e1000: fix mismerge skb_put.
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 /* Change Log
33  * 7.0.33      3-Feb-2006
34  *   o Added another fix for the pass false carrier bit
35  * 7.0.32      24-Jan-2006
36  *   o Need to rebuild with noew version number for the pass false carrier 
37  *     fix in e1000_hw.c
38  * 7.0.30      18-Jan-2006
39  *   o fixup for tso workaround to disable it for pci-x
40  *   o fix mem leak on 82542
41  *   o fixes for 10 Mb/s connections and incorrect stats
42  * 7.0.28      01/06/2006
43  *   o hardware workaround to only set "speed mode" bit for 1G link.
44  * 7.0.26      12/23/2005
45  *   o wake on lan support modified for device ID 10B5
46  *   o fix dhcp + vlan issue not making it to the iAMT firmware
47  * 7.0.24      12/9/2005
48  *   o New hardware support for the Gigabit NIC embedded in the south bridge
49  *   o Fixes to the recycling logic (skb->tail) from IBM LTC
50  * 6.3.9        12/16/2005
51  *   o incorporate fix for recycled skbs from IBM LTC
52  * 6.3.7        11/18/2005
53  *   o Honor eeprom setting for enabling/disabling Wake On Lan
54  * 6.3.5        11/17/2005
55  *   o Fix memory leak in rx ring handling for PCI Express adapters
56  * 6.3.4        11/8/05
57  *   o Patch from Jesper Juhl to remove redundant NULL checks for kfree
58  * 6.3.2        9/20/05
59  *   o Render logic that sets/resets DRV_LOAD as inline functions to 
60  *     avoid code replication. If f/w is AMT then set DRV_LOAD only when
61  *     network interface is open.
62  *   o Handle DRV_LOAD set/reset in cases where AMT uses VLANs.
63  *   o Adjust PBA partioning for Jumbo frames using MTU size and not
64  *     rx_buffer_len
65  * 6.3.1        9/19/05
66  *   o Use adapter->tx_timeout_factor in Tx Hung Detect logic 
67  *      (e1000_clean_tx_irq)
68  *   o Support for 8086:10B5 device (Quad Port)
69  */
70
71 char e1000_driver_name[] = "e1000";
72 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
73 #ifndef CONFIG_E1000_NAPI
74 #define DRIVERNAPI
75 #else
76 #define DRIVERNAPI "-NAPI"
77 #endif
78 #define DRV_VERSION "7.0.38-k2"DRIVERNAPI
79 char e1000_driver_version[] = DRV_VERSION;
80 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
81
82 /* e1000_pci_tbl - PCI Device ID Table
83  *
84  * Last entry must be all 0s
85  *
86  * Macro expands to...
87  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
88  */
89 static struct pci_device_id e1000_pci_tbl[] = {
90         INTEL_E1000_ETHERNET_DEVICE(0x1000),
91         INTEL_E1000_ETHERNET_DEVICE(0x1001),
92         INTEL_E1000_ETHERNET_DEVICE(0x1004),
93         INTEL_E1000_ETHERNET_DEVICE(0x1008),
94         INTEL_E1000_ETHERNET_DEVICE(0x1009),
95         INTEL_E1000_ETHERNET_DEVICE(0x100C),
96         INTEL_E1000_ETHERNET_DEVICE(0x100D),
97         INTEL_E1000_ETHERNET_DEVICE(0x100E),
98         INTEL_E1000_ETHERNET_DEVICE(0x100F),
99         INTEL_E1000_ETHERNET_DEVICE(0x1010),
100         INTEL_E1000_ETHERNET_DEVICE(0x1011),
101         INTEL_E1000_ETHERNET_DEVICE(0x1012),
102         INTEL_E1000_ETHERNET_DEVICE(0x1013),
103         INTEL_E1000_ETHERNET_DEVICE(0x1014),
104         INTEL_E1000_ETHERNET_DEVICE(0x1015),
105         INTEL_E1000_ETHERNET_DEVICE(0x1016),
106         INTEL_E1000_ETHERNET_DEVICE(0x1017),
107         INTEL_E1000_ETHERNET_DEVICE(0x1018),
108         INTEL_E1000_ETHERNET_DEVICE(0x1019),
109         INTEL_E1000_ETHERNET_DEVICE(0x101A),
110         INTEL_E1000_ETHERNET_DEVICE(0x101D),
111         INTEL_E1000_ETHERNET_DEVICE(0x101E),
112         INTEL_E1000_ETHERNET_DEVICE(0x1026),
113         INTEL_E1000_ETHERNET_DEVICE(0x1027),
114         INTEL_E1000_ETHERNET_DEVICE(0x1028),
115         INTEL_E1000_ETHERNET_DEVICE(0x105E),
116         INTEL_E1000_ETHERNET_DEVICE(0x105F),
117         INTEL_E1000_ETHERNET_DEVICE(0x1060),
118         INTEL_E1000_ETHERNET_DEVICE(0x1075),
119         INTEL_E1000_ETHERNET_DEVICE(0x1076),
120         INTEL_E1000_ETHERNET_DEVICE(0x1077),
121         INTEL_E1000_ETHERNET_DEVICE(0x1078),
122         INTEL_E1000_ETHERNET_DEVICE(0x1079),
123         INTEL_E1000_ETHERNET_DEVICE(0x107A),
124         INTEL_E1000_ETHERNET_DEVICE(0x107B),
125         INTEL_E1000_ETHERNET_DEVICE(0x107C),
126         INTEL_E1000_ETHERNET_DEVICE(0x107D),
127         INTEL_E1000_ETHERNET_DEVICE(0x107E),
128         INTEL_E1000_ETHERNET_DEVICE(0x107F),
129         INTEL_E1000_ETHERNET_DEVICE(0x108A),
130         INTEL_E1000_ETHERNET_DEVICE(0x108B),
131         INTEL_E1000_ETHERNET_DEVICE(0x108C),
132         INTEL_E1000_ETHERNET_DEVICE(0x1096),
133         INTEL_E1000_ETHERNET_DEVICE(0x1098),
134         INTEL_E1000_ETHERNET_DEVICE(0x1099),
135         INTEL_E1000_ETHERNET_DEVICE(0x109A),
136         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
137         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
138         /* required last entry */
139         {0,}
140 };
141
142 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
143
144 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
145                                     struct e1000_tx_ring *txdr);
146 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
147                                     struct e1000_rx_ring *rxdr);
148 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
149                                     struct e1000_tx_ring *tx_ring);
150 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
151                                     struct e1000_rx_ring *rx_ring);
152
153 /* Local Function Prototypes */
154
155 static int e1000_init_module(void);
156 static void e1000_exit_module(void);
157 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
158 static void __devexit e1000_remove(struct pci_dev *pdev);
159 static int e1000_alloc_queues(struct e1000_adapter *adapter);
160 static int e1000_sw_init(struct e1000_adapter *adapter);
161 static int e1000_open(struct net_device *netdev);
162 static int e1000_close(struct net_device *netdev);
163 static void e1000_configure_tx(struct e1000_adapter *adapter);
164 static void e1000_configure_rx(struct e1000_adapter *adapter);
165 static void e1000_setup_rctl(struct e1000_adapter *adapter);
166 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
167 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
168 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
169                                 struct e1000_tx_ring *tx_ring);
170 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
171                                 struct e1000_rx_ring *rx_ring);
172 static void e1000_set_multi(struct net_device *netdev);
173 static void e1000_update_phy_info(unsigned long data);
174 static void e1000_watchdog(unsigned long data);
175 static void e1000_watchdog_task(struct e1000_adapter *adapter);
176 static void e1000_82547_tx_fifo_stall(unsigned long data);
177 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
178 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
179 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
180 static int e1000_set_mac(struct net_device *netdev, void *p);
181 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
182 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
183                                     struct e1000_tx_ring *tx_ring);
184 #ifdef CONFIG_E1000_NAPI
185 static int e1000_clean(struct net_device *poll_dev, int *budget);
186 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
187                                     struct e1000_rx_ring *rx_ring,
188                                     int *work_done, int work_to_do);
189 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
190                                        struct e1000_rx_ring *rx_ring,
191                                        int *work_done, int work_to_do);
192 #else
193 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
194                                     struct e1000_rx_ring *rx_ring);
195 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
196                                        struct e1000_rx_ring *rx_ring);
197 #endif
198 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
199                                    struct e1000_rx_ring *rx_ring,
200                                    int cleaned_count);
201 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
202                                       struct e1000_rx_ring *rx_ring,
203                                       int cleaned_count);
204 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
205 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
206                            int cmd);
207 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
208 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
209 static void e1000_tx_timeout(struct net_device *dev);
210 static void e1000_reset_task(struct net_device *dev);
211 static void e1000_smartspeed(struct e1000_adapter *adapter);
212 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
213                                        struct sk_buff *skb);
214
215 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
216 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
217 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
218 static void e1000_restore_vlan(struct e1000_adapter *adapter);
219
220 #ifdef CONFIG_PM
221 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
222 static int e1000_resume(struct pci_dev *pdev);
223 #endif
224
225 #ifdef CONFIG_NET_POLL_CONTROLLER
226 /* for netdump / net console */
227 static void e1000_netpoll (struct net_device *netdev);
228 #endif
229
230
231 static struct pci_driver e1000_driver = {
232         .name     = e1000_driver_name,
233         .id_table = e1000_pci_tbl,
234         .probe    = e1000_probe,
235         .remove   = __devexit_p(e1000_remove),
236         /* Power Managment Hooks */
237 #ifdef CONFIG_PM
238         .suspend  = e1000_suspend,
239         .resume   = e1000_resume
240 #endif
241 };
242
243 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
244 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
245 MODULE_LICENSE("GPL");
246 MODULE_VERSION(DRV_VERSION);
247
248 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
249 module_param(debug, int, 0);
250 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
251
252 /**
253  * e1000_init_module - Driver Registration Routine
254  *
255  * e1000_init_module is the first routine called when the driver is
256  * loaded. All it does is register with the PCI subsystem.
257  **/
258
259 static int __init
260 e1000_init_module(void)
261 {
262         int ret;
263         printk(KERN_INFO "%s - version %s\n",
264                e1000_driver_string, e1000_driver_version);
265
266         printk(KERN_INFO "%s\n", e1000_copyright);
267
268         ret = pci_module_init(&e1000_driver);
269
270         return ret;
271 }
272
273 module_init(e1000_init_module);
274
275 /**
276  * e1000_exit_module - Driver Exit Cleanup Routine
277  *
278  * e1000_exit_module is called just before the driver is removed
279  * from memory.
280  **/
281
282 static void __exit
283 e1000_exit_module(void)
284 {
285         pci_unregister_driver(&e1000_driver);
286 }
287
288 module_exit(e1000_exit_module);
289
290 /**
291  * e1000_irq_disable - Mask off interrupt generation on the NIC
292  * @adapter: board private structure
293  **/
294
295 static void
296 e1000_irq_disable(struct e1000_adapter *adapter)
297 {
298         atomic_inc(&adapter->irq_sem);
299         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
300         E1000_WRITE_FLUSH(&adapter->hw);
301         synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305  * e1000_irq_enable - Enable default interrupt generation settings
306  * @adapter: board private structure
307  **/
308
309 static void
310 e1000_irq_enable(struct e1000_adapter *adapter)
311 {
312         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
313                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
314                 E1000_WRITE_FLUSH(&adapter->hw);
315         }
316 }
317
318 static void
319 e1000_update_mng_vlan(struct e1000_adapter *adapter)
320 {
321         struct net_device *netdev = adapter->netdev;
322         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
323         uint16_t old_vid = adapter->mng_vlan_id;
324         if (adapter->vlgrp) {
325                 if (!adapter->vlgrp->vlan_devices[vid]) {
326                         if (adapter->hw.mng_cookie.status &
327                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
328                                 e1000_vlan_rx_add_vid(netdev, vid);
329                                 adapter->mng_vlan_id = vid;
330                         } else
331                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
332
333                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
334                                         (vid != old_vid) &&
335                                         !adapter->vlgrp->vlan_devices[old_vid])
336                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
337                 } else
338                         adapter->mng_vlan_id = vid;
339         }
340 }
341
342 /**
343  * e1000_release_hw_control - release control of the h/w to f/w
344  * @adapter: address of board private structure
345  *
346  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
347  * For ASF and Pass Through versions of f/w this means that the
348  * driver is no longer loaded. For AMT version (only with 82573) i
349  * of the f/w this means that the netowrk i/f is closed.
350  * 
351  **/
352
353 static void
354 e1000_release_hw_control(struct e1000_adapter *adapter)
355 {
356         uint32_t ctrl_ext;
357         uint32_t swsm;
358
359         /* Let firmware taken over control of h/w */
360         switch (adapter->hw.mac_type) {
361         case e1000_82571:
362         case e1000_82572:
363         case e1000_80003es2lan:
364                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
365                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
366                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
367                 break;
368         case e1000_82573:
369                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
370                 E1000_WRITE_REG(&adapter->hw, SWSM,
371                                 swsm & ~E1000_SWSM_DRV_LOAD);
372         default:
373                 break;
374         }
375 }
376
377 /**
378  * e1000_get_hw_control - get control of the h/w from f/w
379  * @adapter: address of board private structure
380  *
381  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
382  * For ASF and Pass Through versions of f/w this means that 
383  * the driver is loaded. For AMT version (only with 82573) 
384  * of the f/w this means that the netowrk i/f is open.
385  * 
386  **/
387
388 static void
389 e1000_get_hw_control(struct e1000_adapter *adapter)
390 {
391         uint32_t ctrl_ext;
392         uint32_t swsm;
393         /* Let firmware know the driver has taken over */
394         switch (adapter->hw.mac_type) {
395         case e1000_82571:
396         case e1000_82572:
397         case e1000_80003es2lan:
398                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
399                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
400                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
401                 break;
402         case e1000_82573:
403                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
404                 E1000_WRITE_REG(&adapter->hw, SWSM,
405                                 swsm | E1000_SWSM_DRV_LOAD);
406                 break;
407         default:
408                 break;
409         }
410 }
411
412 int
413 e1000_up(struct e1000_adapter *adapter)
414 {
415         struct net_device *netdev = adapter->netdev;
416         int i, err;
417
418         /* hardware has been reset, we need to reload some things */
419
420         /* Reset the PHY if it was previously powered down */
421         if (adapter->hw.media_type == e1000_media_type_copper) {
422                 uint16_t mii_reg;
423                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
424                 if (mii_reg & MII_CR_POWER_DOWN)
425                         e1000_phy_hw_reset(&adapter->hw);
426         }
427
428         e1000_set_multi(netdev);
429
430         e1000_restore_vlan(adapter);
431
432         e1000_configure_tx(adapter);
433         e1000_setup_rctl(adapter);
434         e1000_configure_rx(adapter);
435         /* call E1000_DESC_UNUSED which always leaves
436          * at least 1 descriptor unused to make sure
437          * next_to_use != next_to_clean */
438         for (i = 0; i < adapter->num_rx_queues; i++) {
439                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
440                 adapter->alloc_rx_buf(adapter, ring,
441                                       E1000_DESC_UNUSED(ring));
442         }
443
444 #ifdef CONFIG_PCI_MSI
445         if (adapter->hw.mac_type > e1000_82547_rev_2) {
446                 adapter->have_msi = TRUE;
447                 if ((err = pci_enable_msi(adapter->pdev))) {
448                         DPRINTK(PROBE, ERR,
449                          "Unable to allocate MSI interrupt Error: %d\n", err);
450                         adapter->have_msi = FALSE;
451                 }
452         }
453 #endif
454         if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
455                               SA_SHIRQ | SA_SAMPLE_RANDOM,
456                               netdev->name, netdev))) {
457                 DPRINTK(PROBE, ERR,
458                     "Unable to allocate interrupt Error: %d\n", err);
459                 return err;
460         }
461
462         adapter->tx_queue_len = netdev->tx_queue_len;
463
464         mod_timer(&adapter->watchdog_timer, jiffies);
465
466 #ifdef CONFIG_E1000_NAPI
467         netif_poll_enable(netdev);
468 #endif
469         e1000_irq_enable(adapter);
470
471         return 0;
472 }
473
474 void
475 e1000_down(struct e1000_adapter *adapter)
476 {
477         struct net_device *netdev = adapter->netdev;
478         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
479                                      e1000_check_mng_mode(&adapter->hw);
480
481         e1000_irq_disable(adapter);
482
483         free_irq(adapter->pdev->irq, netdev);
484 #ifdef CONFIG_PCI_MSI
485         if (adapter->hw.mac_type > e1000_82547_rev_2 &&
486            adapter->have_msi == TRUE)
487                 pci_disable_msi(adapter->pdev);
488 #endif
489         del_timer_sync(&adapter->tx_fifo_stall_timer);
490         del_timer_sync(&adapter->watchdog_timer);
491         del_timer_sync(&adapter->phy_info_timer);
492
493 #ifdef CONFIG_E1000_NAPI
494         netif_poll_disable(netdev);
495 #endif
496         netdev->tx_queue_len = adapter->tx_queue_len;
497         adapter->link_speed = 0;
498         adapter->link_duplex = 0;
499         netif_carrier_off(netdev);
500         netif_stop_queue(netdev);
501
502         e1000_reset(adapter);
503         e1000_clean_all_tx_rings(adapter);
504         e1000_clean_all_rx_rings(adapter);
505
506         /* Power down the PHY so no link is implied when interface is down *
507          * The PHY cannot be powered down if any of the following is TRUE *
508          * (a) WoL is enabled
509          * (b) AMT is active
510          * (c) SoL/IDER session is active */
511         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
512            adapter->hw.media_type == e1000_media_type_copper &&
513            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
514            !mng_mode_enabled &&
515            !e1000_check_phy_reset_block(&adapter->hw)) {
516                 uint16_t mii_reg;
517                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
518                 mii_reg |= MII_CR_POWER_DOWN;
519                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
520                 mdelay(1);
521         }
522 }
523
524 void
525 e1000_reset(struct e1000_adapter *adapter)
526 {
527         uint32_t pba, manc;
528         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
529
530         /* Repartition Pba for greater than 9k mtu
531          * To take effect CTRL.RST is required.
532          */
533
534         switch (adapter->hw.mac_type) {
535         case e1000_82547:
536         case e1000_82547_rev_2:
537                 pba = E1000_PBA_30K;
538                 break;
539         case e1000_82571:
540         case e1000_82572:
541         case e1000_80003es2lan:
542                 pba = E1000_PBA_38K;
543                 break;
544         case e1000_82573:
545                 pba = E1000_PBA_12K;
546                 break;
547         default:
548                 pba = E1000_PBA_48K;
549                 break;
550         }
551
552         if ((adapter->hw.mac_type != e1000_82573) &&
553            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
554                 pba -= 8; /* allocate more FIFO for Tx */
555
556
557         if (adapter->hw.mac_type == e1000_82547) {
558                 adapter->tx_fifo_head = 0;
559                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
560                 adapter->tx_fifo_size =
561                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
562                 atomic_set(&adapter->tx_fifo_stall, 0);
563         }
564
565         E1000_WRITE_REG(&adapter->hw, PBA, pba);
566
567         /* flow control settings */
568         /* Set the FC high water mark to 90% of the FIFO size.
569          * Required to clear last 3 LSB */
570         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
571
572         adapter->hw.fc_high_water = fc_high_water_mark;
573         adapter->hw.fc_low_water = fc_high_water_mark - 8;
574         if (adapter->hw.mac_type == e1000_80003es2lan)
575                 adapter->hw.fc_pause_time = 0xFFFF;
576         else
577                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
578         adapter->hw.fc_send_xon = 1;
579         adapter->hw.fc = adapter->hw.original_fc;
580
581         /* Allow time for pending master requests to run */
582         e1000_reset_hw(&adapter->hw);
583         if (adapter->hw.mac_type >= e1000_82544)
584                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
585         if (e1000_init_hw(&adapter->hw))
586                 DPRINTK(PROBE, ERR, "Hardware Error\n");
587         e1000_update_mng_vlan(adapter);
588         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
589         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
590
591         e1000_reset_adaptive(&adapter->hw);
592         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
593         if (adapter->en_mng_pt) {
594                 manc = E1000_READ_REG(&adapter->hw, MANC);
595                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
596                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
597         }
598 }
599
600 /**
601  * e1000_probe - Device Initialization Routine
602  * @pdev: PCI device information struct
603  * @ent: entry in e1000_pci_tbl
604  *
605  * Returns 0 on success, negative on failure
606  *
607  * e1000_probe initializes an adapter identified by a pci_dev structure.
608  * The OS initialization, configuring of the adapter private structure,
609  * and a hardware reset occur.
610  **/
611
612 static int __devinit
613 e1000_probe(struct pci_dev *pdev,
614             const struct pci_device_id *ent)
615 {
616         struct net_device *netdev;
617         struct e1000_adapter *adapter;
618         unsigned long mmio_start, mmio_len;
619
620         static int cards_found = 0;
621         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
622         int i, err, pci_using_dac;
623         uint16_t eeprom_data;
624         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
625         if ((err = pci_enable_device(pdev)))
626                 return err;
627
628         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
629                 pci_using_dac = 1;
630         } else {
631                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
632                         E1000_ERR("No usable DMA configuration, aborting\n");
633                         return err;
634                 }
635                 pci_using_dac = 0;
636         }
637
638         if ((err = pci_request_regions(pdev, e1000_driver_name)))
639                 return err;
640
641         pci_set_master(pdev);
642
643         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
644         if (!netdev) {
645                 err = -ENOMEM;
646                 goto err_alloc_etherdev;
647         }
648
649         SET_MODULE_OWNER(netdev);
650         SET_NETDEV_DEV(netdev, &pdev->dev);
651
652         pci_set_drvdata(pdev, netdev);
653         adapter = netdev_priv(netdev);
654         adapter->netdev = netdev;
655         adapter->pdev = pdev;
656         adapter->hw.back = adapter;
657         adapter->msg_enable = (1 << debug) - 1;
658
659         mmio_start = pci_resource_start(pdev, BAR_0);
660         mmio_len = pci_resource_len(pdev, BAR_0);
661
662         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
663         if (!adapter->hw.hw_addr) {
664                 err = -EIO;
665                 goto err_ioremap;
666         }
667
668         for (i = BAR_1; i <= BAR_5; i++) {
669                 if (pci_resource_len(pdev, i) == 0)
670                         continue;
671                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
672                         adapter->hw.io_base = pci_resource_start(pdev, i);
673                         break;
674                 }
675         }
676
677         netdev->open = &e1000_open;
678         netdev->stop = &e1000_close;
679         netdev->hard_start_xmit = &e1000_xmit_frame;
680         netdev->get_stats = &e1000_get_stats;
681         netdev->set_multicast_list = &e1000_set_multi;
682         netdev->set_mac_address = &e1000_set_mac;
683         netdev->change_mtu = &e1000_change_mtu;
684         netdev->do_ioctl = &e1000_ioctl;
685         e1000_set_ethtool_ops(netdev);
686         netdev->tx_timeout = &e1000_tx_timeout;
687         netdev->watchdog_timeo = 5 * HZ;
688 #ifdef CONFIG_E1000_NAPI
689         netdev->poll = &e1000_clean;
690         netdev->weight = 64;
691 #endif
692         netdev->vlan_rx_register = e1000_vlan_rx_register;
693         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
694         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
695 #ifdef CONFIG_NET_POLL_CONTROLLER
696         netdev->poll_controller = e1000_netpoll;
697 #endif
698         strcpy(netdev->name, pci_name(pdev));
699
700         netdev->mem_start = mmio_start;
701         netdev->mem_end = mmio_start + mmio_len;
702         netdev->base_addr = adapter->hw.io_base;
703
704         adapter->bd_number = cards_found;
705
706         /* setup the private structure */
707
708         if ((err = e1000_sw_init(adapter)))
709                 goto err_sw_init;
710
711         if ((err = e1000_check_phy_reset_block(&adapter->hw)))
712                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
713
714         /* if ksp3, indicate if it's port a being setup */
715         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 && 
716                         e1000_ksp3_port_a == 0) 
717                 adapter->ksp3_port_a = 1;
718         e1000_ksp3_port_a++;
719         /* Reset for multiple KP3 adapters */
720         if (e1000_ksp3_port_a == 4)
721                 e1000_ksp3_port_a = 0;
722
723         if (adapter->hw.mac_type >= e1000_82543) {
724                 netdev->features = NETIF_F_SG |
725                                    NETIF_F_HW_CSUM |
726                                    NETIF_F_HW_VLAN_TX |
727                                    NETIF_F_HW_VLAN_RX |
728                                    NETIF_F_HW_VLAN_FILTER;
729         }
730
731 #ifdef NETIF_F_TSO
732         if ((adapter->hw.mac_type >= e1000_82544) &&
733            (adapter->hw.mac_type != e1000_82547))
734                 netdev->features |= NETIF_F_TSO;
735
736 #ifdef NETIF_F_TSO_IPV6
737         if (adapter->hw.mac_type > e1000_82547_rev_2)
738                 netdev->features |= NETIF_F_TSO_IPV6;
739 #endif
740 #endif
741         if (pci_using_dac)
742                 netdev->features |= NETIF_F_HIGHDMA;
743
744         /* hard_start_xmit is safe against parallel locking */
745         netdev->features |= NETIF_F_LLTX; 
746  
747         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
748
749         /* before reading the EEPROM, reset the controller to
750          * put the device in a known good starting state */
751
752         e1000_reset_hw(&adapter->hw);
753
754         /* make sure the EEPROM is good */
755
756         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
757                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
758                 err = -EIO;
759                 goto err_eeprom;
760         }
761
762         /* copy the MAC address out of the EEPROM */
763
764         if (e1000_read_mac_addr(&adapter->hw))
765                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
766         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
767         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
768
769         if (!is_valid_ether_addr(netdev->perm_addr)) {
770                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
771                 err = -EIO;
772                 goto err_eeprom;
773         }
774
775         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
776
777         e1000_get_bus_info(&adapter->hw);
778
779         init_timer(&adapter->tx_fifo_stall_timer);
780         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
781         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
782
783         init_timer(&adapter->watchdog_timer);
784         adapter->watchdog_timer.function = &e1000_watchdog;
785         adapter->watchdog_timer.data = (unsigned long) adapter;
786
787         INIT_WORK(&adapter->watchdog_task,
788                 (void (*)(void *))e1000_watchdog_task, adapter);
789
790         init_timer(&adapter->phy_info_timer);
791         adapter->phy_info_timer.function = &e1000_update_phy_info;
792         adapter->phy_info_timer.data = (unsigned long) adapter;
793
794         INIT_WORK(&adapter->reset_task,
795                 (void (*)(void *))e1000_reset_task, netdev);
796
797         /* we're going to reset, so assume we have no link for now */
798
799         netif_carrier_off(netdev);
800         netif_stop_queue(netdev);
801
802         e1000_check_options(adapter);
803
804         /* Initial Wake on LAN setting
805          * If APM wake is enabled in the EEPROM,
806          * enable the ACPI Magic Packet filter
807          */
808
809         switch (adapter->hw.mac_type) {
810         case e1000_82542_rev2_0:
811         case e1000_82542_rev2_1:
812         case e1000_82543:
813                 break;
814         case e1000_82544:
815                 e1000_read_eeprom(&adapter->hw,
816                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
817                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
818                 break;
819         case e1000_82546:
820         case e1000_82546_rev_3:
821         case e1000_82571:
822         case e1000_80003es2lan:
823                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
824                         e1000_read_eeprom(&adapter->hw,
825                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
826                         break;
827                 }
828                 /* Fall Through */
829         default:
830                 e1000_read_eeprom(&adapter->hw,
831                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
832                 break;
833         }
834         if (eeprom_data & eeprom_apme_mask)
835                 adapter->wol |= E1000_WUFC_MAG;
836
837         /* print bus type/speed/width info */
838         {
839         struct e1000_hw *hw = &adapter->hw;
840         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
841                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
842                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
843                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
844                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
845                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
846                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
847                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
848                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
849                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
850                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
851                  "32-bit"));
852         }
853
854         for (i = 0; i < 6; i++)
855                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
856
857         /* reset the hardware with the new settings */
858         e1000_reset(adapter);
859
860         /* If the controller is 82573 and f/w is AMT, do not set
861          * DRV_LOAD until the interface is up.  For all other cases,
862          * let the f/w know that the h/w is now under the control
863          * of the driver. */
864         if (adapter->hw.mac_type != e1000_82573 ||
865             !e1000_check_mng_mode(&adapter->hw))
866                 e1000_get_hw_control(adapter);
867
868         strcpy(netdev->name, "eth%d");
869         if ((err = register_netdev(netdev)))
870                 goto err_register;
871
872         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
873
874         cards_found++;
875         return 0;
876
877 err_register:
878 err_sw_init:
879 err_eeprom:
880         iounmap(adapter->hw.hw_addr);
881 err_ioremap:
882         free_netdev(netdev);
883 err_alloc_etherdev:
884         pci_release_regions(pdev);
885         return err;
886 }
887
888 /**
889  * e1000_remove - Device Removal Routine
890  * @pdev: PCI device information struct
891  *
892  * e1000_remove is called by the PCI subsystem to alert the driver
893  * that it should release a PCI device.  The could be caused by a
894  * Hot-Plug event, or because the driver is going to be removed from
895  * memory.
896  **/
897
898 static void __devexit
899 e1000_remove(struct pci_dev *pdev)
900 {
901         struct net_device *netdev = pci_get_drvdata(pdev);
902         struct e1000_adapter *adapter = netdev_priv(netdev);
903         uint32_t manc;
904 #ifdef CONFIG_E1000_NAPI
905         int i;
906 #endif
907
908         flush_scheduled_work();
909
910         if (adapter->hw.mac_type >= e1000_82540 &&
911            adapter->hw.media_type == e1000_media_type_copper) {
912                 manc = E1000_READ_REG(&adapter->hw, MANC);
913                 if (manc & E1000_MANC_SMBUS_EN) {
914                         manc |= E1000_MANC_ARP_EN;
915                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
916                 }
917         }
918
919         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
920          * would have already happened in close and is redundant. */
921         e1000_release_hw_control(adapter);
922
923         unregister_netdev(netdev);
924 #ifdef CONFIG_E1000_NAPI
925         for (i = 0; i < adapter->num_rx_queues; i++)
926                 dev_put(&adapter->polling_netdev[i]);
927 #endif
928
929         if (!e1000_check_phy_reset_block(&adapter->hw))
930                 e1000_phy_hw_reset(&adapter->hw);
931
932         kfree(adapter->tx_ring);
933         kfree(adapter->rx_ring);
934 #ifdef CONFIG_E1000_NAPI
935         kfree(adapter->polling_netdev);
936 #endif
937
938         iounmap(adapter->hw.hw_addr);
939         pci_release_regions(pdev);
940
941         free_netdev(netdev);
942
943         pci_disable_device(pdev);
944 }
945
946 /**
947  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
948  * @adapter: board private structure to initialize
949  *
950  * e1000_sw_init initializes the Adapter private data structure.
951  * Fields are initialized based on PCI device information and
952  * OS network device settings (MTU size).
953  **/
954
955 static int __devinit
956 e1000_sw_init(struct e1000_adapter *adapter)
957 {
958         struct e1000_hw *hw = &adapter->hw;
959         struct net_device *netdev = adapter->netdev;
960         struct pci_dev *pdev = adapter->pdev;
961 #ifdef CONFIG_E1000_NAPI
962         int i;
963 #endif
964
965         /* PCI config space info */
966
967         hw->vendor_id = pdev->vendor;
968         hw->device_id = pdev->device;
969         hw->subsystem_vendor_id = pdev->subsystem_vendor;
970         hw->subsystem_id = pdev->subsystem_device;
971
972         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
973
974         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
975
976         adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
977         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
978         hw->max_frame_size = netdev->mtu +
979                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
980         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
981
982         /* identify the MAC */
983
984         if (e1000_set_mac_type(hw)) {
985                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
986                 return -EIO;
987         }
988
989         /* initialize eeprom parameters */
990
991         if (e1000_init_eeprom_params(hw)) {
992                 E1000_ERR("EEPROM initialization failed\n");
993                 return -EIO;
994         }
995
996         switch (hw->mac_type) {
997         default:
998                 break;
999         case e1000_82541:
1000         case e1000_82547:
1001         case e1000_82541_rev_2:
1002         case e1000_82547_rev_2:
1003                 hw->phy_init_script = 1;
1004                 break;
1005         }
1006
1007         e1000_set_media_type(hw);
1008
1009         hw->wait_autoneg_complete = FALSE;
1010         hw->tbi_compatibility_en = TRUE;
1011         hw->adaptive_ifs = TRUE;
1012
1013         /* Copper options */
1014
1015         if (hw->media_type == e1000_media_type_copper) {
1016                 hw->mdix = AUTO_ALL_MODES;
1017                 hw->disable_polarity_correction = FALSE;
1018                 hw->master_slave = E1000_MASTER_SLAVE;
1019         }
1020
1021         adapter->num_tx_queues = 1;
1022         adapter->num_rx_queues = 1;
1023
1024         if (e1000_alloc_queues(adapter)) {
1025                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1026                 return -ENOMEM;
1027         }
1028
1029 #ifdef CONFIG_E1000_NAPI
1030         for (i = 0; i < adapter->num_rx_queues; i++) {
1031                 adapter->polling_netdev[i].priv = adapter;
1032                 adapter->polling_netdev[i].poll = &e1000_clean;
1033                 adapter->polling_netdev[i].weight = 64;
1034                 dev_hold(&adapter->polling_netdev[i]);
1035                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1036         }
1037         spin_lock_init(&adapter->tx_queue_lock);
1038 #endif
1039
1040         atomic_set(&adapter->irq_sem, 1);
1041         spin_lock_init(&adapter->stats_lock);
1042
1043         return 0;
1044 }
1045
1046 /**
1047  * e1000_alloc_queues - Allocate memory for all rings
1048  * @adapter: board private structure to initialize
1049  *
1050  * We allocate one ring per queue at run-time since we don't know the
1051  * number of queues at compile-time.  The polling_netdev array is
1052  * intended for Multiqueue, but should work fine with a single queue.
1053  **/
1054
1055 static int __devinit
1056 e1000_alloc_queues(struct e1000_adapter *adapter)
1057 {
1058         int size;
1059
1060         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1061         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1062         if (!adapter->tx_ring)
1063                 return -ENOMEM;
1064         memset(adapter->tx_ring, 0, size);
1065
1066         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1067         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1068         if (!adapter->rx_ring) {
1069                 kfree(adapter->tx_ring);
1070                 return -ENOMEM;
1071         }
1072         memset(adapter->rx_ring, 0, size);
1073
1074 #ifdef CONFIG_E1000_NAPI
1075         size = sizeof(struct net_device) * adapter->num_rx_queues;
1076         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1077         if (!adapter->polling_netdev) {
1078                 kfree(adapter->tx_ring);
1079                 kfree(adapter->rx_ring);
1080                 return -ENOMEM;
1081         }
1082         memset(adapter->polling_netdev, 0, size);
1083 #endif
1084
1085         return E1000_SUCCESS;
1086 }
1087
1088 /**
1089  * e1000_open - Called when a network interface is made active
1090  * @netdev: network interface device structure
1091  *
1092  * Returns 0 on success, negative value on failure
1093  *
1094  * The open entry point is called when a network interface is made
1095  * active by the system (IFF_UP).  At this point all resources needed
1096  * for transmit and receive operations are allocated, the interrupt
1097  * handler is registered with the OS, the watchdog timer is started,
1098  * and the stack is notified that the interface is ready.
1099  **/
1100
1101 static int
1102 e1000_open(struct net_device *netdev)
1103 {
1104         struct e1000_adapter *adapter = netdev_priv(netdev);
1105         int err;
1106
1107         /* allocate transmit descriptors */
1108
1109         if ((err = e1000_setup_all_tx_resources(adapter)))
1110                 goto err_setup_tx;
1111
1112         /* allocate receive descriptors */
1113
1114         if ((err = e1000_setup_all_rx_resources(adapter)))
1115                 goto err_setup_rx;
1116
1117         if ((err = e1000_up(adapter)))
1118                 goto err_up;
1119         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1120         if ((adapter->hw.mng_cookie.status &
1121                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1122                 e1000_update_mng_vlan(adapter);
1123         }
1124
1125         /* If AMT is enabled, let the firmware know that the network
1126          * interface is now open */
1127         if (adapter->hw.mac_type == e1000_82573 &&
1128             e1000_check_mng_mode(&adapter->hw))
1129                 e1000_get_hw_control(adapter);
1130
1131         return E1000_SUCCESS;
1132
1133 err_up:
1134         e1000_free_all_rx_resources(adapter);
1135 err_setup_rx:
1136         e1000_free_all_tx_resources(adapter);
1137 err_setup_tx:
1138         e1000_reset(adapter);
1139
1140         return err;
1141 }
1142
1143 /**
1144  * e1000_close - Disables a network interface
1145  * @netdev: network interface device structure
1146  *
1147  * Returns 0, this is not allowed to fail
1148  *
1149  * The close entry point is called when an interface is de-activated
1150  * by the OS.  The hardware is still under the drivers control, but
1151  * needs to be disabled.  A global MAC reset is issued to stop the
1152  * hardware, and all transmit and receive resources are freed.
1153  **/
1154
1155 static int
1156 e1000_close(struct net_device *netdev)
1157 {
1158         struct e1000_adapter *adapter = netdev_priv(netdev);
1159
1160         e1000_down(adapter);
1161
1162         e1000_free_all_tx_resources(adapter);
1163         e1000_free_all_rx_resources(adapter);
1164
1165         if ((adapter->hw.mng_cookie.status &
1166                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1167                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1168         }
1169
1170         /* If AMT is enabled, let the firmware know that the network
1171          * interface is now closed */
1172         if (adapter->hw.mac_type == e1000_82573 &&
1173             e1000_check_mng_mode(&adapter->hw))
1174                 e1000_release_hw_control(adapter);
1175
1176         return 0;
1177 }
1178
1179 /**
1180  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1181  * @adapter: address of board private structure
1182  * @start: address of beginning of memory
1183  * @len: length of memory
1184  **/
1185 static boolean_t
1186 e1000_check_64k_bound(struct e1000_adapter *adapter,
1187                       void *start, unsigned long len)
1188 {
1189         unsigned long begin = (unsigned long) start;
1190         unsigned long end = begin + len;
1191
1192         /* First rev 82545 and 82546 need to not allow any memory
1193          * write location to cross 64k boundary due to errata 23 */
1194         if (adapter->hw.mac_type == e1000_82545 ||
1195             adapter->hw.mac_type == e1000_82546) {
1196                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1197         }
1198
1199         return TRUE;
1200 }
1201
1202 /**
1203  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1204  * @adapter: board private structure
1205  * @txdr:    tx descriptor ring (for a specific queue) to setup
1206  *
1207  * Return 0 on success, negative on failure
1208  **/
1209
1210 static int
1211 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1212                          struct e1000_tx_ring *txdr)
1213 {
1214         struct pci_dev *pdev = adapter->pdev;
1215         int size;
1216
1217         size = sizeof(struct e1000_buffer) * txdr->count;
1218
1219         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1220         if (!txdr->buffer_info) {
1221                 DPRINTK(PROBE, ERR,
1222                 "Unable to allocate memory for the transmit descriptor ring\n");
1223                 return -ENOMEM;
1224         }
1225         memset(txdr->buffer_info, 0, size);
1226
1227         /* round up to nearest 4K */
1228
1229         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1230         E1000_ROUNDUP(txdr->size, 4096);
1231
1232         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1233         if (!txdr->desc) {
1234 setup_tx_desc_die:
1235                 vfree(txdr->buffer_info);
1236                 DPRINTK(PROBE, ERR,
1237                 "Unable to allocate memory for the transmit descriptor ring\n");
1238                 return -ENOMEM;
1239         }
1240
1241         /* Fix for errata 23, can't cross 64kB boundary */
1242         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1243                 void *olddesc = txdr->desc;
1244                 dma_addr_t olddma = txdr->dma;
1245                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1246                                      "at %p\n", txdr->size, txdr->desc);
1247                 /* Try again, without freeing the previous */
1248                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1249                 /* Failed allocation, critical failure */
1250                 if (!txdr->desc) {
1251                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1252                         goto setup_tx_desc_die;
1253                 }
1254
1255                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1256                         /* give up */
1257                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1258                                             txdr->dma);
1259                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1260                         DPRINTK(PROBE, ERR,
1261                                 "Unable to allocate aligned memory "
1262                                 "for the transmit descriptor ring\n");
1263                         vfree(txdr->buffer_info);
1264                         return -ENOMEM;
1265                 } else {
1266                         /* Free old allocation, new allocation was successful */
1267                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1268                 }
1269         }
1270         memset(txdr->desc, 0, txdr->size);
1271
1272         txdr->next_to_use = 0;
1273         txdr->next_to_clean = 0;
1274         spin_lock_init(&txdr->tx_lock);
1275
1276         return 0;
1277 }
1278
1279 /**
1280  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1281  *                                (Descriptors) for all queues
1282  * @adapter: board private structure
1283  *
1284  * If this function returns with an error, then it's possible one or
1285  * more of the rings is populated (while the rest are not).  It is the
1286  * callers duty to clean those orphaned rings.
1287  *
1288  * Return 0 on success, negative on failure
1289  **/
1290
1291 int
1292 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1293 {
1294         int i, err = 0;
1295
1296         for (i = 0; i < adapter->num_tx_queues; i++) {
1297                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1298                 if (err) {
1299                         DPRINTK(PROBE, ERR,
1300                                 "Allocation for Tx Queue %u failed\n", i);
1301                         break;
1302                 }
1303         }
1304
1305         return err;
1306 }
1307
1308 /**
1309  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1310  * @adapter: board private structure
1311  *
1312  * Configure the Tx unit of the MAC after a reset.
1313  **/
1314
1315 static void
1316 e1000_configure_tx(struct e1000_adapter *adapter)
1317 {
1318         uint64_t tdba;
1319         struct e1000_hw *hw = &adapter->hw;
1320         uint32_t tdlen, tctl, tipg, tarc;
1321         uint32_t ipgr1, ipgr2;
1322
1323         /* Setup the HW Tx Head and Tail descriptor pointers */
1324
1325         switch (adapter->num_tx_queues) {
1326         case 1:
1327         default:
1328                 tdba = adapter->tx_ring[0].dma;
1329                 tdlen = adapter->tx_ring[0].count *
1330                         sizeof(struct e1000_tx_desc);
1331                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1332                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1333                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1334                 E1000_WRITE_REG(hw, TDH, 0);
1335                 E1000_WRITE_REG(hw, TDT, 0);
1336                 adapter->tx_ring[0].tdh = E1000_TDH;
1337                 adapter->tx_ring[0].tdt = E1000_TDT;
1338                 break;
1339         }
1340
1341         /* Set the default values for the Tx Inter Packet Gap timer */
1342
1343         if (hw->media_type == e1000_media_type_fiber ||
1344             hw->media_type == e1000_media_type_internal_serdes)
1345                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1346         else
1347                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1348
1349         switch (hw->mac_type) {
1350         case e1000_82542_rev2_0:
1351         case e1000_82542_rev2_1:
1352                 tipg = DEFAULT_82542_TIPG_IPGT;
1353                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1354                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1355                 break;
1356         case e1000_80003es2lan:
1357                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1358                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1359                 break;
1360         default:
1361                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1362                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1363                 break;
1364         }
1365         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1366         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1367         E1000_WRITE_REG(hw, TIPG, tipg);
1368
1369         /* Set the Tx Interrupt Delay register */
1370
1371         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1372         if (hw->mac_type >= e1000_82540)
1373                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1374
1375         /* Program the Transmit Control Register */
1376
1377         tctl = E1000_READ_REG(hw, TCTL);
1378
1379         tctl &= ~E1000_TCTL_CT;
1380         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1381                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1382
1383 #ifdef DISABLE_MULR
1384         /* disable Multiple Reads for debugging */
1385         tctl &= ~E1000_TCTL_MULR;
1386 #endif
1387
1388         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1389                 tarc = E1000_READ_REG(hw, TARC0);
1390                 tarc |= ((1 << 25) | (1 << 21));
1391                 E1000_WRITE_REG(hw, TARC0, tarc);
1392                 tarc = E1000_READ_REG(hw, TARC1);
1393                 tarc |= (1 << 25);
1394                 if (tctl & E1000_TCTL_MULR)
1395                         tarc &= ~(1 << 28);
1396                 else
1397                         tarc |= (1 << 28);
1398                 E1000_WRITE_REG(hw, TARC1, tarc);
1399         } else if (hw->mac_type == e1000_80003es2lan) {
1400                 tarc = E1000_READ_REG(hw, TARC0);
1401                 tarc |= 1;
1402                 if (hw->media_type == e1000_media_type_internal_serdes)
1403                         tarc |= (1 << 20);
1404                 E1000_WRITE_REG(hw, TARC0, tarc);
1405                 tarc = E1000_READ_REG(hw, TARC1);
1406                 tarc |= 1;
1407                 E1000_WRITE_REG(hw, TARC1, tarc);
1408         }
1409
1410         e1000_config_collision_dist(hw);
1411
1412         /* Setup Transmit Descriptor Settings for eop descriptor */
1413         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1414                 E1000_TXD_CMD_IFCS;
1415
1416         if (hw->mac_type < e1000_82543)
1417                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1418         else
1419                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1420
1421         /* Cache if we're 82544 running in PCI-X because we'll
1422          * need this to apply a workaround later in the send path. */
1423         if (hw->mac_type == e1000_82544 &&
1424             hw->bus_type == e1000_bus_type_pcix)
1425                 adapter->pcix_82544 = 1;
1426
1427         E1000_WRITE_REG(hw, TCTL, tctl);
1428
1429 }
1430
1431 /**
1432  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1433  * @adapter: board private structure
1434  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1435  *
1436  * Returns 0 on success, negative on failure
1437  **/
1438
1439 static int
1440 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1441                          struct e1000_rx_ring *rxdr)
1442 {
1443         struct pci_dev *pdev = adapter->pdev;
1444         int size, desc_len;
1445
1446         size = sizeof(struct e1000_buffer) * rxdr->count;
1447         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1448         if (!rxdr->buffer_info) {
1449                 DPRINTK(PROBE, ERR,
1450                 "Unable to allocate memory for the receive descriptor ring\n");
1451                 return -ENOMEM;
1452         }
1453         memset(rxdr->buffer_info, 0, size);
1454
1455         size = sizeof(struct e1000_ps_page) * rxdr->count;
1456         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1457         if (!rxdr->ps_page) {
1458                 vfree(rxdr->buffer_info);
1459                 DPRINTK(PROBE, ERR,
1460                 "Unable to allocate memory for the receive descriptor ring\n");
1461                 return -ENOMEM;
1462         }
1463         memset(rxdr->ps_page, 0, size);
1464
1465         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1466         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1467         if (!rxdr->ps_page_dma) {
1468                 vfree(rxdr->buffer_info);
1469                 kfree(rxdr->ps_page);
1470                 DPRINTK(PROBE, ERR,
1471                 "Unable to allocate memory for the receive descriptor ring\n");
1472                 return -ENOMEM;
1473         }
1474         memset(rxdr->ps_page_dma, 0, size);
1475
1476         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1477                 desc_len = sizeof(struct e1000_rx_desc);
1478         else
1479                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1480
1481         /* Round up to nearest 4K */
1482
1483         rxdr->size = rxdr->count * desc_len;
1484         E1000_ROUNDUP(rxdr->size, 4096);
1485
1486         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1487
1488         if (!rxdr->desc) {
1489                 DPRINTK(PROBE, ERR,
1490                 "Unable to allocate memory for the receive descriptor ring\n");
1491 setup_rx_desc_die:
1492                 vfree(rxdr->buffer_info);
1493                 kfree(rxdr->ps_page);
1494                 kfree(rxdr->ps_page_dma);
1495                 return -ENOMEM;
1496         }
1497
1498         /* Fix for errata 23, can't cross 64kB boundary */
1499         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1500                 void *olddesc = rxdr->desc;
1501                 dma_addr_t olddma = rxdr->dma;
1502                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1503                                      "at %p\n", rxdr->size, rxdr->desc);
1504                 /* Try again, without freeing the previous */
1505                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1506                 /* Failed allocation, critical failure */
1507                 if (!rxdr->desc) {
1508                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1509                         DPRINTK(PROBE, ERR,
1510                                 "Unable to allocate memory "
1511                                 "for the receive descriptor ring\n");
1512                         goto setup_rx_desc_die;
1513                 }
1514
1515                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1516                         /* give up */
1517                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1518                                             rxdr->dma);
1519                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1520                         DPRINTK(PROBE, ERR,
1521                                 "Unable to allocate aligned memory "
1522                                 "for the receive descriptor ring\n");
1523                         goto setup_rx_desc_die;
1524                 } else {
1525                         /* Free old allocation, new allocation was successful */
1526                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1527                 }
1528         }
1529         memset(rxdr->desc, 0, rxdr->size);
1530
1531         rxdr->next_to_clean = 0;
1532         rxdr->next_to_use = 0;
1533
1534         return 0;
1535 }
1536
1537 /**
1538  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1539  *                                (Descriptors) for all queues
1540  * @adapter: board private structure
1541  *
1542  * If this function returns with an error, then it's possible one or
1543  * more of the rings is populated (while the rest are not).  It is the
1544  * callers duty to clean those orphaned rings.
1545  *
1546  * Return 0 on success, negative on failure
1547  **/
1548
1549 int
1550 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1551 {
1552         int i, err = 0;
1553
1554         for (i = 0; i < adapter->num_rx_queues; i++) {
1555                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1556                 if (err) {
1557                         DPRINTK(PROBE, ERR,
1558                                 "Allocation for Rx Queue %u failed\n", i);
1559                         break;
1560                 }
1561         }
1562
1563         return err;
1564 }
1565
1566 /**
1567  * e1000_setup_rctl - configure the receive control registers
1568  * @adapter: Board private structure
1569  **/
1570 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1571                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1572 static void
1573 e1000_setup_rctl(struct e1000_adapter *adapter)
1574 {
1575         uint32_t rctl, rfctl;
1576         uint32_t psrctl = 0;
1577 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1578         uint32_t pages = 0;
1579 #endif
1580
1581         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1582
1583         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1584
1585         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1586                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1587                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1588
1589         if (adapter->hw.mac_type > e1000_82543)
1590                 rctl |= E1000_RCTL_SECRC;
1591
1592         if (adapter->hw.tbi_compatibility_on == 1)
1593                 rctl |= E1000_RCTL_SBP;
1594         else
1595                 rctl &= ~E1000_RCTL_SBP;
1596
1597         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1598                 rctl &= ~E1000_RCTL_LPE;
1599         else
1600                 rctl |= E1000_RCTL_LPE;
1601
1602         /* Setup buffer sizes */
1603         rctl &= ~E1000_RCTL_SZ_4096;
1604         rctl |= E1000_RCTL_BSEX;
1605         switch (adapter->rx_buffer_len) {
1606                 case E1000_RXBUFFER_256:
1607                         rctl |= E1000_RCTL_SZ_256;
1608                         rctl &= ~E1000_RCTL_BSEX;
1609                         break;
1610                 case E1000_RXBUFFER_512:
1611                         rctl |= E1000_RCTL_SZ_512;
1612                         rctl &= ~E1000_RCTL_BSEX;
1613                         break;
1614                 case E1000_RXBUFFER_1024:
1615                         rctl |= E1000_RCTL_SZ_1024;
1616                         rctl &= ~E1000_RCTL_BSEX;
1617                         break;
1618                 case E1000_RXBUFFER_2048:
1619                 default:
1620                         rctl |= E1000_RCTL_SZ_2048;
1621                         rctl &= ~E1000_RCTL_BSEX;
1622                         break;
1623                 case E1000_RXBUFFER_4096:
1624                         rctl |= E1000_RCTL_SZ_4096;
1625                         break;
1626                 case E1000_RXBUFFER_8192:
1627                         rctl |= E1000_RCTL_SZ_8192;
1628                         break;
1629                 case E1000_RXBUFFER_16384:
1630                         rctl |= E1000_RCTL_SZ_16384;
1631                         break;
1632         }
1633
1634 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1635         /* 82571 and greater support packet-split where the protocol
1636          * header is placed in skb->data and the packet data is
1637          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1638          * In the case of a non-split, skb->data is linearly filled,
1639          * followed by the page buffers.  Therefore, skb->data is
1640          * sized to hold the largest protocol header.
1641          */
1642         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1643         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1644             PAGE_SIZE <= 16384)
1645                 adapter->rx_ps_pages = pages;
1646         else
1647                 adapter->rx_ps_pages = 0;
1648 #endif
1649         if (adapter->rx_ps_pages) {
1650                 /* Configure extra packet-split registers */
1651                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1652                 rfctl |= E1000_RFCTL_EXTEN;
1653                 /* disable IPv6 packet split support */
1654                 rfctl |= E1000_RFCTL_IPV6_DIS;
1655                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1656
1657                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1658
1659                 psrctl |= adapter->rx_ps_bsize0 >>
1660                         E1000_PSRCTL_BSIZE0_SHIFT;
1661
1662                 switch (adapter->rx_ps_pages) {
1663                 case 3:
1664                         psrctl |= PAGE_SIZE <<
1665                                 E1000_PSRCTL_BSIZE3_SHIFT;
1666                 case 2:
1667                         psrctl |= PAGE_SIZE <<
1668                                 E1000_PSRCTL_BSIZE2_SHIFT;
1669                 case 1:
1670                         psrctl |= PAGE_SIZE >>
1671                                 E1000_PSRCTL_BSIZE1_SHIFT;
1672                         break;
1673                 }
1674
1675                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1676         }
1677
1678         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1679 }
1680
1681 /**
1682  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1683  * @adapter: board private structure
1684  *
1685  * Configure the Rx unit of the MAC after a reset.
1686  **/
1687
1688 static void
1689 e1000_configure_rx(struct e1000_adapter *adapter)
1690 {
1691         uint64_t rdba;
1692         struct e1000_hw *hw = &adapter->hw;
1693         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1694
1695         if (adapter->rx_ps_pages) {
1696                 /* this is a 32 byte descriptor */
1697                 rdlen = adapter->rx_ring[0].count *
1698                         sizeof(union e1000_rx_desc_packet_split);
1699                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1700                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1701         } else {
1702                 rdlen = adapter->rx_ring[0].count *
1703                         sizeof(struct e1000_rx_desc);
1704                 adapter->clean_rx = e1000_clean_rx_irq;
1705                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1706         }
1707
1708         /* disable receives while setting up the descriptors */
1709         rctl = E1000_READ_REG(hw, RCTL);
1710         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1711
1712         /* set the Receive Delay Timer Register */
1713         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1714
1715         if (hw->mac_type >= e1000_82540) {
1716                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1717                 if (adapter->itr > 1)
1718                         E1000_WRITE_REG(hw, ITR,
1719                                 1000000000 / (adapter->itr * 256));
1720         }
1721
1722         if (hw->mac_type >= e1000_82571) {
1723                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1724                 /* Reset delay timers after every interrupt */
1725                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1726 #ifdef CONFIG_E1000_NAPI
1727                 /* Auto-Mask interrupts upon ICR read. */
1728                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1729 #endif
1730                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1731                 E1000_WRITE_REG(hw, IAM, ~0);
1732                 E1000_WRITE_FLUSH(hw);
1733         }
1734
1735         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1736          * the Base and Length of the Rx Descriptor Ring */
1737         switch (adapter->num_rx_queues) {
1738         case 1:
1739         default:
1740                 rdba = adapter->rx_ring[0].dma;
1741                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1742                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1743                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1744                 E1000_WRITE_REG(hw, RDH, 0);
1745                 E1000_WRITE_REG(hw, RDT, 0);
1746                 adapter->rx_ring[0].rdh = E1000_RDH;
1747                 adapter->rx_ring[0].rdt = E1000_RDT;
1748                 break;
1749         }
1750
1751         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1752         if (hw->mac_type >= e1000_82543) {
1753                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1754                 if (adapter->rx_csum == TRUE) {
1755                         rxcsum |= E1000_RXCSUM_TUOFL;
1756
1757                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1758                          * Must be used in conjunction with packet-split. */
1759                         if ((hw->mac_type >= e1000_82571) &&
1760                             (adapter->rx_ps_pages)) {
1761                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1762                         }
1763                 } else {
1764                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1765                         /* don't need to clear IPPCSE as it defaults to 0 */
1766                 }
1767                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1768         }
1769
1770         if (hw->mac_type == e1000_82573)
1771                 E1000_WRITE_REG(hw, ERT, 0x0100);
1772
1773         /* Enable Receives */
1774         E1000_WRITE_REG(hw, RCTL, rctl);
1775 }
1776
1777 /**
1778  * e1000_free_tx_resources - Free Tx Resources per Queue
1779  * @adapter: board private structure
1780  * @tx_ring: Tx descriptor ring for a specific queue
1781  *
1782  * Free all transmit software resources
1783  **/
1784
1785 static void
1786 e1000_free_tx_resources(struct e1000_adapter *adapter,
1787                         struct e1000_tx_ring *tx_ring)
1788 {
1789         struct pci_dev *pdev = adapter->pdev;
1790
1791         e1000_clean_tx_ring(adapter, tx_ring);
1792
1793         vfree(tx_ring->buffer_info);
1794         tx_ring->buffer_info = NULL;
1795
1796         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1797
1798         tx_ring->desc = NULL;
1799 }
1800
1801 /**
1802  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1803  * @adapter: board private structure
1804  *
1805  * Free all transmit software resources
1806  **/
1807
1808 void
1809 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1810 {
1811         int i;
1812
1813         for (i = 0; i < adapter->num_tx_queues; i++)
1814                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1815 }
1816
1817 static void
1818 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1819                         struct e1000_buffer *buffer_info)
1820 {
1821         if (buffer_info->dma) {
1822                 pci_unmap_page(adapter->pdev,
1823                                 buffer_info->dma,
1824                                 buffer_info->length,
1825                                 PCI_DMA_TODEVICE);
1826         }
1827         if (buffer_info->skb)
1828                 dev_kfree_skb_any(buffer_info->skb);
1829         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1830 }
1831
1832 /**
1833  * e1000_clean_tx_ring - Free Tx Buffers
1834  * @adapter: board private structure
1835  * @tx_ring: ring to be cleaned
1836  **/
1837
1838 static void
1839 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1840                     struct e1000_tx_ring *tx_ring)
1841 {
1842         struct e1000_buffer *buffer_info;
1843         unsigned long size;
1844         unsigned int i;
1845
1846         /* Free all the Tx ring sk_buffs */
1847
1848         for (i = 0; i < tx_ring->count; i++) {
1849                 buffer_info = &tx_ring->buffer_info[i];
1850                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1851         }
1852
1853         size = sizeof(struct e1000_buffer) * tx_ring->count;
1854         memset(tx_ring->buffer_info, 0, size);
1855
1856         /* Zero out the descriptor ring */
1857
1858         memset(tx_ring->desc, 0, tx_ring->size);
1859
1860         tx_ring->next_to_use = 0;
1861         tx_ring->next_to_clean = 0;
1862         tx_ring->last_tx_tso = 0;
1863
1864         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1865         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1866 }
1867
1868 /**
1869  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1870  * @adapter: board private structure
1871  **/
1872
1873 static void
1874 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1875 {
1876         int i;
1877
1878         for (i = 0; i < adapter->num_tx_queues; i++)
1879                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1880 }
1881
1882 /**
1883  * e1000_free_rx_resources - Free Rx Resources
1884  * @adapter: board private structure
1885  * @rx_ring: ring to clean the resources from
1886  *
1887  * Free all receive software resources
1888  **/
1889
1890 static void
1891 e1000_free_rx_resources(struct e1000_adapter *adapter,
1892                         struct e1000_rx_ring *rx_ring)
1893 {
1894         struct pci_dev *pdev = adapter->pdev;
1895
1896         e1000_clean_rx_ring(adapter, rx_ring);
1897
1898         vfree(rx_ring->buffer_info);
1899         rx_ring->buffer_info = NULL;
1900         kfree(rx_ring->ps_page);
1901         rx_ring->ps_page = NULL;
1902         kfree(rx_ring->ps_page_dma);
1903         rx_ring->ps_page_dma = NULL;
1904
1905         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1906
1907         rx_ring->desc = NULL;
1908 }
1909
1910 /**
1911  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1912  * @adapter: board private structure
1913  *
1914  * Free all receive software resources
1915  **/
1916
1917 void
1918 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1919 {
1920         int i;
1921
1922         for (i = 0; i < adapter->num_rx_queues; i++)
1923                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1924 }
1925
1926 /**
1927  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1928  * @adapter: board private structure
1929  * @rx_ring: ring to free buffers from
1930  **/
1931
1932 static void
1933 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1934                     struct e1000_rx_ring *rx_ring)
1935 {
1936         struct e1000_buffer *buffer_info;
1937         struct e1000_ps_page *ps_page;
1938         struct e1000_ps_page_dma *ps_page_dma;
1939         struct pci_dev *pdev = adapter->pdev;
1940         unsigned long size;
1941         unsigned int i, j;
1942
1943         /* Free all the Rx ring sk_buffs */
1944         for (i = 0; i < rx_ring->count; i++) {
1945                 buffer_info = &rx_ring->buffer_info[i];
1946                 if (buffer_info->skb) {
1947                         pci_unmap_single(pdev,
1948                                          buffer_info->dma,
1949                                          buffer_info->length,
1950                                          PCI_DMA_FROMDEVICE);
1951
1952                         dev_kfree_skb(buffer_info->skb);
1953                         buffer_info->skb = NULL;
1954                 }
1955                 ps_page = &rx_ring->ps_page[i];
1956                 ps_page_dma = &rx_ring->ps_page_dma[i];
1957                 for (j = 0; j < adapter->rx_ps_pages; j++) {
1958                         if (!ps_page->ps_page[j]) break;
1959                         pci_unmap_page(pdev,
1960                                        ps_page_dma->ps_page_dma[j],
1961                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1962                         ps_page_dma->ps_page_dma[j] = 0;
1963                         put_page(ps_page->ps_page[j]);
1964                         ps_page->ps_page[j] = NULL;
1965                 }
1966         }
1967
1968         size = sizeof(struct e1000_buffer) * rx_ring->count;
1969         memset(rx_ring->buffer_info, 0, size);
1970         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1971         memset(rx_ring->ps_page, 0, size);
1972         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1973         memset(rx_ring->ps_page_dma, 0, size);
1974
1975         /* Zero out the descriptor ring */
1976
1977         memset(rx_ring->desc, 0, rx_ring->size);
1978
1979         rx_ring->next_to_clean = 0;
1980         rx_ring->next_to_use = 0;
1981
1982         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1983         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1984 }
1985
1986 /**
1987  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1988  * @adapter: board private structure
1989  **/
1990
1991 static void
1992 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1993 {
1994         int i;
1995
1996         for (i = 0; i < adapter->num_rx_queues; i++)
1997                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1998 }
1999
2000 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2001  * and memory write and invalidate disabled for certain operations
2002  */
2003 static void
2004 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2005 {
2006         struct net_device *netdev = adapter->netdev;
2007         uint32_t rctl;
2008
2009         e1000_pci_clear_mwi(&adapter->hw);
2010
2011         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2012         rctl |= E1000_RCTL_RST;
2013         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2014         E1000_WRITE_FLUSH(&adapter->hw);
2015         mdelay(5);
2016
2017         if (netif_running(netdev))
2018                 e1000_clean_all_rx_rings(adapter);
2019 }
2020
2021 static void
2022 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2023 {
2024         struct net_device *netdev = adapter->netdev;
2025         uint32_t rctl;
2026
2027         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2028         rctl &= ~E1000_RCTL_RST;
2029         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2030         E1000_WRITE_FLUSH(&adapter->hw);
2031         mdelay(5);
2032
2033         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2034                 e1000_pci_set_mwi(&adapter->hw);
2035
2036         if (netif_running(netdev)) {
2037                 /* No need to loop, because 82542 supports only 1 queue */
2038                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2039                 e1000_configure_rx(adapter);
2040                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2041         }
2042 }
2043
2044 /**
2045  * e1000_set_mac - Change the Ethernet Address of the NIC
2046  * @netdev: network interface device structure
2047  * @p: pointer to an address structure
2048  *
2049  * Returns 0 on success, negative on failure
2050  **/
2051
2052 static int
2053 e1000_set_mac(struct net_device *netdev, void *p)
2054 {
2055         struct e1000_adapter *adapter = netdev_priv(netdev);
2056         struct sockaddr *addr = p;
2057
2058         if (!is_valid_ether_addr(addr->sa_data))
2059                 return -EADDRNOTAVAIL;
2060
2061         /* 82542 2.0 needs to be in reset to write receive address registers */
2062
2063         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2064                 e1000_enter_82542_rst(adapter);
2065
2066         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2067         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2068
2069         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2070
2071         /* With 82571 controllers, LAA may be overwritten (with the default)
2072          * due to controller reset from the other port. */
2073         if (adapter->hw.mac_type == e1000_82571) {
2074                 /* activate the work around */
2075                 adapter->hw.laa_is_present = 1;
2076
2077                 /* Hold a copy of the LAA in RAR[14] This is done so that
2078                  * between the time RAR[0] gets clobbered  and the time it
2079                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2080                  * of the RARs and no incoming packets directed to this port
2081                  * are dropped. Eventaully the LAA will be in RAR[0] and
2082                  * RAR[14] */
2083                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2084                                         E1000_RAR_ENTRIES - 1);
2085         }
2086
2087         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2088                 e1000_leave_82542_rst(adapter);
2089
2090         return 0;
2091 }
2092
2093 /**
2094  * e1000_set_multi - Multicast and Promiscuous mode set
2095  * @netdev: network interface device structure
2096  *
2097  * The set_multi entry point is called whenever the multicast address
2098  * list or the network interface flags are updated.  This routine is
2099  * responsible for configuring the hardware for proper multicast,
2100  * promiscuous mode, and all-multi behavior.
2101  **/
2102
2103 static void
2104 e1000_set_multi(struct net_device *netdev)
2105 {
2106         struct e1000_adapter *adapter = netdev_priv(netdev);
2107         struct e1000_hw *hw = &adapter->hw;
2108         struct dev_mc_list *mc_ptr;
2109         uint32_t rctl;
2110         uint32_t hash_value;
2111         int i, rar_entries = E1000_RAR_ENTRIES;
2112
2113         /* reserve RAR[14] for LAA over-write work-around */
2114         if (adapter->hw.mac_type == e1000_82571)
2115                 rar_entries--;
2116
2117         /* Check for Promiscuous and All Multicast modes */
2118
2119         rctl = E1000_READ_REG(hw, RCTL);
2120
2121         if (netdev->flags & IFF_PROMISC) {
2122                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2123         } else if (netdev->flags & IFF_ALLMULTI) {
2124                 rctl |= E1000_RCTL_MPE;
2125                 rctl &= ~E1000_RCTL_UPE;
2126         } else {
2127                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2128         }
2129
2130         E1000_WRITE_REG(hw, RCTL, rctl);
2131
2132         /* 82542 2.0 needs to be in reset to write receive address registers */
2133
2134         if (hw->mac_type == e1000_82542_rev2_0)
2135                 e1000_enter_82542_rst(adapter);
2136
2137         /* load the first 14 multicast address into the exact filters 1-14
2138          * RAR 0 is used for the station MAC adddress
2139          * if there are not 14 addresses, go ahead and clear the filters
2140          * -- with 82571 controllers only 0-13 entries are filled here
2141          */
2142         mc_ptr = netdev->mc_list;
2143
2144         for (i = 1; i < rar_entries; i++) {
2145                 if (mc_ptr) {
2146                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2147                         mc_ptr = mc_ptr->next;
2148                 } else {
2149                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2150                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2151                 }
2152         }
2153
2154         /* clear the old settings from the multicast hash table */
2155
2156         for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2157                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2158
2159         /* load any remaining addresses into the hash table */
2160
2161         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2162                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2163                 e1000_mta_set(hw, hash_value);
2164         }
2165
2166         if (hw->mac_type == e1000_82542_rev2_0)
2167                 e1000_leave_82542_rst(adapter);
2168 }
2169
2170 /* Need to wait a few seconds after link up to get diagnostic information from
2171  * the phy */
2172
2173 static void
2174 e1000_update_phy_info(unsigned long data)
2175 {
2176         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2177         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2178 }
2179
2180 /**
2181  * e1000_82547_tx_fifo_stall - Timer Call-back
2182  * @data: pointer to adapter cast into an unsigned long
2183  **/
2184
2185 static void
2186 e1000_82547_tx_fifo_stall(unsigned long data)
2187 {
2188         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2189         struct net_device *netdev = adapter->netdev;
2190         uint32_t tctl;
2191
2192         if (atomic_read(&adapter->tx_fifo_stall)) {
2193                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2194                     E1000_READ_REG(&adapter->hw, TDH)) &&
2195                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2196                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2197                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2198                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2199                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2200                         E1000_WRITE_REG(&adapter->hw, TCTL,
2201                                         tctl & ~E1000_TCTL_EN);
2202                         E1000_WRITE_REG(&adapter->hw, TDFT,
2203                                         adapter->tx_head_addr);
2204                         E1000_WRITE_REG(&adapter->hw, TDFH,
2205                                         adapter->tx_head_addr);
2206                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2207                                         adapter->tx_head_addr);
2208                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2209                                         adapter->tx_head_addr);
2210                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2211                         E1000_WRITE_FLUSH(&adapter->hw);
2212
2213                         adapter->tx_fifo_head = 0;
2214                         atomic_set(&adapter->tx_fifo_stall, 0);
2215                         netif_wake_queue(netdev);
2216                 } else {
2217                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2218                 }
2219         }
2220 }
2221
2222 /**
2223  * e1000_watchdog - Timer Call-back
2224  * @data: pointer to adapter cast into an unsigned long
2225  **/
2226 static void
2227 e1000_watchdog(unsigned long data)
2228 {
2229         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2230
2231         /* Do the rest outside of interrupt context */
2232         schedule_work(&adapter->watchdog_task);
2233 }
2234
2235 static void
2236 e1000_watchdog_task(struct e1000_adapter *adapter)
2237 {
2238         struct net_device *netdev = adapter->netdev;
2239         struct e1000_tx_ring *txdr = adapter->tx_ring;
2240         uint32_t link, tctl;
2241
2242         e1000_check_for_link(&adapter->hw);
2243         if (adapter->hw.mac_type == e1000_82573) {
2244                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2245                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2246                         e1000_update_mng_vlan(adapter);
2247         }
2248
2249         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2250            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2251                 link = !adapter->hw.serdes_link_down;
2252         else
2253                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2254
2255         if (link) {
2256                 if (!netif_carrier_ok(netdev)) {
2257                         boolean_t txb2b = 1;
2258                         e1000_get_speed_and_duplex(&adapter->hw,
2259                                                    &adapter->link_speed,
2260                                                    &adapter->link_duplex);
2261
2262                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2263                                adapter->link_speed,
2264                                adapter->link_duplex == FULL_DUPLEX ?
2265                                "Full Duplex" : "Half Duplex");
2266
2267                         /* tweak tx_queue_len according to speed/duplex
2268                          * and adjust the timeout factor */
2269                         netdev->tx_queue_len = adapter->tx_queue_len;
2270                         adapter->tx_timeout_factor = 1;
2271                         switch (adapter->link_speed) {
2272                         case SPEED_10:
2273                                 txb2b = 0;
2274                                 netdev->tx_queue_len = 10;
2275                                 adapter->tx_timeout_factor = 8;
2276                                 break;
2277                         case SPEED_100:
2278                                 txb2b = 0;
2279                                 netdev->tx_queue_len = 100;
2280                                 /* maybe add some timeout factor ? */
2281                                 break;
2282                         }
2283
2284                         if ((adapter->hw.mac_type == e1000_82571 ||
2285                              adapter->hw.mac_type == e1000_82572) &&
2286                             txb2b == 0) {
2287 #define SPEED_MODE_BIT (1 << 21)
2288                                 uint32_t tarc0;
2289                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2290                                 tarc0 &= ~SPEED_MODE_BIT;
2291                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2292                         }
2293                                 
2294 #ifdef NETIF_F_TSO
2295                         /* disable TSO for pcie and 10/100 speeds, to avoid
2296                          * some hardware issues */
2297                         if (!adapter->tso_force &&
2298                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2299                                 switch (adapter->link_speed) {
2300                                 case SPEED_10:
2301                                 case SPEED_100:
2302                                         DPRINTK(PROBE,INFO,
2303                                         "10/100 speed: disabling TSO\n");
2304                                         netdev->features &= ~NETIF_F_TSO;
2305                                         break;
2306                                 case SPEED_1000:
2307                                         netdev->features |= NETIF_F_TSO;
2308                                         break;
2309                                 default:
2310                                         /* oops */
2311                                         break;
2312                                 }
2313                         }
2314 #endif
2315
2316                         /* enable transmits in the hardware, need to do this
2317                          * after setting TARC0 */
2318                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2319                         tctl |= E1000_TCTL_EN;
2320                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2321
2322                         netif_carrier_on(netdev);
2323                         netif_wake_queue(netdev);
2324                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2325                         adapter->smartspeed = 0;
2326                 }
2327         } else {
2328                 if (netif_carrier_ok(netdev)) {
2329                         adapter->link_speed = 0;
2330                         adapter->link_duplex = 0;
2331                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2332                         netif_carrier_off(netdev);
2333                         netif_stop_queue(netdev);
2334                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2335
2336                         /* 80003ES2LAN workaround--
2337                          * For packet buffer work-around on link down event;
2338                          * disable receives in the ISR and
2339                          * reset device here in the watchdog
2340                          */
2341                         if (adapter->hw.mac_type == e1000_80003es2lan) {
2342                                 /* reset device */
2343                                 schedule_work(&adapter->reset_task);
2344                         }
2345                 }
2346
2347                 e1000_smartspeed(adapter);
2348         }
2349
2350         e1000_update_stats(adapter);
2351
2352         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2353         adapter->tpt_old = adapter->stats.tpt;
2354         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2355         adapter->colc_old = adapter->stats.colc;
2356
2357         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2358         adapter->gorcl_old = adapter->stats.gorcl;
2359         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2360         adapter->gotcl_old = adapter->stats.gotcl;
2361
2362         e1000_update_adaptive(&adapter->hw);
2363
2364         if (!netif_carrier_ok(netdev)) {
2365                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2366                         /* We've lost link, so the controller stops DMA,
2367                          * but we've got queued Tx work that's never going
2368                          * to get done, so reset controller to flush Tx.
2369                          * (Do the reset outside of interrupt context). */
2370                         adapter->tx_timeout_count++;
2371                         schedule_work(&adapter->reset_task);
2372                 }
2373         }
2374
2375         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2376         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2377                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2378                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2379                  * else is between 2000-8000. */
2380                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2381                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2382                         adapter->gotcl - adapter->gorcl :
2383                         adapter->gorcl - adapter->gotcl) / 10000;
2384                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2385                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2386         }
2387
2388         /* Cause software interrupt to ensure rx ring is cleaned */
2389         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2390
2391         /* Force detection of hung controller every watchdog period */
2392         adapter->detect_tx_hung = TRUE;
2393
2394         /* With 82571 controllers, LAA may be overwritten due to controller
2395          * reset from the other port. Set the appropriate LAA in RAR[0] */
2396         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2397                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2398
2399         /* Reset the timer */
2400         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2401 }
2402
2403 #define E1000_TX_FLAGS_CSUM             0x00000001
2404 #define E1000_TX_FLAGS_VLAN             0x00000002
2405 #define E1000_TX_FLAGS_TSO              0x00000004
2406 #define E1000_TX_FLAGS_IPV4             0x00000008
2407 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2408 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2409
2410 static int
2411 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2412           struct sk_buff *skb)
2413 {
2414 #ifdef NETIF_F_TSO
2415         struct e1000_context_desc *context_desc;
2416         struct e1000_buffer *buffer_info;
2417         unsigned int i;
2418         uint32_t cmd_length = 0;
2419         uint16_t ipcse = 0, tucse, mss;
2420         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2421         int err;
2422
2423         if (skb_shinfo(skb)->tso_size) {
2424                 if (skb_header_cloned(skb)) {
2425                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2426                         if (err)
2427                                 return err;
2428                 }
2429
2430                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2431                 mss = skb_shinfo(skb)->tso_size;
2432                 if (skb->protocol == ntohs(ETH_P_IP)) {
2433                         skb->nh.iph->tot_len = 0;
2434                         skb->nh.iph->check = 0;
2435                         skb->h.th->check =
2436                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2437                                                    skb->nh.iph->daddr,
2438                                                    0,
2439                                                    IPPROTO_TCP,
2440                                                    0);
2441                         cmd_length = E1000_TXD_CMD_IP;
2442                         ipcse = skb->h.raw - skb->data - 1;
2443 #ifdef NETIF_F_TSO_IPV6
2444                 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2445                         skb->nh.ipv6h->payload_len = 0;
2446                         skb->h.th->check =
2447                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2448                                                  &skb->nh.ipv6h->daddr,
2449                                                  0,
2450                                                  IPPROTO_TCP,
2451                                                  0);
2452                         ipcse = 0;
2453 #endif
2454                 }
2455                 ipcss = skb->nh.raw - skb->data;
2456                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2457                 tucss = skb->h.raw - skb->data;
2458                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2459                 tucse = 0;
2460
2461                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2462                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2463
2464                 i = tx_ring->next_to_use;
2465                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2466                 buffer_info = &tx_ring->buffer_info[i];
2467
2468                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2469                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2470                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2471                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2472                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2473                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2474                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2475                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2476                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2477
2478                 buffer_info->time_stamp = jiffies;
2479
2480                 if (++i == tx_ring->count) i = 0;
2481                 tx_ring->next_to_use = i;
2482
2483                 return TRUE;
2484         }
2485 #endif
2486
2487         return FALSE;
2488 }
2489
2490 static boolean_t
2491 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2492               struct sk_buff *skb)
2493 {
2494         struct e1000_context_desc *context_desc;
2495         struct e1000_buffer *buffer_info;
2496         unsigned int i;
2497         uint8_t css;
2498
2499         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2500                 css = skb->h.raw - skb->data;
2501
2502                 i = tx_ring->next_to_use;
2503                 buffer_info = &tx_ring->buffer_info[i];
2504                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2505
2506                 context_desc->upper_setup.tcp_fields.tucss = css;
2507                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2508                 context_desc->upper_setup.tcp_fields.tucse = 0;
2509                 context_desc->tcp_seg_setup.data = 0;
2510                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2511
2512                 buffer_info->time_stamp = jiffies;
2513
2514                 if (unlikely(++i == tx_ring->count)) i = 0;
2515                 tx_ring->next_to_use = i;
2516
2517                 return TRUE;
2518         }
2519
2520         return FALSE;
2521 }
2522
2523 #define E1000_MAX_TXD_PWR       12
2524 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2525
2526 static int
2527 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2528              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2529              unsigned int nr_frags, unsigned int mss)
2530 {
2531         struct e1000_buffer *buffer_info;
2532         unsigned int len = skb->len;
2533         unsigned int offset = 0, size, count = 0, i;
2534         unsigned int f;
2535         len -= skb->data_len;
2536
2537         i = tx_ring->next_to_use;
2538
2539         while (len) {
2540                 buffer_info = &tx_ring->buffer_info[i];
2541                 size = min(len, max_per_txd);
2542 #ifdef NETIF_F_TSO
2543                 /* Workaround for Controller erratum --
2544                  * descriptor for non-tso packet in a linear SKB that follows a
2545                  * tso gets written back prematurely before the data is fully
2546                  * DMA'd to the controller */
2547                 if (!skb->data_len && tx_ring->last_tx_tso &&
2548                     !skb_shinfo(skb)->tso_size) {
2549                         tx_ring->last_tx_tso = 0;
2550                         size -= 4;
2551                 }
2552
2553                 /* Workaround for premature desc write-backs
2554                  * in TSO mode.  Append 4-byte sentinel desc */
2555                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2556                         size -= 4;
2557 #endif
2558                 /* work-around for errata 10 and it applies
2559                  * to all controllers in PCI-X mode
2560                  * The fix is to make sure that the first descriptor of a
2561                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2562                  */
2563                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2564                                 (size > 2015) && count == 0))
2565                         size = 2015;
2566
2567                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2568                  * terminating buffers within evenly-aligned dwords. */
2569                 if (unlikely(adapter->pcix_82544 &&
2570                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2571                    size > 4))
2572                         size -= 4;
2573
2574                 buffer_info->length = size;
2575                 buffer_info->dma =
2576                         pci_map_single(adapter->pdev,
2577                                 skb->data + offset,
2578                                 size,
2579                                 PCI_DMA_TODEVICE);
2580                 buffer_info->time_stamp = jiffies;
2581
2582                 len -= size;
2583                 offset += size;
2584                 count++;
2585                 if (unlikely(++i == tx_ring->count)) i = 0;
2586         }
2587
2588         for (f = 0; f < nr_frags; f++) {
2589                 struct skb_frag_struct *frag;
2590
2591                 frag = &skb_shinfo(skb)->frags[f];
2592                 len = frag->size;
2593                 offset = frag->page_offset;
2594
2595                 while (len) {
2596                         buffer_info = &tx_ring->buffer_info[i];
2597                         size = min(len, max_per_txd);
2598 #ifdef NETIF_F_TSO
2599                         /* Workaround for premature desc write-backs
2600                          * in TSO mode.  Append 4-byte sentinel desc */
2601                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2602                                 size -= 4;
2603 #endif
2604                         /* Workaround for potential 82544 hang in PCI-X.
2605                          * Avoid terminating buffers within evenly-aligned
2606                          * dwords. */
2607                         if (unlikely(adapter->pcix_82544 &&
2608                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2609                            size > 4))
2610                                 size -= 4;
2611
2612                         buffer_info->length = size;
2613                         buffer_info->dma =
2614                                 pci_map_page(adapter->pdev,
2615                                         frag->page,
2616                                         offset,
2617                                         size,
2618                                         PCI_DMA_TODEVICE);
2619                         buffer_info->time_stamp = jiffies;
2620
2621                         len -= size;
2622                         offset += size;
2623                         count++;
2624                         if (unlikely(++i == tx_ring->count)) i = 0;
2625                 }
2626         }
2627
2628         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2629         tx_ring->buffer_info[i].skb = skb;
2630         tx_ring->buffer_info[first].next_to_watch = i;
2631
2632         return count;
2633 }
2634
2635 static void
2636 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2637                int tx_flags, int count)
2638 {
2639         struct e1000_tx_desc *tx_desc = NULL;
2640         struct e1000_buffer *buffer_info;
2641         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2642         unsigned int i;
2643
2644         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2645                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2646                              E1000_TXD_CMD_TSE;
2647                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2648
2649                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2650                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2651         }
2652
2653         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2654                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2655                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2656         }
2657
2658         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2659                 txd_lower |= E1000_TXD_CMD_VLE;
2660                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2661         }
2662
2663         i = tx_ring->next_to_use;
2664
2665         while (count--) {
2666                 buffer_info = &tx_ring->buffer_info[i];
2667                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2668                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2669                 tx_desc->lower.data =
2670                         cpu_to_le32(txd_lower | buffer_info->length);
2671                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2672                 if (unlikely(++i == tx_ring->count)) i = 0;
2673         }
2674
2675         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2676
2677         /* Force memory writes to complete before letting h/w
2678          * know there are new descriptors to fetch.  (Only
2679          * applicable for weak-ordered memory model archs,
2680          * such as IA-64). */
2681         wmb();
2682
2683         tx_ring->next_to_use = i;
2684         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2685 }
2686
2687 /**
2688  * 82547 workaround to avoid controller hang in half-duplex environment.
2689  * The workaround is to avoid queuing a large packet that would span
2690  * the internal Tx FIFO ring boundary by notifying the stack to resend
2691  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2692  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2693  * to the beginning of the Tx FIFO.
2694  **/
2695
2696 #define E1000_FIFO_HDR                  0x10
2697 #define E1000_82547_PAD_LEN             0x3E0
2698
2699 static int
2700 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2701 {
2702         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2703         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2704
2705         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2706
2707         if (adapter->link_duplex != HALF_DUPLEX)
2708                 goto no_fifo_stall_required;
2709
2710         if (atomic_read(&adapter->tx_fifo_stall))
2711                 return 1;
2712
2713         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2714                 atomic_set(&adapter->tx_fifo_stall, 1);
2715                 return 1;
2716         }
2717
2718 no_fifo_stall_required:
2719         adapter->tx_fifo_head += skb_fifo_len;
2720         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2721                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2722         return 0;
2723 }
2724
2725 #define MINIMUM_DHCP_PACKET_SIZE 282
2726 static int
2727 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2728 {
2729         struct e1000_hw *hw =  &adapter->hw;
2730         uint16_t length, offset;
2731         if (vlan_tx_tag_present(skb)) {
2732                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2733                         ( adapter->hw.mng_cookie.status &
2734                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2735                         return 0;
2736         }
2737         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2738                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2739                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2740                         const struct iphdr *ip =
2741                                 (struct iphdr *)((uint8_t *)skb->data+14);
2742                         if (IPPROTO_UDP == ip->protocol) {
2743                                 struct udphdr *udp =
2744                                         (struct udphdr *)((uint8_t *)ip +
2745                                                 (ip->ihl << 2));
2746                                 if (ntohs(udp->dest) == 67) {
2747                                         offset = (uint8_t *)udp + 8 - skb->data;
2748                                         length = skb->len - offset;
2749
2750                                         return e1000_mng_write_dhcp_info(hw,
2751                                                         (uint8_t *)udp + 8,
2752                                                         length);
2753                                 }
2754                         }
2755                 }
2756         }
2757         return 0;
2758 }
2759
2760 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2761 static int
2762 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2763 {
2764         struct e1000_adapter *adapter = netdev_priv(netdev);
2765         struct e1000_tx_ring *tx_ring;
2766         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2767         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2768         unsigned int tx_flags = 0;
2769         unsigned int len = skb->len;
2770         unsigned long flags;
2771         unsigned int nr_frags = 0;
2772         unsigned int mss = 0;
2773         int count = 0;
2774         int tso;
2775         unsigned int f;
2776         len -= skb->data_len;
2777
2778         tx_ring = adapter->tx_ring;
2779
2780         if (unlikely(skb->len <= 0)) {
2781                 dev_kfree_skb_any(skb);
2782                 return NETDEV_TX_OK;
2783         }
2784
2785 #ifdef NETIF_F_TSO
2786         mss = skb_shinfo(skb)->tso_size;
2787         /* The controller does a simple calculation to 
2788          * make sure there is enough room in the FIFO before
2789          * initiating the DMA for each buffer.  The calc is:
2790          * 4 = ceil(buffer len/mss).  To make sure we don't
2791          * overrun the FIFO, adjust the max buffer len if mss
2792          * drops. */
2793         if (mss) {
2794                 uint8_t hdr_len;
2795                 max_per_txd = min(mss << 2, max_per_txd);
2796                 max_txd_pwr = fls(max_per_txd) - 1;
2797
2798         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2799          * points to just header, pull a few bytes of payload from
2800          * frags into skb->data */
2801                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2802                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2803                         switch (adapter->hw.mac_type) {
2804                                 unsigned int pull_size;
2805                         case e1000_82571:
2806                         case e1000_82572:
2807                         case e1000_82573:
2808                                 pull_size = min((unsigned int)4, skb->data_len);
2809                                 if (!__pskb_pull_tail(skb, pull_size)) {
2810                                         printk(KERN_ERR 
2811                                                 "__pskb_pull_tail failed.\n");
2812                                         dev_kfree_skb_any(skb);
2813                                         return NETDEV_TX_OK;
2814                                 }
2815                                 len = skb->len - skb->data_len;
2816                                 break;
2817                         default:
2818                                 /* do nothing */
2819                                 break;
2820                         }
2821                 }
2822         }
2823
2824         /* reserve a descriptor for the offload context */
2825         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2826                 count++;
2827         count++;
2828 #else
2829         if (skb->ip_summed == CHECKSUM_HW)
2830                 count++;
2831 #endif
2832
2833 #ifdef NETIF_F_TSO
2834         /* Controller Erratum workaround */
2835         if (!skb->data_len && tx_ring->last_tx_tso &&
2836             !skb_shinfo(skb)->tso_size)
2837                 count++;
2838 #endif
2839
2840         count += TXD_USE_COUNT(len, max_txd_pwr);
2841
2842         if (adapter->pcix_82544)
2843                 count++;
2844
2845         /* work-around for errata 10 and it applies to all controllers
2846          * in PCI-X mode, so add one more descriptor to the count
2847          */
2848         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2849                         (len > 2015)))
2850                 count++;
2851
2852         nr_frags = skb_shinfo(skb)->nr_frags;
2853         for (f = 0; f < nr_frags; f++)
2854                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2855                                        max_txd_pwr);
2856         if (adapter->pcix_82544)
2857                 count += nr_frags;
2858
2859
2860         if (adapter->hw.tx_pkt_filtering &&
2861             (adapter->hw.mac_type == e1000_82573))
2862                 e1000_transfer_dhcp_info(adapter, skb);
2863
2864         local_irq_save(flags);
2865         if (!spin_trylock(&tx_ring->tx_lock)) {
2866                 /* Collision - tell upper layer to requeue */
2867                 local_irq_restore(flags);
2868                 return NETDEV_TX_LOCKED;
2869         }
2870
2871         /* need: count + 2 desc gap to keep tail from touching
2872          * head, otherwise try next time */
2873         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2874                 netif_stop_queue(netdev);
2875                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2876                 return NETDEV_TX_BUSY;
2877         }
2878
2879         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2880                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2881                         netif_stop_queue(netdev);
2882                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2883                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2884                         return NETDEV_TX_BUSY;
2885                 }
2886         }
2887
2888         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2889                 tx_flags |= E1000_TX_FLAGS_VLAN;
2890                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2891         }
2892
2893         first = tx_ring->next_to_use;
2894
2895         tso = e1000_tso(adapter, tx_ring, skb);
2896         if (tso < 0) {
2897                 dev_kfree_skb_any(skb);
2898                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2899                 return NETDEV_TX_OK;
2900         }
2901
2902         if (likely(tso)) {
2903                 tx_ring->last_tx_tso = 1;
2904                 tx_flags |= E1000_TX_FLAGS_TSO;
2905         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2906                 tx_flags |= E1000_TX_FLAGS_CSUM;
2907
2908         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2909          * 82571 hardware supports TSO capabilities for IPv6 as well...
2910          * no longer assume, we must. */
2911         if (likely(skb->protocol == ntohs(ETH_P_IP)))
2912                 tx_flags |= E1000_TX_FLAGS_IPV4;
2913
2914         e1000_tx_queue(adapter, tx_ring, tx_flags,
2915                        e1000_tx_map(adapter, tx_ring, skb, first,
2916                                     max_per_txd, nr_frags, mss));
2917
2918         netdev->trans_start = jiffies;
2919
2920         /* Make sure there is space in the ring for the next send. */
2921         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2922                 netif_stop_queue(netdev);
2923
2924         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2925         return NETDEV_TX_OK;
2926 }
2927
2928 /**
2929  * e1000_tx_timeout - Respond to a Tx Hang
2930  * @netdev: network interface device structure
2931  **/
2932
2933 static void
2934 e1000_tx_timeout(struct net_device *netdev)
2935 {
2936         struct e1000_adapter *adapter = netdev_priv(netdev);
2937
2938         /* Do the reset outside of interrupt context */
2939         adapter->tx_timeout_count++;
2940         schedule_work(&adapter->reset_task);
2941 }
2942
2943 static void
2944 e1000_reset_task(struct net_device *netdev)
2945 {
2946         struct e1000_adapter *adapter = netdev_priv(netdev);
2947
2948         e1000_down(adapter);
2949         e1000_up(adapter);
2950 }
2951
2952 /**
2953  * e1000_get_stats - Get System Network Statistics
2954  * @netdev: network interface device structure
2955  *
2956  * Returns the address of the device statistics structure.
2957  * The statistics are actually updated from the timer callback.
2958  **/
2959
2960 static struct net_device_stats *
2961 e1000_get_stats(struct net_device *netdev)
2962 {
2963         struct e1000_adapter *adapter = netdev_priv(netdev);
2964
2965         /* only return the current stats */
2966         return &adapter->net_stats;
2967 }
2968
2969 /**
2970  * e1000_change_mtu - Change the Maximum Transfer Unit
2971  * @netdev: network interface device structure
2972  * @new_mtu: new value for maximum frame size
2973  *
2974  * Returns 0 on success, negative on failure
2975  **/
2976
2977 static int
2978 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2979 {
2980         struct e1000_adapter *adapter = netdev_priv(netdev);
2981         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2982         uint16_t eeprom_data = 0;
2983
2984         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2985             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2986                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2987                 return -EINVAL;
2988         }
2989
2990         /* Adapter-specific max frame size limits. */
2991         switch (adapter->hw.mac_type) {
2992         case e1000_undefined ... e1000_82542_rev2_1:
2993                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2994                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2995                         return -EINVAL;
2996                 }
2997                 break;
2998         case e1000_82573:
2999                 /* only enable jumbo frames if ASPM is disabled completely
3000                  * this means both bits must be zero in 0x1A bits 3:2 */
3001                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3002                                   &eeprom_data);
3003                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3004                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3005                                 DPRINTK(PROBE, ERR,
3006                                         "Jumbo Frames not supported.\n");
3007                                 return -EINVAL;
3008                         }
3009                         break;
3010                 }
3011                 /* fall through to get support */
3012         case e1000_82571:
3013         case e1000_82572:
3014         case e1000_80003es2lan:
3015 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3016                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3017                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3018                         return -EINVAL;
3019                 }
3020                 break;
3021         default:
3022                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3023                 break;
3024         }
3025
3026         /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3027          * means we reserve 2 more, this pushes us to allocate from the next
3028          * larger slab size
3029          * i.e. RXBUFFER_2048 --> size-4096 slab */
3030
3031         if (max_frame <= E1000_RXBUFFER_256)
3032                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3033         else if (max_frame <= E1000_RXBUFFER_512)
3034                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3035         else if (max_frame <= E1000_RXBUFFER_1024)
3036                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3037         else if (max_frame <= E1000_RXBUFFER_2048)
3038                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3039         else if (max_frame <= E1000_RXBUFFER_4096)
3040                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3041         else if (max_frame <= E1000_RXBUFFER_8192)
3042                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3043         else if (max_frame <= E1000_RXBUFFER_16384)
3044                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3045
3046         /* adjust allocation if LPE protects us, and we aren't using SBP */
3047 #define MAXIMUM_ETHERNET_VLAN_SIZE 1522
3048         if (!adapter->hw.tbi_compatibility_on &&
3049             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3050              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3051                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3052
3053         netdev->mtu = new_mtu;
3054
3055         if (netif_running(netdev)) {
3056                 e1000_down(adapter);
3057                 e1000_up(adapter);
3058         }
3059
3060         adapter->hw.max_frame_size = max_frame;
3061
3062         return 0;
3063 }
3064
3065 /**
3066  * e1000_update_stats - Update the board statistics counters
3067  * @adapter: board private structure
3068  **/
3069
3070 void
3071 e1000_update_stats(struct e1000_adapter *adapter)
3072 {
3073         struct e1000_hw *hw = &adapter->hw;
3074         unsigned long flags;
3075         uint16_t phy_tmp;
3076
3077 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3078
3079         spin_lock_irqsave(&adapter->stats_lock, flags);
3080
3081         /* these counters are modified from e1000_adjust_tbi_stats,
3082          * called from the interrupt context, so they must only
3083          * be written while holding adapter->stats_lock
3084          */
3085
3086         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3087         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3088         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3089         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3090         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3091         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3092         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3093         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3094         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3095         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3096         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3097         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3098         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3099
3100         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3101         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3102         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3103         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3104         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3105         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3106         adapter->stats.dc += E1000_READ_REG(hw, DC);
3107         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3108         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3109         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3110         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3111         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3112         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3113         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3114         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3115         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3116         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3117         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3118         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3119         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3120         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3121         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3122         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3123         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3124         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3125         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3126         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3127         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3128         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3129         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3130         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3131         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3132         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3133         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3134
3135         /* used for adaptive IFS */
3136
3137         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3138         adapter->stats.tpt += hw->tx_packet_delta;
3139         hw->collision_delta = E1000_READ_REG(hw, COLC);
3140         adapter->stats.colc += hw->collision_delta;
3141
3142         if (hw->mac_type >= e1000_82543) {
3143                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3144                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3145                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3146                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3147                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3148                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3149         }
3150         if (hw->mac_type > e1000_82547_rev_2) {
3151                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3152                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3153                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3154                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3155                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3156                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3157                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3158                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3159                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3160         }
3161
3162         /* Fill out the OS statistics structure */
3163
3164         adapter->net_stats.rx_packets = adapter->stats.gprc;
3165         adapter->net_stats.tx_packets = adapter->stats.gptc;
3166         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3167         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3168         adapter->net_stats.multicast = adapter->stats.mprc;
3169         adapter->net_stats.collisions = adapter->stats.colc;
3170
3171         /* Rx Errors */
3172
3173         /* RLEC on some newer hardware can be incorrect so build
3174         * our own version based on RUC and ROC */
3175         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3176                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3177                 adapter->stats.ruc + adapter->stats.roc +
3178                 adapter->stats.cexterr;
3179         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3180                                               adapter->stats.roc;
3181         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3182         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3183         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3184
3185         /* Tx Errors */
3186
3187         adapter->net_stats.tx_errors = adapter->stats.ecol +
3188                                        adapter->stats.latecol;
3189         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3190         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3191         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3192
3193         /* Tx Dropped needs to be maintained elsewhere */
3194
3195         /* Phy Stats */
3196
3197         if (hw->media_type == e1000_media_type_copper) {
3198                 if ((adapter->link_speed == SPEED_1000) &&
3199                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3200                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3201                         adapter->phy_stats.idle_errors += phy_tmp;
3202                 }
3203
3204                 if ((hw->mac_type <= e1000_82546) &&
3205                    (hw->phy_type == e1000_phy_m88) &&
3206                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3207                         adapter->phy_stats.receive_errors += phy_tmp;
3208         }
3209
3210         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3211 }
3212
3213 /**
3214  * e1000_intr - Interrupt Handler
3215  * @irq: interrupt number
3216  * @data: pointer to a network interface device structure
3217  * @pt_regs: CPU registers structure
3218  **/
3219
3220 static irqreturn_t
3221 e1000_intr(int irq, void *data, struct pt_regs *regs)
3222 {
3223         struct net_device *netdev = data;
3224         struct e1000_adapter *adapter = netdev_priv(netdev);
3225         struct e1000_hw *hw = &adapter->hw;
3226         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3227 #ifndef CONFIG_E1000_NAPI
3228         int i;
3229 #else
3230         /* Interrupt Auto-Mask...upon reading ICR,
3231          * interrupts are masked.  No need for the
3232          * IMC write, but it does mean we should
3233          * account for it ASAP. */
3234         if (likely(hw->mac_type >= e1000_82571))
3235                 atomic_inc(&adapter->irq_sem);
3236 #endif
3237
3238         if (unlikely(!icr)) {
3239 #ifdef CONFIG_E1000_NAPI
3240                 if (hw->mac_type >= e1000_82571)
3241                         e1000_irq_enable(adapter);
3242 #endif
3243                 return IRQ_NONE;  /* Not our interrupt */
3244         }
3245
3246         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3247                 hw->get_link_status = 1;
3248                 /* 80003ES2LAN workaround--
3249                  * For packet buffer work-around on link down event;
3250                  * disable receives here in the ISR and
3251                  * reset adapter in watchdog
3252                  */
3253                 if (netif_carrier_ok(netdev) &&
3254                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3255                         /* disable receives */
3256                         rctl = E1000_READ_REG(hw, RCTL);
3257                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3258                 }
3259                 mod_timer(&adapter->watchdog_timer, jiffies);
3260         }
3261
3262 #ifdef CONFIG_E1000_NAPI
3263         if (unlikely(hw->mac_type < e1000_82571)) {
3264                 atomic_inc(&adapter->irq_sem);
3265                 E1000_WRITE_REG(hw, IMC, ~0);
3266                 E1000_WRITE_FLUSH(hw);
3267         }
3268         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3269                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3270         else
3271                 e1000_irq_enable(adapter);
3272 #else
3273         /* Writing IMC and IMS is needed for 82547.
3274          * Due to Hub Link bus being occupied, an interrupt
3275          * de-assertion message is not able to be sent.
3276          * When an interrupt assertion message is generated later,
3277          * two messages are re-ordered and sent out.
3278          * That causes APIC to think 82547 is in de-assertion
3279          * state, while 82547 is in assertion state, resulting
3280          * in dead lock. Writing IMC forces 82547 into
3281          * de-assertion state.
3282          */
3283         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3284                 atomic_inc(&adapter->irq_sem);
3285                 E1000_WRITE_REG(hw, IMC, ~0);
3286         }
3287
3288         for (i = 0; i < E1000_MAX_INTR; i++)
3289                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3290                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3291                         break;
3292
3293         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3294                 e1000_irq_enable(adapter);
3295
3296 #endif
3297
3298         return IRQ_HANDLED;
3299 }
3300
3301 #ifdef CONFIG_E1000_NAPI
3302 /**
3303  * e1000_clean - NAPI Rx polling callback
3304  * @adapter: board private structure
3305  **/
3306
3307 static int
3308 e1000_clean(struct net_device *poll_dev, int *budget)
3309 {
3310         struct e1000_adapter *adapter;
3311         int work_to_do = min(*budget, poll_dev->quota);
3312         int tx_cleaned = 0, i = 0, work_done = 0;
3313
3314         /* Must NOT use netdev_priv macro here. */
3315         adapter = poll_dev->priv;
3316
3317         /* Keep link state information with original netdev */
3318         if (!netif_carrier_ok(adapter->netdev))
3319                 goto quit_polling;
3320
3321         while (poll_dev != &adapter->polling_netdev[i]) {
3322                 i++;
3323                 BUG_ON(i == adapter->num_rx_queues);
3324         }
3325
3326         if (likely(adapter->num_tx_queues == 1)) {
3327                 /* e1000_clean is called per-cpu.  This lock protects
3328                  * tx_ring[0] from being cleaned by multiple cpus
3329                  * simultaneously.  A failure obtaining the lock means
3330                  * tx_ring[0] is currently being cleaned anyway. */
3331                 if (spin_trylock(&adapter->tx_queue_lock)) {
3332                         tx_cleaned = e1000_clean_tx_irq(adapter,
3333                                                         &adapter->tx_ring[0]);
3334                         spin_unlock(&adapter->tx_queue_lock);
3335                 }
3336         } else
3337                 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3338
3339         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3340                           &work_done, work_to_do);
3341
3342         *budget -= work_done;
3343         poll_dev->quota -= work_done;
3344
3345         /* If no Tx and not enough Rx work done, exit the polling mode */
3346         if ((!tx_cleaned && (work_done == 0)) ||
3347            !netif_running(adapter->netdev)) {
3348 quit_polling:
3349                 netif_rx_complete(poll_dev);
3350                 e1000_irq_enable(adapter);
3351                 return 0;
3352         }
3353
3354         return 1;
3355 }
3356
3357 #endif
3358 /**
3359  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3360  * @adapter: board private structure
3361  **/
3362
3363 static boolean_t
3364 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3365                    struct e1000_tx_ring *tx_ring)
3366 {
3367         struct net_device *netdev = adapter->netdev;
3368         struct e1000_tx_desc *tx_desc, *eop_desc;
3369         struct e1000_buffer *buffer_info;
3370         unsigned int i, eop;
3371 #ifdef CONFIG_E1000_NAPI
3372         unsigned int count = 0;
3373 #endif
3374         boolean_t cleaned = FALSE;
3375
3376         i = tx_ring->next_to_clean;
3377         eop = tx_ring->buffer_info[i].next_to_watch;
3378         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3379
3380         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3381                 for (cleaned = FALSE; !cleaned; ) {
3382                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3383                         buffer_info = &tx_ring->buffer_info[i];
3384                         cleaned = (i == eop);
3385
3386                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3387                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3388
3389                         if (unlikely(++i == tx_ring->count)) i = 0;
3390                 }
3391
3392
3393                 eop = tx_ring->buffer_info[i].next_to_watch;
3394                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3395 #ifdef CONFIG_E1000_NAPI
3396 #define E1000_TX_WEIGHT 64
3397                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3398                 if (count++ == E1000_TX_WEIGHT) break;
3399 #endif
3400         }
3401
3402         tx_ring->next_to_clean = i;
3403
3404 #define TX_WAKE_THRESHOLD 32
3405         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3406                      netif_carrier_ok(netdev))) {
3407                 spin_lock(&tx_ring->tx_lock);
3408                 if (netif_queue_stopped(netdev) &&
3409                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3410                         netif_wake_queue(netdev);
3411                 spin_unlock(&tx_ring->tx_lock);
3412         }
3413
3414         if (adapter->detect_tx_hung) {
3415                 /* Detect a transmit hang in hardware, this serializes the
3416                  * check with the clearing of time_stamp and movement of i */
3417                 adapter->detect_tx_hung = FALSE;
3418                 if (tx_ring->buffer_info[eop].dma &&
3419                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3420                                (adapter->tx_timeout_factor * HZ))
3421                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3422                          E1000_STATUS_TXOFF)) {
3423
3424                         /* detected Tx unit hang */
3425                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3426                                         "  Tx Queue             <%lu>\n"
3427                                         "  TDH                  <%x>\n"
3428                                         "  TDT                  <%x>\n"
3429                                         "  next_to_use          <%x>\n"
3430                                         "  next_to_clean        <%x>\n"
3431                                         "buffer_info[next_to_clean]\n"
3432                                         "  time_stamp           <%lx>\n"
3433                                         "  next_to_watch        <%x>\n"
3434                                         "  jiffies              <%lx>\n"
3435                                         "  next_to_watch.status <%x>\n",
3436                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3437                                         sizeof(struct e1000_tx_ring)),
3438                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3439                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3440                                 tx_ring->next_to_use,
3441                                 tx_ring->next_to_clean,
3442                                 tx_ring->buffer_info[eop].time_stamp,
3443                                 eop,
3444                                 jiffies,
3445                                 eop_desc->upper.fields.status);
3446                         netif_stop_queue(netdev);
3447                 }
3448         }
3449         return cleaned;
3450 }
3451
3452 /**
3453  * e1000_rx_checksum - Receive Checksum Offload for 82543
3454  * @adapter:     board private structure
3455  * @status_err:  receive descriptor status and error fields
3456  * @csum:        receive descriptor csum field
3457  * @sk_buff:     socket buffer with received data
3458  **/
3459
3460 static void
3461 e1000_rx_checksum(struct e1000_adapter *adapter,
3462                   uint32_t status_err, uint32_t csum,
3463                   struct sk_buff *skb)
3464 {
3465         uint16_t status = (uint16_t)status_err;
3466         uint8_t errors = (uint8_t)(status_err >> 24);
3467         skb->ip_summed = CHECKSUM_NONE;
3468
3469         /* 82543 or newer only */
3470         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3471         /* Ignore Checksum bit is set */
3472         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3473         /* TCP/UDP checksum error bit is set */
3474         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3475                 /* let the stack verify checksum errors */
3476                 adapter->hw_csum_err++;
3477                 return;
3478         }
3479         /* TCP/UDP Checksum has not been calculated */
3480         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3481                 if (!(status & E1000_RXD_STAT_TCPCS))
3482                         return;
3483         } else {
3484                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3485                         return;
3486         }
3487         /* It must be a TCP or UDP packet with a valid checksum */
3488         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3489                 /* TCP checksum is good */
3490                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3491         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3492                 /* IP fragment with UDP payload */
3493                 /* Hardware complements the payload checksum, so we undo it
3494                  * and then put the value in host order for further stack use.
3495                  */
3496                 csum = ntohl(csum ^ 0xFFFF);
3497                 skb->csum = csum;
3498                 skb->ip_summed = CHECKSUM_HW;
3499         }
3500         adapter->hw_csum_good++;
3501 }
3502
3503 /**
3504  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3505  * @adapter: board private structure
3506  **/
3507
3508 static boolean_t
3509 #ifdef CONFIG_E1000_NAPI
3510 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3511                    struct e1000_rx_ring *rx_ring,
3512                    int *work_done, int work_to_do)
3513 #else
3514 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3515                    struct e1000_rx_ring *rx_ring)
3516 #endif
3517 {
3518         struct net_device *netdev = adapter->netdev;
3519         struct pci_dev *pdev = adapter->pdev;
3520         struct e1000_rx_desc *rx_desc, *next_rxd;
3521         struct e1000_buffer *buffer_info, *next_buffer;
3522         unsigned long flags;
3523         uint32_t length;
3524         uint8_t last_byte;
3525         unsigned int i;
3526         int cleaned_count = 0;
3527         boolean_t cleaned = FALSE;
3528
3529         i = rx_ring->next_to_clean;
3530         rx_desc = E1000_RX_DESC(*rx_ring, i);
3531         buffer_info = &rx_ring->buffer_info[i];
3532
3533         while (rx_desc->status & E1000_RXD_STAT_DD) {
3534                 struct sk_buff *skb, *next_skb;
3535                 u8 status;
3536 #ifdef CONFIG_E1000_NAPI
3537                 if (*work_done >= work_to_do)
3538                         break;
3539                 (*work_done)++;
3540 #endif
3541                 status = rx_desc->status;
3542                 skb = buffer_info->skb;
3543                 buffer_info->skb = NULL;
3544
3545                 prefetch(skb->data - NET_IP_ALIGN);
3546
3547                 if (++i == rx_ring->count) i = 0;
3548                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3549                 prefetch(next_rxd);
3550
3551                 next_buffer = &rx_ring->buffer_info[i];
3552                 next_skb = next_buffer->skb;
3553                 prefetch(next_skb->data - NET_IP_ALIGN);
3554
3555                 cleaned = TRUE;
3556                 cleaned_count++;
3557                 pci_unmap_single(pdev,
3558                                  buffer_info->dma,
3559                                  buffer_info->length,
3560                                  PCI_DMA_FROMDEVICE);
3561
3562                 length = le16_to_cpu(rx_desc->length);
3563
3564                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3565                         /* All receives must fit into a single buffer */
3566                         E1000_DBG("%s: Receive packet consumed multiple"
3567                                   " buffers\n", netdev->name);
3568                         dev_kfree_skb_irq(skb);
3569                         goto next_desc;
3570                 }
3571
3572                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3573                         last_byte = *(skb->data + length - 1);
3574                         if (TBI_ACCEPT(&adapter->hw, status,
3575                                       rx_desc->errors, length, last_byte)) {
3576                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3577                                 e1000_tbi_adjust_stats(&adapter->hw,
3578                                                        &adapter->stats,
3579                                                        length, skb->data);
3580                                 spin_unlock_irqrestore(&adapter->stats_lock,
3581                                                        flags);
3582                                 length--;
3583                         } else {
3584                                 /* recycle */
3585                                 buffer_info->skb = skb;
3586                                 goto next_desc;
3587                         }
3588                 }
3589
3590                 /* code added for copybreak, this should improve
3591                  * performance for small packets with large amounts
3592                  * of reassembly being done in the stack */
3593 #define E1000_CB_LENGTH 256
3594                 if (length < E1000_CB_LENGTH) {
3595                         struct sk_buff *new_skb =
3596                             dev_alloc_skb(length + NET_IP_ALIGN);
3597                         if (new_skb) {
3598                                 skb_reserve(new_skb, NET_IP_ALIGN);
3599                                 new_skb->dev = netdev;
3600                                 memcpy(new_skb->data - NET_IP_ALIGN,
3601                                        skb->data - NET_IP_ALIGN,
3602                                        length + NET_IP_ALIGN);
3603                                 /* save the skb in buffer_info as good */
3604                                 buffer_info->skb = skb;
3605                                 skb = new_skb;
3606                                 skb_put(skb, length);
3607                         }
3608                 } else
3609                         skb_put(skb, length);
3610
3611                 /* end copybreak code */
3612
3613                 /* Receive Checksum Offload */
3614                 e1000_rx_checksum(adapter,
3615                                   (uint32_t)(status) |
3616                                   ((uint32_t)(rx_desc->errors) << 24),
3617                                   le16_to_cpu(rx_desc->csum), skb);
3618
3619                 skb->protocol = eth_type_trans(skb, netdev);
3620 #ifdef CONFIG_E1000_NAPI
3621                 if (unlikely(adapter->vlgrp &&
3622                             (status & E1000_RXD_STAT_VP))) {
3623                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3624                                                  le16_to_cpu(rx_desc->special) &
3625                                                  E1000_RXD_SPC_VLAN_MASK);
3626                 } else {
3627                         netif_receive_skb(skb);
3628                 }
3629 #else /* CONFIG_E1000_NAPI */
3630                 if (unlikely(adapter->vlgrp &&
3631                             (status & E1000_RXD_STAT_VP))) {
3632                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3633                                         le16_to_cpu(rx_desc->special) &
3634                                         E1000_RXD_SPC_VLAN_MASK);
3635                 } else {
3636                         netif_rx(skb);
3637                 }
3638 #endif /* CONFIG_E1000_NAPI */
3639                 netdev->last_rx = jiffies;
3640
3641 next_desc:
3642                 rx_desc->status = 0;
3643
3644                 /* return some buffers to hardware, one at a time is too slow */
3645                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3646                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3647                         cleaned_count = 0;
3648                 }
3649
3650                 /* use prefetched values */
3651                 rx_desc = next_rxd;
3652                 buffer_info = next_buffer;
3653         }
3654         rx_ring->next_to_clean = i;
3655
3656         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3657         if (cleaned_count)
3658                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3659
3660         return cleaned;
3661 }
3662
3663 /**
3664  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3665  * @adapter: board private structure
3666  **/
3667
3668 static boolean_t
3669 #ifdef CONFIG_E1000_NAPI
3670 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3671                       struct e1000_rx_ring *rx_ring,
3672                       int *work_done, int work_to_do)
3673 #else
3674 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3675                       struct e1000_rx_ring *rx_ring)
3676 #endif
3677 {
3678         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3679         struct net_device *netdev = adapter->netdev;
3680         struct pci_dev *pdev = adapter->pdev;
3681         struct e1000_buffer *buffer_info, *next_buffer;
3682         struct e1000_ps_page *ps_page;
3683         struct e1000_ps_page_dma *ps_page_dma;
3684         struct sk_buff *skb, *next_skb;
3685         unsigned int i, j;
3686         uint32_t length, staterr;
3687         int cleaned_count = 0;
3688         boolean_t cleaned = FALSE;
3689
3690         i = rx_ring->next_to_clean;
3691         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3692         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3693         buffer_info = &rx_ring->buffer_info[i];
3694
3695         while (staterr & E1000_RXD_STAT_DD) {
3696                 buffer_info = &rx_ring->buffer_info[i];
3697                 ps_page = &rx_ring->ps_page[i];
3698                 ps_page_dma = &rx_ring->ps_page_dma[i];
3699 #ifdef CONFIG_E1000_NAPI
3700                 if (unlikely(*work_done >= work_to_do))
3701                         break;
3702                 (*work_done)++;
3703 #endif
3704                 skb = buffer_info->skb;
3705
3706                 /* in the packet split case this is header only */
3707                 prefetch(skb->data - NET_IP_ALIGN);
3708
3709                 if (++i == rx_ring->count) i = 0;
3710                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3711                 prefetch(next_rxd);
3712
3713                 next_buffer = &rx_ring->buffer_info[i];
3714                 next_skb = next_buffer->skb;
3715                 prefetch(next_skb->data - NET_IP_ALIGN);
3716
3717                 cleaned = TRUE;
3718                 cleaned_count++;
3719                 pci_unmap_single(pdev, buffer_info->dma,
3720                                  buffer_info->length,
3721                                  PCI_DMA_FROMDEVICE);
3722
3723                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3724                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3725                                   " the full packet\n", netdev->name);
3726                         dev_kfree_skb_irq(skb);
3727                         goto next_desc;
3728                 }
3729
3730                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3731                         dev_kfree_skb_irq(skb);
3732                         goto next_desc;
3733                 }
3734
3735                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3736
3737                 if (unlikely(!length)) {
3738                         E1000_DBG("%s: Last part of the packet spanning"
3739                                   " multiple descriptors\n", netdev->name);
3740                         dev_kfree_skb_irq(skb);
3741                         goto next_desc;
3742                 }
3743
3744                 /* Good Receive */
3745                 skb_put(skb, length);
3746
3747                 {
3748                 /* this looks ugly, but it seems compiler issues make it
3749                    more efficient than reusing j */
3750                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3751
3752                 /* page alloc/put takes too long and effects small packet
3753                  * throughput, so unsplit small packets and save the alloc/put*/
3754                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3755                         u8 *vaddr;
3756                         /* there is no documentation about how to call 
3757                          * kmap_atomic, so we can't hold the mapping
3758                          * very long */
3759                         pci_dma_sync_single_for_cpu(pdev,
3760                                 ps_page_dma->ps_page_dma[0],
3761                                 PAGE_SIZE,
3762                                 PCI_DMA_FROMDEVICE);
3763                         vaddr = kmap_atomic(ps_page->ps_page[0],
3764                                             KM_SKB_DATA_SOFTIRQ);
3765                         memcpy(skb->tail, vaddr, l1);
3766                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3767                         pci_dma_sync_single_for_device(pdev,
3768                                 ps_page_dma->ps_page_dma[0],
3769                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3770                         skb_put(skb, l1);
3771                         length += l1;
3772                         goto copydone;
3773                 } /* if */
3774                 }
3775                 
3776                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3777                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3778                                 break;
3779                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3780                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3781                         ps_page_dma->ps_page_dma[j] = 0;
3782                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3783                                            length);
3784                         ps_page->ps_page[j] = NULL;
3785                         skb->len += length;
3786                         skb->data_len += length;
3787                         skb->truesize += length;
3788                 }
3789
3790 copydone:
3791                 e1000_rx_checksum(adapter, staterr,
3792                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3793                 skb->protocol = eth_type_trans(skb, netdev);
3794
3795                 if (likely(rx_desc->wb.upper.header_status &
3796                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3797                         adapter->rx_hdr_split++;
3798 #ifdef CONFIG_E1000_NAPI
3799                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3800                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3801                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3802                                 E1000_RXD_SPC_VLAN_MASK);
3803                 } else {
3804                         netif_receive_skb(skb);
3805                 }
3806 #else /* CONFIG_E1000_NAPI */
3807                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3808                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3809                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3810                                 E1000_RXD_SPC_VLAN_MASK);
3811                 } else {
3812                         netif_rx(skb);
3813                 }
3814 #endif /* CONFIG_E1000_NAPI */
3815                 netdev->last_rx = jiffies;
3816
3817 next_desc:
3818                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3819                 buffer_info->skb = NULL;
3820
3821                 /* return some buffers to hardware, one at a time is too slow */
3822                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3823                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3824                         cleaned_count = 0;
3825                 }
3826
3827                 /* use prefetched values */
3828                 rx_desc = next_rxd;
3829                 buffer_info = next_buffer;
3830
3831                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3832         }
3833         rx_ring->next_to_clean = i;
3834
3835         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3836         if (cleaned_count)
3837                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3838
3839         return cleaned;
3840 }
3841
3842 /**
3843  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3844  * @adapter: address of board private structure
3845  **/
3846
3847 static void
3848 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3849                        struct e1000_rx_ring *rx_ring,
3850                        int cleaned_count)
3851 {
3852         struct net_device *netdev = adapter->netdev;
3853         struct pci_dev *pdev = adapter->pdev;
3854         struct e1000_rx_desc *rx_desc;
3855         struct e1000_buffer *buffer_info;
3856         struct sk_buff *skb;
3857         unsigned int i;
3858         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3859
3860         i = rx_ring->next_to_use;
3861         buffer_info = &rx_ring->buffer_info[i];
3862
3863         while (cleaned_count--) {
3864                 if (!(skb = buffer_info->skb))
3865                         skb = dev_alloc_skb(bufsz);
3866                 else {
3867                         skb_trim(skb, 0);
3868                         goto map_skb;
3869                 }
3870
3871                 if (unlikely(!skb)) {
3872                         /* Better luck next round */
3873                         adapter->alloc_rx_buff_failed++;
3874                         break;
3875                 }
3876
3877                 /* Fix for errata 23, can't cross 64kB boundary */
3878                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3879                         struct sk_buff *oldskb = skb;
3880                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3881                                              "at %p\n", bufsz, skb->data);
3882                         /* Try again, without freeing the previous */
3883                         skb = dev_alloc_skb(bufsz);
3884                         /* Failed allocation, critical failure */
3885                         if (!skb) {
3886                                 dev_kfree_skb(oldskb);
3887                                 break;
3888                         }
3889
3890                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3891                                 /* give up */
3892                                 dev_kfree_skb(skb);
3893                                 dev_kfree_skb(oldskb);
3894                                 break; /* while !buffer_info->skb */
3895                         } else {
3896                                 /* Use new allocation */
3897                                 dev_kfree_skb(oldskb);
3898                         }
3899                 }
3900                 /* Make buffer alignment 2 beyond a 16 byte boundary
3901                  * this will result in a 16 byte aligned IP header after
3902                  * the 14 byte MAC header is removed
3903                  */
3904                 skb_reserve(skb, NET_IP_ALIGN);
3905
3906                 skb->dev = netdev;
3907
3908                 buffer_info->skb = skb;
3909                 buffer_info->length = adapter->rx_buffer_len;
3910 map_skb:
3911                 buffer_info->dma = pci_map_single(pdev,
3912                                                   skb->data,
3913                                                   adapter->rx_buffer_len,
3914                                                   PCI_DMA_FROMDEVICE);
3915
3916                 /* Fix for errata 23, can't cross 64kB boundary */
3917                 if (!e1000_check_64k_bound(adapter,
3918                                         (void *)(unsigned long)buffer_info->dma,
3919                                         adapter->rx_buffer_len)) {
3920                         DPRINTK(RX_ERR, ERR,
3921                                 "dma align check failed: %u bytes at %p\n",
3922                                 adapter->rx_buffer_len,
3923                                 (void *)(unsigned long)buffer_info->dma);
3924                         dev_kfree_skb(skb);
3925                         buffer_info->skb = NULL;
3926
3927                         pci_unmap_single(pdev, buffer_info->dma,
3928                                          adapter->rx_buffer_len,
3929                                          PCI_DMA_FROMDEVICE);
3930
3931                         break; /* while !buffer_info->skb */
3932                 }
3933                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3934                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3935
3936                 if (unlikely(++i == rx_ring->count))
3937                         i = 0;
3938                 buffer_info = &rx_ring->buffer_info[i];
3939         }
3940
3941         if (likely(rx_ring->next_to_use != i)) {
3942                 rx_ring->next_to_use = i;
3943                 if (unlikely(i-- == 0))
3944                         i = (rx_ring->count - 1);
3945
3946                 /* Force memory writes to complete before letting h/w
3947                  * know there are new descriptors to fetch.  (Only
3948                  * applicable for weak-ordered memory model archs,
3949                  * such as IA-64). */
3950                 wmb();
3951                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3952         }
3953 }
3954
3955 /**
3956  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3957  * @adapter: address of board private structure
3958  **/
3959
3960 static void
3961 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3962                           struct e1000_rx_ring *rx_ring,
3963                           int cleaned_count)
3964 {
3965         struct net_device *netdev = adapter->netdev;
3966         struct pci_dev *pdev = adapter->pdev;
3967         union e1000_rx_desc_packet_split *rx_desc;
3968         struct e1000_buffer *buffer_info;
3969         struct e1000_ps_page *ps_page;
3970         struct e1000_ps_page_dma *ps_page_dma;
3971         struct sk_buff *skb;
3972         unsigned int i, j;
3973
3974         i = rx_ring->next_to_use;
3975         buffer_info = &rx_ring->buffer_info[i];
3976         ps_page = &rx_ring->ps_page[i];
3977         ps_page_dma = &rx_ring->ps_page_dma[i];
3978
3979         while (cleaned_count--) {
3980                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3981
3982                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
3983                         if (j < adapter->rx_ps_pages) {
3984                                 if (likely(!ps_page->ps_page[j])) {
3985                                         ps_page->ps_page[j] =
3986                                                 alloc_page(GFP_ATOMIC);
3987                                         if (unlikely(!ps_page->ps_page[j])) {
3988                                                 adapter->alloc_rx_buff_failed++;
3989                                                 goto no_buffers;
3990                                         }
3991                                         ps_page_dma->ps_page_dma[j] =
3992                                                 pci_map_page(pdev,
3993                                                             ps_page->ps_page[j],
3994                                                             0, PAGE_SIZE,
3995                                                             PCI_DMA_FROMDEVICE);
3996                                 }
3997                                 /* Refresh the desc even if buffer_addrs didn't
3998                                  * change because each write-back erases
3999                                  * this info.
4000                                  */
4001                                 rx_desc->read.buffer_addr[j+1] =
4002                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4003                         } else
4004                                 rx_desc->read.buffer_addr[j+1] = ~0;
4005                 }
4006
4007                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4008
4009                 if (unlikely(!skb)) {
4010                         adapter->alloc_rx_buff_failed++;
4011                         break;
4012                 }
4013
4014                 /* Make buffer alignment 2 beyond a 16 byte boundary
4015                  * this will result in a 16 byte aligned IP header after
4016                  * the 14 byte MAC header is removed
4017                  */
4018                 skb_reserve(skb, NET_IP_ALIGN);
4019
4020                 skb->dev = netdev;
4021
4022                 buffer_info->skb = skb;
4023                 buffer_info->length = adapter->rx_ps_bsize0;
4024                 buffer_info->dma = pci_map_single(pdev, skb->data,
4025                                                   adapter->rx_ps_bsize0,
4026                                                   PCI_DMA_FROMDEVICE);
4027
4028                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4029
4030                 if (unlikely(++i == rx_ring->count)) i = 0;
4031                 buffer_info = &rx_ring->buffer_info[i];
4032                 ps_page = &rx_ring->ps_page[i];
4033                 ps_page_dma = &rx_ring->ps_page_dma[i];
4034         }
4035
4036 no_buffers:
4037         if (likely(rx_ring->next_to_use != i)) {
4038                 rx_ring->next_to_use = i;
4039                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4040
4041                 /* Force memory writes to complete before letting h/w
4042                  * know there are new descriptors to fetch.  (Only
4043                  * applicable for weak-ordered memory model archs,
4044                  * such as IA-64). */
4045                 wmb();
4046                 /* Hardware increments by 16 bytes, but packet split
4047                  * descriptors are 32 bytes...so we increment tail
4048                  * twice as much.
4049                  */
4050                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4051         }
4052 }
4053
4054 /**
4055  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4056  * @adapter:
4057  **/
4058
4059 static void
4060 e1000_smartspeed(struct e1000_adapter *adapter)
4061 {
4062         uint16_t phy_status;
4063         uint16_t phy_ctrl;
4064
4065         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4066            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4067                 return;
4068
4069         if (adapter->smartspeed == 0) {
4070                 /* If Master/Slave config fault is asserted twice,
4071                  * we assume back-to-back */
4072                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4073                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4074                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4075                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4076                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4077                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4078                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4079                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4080                                             phy_ctrl);
4081                         adapter->smartspeed++;
4082                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4083                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4084                                                &phy_ctrl)) {
4085                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4086                                              MII_CR_RESTART_AUTO_NEG);
4087                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4088                                                     phy_ctrl);
4089                         }
4090                 }
4091                 return;
4092         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4093                 /* If still no link, perhaps using 2/3 pair cable */
4094                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4095                 phy_ctrl |= CR_1000T_MS_ENABLE;
4096                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4097                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4098                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4099                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4100                                      MII_CR_RESTART_AUTO_NEG);
4101                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4102                 }
4103         }
4104         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4105         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4106                 adapter->smartspeed = 0;
4107 }
4108
4109 /**
4110  * e1000_ioctl -
4111  * @netdev:
4112  * @ifreq:
4113  * @cmd:
4114  **/
4115
4116 static int
4117 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4118 {
4119         switch (cmd) {
4120         case SIOCGMIIPHY:
4121         case SIOCGMIIREG:
4122         case SIOCSMIIREG:
4123                 return e1000_mii_ioctl(netdev, ifr, cmd);
4124         default:
4125                 return -EOPNOTSUPP;
4126         }
4127 }
4128
4129 /**
4130  * e1000_mii_ioctl -
4131  * @netdev:
4132  * @ifreq:
4133  * @cmd:
4134  **/
4135
4136 static int
4137 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4138 {
4139         struct e1000_adapter *adapter = netdev_priv(netdev);
4140         struct mii_ioctl_data *data = if_mii(ifr);
4141         int retval;
4142         uint16_t mii_reg;
4143         uint16_t spddplx;
4144         unsigned long flags;
4145
4146         if (adapter->hw.media_type != e1000_media_type_copper)
4147                 return -EOPNOTSUPP;
4148
4149         switch (cmd) {
4150         case SIOCGMIIPHY:
4151                 data->phy_id = adapter->hw.phy_addr;
4152                 break;
4153         case SIOCGMIIREG:
4154                 if (!capable(CAP_NET_ADMIN))
4155                         return -EPERM;
4156                 spin_lock_irqsave(&adapter->stats_lock, flags);
4157                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4158                                    &data->val_out)) {
4159                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4160                         return -EIO;
4161                 }
4162                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4163                 break;
4164         case SIOCSMIIREG:
4165                 if (!capable(CAP_NET_ADMIN))
4166                         return -EPERM;
4167                 if (data->reg_num & ~(0x1F))
4168                         return -EFAULT;
4169                 mii_reg = data->val_in;
4170                 spin_lock_irqsave(&adapter->stats_lock, flags);
4171                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4172                                         mii_reg)) {
4173                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4174                         return -EIO;
4175                 }
4176                 if (adapter->hw.media_type == e1000_media_type_copper) {
4177                         switch (data->reg_num) {
4178                         case PHY_CTRL:
4179                                 if (mii_reg & MII_CR_POWER_DOWN)
4180                                         break;
4181                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4182                                         adapter->hw.autoneg = 1;
4183                                         adapter->hw.autoneg_advertised = 0x2F;
4184                                 } else {
4185                                         if (mii_reg & 0x40)
4186                                                 spddplx = SPEED_1000;
4187                                         else if (mii_reg & 0x2000)
4188                                                 spddplx = SPEED_100;
4189                                         else
4190                                                 spddplx = SPEED_10;
4191                                         spddplx += (mii_reg & 0x100)
4192                                                    ? DUPLEX_FULL :
4193                                                    DUPLEX_HALF;
4194                                         retval = e1000_set_spd_dplx(adapter,
4195                                                                     spddplx);
4196                                         if (retval) {
4197                                                 spin_unlock_irqrestore(
4198                                                         &adapter->stats_lock,
4199                                                         flags);
4200                                                 return retval;
4201                                         }
4202                                 }
4203                                 if (netif_running(adapter->netdev)) {
4204                                         e1000_down(adapter);
4205                                         e1000_up(adapter);
4206                                 } else
4207                                         e1000_reset(adapter);
4208                                 break;
4209                         case M88E1000_PHY_SPEC_CTRL:
4210                         case M88E1000_EXT_PHY_SPEC_CTRL:
4211                                 if (e1000_phy_reset(&adapter->hw)) {
4212                                         spin_unlock_irqrestore(
4213                                                 &adapter->stats_lock, flags);
4214                                         return -EIO;
4215                                 }
4216                                 break;
4217                         }
4218                 } else {
4219                         switch (data->reg_num) {
4220                         case PHY_CTRL:
4221                                 if (mii_reg & MII_CR_POWER_DOWN)
4222                                         break;
4223                                 if (netif_running(adapter->netdev)) {
4224                                         e1000_down(adapter);
4225                                         e1000_up(adapter);
4226                                 } else
4227                                         e1000_reset(adapter);
4228                                 break;
4229                         }
4230                 }
4231                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4232                 break;
4233         default:
4234                 return -EOPNOTSUPP;
4235         }
4236         return E1000_SUCCESS;
4237 }
4238
4239 void
4240 e1000_pci_set_mwi(struct e1000_hw *hw)
4241 {
4242         struct e1000_adapter *adapter = hw->back;
4243         int ret_val = pci_set_mwi(adapter->pdev);
4244
4245         if (ret_val)
4246                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4247 }
4248
4249 void
4250 e1000_pci_clear_mwi(struct e1000_hw *hw)
4251 {
4252         struct e1000_adapter *adapter = hw->back;
4253
4254         pci_clear_mwi(adapter->pdev);
4255 }
4256
4257 void
4258 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4259 {
4260         struct e1000_adapter *adapter = hw->back;
4261
4262         pci_read_config_word(adapter->pdev, reg, value);
4263 }
4264
4265 void
4266 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4267 {
4268         struct e1000_adapter *adapter = hw->back;
4269
4270         pci_write_config_word(adapter->pdev, reg, *value);
4271 }
4272
4273 uint32_t
4274 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4275 {
4276         return inl(port);
4277 }
4278
4279 void
4280 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4281 {
4282         outl(value, port);
4283 }
4284
4285 static void
4286 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4287 {
4288         struct e1000_adapter *adapter = netdev_priv(netdev);
4289         uint32_t ctrl, rctl;
4290
4291         e1000_irq_disable(adapter);
4292         adapter->vlgrp = grp;
4293
4294         if (grp) {
4295                 /* enable VLAN tag insert/strip */
4296                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4297                 ctrl |= E1000_CTRL_VME;
4298                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4299
4300                 /* enable VLAN receive filtering */
4301                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4302                 rctl |= E1000_RCTL_VFE;
4303                 rctl &= ~E1000_RCTL_CFIEN;
4304                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4305                 e1000_update_mng_vlan(adapter);
4306         } else {
4307                 /* disable VLAN tag insert/strip */
4308                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4309                 ctrl &= ~E1000_CTRL_VME;
4310                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4311
4312                 /* disable VLAN filtering */
4313                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4314                 rctl &= ~E1000_RCTL_VFE;
4315                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4316                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4317                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4318                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4319                 }
4320         }
4321
4322         e1000_irq_enable(adapter);
4323 }
4324
4325 static void
4326 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4327 {
4328         struct e1000_adapter *adapter = netdev_priv(netdev);
4329         uint32_t vfta, index;
4330
4331         if ((adapter->hw.mng_cookie.status &
4332              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4333             (vid == adapter->mng_vlan_id))
4334                 return;
4335         /* add VID to filter table */
4336         index = (vid >> 5) & 0x7F;
4337         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4338         vfta |= (1 << (vid & 0x1F));
4339         e1000_write_vfta(&adapter->hw, index, vfta);
4340 }
4341
4342 static void
4343 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4344 {
4345         struct e1000_adapter *adapter = netdev_priv(netdev);
4346         uint32_t vfta, index;
4347
4348         e1000_irq_disable(adapter);
4349
4350         if (adapter->vlgrp)
4351                 adapter->vlgrp->vlan_devices[vid] = NULL;
4352
4353         e1000_irq_enable(adapter);
4354
4355         if ((adapter->hw.mng_cookie.status &
4356              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4357             (vid == adapter->mng_vlan_id)) {
4358                 /* release control to f/w */
4359                 e1000_release_hw_control(adapter);
4360                 return;
4361         }
4362
4363         /* remove VID from filter table */
4364         index = (vid >> 5) & 0x7F;
4365         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4366         vfta &= ~(1 << (vid & 0x1F));
4367         e1000_write_vfta(&adapter->hw, index, vfta);
4368 }
4369
4370 static void
4371 e1000_restore_vlan(struct e1000_adapter *adapter)
4372 {
4373         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4374
4375         if (adapter->vlgrp) {
4376                 uint16_t vid;
4377                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4378                         if (!adapter->vlgrp->vlan_devices[vid])
4379                                 continue;
4380                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4381                 }
4382         }
4383 }
4384
4385 int
4386 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4387 {
4388         adapter->hw.autoneg = 0;
4389
4390         /* Fiber NICs only allow 1000 gbps Full duplex */
4391         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4392                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4393                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4394                 return -EINVAL;
4395         }
4396
4397         switch (spddplx) {
4398         case SPEED_10 + DUPLEX_HALF:
4399                 adapter->hw.forced_speed_duplex = e1000_10_half;
4400                 break;
4401         case SPEED_10 + DUPLEX_FULL:
4402                 adapter->hw.forced_speed_duplex = e1000_10_full;
4403                 break;
4404         case SPEED_100 + DUPLEX_HALF:
4405                 adapter->hw.forced_speed_duplex = e1000_100_half;
4406                 break;
4407         case SPEED_100 + DUPLEX_FULL:
4408                 adapter->hw.forced_speed_duplex = e1000_100_full;
4409                 break;
4410         case SPEED_1000 + DUPLEX_FULL:
4411                 adapter->hw.autoneg = 1;
4412                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4413                 break;
4414         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4415         default:
4416                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4417                 return -EINVAL;
4418         }
4419         return 0;
4420 }
4421
4422 #ifdef CONFIG_PM
4423 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4424  * bus we're on (PCI(X) vs. PCI-E)
4425  */
4426 #define PCIE_CONFIG_SPACE_LEN 256
4427 #define PCI_CONFIG_SPACE_LEN 64
4428 static int
4429 e1000_pci_save_state(struct e1000_adapter *adapter)
4430 {
4431         struct pci_dev *dev = adapter->pdev;
4432         int size;
4433         int i;
4434
4435         if (adapter->hw.mac_type >= e1000_82571)
4436                 size = PCIE_CONFIG_SPACE_LEN;
4437         else
4438                 size = PCI_CONFIG_SPACE_LEN;
4439
4440         WARN_ON(adapter->config_space != NULL);
4441
4442         adapter->config_space = kmalloc(size, GFP_KERNEL);
4443         if (!adapter->config_space) {
4444                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4445                 return -ENOMEM;
4446         }
4447         for (i = 0; i < (size / 4); i++)
4448                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4449         return 0;
4450 }
4451
4452 static void
4453 e1000_pci_restore_state(struct e1000_adapter *adapter)
4454 {
4455         struct pci_dev *dev = adapter->pdev;
4456         int size;
4457         int i;
4458
4459         if (adapter->config_space == NULL)
4460                 return;
4461
4462         if (adapter->hw.mac_type >= e1000_82571)
4463                 size = PCIE_CONFIG_SPACE_LEN;
4464         else
4465                 size = PCI_CONFIG_SPACE_LEN;
4466         for (i = 0; i < (size / 4); i++)
4467                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4468         kfree(adapter->config_space);
4469         adapter->config_space = NULL;
4470         return;
4471 }
4472 #endif /* CONFIG_PM */
4473
4474 static int
4475 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4476 {
4477         struct net_device *netdev = pci_get_drvdata(pdev);
4478         struct e1000_adapter *adapter = netdev_priv(netdev);
4479         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4480         uint32_t wufc = adapter->wol;
4481         int retval = 0;
4482
4483         netif_device_detach(netdev);
4484
4485         if (netif_running(netdev))
4486                 e1000_down(adapter);
4487
4488 #ifdef CONFIG_PM
4489         /* Implement our own version of pci_save_state(pdev) because pci-
4490          * express adapters have 256-byte config spaces. */
4491         retval = e1000_pci_save_state(adapter);
4492         if (retval)
4493                 return retval;
4494 #endif
4495
4496         status = E1000_READ_REG(&adapter->hw, STATUS);
4497         if (status & E1000_STATUS_LU)
4498                 wufc &= ~E1000_WUFC_LNKC;
4499
4500         if (wufc) {
4501                 e1000_setup_rctl(adapter);
4502                 e1000_set_multi(netdev);
4503
4504                 /* turn on all-multi mode if wake on multicast is enabled */
4505                 if (adapter->wol & E1000_WUFC_MC) {
4506                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4507                         rctl |= E1000_RCTL_MPE;
4508                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4509                 }
4510
4511                 if (adapter->hw.mac_type >= e1000_82540) {
4512                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4513                         /* advertise wake from D3Cold */
4514                         #define E1000_CTRL_ADVD3WUC 0x00100000
4515                         /* phy power management enable */
4516                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4517                         ctrl |= E1000_CTRL_ADVD3WUC |
4518                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4519                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4520                 }
4521
4522                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4523                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4524                         /* keep the laser running in D3 */
4525                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4526                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4527                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4528                 }
4529
4530                 /* Allow time for pending master requests to run */
4531                 e1000_disable_pciex_master(&adapter->hw);
4532
4533                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4534                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4535                 pci_enable_wake(pdev, PCI_D3hot, 1);
4536                 pci_enable_wake(pdev, PCI_D3cold, 1);
4537         } else {
4538                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4539                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4540                 pci_enable_wake(pdev, PCI_D3hot, 0);
4541                 pci_enable_wake(pdev, PCI_D3cold, 0);
4542         }
4543
4544         if (adapter->hw.mac_type >= e1000_82540 &&
4545            adapter->hw.media_type == e1000_media_type_copper) {
4546                 manc = E1000_READ_REG(&adapter->hw, MANC);
4547                 if (manc & E1000_MANC_SMBUS_EN) {
4548                         manc |= E1000_MANC_ARP_EN;
4549                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4550                         pci_enable_wake(pdev, PCI_D3hot, 1);
4551                         pci_enable_wake(pdev, PCI_D3cold, 1);
4552                 }
4553         }
4554
4555         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4556          * would have already happened in close and is redundant. */
4557         e1000_release_hw_control(adapter);
4558
4559         pci_disable_device(pdev);
4560
4561         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4562
4563         return 0;
4564 }
4565
4566 #ifdef CONFIG_PM
4567 static int
4568 e1000_resume(struct pci_dev *pdev)
4569 {
4570         struct net_device *netdev = pci_get_drvdata(pdev);
4571         struct e1000_adapter *adapter = netdev_priv(netdev);
4572         uint32_t manc, ret_val;
4573
4574         pci_set_power_state(pdev, PCI_D0);
4575         e1000_pci_restore_state(adapter);
4576         ret_val = pci_enable_device(pdev);
4577         pci_set_master(pdev);
4578
4579         pci_enable_wake(pdev, PCI_D3hot, 0);
4580         pci_enable_wake(pdev, PCI_D3cold, 0);
4581
4582         e1000_reset(adapter);
4583         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4584
4585         if (netif_running(netdev))
4586                 e1000_up(adapter);
4587
4588         netif_device_attach(netdev);
4589
4590         if (adapter->hw.mac_type >= e1000_82540 &&
4591            adapter->hw.media_type == e1000_media_type_copper) {
4592                 manc = E1000_READ_REG(&adapter->hw, MANC);
4593                 manc &= ~(E1000_MANC_ARP_EN);
4594                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4595         }
4596
4597         /* If the controller is 82573 and f/w is AMT, do not set
4598          * DRV_LOAD until the interface is up.  For all other cases,
4599          * let the f/w know that the h/w is now under the control
4600          * of the driver. */
4601         if (adapter->hw.mac_type != e1000_82573 ||
4602             !e1000_check_mng_mode(&adapter->hw))
4603                 e1000_get_hw_control(adapter);
4604
4605         return 0;
4606 }
4607 #endif
4608 #ifdef CONFIG_NET_POLL_CONTROLLER
4609 /*
4610  * Polling 'interrupt' - used by things like netconsole to send skbs
4611  * without having to re-enable interrupts. It's not called while
4612  * the interrupt routine is executing.
4613  */
4614 static void
4615 e1000_netpoll(struct net_device *netdev)
4616 {
4617         struct e1000_adapter *adapter = netdev_priv(netdev);
4618         disable_irq(adapter->pdev->irq);
4619         e1000_intr(adapter->pdev->irq, netdev, NULL);
4620         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4621 #ifndef CONFIG_E1000_NAPI
4622         adapter->clean_rx(adapter, adapter->rx_ring);
4623 #endif
4624         enable_irq(adapter->pdev->irq);
4625 }
4626 #endif
4627
4628 /* e1000_main.c */