
1117                 /* Wake events only supported on port A for dual fiber
1118                  * regardless of eeprom setting */
1119                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1120                         adapter->eeprom_wol = 0;
1121                 break;
1122         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1123                 /* if quad port adapter, disable WoL on all but port A */
1124                 if (global_quad_port_a != 0)
1125                         adapter->eeprom_wol = 0;
1126                 else
1127                         adapter->quad_port_a = 1;
1128                 /* Reset for multiple quad port adapters */
1129                 if (++global_quad_port_a == 4)
1130                         global_quad_port_a = 0;
1131                 break;
1132         }
1133
1134         /* initialize the wol settings based on the eeprom settings */
1135         adapter->wol = adapter->eeprom_wol;
1136         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1137
1138         /* reset the hardware with the new settings */
1139         e1000_reset(adapter);
1140
1141         strcpy(netdev->name, "eth%d");
1142         err = register_netdev(netdev);
1143         if (err)
1144                 goto err_register;
1145
1146         /* print bus type/speed/width info */
1147         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1148                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1149                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1150                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1151                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1152                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1153                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1154                netdev->dev_addr);
1155
1156         /* carrier off reporting is important to ethtool even BEFORE open */
1157         netif_carrier_off(netdev);
1158
1159         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1160
1161         cards_found++;
1162         return 0;
1163
1164 err_register:
1165 err_eeprom:
1166         e1000_phy_hw_reset(hw);
1167
1168         if (hw->flash_address)
1169                 iounmap(hw->flash_address);
1170         kfree(adapter->tx_ring);
1171         kfree(adapter->rx_ring);
1172 err_dma:
1173 err_sw_init:
1174         iounmap(hw->hw_addr);
1175 err_ioremap:
1176         free_netdev(netdev);
1177 err_alloc_etherdev:
1178         pci_release_selected_regions(pdev, bars);
1179 err_pci_reg:
1180         pci_disable_device(pdev);
1181         return err;
1182 }
1183
1184 /**
1185  * e1000_remove - Device Removal Routine
1186  * @pdev: PCI device information struct
1187  *
1188  * e1000_remove is called by the PCI subsystem to alert the driver
1189  * that it should release a PCI device.  The could be caused by a
1190  * Hot-Plug event, or because the driver is going to be removed from
1191  * memory.
1192  **/
1193
1194 static void __devexit e1000_remove(struct pci_dev *pdev)
1195 {
1196         struct net_device *netdev = pci_get_drvdata(pdev);
1197         struct e1000_adapter *adapter = netdev_priv(netdev);
1198         struct e1000_hw *hw = &adapter->hw;
1199
1200         set_bit(__E1000_DOWN, &adapter->flags);
1201         del_timer_sync(&adapter->tx_fifo_stall_timer);
1202         del_timer_sync(&adapter->watchdog_timer);
1203         del_timer_sync(&adapter->phy_info_timer);
1204
1205         cancel_work_sync(&adapter->reset_task);
1206
1207         e1000_release_manageability(adapter);
1208
1209         unregister_netdev(netdev);
1210
1211         e1000_phy_hw_reset(hw);
1212
1213         kfree(adapter->tx_ring);
1214         kfree(adapter->rx_ring);
1215
1216         iounmap(hw->hw_addr);
1217         if (hw->flash_address)
1218                 iounmap(hw->flash_address);
1219         pci_release_selected_regions(pdev, adapter->bars);
1220
1221         free_netdev(netdev);
1222
1223         pci_disable_device(pdev);
1224 }
1225
1226 /**
1227  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1228  * @adapter: board private structure to initialize
1229  *
1230  * e1000_sw_init initializes the Adapter private data structure.
1231  * e1000_init_hw_struct MUST be called before this function
1232  **/
1233
1234 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1235 {
1236         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1237
1238         adapter->num_tx_queues = 1;
1239         adapter->num_rx_queues = 1;
1240
1241         if (e1000_alloc_queues(adapter)) {
1242                 e_err(probe, "Unable to allocate memory for queues\n");
1243                 return -ENOMEM;
1244         }
1245
1246         /* Explicitly disable IRQ since the NIC can be in any state. */
1247         e1000_irq_disable(adapter);
1248
1249         spin_lock_init(&adapter->stats_lock);
1250
1251         set_bit(__E1000_DOWN, &adapter->flags);
1252
1253         return 0;
1254 }
1255
1256 /**
1257  * e1000_alloc_queues - Allocate memory for all rings
1258  * @adapter: board private structure to initialize
1259  *
1260  * We allocate one ring per queue at run-time since we don't know the
1261  * number of queues at compile-time.
1262  **/
1263
1264 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1265 {
1266         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1267                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1268         if (!adapter->tx_ring)
1269                 return -ENOMEM;
1270
1271         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1272                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1273         if (!adapter->rx_ring) {
1274                 kfree(adapter->tx_ring);
1275                 return -ENOMEM;
1276         }
1277
1278         return E1000_SUCCESS;
1279 }
1280
1281 /**
1282  * e1000_open - Called when a network interface is made active
1283  * @netdev: network interface device structure
1284  *
1285  * Returns 0 on success, negative value on failure
1286  *
1287  * The open entry point is called when a network interface is made
1288  * active by the system (IFF_UP).  At this point all resources needed
1289  * for transmit and receive operations are allocated, the interrupt
1290  * handler is registered with the OS, the watchdog timer is started,
1291  * and the stack is notified that the interface is ready.
1292  **/
1293
1294 static int e1000_open(struct net_device *netdev)
1295 {
1296         struct e1000_adapter *adapter = netdev_priv(netdev);
1297         struct e1000_hw *hw = &adapter->hw;
1298         int err;
1299
1300         /* disallow open during test */
1301         if (test_bit(__E1000_TESTING, &adapter->flags))
1302                 return -EBUSY;
1303
1304         netif_carrier_off(netdev);
1305
1306         /* allocate transmit descriptors */
1307         err = e1000_setup_all_tx_resources(adapter);
1308         if (err)
1309                 goto err_setup_tx;
1310
1311         /* allocate receive descriptors */
1312         err = e1000_setup_all_rx_resources(adapter);
1313         if (err)
1314                 goto err_setup_rx;
1315
1316         e1000_power_up_phy(adapter);
1317
1318         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1319         if ((hw->mng_cookie.status &
1320                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1321                 e1000_update_mng_vlan(adapter);
1322         }
1323
1324         /* before we allocate an interrupt, we must be ready to handle it.
1325          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1326          * as soon as we call pci_request_irq, so we have to setup our
1327          * clean_rx handler before we do so.  */
1328         e1000_configure(adapter);
1329
1330         err = e1000_request_irq(adapter);
1331         if (err)
1332                 goto err_req_irq;
1333
1334         /* From here on the code is the same as e1000_up() */
1335         clear_bit(__E1000_DOWN, &adapter->flags);
1336
1337         napi_enable(&adapter->napi);
1338
1339         e1000_irq_enable(adapter);
1340
1341         netif_start_queue(netdev);
1342
1343         /* fire a link status change interrupt to start the watchdog */
1344         ew32(ICS, E1000_ICS_LSC);
1345
1346         return E1000_SUCCESS;
1347
1348 err_req_irq:
1349         e1000_power_down_phy(adapter);
1350         e1000_free_all_rx_resources(adapter);
1351 err_setup_rx:
1352         e1000_free_all_tx_resources(adapter);
1353 err_setup_tx:
1354         e1000_reset(adapter);
1355
1356         return err;
1357 }
1358
1359 /**
1360  * e1000_close - Disables a network interface
1361  * @netdev: network interface device structure
1362  *
1363  * Returns 0, this is not allowed to fail
1364  *
1365  * The close entry point is called when an interface is de-activated
1366  * by the OS.  The hardware is still under the drivers control, but
1367  * needs to be disabled.  A global MAC reset is issued to stop the
1368  * hardware, and all transmit and receive resources are freed.
1369  **/
1370
1371 static int e1000_close(struct net_device *netdev)
1372 {
1373         struct e1000_adapter *adapter = netdev_priv(netdev);
1374         struct e1000_hw *hw = &adapter->hw;
1375
1376         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1377         e1000_down(adapter);
1378         e1000_power_down_phy(adapter);
1379         e1000_free_irq(adapter);
1380
1381         e1000_free_all_tx_resources(adapter);
1382         e1000_free_all_rx_resources(adapter);
1383
1384         /* kill manageability vlan ID if supported, but not if a vlan with
1385          * the same ID is registered on the host OS (let 8021q kill it) */
1386         if ((hw->mng_cookie.status &
1387                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1388              !(adapter->vlgrp &&
1389                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1390                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1391         }
1392
1393         return 0;
1394 }
1395
1396 /**
1397  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1398  * @adapter: address of board private structure
1399  * @start: address of beginning of memory
1400  * @len: length of memory
1401  **/
1402 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1403                                   unsigned long len)
1404 {
1405         struct e1000_hw *hw = &adapter->hw;
1406         unsigned long begin = (unsigned long)start;
1407         unsigned long end = begin + len;
1408
1409         /* First rev 82545 and 82546 need to not allow any memory
1410          * write location to cross 64k boundary due to errata 23 */
1411         if (hw->mac_type == e1000_82545 ||
1412             hw->mac_type == e1000_82546) {
1413                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1414         }
1415
1416         return true;
1417 }
1418
1419 /**
1420  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1421  * @adapter: board private structure
1422  * @txdr:    tx descriptor ring (for a specific queue) to setup
1423  *
1424  * Return 0 on success, negative on failure
1425  **/
1426
1427 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1428                                     struct e1000_tx_ring *txdr)
1429 {
1430         struct pci_dev *pdev = adapter->pdev;
1431         int size;
1432
1433         size = sizeof(struct e1000_buffer) * txdr->count;
1434         txdr->buffer_info = vzalloc(size);
1435         if (!txdr->buffer_info) {
1436                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1437                       "ring\n");
1438                 return -ENOMEM;
1439         }
1440
1441         /* round up to nearest 4K */
1442
1443         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1444         txdr->size = ALIGN(txdr->size, 4096);
1445
1446         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1447                                         GFP_KERNEL);
1448         if (!txdr->desc) {
1449 setup_tx_desc_die:
1450                 vfree(txdr->buffer_info);
1451                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1452                       "ring\n");
1453                 return -ENOMEM;
1454         }
1455
1456         /* Fix for errata 23, can't cross 64kB boundary */
1457         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1458                 void *olddesc = txdr->desc;
1459                 dma_addr_t olddma = txdr->dma;
1460                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1461                       txdr->size, txdr->desc);
1462                 /* Try again, without freeing the previous */
1463                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1464                                                 &txdr->dma, GFP_KERNEL);
1465                 /* Failed allocation, critical failure */
1466                 if (!txdr->desc) {
1467                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1468                                           olddma);
1469                         goto setup_tx_desc_die;
1470                 }
1471
1472                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1473                         /* give up */
1474                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1475                                           txdr->dma);
1476                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1477                                           olddma);
1478                         e_err(probe, "Unable to allocate aligned memory "
1479                               "for the transmit descriptor ring\n");
1480                         vfree(txdr->buffer_info);
1481                         return -ENOMEM;
1482                 } else {
1483                         /* Free old allocation, new allocation was successful */
1484                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1485                                           olddma);
1486                 }
1487         }
1488         memset(txdr->desc, 0, txdr->size);
1489
1490         txdr->next_to_use = 0;
1491         txdr->next_to_clean = 0;
1492
1493         return 0;
1494 }
1495
1496 /**
1497  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1498  *                                (Descriptors) for all queues
1499  * @adapter: board private structure
1500  *
1501  * Return 0 on success, negative on failure
1502  **/
1503
1504 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1505 {
1506         int i, err = 0;
1507
1508         for (i = 0; i < adapter->num_tx_queues; i++) {
1509                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1510                 if (err) {
1511                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1512                         for (i-- ; i >= 0; i--)
1513                                 e1000_free_tx_resources(adapter,
1514                                                         &adapter->tx_ring[i]);
1515                         break;
1516                 }
1517         }
1518
1519         return err;
1520 }
1521
1522 /**
1523  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1524  * @adapter: board private structure
1525  *
1526  * Configure the Tx unit of the MAC after a reset.
1527  **/
1528
1529 static void e1000_configure_tx(struct e1000_adapter *adapter)
1530 {
1531         u64 tdba;
1532         struct e1000_hw *hw = &adapter->hw;
1533         u32 tdlen, tctl, tipg;
1534         u32 ipgr1, ipgr2;
1535
1536         /* Setup the HW Tx Head and Tail descriptor pointers */
1537
1538         switch (adapter->num_tx_queues) {
1539         case 1:
1540         default:
1541                 tdba = adapter->tx_ring[0].dma;
1542                 tdlen = adapter->tx_ring[0].count *
1543                         sizeof(struct e1000_tx_desc);
1544                 ew32(TDLEN, tdlen);
1545                 ew32(TDBAH, (tdba >> 32));
1546                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1547                 ew32(TDT, 0);
1548                 ew32(TDH, 0);
1549                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1550                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1551                 break;
1552         }
1553
1554         /* Set the default values for the Tx Inter Packet Gap timer */
1555         if ((hw->media_type == e1000_media_type_fiber ||
1556              hw->media_type == e1000_media_type_internal_serdes))
1557                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1558         else
1559                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1560
1561         switch (hw->mac_type) {
1562         case e1000_82542_rev2_0:
1563         case e1000_82542_rev2_1:
1564                 tipg = DEFAULT_82542_TIPG_IPGT;
1565                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1566                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1567                 break;
1568         default:
1569                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1570                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1571                 break;
1572         }
1573         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1574         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1575         ew32(TIPG, tipg);
1576
1577         /* Set the Tx Interrupt Delay register */
1578
1579         ew32(TIDV, adapter->tx_int_delay);
1580         if (hw->mac_type >= e1000_82540)
1581                 ew32(TADV, adapter->tx_abs_int_delay);
1582
1583         /* Program the Transmit Control Register */
1584
1585         tctl = er32(TCTL);
1586         tctl &= ~E1000_TCTL_CT;
1587         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1588                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1589
1590         e1000_config_collision_dist(hw);
1591
1592         /* Setup Transmit Descriptor Settings for eop descriptor */
1593         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1594
1595         /* only set IDE if we are delaying interrupts using the timers */
1596         if (adapter->tx_int_delay)
1597                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1598
1599         if (hw->mac_type < e1000_82543)
1600                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1601         else
1602                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1603
1604         /* Cache if we're 82544 running in PCI-X because we'll
1605          * need this to apply a workaround later in the send path. */
1606         if (hw->mac_type == e1000_82544 &&
1607             hw->bus_type == e1000_bus_type_pcix)
1608                 adapter->pcix_82544 = 1;
1609
1610         ew32(TCTL, tctl);
1611
1612 }
1613
1614 /**
1615  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1616  * @adapter: board private structure
1617  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1618  *
1619  * Returns 0 on success, negative on failure
1620  **/
1621
1622 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1623                                     struct e1000_rx_ring *rxdr)
1624 {
1625         struct pci_dev *pdev = adapter->pdev;
1626         int size, desc_len;
1627
1628         size = sizeof(struct e1000_buffer) * rxdr->count;
1629         rxdr->buffer_info = vzalloc(size);
1630         if (!rxdr->buffer_info) {
1631                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1632                       "ring\n");
1633                 return -ENOMEM;
1634         }
1635
1636         desc_len = sizeof(struct e1000_rx_desc);
1637
1638         /* Round up to nearest 4K */
1639
1640         rxdr->size = rxdr->count * desc_len;
1641         rxdr->size = ALIGN(rxdr->size, 4096);
1642
1643         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1644                                         GFP_KERNEL);
1645
1646         if (!rxdr->desc) {
1647                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1648                       "ring\n");
1649 setup_rx_desc_die:
1650                 vfree(rxdr->buffer_info);
1651                 return -ENOMEM;
1652         }
1653
1654         /* Fix for errata 23, can't cross 64kB boundary */
1655         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1656                 void *olddesc = rxdr->desc;
1657                 dma_addr_t olddma = rxdr->dma;
1658                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1659                       rxdr->size, rxdr->desc);
1660                 /* Try again, without freeing the previous */
1661                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1662                                                 &rxdr->dma, GFP_KERNEL);
1663                 /* Failed allocation, critical failure */
1664                 if (!rxdr->desc) {
1665                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1666                                           olddma);
1667                         e_err(probe, "Unable to allocate memory for the Rx "
1668                               "descriptor ring\n");
1669                         goto setup_rx_desc_die;
1670                 }
1671
1672                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1673                         /* give up */
1674                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1675                                           rxdr->dma);
1676                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1677                                           olddma);
1678                         e_err(probe, "Unable to allocate aligned memory for "
1679                               "the Rx descriptor ring\n");
1680                         goto setup_rx_desc_die;
1681                 } else {
1682                         /* Free old allocation, new allocation was successful */
1683                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1684                                           olddma);
1685                 }
1686         }
1687         memset(rxdr->desc, 0, rxdr->size);
1688
1689         rxdr->next_to_clean = 0;
1690         rxdr->next_to_use = 0;
1691         rxdr->rx_skb_top = NULL;
1692
1693         return 0;
1694 }
1695
1696 /**
1697  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1698  *                                (Descriptors) for all queues
1699  * @adapter: board private structure
1700  *
1701  * Return 0 on success, negative on failure
1702  **/
1703
1704 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1705 {
1706         int i, err = 0;
1707
1708         for (i = 0; i < adapter->num_rx_queues; i++) {
1709                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1710                 if (err) {
1711                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1712                         for (i-- ; i >= 0; i--)
1713                                 e1000_free_rx_resources(adapter,
1714                                                         &adapter->rx_ring[i]);
1715                         break;
1716                 }
1717         }
1718
1719         return err;
1720 }
1721
1722 /**
1723  * e1000_setup_rctl - configure the receive control registers
1724  * @adapter: Board private structure
1725  **/
1726 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1727 {
1728         struct e1000_hw *hw = &adapter->hw;
1729         u32 rctl;
1730
1731         rctl = er32(RCTL);
1732
1733         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1734
1735         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1736                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1737                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1738
1739         if (hw->tbi_compatibility_on == 1)
1740                 rctl |= E1000_RCTL_SBP;
1741         else
1742                 rctl &= ~E1000_RCTL_SBP;
1743
1744         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1745                 rctl &= ~E1000_RCTL_LPE;
1746         else
1747                 rctl |= E1000_RCTL_LPE;
1748
1749         /* Setup buffer sizes */
1750         rctl &= ~E1000_RCTL_SZ_4096;
1751         rctl |= E1000_RCTL_BSEX;
1752         switch (adapter->rx_buffer_len) {
1753                 case E1000_RXBUFFER_2048:
1754                 default:
1755                         rctl |= E1000_RCTL_SZ_2048;
1756                         rctl &= ~E1000_RCTL_BSEX;
1757                         break;
1758                 case E1000_RXBUFFER_4096:
1759                         rctl |= E1000_RCTL_SZ_4096;
1760                         break;
1761                 case E1000_RXBUFFER_8192:
1762                         rctl |= E1000_RCTL_SZ_8192;
1763                         break;
1764                 case E1000_RXBUFFER_16384:
1765                         rctl |= E1000_RCTL_SZ_16384;
1766                         break;
1767         }
1768
1769         ew32(RCTL, rctl);
1770 }
1771
1772 /**
1773  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1774  * @adapter: board private structure
1775  *
1776  * Configure the Rx unit of the MAC after a reset.
1777  **/
1778
1779 static void e1000_configure_rx(struct e1000_adapter *adapter)
1780 {
1781         u64 rdba;
1782         struct e1000_hw *hw = &adapter->hw;
1783         u32 rdlen, rctl, rxcsum;
1784
1785         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1786                 rdlen = adapter->rx_ring[0].count *
1787                         sizeof(struct e1000_rx_desc);
1788                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1789                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1790         } else {
1791                 rdlen = adapter->rx_ring[0].count *
1792                         sizeof(struct e1000_rx_desc);
1793                 adapter->clean_rx = e1000_clean_rx_irq;
1794                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1795         }
1796
1797         /* disable receives while setting up the descriptors */
1798         rctl = er32(RCTL);
1799         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1800
1801         /* set the Receive Delay Timer Register */
1802         ew32(RDTR, adapter->rx_int_delay);
1803
1804         if (hw->mac_type >= e1000_82540) {
1805                 ew32(RADV, adapter->rx_abs_int_delay);
1806                 if (adapter->itr_setting != 0)
1807                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1808         }
1809
1810         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1811          * the Base and Length of the Rx Descriptor Ring */
1812         switch (adapter->num_rx_queues) {
1813         case 1:
1814         default:
1815                 rdba = adapter->rx_ring[0].dma;
1816                 ew32(RDLEN, rdlen);
1817                 ew32(RDBAH, (rdba >> 32));
1818                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1819                 ew32(RDT, 0);
1820                 ew32(RDH, 0);
1821                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1822                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1823                 break;
1824         }
1825
1826         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1827         if (hw->mac_type >= e1000_82543) {
1828                 rxcsum = er32(RXCSUM);
1829                 if (adapter->rx_csum)
1830                         rxcsum |= E1000_RXCSUM_TUOFL;
1831                 else
1832                         /* don't need to clear IPPCSE as it defaults to 0 */
1833                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1834                 ew32(RXCSUM, rxcsum);
1835         }
1836
1837         /* Enable Receives */
1838         ew32(RCTL, rctl);
1839 }
1840
1841 /**
1842  * e1000_free_tx_resources - Free Tx Resources per Queue
1843  * @adapter: board private structure
1844  * @tx_ring: Tx descriptor ring for a specific queue
1845  *
1846  * Free all transmit software resources
1847  **/
1848
1849 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1850                                     struct e1000_tx_ring *tx_ring)
1851 {
1852         struct pci_dev *pdev = adapter->pdev;
1853
1854         e1000_clean_tx_ring(adapter, tx_ring);
1855
1856         vfree(tx_ring->buffer_info);
1857         tx_ring->buffer_info = NULL;
1858
1859         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1860                           tx_ring->dma);
1861
1862         tx_ring->desc = NULL;
1863 }
1864
1865 /**
1866  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1867  * @adapter: board private structure
1868  *
1869  * Free all transmit software resources
1870  **/
1871
1872 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1873 {
1874         int i;
1875
1876         for (i = 0; i < adapter->num_tx_queues; i++)
1877                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1878 }
1879
1880 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1881                                              struct e1000_buffer *buffer_info)
1882 {
1883         if (buffer_info->dma) {
1884                 if (buffer_info->mapped_as_page)
1885                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1886                                        buffer_info->length, DMA_TO_DEVICE);
1887                 else
1888                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1889                                          buffer_info->length,
1890                                          DMA_TO_DEVICE);
1891                 buffer_info->dma = 0;
1892         }
1893         if (buffer_info->skb) {
1894                 dev_kfree_skb_any(buffer_info->skb);
1895                 buffer_info->skb = NULL;
1896         }
1897         buffer_info->time_stamp = 0;
1898         /* buffer_info must be completely set up in the transmit path */
1899 }
1900
1901 /**
1902  * e1000_clean_tx_ring - Free Tx Buffers
1903  * @adapter: board private structure
1904  * @tx_ring: ring to be cleaned
1905  **/
1906
1907 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1908                                 struct e1000_tx_ring *tx_ring)
1909 {
1910         struct e1000_hw *hw = &adapter->hw;
1911         struct e1000_buffer *buffer_info;
1912         unsigned long size;
1913         unsigned int i;
1914
1915         /* Free all the Tx ring sk_buffs */
1916
1917         for (i = 0; i < tx_ring->count; i++) {
1918                 buffer_info = &tx_ring->buffer_info[i];
1919                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1920         }
1921
1922         size = sizeof(struct e1000_buffer) * tx_ring->count;
1923         memset(tx_ring->buffer_info, 0, size);
1924
1925         /* Zero out the descriptor ring */
1926
1927         memset(tx_ring->desc, 0, tx_ring->size);
1928
1929         tx_ring->next_to_use = 0;
1930         tx_ring->next_to_clean = 0;
1931         tx_ring->last_tx_tso = 0;
1932
1933         writel(0, hw->hw_addr + tx_ring->tdh);
1934         writel(0, hw->hw_addr + tx_ring->tdt);
1935 }
1936
1937 /**
1938  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1939  * @adapter: board private structure
1940  **/
1941
1942 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1943 {
1944         int i;
1945
1946         for (i = 0; i < adapter->num_tx_queues; i++)
1947                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1948 }
1949
1950 /**
1951  * e1000_free_rx_resources - Free Rx Resources
1952  * @adapter: board private structure
1953  * @rx_ring: ring to clean the resources from
1954  *
1955  * Free all receive software resources
1956  **/
1957
1958 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1959                                     struct e1000_rx_ring *rx_ring)
1960 {
1961         struct pci_dev *pdev = adapter->pdev;
1962
1963         e1000_clean_rx_ring(adapter, rx_ring);
1964
1965         vfree(rx_ring->buffer_info);
1966         rx_ring->buffer_info = NULL;
1967
1968         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1969                           rx_ring->dma);
1970
1971         rx_ring->desc = NULL;
1972 }
1973
1974 /**
1975  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1976  * @adapter: board private structure
1977  *
1978  * Free all receive software resources
1979  **/
1980
1981 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1982 {
1983         int i;
1984
1985         for (i = 0; i < adapter->num_rx_queues; i++)
1986                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1987 }
1988
1989 /**
1990  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1991  * @adapter: board private structure
1992  * @rx_ring: ring to free buffers from
1993  **/
1994
1995 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1996                                 struct e1000_rx_ring *rx_ring)
1997 {
1998         struct e1000_hw *hw = &adapter->hw;
1999         struct e1000_buffer *buffer_info;
2000         struct pci_dev *pdev = adapter->pdev;
2001         unsigned long size;
2002         unsigned int i;
2003
2004         /* Free all the Rx ring sk_buffs */
2005         for (i = 0; i < rx_ring->count; i++) {
2006                 buffer_info = &rx_ring->buffer_info[i];
2007                 if (buffer_info->dma &&
2008                     adapter->clean_rx == e1000_clean_rx_irq) {
2009                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2010                                          buffer_info->length,
2011                                          DMA_FROM_DEVICE);
2012                 } else if (buffer_info->dma &&
2013                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2014                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2015                                        buffer_info->length,
2016                                        DMA_FROM_DEVICE);
2017                 }
2018
2019                 buffer_info->dma = 0;
2020                 if (buffer_info->page) {
2021                         put_page(buffer_info->page);
2022                         buffer_info->page = NULL;
2023                 }
2024                 if (buffer_info->skb) {
2025                         dev_kfree_skb(buffer_info->skb);
2026                         buffer_info->skb = NULL;
2027                 }
2028         }
2029
2030         /* there also may be some cached data from a chained receive */
2031         if (rx_ring->rx_skb_top) {
2032                 dev_kfree_skb(rx_ring->rx_skb_top);
2033                 rx_ring->rx_skb_top = NULL;
2034         }
2035
2036         size = sizeof(struct e1000_buffer) * rx_ring->count;
2037         memset(rx_ring->buffer_info, 0, size);
2038
2039         /* Zero out the descriptor ring */
2040         memset(rx_ring->desc, 0, rx_ring->size);
2041
2042         rx_ring->next_to_clean = 0;
2043         rx_ring->next_to_use = 0;
2044
2045         writel(0, hw->hw_addr + rx_ring->rdh);
2046         writel(0, hw->hw_addr + rx_ring->rdt);
2047 }
2048
2049 /**
2050  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2051  * @adapter: board private structure
2052  **/
2053
2054 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2055 {
2056         int i;
2057
2058         for (i = 0; i < adapter->num_rx_queues; i++)
2059                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2060 }
2061
2062 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2063  * and memory write and invalidate disabled for certain operations
2064  */
2065 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2066 {
2067         struct e1000_hw *hw = &adapter->hw;
2068         struct net_device *netdev = adapter->netdev;
2069         u32 rctl;
2070
2071         e1000_pci_clear_mwi(hw);
2072
2073         rctl = er32(RCTL);
2074         rctl |= E1000_RCTL_RST;
2075         ew32(RCTL, rctl);
2076         E1000_WRITE_FLUSH();
2077         mdelay(5);
2078
2079         if (netif_running(netdev))
2080                 e1000_clean_all_rx_rings(adapter);
2081 }
2082
2083 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2084 {
2085         struct e1000_hw *hw = &adapter->hw;
2086         struct net_device *netdev = adapter->netdev;
2087         u32 rctl;
2088
2089         rctl = er32(RCTL);
2090         rctl &= ~E1000_RCTL_RST;
2091         ew32(RCTL, rctl);
2092         E1000_WRITE_FLUSH();
2093         mdelay(5);
2094
2095         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2096                 e1000_pci_set_mwi(hw);
2097
2098         if (netif_running(netdev)) {
2099                 /* No need to loop, because 82542 supports only 1 queue */
2100                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2101                 e1000_configure_rx(adapter);
2102                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2103         }
2104 }
2105
2106 /**
2107  * e1000_set_mac - Change the Ethernet Address of the NIC
2108  * @netdev: network interface device structure
2109  * @p: pointer to an address structure
2110  *
2111  * Returns 0 on success, negative on failure
2112  **/
2113
2114 static int e1000_set_mac(struct net_device *netdev, void *p)
2115 {
2116         struct e1000_adapter *adapter = netdev_priv(netdev);
2117         struct e1000_hw *hw = &adapter->hw;
2118         struct sockaddr *addr = p;
2119
2120         if (!is_valid_ether_addr(addr->sa_data))
2121                 return -EADDRNOTAVAIL;
2122
2123         /* 82542 2.0 needs to be in reset to write receive address registers */
2124
2125         if (hw->mac_type == e1000_82542_rev2_0)
2126                 e1000_enter_82542_rst(adapter);
2127
2128         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2129         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2130
2131         e1000_rar_set(hw, hw->mac_addr, 0);
2132
2133         if (hw->mac_type == e1000_82542_rev2_0)
2134                 e1000_leave_82542_rst(adapter);
2135
2136         return 0;
2137 }
2138
2139 /**
2140  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2141  * @netdev: network interface device structure
2142  *
2143  * The set_rx_mode entry point is called whenever the unicast or multicast
2144  * address lists or the network interface flags are updated. This routine is
2145  * responsible for configuring the hardware for proper unicast, multicast,
2146  * promiscuous mode, and all-multi behavior.
2147  **/
2148
2149 static void e1000_set_rx_mode(struct net_device *netdev)
2150 {
2151         struct e1000_adapter *adapter = netdev_priv(netdev);
2152         struct e1000_hw *hw = &adapter->hw;
2153         struct netdev_hw_addr *ha;
2154         bool use_uc = false;
2155         u32 rctl;
2156         u32 hash_value;
2157         int i, rar_entries = E1000_RAR_ENTRIES;
2158         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2159         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2160
2161         if (!mcarray) {
2162                 e_err(probe, "memory allocation failed\n");
2163                 return;
2164         }
2165
2166         /* Check for Promiscuous and All Multicast modes */
2167
2168         rctl = er32(RCTL);
2169
2170         if (netdev->flags & IFF_PROMISC) {
2171                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2172                 rctl &= ~E1000_RCTL_VFE;
2173         } else {
2174                 if (netdev->flags & IFF_ALLMULTI)
2175                         rctl |= E1000_RCTL_MPE;
2176                 else
2177                         rctl &= ~E1000_RCTL_MPE;
2178                 /* Enable VLAN filter if there is a VLAN */
2179                 if (adapter->vlgrp)
2180                         rctl |= E1000_RCTL_VFE;
2181         }
2182
2183         if (netdev_uc_count(netdev) > rar_entries - 1) {
2184                 rctl |= E1000_RCTL_UPE;
2185         } else if (!(netdev->flags & IFF_PROMISC)) {
2186                 rctl &= ~E1000_RCTL_UPE;
2187                 use_uc = true;
2188         }
2189
2190         ew32(RCTL, rctl);
2191
2192         /* 82542 2.0 needs to be in reset to write receive address registers */
2193
2194         if (hw->mac_type == e1000_82542_rev2_0)
2195                 e1000_enter_82542_rst(adapter);
2196
2197         /* load the first 14 addresses into the exact filters 1-14. Unicast
2198          * addresses take precedence to avoid disabling unicast filtering
2199          * when possible.
2200          *
2201          * RAR 0 is used for the station MAC adddress
2202          * if there are not 14 addresses, go ahead and clear the filters
2203          */
2204         i = 1;
2205         if (use_uc)
2206                 netdev_for_each_uc_addr(ha, netdev) {
2207                         if (i == rar_entries)
2208                                 break;
2209                         e1000_rar_set(hw, ha->addr, i++);
2210                 }
2211
2212         netdev_for_each_mc_addr(ha, netdev) {
2213                 if (i == rar_entries) {
2214                         /* load any remaining addresses into the hash table */
2215                         u32 hash_reg, hash_bit, mta;
2216                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2217                         hash_reg = (hash_value >> 5) & 0x7F;
2218                         hash_bit = hash_value & 0x1F;
2219                         mta = (1 << hash_bit);
2220                         mcarray[hash_reg] |= mta;
2221                 } else {
2222                         e1000_rar_set(hw, ha->addr, i++);
2223                 }
2224         }
2225
2226         for (; i < rar_entries; i++) {
2227                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2228                 E1000_WRITE_FLUSH();
2229                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2230                 E1000_WRITE_FLUSH();
2231         }
2232
2233         /* write the hash table completely, write from bottom to avoid
2234          * both stupid write combining chipsets, and flushing each write */
2235         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2236                 /*
2237                  * If we are on an 82544 has an errata where writing odd
2238                  * offsets overwrites the previous even offset, but writing
2239                  * backwards over the range solves the issue by always
2240                  * writing the odd offset first
2241                  */
2242                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2243         }
2244         E1000_WRITE_FLUSH();
2245
2246         if (hw->mac_type == e1000_82542_rev2_0)
2247                 e1000_leave_82542_rst(adapter);
2248
2249         kfree(mcarray);
2250 }
2251
2252 /* Need to wait a few seconds after link up to get diagnostic information from
2253  * the phy */
2254
2255 static void e1000_update_phy_info(unsigned long data)
2256 {
2257         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2258         schedule_work(&adapter->phy_info_task);
2259 }
2260
2261 static void e1000_update_phy_info_task(struct work_struct *work)
2262 {
2263         struct e1000_adapter *adapter = container_of(work,
2264                                                      struct e1000_adapter,
2265                                                      phy_info_task);
2266         struct e1000_hw *hw = &adapter->hw;
2267
2268         rtnl_lock();
2269         e1000_phy_get_info(hw, &adapter->phy_info);
2270         rtnl_unlock();
2271 }
2272
2273 /**
2274  * e1000_82547_tx_fifo_stall - Timer Call-back
2275  * @data: pointer to adapter cast into an unsigned long
2276  **/
2277 static void e1000_82547_tx_fifo_stall(unsigned long data)
2278 {
2279         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2280         schedule_work(&adapter->fifo_stall_task);
2281 }
2282
2283 /**
2284  * e1000_82547_tx_fifo_stall_task - task to complete work
2285  * @work: work struct contained inside adapter struct
2286  **/
2287 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2288 {
2289         struct e1000_adapter *adapter = container_of(work,
2290                                                      struct e1000_adapter,
2291                                                      fifo_stall_task);
2292         struct e1000_hw *hw = &adapter->hw;
2293         struct net_device *netdev = adapter->netdev;
2294         u32 tctl;
2295
2296         rtnl_lock();
2297         if (atomic_read(&adapter->tx_fifo_stall)) {
2298                 if ((er32(TDT) == er32(TDH)) &&
2299                    (er32(TDFT) == er32(TDFH)) &&
2300                    (er32(TDFTS) == er32(TDFHS))) {
2301                         tctl = er32(TCTL);
2302                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2303                         ew32(TDFT, adapter->tx_head_addr);
2304                         ew32(TDFH, adapter->tx_head_addr);
2305                         ew32(TDFTS, adapter->tx_head_addr);
2306                         ew32(TDFHS, adapter->tx_head_addr);
2307                         ew32(TCTL, tctl);
2308                         E1000_WRITE_FLUSH();
2309
2310                         adapter->tx_fifo_head = 0;
2311                         atomic_set(&adapter->tx_fifo_stall, 0);
2312                         netif_wake_queue(netdev);
2313                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2314                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2315                 }
2316         }
2317         rtnl_unlock();
2318 }
2319
2320 bool e1000_has_link(struct e1000_adapter *adapter)
2321 {
2322         struct e1000_hw *hw = &adapter->hw;
2323         bool link_active = false;
2324
2325         /* get_link_status is set on LSC (link status) interrupt or
2326          * rx sequence error interrupt.  get_link_status will stay
2327          * false until the e1000_check_for_link establishes link
2328          * for copper adapters ONLY
2329          */
2330         switch (hw->media_type) {
2331         case e1000_media_type_copper:
2332                 if (hw->get_link_status) {
2333                         e1000_check_for_link(hw);
2334                         link_active = !hw->get_link_status;
2335                 } else {
2336                         link_active = true;
2337                 }
2338                 break;
2339         case e1000_media_type_fiber:
2340                 e1000_check_for_link(hw);
2341                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2342                 break;
2343         case e1000_media_type_internal_serdes:
2344                 e1000_check_for_link(hw);
2345                 link_active = hw->serdes_has_link;
2346                 break;
2347         default:
2348                 break;
2349         }
2350
2351         return link_active;
2352 }
2353
2354 /**
2355  * e1000_watchdog - Timer Call-back
2356  * @data: pointer to adapter cast into an unsigned long
2357  **/
2358 static void e1000_watchdog(unsigned long data)
2359 {
2360         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2361         struct e1000_hw *hw = &adapter->hw;
2362         struct net_device *netdev = adapter->netdev;
2363         struct e1000_tx_ring *txdr = adapter->tx_ring;
2364         u32 link, tctl;
2365
2366         link = e1000_has_link(adapter);
2367         if ((netif_carrier_ok(netdev)) && link)
2368                 goto link_up;
2369
2370         if (link) {
2371                 if (!netif_carrier_ok(netdev)) {
2372                         u32 ctrl;
2373                         bool txb2b = true;
2374                         /* update snapshot of PHY registers on LSC */
2375                         e1000_get_speed_and_duplex(hw,
2376                                                    &adapter->link_speed,
2377                                                    &adapter->link_duplex);
2378
2379                         ctrl = er32(CTRL);
2380                         pr_info("%s NIC Link is Up %d Mbps %s, "
2381                                 "Flow Control: %s\n",
2382                                 netdev->name,
2383                                 adapter->link_speed,
2384                                 adapter->link_duplex == FULL_DUPLEX ?
2385                                 "Full Duplex" : "Half Duplex",
2386                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2387                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2388                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2389                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2390
2391                         /* adjust timeout factor according to speed/duplex */
2392                         adapter->tx_timeout_factor = 1;
2393                         switch (adapter->link_speed) {
2394                         case SPEED_10:
2395                                 txb2b = false;
2396                                 adapter->tx_timeout_factor = 16;
2397                                 break;
2398                         case SPEED_100:
2399                                 txb2b = false;
2400                                 /* maybe add some timeout factor ? */
2401                                 break;
2402                         }
2403
2404                         /* enable transmits in the hardware */
2405                         tctl = er32(TCTL);
2406                         tctl |= E1000_TCTL_EN;
2407                         ew32(TCTL, tctl);
2408
2409                         netif_carrier_on(netdev);
2410                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2411                                 mod_timer(&adapter->phy_info_timer,
2412                                           round_jiffies(jiffies + 2 * HZ));
2413                         adapter->smartspeed = 0;
2414                 }
2415         } else {
2416                 if (netif_carrier_ok(netdev)) {
2417                         adapter->link_speed = 0;
2418                         adapter->link_duplex = 0;
2419                         pr_info("%s NIC Link is Down\n",
2420                                 netdev->name);
2421                         netif_carrier_off(netdev);
2422
2423                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2424                                 mod_timer(&adapter->phy_info_timer,
2425                                           round_jiffies(jiffies + 2 * HZ));
2426                 }
2427
2428                 e1000_smartspeed(adapter);
2429         }
2430
2431 link_up:
2432         e1000_update_stats(adapter);
2433
2434         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2435         adapter->tpt_old = adapter->stats.tpt;
2436         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2437         adapter->colc_old = adapter->stats.colc;
2438
2439         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2440         adapter->gorcl_old = adapter->stats.gorcl;
2441         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2442         adapter->gotcl_old = adapter->stats.gotcl;
2443
2444         e1000_update_adaptive(hw);
2445
2446         if (!netif_carrier_ok(netdev)) {
2447                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2448                         /* We've lost link, so the controller stops DMA,
2449                          * but we've got queued Tx work that's never going
2450                          * to get done, so reset controller to flush Tx.
2451                          * (Do the reset outside of interrupt context). */
2452                         adapter->tx_timeout_count++;
2453                         schedule_work(&adapter->reset_task);
2454                         /* return immediately since reset is imminent */
2455                         return;
2456                 }
2457         }
2458
2459         /* Simple mode for Interrupt Throttle Rate (ITR) */
2460         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2461                 /*
2462                  * Symmetric Tx/Rx gets a reduced ITR=2000;
2463                  * Total asymmetrical Tx or Rx gets ITR=8000;
2464                  * everyone else is between 2000-8000.
2465                  */
2466                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2467                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2468                             adapter->gotcl - adapter->gorcl :
2469                             adapter->gorcl - adapter->gotcl) / 10000;
2470                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2471
2472                 ew32(ITR, 1000000000 / (itr * 256));
2473         }
2474
2475         /* Cause software interrupt to ensure rx ring is cleaned */
2476         ew32(ICS, E1000_ICS_RXDMT0);
2477
2478         /* Force detection of hung controller every watchdog period */
2479         adapter->detect_tx_hung = true;
2480
2481         /* Reset the timer */
2482         if (!test_bit(__E1000_DOWN, &adapter->flags))
2483                 mod_timer(&adapter->watchdog_timer,
2484                           round_jiffies(jiffies + 2 * HZ));
2485 }
2486
2487 enum latency_range {
2488         lowest_latency = 0,
2489         low_latency = 1,
2490         bulk_latency = 2,
2491         latency_invalid = 255
2492 };
2493
2494 /**
2495  * e1000_update_itr - update the dynamic ITR value based on statistics
2496  * @adapter: pointer to adapter
2497  * @itr_setting: current adapter->itr
2498  * @packets: the number of packets during this measurement interval
2499  * @bytes: the number of bytes during this measurement interval
2500  *
2501  *      Stores a new ITR value based on packets and byte
2502  *      counts during the last interrupt.  The advantage of per interrupt
2503  *      computation is faster updates and more accurate ITR for the current
2504  *      traffic pattern.  Constants in this function were computed
2505  *      based on theoretical maximum wire speed and thresholds were set based
2506  *      on testing data as well as attempting to minimize response time
2507  *      while increasing bulk throughput.
2508  *      this functionality is controlled by the InterruptThrottleRate module
2509  *      parameter (see e1000_param.c)
2510  **/
2511 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2512                                      u16 itr_setting, int packets, int bytes)
2513 {
2514         unsigned int retval = itr_setting;
2515         struct e1000_hw *hw = &adapter->hw;
2516
2517         if (unlikely(hw->mac_type < e1000_82540))
2518                 goto update_itr_done;
2519
2520         if (packets == 0)
2521                 goto update_itr_done;
2522
2523         switch (itr_setting) {
2524         case lowest_latency:
2525                 /* jumbo frames get bulk treatment*/
2526                 if (bytes/packets > 8000)
2527                         retval = bulk_latency;
2528                 else if ((packets < 5) && (bytes > 512))
2529                         retval = low_latency;
2530                 break;
2531         case low_latency:  /* 50 usec aka 20000 ints/s */
2532                 if (bytes > 10000) {
2533                         /* jumbo frames need bulk latency setting */
2534                         if (bytes/packets > 8000)
2535                                 retval = bulk_latency;
2536                         else if ((packets < 10) || ((bytes/packets) > 1200))
2537                                 retval = bulk_latency;
2538                         else if ((packets > 35))
2539                                 retval = lowest_latency;
2540                 } else if (bytes/packets > 2000)
2541                         retval = bulk_latency;
2542                 else if (packets <= 2 && bytes < 512)
2543                         retval = lowest_latency;
2544                 break;
2545         case bulk_latency: /* 250 usec aka 4000 ints/s */
2546                 if (bytes > 25000) {
2547                         if (packets > 35)
2548                                 retval = low_latency;
2549                 } else if (bytes < 6000) {
2550                         retval = low_latency;
2551                 }
2552                 break;
2553         }
2554
2555 update_itr_done:
2556         return retval;
2557 }
2558
2559 static void e1000_set_itr(struct e1000_adapter *adapter)
2560 {
2561         struct e1000_hw *hw = &adapter->hw;
2562         u16 current_itr;
2563         u32 new_itr = adapter->itr;
2564
2565         if (unlikely(hw->mac_type < e1000_82540))
2566                 return;
2567
2568         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2569         if (unlikely(adapter->link_speed != SPEED_1000)) {
2570                 current_itr = 0;
2571                 new_itr = 4000;
2572                 goto set_itr_now;
2573         }
2574
2575         adapter->tx_itr = e1000_update_itr(adapter,
2576                                     adapter->tx_itr,
2577                                     adapter->total_tx_packets,
2578                                     adapter->total_tx_bytes);
2579         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2580         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2581                 adapter->tx_itr = low_latency;
2582
2583         adapter->rx_itr = e1000_update_itr(adapter,
2584                                     adapter->rx_itr,
2585                                     adapter->total_rx_packets,
2586                                     adapter->total_rx_bytes);
2587         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2588         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2589                 adapter->rx_itr = low_latency;
2590
2591         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2592
2593         switch (current_itr) {
2594         /* counts and packets in update_itr are dependent on these numbers */
2595         case lowest_latency:
2596                 new_itr = 70000;
2597                 break;
2598         case low_latency:
2599                 new_itr = 20000; /* aka hwitr = ~200 */
2600                 break;
2601         case bulk_latency:
2602                 new_itr = 4000;
2603                 break;
2604         default:
2605                 break;
2606         }
2607
2608 set_itr_now:
2609         if (new_itr != adapter->itr) {
2610                 /* this attempts to bias the interrupt rate towards Bulk
2611                  * by adding intermediate steps when interrupt rate is
2612                  * increasing */
2613                 new_itr = new_itr > adapter->itr ?
2614                              min(adapter->itr + (new_itr >> 2), new_itr) :
2615                              new_itr;
2616                 adapter->itr = new_itr;
2617                 ew32(ITR, 1000000000 / (new_itr * 256));
2618         }
2619 }
2620
2621 #define E1000_TX_FLAGS_CSUM             0x00000001
2622 #define E1000_TX_FLAGS_VLAN             0x00000002
2623 #define E1000_TX_FLAGS_TSO              0x00000004
2624 #define E1000_TX_FLAGS_IPV4             0x00000008
2625 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2626 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2627
2628 static int e1000_tso(struct e1000_adapter *adapter,
2629                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2630 {
2631         struct e1000_context_desc *context_desc;
2632         struct e1000_buffer *buffer_info;
2633         unsigned int i;
2634         u32 cmd_length = 0;
2635         u16 ipcse = 0, tucse, mss;
2636         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2637         int err;
2638
2639         if (skb_is_gso(skb)) {
2640                 if (skb_header_cloned(skb)) {
2641                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2642                         if (err)
2643                                 return err;
2644                 }
2645
2646                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2647                 mss = skb_shinfo(skb)->gso_size;
2648                 if (skb->protocol == htons(ETH_P_IP)) {
2649                         struct iphdr *iph = ip_hdr(skb);
2650                         iph->tot_len = 0;
2651                         iph->check = 0;
2652                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2653                                                                  iph->daddr, 0,
2654                                                                  IPPROTO_TCP,
2655                                                                  0);
2656                         cmd_length = E1000_TXD_CMD_IP;
2657                         ipcse = skb_transport_offset(skb) - 1;
2658                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2659                         ipv6_hdr(skb)->payload_len = 0;
2660                         tcp_hdr(skb)->check =
2661                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2662                                                  &ipv6_hdr(skb)->daddr,
2663                                                  0, IPPROTO_TCP, 0);
2664                         ipcse = 0;
2665                 }
2666                 ipcss = skb_network_offset(skb);
2667                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2668                 tucss = skb_transport_offset(skb);
2669                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2670                 tucse = 0;
2671
2672                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2673                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2674
2675                 i = tx_ring->next_to_use;
2676                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2677                 buffer_info = &tx_ring->buffer_info[i];
2678
2679                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2680                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2681                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2682                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2683                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2684                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2685                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2686                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2687                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2688
2689                 buffer_info->time_stamp = jiffies;
2690                 buffer_info->next_to_watch = i;
2691
2692                 if (++i == tx_ring->count) i = 0;
2693                 tx_ring->next_to_use = i;
2694
2695                 return true;
2696         }
2697         return false;
2698 }
2699
2700 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2701                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2702 {
2703         struct e1000_context_desc *context_desc;
2704         struct e1000_buffer *buffer_info;
2705         unsigned int i;
2706         u8 css;
2707         u32 cmd_len = E1000_TXD_CMD_DEXT;
2708
2709         if (skb->ip_summed != CHECKSUM_PARTIAL)
2710                 return false;
2711
2712         switch (skb->protocol) {
2713         case cpu_to_be16(ETH_P_IP):
2714                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2715                         cmd_len |= E1000_TXD_CMD_TCP;
2716                 break;
2717         case cpu_to_be16(ETH_P_IPV6):
2718                 /* XXX not handling all IPV6 headers */
2719                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2720                         cmd_len |= E1000_TXD_CMD_TCP;
2721                 break;
2722         default:
2723                 if (unlikely(net_ratelimit()))
2724                         e_warn(drv, "checksum_partial proto=%x!\n",
2725                                skb->protocol);
2726                 break;
2727         }
2728
2729         css = skb_checksum_start_offset(skb);
2730
2731         i = tx_ring->next_to_use;
2732         buffer_info = &tx_ring->buffer_info[i];
2733         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2734
2735         context_desc->lower_setup.ip_config = 0;
2736         context_desc->upper_setup.tcp_fields.tucss = css;
2737         context_desc->upper_setup.tcp_fields.tucso =
2738                 css + skb->csum_offset;
2739         context_desc->upper_setup.tcp_fields.tucse = 0;
2740         context_desc->tcp_seg_setup.data = 0;
2741         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2742
2743         buffer_info->time_stamp = jiffies;
2744         buffer_info->next_to_watch = i;
2745
2746         if (unlikely(++i == tx_ring->count)) i = 0;
2747         tx_ring->next_to_use = i;
2748
2749         return true;
2750 }
2751
2752 #define E1000_MAX_TXD_PWR       12
2753 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2754
2755 static int e1000_tx_map(struct e1000_adapter *adapter,
2756                         struct e1000_tx_ring *tx_ring,
2757                         struct sk_buff *skb, unsigned int first,
2758                         unsigned int max_per_txd, unsigned int nr_frags,
2759                         unsigned int mss)
2760 {
2761         struct e1000_hw *hw = &adapter->hw;
2762         struct pci_dev *pdev = adapter->pdev;
2763         struct e1000_buffer *buffer_info;
2764         unsigned int len = skb_headlen(skb);
2765         unsigned int offset = 0, size, count = 0, i;
2766         unsigned int f;
2767
2768         i = tx_ring->next_to_use;
2769
2770         while (len) {
2771                 buffer_info = &tx_ring->buffer_info[i];
2772                 size = min(len, max_per_txd);
2773                 /* Workaround for Controller erratum --
2774                  * descriptor for non-tso packet in a linear SKB that follows a
2775                  * tso gets written back prematurely before the data is fully
2776                  * DMA'd to the controller */
2777                 if (!skb->data_len && tx_ring->last_tx_tso &&
2778                     !skb_is_gso(skb)) {
2779                         tx_ring->last_tx_tso = 0;
2780                         size -= 4;
2781                 }
2782
2783                 /* Workaround for premature desc write-backs
2784                  * in TSO mode.  Append 4-byte sentinel desc */
2785                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2786                         size -= 4;
2787                 /* work-around for errata 10 and it applies
2788                  * to all controllers in PCI-X mode
2789                  * The fix is to make sure that the first descriptor of a
2790                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2791                  */
2792                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2793                                 (size > 2015) && count == 0))
2794                         size = 2015;
2795
2796                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2797                  * terminating buffers within evenly-aligned dwords. */
2798                 if (unlikely(adapter->pcix_82544 &&
2799                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2800                    size > 4))
2801                         size -= 4;
2802
2803                 buffer_info->length = size;
2804                 /* set time_stamp *before* dma to help avoid a possible race */
2805                 buffer_info->time_stamp = jiffies;
2806                 buffer_info->mapped_as_page = false;
2807                 buffer_info->dma = dma_map_single(&pdev->dev,
2808                                                   skb->data + offset,
2809                                                   size, DMA_TO_DEVICE);
2810                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2811                         goto dma_error;
2812                 buffer_info->next_to_watch = i;
2813
2814                 len -= size;
2815                 offset += size;
2816                 count++;
2817                 if (len) {
2818                         i++;
2819                         if (unlikely(i == tx_ring->count))
2820                                 i = 0;
2821                 }
2822         }
2823
2824         for (f = 0; f < nr_frags; f++) {
2825                 struct skb_frag_struct *frag;
2826
2827                 frag = &skb_shinfo(skb)->frags[f];
2828                 len = frag->size;
2829                 offset = frag->page_offset;
2830
2831                 while (len) {
2832                         i++;
2833                         if (unlikely(i == tx_ring->count))
2834                                 i = 0;
2835
2836                         buffer_info = &tx_ring->buffer_info[i];
2837                         size = min(len, max_per_txd);
2838                         /* Workaround for premature desc write-backs
2839                          * in TSO mode.  Append 4-byte sentinel desc */
2840                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2841                                 size -= 4;
2842                         /* Workaround for potential 82544 hang in PCI-X.
2843                          * Avoid terminating buffers within evenly-aligned
2844                          * dwords. */
2845                         if (unlikely(adapter->pcix_82544 &&
2846                             !((unsigned long)(page_to_phys(frag->page) + offset
2847                                               + size - 1) & 4) &&
2848                             size > 4))
2849                                 size -= 4;
2850
2851                         buffer_info->length = size;
2852                         buffer_info->time_stamp = jiffies;
2853                         buffer_info->mapped_as_page = true;
2854                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2855                                                         offset, size,
2856                                                         DMA_TO_DEVICE);
2857                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2858                                 goto dma_error;
2859                         buffer_info->next_to_watch = i;
2860
2861                         len -= size;
2862                         offset += size;
2863                         count++;
2864                 }
2865         }
2866
2867         tx_ring->buffer_info[i].skb = skb;
2868         tx_ring->buffer_info[first].next_to_watch = i;
2869
2870         return count;
2871
2872 dma_error:
2873         dev_err(&pdev->dev, "TX DMA map failed\n");
2874         buffer_info->dma = 0;
2875         if (count)
2876                 count--;
2877
2878         while (count--) {
2879                 if (i==0)
2880                         i += tx_ring->count;
2881                 i--;
2882                 buffer_info = &tx_ring->buffer_info[i];
2883                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2884         }
2885
2886         return 0;
2887 }
2888
2889 static void e1000_tx_queue(struct e1000_adapter *adapter,
2890                            struct e1000_tx_ring *tx_ring, int tx_flags,
2891                            int count)
2892 {
2893         struct e1000_hw *hw = &adapter->hw;
2894         struct e1000_tx_desc *tx_desc = NULL;
2895         struct e1000_buffer *buffer_info;
2896         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2897         unsigned int i;
2898
2899         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2900                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2901                              E1000_TXD_CMD_TSE;
2902                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2903
2904                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2905                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2906         }
2907
2908         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2909                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2910                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2911         }
2912
2913         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2914                 txd_lower |= E1000_TXD_CMD_VLE;
2915                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2916         }
2917
2918         i = tx_ring->next_to_use;
2919
2920         while (count--) {
2921                 buffer_info = &tx_ring->buffer_info[i];
2922                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2923                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2924                 tx_desc->lower.data =
2925                         cpu_to_le32(txd_lower | buffer_info->length);
2926                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2927                 if (unlikely(++i == tx_ring->count)) i = 0;
2928         }
2929
2930         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2931
2932         /* Force memory writes to complete before letting h/w
2933          * know there are new descriptors to fetch.  (Only
2934          * applicable for weak-ordered memory model archs,
2935          * such as IA-64). */
2936         wmb();
2937
2938         tx_ring->next_to_use = i;
2939         writel(i, hw->hw_addr + tx_ring->tdt);
2940         /* we need this if more than one processor can write to our tail
2941          * at a time, it syncronizes IO on IA64/Altix systems */
2942         mmiowb();
2943 }
2944
2945 /**
2946  * 82547 workaround to avoid controller hang in half-duplex environment.
2947  * The workaround is to avoid queuing a large packet that would span
2948  * the internal Tx FIFO ring boundary by notifying the stack to resend
2949  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2950  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2951  * to the beginning of the Tx FIFO.
2952  **/
2953
2954 #define E1000_FIFO_HDR                  0x10
2955 #define E1000_82547_PAD_LEN             0x3E0
2956
2957 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2958                                        struct sk_buff *skb)
2959 {
2960         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2961         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2962
2963         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2964
2965         if (adapter->link_duplex != HALF_DUPLEX)
2966                 goto no_fifo_stall_required;
2967
2968         if (atomic_read(&adapter->tx_fifo_stall))
2969                 return 1;
2970
2971         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2972                 atomic_set(&adapter->tx_fifo_stall, 1);
2973                 return 1;
2974         }
2975
2976 no_fifo_stall_required:
2977         adapter->tx_fifo_head += skb_fifo_len;
2978         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2979                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2980         return 0;
2981 }
2982
2983 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2984 {
2985         struct e1000_adapter *adapter = netdev_priv(netdev);
2986         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2987
2988         netif_stop_queue(netdev);
2989         /* Herbert's original patch had:
2990          *  smp_mb__after_netif_stop_queue();
2991          * but since that doesn't exist yet, just open code it. */
2992         smp_mb();
2993
2994         /* We need to check again in a case another CPU has just
2995          * made room available. */
2996         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2997                 return -EBUSY;
2998
2999         /* A reprieve! */
3000         netif_start_queue(netdev);
3001         ++adapter->restart_queue;
3002         return 0;
3003 }
3004
3005 static int e1000_maybe_stop_tx(struct net_device *netdev,
3006                                struct e1000_tx_ring *tx_ring, int size)
3007 {
3008         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3009                 return 0;
3010         return __e1000_maybe_stop_tx(netdev, size);
3011 }
3012
3013 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3014 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3015                                     struct net_device *netdev)
3016 {
3017         struct e1000_adapter *adapter = netdev_priv(netdev);
3018         struct e1000_hw *hw = &adapter->hw;
3019         struct e1000_tx_ring *tx_ring;
3020         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3021         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3022         unsigned int tx_flags = 0;
3023         unsigned int len = skb_headlen(skb);
3024         unsigned int nr_frags;
3025         unsigned int mss;
3026         int count = 0;
3027         int tso;
3028         unsigned int f;
3029
3030         /* This goes back to the question of how to logically map a tx queue
3031          * to a flow.  Right now, performance is impacted slightly negatively
3032          * if using multiple tx queues.  If the stack breaks away from a
3033          * single qdisc implementation, we can look at this again. */
3034         tx_ring = adapter->tx_ring;
3035
3036         if (unlikely(skb->len <= 0)) {
3037                 dev_kfree_skb_any(skb);
3038                 return NETDEV_TX_OK;
3039         }
3040
3041         mss = skb_shinfo(skb)->gso_size;
3042         /* The controller does a simple calculation to
3043          * make sure there is enough room in the FIFO before
3044          * initiating the DMA for each buffer.  The calc is:
3045          * 4 = ceil(buffer len/mss).  To make sure we don't
3046          * overrun the FIFO, adjust the max buffer len if mss
3047          * drops. */
3048         if (mss) {
3049                 u8 hdr_len;
3050                 max_per_txd = min(mss << 2, max_per_txd);
3051                 max_txd_pwr = fls(max_per_txd) - 1;
3052
3053                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3054                 if (skb->data_len && hdr_len == len) {
3055                         switch (hw->mac_type) {
3056                                 unsigned int pull_size;
3057                         case e1000_82544:
3058                                 /* Make sure we have room to chop off 4 bytes,
3059                                  * and that the end alignment will work out to
3060                                  * this hardware's requirements
3061                                  * NOTE: this is a TSO only workaround
3062                                  * if end byte alignment not correct move us
3063                                  * into the next dword */
3064                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3065                                         break;
3066                                 /* fall through */
3067                                 pull_size = min((unsigned int)4, skb->data_len);
3068                                 if (!__pskb_pull_tail(skb, pull_size)) {
3069                                         e_err(drv, "__pskb_pull_tail "
3070                                               "failed.\n");
3071                                         dev_kfree_skb_any(skb);
3072                                         return NETDEV_TX_OK;
3073                                 }
3074                                 len = skb_headlen(skb);
3075                                 break;
3076                         default:
3077                                 /* do nothing */
3078                                 break;
3079                         }
3080                 }
3081         }
3082
3083         /* reserve a descriptor for the offload context */
3084         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3085                 count++;
3086         count++;
3087
3088         /* Controller Erratum workaround */
3089         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3090                 count++;
3091
3092         count += TXD_USE_COUNT(len, max_txd_pwr);
3093
3094         if (adapter->pcix_82544)
3095                 count++;
3096
3097         /* work-around for errata 10 and it applies to all controllers
3098          * in PCI-X mode, so add one more descriptor to the count
3099          */
3100         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3101                         (len > 2015)))
3102                 count++;
3103
3104         nr_frags = skb_shinfo(skb)->nr_frags;
3105         for (f = 0; f < nr_frags; f++)
3106                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3107                                        max_txd_pwr);
3108         if (adapter->pcix_82544)
3109                 count += nr_frags;
3110
3111         /* need: count + 2 desc gap to keep tail from touching
3112          * head, otherwise try next time */
3113         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3114                 return NETDEV_TX_BUSY;
3115
3116         if (unlikely(hw->mac_type == e1000_82547)) {
3117                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3118                         netif_stop_queue(netdev);
3119                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3120                                 mod_timer(&adapter->tx_fifo_stall_timer,
3121                                           jiffies + 1);
3122                         return NETDEV_TX_BUSY;
3123                 }
3124         }
3125
3126         if (unlikely(vlan_tx_tag_present(skb))) {
3127                 tx_flags |= E1000_TX_FLAGS_VLAN;
3128                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3129         }
3130
3131         first = tx_ring->next_to_use;
3132
3133         tso = e1000_tso(adapter, tx_ring, skb);
3134         if (tso < 0) {
3135                 dev_kfree_skb_any(skb);
3136                 return NETDEV_TX_OK;
3137         }
3138
3139         if (likely(tso)) {
3140                 if (likely(hw->mac_type != e1000_82544))
3141                         tx_ring->last_tx_tso = 1;
3142                 tx_flags |= E1000_TX_FLAGS_TSO;
3143         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3144                 tx_flags |= E1000_TX_FLAGS_CSUM;
3145
3146         if (likely(skb->protocol == htons(ETH_P_IP)))
3147                 tx_flags |= E1000_TX_FLAGS_IPV4;
3148
3149         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3150                              nr_frags, mss);
3151
3152         if (count) {
3153                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3154                 /* Make sure there is space in the ring for the next send. */
3155                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3156
3157         } else {
3158                 dev_kfree_skb_any(skb);
3159                 tx_ring->buffer_info[first].time_stamp = 0;
3160                 tx_ring->next_to_use = first;
3161         }
3162
3163         return NETDEV_TX_OK;
3164 }
3165
3166 /**
3167  * e1000_tx_timeout - Respond to a Tx Hang
3168  * @netdev: network interface device structure
3169  **/
3170
3171 static void e1000_tx_timeout(struct net_device *netdev)
3172 {
3173         struct e1000_adapter *adapter = netdev_priv(netdev);
3174
3175         /* Do the reset outside of interrupt context */
3176         adapter->tx_timeout_count++;
3177         schedule_work(&adapter->reset_task);
3178 }
3179
3180 static void e1000_reset_task(struct work_struct *work)
3181 {
3182         struct e1000_adapter *adapter =
3183                 container_of(work, struct e1000_adapter, reset_task);
3184
3185         e1000_reinit_safe(adapter);
3186 }
3187
3188 /**
3189  * e1000_get_stats - Get System Network Statistics
3190  * @netdev: network interface device structure
3191  *
3192  * Returns the address of the device statistics structure.
3193  * The statistics are actually updated from the timer callback.
3194  **/
3195
3196 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3197 {
3198         /* only return the current stats */
3199         return &netdev->stats;
3200 }
3201
3202 /**
3203  * e1000_change_mtu - Change the Maximum Transfer Unit
3204  * @netdev: network interface device structure
3205  * @new_mtu: new value for maximum frame size
3206  *
3207  * Returns 0 on success, negative on failure
3208  **/
3209
3210 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3211 {
3212         struct e1000_adapter *adapter = netdev_priv(netdev);
3213         struct e1000_hw *hw = &adapter->hw;
3214         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3215
3216         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3217             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3218                 e_err(probe, "Invalid MTU setting\n");
3219                 return -EINVAL;
3220         }
3221
3222         /* Adapter-specific max frame size limits. */
3223         switch (hw->mac_type) {
3224         case e1000_undefined ... e1000_82542_rev2_1:
3225                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3226                         e_err(probe, "Jumbo Frames not supported.\n");
3227                         return -EINVAL;
3228                 }
3229                 break;
3230         default:
3231                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3232                 break;
3233         }
3234
3235         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3236                 msleep(1);
3237         /* e1000_down has a dependency on max_frame_size */
3238         hw->max_frame_size = max_frame;
3239         if (netif_running(netdev))
3240                 e1000_down(adapter);
3241
3242         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3243          * means we reserve 2 more, this pushes us to allocate from the next
3244          * larger slab size.
3245          * i.e. RXBUFFER_2048 --> size-4096 slab
3246          *  however with the new *_jumbo_rx* routines, jumbo receives will use
3247          *  fragmented skbs */
3248
3249         if (max_frame <= E1000_RXBUFFER_2048)
3250                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3251         else
3252 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3253                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3254 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3255                 adapter->rx_buffer_len = PAGE_SIZE;
3256 #endif
3257
3258         /* adjust allocation if LPE protects us, and we aren't using SBP */
3259         if (!hw->tbi_compatibility_on &&
3260             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3261              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3262                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3263
3264         pr_info("%s changing MTU from %d to %d\n",
3265                 netdev->name, netdev->mtu, new_mtu);
3266         netdev->mtu = new_mtu;
3267
3268         if (netif_running(netdev))
3269                 e1000_up(adapter);
3270         else
3271                 e1000_reset(adapter);
3272
3273         clear_bit(__E1000_RESETTING, &adapter->flags);
3274
3275         return 0;
3276 }
3277
3278 /**
3279  * e1000_update_stats - Update the board statistics counters
3280  * @adapter: board private structure
3281  **/
3282
3283 void e1000_update_stats(struct e1000_adapter *adapter)
3284 {
3285         struct net_device *netdev = adapter->netdev;
3286         struct e1000_hw *hw = &adapter->hw;
3287         struct pci_dev *pdev = adapter->pdev;
3288         unsigned long flags;
3289         u16 phy_tmp;
3290
3291 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3292
3293         /*
3294          * Prevent stats update while adapter is being reset, or if the pci
3295          * connection is down.
3296          */
3297         if (adapter->link_speed == 0)
3298                 return;
3299         if (pci_channel_offline(pdev))
3300                 return;
3301
3302         spin_lock_irqsave(&adapter->stats_lock, flags);
3303
3304         /* these counters are modified from e1000_tbi_adjust_stats,
3305          * called from the interrupt context, so they must only
3306          * be written while holding adapter->stats_lock
3307          */
3308
3309         adapter->stats.crcerrs += er32(CRCERRS);
3310         adapter->stats.gprc += er32(GPRC);
3311         adapter->stats.gorcl += er32(GORCL);
3312         adapter->stats.gorch += er32(GORCH);
3313         adapter->stats.bprc += er32(BPRC);
3314         adapter->stats.mprc += er32(MPRC);
3315         adapter->stats.roc += er32(ROC);
3316
3317         adapter->stats.prc64 += er32(PRC64);
3318         adapter->stats.prc127 += er32(PRC127);
3319         adapter->stats.prc255 += er32(PRC255);
3320         adapter->stats.prc511 += er32(PRC511);
3321         adapter->stats.prc1023 += er32(PRC1023);
3322         adapter->stats.prc1522 += er32(PRC1522);
3323
3324         adapter->stats.symerrs += er32(SYMERRS);
3325         adapter->stats.mpc += er32(MPC);
3326         adapter->stats.scc += er32(SCC);
3327         adapter->stats.ecol += er32(ECOL);
3328         adapter->stats.mcc += er32(MCC);
3329         adapter->stats.latecol += er32(LATECOL);
3330         adapter->stats.dc += er32(DC);
3331         adapter->stats.sec += er32(SEC);
3332         adapter->stats.rlec += er32(RLEC);
3333         adapter->stats.xonrxc += er32(XONRXC);
3334         adapter->stats.xontxc += er32(XONTXC);
3335         adapter->stats.xoffrxc += er32(XOFFRXC);
3336         adapter->stats.xofftxc += er32(XOFFTXC);
3337         adapter->stats.fcruc += er32(FCRUC);
3338         adapter->stats.gptc += er32(GPTC);
3339         adapter->stats.gotcl += er32(GOTCL);
3340         adapter->stats.gotch += er32(GOTCH);
3341         adapter->stats.rnbc += er32(RNBC);
3342         adapter->stats.ruc += er32(RUC);
3343         adapter->stats.rfc += er32(RFC);
3344         adapter->stats.rjc += er32(RJC);
3345         adapter->stats.torl += er32(TORL);
3346         adapter->stats.torh += er32(TORH);
3347         adapter->stats.totl += er32(TOTL);
3348         adapter->stats.toth += er32(TOTH);
3349         adapter->stats.tpr += er32(TPR);
3350
3351         adapter->stats.ptc64 += er32(PTC64);
3352         adapter->stats.ptc127 += er32(PTC127);
3353         adapter->stats.ptc255 += er32(PTC255);
3354         adapter->stats.ptc511 += er32(PTC511);
3355         adapter->stats.ptc1023 += er32(PTC1023);
3356         adapter->stats.ptc1522 += er32(PTC1522);
3357
3358         adapter->stats.mptc += er32(MPTC);
3359         adapter->stats.bptc += er32(BPTC);
3360
3361         /* used for adaptive IFS */
3362
3363         hw->tx_packet_delta = er32(TPT);
3364         adapter->stats.tpt += hw->tx_packet_delta;
3365         hw->collision_delta = er32(COLC);
3366         adapter->stats.colc += hw->collision_delta;
3367
3368         if (hw->mac_type >= e1000_82543) {
3369                 adapter->stats.algnerrc += er32(ALGNERRC);
3370                 adapter->stats.rxerrc += er32(RXERRC);
3371                 adapter->stats.tncrs += er32(TNCRS);
3372                 adapter->stats.cexterr += er32(CEXTERR);
3373                 adapter->stats.tsctc += er32(TSCTC);
3374                 adapter->stats.tsctfc += er32(TSCTFC);
3375         }
3376
3377         /* Fill out the OS statistics structure */
3378         netdev->stats.multicast = adapter->stats.mprc;
3379         netdev->stats.collisions = adapter->stats.colc;
3380
3381         /* Rx Errors */
3382
3383         /* RLEC on some newer hardware can be incorrect so build
3384         * our own version based on RUC and ROC */
3385         netdev->stats.rx_errors = adapter->stats.rxerrc +
3386                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3387                 adapter->stats.ruc + adapter->stats.roc +
3388                 adapter->stats.cexterr;
3389         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3390         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3391         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3392         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3393         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3394
3395         /* Tx Errors */
3396         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3397         netdev->stats.tx_errors = adapter->stats.txerrc;
3398         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3399         netdev->stats.tx_window_errors = adapter->stats.latecol;
3400         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3401         if (hw->bad_tx_carr_stats_fd &&
3402             adapter->link_duplex == FULL_DUPLEX) {
3403                 netdev->stats.tx_carrier_errors = 0;
3404                 adapter->stats.tncrs = 0;
3405         }
3406
3407         /* Tx Dropped needs to be maintained elsewhere */
3408
3409         /* Phy Stats */
3410         if (hw->media_type == e1000_media_type_copper) {
3411                 if ((adapter->link_speed == SPEED_1000) &&
3412                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3413                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3414                         adapter->phy_stats.idle_errors += phy_tmp;
3415                 }
3416
3417                 if ((hw->mac_type <= e1000_82546) &&
3418                    (hw->phy_type == e1000_phy_m88) &&
3419                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3420                         adapter->phy_stats.receive_errors += phy_tmp;
3421         }
3422
3423         /* Management Stats */
3424         if (hw->has_smbus) {
3425                 adapter->stats.mgptc += er32(MGTPTC);
3426                 adapter->stats.mgprc += er32(MGTPRC);
3427                 adapter->stats.mgpdc += er32(MGTPDC);
3428         }
3429
3430         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3431 }
3432
3433 /**
3434  * e1000_intr - Interrupt Handler
3435  * @irq: interrupt number
3436  * @data: pointer to a network interface device structure
3437  **/
3438
3439 static irqreturn_t e1000_intr(int irq, void *data)
3440 {
3441         struct net_device *netdev = data;
3442         struct e1000_adapter *adapter = netdev_priv(netdev);
3443         struct e1000_hw *hw = &adapter->hw;
3444         u32 icr = er32(ICR);
3445
3446         if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3447                 return IRQ_NONE;  /* Not our interrupt */
3448
3449         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3450                 hw->get_link_status = 1;
3451                 /* guard against interrupt when we're going down */
3452                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3453                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3454         }
3455
3456         /* disable interrupts, without the synchronize_irq bit */
3457         ew32(IMC, ~0);
3458         E1000_WRITE_FLUSH();
3459
3460         if (likely(napi_schedule_prep(&adapter->napi))) {
3461                 adapter->total_tx_bytes = 0;
3462                 adapter->total_tx_packets = 0;
3463                 adapter->total_rx_bytes = 0;
3464                 adapter->total_rx_packets = 0;
3465                 __napi_schedule(&adapter->napi);
3466         } else {
3467                 /* this really should not happen! if it does it is basically a
3468                  * bug, but not a hard error, so enable ints and continue */
3469                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3470                         e1000_irq_enable(adapter);
3471         }
3472
3473         return IRQ_HANDLED;
3474 }
3475
3476 /**
3477  * e1000_clean - NAPI Rx polling callback
3478  * @adapter: board private structure
3479  **/
3480 static int e1000_clean(struct napi_struct *napi, int budget)
3481 {
3482         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3483         int tx_clean_complete = 0, work_done = 0;
3484
3485         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3486
3487         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3488
3489         if (!tx_clean_complete)
3490                 work_done = budget;
3491
3492         /* If budget not fully consumed, exit the polling mode */
3493         if (work_done < budget) {
3494                 if (likely(adapter->itr_setting & 3))
3495                         e1000_set_itr(adapter);
3496                 napi_complete(napi);
3497                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3498                         e1000_irq_enable(adapter);
3499         }
3500
3501         return work_done;
3502 }
3503
3504 /**
3505  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3506  * @adapter: board private structure
3507  **/
3508 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3509                                struct e1000_tx_ring *tx_ring)
3510 {
3511         struct e1000_hw *hw = &adapter->hw;
3512         struct net_device *netdev = adapter->netdev;
3513         struct e1000_tx_desc *tx_desc, *eop_desc;
3514         struct e1000_buffer *buffer_info;
3515         unsigned int i, eop;
3516         unsigned int count = 0;
3517         unsigned int total_tx_bytes=0, total_tx_packets=0;
3518
3519         i = tx_ring->next_to_clean;
3520         eop = tx_ring->buffer_info[i].next_to_watch;
3521         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3522
3523         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3524                (count < tx_ring->count)) {
3525                 bool cleaned = false;
3526                 rmb();  /* read buffer_info after eop_desc */
3527                 for ( ; !cleaned; count++) {
3528                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3529                         buffer_info = &tx_ring->buffer_info[i];
3530                         cleaned = (i == eop);
3531
3532                         if (cleaned) {
3533                                 struct sk_buff *skb = buffer_info->skb;
3534                                 unsigned int segs, bytecount;
3535                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3536                                 /* multiply data chunks by size of headers */
3537                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3538                                             skb->len;
3539                                 total_tx_packets += segs;
3540                                 total_tx_bytes += bytecount;
3541                         }
3542                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3543                         tx_desc->upper.data = 0;
3544
3545                         if (unlikely(++i == tx_ring->count)) i = 0;
3546                 }
3547
3548                 eop = tx_ring->buffer_info[i].next_to_watch;
3549                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3550         }
3551
3552         tx_ring->next_to_clean = i;
3553
3554 #define TX_WAKE_THRESHOLD 32
3555         if (unlikely(count && netif_carrier_ok(netdev) &&
3556                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3557                 /* Make sure that anybody stopping the queue after this
3558                  * sees the new next_to_clean.
3559                  */
3560                 smp_mb();
3561
3562                 if (netif_queue_stopped(netdev) &&
3563                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3564                         netif_wake_queue(netdev);
3565                         ++adapter->restart_queue;
3566                 }
3567         }
3568
3569         if (adapter->detect_tx_hung) {
3570                 /* Detect a transmit hang in hardware, this serializes the
3571                  * check with the clearing of time_stamp and movement of i */
3572                 adapter->detect_tx_hung = false;
3573                 if (tx_ring->buffer_info[eop].time_stamp &&
3574                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3575                                (adapter->tx_timeout_factor * HZ)) &&
3576                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3577
3578                         /* detected Tx unit hang */
3579                         e_err(drv, "Detected Tx Unit Hang\n"
3580                               "  Tx Queue             <%lu>\n"
3581                               "  TDH                  <%x>\n"
3582                               "  TDT                  <%x>\n"
3583                               "  next_to_use          <%x>\n"
3584                               "  next_to_clean        <%x>\n"
3585                               "buffer_info[next_to_clean]\n"
3586                               "  time_stamp           <%lx>\n"
3587                               "  next_to_watch        <%x>\n"
3588                               "  jiffies              <%lx>\n"
3589                               "  next_to_watch.status <%x>\n",
3590                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3591                                         sizeof(struct e1000_tx_ring)),
3592                                 readl(hw->hw_addr + tx_ring->tdh),
3593                                 readl(hw->hw_addr + tx_ring->tdt),
3594                                 tx_ring->next_to_use,
3595                                 tx_ring->next_to_clean,
3596                                 tx_ring->buffer_info[eop].time_stamp,
3597                                 eop,
3598                                 jiffies,
3599                                 eop_desc->upper.fields.status);
3600                         netif_stop_queue(netdev);
3601                 }
3602         }
3603         adapter->total_tx_bytes += total_tx_bytes;
3604         adapter->total_tx_packets += total_tx_packets;
3605         netdev->stats.tx_bytes += total_tx_bytes;
3606         netdev->stats.tx_packets += total_tx_packets;
3607         return count < tx_ring->count;
3608 }
3609
3610 /**
3611  * e1000_rx_checksum - Receive Checksum Offload for 82543
3612  * @adapter:     board private structure
3613  * @status_err:  receive descriptor status and error fields
3614  * @csum:        receive descriptor csum field
3615  * @sk_buff:     socket buffer with received data
3616  **/
3617
3618 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3619                               u32 csum, struct sk_buff *skb)
3620 {
3621         struct e1000_hw *hw = &adapter->hw;
3622         u16 status = (u16)status_err;
3623         u8 errors = (u8)(status_err >> 24);
3624
3625         skb_checksum_none_assert(skb);
3626
3627         /* 82543 or newer only */
3628         if (unlikely(hw->mac_type < e1000_82543)) return;
3629         /* Ignore Checksum bit is set */
3630         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3631         /* TCP/UDP checksum error bit is set */
3632         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3633                 /* let the stack verify checksum errors */
3634                 adapter->hw_csum_err++;
3635                 return;
3636         }
3637         /* TCP/UDP Checksum has not been calculated */
3638         if (!(status & E1000_RXD_STAT_TCPCS))
3639                 return;
3640
3641         /* It must be a TCP or UDP packet with a valid checksum */
3642         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3643                 /* TCP checksum is good */
3644                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3645         }
3646         adapter->hw_csum_good++;
3647 }
3648
3649 /**
3650  * e1000_consume_page - helper function
3651  **/
3652 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3653                                u16 length)
3654 {
3655         bi->page = NULL;
3656         skb->len += length;
3657         skb->data_len += length;
3658         skb->truesize += length;
3659 }
3660
3661 /**
3662  * e1000_receive_skb - helper function to handle rx indications
3663  * @adapter: board private structure
3664  * @status: descriptor status field as written by hardware
3665  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3666  * @skb: pointer to sk_buff to be indicated to stack
3667  */
3668 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3669                               __le16 vlan, struct sk_buff *skb)
3670 {
3671         skb->protocol = eth_type_trans(skb, adapter->netdev);
3672
3673         if ((unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))))
3674                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
3675                                  le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK,
3676                                  skb);
3677         else
3678                 napi_gro_receive(&adapter->napi, skb);
3679 }
3680
3681 /**
3682  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3683  * @adapter: board private structure
3684  * @rx_ring: ring to clean
3685  * @work_done: amount of napi work completed this call
3686  * @work_to_do: max amount of work allowed for this call to do
3687  *
3688  * the return value indicates whether actual cleaning was done, there
3689  * is no guarantee that everything was cleaned
3690  */
3691 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3692                                      struct e1000_rx_ring *rx_ring,
3693                                      int *work_done, int work_to_do)
3694 {
3695         struct e1000_hw *hw = &adapter->hw;
3696         struct net_device *netdev = adapter->netdev;
3697         struct pci_dev *pdev = adapter->pdev;
3698         struct e1000_rx_desc *rx_desc, *next_rxd;
3699         struct e1000_buffer *buffer_info, *next_buffer;
3700         unsigned long irq_flags;
3701         u32 length;
3702         unsigned int i;
3703         int cleaned_count = 0;
3704         bool cleaned = false;
3705         unsigned int total_rx_bytes=0, total_rx_packets=0;
3706
3707         i = rx_ring->next_to_clean;
3708         rx_desc = E1000_RX_DESC(*rx_ring, i);
3709         buffer_info = &rx_ring->buffer_info[i];
3710
3711         while (rx_desc->status & E1000_RXD_STAT_DD) {
3712                 struct sk_buff *skb;
3713                 u8 status;
3714
3715                 if (*work_done >= work_to_do)
3716                         break;
3717                 (*work_done)++;
3718                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3719
3720                 status = rx_desc->status;
3721                 skb = buffer_info->skb;
3722                 buffer_info->skb = NULL;
3723
3724                 if (++i == rx_ring->count) i = 0;
3725                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3726                 prefetch(next_rxd);
3727
3728                 next_buffer = &rx_ring->buffer_info[i];
3729
3730                 cleaned = true;
3731                 cleaned_count++;
3732                 dma_unmap_page(&pdev->dev, buffer_info->dma,
3733                                buffer_info->length, DMA_FROM_DEVICE);
3734                 buffer_info->dma = 0;
3735
3736                 length = le16_to_cpu(rx_desc->length);
3737
3738                 /* errors is only valid for DD + EOP descriptors */
3739                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3740                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3741                         u8 last_byte = *(skb->data + length - 1);
3742                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3743                                        last_byte)) {
3744                                 spin_lock_irqsave(&adapter->stats_lock,
3745                                                   irq_flags);
3746                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3747                                                        length, skb->data);
3748                                 spin_unlock_irqrestore(&adapter->stats_lock,
3749                                                        irq_flags);
3750                                 length--;
3751                         } else {
3752                                 /* recycle both page and skb */
3753                                 buffer_info->skb = skb;
3754                                 /* an error means any chain goes out the window
3755                                  * too */
3756                                 if (rx_ring->rx_skb_top)
3757                                         dev_kfree_skb(rx_ring->rx_skb_top);
3758                                 rx_ring->rx_skb_top = NULL;
3759                                 goto next_desc;
3760                         }
3761                 }
3762
3763 #define rxtop rx_ring->rx_skb_top
3764                 if (!(status & E1000_RXD_STAT_EOP)) {
3765                         /* this descriptor is only the beginning (or middle) */
3766                         if (!rxtop) {
3767                                 /* this is the beginning of a chain */
3768                                 rxtop = skb;
3769                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3770                                                    0, length);
3771                         } else {
3772                                 /* this is the middle of a chain */
3773                                 skb_fill_page_desc(rxtop,
3774                                     skb_shinfo(rxtop)->nr_frags,
3775                                     buffer_info->page, 0, length);
3776                                 /* re-use the skb, only consumed the page */
3777                                 buffer_info->skb = skb;
3778                         }
3779                         e1000_consume_page(buffer_info, rxtop, length);
3780                         goto next_desc;
3781                 } else {
3782                         if (rxtop) {
3783                                 /* end of the chain */
3784                                 skb_fill_page_desc(rxtop,
3785                                     skb_shinfo(rxtop)->nr_frags,
3786                                     buffer_info->page, 0, length);
3787                                 /* re-use the current skb, we only consumed the
3788                                  * page */
3789                                 buffer_info->skb = skb;
3790                                 skb = rxtop;
3791                                 rxtop = NULL;
3792                                 e1000_consume_page(buffer_info, skb, length);
3793                         } else {
3794                                 /* no chain, got EOP, this buf is the packet
3795                                  * copybreak to save the put_page/alloc_page */
3796                                 if (length <= copybreak &&
3797                                     skb_tailroom(skb) >= length) {
3798                                         u8 *vaddr;
3799                                         vaddr = kmap_atomic(buffer_info->page,
3800                                                             KM_SKB_DATA_SOFTIRQ);
3801                                         memcpy(skb_tail_pointer(skb), vaddr, length);
3802                                         kunmap_atomic(vaddr,
3803                                                       KM_SKB_DATA_SOFTIRQ);
3804                                         /* re-use the page, so don't erase
3805                                          * buffer_info->page */
3806                                         skb_put(skb, length);
3807                                 } else {
3808                                         skb_fill_page_desc(skb, 0,
3809                                                            buffer_info->page, 0,
3810                                                            length);
3811                                         e1000_consume_page(buffer_info, skb,
3812                                                            length);
3813                                 }
3814                         }
3815                 }
3816
3817                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3818                 e1000_rx_checksum(adapter,
3819                                   (u32)(status) |
3820                                   ((u32)(rx_desc->errors) << 24),
3821                                   le16_to_cpu(rx_desc->csum), skb);
3822
3823                 pskb_trim(skb, skb->len - 4);
3824
3825                 /* probably a little skewed due to removing CRC */
3826                 total_rx_bytes += skb->len;
3827                 total_rx_packets++;
3828
3829                 /* eth type trans needs skb->data to point to something */
3830                 if (!pskb_may_pull(skb, ETH_HLEN)) {
3831                         e_err(drv, "pskb_may_pull failed.\n");
3832                         dev_kfree_skb(skb);
3833                         goto next_desc;
3834                 }
3835
3836                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3837
3838 next_desc:
3839                 rx_desc->status = 0;
3840
3841                 /* return some buffers to hardware, one at a time is too slow */
3842                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3843                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3844                         cleaned_count = 0;
3845                 }
3846
3847                 /* use prefetched values */
3848                 rx_desc = next_rxd;
3849                 buffer_info = next_buffer;
3850         }
3851         rx_ring->next_to_clean = i;
3852
3853         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3854         if (cleaned_count)
3855                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3856
3857         adapter->total_rx_packets += total_rx_packets;
3858         adapter->total_rx_bytes += total_rx_bytes;
3859         netdev->stats.rx_bytes += total_rx_bytes;
3860         netdev->stats.rx_packets += total_rx_packets;
3861         return cleaned;
3862 }
3863
3864 /*
3865  * this should improve performance for small packets with large amounts
3866  * of reassembly being done in the stack
3867  */
3868 static void e1000_check_copybreak(struct net_device *netdev,
3869                                  struct e1000_buffer *buffer_info,
3870                                  u32 length, struct sk_buff **skb)
3871 {
3872         struct sk_buff *new_skb;
3873
3874         if (length > copybreak)
3875                 return;
3876
3877         new_skb = netdev_alloc_skb_ip_align(netdev, length);
3878         if (!new_skb)
3879                 return;
3880
3881         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3882                                        (*skb)->data - NET_IP_ALIGN,
3883                                        length + NET_IP_ALIGN);
3884         /* save the skb in buffer_info as good */
3885         buffer_info->skb = *skb;
3886         *skb = new_skb;
3887 }
3888
3889 /**
3890  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3891  * @adapter: board private structure
3892  * @rx_ring: ring to clean
3893  * @work_done: amount of napi work completed this call
3894  * @work_to_do: max amount of work allowed for this call to do
3895  */
3896 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3897                                struct e1000_rx_ring *rx_ring,
3898                                int *work_done, int work_to_do)
3899 {
3900         struct e1000_hw *hw = &adapter->hw;
3901         struct net_device *netdev = adapter->netdev;
3902         struct pci_dev *pdev = adapter->pdev;
3903         struct e1000_rx_desc *rx_desc, *next_rxd;
3904         struct e1000_buffer *buffer_info, *next_buffer;
3905         unsigned long flags;
3906         u32 length;
3907         unsigned int i;
3908         int cleaned_count = 0;
3909         bool cleaned = false;
3910         unsigned int total_rx_bytes=0, total_rx_packets=0;
3911
3912         i = rx_ring->next_to_clean;
3913         rx_desc = E1000_RX_DESC(*rx_ring, i);
3914         buffer_info = &rx_ring->buffer_info[i];
3915
3916         while (rx_desc->status & E1000_RXD_STAT_DD) {
3917                 struct sk_buff *skb;
3918                 u8 status;
3919
3920                 if (*work_done >= work_to_do)
3921                         break;
3922                 (*work_done)++;
3923                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3924
3925                 status = rx_desc->status;
3926                 skb = buffer_info->skb;
3927                 buffer_info->skb = NULL;
3928
3929                 prefetch(skb->data - NET_IP_ALIGN);
3930
3931                 if (++i == rx_ring->count) i = 0;
3932                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3933                 prefetch(next_rxd);
3934
3935                 next_buffer = &rx_ring->buffer_info[i];
3936
3937                 cleaned = true;
3938                 cleaned_count++;
3939                 dma_unmap_single(&pdev->dev, buffer_info->dma,
3940                                  buffer_info->length, DMA_FROM_DEVICE);
3941                 buffer_info->dma = 0;
3942
3943                 length = le16_to_cpu(rx_desc->length);
3944                 /* !EOP means multiple descriptors were used to store a single
3945                  * packet, if thats the case we need to toss it.  In fact, we
3946                  * to toss every packet with the EOP bit clear and the next
3947                  * frame that _does_ have the EOP bit set, as it is by
3948                  * definition only a frame fragment
3949                  */
3950                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3951                         adapter->discarding = true;
3952
3953                 if (adapter->discarding) {
3954                         /* All receives must fit into a single buffer */
3955                         e_dbg("Receive packet consumed multiple buffers\n");
3956                         /* recycle */
3957                         buffer_info->skb = skb;
3958                         if (status & E1000_RXD_STAT_EOP)
3959                                 adapter->discarding = false;
3960                         goto next_desc;
3961                 }
3962
3963                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3964                         u8 last_byte = *(skb->data + length - 1);
3965                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3966                                        last_byte)) {
3967                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3968                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3969                                                        length, skb->data);
3970                                 spin_unlock_irqrestore(&adapter->stats_lock,
3971                                                        flags);
3972                                 length--;
3973                         } else {
3974                                 /* recycle */
3975                                 buffer_info->skb = skb;
3976                                 goto next_desc;
3977                         }
3978                 }
3979
3980                 /* adjust length to remove Ethernet CRC, this must be
3981                  * done after the TBI_ACCEPT workaround above */
3982                 length -= 4;
3983
3984                 /* probably a little skewed due to removing CRC */
3985                 total_rx_bytes += length;
3986                 total_rx_packets++;
3987
3988                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
3989
3990                 skb_put(skb, length);
3991
3992                 /* Receive Checksum Offload */
3993                 e1000_rx_checksum(adapter,
3994                                   (u32)(status) |
3995                                   ((u32)(rx_desc->errors) << 24),
3996                                   le16_to_cpu(rx_desc->csum), skb);
3997
3998                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3999
4000 next_desc:
4001                 rx_desc->status = 0;
4002
4003                 /* return some buffers to hardware, one at a time is too slow */
4004                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4005                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4006                         cleaned_count = 0;
4007                 }
4008
4009                 /* use prefetched values */
4010                 rx_desc = next_rxd;
4011                 buffer_info = next_buffer;
4012         }
4013         rx_ring->next_to_clean = i;
4014
4015         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4016         if (cleaned_count)
4017                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4018
4019         adapter->total_rx_packets += total_rx_packets;
4020         adapter->total_rx_bytes += total_rx_bytes;
4021         netdev->stats.rx_bytes += total_rx_bytes;
4022         netdev->stats.rx_packets += total_rx_packets;
4023         return cleaned;
4024 }
4025
4026 /**
4027  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4028  * @adapter: address of board private structure
4029  * @rx_ring: pointer to receive ring structure
4030  * @cleaned_count: number of buffers to allocate this pass
4031  **/
4032
4033 static void
4034 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4035                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4036 {
4037         struct net_device *netdev = adapter->netdev;
4038         struct pci_dev *pdev = adapter->pdev;
4039         struct e1000_rx_desc *rx_desc;
4040         struct e1000_buffer *buffer_info;
4041         struct sk_buff *skb;
4042         unsigned int i;
4043         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4044
4045         i = rx_ring->next_to_use;
4046         buffer_info = &rx_ring->buffer_info[i];
4047
4048         while (cleaned_count--) {
4049                 skb = buffer_info->skb;
4050                 if (skb) {
4051                         skb_trim(skb, 0);
4052                         goto check_page;
4053                 }
4054
4055                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4056                 if (unlikely(!skb)) {
4057                         /* Better luck next round */
4058                         adapter->alloc_rx_buff_failed++;
4059                         break;
4060                 }
4061
4062                 /* Fix for errata 23, can't cross 64kB boundary */
4063                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4064                         struct sk_buff *oldskb = skb;
4065                         e_err(rx_err, "skb align check failed: %u bytes at "
4066                               "%p\n", bufsz, skb->data);
4067                         /* Try again, without freeing the previous */
4068                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4069                         /* Failed allocation, critical failure */
4070                         if (!skb) {
4071                                 dev_kfree_skb(oldskb);
4072                                 adapter->alloc_rx_buff_failed++;
4073                                 break;
4074                         }
4075
4076                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4077                                 /* give up */
4078                                 dev_kfree_skb(skb);
4079                                 dev_kfree_skb(oldskb);
4080                                 break; /* while (cleaned_count--) */
4081                         }
4082
4083                         /* Use new allocation */
4084                         dev_kfree_skb(oldskb);
4085                 }
4086                 buffer_info->skb = skb;
4087                 buffer_info->length = adapter->rx_buffer_len;
4088 check_page:
4089                 /* allocate a new page if necessary */
4090                 if (!buffer_info->page) {
4091                         buffer_info->page = alloc_page(GFP_ATOMIC);
4092                         if (unlikely(!buffer_info->page)) {
4093                                 adapter->alloc_rx_buff_failed++;
4094                                 break;
4095                         }
4096                 }
4097
4098                 if (!buffer_info->dma) {
4099                         buffer_info->dma = dma_map_page(&pdev->dev,
4100                                                         buffer_info->page, 0,
4101                                                         buffer_info->length,
4102                                                         DMA_FROM_DEVICE);
4103                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4104                                 put_page(buffer_info->page);
4105                                 dev_kfree_skb(skb);
4106                                 buffer_info->page = NULL;
4107                                 buffer_info->skb = NULL;
4108                                 buffer_info->dma = 0;
4109                                 adapter->alloc_rx_buff_failed++;
4110                                 break; /* while !buffer_info->skb */
4111                         }
4112                 }
4113
4114                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4115                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4116
4117                 if (unlikely(++i == rx_ring->count))
4118                         i = 0;
4119                 buffer_info = &rx_ring->buffer_info[i];
4120         }
4121
4122         if (likely(rx_ring->next_to_use != i)) {
4123                 rx_ring->next_to_use = i;
4124                 if (unlikely(i-- == 0))
4125                         i = (rx_ring->count - 1);
4126
4127                 /* Force memory writes to complete before letting h/w
4128                  * know there are new descriptors to fetch.  (Only
4129                  * applicable for weak-ordered memory model archs,
4130                  * such as IA-64). */
4131                 wmb();
4132                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4133         }
4134 }
4135
4136 /**
4137  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4138  * @adapter: address of board private structure
4139  **/
4140
4141 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4142                                    struct e1000_rx_ring *rx_ring,
4143                                    int cleaned_count)
4144 {
4145         struct e1000_hw *hw = &adapter->hw;
4146         struct net_device *netdev = adapter->netdev;
4147         struct pci_dev *pdev = adapter->pdev;
4148         struct e1000_rx_desc *rx_desc;
4149         struct e1000_buffer *buffer_info;
4150         struct sk_buff *skb;
4151         unsigned int i;
4152         unsigned int bufsz = adapter->rx_buffer_len;
4153
4154         i = rx_ring->next_to_use;
4155         buffer_info = &rx_ring->buffer_info[i];
4156
4157         while (cleaned_count--) {
4158                 skb = buffer_info->skb;
4159                 if (skb) {
4160                         skb_trim(skb, 0);
4161                         goto map_skb;
4162                 }
4163
4164                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4165                 if (unlikely(!skb)) {
4166                         /* Better luck next round */
4167                         adapter->alloc_rx_buff_failed++;
4168                         break;
4169                 }
4170
4171                 /* Fix for errata 23, can't cross 64kB boundary */
4172                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4173                         struct sk_buff *oldskb = skb;
4174                         e_err(rx_err, "skb align check failed: %u bytes at "
4175                               "%p\n", bufsz, skb->data);
4176                         /* Try again, without freeing the previous */
4177                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4178                         /* Failed allocation, critical failure */
4179                         if (!skb) {
4180                                 dev_kfree_skb(oldskb);
4181                                 adapter->alloc_rx_buff_failed++;
4182                                 break;
4183                         }
4184
4185                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4186                                 /* give up */
4187                                 dev_kfree_skb(skb);
4188                                 dev_kfree_skb(oldskb);
4189                                 adapter->alloc_rx_buff_failed++;
4190                                 break; /* while !buffer_info->skb */
4191                         }
4192
4193                         /* Use new allocation */
4194                         dev_kfree_skb(oldskb);
4195                 }
4196                 buffer_info->skb = skb;
4197                 buffer_info->length = adapter->rx_buffer_len;
4198 map_skb:
4199                 buffer_info->dma = dma_map_single(&pdev->dev,
4200                                                   skb->data,
4201                                                   buffer_info->length,
4202                                                   DMA_FROM_DEVICE);
4203                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4204                         dev_kfree_skb(skb);
4205                         buffer_info->skb = NULL;
4206                         buffer_info->dma = 0;
4207                         adapter->alloc_rx_buff_failed++;
4208                         break; /* while !buffer_info->skb */
4209                 }
4210
4211                 /*
4212                  * XXX if it was allocated cleanly it will never map to a
4213                  * boundary crossing
4214                  */
4215
4216                 /* Fix for errata 23, can't cross 64kB boundary */
4217                 if (!e1000_check_64k_bound(adapter,
4218                                         (void *)(unsigned long)buffer_info->dma,
4219                                         adapter->rx_buffer_len)) {
4220                         e_err(rx_err, "dma align check failed: %u bytes at "
4221                               "%p\n", adapter->rx_buffer_len,
4222                               (void *)(unsigned long)buffer_info->dma);
4223                         dev_kfree_skb(skb);
4224                         buffer_info->skb = NULL;
4225
4226                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4227                                          adapter->rx_buffer_len,
4228                                          DMA_FROM_DEVICE);
4229                         buffer_info->dma = 0;
4230
4231                         adapter->alloc_rx_buff_failed++;
4232                         break; /* while !buffer_info->skb */
4233                 }
4234                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4235                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4236
4237                 if (unlikely(++i == rx_ring->count))
4238                         i = 0;
4239                 buffer_info = &rx_ring->buffer_info[i];
4240         }
4241
4242         if (likely(rx_ring->next_to_use != i)) {
4243                 rx_ring->next_to_use = i;
4244                 if (unlikely(i-- == 0))
4245                         i = (rx_ring->count - 1);
4246
4247                 /* Force memory writes to complete before letting h/w
4248                  * know there are new descriptors to fetch.  (Only
4249                  * applicable for weak-ordered memory model archs,
4250                  * such as IA-64). */
4251                 wmb();
4252                 writel(i, hw->hw_addr + rx_ring->rdt);
4253         }
4254 }
4255
4256 /**
4257  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4258  * @adapter:
4259  **/
4260
4261 static void e1000_smartspeed(struct e1000_adapter *adapter)
4262 {
4263         struct e1000_hw *hw = &adapter->hw;
4264         u16 phy_status;
4265         u16 phy_ctrl;
4266
4267         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4268            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4269                 return;
4270
4271         if (adapter->smartspeed == 0) {
4272                 /* If Master/Slave config fault is asserted twice,
4273                  * we assume back-to-back */
4274                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4275                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4276                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4277                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4278                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4279                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4280                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4281                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4282                                             phy_ctrl);
4283                         adapter->smartspeed++;
4284                         if (!e1000_phy_setup_autoneg(hw) &&
4285                            !e1000_read_phy_reg(hw, PHY_CTRL,
4286                                                &phy_ctrl)) {
4287                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4288                                              MII_CR_RESTART_AUTO_NEG);
4289                                 e1000_write_phy_reg(hw, PHY_CTRL,
4290                                                     phy_ctrl);
4291                         }
4292                 }
4293                 return;
4294         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4295                 /* If still no link, perhaps using 2/3 pair cable */
4296                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4297                 phy_ctrl |= CR_1000T_MS_ENABLE;
4298                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4299                 if (!e1000_phy_setup_autoneg(hw) &&
4300                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4301                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4302                                      MII_CR_RESTART_AUTO_NEG);
4303                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4304                 }
4305         }
4306         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4307         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4308                 adapter->smartspeed = 0;
4309 }
4310
4311 /**
4312  * e1000_ioctl -
4313  * @netdev:
4314  * @ifreq:
4315  * @cmd:
4316  **/
4317
4318 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4319 {
4320         switch (cmd) {
4321         case SIOCGMIIPHY:
4322         case SIOCGMIIREG:
4323         case SIOCSMIIREG:
4324                 return e1000_mii_ioctl(netdev, ifr, cmd);
4325         default:
4326                 return -EOPNOTSUPP;
4327         }
4328 }
4329
4330 /**
4331  * e1000_mii_ioctl -
4332  * @netdev:
4333  * @ifreq:
4334  * @cmd:
4335  **/
4336
4337 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4338                            int cmd)
4339 {
4340         struct e1000_adapter *adapter = netdev_priv(netdev);
4341         struct e1000_hw *hw = &adapter->hw;
4342         struct mii_ioctl_data *data = if_mii(ifr);
4343         int retval;
4344         u16 mii_reg;
4345         u16 spddplx;
4346         unsigned long flags;
4347
4348         if (hw->media_type != e1000_media_type_copper)
4349                 return -EOPNOTSUPP;
4350
4351         switch (cmd) {
4352         case SIOCGMIIPHY:
4353                 data->phy_id = hw->phy_addr;
4354                 break;
4355         case SIOCGMIIREG:
4356                 spin_lock_irqsave(&adapter->stats_lock, flags);
4357                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4358                                    &data->val_out)) {
4359                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4360                         return -EIO;
4361                 }
4362                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4363                 break;
4364         case SIOCSMIIREG:
4365                 if (data->reg_num & ~(0x1F))
4366                         return -EFAULT;
4367                 mii_reg = data->val_in;
4368                 spin_lock_irqsave(&adapter->stats_lock, flags);
4369                 if (e1000_write_phy_reg(hw, data->reg_num,
4370                                         mii_reg)) {
4371                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4372                         return -EIO;
4373                 }
4374                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4375                 if (hw->media_type == e1000_media_type_copper) {
4376                         switch (data->reg_num) {
4377                         case PHY_CTRL:
4378                                 if (mii_reg & MII_CR_POWER_DOWN)
4379                                         break;
4380                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4381                                         hw->autoneg = 1;
4382                                         hw->autoneg_advertised = 0x2F;
4383                                 } else {
4384                                         if (mii_reg & 0x40)
4385                                                 spddplx = SPEED_1000;
4386                                         else if (mii_reg & 0x2000)
4387                                                 spddplx = SPEED_100;
4388                                         else
4389                                                 spddplx = SPEED_10;
4390                                         spddplx += (mii_reg & 0x100)
4391                                                    ? DUPLEX_FULL :
4392                                                    DUPLEX_HALF;
4393                                         retval = e1000_set_spd_dplx(adapter,
4394                                                                     spddplx);
4395                                         if (retval)
4396                                                 return retval;
4397                                 }
4398                                 if (netif_running(adapter->netdev))
4399                                         e1000_reinit_locked(adapter);
4400                                 else
4401                                         e1000_reset(adapter);
4402                                 break;
4403                         case M88E1000_PHY_SPEC_CTRL:
4404                         case M88E1000_EXT_PHY_SPEC_CTRL:
4405                                 if (e1000_phy_reset(hw))
4406                                         return -EIO;
4407                                 break;
4408                         }
4409                 } else {
4410                         switch (data->reg_num) {
4411                         case PHY_CTRL:
4412                                 if (mii_reg & MII_CR_POWER_DOWN)
4413                                         break;
4414                                 if (netif_running(adapter->netdev))
4415                                         e1000_reinit_locked(adapter);
4416                                 else
4417                                         e1000_reset(adapter);
4418                                 break;
4419                         }
4420                 }
4421                 break;
4422         default:
4423                 return -EOPNOTSUPP;
4424         }
4425         return E1000_SUCCESS;
4426 }
4427
4428 void e1000_pci_set_mwi(struct e1000_hw *hw)
4429 {
4430         struct e1000_adapter *adapter = hw->back;
4431         int ret_val = pci_set_mwi(adapter->pdev);
4432
4433         if (ret_val)
4434                 e_err(probe, "Error in setting MWI\n");
4435 }
4436
4437 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4438 {
4439         struct e1000_adapter *adapter = hw->back;
4440
4441         pci_clear_mwi(adapter->pdev);
4442 }
4443
4444 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4445 {
4446         struct e1000_adapter *adapter = hw->back;
4447         return pcix_get_mmrbc(adapter->pdev);
4448 }
4449
4450 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4451 {
4452         struct e1000_adapter *adapter = hw->back;
4453         pcix_set_mmrbc(adapter->pdev, mmrbc);
4454 }
4455
4456 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4457 {
4458         outl(value, port);
4459 }
4460
4461 static void e1000_vlan_rx_register(struct net_device *netdev,
4462                                    struct vlan_group *grp)
4463 {
4464         struct e1000_adapter *adapter = netdev_priv(netdev);
4465         struct e1000_hw *hw = &adapter->hw;
4466         u32 ctrl, rctl;
4467
4468         if (!test_bit(__E1000_DOWN, &adapter->flags))
4469                 e1000_irq_disable(adapter);
4470         adapter->vlgrp = grp;
4471
4472         if (grp) {
4473                 /* enable VLAN tag insert/strip */
4474                 ctrl = er32(CTRL);
4475                 ctrl |= E1000_CTRL_VME;
4476                 ew32(CTRL, ctrl);
4477
4478                 /* enable VLAN receive filtering */
4479                 rctl = er32(RCTL);
4480                 rctl &= ~E1000_RCTL_CFIEN;
4481                 if (!(netdev->flags & IFF_PROMISC))
4482                         rctl |= E1000_RCTL_VFE;
4483                 ew32(RCTL, rctl);
4484                 e1000_update_mng_vlan(adapter);
4485         } else {
4486                 /* disable VLAN tag insert/strip */
4487                 ctrl = er32(CTRL);
4488                 ctrl &= ~E1000_CTRL_VME;
4489                 ew32(CTRL, ctrl);
4490
4491                 /* disable VLAN receive filtering */
4492                 rctl = er32(RCTL);
4493                 rctl &= ~E1000_RCTL_VFE;
4494                 ew32(RCTL, rctl);
4495
4496                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4497                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4498                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4499                 }
4500         }
4501
4502         if (!test_bit(__E1000_DOWN, &adapter->flags))
4503                 e1000_irq_enable(adapter);
4504 }
4505
4506 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4507 {
4508         struct e1000_adapter *adapter = netdev_priv(netdev);
4509         struct e1000_hw *hw = &adapter->hw;
4510         u32 vfta, index;
4511
4512         if ((hw->mng_cookie.status &
4513              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4514             (vid == adapter->mng_vlan_id))
4515                 return;
4516         /* add VID to filter table */
4517         index = (vid >> 5) & 0x7F;
4518         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4519         vfta |= (1 << (vid & 0x1F));
4520         e1000_write_vfta(hw, index, vfta);
4521 }
4522
4523 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4524 {
4525         struct e1000_adapter *adapter = netdev_priv(netdev);
4526         struct e1000_hw *hw = &adapter->hw;
4527         u32 vfta, index;
4528
4529         if (!test_bit(__E1000_DOWN, &adapter->flags))
4530                 e1000_irq_disable(adapter);
4531         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4532         if (!test_bit(__E1000_DOWN, &adapter->flags))
4533                 e1000_irq_enable(adapter);
4534
4535         /* remove VID from filter table */
4536         index = (vid >> 5) & 0x7F;
4537         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4538         vfta &= ~(1 << (vid & 0x1F));
4539         e1000_write_vfta(hw, index, vfta);
4540 }
4541
4542 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4543 {
4544         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4545
4546         if (adapter->vlgrp) {
4547                 u16 vid;
4548                 for (vid = 0; vid < VLAN_N_VID; vid++) {
4549                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4550                                 continue;
4551                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4552                 }
4553         }
4554 }
4555
4556 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4557 {
4558         struct e1000_hw *hw = &adapter->hw;
4559
4560         hw->autoneg = 0;
4561
4562         /* Fiber NICs only allow 1000 gbps Full duplex */
4563         if ((hw->media_type == e1000_media_type_fiber) &&
4564                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4565                 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4566                 return -EINVAL;
4567         }
4568
4569         switch (spddplx) {
4570         case SPEED_10 + DUPLEX_HALF:
4571                 hw->forced_speed_duplex = e1000_10_half;
4572                 break;
4573         case SPEED_10 + DUPLEX_FULL:
4574                 hw->forced_speed_duplex = e1000_10_full;
4575                 break;
4576         case SPEED_100 + DUPLEX_HALF:
4577                 hw->forced_speed_duplex = e1000_100_half;
4578                 break;
4579         case SPEED_100 + DUPLEX_FULL:
4580                 hw->forced_speed_duplex = e1000_100_full;
4581                 break;
4582         case SPEED_1000 + DUPLEX_FULL:
4583                 hw->autoneg = 1;
4584                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4585                 break;
4586         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4587         default:
4588                 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4589                 return -EINVAL;
4590         }
4591         return 0;
4592 }
4593
4594 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4595 {
4596         struct net_device *netdev = pci_get_drvdata(pdev);
4597         struct e1000_adapter *adapter = netdev_priv(netdev);
4598         struct e1000_hw *hw = &adapter->hw;
4599         u32 ctrl, ctrl_ext, rctl, status;
4600         u32 wufc = adapter->wol;
4601 #ifdef CONFIG_PM
4602         int retval = 0;
4603 #endif
4604
4605         netif_device_detach(netdev);
4606
4607         if (netif_running(netdev)) {
4608                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4609                 e1000_down(adapter);
4610         }
4611
4612 #ifdef CONFIG_PM
4613         retval = pci_save_state(pdev);
4614         if (retval)
4615                 return retval;
4616 #endif
4617
4618         status = er32(STATUS);
4619         if (status & E1000_STATUS_LU)
4620                 wufc &= ~E1000_WUFC_LNKC;
4621
4622         if (wufc) {
4623                 e1000_setup_rctl(adapter);
4624                 e1000_set_rx_mode(netdev);
4625
4626                 /* turn on all-multi mode if wake on multicast is enabled */
4627                 if (wufc & E1000_WUFC_MC) {
4628                         rctl = er32(RCTL);
4629                         rctl |= E1000_RCTL_MPE;
4630                         ew32(RCTL, rctl);
4631                 }
4632
4633                 if (hw->mac_type >= e1000_82540) {
4634                         ctrl = er32(CTRL);
4635                         /* advertise wake from D3Cold */
4636                         #define E1000_CTRL_ADVD3WUC 0x00100000
4637                         /* phy power management enable */
4638                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4639                         ctrl |= E1000_CTRL_ADVD3WUC |
4640                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4641                         ew32(CTRL, ctrl);
4642                 }
4643
4644                 if (hw->media_type == e1000_media_type_fiber ||
4645                     hw->media_type == e1000_media_type_internal_serdes) {
4646                         /* keep the laser running in D3 */
4647                         ctrl_ext = er32(CTRL_EXT);
4648                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4649                         ew32(CTRL_EXT, ctrl_ext);
4650                 }
4651
4652                 ew32(WUC, E1000_WUC_PME_EN);
4653                 ew32(WUFC, wufc);
4654         } else {
4655                 ew32(WUC, 0);
4656                 ew32(WUFC, 0);
4657         }
4658
4659         e1000_release_manageability(adapter);
4660
4661         *enable_wake = !!wufc;
4662
4663         /* make sure adapter isn't asleep if manageability is enabled */
4664         if (adapter->en_mng_pt)
4665                 *enable_wake = true;
4666
4667         if (netif_running(netdev))
4668                 e1000_free_irq(adapter);
4669
4670         pci_disable_device(pdev);
4671
4672         return 0;
4673 }
4674
4675 #ifdef CONFIG_PM
4676 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4677 {
4678         int retval;
4679         bool wake;
4680
4681         retval = __e1000_shutdown(pdev, &wake);
4682         if (retval)
4683                 return retval;
4684
4685         if (wake) {
4686                 pci_prepare_to_sleep(pdev);
4687         } else {
4688                 pci_wake_from_d3(pdev, false);
4689                 pci_set_power_state(pdev, PCI_D3hot);
4690         }
4691
4692         return 0;
4693 }
4694
4695 static int e1000_resume(struct pci_dev *pdev)
4696 {
4697         struct net_device *netdev = pci_get_drvdata(pdev);
4698         struct e1000_adapter *adapter = netdev_priv(netdev);
4699         struct e1000_hw *hw = &adapter->hw;
4700         u32 err;
4701
4702         pci_set_power_state(pdev, PCI_D0);
4703         pci_restore_state(pdev);
4704         pci_save_state(pdev);
4705
4706         if (adapter->need_ioport)
4707                 err = pci_enable_device(pdev);
4708         else
4709                 err = pci_enable_device_mem(pdev);
4710         if (err) {
4711                 pr_err("Cannot enable PCI device from suspend\n");
4712                 return err;
4713         }
4714         pci_set_master(pdev);
4715
4716         pci_enable_wake(pdev, PCI_D3hot, 0);
4717         pci_enable_wake(pdev, PCI_D3cold, 0);
4718
4719         if (netif_running(netdev)) {
4720                 err = e1000_request_irq(adapter);
4721                 if (err)
4722                         return err;
4723         }
4724
4725         e1000_power_up_phy(adapter);
4726         e1000_reset(adapter);
4727         ew32(WUS, ~0);
4728
4729         e1000_init_manageability(adapter);
4730
4731         if (netif_running(netdev))
4732                 e1000_up(adapter);
4733
4734         netif_device_attach(netdev);
4735
4736         return 0;
4737 }
4738 #endif
4739
4740 static void e1000_shutdown(struct pci_dev *pdev)
4741 {
4742         bool wake;
4743
4744         __e1000_shutdown(pdev, &wake);
4745
4746         if (system_state == SYSTEM_POWER_OFF) {
4747                 pci_wake_from_d3(pdev, wake);
4748                 pci_set_power_state(pdev, PCI_D3hot);
4749         }
4750 }
4751
4752 #ifdef CONFIG_NET_POLL_CONTROLLER
4753 /*
4754  * Polling 'interrupt' - used by things like netconsole to send skbs
4755  * without having to re-enable interrupts. It's not called while
4756  * the interrupt routine is executing.
4757  */
4758 static void e1000_netpoll(struct net_device *netdev)
4759 {
4760         struct e1000_adapter *adapter = netdev_priv(netdev);
4761
4762         disable_irq(adapter->pdev->irq);
4763         e1000_intr(adapter->pdev->irq, netdev);
4764         enable_irq(adapter->pdev->irq);
4765 }
4766 #endif
4767
4768 /**
4769  * e1000_io_error_detected - called when PCI error is detected
4770  * @pdev: Pointer to PCI device
4771  * @state: The current pci connection state
4772  *
4773  * This function is called after a PCI bus error affecting
4774  * this device has been detected.
4775  */
4776 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4777                                                 pci_channel_state_t state)
4778 {
4779         struct net_device *netdev = pci_get_drvdata(pdev);
4780         struct e1000_adapter *adapter = netdev_priv(netdev);
4781
4782         netif_device_detach(netdev);
4783
4784         if (state == pci_channel_io_perm_failure)
4785                 return PCI_ERS_RESULT_DISCONNECT;
4786
4787         if (netif_running(netdev))
4788                 e1000_down(adapter);
4789         pci_disable_device(pdev);
4790
4791         /* Request a slot slot reset. */
4792         return PCI_ERS_RESULT_NEED_RESET;
4793 }
4794
4795 /**
4796  * e1000_io_slot_reset - called after the pci bus has been reset.
4797  * @pdev: Pointer to PCI device
4798  *
4799  * Restart the card from scratch, as if from a cold-boot. Implementation
4800  * resembles the first-half of the e1000_resume routine.
4801  */
4802 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4803 {
4804         struct net_device *netdev = pci_get_drvdata(pdev);
4805         struct e1000_adapter *adapter = netdev_priv(netdev);
4806         struct e1000_hw *hw = &adapter->hw;
4807         int err;
4808
4809         if (adapter->need_ioport)
4810                 err = pci_enable_device(pdev);
4811         else
4812                 err = pci_enable_device_mem(pdev);
4813         if (err) {
4814                 pr_err("Cannot re-enable PCI device after reset.\n");
4815                 return PCI_ERS_RESULT_DISCONNECT;
4816         }
4817         pci_set_master(pdev);
4818
4819         pci_enable_wake(pdev, PCI_D3hot, 0);
4820         pci_enable_wake(pdev, PCI_D3cold, 0);
4821
4822         e1000_reset(adapter);
4823         ew32(WUS, ~0);
4824
4825         return PCI_ERS_RESULT_RECOVERED;
4826 }
4827
4828 /**
4829  * e1000_io_resume - called when traffic can start flowing again.
4830  * @pdev: Pointer to PCI device
4831  *
4832  * This callback is called when the error recovery driver tells us that
4833  * its OK to resume normal operation. Implementation resembles the
4834  * second-half of the e1000_resume routine.
4835  */
4836 static void e1000_io_resume(struct pci_dev *pdev)
4837 {
4838         struct net_device *netdev = pci_get_drvdata(pdev);
4839         struct e1000_adapter *adapter = netdev_priv(netdev);
4840
4841         e1000_init_manageability(adapter);
4842
4843         if (netif_running(netdev)) {
4844                 if (e1000_up(adapter)) {
4845                         pr_info("can't bring device back up after reset\n");
4846                         return;
4847                 }
4848         }
4849
4850         netif_device_attach(netdev);
4851 }
4852
4853 /* e1000_main.c */