Merge remote branch 'kumar/merge' into merge
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32
33 /* Intel Media SOC GbE MDIO physical base address */
34 static unsigned long ce4100_gbe_mdio_base_phy;
35 /* Intel Media SOC GbE MDIO virtual base address */
36 void __iomem *ce4100_gbe_mdio_base_virt;
37
38 char e1000_driver_name[] = "e1000";
39 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
40 #define DRV_VERSION "7.3.21-k8-NAPI"
41 const char e1000_driver_version[] = DRV_VERSION;
42 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
43
44 /* e1000_pci_tbl - PCI Device ID Table
45  *
46  * Last entry must be all 0s
47  *
48  * Macro expands to...
49  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
50  */
51 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
52         INTEL_E1000_ETHERNET_DEVICE(0x1000),
53         INTEL_E1000_ETHERNET_DEVICE(0x1001),
54         INTEL_E1000_ETHERNET_DEVICE(0x1004),
55         INTEL_E1000_ETHERNET_DEVICE(0x1008),
56         INTEL_E1000_ETHERNET_DEVICE(0x1009),
57         INTEL_E1000_ETHERNET_DEVICE(0x100C),
58         INTEL_E1000_ETHERNET_DEVICE(0x100D),
59         INTEL_E1000_ETHERNET_DEVICE(0x100E),
60         INTEL_E1000_ETHERNET_DEVICE(0x100F),
61         INTEL_E1000_ETHERNET_DEVICE(0x1010),
62         INTEL_E1000_ETHERNET_DEVICE(0x1011),
63         INTEL_E1000_ETHERNET_DEVICE(0x1012),
64         INTEL_E1000_ETHERNET_DEVICE(0x1013),
65         INTEL_E1000_ETHERNET_DEVICE(0x1014),
66         INTEL_E1000_ETHERNET_DEVICE(0x1015),
67         INTEL_E1000_ETHERNET_DEVICE(0x1016),
68         INTEL_E1000_ETHERNET_DEVICE(0x1017),
69         INTEL_E1000_ETHERNET_DEVICE(0x1018),
70         INTEL_E1000_ETHERNET_DEVICE(0x1019),
71         INTEL_E1000_ETHERNET_DEVICE(0x101A),
72         INTEL_E1000_ETHERNET_DEVICE(0x101D),
73         INTEL_E1000_ETHERNET_DEVICE(0x101E),
74         INTEL_E1000_ETHERNET_DEVICE(0x1026),
75         INTEL_E1000_ETHERNET_DEVICE(0x1027),
76         INTEL_E1000_ETHERNET_DEVICE(0x1028),
77         INTEL_E1000_ETHERNET_DEVICE(0x1075),
78         INTEL_E1000_ETHERNET_DEVICE(0x1076),
79         INTEL_E1000_ETHERNET_DEVICE(0x1077),
80         INTEL_E1000_ETHERNET_DEVICE(0x1078),
81         INTEL_E1000_ETHERNET_DEVICE(0x1079),
82         INTEL_E1000_ETHERNET_DEVICE(0x107A),
83         INTEL_E1000_ETHERNET_DEVICE(0x107B),
84         INTEL_E1000_ETHERNET_DEVICE(0x107C),
85         INTEL_E1000_ETHERNET_DEVICE(0x108A),
86         INTEL_E1000_ETHERNET_DEVICE(0x1099),
87         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
88         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
89         /* required last entry */
90         {0,}
91 };
92
93 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
94
95 int e1000_up(struct e1000_adapter *adapter);
96 void e1000_down(struct e1000_adapter *adapter);
97 void e1000_reinit_locked(struct e1000_adapter *adapter);
98 void e1000_reset(struct e1000_adapter *adapter);
99 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
100 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
101 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
102 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
103 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
104 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
105                              struct e1000_tx_ring *txdr);
106 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
107                              struct e1000_rx_ring *rxdr);
108 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
109                              struct e1000_tx_ring *tx_ring);
110 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
111                              struct e1000_rx_ring *rx_ring);
112 void e1000_update_stats(struct e1000_adapter *adapter);
113
114 static int e1000_init_module(void);
115 static void e1000_exit_module(void);
116 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
117 static void __devexit e1000_remove(struct pci_dev *pdev);
118 static int e1000_alloc_queues(struct e1000_adapter *adapter);
119 static int e1000_sw_init(struct e1000_adapter *adapter);
120 static int e1000_open(struct net_device *netdev);
121 static int e1000_close(struct net_device *netdev);
122 static void e1000_configure_tx(struct e1000_adapter *adapter);
123 static void e1000_configure_rx(struct e1000_adapter *adapter);
124 static void e1000_setup_rctl(struct e1000_adapter *adapter);
125 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
126 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
127 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
128                                 struct e1000_tx_ring *tx_ring);
129 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
130                                 struct e1000_rx_ring *rx_ring);
131 static void e1000_set_rx_mode(struct net_device *netdev);
132 static void e1000_update_phy_info(unsigned long data);
133 static void e1000_update_phy_info_task(struct work_struct *work);
134 static void e1000_watchdog(unsigned long data);
135 static void e1000_82547_tx_fifo_stall(unsigned long data);
136 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
137 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
138                                     struct net_device *netdev);
139 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
140 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
141 static int e1000_set_mac(struct net_device *netdev, void *p);
142 static irqreturn_t e1000_intr(int irq, void *data);
143 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
144                                struct e1000_tx_ring *tx_ring);
145 static int e1000_clean(struct napi_struct *napi, int budget);
146 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
147                                struct e1000_rx_ring *rx_ring,
148                                int *work_done, int work_to_do);
149 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
150                                      struct e1000_rx_ring *rx_ring,
151                                      int *work_done, int work_to_do);
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153                                    struct e1000_rx_ring *rx_ring,
154                                    int cleaned_count);
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156                                          struct e1000_rx_ring *rx_ring,
157                                          int cleaned_count);
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160                            int cmd);
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167                                        struct sk_buff *skb);
168
169 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
170 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
171 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
172 static void e1000_restore_vlan(struct e1000_adapter *adapter);
173
174 #ifdef CONFIG_PM
175 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
176 static int e1000_resume(struct pci_dev *pdev);
177 #endif
178 static void e1000_shutdown(struct pci_dev *pdev);
179
180 #ifdef CONFIG_NET_POLL_CONTROLLER
181 /* for netdump / net console */
182 static void e1000_netpoll (struct net_device *netdev);
183 #endif
184
185 #define COPYBREAK_DEFAULT 256
186 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
187 module_param(copybreak, uint, 0644);
188 MODULE_PARM_DESC(copybreak,
189         "Maximum size of packet that is copied to a new buffer on receive");
190
191 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
192                      pci_channel_state_t state);
193 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
194 static void e1000_io_resume(struct pci_dev *pdev);
195
196 static struct pci_error_handlers e1000_err_handler = {
197         .error_detected = e1000_io_error_detected,
198         .slot_reset = e1000_io_slot_reset,
199         .resume = e1000_io_resume,
200 };
201
202 static struct pci_driver e1000_driver = {
203         .name     = e1000_driver_name,
204         .id_table = e1000_pci_tbl,
205         .probe    = e1000_probe,
206         .remove   = __devexit_p(e1000_remove),
207 #ifdef CONFIG_PM
208         /* Power Management Hooks */
209         .suspend  = e1000_suspend,
210         .resume   = e1000_resume,
211 #endif
212         .shutdown = e1000_shutdown,
213         .err_handler = &e1000_err_handler
214 };
215
216 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
217 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
218 MODULE_LICENSE("GPL");
219 MODULE_VERSION(DRV_VERSION);
220
221 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
222 module_param(debug, int, 0);
223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225 /**
226  * e1000_get_hw_dev - return device
227  * used by hardware layer to print debugging information
228  *
229  **/
230 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
231 {
232         struct e1000_adapter *adapter = hw->back;
233         return adapter->netdev;
234 }
235
236 /**
237  * e1000_init_module - Driver Registration Routine
238  *
239  * e1000_init_module is the first routine called when the driver is
240  * loaded. All it does is register with the PCI subsystem.
241  **/
242
243 static int __init e1000_init_module(void)
244 {
245         int ret;
246         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
247
248         pr_info("%s\n", e1000_copyright);
249
250         ret = pci_register_driver(&e1000_driver);
251         if (copybreak != COPYBREAK_DEFAULT) {
252                 if (copybreak == 0)
253                         pr_info("copybreak disabled\n");
254                 else
255                         pr_info("copybreak enabled for "
256                                    "packets <= %u bytes\n", copybreak);
257         }
258         return ret;
259 }
260
261 module_init(e1000_init_module);
262
263 /**
264  * e1000_exit_module - Driver Exit Cleanup Routine
265  *
266  * e1000_exit_module is called just before the driver is removed
267  * from memory.
268  **/
269
270 static void __exit e1000_exit_module(void)
271 {
272         pci_unregister_driver(&e1000_driver);
273 }
274
275 module_exit(e1000_exit_module);
276
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279         struct net_device *netdev = adapter->netdev;
280         irq_handler_t handler = e1000_intr;
281         int irq_flags = IRQF_SHARED;
282         int err;
283
284         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285                           netdev);
286         if (err) {
287                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288         }
289
290         return err;
291 }
292
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295         struct net_device *netdev = adapter->netdev;
296
297         free_irq(adapter->pdev->irq, netdev);
298 }
299
300 /**
301  * e1000_irq_disable - Mask off interrupt generation on the NIC
302  * @adapter: board private structure
303  **/
304
305 static void e1000_irq_disable(struct e1000_adapter *adapter)
306 {
307         struct e1000_hw *hw = &adapter->hw;
308
309         ew32(IMC, ~0);
310         E1000_WRITE_FLUSH();
311         synchronize_irq(adapter->pdev->irq);
312 }
313
314 /**
315  * e1000_irq_enable - Enable default interrupt generation settings
316  * @adapter: board private structure
317  **/
318
319 static void e1000_irq_enable(struct e1000_adapter *adapter)
320 {
321         struct e1000_hw *hw = &adapter->hw;
322
323         ew32(IMS, IMS_ENABLE_MASK);
324         E1000_WRITE_FLUSH();
325 }
326
327 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
328 {
329         struct e1000_hw *hw = &adapter->hw;
330         struct net_device *netdev = adapter->netdev;
331         u16 vid = hw->mng_cookie.vlan_id;
332         u16 old_vid = adapter->mng_vlan_id;
333         if (adapter->vlgrp) {
334                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
335                         if (hw->mng_cookie.status &
336                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
337                                 e1000_vlan_rx_add_vid(netdev, vid);
338                                 adapter->mng_vlan_id = vid;
339                         } else
340                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
341
342                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
343                                         (vid != old_vid) &&
344                             !vlan_group_get_device(adapter->vlgrp, old_vid))
345                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
346                 } else
347                         adapter->mng_vlan_id = vid;
348         }
349 }
350
351 static void e1000_init_manageability(struct e1000_adapter *adapter)
352 {
353         struct e1000_hw *hw = &adapter->hw;
354
355         if (adapter->en_mng_pt) {
356                 u32 manc = er32(MANC);
357
358                 /* disable hardware interception of ARP */
359                 manc &= ~(E1000_MANC_ARP_EN);
360
361                 ew32(MANC, manc);
362         }
363 }
364
365 static void e1000_release_manageability(struct e1000_adapter *adapter)
366 {
367         struct e1000_hw *hw = &adapter->hw;
368
369         if (adapter->en_mng_pt) {
370                 u32 manc = er32(MANC);
371
372                 /* re-enable hardware interception of ARP */
373                 manc |= E1000_MANC_ARP_EN;
374
375                 ew32(MANC, manc);
376         }
377 }
378
379 /**
380  * e1000_configure - configure the hardware for RX and TX
381  * @adapter = private board structure
382  **/
383 static void e1000_configure(struct e1000_adapter *adapter)
384 {
385         struct net_device *netdev = adapter->netdev;
386         int i;
387
388         e1000_set_rx_mode(netdev);
389
390         e1000_restore_vlan(adapter);
391         e1000_init_manageability(adapter);
392
393         e1000_configure_tx(adapter);
394         e1000_setup_rctl(adapter);
395         e1000_configure_rx(adapter);
396         /* call E1000_DESC_UNUSED which always leaves
397          * at least 1 descriptor unused to make sure
398          * next_to_use != next_to_clean */
399         for (i = 0; i < adapter->num_rx_queues; i++) {
400                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
401                 adapter->alloc_rx_buf(adapter, ring,
402                                       E1000_DESC_UNUSED(ring));
403         }
404 }
405
406 int e1000_up(struct e1000_adapter *adapter)
407 {
408         struct e1000_hw *hw = &adapter->hw;
409
410         /* hardware has been reset, we need to reload some things */
411         e1000_configure(adapter);
412
413         clear_bit(__E1000_DOWN, &adapter->flags);
414
415         napi_enable(&adapter->napi);
416
417         e1000_irq_enable(adapter);
418
419         netif_wake_queue(adapter->netdev);
420
421         /* fire a link change interrupt to start the watchdog */
422         ew32(ICS, E1000_ICS_LSC);
423         return 0;
424 }
425
426 /**
427  * e1000_power_up_phy - restore link in case the phy was powered down
428  * @adapter: address of board private structure
429  *
430  * The phy may be powered down to save power and turn off link when the
431  * driver is unloaded and wake on lan is not enabled (among others)
432  * *** this routine MUST be followed by a call to e1000_reset ***
433  *
434  **/
435
436 void e1000_power_up_phy(struct e1000_adapter *adapter)
437 {
438         struct e1000_hw *hw = &adapter->hw;
439         u16 mii_reg = 0;
440
441         /* Just clear the power down bit to wake the phy back up */
442         if (hw->media_type == e1000_media_type_copper) {
443                 /* according to the manual, the phy will retain its
444                  * settings across a power-down/up cycle */
445                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
446                 mii_reg &= ~MII_CR_POWER_DOWN;
447                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
448         }
449 }
450
451 static void e1000_power_down_phy(struct e1000_adapter *adapter)
452 {
453         struct e1000_hw *hw = &adapter->hw;
454
455         /* Power down the PHY so no link is implied when interface is down *
456          * The PHY cannot be powered down if any of the following is true *
457          * (a) WoL is enabled
458          * (b) AMT is active
459          * (c) SoL/IDER session is active */
460         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
461            hw->media_type == e1000_media_type_copper) {
462                 u16 mii_reg = 0;
463
464                 switch (hw->mac_type) {
465                 case e1000_82540:
466                 case e1000_82545:
467                 case e1000_82545_rev_3:
468                 case e1000_82546:
469                 case e1000_ce4100:
470                 case e1000_82546_rev_3:
471                 case e1000_82541:
472                 case e1000_82541_rev_2:
473                 case e1000_82547:
474                 case e1000_82547_rev_2:
475                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
476                                 goto out;
477                         break;
478                 default:
479                         goto out;
480                 }
481                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
482                 mii_reg |= MII_CR_POWER_DOWN;
483                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
484                 mdelay(1);
485         }
486 out:
487         return;
488 }
489
490 void e1000_down(struct e1000_adapter *adapter)
491 {
492         struct e1000_hw *hw = &adapter->hw;
493         struct net_device *netdev = adapter->netdev;
494         u32 rctl, tctl;
495
496
497         /* disable receives in the hardware */
498         rctl = er32(RCTL);
499         ew32(RCTL, rctl & ~E1000_RCTL_EN);
500         /* flush and sleep below */
501
502         netif_tx_disable(netdev);
503
504         /* disable transmits in the hardware */
505         tctl = er32(TCTL);
506         tctl &= ~E1000_TCTL_EN;
507         ew32(TCTL, tctl);
508         /* flush both disables and wait for them to finish */
509         E1000_WRITE_FLUSH();
510         msleep(10);
511
512         napi_disable(&adapter->napi);
513
514         e1000_irq_disable(adapter);
515
516         /*
517          * Setting DOWN must be after irq_disable to prevent
518          * a screaming interrupt.  Setting DOWN also prevents
519          * timers and tasks from rescheduling.
520          */
521         set_bit(__E1000_DOWN, &adapter->flags);
522
523         del_timer_sync(&adapter->tx_fifo_stall_timer);
524         del_timer_sync(&adapter->watchdog_timer);
525         del_timer_sync(&adapter->phy_info_timer);
526
527         adapter->link_speed = 0;
528         adapter->link_duplex = 0;
529         netif_carrier_off(netdev);
530
531         e1000_reset(adapter);
532         e1000_clean_all_tx_rings(adapter);
533         e1000_clean_all_rx_rings(adapter);
534 }
535
536 static void e1000_reinit_safe(struct e1000_adapter *adapter)
537 {
538         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
539                 msleep(1);
540         rtnl_lock();
541         e1000_down(adapter);
542         e1000_up(adapter);
543         rtnl_unlock();
544         clear_bit(__E1000_RESETTING, &adapter->flags);
545 }
546
547 void e1000_reinit_locked(struct e1000_adapter *adapter)
548 {
549         /* if rtnl_lock is not held the call path is bogus */
550         ASSERT_RTNL();
551         WARN_ON(in_interrupt());
552         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
553                 msleep(1);
554         e1000_down(adapter);
555         e1000_up(adapter);
556         clear_bit(__E1000_RESETTING, &adapter->flags);
557 }
558
559 void e1000_reset(struct e1000_adapter *adapter)
560 {
561         struct e1000_hw *hw = &adapter->hw;
562         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
563         bool legacy_pba_adjust = false;
564         u16 hwm;
565
566         /* Repartition Pba for greater than 9k mtu
567          * To take effect CTRL.RST is required.
568          */
569
570         switch (hw->mac_type) {
571         case e1000_82542_rev2_0:
572         case e1000_82542_rev2_1:
573         case e1000_82543:
574         case e1000_82544:
575         case e1000_82540:
576         case e1000_82541:
577         case e1000_82541_rev_2:
578                 legacy_pba_adjust = true;
579                 pba = E1000_PBA_48K;
580                 break;
581         case e1000_82545:
582         case e1000_82545_rev_3:
583         case e1000_82546:
584         case e1000_ce4100:
585         case e1000_82546_rev_3:
586                 pba = E1000_PBA_48K;
587                 break;
588         case e1000_82547:
589         case e1000_82547_rev_2:
590                 legacy_pba_adjust = true;
591                 pba = E1000_PBA_30K;
592                 break;
593         case e1000_undefined:
594         case e1000_num_macs:
595                 break;
596         }
597
598         if (legacy_pba_adjust) {
599                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
600                         pba -= 8; /* allocate more FIFO for Tx */
601
602                 if (hw->mac_type == e1000_82547) {
603                         adapter->tx_fifo_head = 0;
604                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
605                         adapter->tx_fifo_size =
606                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
607                         atomic_set(&adapter->tx_fifo_stall, 0);
608                 }
609         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
610                 /* adjust PBA for jumbo frames */
611                 ew32(PBA, pba);
612
613                 /* To maintain wire speed transmits, the Tx FIFO should be
614                  * large enough to accommodate two full transmit packets,
615                  * rounded up to the next 1KB and expressed in KB.  Likewise,
616                  * the Rx FIFO should be large enough to accommodate at least
617                  * one full receive packet and is similarly rounded up and
618                  * expressed in KB. */
619                 pba = er32(PBA);
620                 /* upper 16 bits has Tx packet buffer allocation size in KB */
621                 tx_space = pba >> 16;
622                 /* lower 16 bits has Rx packet buffer allocation size in KB */
623                 pba &= 0xffff;
624                 /*
625                  * the tx fifo also stores 16 bytes of information about the tx
626                  * but don't include ethernet FCS because hardware appends it
627                  */
628                 min_tx_space = (hw->max_frame_size +
629                                 sizeof(struct e1000_tx_desc) -
630                                 ETH_FCS_LEN) * 2;
631                 min_tx_space = ALIGN(min_tx_space, 1024);
632                 min_tx_space >>= 10;
633                 /* software strips receive CRC, so leave room for it */
634                 min_rx_space = hw->max_frame_size;
635                 min_rx_space = ALIGN(min_rx_space, 1024);
636                 min_rx_space >>= 10;
637
638                 /* If current Tx allocation is less than the min Tx FIFO size,
639                  * and the min Tx FIFO size is less than the current Rx FIFO
640                  * allocation, take space away from current Rx allocation */
641                 if (tx_space < min_tx_space &&
642                     ((min_tx_space - tx_space) < pba)) {
643                         pba = pba - (min_tx_space - tx_space);
644
645                         /* PCI/PCIx hardware has PBA alignment constraints */
646                         switch (hw->mac_type) {
647                         case e1000_82545 ... e1000_82546_rev_3:
648                                 pba &= ~(E1000_PBA_8K - 1);
649                                 break;
650                         default:
651                                 break;
652                         }
653
654                         /* if short on rx space, rx wins and must trump tx
655                          * adjustment or use Early Receive if available */
656                         if (pba < min_rx_space)
657                                 pba = min_rx_space;
658                 }
659         }
660
661         ew32(PBA, pba);
662
663         /*
664          * flow control settings:
665          * The high water mark must be low enough to fit one full frame
666          * (or the size used for early receive) above it in the Rx FIFO.
667          * Set it to the lower of:
668          * - 90% of the Rx FIFO size, and
669          * - the full Rx FIFO size minus the early receive size (for parts
670          *   with ERT support assuming ERT set to E1000_ERT_2048), or
671          * - the full Rx FIFO size minus one full frame
672          */
673         hwm = min(((pba << 10) * 9 / 10),
674                   ((pba << 10) - hw->max_frame_size));
675
676         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
677         hw->fc_low_water = hw->fc_high_water - 8;
678         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
679         hw->fc_send_xon = 1;
680         hw->fc = hw->original_fc;
681
682         /* Allow time for pending master requests to run */
683         e1000_reset_hw(hw);
684         if (hw->mac_type >= e1000_82544)
685                 ew32(WUC, 0);
686
687         if (e1000_init_hw(hw))
688                 e_dev_err("Hardware Error\n");
689         e1000_update_mng_vlan(adapter);
690
691         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
692         if (hw->mac_type >= e1000_82544 &&
693             hw->autoneg == 1 &&
694             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
695                 u32 ctrl = er32(CTRL);
696                 /* clear phy power management bit if we are in gig only mode,
697                  * which if enabled will attempt negotiation to 100Mb, which
698                  * can cause a loss of link at power off or driver unload */
699                 ctrl &= ~E1000_CTRL_SWDPIN3;
700                 ew32(CTRL, ctrl);
701         }
702
703         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
704         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
705
706         e1000_reset_adaptive(hw);
707         e1000_phy_get_info(hw, &adapter->phy_info);
708
709         e1000_release_manageability(adapter);
710 }
711
712 /**
713  *  Dump the eeprom for users having checksum issues
714  **/
715 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
716 {
717         struct net_device *netdev = adapter->netdev;
718         struct ethtool_eeprom eeprom;
719         const struct ethtool_ops *ops = netdev->ethtool_ops;
720         u8 *data;
721         int i;
722         u16 csum_old, csum_new = 0;
723
724         eeprom.len = ops->get_eeprom_len(netdev);
725         eeprom.offset = 0;
726
727         data = kmalloc(eeprom.len, GFP_KERNEL);
728         if (!data) {
729                 pr_err("Unable to allocate memory to dump EEPROM data\n");
730                 return;
731         }
732
733         ops->get_eeprom(netdev, &eeprom, data);
734
735         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
736                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
737         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
738                 csum_new += data[i] + (data[i + 1] << 8);
739         csum_new = EEPROM_SUM - csum_new;
740
741         pr_err("/*********************/\n");
742         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
743         pr_err("Calculated              : 0x%04x\n", csum_new);
744
745         pr_err("Offset    Values\n");
746         pr_err("========  ======\n");
747         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
748
749         pr_err("Include this output when contacting your support provider.\n");
750         pr_err("This is not a software error! Something bad happened to\n");
751         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
752         pr_err("result in further problems, possibly loss of data,\n");
753         pr_err("corruption or system hangs!\n");
754         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
755         pr_err("which is invalid and requires you to set the proper MAC\n");
756         pr_err("address manually before continuing to enable this network\n");
757         pr_err("device. Please inspect the EEPROM dump and report the\n");
758         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
759         pr_err("/*********************/\n");
760
761         kfree(data);
762 }
763
764 /**
765  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
766  * @pdev: PCI device information struct
767  *
768  * Return true if an adapter needs ioport resources
769  **/
770 static int e1000_is_need_ioport(struct pci_dev *pdev)
771 {
772         switch (pdev->device) {
773         case E1000_DEV_ID_82540EM:
774         case E1000_DEV_ID_82540EM_LOM:
775         case E1000_DEV_ID_82540EP:
776         case E1000_DEV_ID_82540EP_LOM:
777         case E1000_DEV_ID_82540EP_LP:
778         case E1000_DEV_ID_82541EI:
779         case E1000_DEV_ID_82541EI_MOBILE:
780         case E1000_DEV_ID_82541ER:
781         case E1000_DEV_ID_82541ER_LOM:
782         case E1000_DEV_ID_82541GI:
783         case E1000_DEV_ID_82541GI_LF:
784         case E1000_DEV_ID_82541GI_MOBILE:
785         case E1000_DEV_ID_82544EI_COPPER:
786         case E1000_DEV_ID_82544EI_FIBER:
787         case E1000_DEV_ID_82544GC_COPPER:
788         case E1000_DEV_ID_82544GC_LOM:
789         case E1000_DEV_ID_82545EM_COPPER:
790         case E1000_DEV_ID_82545EM_FIBER:
791         case E1000_DEV_ID_82546EB_COPPER:
792         case E1000_DEV_ID_82546EB_FIBER:
793         case E1000_DEV_ID_82546EB_QUAD_COPPER:
794                 return true;
795         default:
796                 return false;
797         }
798 }
799
800 static const struct net_device_ops e1000_netdev_ops = {
801         .ndo_open               = e1000_open,
802         .ndo_stop               = e1000_close,
803         .ndo_start_xmit         = e1000_xmit_frame,
804         .ndo_get_stats          = e1000_get_stats,
805         .ndo_set_rx_mode        = e1000_set_rx_mode,
806         .ndo_set_mac_address    = e1000_set_mac,
807         .ndo_tx_timeout         = e1000_tx_timeout,
808         .ndo_change_mtu         = e1000_change_mtu,
809         .ndo_do_ioctl           = e1000_ioctl,
810         .ndo_validate_addr      = eth_validate_addr,
811
812         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
813         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
814         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
815 #ifdef CONFIG_NET_POLL_CONTROLLER
816         .ndo_poll_controller    = e1000_netpoll,
817 #endif
818 };
819
820 /**
821  * e1000_init_hw_struct - initialize members of hw struct
822  * @adapter: board private struct
823  * @hw: structure used by e1000_hw.c
824  *
825  * Factors out initialization of the e1000_hw struct to its own function
826  * that can be called very early at init (just after struct allocation).
827  * Fields are initialized based on PCI device information and
828  * OS network device settings (MTU size).
829  * Returns negative error codes if MAC type setup fails.
830  */
831 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
832                                 struct e1000_hw *hw)
833 {
834         struct pci_dev *pdev = adapter->pdev;
835
836         /* PCI config space info */
837         hw->vendor_id = pdev->vendor;
838         hw->device_id = pdev->device;
839         hw->subsystem_vendor_id = pdev->subsystem_vendor;
840         hw->subsystem_id = pdev->subsystem_device;
841         hw->revision_id = pdev->revision;
842
843         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
844
845         hw->max_frame_size = adapter->netdev->mtu +
846                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
847         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
848
849         /* identify the MAC */
850         if (e1000_set_mac_type(hw)) {
851                 e_err(probe, "Unknown MAC Type\n");
852                 return -EIO;
853         }
854
855         switch (hw->mac_type) {
856         default:
857                 break;
858         case e1000_82541:
859         case e1000_82547:
860         case e1000_82541_rev_2:
861         case e1000_82547_rev_2:
862                 hw->phy_init_script = 1;
863                 break;
864         }
865
866         e1000_set_media_type(hw);
867         e1000_get_bus_info(hw);
868
869         hw->wait_autoneg_complete = false;
870         hw->tbi_compatibility_en = true;
871         hw->adaptive_ifs = true;
872
873         /* Copper options */
874
875         if (hw->media_type == e1000_media_type_copper) {
876                 hw->mdix = AUTO_ALL_MODES;
877                 hw->disable_polarity_correction = false;
878                 hw->master_slave = E1000_MASTER_SLAVE;
879         }
880
881         return 0;
882 }
883
884 /**
885  * e1000_probe - Device Initialization Routine
886  * @pdev: PCI device information struct
887  * @ent: entry in e1000_pci_tbl
888  *
889  * Returns 0 on success, negative on failure
890  *
891  * e1000_probe initializes an adapter identified by a pci_dev structure.
892  * The OS initialization, configuring of the adapter private structure,
893  * and a hardware reset occur.
894  **/
895 static int __devinit e1000_probe(struct pci_dev *pdev,
896                                  const struct pci_device_id *ent)
897 {
898         struct net_device *netdev;
899         struct e1000_adapter *adapter;
900         struct e1000_hw *hw;
901
902         static int cards_found = 0;
903         static int global_quad_port_a = 0; /* global ksp3 port a indication */
904         int i, err, pci_using_dac;
905         u16 eeprom_data = 0;
906         u16 tmp = 0;
907         u16 eeprom_apme_mask = E1000_EEPROM_APME;
908         int bars, need_ioport;
909
910         /* do not allocate ioport bars when not needed */
911         need_ioport = e1000_is_need_ioport(pdev);
912         if (need_ioport) {
913                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
914                 err = pci_enable_device(pdev);
915         } else {
916                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
917                 err = pci_enable_device_mem(pdev);
918         }
919         if (err)
920                 return err;
921
922         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
923         if (err)
924                 goto err_pci_reg;
925
926         pci_set_master(pdev);
927         err = pci_save_state(pdev);
928         if (err)
929                 goto err_alloc_etherdev;
930
931         err = -ENOMEM;
932         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
933         if (!netdev)
934                 goto err_alloc_etherdev;
935
936         SET_NETDEV_DEV(netdev, &pdev->dev);
937
938         pci_set_drvdata(pdev, netdev);
939         adapter = netdev_priv(netdev);
940         adapter->netdev = netdev;
941         adapter->pdev = pdev;
942         adapter->msg_enable = (1 << debug) - 1;
943         adapter->bars = bars;
944         adapter->need_ioport = need_ioport;
945
946         hw = &adapter->hw;
947         hw->back = adapter;
948
949         err = -EIO;
950         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
951         if (!hw->hw_addr)
952                 goto err_ioremap;
953
954         if (adapter->need_ioport) {
955                 for (i = BAR_1; i <= BAR_5; i++) {
956                         if (pci_resource_len(pdev, i) == 0)
957                                 continue;
958                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
959                                 hw->io_base = pci_resource_start(pdev, i);
960                                 break;
961                         }
962                 }
963         }
964
965         /* make ready for any if (hw->...) below */
966         err = e1000_init_hw_struct(adapter, hw);
967         if (err)
968                 goto err_sw_init;
969
970         /*
971          * there is a workaround being applied below that limits
972          * 64-bit DMA addresses to 64-bit hardware.  There are some
973          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
974          */
975         pci_using_dac = 0;
976         if ((hw->bus_type == e1000_bus_type_pcix) &&
977             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
978                 /*
979                  * according to DMA-API-HOWTO, coherent calls will always
980                  * succeed if the set call did
981                  */
982                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
983                 pci_using_dac = 1;
984         } else {
985                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
986                 if (err) {
987                         pr_err("No usable DMA config, aborting\n");
988                         goto err_dma;
989                 }
990                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
991         }
992
993         netdev->netdev_ops = &e1000_netdev_ops;
994         e1000_set_ethtool_ops(netdev);
995         netdev->watchdog_timeo = 5 * HZ;
996         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
997
998         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
999
1000         adapter->bd_number = cards_found;
1001
1002         /* setup the private structure */
1003
1004         err = e1000_sw_init(adapter);
1005         if (err)
1006                 goto err_sw_init;
1007
1008         err = -EIO;
1009         if (hw->mac_type == e1000_ce4100) {
1010                 ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1);
1011                 ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy,
1012                                                 pci_resource_len(pdev, BAR_1));
1013
1014                 if (!ce4100_gbe_mdio_base_virt)
1015                         goto err_mdio_ioremap;
1016         }
1017
1018         if (hw->mac_type >= e1000_82543) {
1019                 netdev->features = NETIF_F_SG |
1020                                    NETIF_F_HW_CSUM |
1021                                    NETIF_F_HW_VLAN_TX |
1022                                    NETIF_F_HW_VLAN_RX |
1023                                    NETIF_F_HW_VLAN_FILTER;
1024         }
1025
1026         if ((hw->mac_type >= e1000_82544) &&
1027            (hw->mac_type != e1000_82547))
1028                 netdev->features |= NETIF_F_TSO;
1029
1030         if (pci_using_dac) {
1031                 netdev->features |= NETIF_F_HIGHDMA;
1032                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1033         }
1034
1035         netdev->vlan_features |= NETIF_F_TSO;
1036         netdev->vlan_features |= NETIF_F_HW_CSUM;
1037         netdev->vlan_features |= NETIF_F_SG;
1038
1039         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1040
1041         /* initialize eeprom parameters */
1042         if (e1000_init_eeprom_params(hw)) {
1043                 e_err(probe, "EEPROM initialization failed\n");
1044                 goto err_eeprom;
1045         }
1046
1047         /* before reading the EEPROM, reset the controller to
1048          * put the device in a known good starting state */
1049
1050         e1000_reset_hw(hw);
1051
1052         /* make sure the EEPROM is good */
1053         if (e1000_validate_eeprom_checksum(hw) < 0) {
1054                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1055                 e1000_dump_eeprom(adapter);
1056                 /*
1057                  * set MAC address to all zeroes to invalidate and temporary
1058                  * disable this device for the user. This blocks regular
1059                  * traffic while still permitting ethtool ioctls from reaching
1060                  * the hardware as well as allowing the user to run the
1061                  * interface after manually setting a hw addr using
1062                  * `ip set address`
1063                  */
1064                 memset(hw->mac_addr, 0, netdev->addr_len);
1065         } else {
1066                 /* copy the MAC address out of the EEPROM */
1067                 if (e1000_read_mac_addr(hw))
1068                         e_err(probe, "EEPROM Read Error\n");
1069         }
1070         /* don't block initalization here due to bad MAC address */
1071         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1072         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1073
1074         if (!is_valid_ether_addr(netdev->perm_addr))
1075                 e_err(probe, "Invalid MAC Address\n");
1076
1077         init_timer(&adapter->tx_fifo_stall_timer);
1078         adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
1079         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1080
1081         init_timer(&adapter->watchdog_timer);
1082         adapter->watchdog_timer.function = e1000_watchdog;
1083         adapter->watchdog_timer.data = (unsigned long) adapter;
1084
1085         init_timer(&adapter->phy_info_timer);
1086         adapter->phy_info_timer.function = e1000_update_phy_info;
1087         adapter->phy_info_timer.data = (unsigned long)adapter;
1088
1089         INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
1090         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1091         INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1092
1093         e1000_check_options(adapter);
1094
1095         /* Initial Wake on LAN setting
1096          * If APM wake is enabled in the EEPROM,
1097          * enable the ACPI Magic Packet filter
1098          */
1099
1100         switch (hw->mac_type) {
1101         case e1000_82542_rev2_0:
1102         case e1000_82542_rev2_1:
1103         case e1000_82543:
1104                 break;
1105         case e1000_82544:
1106                 e1000_read_eeprom(hw,
1107                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1108                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1109                 break;
1110         case e1000_82546:
1111         case e1000_82546_rev_3:
1112                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1113                         e1000_read_eeprom(hw,
1114                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1115                         break;
1116                 }
1117                 /* Fall Through */
1118         default:
1119                 e1000_read_eeprom(hw,
1120                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1121                 break;
1122         }
1123         if (eeprom_data & eeprom_apme_mask)
1124                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1125
1126         /* now that we have the eeprom settings, apply the special cases
1127          * where the eeprom may be wrong or the board simply won't support
1128          * wake on lan on a particular port */
1129         switch (pdev->device) {
1130         case E1000_DEV_ID_82546GB_PCIE:
1131                 adapter->eeprom_wol = 0;
1132                 break;
1133         case E1000_DEV_ID_82546EB_FIBER:
1134         case E1000_DEV_ID_82546GB_FIBER:
1135                 /* Wake events only supported on port A for dual fiber
1136                  * regardless of eeprom setting */
1137                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1138                         adapter->eeprom_wol = 0;
1139                 break;
1140         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1141                 /* if quad port adapter, disable WoL on all but port A */
1142                 if (global_quad_port_a != 0)
1143                         adapter->eeprom_wol = 0;
1144                 else
1145                         adapter->quad_port_a = 1;
1146                 /* Reset for multiple quad port adapters */
1147                 if (++global_quad_port_a == 4)
1148                         global_quad_port_a = 0;
1149                 break;
1150         }
1151
1152         /* initialize the wol settings based on the eeprom settings */
1153         adapter->wol = adapter->eeprom_wol;
1154         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1155
1156         /* Auto detect PHY address */
1157         if (hw->mac_type == e1000_ce4100) {
1158                 for (i = 0; i < 32; i++) {
1159                         hw->phy_addr = i;
1160                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1161                         if (tmp == 0 || tmp == 0xFF) {
1162                                 if (i == 31)
1163                                         goto err_eeprom;
1164                                 continue;
1165                         } else
1166                                 break;
1167                 }
1168         }
1169
1170         /* reset the hardware with the new settings */
1171         e1000_reset(adapter);
1172
1173         strcpy(netdev->name, "eth%d");
1174         err = register_netdev(netdev);
1175         if (err)
1176                 goto err_register;
1177
1178         /* print bus type/speed/width info */
1179         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1180                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1181                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1182                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1183                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1184                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1185                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1186                netdev->dev_addr);
1187
1188         /* carrier off reporting is important to ethtool even BEFORE open */
1189         netif_carrier_off(netdev);
1190
1191         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1192
1193         cards_found++;
1194         return 0;
1195
1196 err_register:
1197 err_eeprom:
1198         e1000_phy_hw_reset(hw);
1199
1200         if (hw->flash_address)
1201                 iounmap(hw->flash_address);
1202         kfree(adapter->tx_ring);
1203         kfree(adapter->rx_ring);
1204 err_dma:
1205 err_sw_init:
1206 err_mdio_ioremap:
1207         iounmap(ce4100_gbe_mdio_base_virt);
1208         iounmap(hw->hw_addr);
1209 err_ioremap:
1210         free_netdev(netdev);
1211 err_alloc_etherdev:
1212         pci_release_selected_regions(pdev, bars);
1213 err_pci_reg:
1214         pci_disable_device(pdev);
1215         return err;
1216 }
1217
1218 /**
1219  * e1000_remove - Device Removal Routine
1220  * @pdev: PCI device information struct
1221  *
1222  * e1000_remove is called by the PCI subsystem to alert the driver
1223  * that it should release a PCI device.  The could be caused by a
1224  * Hot-Plug event, or because the driver is going to be removed from
1225  * memory.
1226  **/
1227
1228 static void __devexit e1000_remove(struct pci_dev *pdev)
1229 {
1230         struct net_device *netdev = pci_get_drvdata(pdev);
1231         struct e1000_adapter *adapter = netdev_priv(netdev);
1232         struct e1000_hw *hw = &adapter->hw;
1233
1234         set_bit(__E1000_DOWN, &adapter->flags);
1235         del_timer_sync(&adapter->tx_fifo_stall_timer);
1236         del_timer_sync(&adapter->watchdog_timer);
1237         del_timer_sync(&adapter->phy_info_timer);
1238
1239         cancel_work_sync(&adapter->reset_task);
1240
1241         e1000_release_manageability(adapter);
1242
1243         unregister_netdev(netdev);
1244
1245         e1000_phy_hw_reset(hw);
1246
1247         kfree(adapter->tx_ring);
1248         kfree(adapter->rx_ring);
1249
1250         iounmap(hw->hw_addr);
1251         if (hw->flash_address)
1252                 iounmap(hw->flash_address);
1253         pci_release_selected_regions(pdev, adapter->bars);
1254
1255         free_netdev(netdev);
1256
1257         pci_disable_device(pdev);
1258 }
1259
1260 /**
1261  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1262  * @adapter: board private structure to initialize
1263  *
1264  * e1000_sw_init initializes the Adapter private data structure.
1265  * e1000_init_hw_struct MUST be called before this function
1266  **/
1267
1268 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1269 {
1270         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1271
1272         adapter->num_tx_queues = 1;
1273         adapter->num_rx_queues = 1;
1274
1275         if (e1000_alloc_queues(adapter)) {
1276                 e_err(probe, "Unable to allocate memory for queues\n");
1277                 return -ENOMEM;
1278         }
1279
1280         /* Explicitly disable IRQ since the NIC can be in any state. */
1281         e1000_irq_disable(adapter);
1282
1283         spin_lock_init(&adapter->stats_lock);
1284
1285         set_bit(__E1000_DOWN, &adapter->flags);
1286
1287         return 0;
1288 }
1289
1290 /**
1291  * e1000_alloc_queues - Allocate memory for all rings
1292  * @adapter: board private structure to initialize
1293  *
1294  * We allocate one ring per queue at run-time since we don't know the
1295  * number of queues at compile-time.
1296  **/
1297
1298 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1299 {
1300         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1301                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1302         if (!adapter->tx_ring)
1303                 return -ENOMEM;
1304
1305         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1306                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1307         if (!adapter->rx_ring) {
1308                 kfree(adapter->tx_ring);
1309                 return -ENOMEM;
1310         }
1311
1312         return E1000_SUCCESS;
1313 }
1314
1315 /**
1316  * e1000_open - Called when a network interface is made active
1317  * @netdev: network interface device structure
1318  *
1319  * Returns 0 on success, negative value on failure
1320  *
1321  * The open entry point is called when a network interface is made
1322  * active by the system (IFF_UP).  At this point all resources needed
1323  * for transmit and receive operations are allocated, the interrupt
1324  * handler is registered with the OS, the watchdog timer is started,
1325  * and the stack is notified that the interface is ready.
1326  **/
1327
1328 static int e1000_open(struct net_device *netdev)
1329 {
1330         struct e1000_adapter *adapter = netdev_priv(netdev);
1331         struct e1000_hw *hw = &adapter->hw;
1332         int err;
1333
1334         /* disallow open during test */
1335         if (test_bit(__E1000_TESTING, &adapter->flags))
1336                 return -EBUSY;
1337
1338         netif_carrier_off(netdev);
1339
1340         /* allocate transmit descriptors */
1341         err = e1000_setup_all_tx_resources(adapter);
1342         if (err)
1343                 goto err_setup_tx;
1344
1345         /* allocate receive descriptors */
1346         err = e1000_setup_all_rx_resources(adapter);
1347         if (err)
1348                 goto err_setup_rx;
1349
1350         e1000_power_up_phy(adapter);
1351
1352         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1353         if ((hw->mng_cookie.status &
1354                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1355                 e1000_update_mng_vlan(adapter);
1356         }
1357
1358         /* before we allocate an interrupt, we must be ready to handle it.
1359          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1360          * as soon as we call pci_request_irq, so we have to setup our
1361          * clean_rx handler before we do so.  */
1362         e1000_configure(adapter);
1363
1364         err = e1000_request_irq(adapter);
1365         if (err)
1366                 goto err_req_irq;
1367
1368         /* From here on the code is the same as e1000_up() */
1369         clear_bit(__E1000_DOWN, &adapter->flags);
1370
1371         napi_enable(&adapter->napi);
1372
1373         e1000_irq_enable(adapter);
1374
1375         netif_start_queue(netdev);
1376
1377         /* fire a link status change interrupt to start the watchdog */
1378         ew32(ICS, E1000_ICS_LSC);
1379
1380         return E1000_SUCCESS;
1381
1382 err_req_irq:
1383         e1000_power_down_phy(adapter);
1384         e1000_free_all_rx_resources(adapter);
1385 err_setup_rx:
1386         e1000_free_all_tx_resources(adapter);
1387 err_setup_tx:
1388         e1000_reset(adapter);
1389
1390         return err;
1391 }
1392
1393 /**
1394  * e1000_close - Disables a network interface
1395  * @netdev: network interface device structure
1396  *
1397  * Returns 0, this is not allowed to fail
1398  *
1399  * The close entry point is called when an interface is de-activated
1400  * by the OS.  The hardware is still under the drivers control, but
1401  * needs to be disabled.  A global MAC reset is issued to stop the
1402  * hardware, and all transmit and receive resources are freed.
1403  **/
1404
1405 static int e1000_close(struct net_device *netdev)
1406 {
1407         struct e1000_adapter *adapter = netdev_priv(netdev);
1408         struct e1000_hw *hw = &adapter->hw;
1409
1410         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1411         e1000_down(adapter);
1412         e1000_power_down_phy(adapter);
1413         e1000_free_irq(adapter);
1414
1415         e1000_free_all_tx_resources(adapter);
1416         e1000_free_all_rx_resources(adapter);
1417
1418         /* kill manageability vlan ID if supported, but not if a vlan with
1419          * the same ID is registered on the host OS (let 8021q kill it) */
1420         if ((hw->mng_cookie.status &
1421                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1422              !(adapter->vlgrp &&
1423                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1424                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1425         }
1426
1427         return 0;
1428 }
1429
1430 /**
1431  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1432  * @adapter: address of board private structure
1433  * @start: address of beginning of memory
1434  * @len: length of memory
1435  **/
1436 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1437                                   unsigned long len)
1438 {
1439         struct e1000_hw *hw = &adapter->hw;
1440         unsigned long begin = (unsigned long)start;
1441         unsigned long end = begin + len;
1442
1443         /* First rev 82545 and 82546 need to not allow any memory
1444          * write location to cross 64k boundary due to errata 23 */
1445         if (hw->mac_type == e1000_82545 ||
1446             hw->mac_type == e1000_ce4100 ||
1447             hw->mac_type == e1000_82546) {
1448                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1449         }
1450
1451         return true;
1452 }
1453
1454 /**
1455  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1456  * @adapter: board private structure
1457  * @txdr:    tx descriptor ring (for a specific queue) to setup
1458  *
1459  * Return 0 on success, negative on failure
1460  **/
1461
1462 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1463                                     struct e1000_tx_ring *txdr)
1464 {
1465         struct pci_dev *pdev = adapter->pdev;
1466         int size;
1467
1468         size = sizeof(struct e1000_buffer) * txdr->count;
1469         txdr->buffer_info = vzalloc(size);
1470         if (!txdr->buffer_info) {
1471                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1472                       "ring\n");
1473                 return -ENOMEM;
1474         }
1475
1476         /* round up to nearest 4K */
1477
1478         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1479         txdr->size = ALIGN(txdr->size, 4096);
1480
1481         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1482                                         GFP_KERNEL);
1483         if (!txdr->desc) {
1484 setup_tx_desc_die:
1485                 vfree(txdr->buffer_info);
1486                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1487                       "ring\n");
1488                 return -ENOMEM;
1489         }
1490
1491         /* Fix for errata 23, can't cross 64kB boundary */
1492         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1493                 void *olddesc = txdr->desc;
1494                 dma_addr_t olddma = txdr->dma;
1495                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1496                       txdr->size, txdr->desc);
1497                 /* Try again, without freeing the previous */
1498                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1499                                                 &txdr->dma, GFP_KERNEL);
1500                 /* Failed allocation, critical failure */
1501                 if (!txdr->desc) {
1502                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1503                                           olddma);
1504                         goto setup_tx_desc_die;
1505                 }
1506
1507                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1508                         /* give up */
1509                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1510                                           txdr->dma);
1511                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1512                                           olddma);
1513                         e_err(probe, "Unable to allocate aligned memory "
1514                               "for the transmit descriptor ring\n");
1515                         vfree(txdr->buffer_info);
1516                         return -ENOMEM;
1517                 } else {
1518                         /* Free old allocation, new allocation was successful */
1519                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1520                                           olddma);
1521                 }
1522         }
1523         memset(txdr->desc, 0, txdr->size);
1524
1525         txdr->next_to_use = 0;
1526         txdr->next_to_clean = 0;
1527
1528         return 0;
1529 }
1530
1531 /**
1532  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1533  *                                (Descriptors) for all queues
1534  * @adapter: board private structure
1535  *
1536  * Return 0 on success, negative on failure
1537  **/
1538
1539 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1540 {
1541         int i, err = 0;
1542
1543         for (i = 0; i < adapter->num_tx_queues; i++) {
1544                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1545                 if (err) {
1546                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1547                         for (i-- ; i >= 0; i--)
1548                                 e1000_free_tx_resources(adapter,
1549                                                         &adapter->tx_ring[i]);
1550                         break;
1551                 }
1552         }
1553
1554         return err;
1555 }
1556
1557 /**
1558  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1559  * @adapter: board private structure
1560  *
1561  * Configure the Tx unit of the MAC after a reset.
1562  **/
1563
1564 static void e1000_configure_tx(struct e1000_adapter *adapter)
1565 {
1566         u64 tdba;
1567         struct e1000_hw *hw = &adapter->hw;
1568         u32 tdlen, tctl, tipg;
1569         u32 ipgr1, ipgr2;
1570
1571         /* Setup the HW Tx Head and Tail descriptor pointers */
1572
1573         switch (adapter->num_tx_queues) {
1574         case 1:
1575         default:
1576                 tdba = adapter->tx_ring[0].dma;
1577                 tdlen = adapter->tx_ring[0].count *
1578                         sizeof(struct e1000_tx_desc);
1579                 ew32(TDLEN, tdlen);
1580                 ew32(TDBAH, (tdba >> 32));
1581                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1582                 ew32(TDT, 0);
1583                 ew32(TDH, 0);
1584                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1585                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1586                 break;
1587         }
1588
1589         /* Set the default values for the Tx Inter Packet Gap timer */
1590         if ((hw->media_type == e1000_media_type_fiber ||
1591              hw->media_type == e1000_media_type_internal_serdes))
1592                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1593         else
1594                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1595
1596         switch (hw->mac_type) {
1597         case e1000_82542_rev2_0:
1598         case e1000_82542_rev2_1:
1599                 tipg = DEFAULT_82542_TIPG_IPGT;
1600                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1601                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1602                 break;
1603         default:
1604                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1605                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1606                 break;
1607         }
1608         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1609         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1610         ew32(TIPG, tipg);
1611
1612         /* Set the Tx Interrupt Delay register */
1613
1614         ew32(TIDV, adapter->tx_int_delay);
1615         if (hw->mac_type >= e1000_82540)
1616                 ew32(TADV, adapter->tx_abs_int_delay);
1617
1618         /* Program the Transmit Control Register */
1619
1620         tctl = er32(TCTL);
1621         tctl &= ~E1000_TCTL_CT;
1622         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1623                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1624
1625         e1000_config_collision_dist(hw);
1626
1627         /* Setup Transmit Descriptor Settings for eop descriptor */
1628         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1629
1630         /* only set IDE if we are delaying interrupts using the timers */
1631         if (adapter->tx_int_delay)
1632                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1633
1634         if (hw->mac_type < e1000_82543)
1635                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1636         else
1637                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1638
1639         /* Cache if we're 82544 running in PCI-X because we'll
1640          * need this to apply a workaround later in the send path. */
1641         if (hw->mac_type == e1000_82544 &&
1642             hw->bus_type == e1000_bus_type_pcix)
1643                 adapter->pcix_82544 = 1;
1644
1645         ew32(TCTL, tctl);
1646
1647 }
1648
1649 /**
1650  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1651  * @adapter: board private structure
1652  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1653  *
1654  * Returns 0 on success, negative on failure
1655  **/
1656
1657 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1658                                     struct e1000_rx_ring *rxdr)
1659 {
1660         struct pci_dev *pdev = adapter->pdev;
1661         int size, desc_len;
1662
1663         size = sizeof(struct e1000_buffer) * rxdr->count;
1664         rxdr->buffer_info = vzalloc(size);
1665         if (!rxdr->buffer_info) {
1666                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1667                       "ring\n");
1668                 return -ENOMEM;
1669         }
1670
1671         desc_len = sizeof(struct e1000_rx_desc);
1672
1673         /* Round up to nearest 4K */
1674
1675         rxdr->size = rxdr->count * desc_len;
1676         rxdr->size = ALIGN(rxdr->size, 4096);
1677
1678         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1679                                         GFP_KERNEL);
1680
1681         if (!rxdr->desc) {
1682                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1683                       "ring\n");
1684 setup_rx_desc_die:
1685                 vfree(rxdr->buffer_info);
1686                 return -ENOMEM;
1687         }
1688
1689         /* Fix for errata 23, can't cross 64kB boundary */
1690         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1691                 void *olddesc = rxdr->desc;
1692                 dma_addr_t olddma = rxdr->dma;
1693                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1694                       rxdr->size, rxdr->desc);
1695                 /* Try again, without freeing the previous */
1696                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1697                                                 &rxdr->dma, GFP_KERNEL);
1698                 /* Failed allocation, critical failure */
1699                 if (!rxdr->desc) {
1700                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1701                                           olddma);
1702                         e_err(probe, "Unable to allocate memory for the Rx "
1703                               "descriptor ring\n");
1704                         goto setup_rx_desc_die;
1705                 }
1706
1707                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1708                         /* give up */
1709                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1710                                           rxdr->dma);
1711                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1712                                           olddma);
1713                         e_err(probe, "Unable to allocate aligned memory for "
1714                               "the Rx descriptor ring\n");
1715                         goto setup_rx_desc_die;
1716                 } else {
1717                         /* Free old allocation, new allocation was successful */
1718                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1719                                           olddma);
1720                 }
1721         }
1722         memset(rxdr->desc, 0, rxdr->size);
1723
1724         rxdr->next_to_clean = 0;
1725         rxdr->next_to_use = 0;
1726         rxdr->rx_skb_top = NULL;
1727
1728         return 0;
1729 }
1730
1731 /**
1732  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1733  *                                (Descriptors) for all queues
1734  * @adapter: board private structure
1735  *
1736  * Return 0 on success, negative on failure
1737  **/
1738
1739 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1740 {
1741         int i, err = 0;
1742
1743         for (i = 0; i < adapter->num_rx_queues; i++) {
1744                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1745                 if (err) {
1746                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1747                         for (i-- ; i >= 0; i--)
1748                                 e1000_free_rx_resources(adapter,
1749                                                         &adapter->rx_ring[i]);
1750                         break;
1751                 }
1752         }
1753
1754         return err;
1755 }
1756
1757 /**
1758  * e1000_setup_rctl - configure the receive control registers
1759  * @adapter: Board private structure
1760  **/
1761 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1762 {
1763         struct e1000_hw *hw = &adapter->hw;
1764         u32 rctl;
1765
1766         rctl = er32(RCTL);
1767
1768         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1769
1770         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1771                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1772                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1773
1774         if (hw->tbi_compatibility_on == 1)
1775                 rctl |= E1000_RCTL_SBP;
1776         else
1777                 rctl &= ~E1000_RCTL_SBP;
1778
1779         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1780                 rctl &= ~E1000_RCTL_LPE;
1781         else
1782                 rctl |= E1000_RCTL_LPE;
1783
1784         /* Setup buffer sizes */
1785         rctl &= ~E1000_RCTL_SZ_4096;
1786         rctl |= E1000_RCTL_BSEX;
1787         switch (adapter->rx_buffer_len) {
1788                 case E1000_RXBUFFER_2048:
1789                 default:
1790                         rctl |= E1000_RCTL_SZ_2048;
1791                         rctl &= ~E1000_RCTL_BSEX;
1792                         break;
1793                 case E1000_RXBUFFER_4096:
1794                         rctl |= E1000_RCTL_SZ_4096;
1795                         break;
1796                 case E1000_RXBUFFER_8192:
1797                         rctl |= E1000_RCTL_SZ_8192;
1798                         break;
1799                 case E1000_RXBUFFER_16384:
1800                         rctl |= E1000_RCTL_SZ_16384;
1801                         break;
1802         }
1803
1804         ew32(RCTL, rctl);
1805 }
1806
1807 /**
1808  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1809  * @adapter: board private structure
1810  *
1811  * Configure the Rx unit of the MAC after a reset.
1812  **/
1813
1814 static void e1000_configure_rx(struct e1000_adapter *adapter)
1815 {
1816         u64 rdba;
1817         struct e1000_hw *hw = &adapter->hw;
1818         u32 rdlen, rctl, rxcsum;
1819
1820         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1821                 rdlen = adapter->rx_ring[0].count *
1822                         sizeof(struct e1000_rx_desc);
1823                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1824                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1825         } else {
1826                 rdlen = adapter->rx_ring[0].count *
1827                         sizeof(struct e1000_rx_desc);
1828                 adapter->clean_rx = e1000_clean_rx_irq;
1829                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1830         }
1831
1832         /* disable receives while setting up the descriptors */
1833         rctl = er32(RCTL);
1834         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1835
1836         /* set the Receive Delay Timer Register */
1837         ew32(RDTR, adapter->rx_int_delay);
1838
1839         if (hw->mac_type >= e1000_82540) {
1840                 ew32(RADV, adapter->rx_abs_int_delay);
1841                 if (adapter->itr_setting != 0)
1842                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1843         }
1844
1845         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1846          * the Base and Length of the Rx Descriptor Ring */
1847         switch (adapter->num_rx_queues) {
1848         case 1:
1849         default:
1850                 rdba = adapter->rx_ring[0].dma;
1851                 ew32(RDLEN, rdlen);
1852                 ew32(RDBAH, (rdba >> 32));
1853                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1854                 ew32(RDT, 0);
1855                 ew32(RDH, 0);
1856                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1857                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1858                 break;
1859         }
1860
1861         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1862         if (hw->mac_type >= e1000_82543) {
1863                 rxcsum = er32(RXCSUM);
1864                 if (adapter->rx_csum)
1865                         rxcsum |= E1000_RXCSUM_TUOFL;
1866                 else
1867                         /* don't need to clear IPPCSE as it defaults to 0 */
1868                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1869                 ew32(RXCSUM, rxcsum);
1870         }
1871
1872         /* Enable Receives */
1873         ew32(RCTL, rctl);
1874 }
1875
1876 /**
1877  * e1000_free_tx_resources - Free Tx Resources per Queue
1878  * @adapter: board private structure
1879  * @tx_ring: Tx descriptor ring for a specific queue
1880  *
1881  * Free all transmit software resources
1882  **/
1883
1884 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1885                                     struct e1000_tx_ring *tx_ring)
1886 {
1887         struct pci_dev *pdev = adapter->pdev;
1888
1889         e1000_clean_tx_ring(adapter, tx_ring);
1890
1891         vfree(tx_ring->buffer_info);
1892         tx_ring->buffer_info = NULL;
1893
1894         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1895                           tx_ring->dma);
1896
1897         tx_ring->desc = NULL;
1898 }
1899
1900 /**
1901  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1902  * @adapter: board private structure
1903  *
1904  * Free all transmit software resources
1905  **/
1906
1907 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1908 {
1909         int i;
1910
1911         for (i = 0; i < adapter->num_tx_queues; i++)
1912                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1913 }
1914
1915 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1916                                              struct e1000_buffer *buffer_info)
1917 {
1918         if (buffer_info->dma) {
1919                 if (buffer_info->mapped_as_page)
1920                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1921                                        buffer_info->length, DMA_TO_DEVICE);
1922                 else
1923                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1924                                          buffer_info->length,
1925                                          DMA_TO_DEVICE);
1926                 buffer_info->dma = 0;
1927         }
1928         if (buffer_info->skb) {
1929                 dev_kfree_skb_any(buffer_info->skb);
1930                 buffer_info->skb = NULL;
1931         }
1932         buffer_info->time_stamp = 0;
1933         /* buffer_info must be completely set up in the transmit path */
1934 }
1935
1936 /**
1937  * e1000_clean_tx_ring - Free Tx Buffers
1938  * @adapter: board private structure
1939  * @tx_ring: ring to be cleaned
1940  **/
1941
1942 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1943                                 struct e1000_tx_ring *tx_ring)
1944 {
1945         struct e1000_hw *hw = &adapter->hw;
1946         struct e1000_buffer *buffer_info;
1947         unsigned long size;
1948         unsigned int i;
1949
1950         /* Free all the Tx ring sk_buffs */
1951
1952         for (i = 0; i < tx_ring->count; i++) {
1953                 buffer_info = &tx_ring->buffer_info[i];
1954                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1955         }
1956
1957         size = sizeof(struct e1000_buffer) * tx_ring->count;
1958         memset(tx_ring->buffer_info, 0, size);
1959
1960         /* Zero out the descriptor ring */
1961
1962         memset(tx_ring->desc, 0, tx_ring->size);
1963
1964         tx_ring->next_to_use = 0;
1965         tx_ring->next_to_clean = 0;
1966         tx_ring->last_tx_tso = 0;
1967
1968         writel(0, hw->hw_addr + tx_ring->tdh);
1969         writel(0, hw->hw_addr + tx_ring->tdt);
1970 }
1971
1972 /**
1973  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1974  * @adapter: board private structure
1975  **/
1976
1977 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1978 {
1979         int i;
1980
1981         for (i = 0; i < adapter->num_tx_queues; i++)
1982                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1983 }
1984
1985 /**
1986  * e1000_free_rx_resources - Free Rx Resources
1987  * @adapter: board private structure
1988  * @rx_ring: ring to clean the resources from
1989  *
1990  * Free all receive software resources
1991  **/
1992
1993 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1994                                     struct e1000_rx_ring *rx_ring)
1995 {
1996         struct pci_dev *pdev = adapter->pdev;
1997
1998         e1000_clean_rx_ring(adapter, rx_ring);
1999
2000         vfree(rx_ring->buffer_info);
2001         rx_ring->buffer_info = NULL;
2002
2003         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2004                           rx_ring->dma);
2005
2006         rx_ring->desc = NULL;
2007 }
2008
2009 /**
2010  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2011  * @adapter: board private structure
2012  *
2013  * Free all receive software resources
2014  **/
2015
2016 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2017 {
2018         int i;
2019
2020         for (i = 0; i < adapter->num_rx_queues; i++)
2021                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2022 }
2023
2024 /**
2025  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2026  * @adapter: board private structure
2027  * @rx_ring: ring to free buffers from
2028  **/
2029
2030 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2031                                 struct e1000_rx_ring *rx_ring)
2032 {
2033         struct e1000_hw *hw = &adapter->hw;
2034         struct e1000_buffer *buffer_info;
2035         struct pci_dev *pdev = adapter->pdev;
2036         unsigned long size;
2037         unsigned int i;
2038
2039         /* Free all the Rx ring sk_buffs */
2040         for (i = 0; i < rx_ring->count; i++) {
2041                 buffer_info = &rx_ring->buffer_info[i];
2042                 if (buffer_info->dma &&
2043                     adapter->clean_rx == e1000_clean_rx_irq) {
2044                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2045                                          buffer_info->length,
2046                                          DMA_FROM_DEVICE);
2047                 } else if (buffer_info->dma &&
2048                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2049                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2050                                        buffer_info->length,
2051                                        DMA_FROM_DEVICE);
2052                 }
2053
2054                 buffer_info->dma = 0;
2055                 if (buffer_info->page) {
2056                         put_page(buffer_info->page);
2057                         buffer_info->page = NULL;
2058                 }
2059                 if (buffer_info->skb) {
2060                         dev_kfree_skb(buffer_info->skb);
2061                         buffer_info->skb = NULL;
2062                 }
2063         }
2064
2065         /* there also may be some cached data from a chained receive */
2066         if (rx_ring->rx_skb_top) {
2067                 dev_kfree_skb(rx_ring->rx_skb_top);
2068                 rx_ring->rx_skb_top = NULL;
2069         }
2070
2071         size = sizeof(struct e1000_buffer) * rx_ring->count;
2072         memset(rx_ring->buffer_info, 0, size);
2073
2074         /* Zero out the descriptor ring */
2075         memset(rx_ring->desc, 0, rx_ring->size);
2076
2077         rx_ring->next_to_clean = 0;
2078         rx_ring->next_to_use = 0;
2079
2080         writel(0, hw->hw_addr + rx_ring->rdh);
2081         writel(0, hw->hw_addr + rx_ring->rdt);
2082 }
2083
2084 /**
2085  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2086  * @adapter: board private structure
2087  **/
2088
2089 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2090 {
2091         int i;
2092
2093         for (i = 0; i < adapter->num_rx_queues; i++)
2094                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2095 }
2096
2097 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2098  * and memory write and invalidate disabled for certain operations
2099  */
2100 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2101 {
2102         struct e1000_hw *hw = &adapter->hw;
2103         struct net_device *netdev = adapter->netdev;
2104         u32 rctl;
2105
2106         e1000_pci_clear_mwi(hw);
2107
2108         rctl = er32(RCTL);
2109         rctl |= E1000_RCTL_RST;
2110         ew32(RCTL, rctl);
2111         E1000_WRITE_FLUSH();
2112         mdelay(5);
2113
2114         if (netif_running(netdev))
2115                 e1000_clean_all_rx_rings(adapter);
2116 }
2117
2118 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2119 {
2120         struct e1000_hw *hw = &adapter->hw;
2121         struct net_device *netdev = adapter->netdev;
2122         u32 rctl;
2123
2124         rctl = er32(RCTL);
2125         rctl &= ~E1000_RCTL_RST;
2126         ew32(RCTL, rctl);
2127         E1000_WRITE_FLUSH();
2128         mdelay(5);
2129
2130         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2131                 e1000_pci_set_mwi(hw);
2132
2133         if (netif_running(netdev)) {
2134                 /* No need to loop, because 82542 supports only 1 queue */
2135                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2136                 e1000_configure_rx(adapter);
2137                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2138         }
2139 }
2140
2141 /**
2142  * e1000_set_mac - Change the Ethernet Address of the NIC
2143  * @netdev: network interface device structure
2144  * @p: pointer to an address structure
2145  *
2146  * Returns 0 on success, negative on failure
2147  **/
2148
2149 static int e1000_set_mac(struct net_device *netdev, void *p)
2150 {
2151         struct e1000_adapter *adapter = netdev_priv(netdev);
2152         struct e1000_hw *hw = &adapter->hw;
2153         struct sockaddr *addr = p;
2154
2155         if (!is_valid_ether_addr(addr->sa_data))
2156                 return -EADDRNOTAVAIL;
2157
2158         /* 82542 2.0 needs to be in reset to write receive address registers */
2159
2160         if (hw->mac_type == e1000_82542_rev2_0)
2161                 e1000_enter_82542_rst(adapter);
2162
2163         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2164         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2165
2166         e1000_rar_set(hw, hw->mac_addr, 0);
2167
2168         if (hw->mac_type == e1000_82542_rev2_0)
2169                 e1000_leave_82542_rst(adapter);
2170
2171         return 0;
2172 }
2173
2174 /**
2175  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2176  * @netdev: network interface device structure
2177  *
2178  * The set_rx_mode entry point is called whenever the unicast or multicast
2179  * address lists or the network interface flags are updated. This routine is
2180  * responsible for configuring the hardware for proper unicast, multicast,
2181  * promiscuous mode, and all-multi behavior.
2182  **/
2183
2184 static void e1000_set_rx_mode(struct net_device *netdev)
2185 {
2186         struct e1000_adapter *adapter = netdev_priv(netdev);
2187         struct e1000_hw *hw = &adapter->hw;
2188         struct netdev_hw_addr *ha;
2189         bool use_uc = false;
2190         u32 rctl;
2191         u32 hash_value;
2192         int i, rar_entries = E1000_RAR_ENTRIES;
2193         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2194         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2195
2196         if (!mcarray) {
2197                 e_err(probe, "memory allocation failed\n");
2198                 return;
2199         }
2200
2201         /* Check for Promiscuous and All Multicast modes */
2202
2203         rctl = er32(RCTL);
2204
2205         if (netdev->flags & IFF_PROMISC) {
2206                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2207                 rctl &= ~E1000_RCTL_VFE;
2208         } else {
2209                 if (netdev->flags & IFF_ALLMULTI)
2210                         rctl |= E1000_RCTL_MPE;
2211                 else
2212                         rctl &= ~E1000_RCTL_MPE;
2213                 /* Enable VLAN filter if there is a VLAN */
2214                 if (adapter->vlgrp)
2215                         rctl |= E1000_RCTL_VFE;
2216         }
2217
2218         if (netdev_uc_count(netdev) > rar_entries - 1) {
2219                 rctl |= E1000_RCTL_UPE;
2220         } else if (!(netdev->flags & IFF_PROMISC)) {
2221                 rctl &= ~E1000_RCTL_UPE;
2222                 use_uc = true;
2223         }
2224
2225         ew32(RCTL, rctl);
2226
2227         /* 82542 2.0 needs to be in reset to write receive address registers */
2228
2229         if (hw->mac_type == e1000_82542_rev2_0)
2230                 e1000_enter_82542_rst(adapter);
2231
2232         /* load the first 14 addresses into the exact filters 1-14. Unicast
2233          * addresses take precedence to avoid disabling unicast filtering
2234          * when possible.
2235          *
2236          * RAR 0 is used for the station MAC address
2237          * if there are not 14 addresses, go ahead and clear the filters
2238          */
2239         i = 1;
2240         if (use_uc)
2241                 netdev_for_each_uc_addr(ha, netdev) {
2242                         if (i == rar_entries)
2243                                 break;
2244                         e1000_rar_set(hw, ha->addr, i++);
2245                 }
2246
2247         netdev_for_each_mc_addr(ha, netdev) {
2248                 if (i == rar_entries) {
2249                         /* load any remaining addresses into the hash table */
2250                         u32 hash_reg, hash_bit, mta;
2251                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2252                         hash_reg = (hash_value >> 5) & 0x7F;
2253                         hash_bit = hash_value & 0x1F;
2254                         mta = (1 << hash_bit);
2255                         mcarray[hash_reg] |= mta;
2256                 } else {
2257                         e1000_rar_set(hw, ha->addr, i++);
2258                 }
2259         }
2260
2261         for (; i < rar_entries; i++) {
2262                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2263                 E1000_WRITE_FLUSH();
2264                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2265                 E1000_WRITE_FLUSH();
2266         }
2267
2268         /* write the hash table completely, write from bottom to avoid
2269          * both stupid write combining chipsets, and flushing each write */
2270         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2271                 /*
2272                  * If we are on an 82544 has an errata where writing odd
2273                  * offsets overwrites the previous even offset, but writing
2274                  * backwards over the range solves the issue by always
2275                  * writing the odd offset first
2276                  */
2277                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2278         }
2279         E1000_WRITE_FLUSH();
2280
2281         if (hw->mac_type == e1000_82542_rev2_0)
2282                 e1000_leave_82542_rst(adapter);
2283
2284         kfree(mcarray);
2285 }
2286
2287 /* Need to wait a few seconds after link up to get diagnostic information from
2288  * the phy */
2289
2290 static void e1000_update_phy_info(unsigned long data)
2291 {
2292         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2293         schedule_work(&adapter->phy_info_task);
2294 }
2295
2296 static void e1000_update_phy_info_task(struct work_struct *work)
2297 {
2298         struct e1000_adapter *adapter = container_of(work,
2299                                                      struct e1000_adapter,
2300                                                      phy_info_task);
2301         struct e1000_hw *hw = &adapter->hw;
2302
2303         rtnl_lock();
2304         e1000_phy_get_info(hw, &adapter->phy_info);
2305         rtnl_unlock();
2306 }
2307
2308 /**
2309  * e1000_82547_tx_fifo_stall - Timer Call-back
2310  * @data: pointer to adapter cast into an unsigned long
2311  **/
2312 static void e1000_82547_tx_fifo_stall(unsigned long data)
2313 {
2314         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2315         schedule_work(&adapter->fifo_stall_task);
2316 }
2317
2318 /**
2319  * e1000_82547_tx_fifo_stall_task - task to complete work
2320  * @work: work struct contained inside adapter struct
2321  **/
2322 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2323 {
2324         struct e1000_adapter *adapter = container_of(work,
2325                                                      struct e1000_adapter,
2326                                                      fifo_stall_task);
2327         struct e1000_hw *hw = &adapter->hw;
2328         struct net_device *netdev = adapter->netdev;
2329         u32 tctl;
2330
2331         rtnl_lock();
2332         if (atomic_read(&adapter->tx_fifo_stall)) {
2333                 if ((er32(TDT) == er32(TDH)) &&
2334                    (er32(TDFT) == er32(TDFH)) &&
2335                    (er32(TDFTS) == er32(TDFHS))) {
2336                         tctl = er32(TCTL);
2337                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2338                         ew32(TDFT, adapter->tx_head_addr);
2339                         ew32(TDFH, adapter->tx_head_addr);
2340                         ew32(TDFTS, adapter->tx_head_addr);
2341                         ew32(TDFHS, adapter->tx_head_addr);
2342                         ew32(TCTL, tctl);
2343                         E1000_WRITE_FLUSH();
2344
2345                         adapter->tx_fifo_head = 0;
2346                         atomic_set(&adapter->tx_fifo_stall, 0);
2347                         netif_wake_queue(netdev);
2348                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2349                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2350                 }
2351         }
2352         rtnl_unlock();
2353 }
2354
2355 bool e1000_has_link(struct e1000_adapter *adapter)
2356 {
2357         struct e1000_hw *hw = &adapter->hw;
2358         bool link_active = false;
2359
2360         /* get_link_status is set on LSC (link status) interrupt or
2361          * rx sequence error interrupt.  get_link_status will stay
2362          * false until the e1000_check_for_link establishes link
2363          * for copper adapters ONLY
2364          */
2365         switch (hw->media_type) {
2366         case e1000_media_type_copper:
2367                 if (hw->get_link_status) {
2368                         e1000_check_for_link(hw);
2369                         link_active = !hw->get_link_status;
2370                 } else {
2371                         link_active = true;
2372                 }
2373                 break;
2374         case e1000_media_type_fiber:
2375                 e1000_check_for_link(hw);
2376                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2377                 break;
2378         case e1000_media_type_internal_serdes:
2379                 e1000_check_for_link(hw);
2380                 link_active = hw->serdes_has_link;
2381                 break;
2382         default:
2383                 break;
2384         }
2385
2386         return link_active;
2387 }
2388
2389 /**
2390  * e1000_watchdog - Timer Call-back
2391  * @data: pointer to adapter cast into an unsigned long
2392  **/
2393 static void e1000_watchdog(unsigned long data)
2394 {
2395         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2396         struct e1000_hw *hw = &adapter->hw;
2397         struct net_device *netdev = adapter->netdev;
2398         struct e1000_tx_ring *txdr = adapter->tx_ring;
2399         u32 link, tctl;
2400
2401         link = e1000_has_link(adapter);
2402         if ((netif_carrier_ok(netdev)) && link)
2403                 goto link_up;
2404
2405         if (link) {
2406                 if (!netif_carrier_ok(netdev)) {
2407                         u32 ctrl;
2408                         bool txb2b = true;
2409                         /* update snapshot of PHY registers on LSC */
2410                         e1000_get_speed_and_duplex(hw,
2411                                                    &adapter->link_speed,
2412                                                    &adapter->link_duplex);
2413
2414                         ctrl = er32(CTRL);
2415                         pr_info("%s NIC Link is Up %d Mbps %s, "
2416                                 "Flow Control: %s\n",
2417                                 netdev->name,
2418                                 adapter->link_speed,
2419                                 adapter->link_duplex == FULL_DUPLEX ?
2420                                 "Full Duplex" : "Half Duplex",
2421                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2422                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2423                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2424                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2425
2426                         /* adjust timeout factor according to speed/duplex */
2427                         adapter->tx_timeout_factor = 1;
2428                         switch (adapter->link_speed) {
2429                         case SPEED_10:
2430                                 txb2b = false;
2431                                 adapter->tx_timeout_factor = 16;
2432                                 break;
2433                         case SPEED_100:
2434                                 txb2b = false;
2435                                 /* maybe add some timeout factor ? */
2436                                 break;
2437                         }
2438
2439                         /* enable transmits in the hardware */
2440                         tctl = er32(TCTL);
2441                         tctl |= E1000_TCTL_EN;
2442                         ew32(TCTL, tctl);
2443
2444                         netif_carrier_on(netdev);
2445                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2446                                 mod_timer(&adapter->phy_info_timer,
2447                                           round_jiffies(jiffies + 2 * HZ));
2448                         adapter->smartspeed = 0;
2449                 }
2450         } else {
2451                 if (netif_carrier_ok(netdev)) {
2452                         adapter->link_speed = 0;
2453                         adapter->link_duplex = 0;
2454                         pr_info("%s NIC Link is Down\n",
2455                                 netdev->name);
2456                         netif_carrier_off(netdev);
2457
2458                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2459                                 mod_timer(&adapter->phy_info_timer,
2460                                           round_jiffies(jiffies + 2 * HZ));
2461                 }
2462
2463                 e1000_smartspeed(adapter);
2464         }
2465
2466 link_up:
2467         e1000_update_stats(adapter);
2468
2469         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2470         adapter->tpt_old = adapter->stats.tpt;
2471         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2472         adapter->colc_old = adapter->stats.colc;
2473
2474         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2475         adapter->gorcl_old = adapter->stats.gorcl;
2476         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2477         adapter->gotcl_old = adapter->stats.gotcl;
2478
2479         e1000_update_adaptive(hw);
2480
2481         if (!netif_carrier_ok(netdev)) {
2482                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2483                         /* We've lost link, so the controller stops DMA,
2484                          * but we've got queued Tx work that's never going
2485                          * to get done, so reset controller to flush Tx.
2486                          * (Do the reset outside of interrupt context). */
2487                         adapter->tx_timeout_count++;
2488                         schedule_work(&adapter->reset_task);
2489                         /* return immediately since reset is imminent */
2490                         return;
2491                 }
2492         }
2493
2494         /* Simple mode for Interrupt Throttle Rate (ITR) */
2495         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2496                 /*
2497                  * Symmetric Tx/Rx gets a reduced ITR=2000;
2498                  * Total asymmetrical Tx or Rx gets ITR=8000;
2499                  * everyone else is between 2000-8000.
2500                  */
2501                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2502                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2503                             adapter->gotcl - adapter->gorcl :
2504                             adapter->gorcl - adapter->gotcl) / 10000;
2505                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2506
2507                 ew32(ITR, 1000000000 / (itr * 256));
2508         }
2509
2510         /* Cause software interrupt to ensure rx ring is cleaned */
2511         ew32(ICS, E1000_ICS_RXDMT0);
2512
2513         /* Force detection of hung controller every watchdog period */
2514         adapter->detect_tx_hung = true;
2515
2516         /* Reset the timer */
2517         if (!test_bit(__E1000_DOWN, &adapter->flags))
2518                 mod_timer(&adapter->watchdog_timer,
2519                           round_jiffies(jiffies + 2 * HZ));
2520 }
2521
2522 enum latency_range {
2523         lowest_latency = 0,
2524         low_latency = 1,
2525         bulk_latency = 2,
2526         latency_invalid = 255
2527 };
2528
2529 /**
2530  * e1000_update_itr - update the dynamic ITR value based on statistics
2531  * @adapter: pointer to adapter
2532  * @itr_setting: current adapter->itr
2533  * @packets: the number of packets during this measurement interval
2534  * @bytes: the number of bytes during this measurement interval
2535  *
2536  *      Stores a new ITR value based on packets and byte
2537  *      counts during the last interrupt.  The advantage of per interrupt
2538  *      computation is faster updates and more accurate ITR for the current
2539  *      traffic pattern.  Constants in this function were computed
2540  *      based on theoretical maximum wire speed and thresholds were set based
2541  *      on testing data as well as attempting to minimize response time
2542  *      while increasing bulk throughput.
2543  *      this functionality is controlled by the InterruptThrottleRate module
2544  *      parameter (see e1000_param.c)
2545  **/
2546 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2547                                      u16 itr_setting, int packets, int bytes)
2548 {
2549         unsigned int retval = itr_setting;
2550         struct e1000_hw *hw = &adapter->hw;
2551
2552         if (unlikely(hw->mac_type < e1000_82540))
2553                 goto update_itr_done;
2554
2555         if (packets == 0)
2556                 goto update_itr_done;
2557
2558         switch (itr_setting) {
2559         case lowest_latency:
2560                 /* jumbo frames get bulk treatment*/
2561                 if (bytes/packets > 8000)
2562                         retval = bulk_latency;
2563                 else if ((packets < 5) && (bytes > 512))
2564                         retval = low_latency;
2565                 break;
2566         case low_latency:  /* 50 usec aka 20000 ints/s */
2567                 if (bytes > 10000) {
2568                         /* jumbo frames need bulk latency setting */
2569                         if (bytes/packets > 8000)
2570                                 retval = bulk_latency;
2571                         else if ((packets < 10) || ((bytes/packets) > 1200))
2572                                 retval = bulk_latency;
2573                         else if ((packets > 35))
2574                                 retval = lowest_latency;
2575                 } else if (bytes/packets > 2000)
2576                         retval = bulk_latency;
2577                 else if (packets <= 2 && bytes < 512)
2578                         retval = lowest_latency;
2579                 break;
2580         case bulk_latency: /* 250 usec aka 4000 ints/s */
2581                 if (bytes > 25000) {
2582                         if (packets > 35)
2583                                 retval = low_latency;
2584                 } else if (bytes < 6000) {
2585                         retval = low_latency;
2586                 }
2587                 break;
2588         }
2589
2590 update_itr_done:
2591         return retval;
2592 }
2593
2594 static void e1000_set_itr(struct e1000_adapter *adapter)
2595 {
2596         struct e1000_hw *hw = &adapter->hw;
2597         u16 current_itr;
2598         u32 new_itr = adapter->itr;
2599
2600         if (unlikely(hw->mac_type < e1000_82540))
2601                 return;
2602
2603         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2604         if (unlikely(adapter->link_speed != SPEED_1000)) {
2605                 current_itr = 0;
2606                 new_itr = 4000;
2607                 goto set_itr_now;
2608         }
2609
2610         adapter->tx_itr = e1000_update_itr(adapter,
2611                                     adapter->tx_itr,
2612                                     adapter->total_tx_packets,
2613                                     adapter->total_tx_bytes);
2614         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2615         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2616                 adapter->tx_itr = low_latency;
2617
2618         adapter->rx_itr = e1000_update_itr(adapter,
2619                                     adapter->rx_itr,
2620                                     adapter->total_rx_packets,
2621                                     adapter->total_rx_bytes);
2622         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2623         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2624                 adapter->rx_itr = low_latency;
2625
2626         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2627
2628         switch (current_itr) {
2629         /* counts and packets in update_itr are dependent on these numbers */
2630         case lowest_latency:
2631                 new_itr = 70000;
2632                 break;
2633         case low_latency:
2634                 new_itr = 20000; /* aka hwitr = ~200 */
2635                 break;
2636         case bulk_latency:
2637                 new_itr = 4000;
2638                 break;
2639         default:
2640                 break;
2641         }
2642
2643 set_itr_now:
2644         if (new_itr != adapter->itr) {
2645                 /* this attempts to bias the interrupt rate towards Bulk
2646                  * by adding intermediate steps when interrupt rate is
2647                  * increasing */
2648                 new_itr = new_itr > adapter->itr ?
2649                              min(adapter->itr + (new_itr >> 2), new_itr) :
2650                              new_itr;
2651                 adapter->itr = new_itr;
2652                 ew32(ITR, 1000000000 / (new_itr * 256));
2653         }
2654 }
2655
2656 #define E1000_TX_FLAGS_CSUM             0x00000001
2657 #define E1000_TX_FLAGS_VLAN             0x00000002
2658 #define E1000_TX_FLAGS_TSO              0x00000004
2659 #define E1000_TX_FLAGS_IPV4             0x00000008
2660 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2661 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2662
2663 static int e1000_tso(struct e1000_adapter *adapter,
2664                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2665 {
2666         struct e1000_context_desc *context_desc;
2667         struct e1000_buffer *buffer_info;
2668         unsigned int i;
2669         u32 cmd_length = 0;
2670         u16 ipcse = 0, tucse, mss;
2671         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2672         int err;
2673
2674         if (skb_is_gso(skb)) {
2675                 if (skb_header_cloned(skb)) {
2676                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2677                         if (err)
2678                                 return err;
2679                 }
2680
2681                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2682                 mss = skb_shinfo(skb)->gso_size;
2683                 if (skb->protocol == htons(ETH_P_IP)) {
2684                         struct iphdr *iph = ip_hdr(skb);
2685                         iph->tot_len = 0;
2686                         iph->check = 0;
2687                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2688                                                                  iph->daddr, 0,
2689                                                                  IPPROTO_TCP,
2690                                                                  0);
2691                         cmd_length = E1000_TXD_CMD_IP;
2692                         ipcse = skb_transport_offset(skb) - 1;
2693                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2694                         ipv6_hdr(skb)->payload_len = 0;
2695                         tcp_hdr(skb)->check =
2696                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2697                                                  &ipv6_hdr(skb)->daddr,
2698                                                  0, IPPROTO_TCP, 0);
2699                         ipcse = 0;
2700                 }
2701                 ipcss = skb_network_offset(skb);
2702                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2703                 tucss = skb_transport_offset(skb);
2704                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2705                 tucse = 0;
2706
2707                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2708                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2709
2710                 i = tx_ring->next_to_use;
2711                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2712                 buffer_info = &tx_ring->buffer_info[i];
2713
2714                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2715                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2716                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2717                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2718                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2719                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2720                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2721                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2722                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2723
2724                 buffer_info->time_stamp = jiffies;
2725                 buffer_info->next_to_watch = i;
2726
2727                 if (++i == tx_ring->count) i = 0;
2728                 tx_ring->next_to_use = i;
2729
2730                 return true;
2731         }
2732         return false;
2733 }
2734
2735 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2736                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2737 {
2738         struct e1000_context_desc *context_desc;
2739         struct e1000_buffer *buffer_info;
2740         unsigned int i;
2741         u8 css;
2742         u32 cmd_len = E1000_TXD_CMD_DEXT;
2743
2744         if (skb->ip_summed != CHECKSUM_PARTIAL)
2745                 return false;
2746
2747         switch (skb->protocol) {
2748         case cpu_to_be16(ETH_P_IP):
2749                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2750                         cmd_len |= E1000_TXD_CMD_TCP;
2751                 break;
2752         case cpu_to_be16(ETH_P_IPV6):
2753                 /* XXX not handling all IPV6 headers */
2754                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2755                         cmd_len |= E1000_TXD_CMD_TCP;
2756                 break;
2757         default:
2758                 if (unlikely(net_ratelimit()))
2759                         e_warn(drv, "checksum_partial proto=%x!\n",
2760                                skb->protocol);
2761                 break;
2762         }
2763
2764         css = skb_checksum_start_offset(skb);
2765
2766         i = tx_ring->next_to_use;
2767         buffer_info = &tx_ring->buffer_info[i];
2768         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2769
2770         context_desc->lower_setup.ip_config = 0;
2771         context_desc->upper_setup.tcp_fields.tucss = css;
2772         context_desc->upper_setup.tcp_fields.tucso =
2773                 css + skb->csum_offset;
2774         context_desc->upper_setup.tcp_fields.tucse = 0;
2775         context_desc->tcp_seg_setup.data = 0;
2776         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2777
2778         buffer_info->time_stamp = jiffies;
2779         buffer_info->next_to_watch = i;
2780
2781         if (unlikely(++i == tx_ring->count)) i = 0;
2782         tx_ring->next_to_use = i;
2783
2784         return true;
2785 }
2786
2787 #define E1000_MAX_TXD_PWR       12
2788 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2789
2790 static int e1000_tx_map(struct e1000_adapter *adapter,
2791                         struct e1000_tx_ring *tx_ring,
2792                         struct sk_buff *skb, unsigned int first,
2793                         unsigned int max_per_txd, unsigned int nr_frags,
2794                         unsigned int mss)
2795 {
2796         struct e1000_hw *hw = &adapter->hw;
2797         struct pci_dev *pdev = adapter->pdev;
2798         struct e1000_buffer *buffer_info;
2799         unsigned int len = skb_headlen(skb);
2800         unsigned int offset = 0, size, count = 0, i;
2801         unsigned int f;
2802
2803         i = tx_ring->next_to_use;
2804
2805         while (len) {
2806                 buffer_info = &tx_ring->buffer_info[i];
2807                 size = min(len, max_per_txd);
2808                 /* Workaround for Controller erratum --
2809                  * descriptor for non-tso packet in a linear SKB that follows a
2810                  * tso gets written back prematurely before the data is fully
2811                  * DMA'd to the controller */
2812                 if (!skb->data_len && tx_ring->last_tx_tso &&
2813                     !skb_is_gso(skb)) {
2814                         tx_ring->last_tx_tso = 0;
2815                         size -= 4;
2816                 }
2817
2818                 /* Workaround for premature desc write-backs
2819                  * in TSO mode.  Append 4-byte sentinel desc */
2820                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2821                         size -= 4;
2822                 /* work-around for errata 10 and it applies
2823                  * to all controllers in PCI-X mode
2824                  * The fix is to make sure that the first descriptor of a
2825                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2826                  */
2827                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2828                                 (size > 2015) && count == 0))
2829                         size = 2015;
2830
2831                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2832                  * terminating buffers within evenly-aligned dwords. */
2833                 if (unlikely(adapter->pcix_82544 &&
2834                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2835                    size > 4))
2836                         size -= 4;
2837
2838                 buffer_info->length = size;
2839                 /* set time_stamp *before* dma to help avoid a possible race */
2840                 buffer_info->time_stamp = jiffies;
2841                 buffer_info->mapped_as_page = false;
2842                 buffer_info->dma = dma_map_single(&pdev->dev,
2843                                                   skb->data + offset,
2844                                                   size, DMA_TO_DEVICE);
2845                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2846                         goto dma_error;
2847                 buffer_info->next_to_watch = i;
2848
2849                 len -= size;
2850                 offset += size;
2851                 count++;
2852                 if (len) {
2853                         i++;
2854                         if (unlikely(i == tx_ring->count))
2855                                 i = 0;
2856                 }
2857         }
2858
2859         for (f = 0; f < nr_frags; f++) {
2860                 struct skb_frag_struct *frag;
2861
2862                 frag = &skb_shinfo(skb)->frags[f];
2863                 len = frag->size;
2864                 offset = frag->page_offset;
2865
2866                 while (len) {
2867                         i++;
2868                         if (unlikely(i == tx_ring->count))
2869                                 i = 0;
2870
2871                         buffer_info = &tx_ring->buffer_info[i];
2872                         size = min(len, max_per_txd);
2873                         /* Workaround for premature desc write-backs
2874                          * in TSO mode.  Append 4-byte sentinel desc */
2875                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2876                                 size -= 4;
2877                         /* Workaround for potential 82544 hang in PCI-X.
2878                          * Avoid terminating buffers within evenly-aligned
2879                          * dwords. */
2880                         if (unlikely(adapter->pcix_82544 &&
2881                             !((unsigned long)(page_to_phys(frag->page) + offset
2882                                               + size - 1) & 4) &&
2883                             size > 4))
2884                                 size -= 4;
2885
2886                         buffer_info->length = size;
2887                         buffer_info->time_stamp = jiffies;
2888                         buffer_info->mapped_as_page = true;
2889                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2890                                                         offset, size,
2891                                                         DMA_TO_DEVICE);
2892                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2893                                 goto dma_error;
2894                         buffer_info->next_to_watch = i;
2895
2896                         len -= size;
2897                         offset += size;
2898                         count++;
2899                 }
2900         }
2901
2902         tx_ring->buffer_info[i].skb = skb;
2903         tx_ring->buffer_info[first].next_to_watch = i;
2904
2905         return count;
2906
2907 dma_error:
2908         dev_err(&pdev->dev, "TX DMA map failed\n");
2909         buffer_info->dma = 0;
2910         if (count)
2911                 count--;
2912
2913         while (count--) {
2914                 if (i==0)
2915                         i += tx_ring->count;
2916                 i--;
2917                 buffer_info = &tx_ring->buffer_info[i];
2918                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2919         }
2920
2921         return 0;
2922 }
2923
2924 static void e1000_tx_queue(struct e1000_adapter *adapter,
2925                            struct e1000_tx_ring *tx_ring, int tx_flags,
2926                            int count)
2927 {
2928         struct e1000_hw *hw = &adapter->hw;
2929         struct e1000_tx_desc *tx_desc = NULL;
2930         struct e1000_buffer *buffer_info;
2931         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2932         unsigned int i;
2933
2934         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2935                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2936                              E1000_TXD_CMD_TSE;
2937                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2938
2939                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2940                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2941         }
2942
2943         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2944                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2945                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2946         }
2947
2948         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2949                 txd_lower |= E1000_TXD_CMD_VLE;
2950                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2951         }
2952
2953         i = tx_ring->next_to_use;
2954
2955         while (count--) {
2956                 buffer_info = &tx_ring->buffer_info[i];
2957                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2958                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2959                 tx_desc->lower.data =
2960                         cpu_to_le32(txd_lower | buffer_info->length);
2961                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2962                 if (unlikely(++i == tx_ring->count)) i = 0;
2963         }
2964
2965         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2966
2967         /* Force memory writes to complete before letting h/w
2968          * know there are new descriptors to fetch.  (Only
2969          * applicable for weak-ordered memory model archs,
2970          * such as IA-64). */
2971         wmb();
2972
2973         tx_ring->next_to_use = i;
2974         writel(i, hw->hw_addr + tx_ring->tdt);
2975         /* we need this if more than one processor can write to our tail
2976          * at a time, it syncronizes IO on IA64/Altix systems */
2977         mmiowb();
2978 }
2979
2980 /**
2981  * 82547 workaround to avoid controller hang in half-duplex environment.
2982  * The workaround is to avoid queuing a large packet that would span
2983  * the internal Tx FIFO ring boundary by notifying the stack to resend
2984  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2985  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2986  * to the beginning of the Tx FIFO.
2987  **/
2988
2989 #define E1000_FIFO_HDR                  0x10
2990 #define E1000_82547_PAD_LEN             0x3E0
2991
2992 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2993                                        struct sk_buff *skb)
2994 {
2995         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2996         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2997
2998         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2999
3000         if (adapter->link_duplex != HALF_DUPLEX)
3001                 goto no_fifo_stall_required;
3002
3003         if (atomic_read(&adapter->tx_fifo_stall))
3004                 return 1;
3005
3006         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3007                 atomic_set(&adapter->tx_fifo_stall, 1);
3008                 return 1;
3009         }
3010
3011 no_fifo_stall_required:
3012         adapter->tx_fifo_head += skb_fifo_len;
3013         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3014                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3015         return 0;
3016 }
3017
3018 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3019 {
3020         struct e1000_adapter *adapter = netdev_priv(netdev);
3021         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3022
3023         netif_stop_queue(netdev);
3024         /* Herbert's original patch had:
3025          *  smp_mb__after_netif_stop_queue();
3026          * but since that doesn't exist yet, just open code it. */
3027         smp_mb();
3028
3029         /* We need to check again in a case another CPU has just
3030          * made room available. */
3031         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3032                 return -EBUSY;
3033
3034         /* A reprieve! */
3035         netif_start_queue(netdev);
3036         ++adapter->restart_queue;
3037         return 0;
3038 }
3039
3040 static int e1000_maybe_stop_tx(struct net_device *netdev,
3041                                struct e1000_tx_ring *tx_ring, int size)
3042 {
3043         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3044                 return 0;
3045         return __e1000_maybe_stop_tx(netdev, size);
3046 }
3047
3048 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3049 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3050                                     struct net_device *netdev)
3051 {
3052         struct e1000_adapter *adapter = netdev_priv(netdev);
3053         struct e1000_hw *hw = &adapter->hw;
3054         struct e1000_tx_ring *tx_ring;
3055         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3056         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3057         unsigned int tx_flags = 0;
3058         unsigned int len = skb_headlen(skb);
3059         unsigned int nr_frags;
3060         unsigned int mss;
3061         int count = 0;
3062         int tso;
3063         unsigned int f;
3064
3065         /* This goes back to the question of how to logically map a tx queue
3066          * to a flow.  Right now, performance is impacted slightly negatively
3067          * if using multiple tx queues.  If the stack breaks away from a
3068          * single qdisc implementation, we can look at this again. */
3069         tx_ring = adapter->tx_ring;
3070
3071         if (unlikely(skb->len <= 0)) {
3072                 dev_kfree_skb_any(skb);
3073                 return NETDEV_TX_OK;
3074         }
3075
3076         mss = skb_shinfo(skb)->gso_size;
3077         /* The controller does a simple calculation to
3078          * make sure there is enough room in the FIFO before
3079          * initiating the DMA for each buffer.  The calc is:
3080          * 4 = ceil(buffer len/mss).  To make sure we don't
3081          * overrun the FIFO, adjust the max buffer len if mss
3082          * drops. */
3083         if (mss) {
3084                 u8 hdr_len;
3085                 max_per_txd = min(mss << 2, max_per_txd);
3086                 max_txd_pwr = fls(max_per_txd) - 1;
3087
3088                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3089                 if (skb->data_len && hdr_len == len) {
3090                         switch (hw->mac_type) {
3091                                 unsigned int pull_size;
3092                         case e1000_82544:
3093                                 /* Make sure we have room to chop off 4 bytes,
3094                                  * and that the end alignment will work out to
3095                                  * this hardware's requirements
3096                                  * NOTE: this is a TSO only workaround
3097                                  * if end byte alignment not correct move us
3098                                  * into the next dword */
3099                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3100                                         break;
3101                                 /* fall through */
3102                                 pull_size = min((unsigned int)4, skb->data_len);
3103                                 if (!__pskb_pull_tail(skb, pull_size)) {
3104                                         e_err(drv, "__pskb_pull_tail "
3105                                               "failed.\n");
3106                                         dev_kfree_skb_any(skb);
3107                                         return NETDEV_TX_OK;
3108                                 }
3109                                 len = skb_headlen(skb);
3110                                 break;
3111                         default:
3112                                 /* do nothing */
3113                                 break;
3114                         }
3115                 }
3116         }
3117
3118         /* reserve a descriptor for the offload context */
3119         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3120                 count++;
3121         count++;
3122
3123         /* Controller Erratum workaround */
3124         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3125                 count++;
3126
3127         count += TXD_USE_COUNT(len, max_txd_pwr);
3128
3129         if (adapter->pcix_82544)
3130                 count++;
3131
3132         /* work-around for errata 10 and it applies to all controllers
3133          * in PCI-X mode, so add one more descriptor to the count
3134          */
3135         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3136                         (len > 2015)))
3137                 count++;
3138
3139         nr_frags = skb_shinfo(skb)->nr_frags;
3140         for (f = 0; f < nr_frags; f++)
3141                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3142                                        max_txd_pwr);
3143         if (adapter->pcix_82544)
3144                 count += nr_frags;
3145
3146         /* need: count + 2 desc gap to keep tail from touching
3147          * head, otherwise try next time */
3148         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3149                 return NETDEV_TX_BUSY;
3150
3151         if (unlikely(hw->mac_type == e1000_82547)) {
3152                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3153                         netif_stop_queue(netdev);
3154                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3155                                 mod_timer(&adapter->tx_fifo_stall_timer,
3156                                           jiffies + 1);
3157                         return NETDEV_TX_BUSY;
3158                 }
3159         }
3160
3161         if (unlikely(vlan_tx_tag_present(skb))) {
3162                 tx_flags |= E1000_TX_FLAGS_VLAN;
3163                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3164         }
3165
3166         first = tx_ring->next_to_use;
3167
3168         tso = e1000_tso(adapter, tx_ring, skb);
3169         if (tso < 0) {
3170                 dev_kfree_skb_any(skb);
3171                 return NETDEV_TX_OK;
3172         }
3173
3174         if (likely(tso)) {
3175                 if (likely(hw->mac_type != e1000_82544))
3176                         tx_ring->last_tx_tso = 1;
3177                 tx_flags |= E1000_TX_FLAGS_TSO;
3178         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3179                 tx_flags |= E1000_TX_FLAGS_CSUM;
3180
3181         if (likely(skb->protocol == htons(ETH_P_IP)))
3182                 tx_flags |= E1000_TX_FLAGS_IPV4;
3183
3184         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3185                              nr_frags, mss);
3186
3187         if (count) {
3188                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3189                 /* Make sure there is space in the ring for the next send. */
3190                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3191
3192         } else {
3193                 dev_kfree_skb_any(skb);
3194                 tx_ring->buffer_info[first].time_stamp = 0;
3195                 tx_ring->next_to_use = first;
3196         }
3197
3198         return NETDEV_TX_OK;
3199 }
3200
3201 /**
3202  * e1000_tx_timeout - Respond to a Tx Hang
3203  * @netdev: network interface device structure
3204  **/
3205
3206 static void e1000_tx_timeout(struct net_device *netdev)
3207 {
3208         struct e1000_adapter *adapter = netdev_priv(netdev);
3209
3210         /* Do the reset outside of interrupt context */
3211         adapter->tx_timeout_count++;
3212         schedule_work(&adapter->reset_task);
3213 }
3214
3215 static void e1000_reset_task(struct work_struct *work)
3216 {
3217         struct e1000_adapter *adapter =
3218                 container_of(work, struct e1000_adapter, reset_task);
3219
3220         e1000_reinit_safe(adapter);
3221 }
3222
3223 /**
3224  * e1000_get_stats - Get System Network Statistics
3225  * @netdev: network interface device structure
3226  *
3227  * Returns the address of the device statistics structure.
3228  * The statistics are actually updated from the timer callback.
3229  **/
3230
3231 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3232 {
3233         /* only return the current stats */
3234         return &netdev->stats;
3235 }
3236
3237 /**
3238  * e1000_change_mtu - Change the Maximum Transfer Unit
3239  * @netdev: network interface device structure
3240  * @new_mtu: new value for maximum frame size
3241  *
3242  * Returns 0 on success, negative on failure
3243  **/
3244
3245 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3246 {
3247         struct e1000_adapter *adapter = netdev_priv(netdev);
3248         struct e1000_hw *hw = &adapter->hw;
3249         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3250
3251         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3252             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3253                 e_err(probe, "Invalid MTU setting\n");
3254                 return -EINVAL;
3255         }
3256
3257         /* Adapter-specific max frame size limits. */
3258         switch (hw->mac_type) {
3259         case e1000_undefined ... e1000_82542_rev2_1:
3260                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3261                         e_err(probe, "Jumbo Frames not supported.\n");
3262                         return -EINVAL;
3263                 }
3264                 break;
3265         default:
3266                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3267                 break;
3268         }
3269
3270         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3271                 msleep(1);
3272         /* e1000_down has a dependency on max_frame_size */
3273         hw->max_frame_size = max_frame;
3274         if (netif_running(netdev))
3275                 e1000_down(adapter);
3276
3277         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3278          * means we reserve 2 more, this pushes us to allocate from the next
3279          * larger slab size.
3280          * i.e. RXBUFFER_2048 --> size-4096 slab
3281          *  however with the new *_jumbo_rx* routines, jumbo receives will use
3282          *  fragmented skbs */
3283
3284         if (max_frame <= E1000_RXBUFFER_2048)
3285                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3286         else
3287 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3288                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3289 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3290                 adapter->rx_buffer_len = PAGE_SIZE;
3291 #endif
3292
3293         /* adjust allocation if LPE protects us, and we aren't using SBP */
3294         if (!hw->tbi_compatibility_on &&
3295             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3296              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3297                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3298
3299         pr_info("%s changing MTU from %d to %d\n",
3300                 netdev->name, netdev->mtu, new_mtu);
3301         netdev->mtu = new_mtu;
3302
3303         if (netif_running(netdev))
3304                 e1000_up(adapter);
3305         else
3306                 e1000_reset(adapter);
3307
3308         clear_bit(__E1000_RESETTING, &adapter->flags);
3309
3310         return 0;
3311 }
3312
3313 /**
3314  * e1000_update_stats - Update the board statistics counters
3315  * @adapter: board private structure
3316  **/
3317
3318 void e1000_update_stats(struct e1000_adapter *adapter)
3319 {
3320         struct net_device *netdev = adapter->netdev;
3321         struct e1000_hw *hw = &adapter->hw;
3322         struct pci_dev *pdev = adapter->pdev;
3323         unsigned long flags;
3324         u16 phy_tmp;
3325
3326 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3327
3328         /*
3329          * Prevent stats update while adapter is being reset, or if the pci
3330          * connection is down.
3331          */
3332         if (adapter->link_speed == 0)
3333                 return;
3334         if (pci_channel_offline(pdev))
3335                 return;
3336
3337         spin_lock_irqsave(&adapter->stats_lock, flags);
3338
3339         /* these counters are modified from e1000_tbi_adjust_stats,
3340          * called from the interrupt context, so they must only
3341          * be written while holding adapter->stats_lock
3342          */
3343
3344         adapter->stats.crcerrs += er32(CRCERRS);
3345         adapter->stats.gprc += er32(GPRC);
3346         adapter->stats.gorcl += er32(GORCL);
3347         adapter->stats.gorch += er32(GORCH);
3348         adapter->stats.bprc += er32(BPRC);
3349         adapter->stats.mprc += er32(MPRC);
3350         adapter->stats.roc += er32(ROC);
3351
3352         adapter->stats.prc64 += er32(PRC64);
3353         adapter->stats.prc127 += er32(PRC127);
3354         adapter->stats.prc255 += er32(PRC255);
3355         adapter->stats.prc511 += er32(PRC511);
3356         adapter->stats.prc1023 += er32(PRC1023);
3357         adapter->stats.prc1522 += er32(PRC1522);
3358
3359         adapter->stats.symerrs += er32(SYMERRS);
3360         adapter->stats.mpc += er32(MPC);
3361         adapter->stats.scc += er32(SCC);
3362         adapter->stats.ecol += er32(ECOL);
3363         adapter->stats.mcc += er32(MCC);
3364         adapter->stats.latecol += er32(LATECOL);
3365         adapter->stats.dc += er32(DC);
3366         adapter->stats.sec += er32(SEC);
3367         adapter->stats.rlec += er32(RLEC);
3368         adapter->stats.xonrxc += er32(XONRXC);
3369         adapter->stats.xontxc += er32(XONTXC);
3370         adapter->stats.xoffrxc += er32(XOFFRXC);
3371         adapter->stats.xofftxc += er32(XOFFTXC);
3372         adapter->stats.fcruc += er32(FCRUC);
3373         adapter->stats.gptc += er32(GPTC);
3374         adapter->stats.gotcl += er32(GOTCL);
3375         adapter->stats.gotch += er32(GOTCH);
3376         adapter->stats.rnbc += er32(RNBC);
3377         adapter->stats.ruc += er32(RUC);
3378         adapter->stats.rfc += er32(RFC);
3379         adapter->stats.rjc += er32(RJC);
3380         adapter->stats.torl += er32(TORL);
3381         adapter->stats.torh += er32(TORH);
3382         adapter->stats.totl += er32(TOTL);
3383         adapter->stats.toth += er32(TOTH);
3384         adapter->stats.tpr += er32(TPR);
3385
3386         adapter->stats.ptc64 += er32(PTC64);
3387         adapter->stats.ptc127 += er32(PTC127);
3388         adapter->stats.ptc255 += er32(PTC255);
3389         adapter->stats.ptc511 += er32(PTC511);
3390         adapter->stats.ptc1023 += er32(PTC1023);
3391         adapter->stats.ptc1522 += er32(PTC1522);
3392
3393         adapter->stats.mptc += er32(MPTC);
3394         adapter->stats.bptc += er32(BPTC);
3395
3396         /* used for adaptive IFS */
3397
3398         hw->tx_packet_delta = er32(TPT);
3399         adapter->stats.tpt += hw->tx_packet_delta;
3400         hw->collision_delta = er32(COLC);
3401         adapter->stats.colc += hw->collision_delta;
3402
3403         if (hw->mac_type >= e1000_82543) {
3404                 adapter->stats.algnerrc += er32(ALGNERRC);
3405                 adapter->stats.rxerrc += er32(RXERRC);
3406                 adapter->stats.tncrs += er32(TNCRS);
3407                 adapter->stats.cexterr += er32(CEXTERR);
3408                 adapter->stats.tsctc += er32(TSCTC);
3409                 adapter->stats.tsctfc += er32(TSCTFC);
3410         }
3411
3412         /* Fill out the OS statistics structure */
3413         netdev->stats.multicast = adapter->stats.mprc;
3414         netdev->stats.collisions = adapter->stats.colc;
3415
3416         /* Rx Errors */
3417
3418         /* RLEC on some newer hardware can be incorrect so build
3419         * our own version based on RUC and ROC */
3420         netdev->stats.rx_errors = adapter->stats.rxerrc +
3421                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3422                 adapter->stats.ruc + adapter->stats.roc +
3423                 adapter->stats.cexterr;
3424         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3425         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3426         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3427         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3428         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3429
3430         /* Tx Errors */
3431         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3432         netdev->stats.tx_errors = adapter->stats.txerrc;
3433         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3434         netdev->stats.tx_window_errors = adapter->stats.latecol;
3435         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3436         if (hw->bad_tx_carr_stats_fd &&
3437             adapter->link_duplex == FULL_DUPLEX) {
3438                 netdev->stats.tx_carrier_errors = 0;
3439                 adapter->stats.tncrs = 0;
3440         }
3441
3442         /* Tx Dropped needs to be maintained elsewhere */
3443
3444         /* Phy Stats */
3445         if (hw->media_type == e1000_media_type_copper) {
3446                 if ((adapter->link_speed == SPEED_1000) &&
3447                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3448                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3449                         adapter->phy_stats.idle_errors += phy_tmp;
3450                 }
3451
3452                 if ((hw->mac_type <= e1000_82546) &&
3453                    (hw->phy_type == e1000_phy_m88) &&
3454                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3455                         adapter->phy_stats.receive_errors += phy_tmp;
3456         }
3457
3458         /* Management Stats */
3459         if (hw->has_smbus) {
3460                 adapter->stats.mgptc += er32(MGTPTC);
3461                 adapter->stats.mgprc += er32(MGTPRC);
3462                 adapter->stats.mgpdc += er32(MGTPDC);
3463         }
3464
3465         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3466 }
3467
3468 /**
3469  * e1000_intr - Interrupt Handler
3470  * @irq: interrupt number
3471  * @data: pointer to a network interface device structure
3472  **/
3473
3474 static irqreturn_t e1000_intr(int irq, void *data)
3475 {
3476         struct net_device *netdev = data;
3477         struct e1000_adapter *adapter = netdev_priv(netdev);
3478         struct e1000_hw *hw = &adapter->hw;
3479         u32 icr = er32(ICR);
3480
3481         if (unlikely((!icr)))
3482                 return IRQ_NONE;  /* Not our interrupt */
3483
3484         /*
3485          * we might have caused the interrupt, but the above
3486          * read cleared it, and just in case the driver is
3487          * down there is nothing to do so return handled
3488          */
3489         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3490                 return IRQ_HANDLED;
3491
3492         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3493                 hw->get_link_status = 1;
3494                 /* guard against interrupt when we're going down */
3495                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3496                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3497         }
3498
3499         /* disable interrupts, without the synchronize_irq bit */
3500         ew32(IMC, ~0);
3501         E1000_WRITE_FLUSH();
3502
3503         if (likely(napi_schedule_prep(&adapter->napi))) {
3504                 adapter->total_tx_bytes = 0;
3505                 adapter->total_tx_packets = 0;
3506                 adapter->total_rx_bytes = 0;
3507                 adapter->total_rx_packets = 0;
3508                 __napi_schedule(&adapter->napi);
3509         } else {
3510                 /* this really should not happen! if it does it is basically a
3511                  * bug, but not a hard error, so enable ints and continue */
3512                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3513                         e1000_irq_enable(adapter);
3514         }
3515
3516         return IRQ_HANDLED;
3517 }
3518
3519 /**
3520  * e1000_clean - NAPI Rx polling callback
3521  * @adapter: board private structure
3522  **/
3523 static int e1000_clean(struct napi_struct *napi, int budget)
3524 {
3525         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3526         int tx_clean_complete = 0, work_done = 0;
3527
3528         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3529
3530         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3531
3532         if (!tx_clean_complete)
3533                 work_done = budget;
3534
3535         /* If budget not fully consumed, exit the polling mode */
3536         if (work_done < budget) {
3537                 if (likely(adapter->itr_setting & 3))
3538                         e1000_set_itr(adapter);
3539                 napi_complete(napi);
3540                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3541                         e1000_irq_enable(adapter);
3542         }
3543
3544         return work_done;
3545 }
3546
3547 /**
3548  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3549  * @adapter: board private structure
3550  **/
3551 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3552                                struct e1000_tx_ring *tx_ring)
3553 {
3554         struct e1000_hw *hw = &adapter->hw;
3555         struct net_device *netdev = adapter->netdev;
3556         struct e1000_tx_desc *tx_desc, *eop_desc;
3557         struct e1000_buffer *buffer_info;
3558         unsigned int i, eop;
3559         unsigned int count = 0;
3560         unsigned int total_tx_bytes=0, total_tx_packets=0;
3561
3562         i = tx_ring->next_to_clean;
3563         eop = tx_ring->buffer_info[i].next_to_watch;
3564         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3565
3566         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3567                (count < tx_ring->count)) {
3568                 bool cleaned = false;
3569                 rmb();  /* read buffer_info after eop_desc */
3570                 for ( ; !cleaned; count++) {
3571                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3572                         buffer_info = &tx_ring->buffer_info[i];
3573                         cleaned = (i == eop);
3574
3575                         if (cleaned) {
3576                                 struct sk_buff *skb = buffer_info->skb;
3577                                 unsigned int segs, bytecount;
3578                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3579                                 /* multiply data chunks by size of headers */
3580                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3581                                             skb->len;
3582                                 total_tx_packets += segs;
3583                                 total_tx_bytes += bytecount;
3584                         }
3585                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3586                         tx_desc->upper.data = 0;
3587
3588                         if (unlikely(++i == tx_ring->count)) i = 0;
3589                 }
3590
3591                 eop = tx_ring->buffer_info[i].next_to_watch;
3592                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3593         }
3594
3595         tx_ring->next_to_clean = i;
3596
3597 #define TX_WAKE_THRESHOLD 32
3598         if (unlikely(count && netif_carrier_ok(netdev) &&
3599                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3600                 /* Make sure that anybody stopping the queue after this
3601                  * sees the new next_to_clean.
3602                  */
3603                 smp_mb();
3604
3605                 if (netif_queue_stopped(netdev) &&
3606                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3607                         netif_wake_queue(netdev);
3608                         ++adapter->restart_queue;
3609                 }
3610         }
3611
3612         if (adapter->detect_tx_hung) {
3613                 /* Detect a transmit hang in hardware, this serializes the
3614                  * check with the clearing of time_stamp and movement of i */
3615                 adapter->detect_tx_hung = false;
3616                 if (tx_ring->buffer_info[eop].time_stamp &&
3617                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3618                                (adapter->tx_timeout_factor * HZ)) &&
3619                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3620
3621                         /* detected Tx unit hang */
3622                         e_err(drv, "Detected Tx Unit Hang\n"
3623                               "  Tx Queue             <%lu>\n"
3624                               "  TDH                  <%x>\n"
3625                               "  TDT                  <%x>\n"
3626                               "  next_to_use          <%x>\n"
3627                               "  next_to_clean        <%x>\n"
3628                               "buffer_info[next_to_clean]\n"
3629                               "  time_stamp           <%lx>\n"
3630                               "  next_to_watch        <%x>\n"
3631                               "  jiffies              <%lx>\n"
3632                               "  next_to_watch.status <%x>\n",
3633                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3634                                         sizeof(struct e1000_tx_ring)),
3635                                 readl(hw->hw_addr + tx_ring->tdh),
3636                                 readl(hw->hw_addr + tx_ring->tdt),
3637                                 tx_ring->next_to_use,
3638                                 tx_ring->next_to_clean,
3639                                 tx_ring->buffer_info[eop].time_stamp,
3640                                 eop,
3641                                 jiffies,
3642                                 eop_desc->upper.fields.status);
3643                         netif_stop_queue(netdev);
3644                 }
3645         }
3646         adapter->total_tx_bytes += total_tx_bytes;
3647         adapter->total_tx_packets += total_tx_packets;
3648         netdev->stats.tx_bytes += total_tx_bytes;
3649         netdev->stats.tx_packets += total_tx_packets;
3650         return count < tx_ring->count;
3651 }
3652
3653 /**
3654  * e1000_rx_checksum - Receive Checksum Offload for 82543
3655  * @adapter:     board private structure
3656  * @status_err:  receive descriptor status and error fields
3657  * @csum:        receive descriptor csum field
3658  * @sk_buff:     socket buffer with received data
3659  **/
3660
3661 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3662                               u32 csum, struct sk_buff *skb)
3663 {
3664         struct e1000_hw *hw = &adapter->hw;
3665         u16 status = (u16)status_err;
3666         u8 errors = (u8)(status_err >> 24);
3667
3668         skb_checksum_none_assert(skb);
3669
3670         /* 82543 or newer only */
3671         if (unlikely(hw->mac_type < e1000_82543)) return;
3672         /* Ignore Checksum bit is set */
3673         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3674         /* TCP/UDP checksum error bit is set */
3675         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3676                 /* let the stack verify checksum errors */
3677                 adapter->hw_csum_err++;
3678                 return;
3679         }
3680         /* TCP/UDP Checksum has not been calculated */
3681         if (!(status & E1000_RXD_STAT_TCPCS))
3682                 return;
3683
3684         /* It must be a TCP or UDP packet with a valid checksum */
3685         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3686                 /* TCP checksum is good */
3687                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3688         }
3689         adapter->hw_csum_good++;
3690 }
3691
3692 /**
3693  * e1000_consume_page - helper function
3694  **/
3695 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3696                                u16 length)
3697 {
3698         bi->page = NULL;
3699         skb->len += length;
3700         skb->data_len += length;
3701         skb->truesize += length;
3702 }
3703
3704 /**
3705  * e1000_receive_skb - helper function to handle rx indications
3706  * @adapter: board private structure
3707  * @status: descriptor status field as written by hardware
3708  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3709  * @skb: pointer to sk_buff to be indicated to stack
3710  */
3711 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3712                               __le16 vlan, struct sk_buff *skb)
3713 {
3714         skb->protocol = eth_type_trans(skb, adapter->netdev);
3715
3716         if ((unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))))
3717                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
3718                                  le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK,
3719                                  skb);
3720         else
3721                 napi_gro_receive(&adapter->napi, skb);
3722 }
3723
3724 /**
3725  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3726  * @adapter: board private structure
3727  * @rx_ring: ring to clean
3728  * @work_done: amount of napi work completed this call
3729  * @work_to_do: max amount of work allowed for this call to do
3730  *
3731  * the return value indicates whether actual cleaning was done, there
3732  * is no guarantee that everything was cleaned
3733  */
3734 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3735                                      struct e1000_rx_ring *rx_ring,
3736                                      int *work_done, int work_to_do)
3737 {
3738         struct e1000_hw *hw = &adapter->hw;
3739         struct net_device *netdev = adapter->netdev;
3740         struct pci_dev *pdev = adapter->pdev;
3741         struct e1000_rx_desc *rx_desc, *next_rxd;
3742         struct e1000_buffer *buffer_info, *next_buffer;
3743         unsigned long irq_flags;
3744         u32 length;
3745         unsigned int i;
3746         int cleaned_count = 0;
3747         bool cleaned = false;
3748         unsigned int total_rx_bytes=0, total_rx_packets=0;
3749
3750         i = rx_ring->next_to_clean;
3751         rx_desc = E1000_RX_DESC(*rx_ring, i);
3752         buffer_info = &rx_ring->buffer_info[i];
3753
3754         while (rx_desc->status & E1000_RXD_STAT_DD) {
3755                 struct sk_buff *skb;
3756                 u8 status;
3757
3758                 if (*work_done >= work_to_do)
3759                         break;
3760                 (*work_done)++;
3761                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3762
3763                 status = rx_desc->status;
3764                 skb = buffer_info->skb;
3765                 buffer_info->skb = NULL;
3766
3767                 if (++i == rx_ring->count) i = 0;
3768                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3769                 prefetch(next_rxd);
3770
3771                 next_buffer = &rx_ring->buffer_info[i];
3772
3773                 cleaned = true;
3774                 cleaned_count++;
3775                 dma_unmap_page(&pdev->dev, buffer_info->dma,
3776                                buffer_info->length, DMA_FROM_DEVICE);
3777                 buffer_info->dma = 0;
3778
3779                 length = le16_to_cpu(rx_desc->length);
3780
3781                 /* errors is only valid for DD + EOP descriptors */
3782                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3783                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3784                         u8 last_byte = *(skb->data + length - 1);
3785                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3786                                        last_byte)) {
3787                                 spin_lock_irqsave(&adapter->stats_lock,
3788                                                   irq_flags);
3789                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3790                                                        length, skb->data);
3791                                 spin_unlock_irqrestore(&adapter->stats_lock,
3792                                                        irq_flags);
3793                                 length--;
3794                         } else {
3795                                 /* recycle both page and skb */
3796                                 buffer_info->skb = skb;
3797                                 /* an error means any chain goes out the window
3798                                  * too */
3799                                 if (rx_ring->rx_skb_top)
3800                                         dev_kfree_skb(rx_ring->rx_skb_top);
3801                                 rx_ring->rx_skb_top = NULL;
3802                                 goto next_desc;
3803                         }
3804                 }
3805
3806 #define rxtop rx_ring->rx_skb_top
3807                 if (!(status & E1000_RXD_STAT_EOP)) {
3808                         /* this descriptor is only the beginning (or middle) */
3809                         if (!rxtop) {
3810                                 /* this is the beginning of a chain */
3811                                 rxtop = skb;
3812                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3813                                                    0, length);
3814                         } else {
3815                                 /* this is the middle of a chain */
3816                                 skb_fill_page_desc(rxtop,
3817                                     skb_shinfo(rxtop)->nr_frags,
3818                                     buffer_info->page, 0, length);
3819                                 /* re-use the skb, only consumed the page */
3820                                 buffer_info->skb = skb;
3821                         }
3822                         e1000_consume_page(buffer_info, rxtop, length);
3823                         goto next_desc;
3824                 } else {
3825                         if (rxtop) {
3826                                 /* end of the chain */
3827                                 skb_fill_page_desc(rxtop,
3828                                     skb_shinfo(rxtop)->nr_frags,
3829                                     buffer_info->page, 0, length);
3830                                 /* re-use the current skb, we only consumed the
3831                                  * page */
3832                                 buffer_info->skb = skb;
3833                                 skb = rxtop;
3834                                 rxtop = NULL;
3835                                 e1000_consume_page(buffer_info, skb, length);
3836                         } else {
3837                                 /* no chain, got EOP, this buf is the packet
3838                                  * copybreak to save the put_page/alloc_page */
3839                                 if (length <= copybreak &&
3840                                     skb_tailroom(skb) >= length) {
3841                                         u8 *vaddr;
3842                                         vaddr = kmap_atomic(buffer_info->page,
3843                                                             KM_SKB_DATA_SOFTIRQ);
3844                                         memcpy(skb_tail_pointer(skb), vaddr, length);
3845                                         kunmap_atomic(vaddr,
3846                                                       KM_SKB_DATA_SOFTIRQ);
3847                                         /* re-use the page, so don't erase
3848                                          * buffer_info->page */
3849                                         skb_put(skb, length);
3850                                 } else {
3851                                         skb_fill_page_desc(skb, 0,
3852                                                            buffer_info->page, 0,
3853                                                            length);
3854                                         e1000_consume_page(buffer_info, skb,
3855                                                            length);
3856                                 }
3857                         }
3858                 }
3859
3860                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3861                 e1000_rx_checksum(adapter,
3862                                   (u32)(status) |
3863                                   ((u32)(rx_desc->errors) << 24),
3864                                   le16_to_cpu(rx_desc->csum), skb);
3865
3866                 pskb_trim(skb, skb->len - 4);
3867
3868                 /* probably a little skewed due to removing CRC */
3869                 total_rx_bytes += skb->len;
3870                 total_rx_packets++;
3871
3872                 /* eth type trans needs skb->data to point to something */
3873                 if (!pskb_may_pull(skb, ETH_HLEN)) {
3874                         e_err(drv, "pskb_may_pull failed.\n");
3875                         dev_kfree_skb(skb);
3876                         goto next_desc;
3877                 }
3878
3879                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3880
3881 next_desc:
3882                 rx_desc->status = 0;
3883
3884                 /* return some buffers to hardware, one at a time is too slow */
3885                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3886                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3887                         cleaned_count = 0;
3888                 }
3889
3890                 /* use prefetched values */
3891                 rx_desc = next_rxd;
3892                 buffer_info = next_buffer;
3893         }
3894         rx_ring->next_to_clean = i;
3895
3896         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3897         if (cleaned_count)
3898                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3899
3900         adapter->total_rx_packets += total_rx_packets;
3901         adapter->total_rx_bytes += total_rx_bytes;
3902         netdev->stats.rx_bytes += total_rx_bytes;
3903         netdev->stats.rx_packets += total_rx_packets;
3904         return cleaned;
3905 }
3906
3907 /*
3908  * this should improve performance for small packets with large amounts
3909  * of reassembly being done in the stack
3910  */
3911 static void e1000_check_copybreak(struct net_device *netdev,
3912                                  struct e1000_buffer *buffer_info,
3913                                  u32 length, struct sk_buff **skb)
3914 {
3915         struct sk_buff *new_skb;
3916
3917         if (length > copybreak)
3918                 return;
3919
3920         new_skb = netdev_alloc_skb_ip_align(netdev, length);
3921         if (!new_skb)
3922                 return;
3923
3924         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3925                                        (*skb)->data - NET_IP_ALIGN,
3926                                        length + NET_IP_ALIGN);
3927         /* save the skb in buffer_info as good */
3928         buffer_info->skb = *skb;
3929         *skb = new_skb;
3930 }
3931
3932 /**
3933  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3934  * @adapter: board private structure
3935  * @rx_ring: ring to clean
3936  * @work_done: amount of napi work completed this call
3937  * @work_to_do: max amount of work allowed for this call to do
3938  */
3939 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3940                                struct e1000_rx_ring *rx_ring,
3941                                int *work_done, int work_to_do)
3942 {
3943         struct e1000_hw *hw = &adapter->hw;
3944         struct net_device *netdev = adapter->netdev;
3945         struct pci_dev *pdev = adapter->pdev;
3946         struct e1000_rx_desc *rx_desc, *next_rxd;
3947         struct e1000_buffer *buffer_info, *next_buffer;
3948         unsigned long flags;
3949         u32 length;
3950         unsigned int i;
3951         int cleaned_count = 0;
3952         bool cleaned = false;
3953         unsigned int total_rx_bytes=0, total_rx_packets=0;
3954
3955         i = rx_ring->next_to_clean;
3956         rx_desc = E1000_RX_DESC(*rx_ring, i);
3957         buffer_info = &rx_ring->buffer_info[i];
3958
3959         while (rx_desc->status & E1000_RXD_STAT_DD) {
3960                 struct sk_buff *skb;
3961                 u8 status;
3962
3963                 if (*work_done >= work_to_do)
3964                         break;
3965                 (*work_done)++;
3966                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3967
3968                 status = rx_desc->status;
3969                 skb = buffer_info->skb;
3970                 buffer_info->skb = NULL;
3971
3972                 prefetch(skb->data - NET_IP_ALIGN);
3973
3974                 if (++i == rx_ring->count) i = 0;
3975                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3976                 prefetch(next_rxd);
3977
3978                 next_buffer = &rx_ring->buffer_info[i];
3979
3980                 cleaned = true;
3981                 cleaned_count++;
3982                 dma_unmap_single(&pdev->dev, buffer_info->dma,
3983                                  buffer_info->length, DMA_FROM_DEVICE);
3984                 buffer_info->dma = 0;
3985
3986                 length = le16_to_cpu(rx_desc->length);
3987                 /* !EOP means multiple descriptors were used to store a single
3988                  * packet, if thats the case we need to toss it.  In fact, we
3989                  * to toss every packet with the EOP bit clear and the next
3990                  * frame that _does_ have the EOP bit set, as it is by
3991                  * definition only a frame fragment
3992                  */
3993                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3994                         adapter->discarding = true;
3995
3996                 if (adapter->discarding) {
3997                         /* All receives must fit into a single buffer */
3998                         e_dbg("Receive packet consumed multiple buffers\n");
3999                         /* recycle */
4000                         buffer_info->skb = skb;
4001                         if (status & E1000_RXD_STAT_EOP)
4002                                 adapter->discarding = false;
4003                         goto next_desc;
4004                 }
4005
4006                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4007                         u8 last_byte = *(skb->data + length - 1);
4008                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4009                                        last_byte)) {
4010                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4011                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4012                                                        length, skb->data);
4013                                 spin_unlock_irqrestore(&adapter->stats_lock,
4014                                                        flags);
4015                                 length--;
4016                         } else {
4017                                 /* recycle */
4018                                 buffer_info->skb = skb;
4019                                 goto next_desc;
4020                         }
4021                 }
4022
4023                 /* adjust length to remove Ethernet CRC, this must be
4024                  * done after the TBI_ACCEPT workaround above */
4025                 length -= 4;
4026
4027                 /* probably a little skewed due to removing CRC */
4028                 total_rx_bytes += length;
4029                 total_rx_packets++;
4030
4031                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4032
4033                 skb_put(skb, length);
4034
4035                 /* Receive Checksum Offload */
4036                 e1000_rx_checksum(adapter,
4037                                   (u32)(status) |
4038                                   ((u32)(rx_desc->errors) << 24),
4039                                   le16_to_cpu(rx_desc->csum), skb);
4040
4041                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4042
4043 next_desc:
4044                 rx_desc->status = 0;
4045
4046                 /* return some buffers to hardware, one at a time is too slow */
4047                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4048                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4049                         cleaned_count = 0;
4050                 }
4051
4052                 /* use prefetched values */
4053                 rx_desc = next_rxd;
4054                 buffer_info = next_buffer;
4055         }
4056         rx_ring->next_to_clean = i;
4057
4058         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4059         if (cleaned_count)
4060                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4061
4062         adapter->total_rx_packets += total_rx_packets;
4063         adapter->total_rx_bytes += total_rx_bytes;
4064         netdev->stats.rx_bytes += total_rx_bytes;
4065         netdev->stats.rx_packets += total_rx_packets;
4066         return cleaned;
4067 }
4068
4069 /**
4070  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4071  * @adapter: address of board private structure
4072  * @rx_ring: pointer to receive ring structure
4073  * @cleaned_count: number of buffers to allocate this pass
4074  **/
4075
4076 static void
4077 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4078                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4079 {
4080         struct net_device *netdev = adapter->netdev;
4081         struct pci_dev *pdev = adapter->pdev;
4082         struct e1000_rx_desc *rx_desc;
4083         struct e1000_buffer *buffer_info;
4084         struct sk_buff *skb;
4085         unsigned int i;
4086         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4087
4088         i = rx_ring->next_to_use;
4089         buffer_info = &rx_ring->buffer_info[i];
4090
4091         while (cleaned_count--) {
4092                 skb = buffer_info->skb;
4093                 if (skb) {
4094                         skb_trim(skb, 0);
4095                         goto check_page;
4096                 }
4097
4098                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4099                 if (unlikely(!skb)) {
4100                         /* Better luck next round */
4101                         adapter->alloc_rx_buff_failed++;
4102                         break;
4103                 }
4104
4105                 /* Fix for errata 23, can't cross 64kB boundary */
4106                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4107                         struct sk_buff *oldskb = skb;
4108                         e_err(rx_err, "skb align check failed: %u bytes at "
4109                               "%p\n", bufsz, skb->data);
4110                         /* Try again, without freeing the previous */
4111                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4112                         /* Failed allocation, critical failure */
4113                         if (!skb) {
4114                                 dev_kfree_skb(oldskb);
4115                                 adapter->alloc_rx_buff_failed++;
4116                                 break;
4117                         }
4118
4119                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4120                                 /* give up */
4121                                 dev_kfree_skb(skb);
4122                                 dev_kfree_skb(oldskb);
4123                                 break; /* while (cleaned_count--) */
4124                         }
4125
4126                         /* Use new allocation */
4127                         dev_kfree_skb(oldskb);
4128                 }
4129                 buffer_info->skb = skb;
4130                 buffer_info->length = adapter->rx_buffer_len;
4131 check_page:
4132                 /* allocate a new page if necessary */
4133                 if (!buffer_info->page) {
4134                         buffer_info->page = alloc_page(GFP_ATOMIC);
4135                         if (unlikely(!buffer_info->page)) {
4136                                 adapter->alloc_rx_buff_failed++;
4137                                 break;
4138                         }
4139                 }
4140
4141                 if (!buffer_info->dma) {
4142                         buffer_info->dma = dma_map_page(&pdev->dev,
4143                                                         buffer_info->page, 0,
4144                                                         buffer_info->length,
4145                                                         DMA_FROM_DEVICE);
4146                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4147                                 put_page(buffer_info->page);
4148                                 dev_kfree_skb(skb);
4149                                 buffer_info->page = NULL;
4150                                 buffer_info->skb = NULL;
4151                                 buffer_info->dma = 0;
4152                                 adapter->alloc_rx_buff_failed++;
4153                                 break; /* while !buffer_info->skb */
4154                         }
4155                 }
4156
4157                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4158                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4159
4160                 if (unlikely(++i == rx_ring->count))
4161                         i = 0;
4162                 buffer_info = &rx_ring->buffer_info[i];
4163         }
4164
4165         if (likely(rx_ring->next_to_use != i)) {
4166                 rx_ring->next_to_use = i;
4167                 if (unlikely(i-- == 0))
4168                         i = (rx_ring->count - 1);
4169
4170                 /* Force memory writes to complete before letting h/w
4171                  * know there are new descriptors to fetch.  (Only
4172                  * applicable for weak-ordered memory model archs,
4173                  * such as IA-64). */
4174                 wmb();
4175                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4176         }
4177 }
4178
4179 /**
4180  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4181  * @adapter: address of board private structure
4182  **/
4183
4184 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4185                                    struct e1000_rx_ring *rx_ring,
4186                                    int cleaned_count)
4187 {
4188         struct e1000_hw *hw = &adapter->hw;
4189         struct net_device *netdev = adapter->netdev;
4190         struct pci_dev *pdev = adapter->pdev;
4191         struct e1000_rx_desc *rx_desc;
4192         struct e1000_buffer *buffer_info;
4193         struct sk_buff *skb;
4194         unsigned int i;
4195         unsigned int bufsz = adapter->rx_buffer_len;
4196
4197         i = rx_ring->next_to_use;
4198         buffer_info = &rx_ring->buffer_info[i];
4199
4200         while (cleaned_count--) {
4201                 skb = buffer_info->skb;
4202                 if (skb) {
4203                         skb_trim(skb, 0);
4204                         goto map_skb;
4205                 }
4206
4207                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4208                 if (unlikely(!skb)) {
4209                         /* Better luck next round */
4210                         adapter->alloc_rx_buff_failed++;
4211                         break;
4212                 }
4213
4214                 /* Fix for errata 23, can't cross 64kB boundary */
4215                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4216                         struct sk_buff *oldskb = skb;
4217                         e_err(rx_err, "skb align check failed: %u bytes at "
4218                               "%p\n", bufsz, skb->data);
4219                         /* Try again, without freeing the previous */
4220                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4221                         /* Failed allocation, critical failure */
4222                         if (!skb) {
4223                                 dev_kfree_skb(oldskb);
4224                                 adapter->alloc_rx_buff_failed++;
4225                                 break;
4226                         }
4227
4228                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4229                                 /* give up */
4230                                 dev_kfree_skb(skb);
4231                                 dev_kfree_skb(oldskb);
4232                                 adapter->alloc_rx_buff_failed++;
4233                                 break; /* while !buffer_info->skb */
4234                         }
4235
4236                         /* Use new allocation */
4237                         dev_kfree_skb(oldskb);
4238                 }
4239                 buffer_info->skb = skb;
4240                 buffer_info->length = adapter->rx_buffer_len;
4241 map_skb:
4242                 buffer_info->dma = dma_map_single(&pdev->dev,
4243                                                   skb->data,
4244                                                   buffer_info->length,
4245                                                   DMA_FROM_DEVICE);
4246                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4247                         dev_kfree_skb(skb);
4248                         buffer_info->skb = NULL;
4249                         buffer_info->dma = 0;
4250                         adapter->alloc_rx_buff_failed++;
4251                         break; /* while !buffer_info->skb */
4252                 }
4253
4254                 /*
4255                  * XXX if it was allocated cleanly it will never map to a
4256                  * boundary crossing
4257                  */
4258
4259                 /* Fix for errata 23, can't cross 64kB boundary */
4260                 if (!e1000_check_64k_bound(adapter,
4261                                         (void *)(unsigned long)buffer_info->dma,
4262                                         adapter->rx_buffer_len)) {
4263                         e_err(rx_err, "dma align check failed: %u bytes at "
4264                               "%p\n", adapter->rx_buffer_len,
4265                               (void *)(unsigned long)buffer_info->dma);
4266                         dev_kfree_skb(skb);
4267                         buffer_info->skb = NULL;
4268
4269                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4270                                          adapter->rx_buffer_len,
4271                                          DMA_FROM_DEVICE);
4272                         buffer_info->dma = 0;
4273
4274                         adapter->alloc_rx_buff_failed++;
4275                         break; /* while !buffer_info->skb */
4276                 }
4277                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4278                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4279
4280                 if (unlikely(++i == rx_ring->count))
4281                         i = 0;
4282                 buffer_info = &rx_ring->buffer_info[i];
4283         }
4284
4285         if (likely(rx_ring->next_to_use != i)) {
4286                 rx_ring->next_to_use = i;
4287                 if (unlikely(i-- == 0))
4288                         i = (rx_ring->count - 1);
4289
4290                 /* Force memory writes to complete before letting h/w
4291                  * know there are new descriptors to fetch.  (Only
4292                  * applicable for weak-ordered memory model archs,
4293                  * such as IA-64). */
4294                 wmb();
4295                 writel(i, hw->hw_addr + rx_ring->rdt);
4296         }
4297 }
4298
4299 /**
4300  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4301  * @adapter:
4302  **/
4303
4304 static void e1000_smartspeed(struct e1000_adapter *adapter)
4305 {
4306         struct e1000_hw *hw = &adapter->hw;
4307         u16 phy_status;
4308         u16 phy_ctrl;
4309
4310         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4311            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4312                 return;
4313
4314         if (adapter->smartspeed == 0) {
4315                 /* If Master/Slave config fault is asserted twice,
4316                  * we assume back-to-back */
4317                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4318                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4319                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4320                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4321                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4322                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4323                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4324                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4325                                             phy_ctrl);
4326                         adapter->smartspeed++;
4327                         if (!e1000_phy_setup_autoneg(hw) &&
4328                            !e1000_read_phy_reg(hw, PHY_CTRL,
4329                                                &phy_ctrl)) {
4330                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4331                                              MII_CR_RESTART_AUTO_NEG);
4332                                 e1000_write_phy_reg(hw, PHY_CTRL,
4333                                                     phy_ctrl);
4334                         }
4335                 }
4336                 return;
4337         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4338                 /* If still no link, perhaps using 2/3 pair cable */
4339                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4340                 phy_ctrl |= CR_1000T_MS_ENABLE;
4341                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4342                 if (!e1000_phy_setup_autoneg(hw) &&
4343                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4344                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4345                                      MII_CR_RESTART_AUTO_NEG);
4346                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4347                 }
4348         }
4349         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4350         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4351                 adapter->smartspeed = 0;
4352 }
4353
4354 /**
4355  * e1000_ioctl -
4356  * @netdev:
4357  * @ifreq:
4358  * @cmd:
4359  **/
4360
4361 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4362 {
4363         switch (cmd) {
4364         case SIOCGMIIPHY:
4365         case SIOCGMIIREG:
4366         case SIOCSMIIREG:
4367                 return e1000_mii_ioctl(netdev, ifr, cmd);
4368         default:
4369                 return -EOPNOTSUPP;
4370         }
4371 }
4372
4373 /**
4374  * e1000_mii_ioctl -
4375  * @netdev:
4376  * @ifreq:
4377  * @cmd:
4378  **/
4379
4380 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4381                            int cmd)
4382 {
4383         struct e1000_adapter *adapter = netdev_priv(netdev);
4384         struct e1000_hw *hw = &adapter->hw;
4385         struct mii_ioctl_data *data = if_mii(ifr);
4386         int retval;
4387         u16 mii_reg;
4388         u16 spddplx;
4389         unsigned long flags;
4390
4391         if (hw->media_type != e1000_media_type_copper)
4392                 return -EOPNOTSUPP;
4393
4394         switch (cmd) {
4395         case SIOCGMIIPHY:
4396                 data->phy_id = hw->phy_addr;
4397                 break;
4398         case SIOCGMIIREG:
4399                 spin_lock_irqsave(&adapter->stats_lock, flags);
4400                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4401                                    &data->val_out)) {
4402                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4403                         return -EIO;
4404                 }
4405                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4406                 break;
4407         case SIOCSMIIREG:
4408                 if (data->reg_num & ~(0x1F))
4409                         return -EFAULT;
4410                 mii_reg = data->val_in;
4411                 spin_lock_irqsave(&adapter->stats_lock, flags);
4412                 if (e1000_write_phy_reg(hw, data->reg_num,
4413                                         mii_reg)) {
4414                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4415                         return -EIO;
4416                 }
4417                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4418                 if (hw->media_type == e1000_media_type_copper) {
4419                         switch (data->reg_num) {
4420                         case PHY_CTRL:
4421                                 if (mii_reg & MII_CR_POWER_DOWN)
4422                                         break;
4423                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4424                                         hw->autoneg = 1;
4425                                         hw->autoneg_advertised = 0x2F;
4426                                 } else {
4427                                         if (mii_reg & 0x40)
4428                                                 spddplx = SPEED_1000;
4429                                         else if (mii_reg & 0x2000)
4430                                                 spddplx = SPEED_100;
4431                                         else
4432                                                 spddplx = SPEED_10;
4433                                         spddplx += (mii_reg & 0x100)
4434                                                    ? DUPLEX_FULL :
4435                                                    DUPLEX_HALF;
4436                                         retval = e1000_set_spd_dplx(adapter,
4437                                                                     spddplx);
4438                                         if (retval)
4439                                                 return retval;
4440                                 }
4441                                 if (netif_running(adapter->netdev))
4442                                         e1000_reinit_locked(adapter);
4443                                 else
4444                                         e1000_reset(adapter);
4445                                 break;
4446                         case M88E1000_PHY_SPEC_CTRL:
4447                         case M88E1000_EXT_PHY_SPEC_CTRL:
4448                                 if (e1000_phy_reset(hw))
4449                                         return -EIO;
4450                                 break;
4451                         }
4452                 } else {
4453                         switch (data->reg_num) {
4454                         case PHY_CTRL:
4455                                 if (mii_reg & MII_CR_POWER_DOWN)
4456                                         break;
4457                                 if (netif_running(adapter->netdev))
4458                                         e1000_reinit_locked(adapter);
4459                                 else
4460                                         e1000_reset(adapter);
4461                                 break;
4462                         }
4463                 }
4464                 break;
4465         default:
4466                 return -EOPNOTSUPP;
4467         }
4468         return E1000_SUCCESS;
4469 }
4470
4471 void e1000_pci_set_mwi(struct e1000_hw *hw)
4472 {
4473         struct e1000_adapter *adapter = hw->back;
4474         int ret_val = pci_set_mwi(adapter->pdev);
4475
4476         if (ret_val)
4477                 e_err(probe, "Error in setting MWI\n");
4478 }
4479
4480 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4481 {
4482         struct e1000_adapter *adapter = hw->back;
4483
4484         pci_clear_mwi(adapter->pdev);
4485 }
4486
4487 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4488 {
4489         struct e1000_adapter *adapter = hw->back;
4490         return pcix_get_mmrbc(adapter->pdev);
4491 }
4492
4493 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4494 {
4495         struct e1000_adapter *adapter = hw->back;
4496         pcix_set_mmrbc(adapter->pdev, mmrbc);
4497 }
4498
4499 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4500 {
4501         outl(value, port);
4502 }
4503
4504 static void e1000_vlan_rx_register(struct net_device *netdev,
4505                                    struct vlan_group *grp)
4506 {
4507         struct e1000_adapter *adapter = netdev_priv(netdev);
4508         struct e1000_hw *hw = &adapter->hw;
4509         u32 ctrl, rctl;
4510
4511         if (!test_bit(__E1000_DOWN, &adapter->flags))
4512                 e1000_irq_disable(adapter);
4513         adapter->vlgrp = grp;
4514
4515         if (grp) {
4516                 /* enable VLAN tag insert/strip */
4517                 ctrl = er32(CTRL);
4518                 ctrl |= E1000_CTRL_VME;
4519                 ew32(CTRL, ctrl);
4520
4521                 /* enable VLAN receive filtering */
4522                 rctl = er32(RCTL);
4523                 rctl &= ~E1000_RCTL_CFIEN;
4524                 if (!(netdev->flags & IFF_PROMISC))
4525                         rctl |= E1000_RCTL_VFE;
4526                 ew32(RCTL, rctl);
4527                 e1000_update_mng_vlan(adapter);
4528         } else {
4529                 /* disable VLAN tag insert/strip */
4530                 ctrl = er32(CTRL);
4531                 ctrl &= ~E1000_CTRL_VME;
4532                 ew32(CTRL, ctrl);
4533
4534                 /* disable VLAN receive filtering */
4535                 rctl = er32(RCTL);
4536                 rctl &= ~E1000_RCTL_VFE;
4537                 ew32(RCTL, rctl);
4538
4539                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4540                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4541                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4542                 }
4543         }
4544
4545         if (!test_bit(__E1000_DOWN, &adapter->flags))
4546                 e1000_irq_enable(adapter);
4547 }
4548
4549 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4550 {
4551         struct e1000_adapter *adapter = netdev_priv(netdev);
4552         struct e1000_hw *hw = &adapter->hw;
4553         u32 vfta, index;
4554
4555         if ((hw->mng_cookie.status &
4556              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4557             (vid == adapter->mng_vlan_id))
4558                 return;
4559         /* add VID to filter table */
4560         index = (vid >> 5) & 0x7F;
4561         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4562         vfta |= (1 << (vid & 0x1F));
4563         e1000_write_vfta(hw, index, vfta);
4564 }
4565
4566 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4567 {
4568         struct e1000_adapter *adapter = netdev_priv(netdev);
4569         struct e1000_hw *hw = &adapter->hw;
4570         u32 vfta, index;
4571
4572         if (!test_bit(__E1000_DOWN, &adapter->flags))
4573                 e1000_irq_disable(adapter);
4574         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4575         if (!test_bit(__E1000_DOWN, &adapter->flags))
4576                 e1000_irq_enable(adapter);
4577
4578         /* remove VID from filter table */
4579         index = (vid >> 5) & 0x7F;
4580         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4581         vfta &= ~(1 << (vid & 0x1F));
4582         e1000_write_vfta(hw, index, vfta);
4583 }
4584
4585 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4586 {
4587         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4588
4589         if (adapter->vlgrp) {
4590                 u16 vid;
4591                 for (vid = 0; vid < VLAN_N_VID; vid++) {
4592                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4593                                 continue;
4594                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4595                 }
4596         }
4597 }
4598
4599 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4600 {
4601         struct e1000_hw *hw = &adapter->hw;
4602
4603         hw->autoneg = 0;
4604
4605         /* Fiber NICs only allow 1000 gbps Full duplex */
4606         if ((hw->media_type == e1000_media_type_fiber) &&
4607                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4608                 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4609                 return -EINVAL;
4610         }
4611
4612         switch (spddplx) {
4613         case SPEED_10 + DUPLEX_HALF:
4614                 hw->forced_speed_duplex = e1000_10_half;
4615                 break;
4616         case SPEED_10 + DUPLEX_FULL:
4617                 hw->forced_speed_duplex = e1000_10_full;
4618                 break;
4619         case SPEED_100 + DUPLEX_HALF:
4620                 hw->forced_speed_duplex = e1000_100_half;
4621                 break;
4622         case SPEED_100 + DUPLEX_FULL:
4623                 hw->forced_speed_duplex = e1000_100_full;
4624                 break;
4625         case SPEED_1000 + DUPLEX_FULL:
4626                 hw->autoneg = 1;
4627                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4628                 break;
4629         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4630         default:
4631                 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4632                 return -EINVAL;
4633         }
4634         return 0;
4635 }
4636
4637 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4638 {
4639         struct net_device *netdev = pci_get_drvdata(pdev);
4640         struct e1000_adapter *adapter = netdev_priv(netdev);
4641         struct e1000_hw *hw = &adapter->hw;
4642         u32 ctrl, ctrl_ext, rctl, status;
4643         u32 wufc = adapter->wol;
4644 #ifdef CONFIG_PM
4645         int retval = 0;
4646 #endif
4647
4648         netif_device_detach(netdev);
4649
4650         if (netif_running(netdev)) {
4651                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4652                 e1000_down(adapter);
4653         }
4654
4655 #ifdef CONFIG_PM
4656         retval = pci_save_state(pdev);
4657         if (retval)
4658                 return retval;
4659 #endif
4660
4661         status = er32(STATUS);
4662         if (status & E1000_STATUS_LU)
4663                 wufc &= ~E1000_WUFC_LNKC;
4664
4665         if (wufc) {
4666                 e1000_setup_rctl(adapter);
4667                 e1000_set_rx_mode(netdev);
4668
4669                 /* turn on all-multi mode if wake on multicast is enabled */
4670                 if (wufc & E1000_WUFC_MC) {
4671                         rctl = er32(RCTL);
4672                         rctl |= E1000_RCTL_MPE;
4673                         ew32(RCTL, rctl);
4674                 }
4675
4676                 if (hw->mac_type >= e1000_82540) {
4677                         ctrl = er32(CTRL);
4678                         /* advertise wake from D3Cold */
4679                         #define E1000_CTRL_ADVD3WUC 0x00100000
4680                         /* phy power management enable */
4681                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4682                         ctrl |= E1000_CTRL_ADVD3WUC |
4683                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4684                         ew32(CTRL, ctrl);
4685                 }
4686
4687                 if (hw->media_type == e1000_media_type_fiber ||
4688                     hw->media_type == e1000_media_type_internal_serdes) {
4689                         /* keep the laser running in D3 */
4690                         ctrl_ext = er32(CTRL_EXT);
4691                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4692                         ew32(CTRL_EXT, ctrl_ext);
4693                 }
4694
4695                 ew32(WUC, E1000_WUC_PME_EN);
4696                 ew32(WUFC, wufc);
4697         } else {
4698                 ew32(WUC, 0);
4699                 ew32(WUFC, 0);
4700         }
4701
4702         e1000_release_manageability(adapter);
4703
4704         *enable_wake = !!wufc;
4705
4706         /* make sure adapter isn't asleep if manageability is enabled */
4707         if (adapter->en_mng_pt)
4708                 *enable_wake = true;
4709
4710         if (netif_running(netdev))
4711                 e1000_free_irq(adapter);
4712
4713         pci_disable_device(pdev);
4714
4715         return 0;
4716 }
4717
4718 #ifdef CONFIG_PM
4719 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4720 {
4721         int retval;
4722         bool wake;
4723
4724         retval = __e1000_shutdown(pdev, &wake);
4725         if (retval)
4726                 return retval;
4727
4728         if (wake) {
4729                 pci_prepare_to_sleep(pdev);
4730         } else {
4731                 pci_wake_from_d3(pdev, false);
4732                 pci_set_power_state(pdev, PCI_D3hot);
4733         }
4734
4735         return 0;
4736 }
4737
4738 static int e1000_resume(struct pci_dev *pdev)
4739 {
4740         struct net_device *netdev = pci_get_drvdata(pdev);
4741         struct e1000_adapter *adapter = netdev_priv(netdev);
4742         struct e1000_hw *hw = &adapter->hw;
4743         u32 err;
4744
4745         pci_set_power_state(pdev, PCI_D0);
4746         pci_restore_state(pdev);
4747         pci_save_state(pdev);
4748
4749         if (adapter->need_ioport)
4750                 err = pci_enable_device(pdev);
4751         else
4752                 err = pci_enable_device_mem(pdev);
4753         if (err) {
4754                 pr_err("Cannot enable PCI device from suspend\n");
4755                 return err;
4756         }
4757         pci_set_master(pdev);
4758
4759         pci_enable_wake(pdev, PCI_D3hot, 0);
4760         pci_enable_wake(pdev, PCI_D3cold, 0);
4761
4762         if (netif_running(netdev)) {
4763                 err = e1000_request_irq(adapter);
4764                 if (err)
4765                         return err;
4766         }
4767
4768         e1000_power_up_phy(adapter);
4769         e1000_reset(adapter);
4770         ew32(WUS, ~0);
4771
4772         e1000_init_manageability(adapter);
4773
4774         if (netif_running(netdev))
4775                 e1000_up(adapter);
4776
4777         netif_device_attach(netdev);
4778
4779         return 0;
4780 }
4781 #endif
4782
4783 static void e1000_shutdown(struct pci_dev *pdev)
4784 {
4785         bool wake;
4786
4787         __e1000_shutdown(pdev, &wake);
4788
4789         if (system_state == SYSTEM_POWER_OFF) {
4790                 pci_wake_from_d3(pdev, wake);
4791                 pci_set_power_state(pdev, PCI_D3hot);
4792         }
4793 }
4794
4795 #ifdef CONFIG_NET_POLL_CONTROLLER
4796 /*
4797  * Polling 'interrupt' - used by things like netconsole to send skbs
4798  * without having to re-enable interrupts. It's not called while
4799  * the interrupt routine is executing.
4800  */
4801 static void e1000_netpoll(struct net_device *netdev)
4802 {
4803         struct e1000_adapter *adapter = netdev_priv(netdev);
4804
4805         disable_irq(adapter->pdev->irq);
4806         e1000_intr(adapter->pdev->irq, netdev);
4807         enable_irq(adapter->pdev->irq);
4808 }
4809 #endif
4810
4811 /**
4812  * e1000_io_error_detected - called when PCI error is detected
4813  * @pdev: Pointer to PCI device
4814  * @state: The current pci connection state
4815  *
4816  * This function is called after a PCI bus error affecting
4817  * this device has been detected.
4818  */
4819 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4820                                                 pci_channel_state_t state)
4821 {
4822         struct net_device *netdev = pci_get_drvdata(pdev);
4823         struct e1000_adapter *adapter = netdev_priv(netdev);
4824
4825         netif_device_detach(netdev);
4826
4827         if (state == pci_channel_io_perm_failure)
4828                 return PCI_ERS_RESULT_DISCONNECT;
4829
4830         if (netif_running(netdev))
4831                 e1000_down(adapter);
4832         pci_disable_device(pdev);
4833
4834         /* Request a slot slot reset. */
4835         return PCI_ERS_RESULT_NEED_RESET;
4836 }
4837
4838 /**
4839  * e1000_io_slot_reset - called after the pci bus has been reset.
4840  * @pdev: Pointer to PCI device
4841  *
4842  * Restart the card from scratch, as if from a cold-boot. Implementation
4843  * resembles the first-half of the e1000_resume routine.
4844  */
4845 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4846 {
4847         struct net_device *netdev = pci_get_drvdata(pdev);
4848         struct e1000_adapter *adapter = netdev_priv(netdev);
4849         struct e1000_hw *hw = &adapter->hw;
4850         int err;
4851
4852         if (adapter->need_ioport)
4853                 err = pci_enable_device(pdev);
4854         else
4855                 err = pci_enable_device_mem(pdev);
4856         if (err) {
4857                 pr_err("Cannot re-enable PCI device after reset.\n");
4858                 return PCI_ERS_RESULT_DISCONNECT;
4859         }
4860         pci_set_master(pdev);
4861
4862         pci_enable_wake(pdev, PCI_D3hot, 0);
4863         pci_enable_wake(pdev, PCI_D3cold, 0);
4864
4865         e1000_reset(adapter);
4866         ew32(WUS, ~0);
4867
4868         return PCI_ERS_RESULT_RECOVERED;
4869 }
4870
4871 /**
4872  * e1000_io_resume - called when traffic can start flowing again.
4873  * @pdev: Pointer to PCI device
4874  *
4875  * This callback is called when the error recovery driver tells us that
4876  * its OK to resume normal operation. Implementation resembles the
4877  * second-half of the e1000_resume routine.
4878  */
4879 static void e1000_io_resume(struct pci_dev *pdev)
4880 {
4881         struct net_device *netdev = pci_get_drvdata(pdev);
4882         struct e1000_adapter *adapter = netdev_priv(netdev);
4883
4884         e1000_init_manageability(adapter);
4885
4886         if (netif_running(netdev)) {
4887                 if (e1000_up(adapter)) {
4888                         pr_info("can't bring device back up after reset\n");
4889                         return;
4890                 }
4891         }
4892
4893         netif_device_attach(netdev);
4894 }
4895
4896 /* e1000_main.c */