Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild-2.6
[pandora-kernel.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33
34 enum {NETDEV_STATS, E1000_STATS};
35
36 struct e1000_stats {
37         char stat_string[ETH_GSTRING_LEN];
38         int type;
39         int sizeof_stat;
40         int stat_offset;
41 };
42
43 #define E1000_STAT(m)           E1000_STATS, \
44                                 sizeof(((struct e1000_adapter *)0)->m), \
45                                 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
47                                 sizeof(((struct net_device *)0)->m), \
48                                 offsetof(struct net_device, m)
49
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51         { "rx_packets", E1000_STAT(stats.gprc) },
52         { "tx_packets", E1000_STAT(stats.gptc) },
53         { "rx_bytes", E1000_STAT(stats.gorcl) },
54         { "tx_bytes", E1000_STAT(stats.gotcl) },
55         { "rx_broadcast", E1000_STAT(stats.bprc) },
56         { "tx_broadcast", E1000_STAT(stats.bptc) },
57         { "rx_multicast", E1000_STAT(stats.mprc) },
58         { "tx_multicast", E1000_STAT(stats.mptc) },
59         { "rx_errors", E1000_STAT(stats.rxerrc) },
60         { "tx_errors", E1000_STAT(stats.txerrc) },
61         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62         { "multicast", E1000_STAT(stats.mprc) },
63         { "collisions", E1000_STAT(stats.colc) },
64         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69         { "rx_missed_errors", E1000_STAT(stats.mpc) },
70         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74         { "tx_window_errors", E1000_STAT(stats.latecol) },
75         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76         { "tx_deferred_ok", E1000_STAT(stats.dc) },
77         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80         { "tx_restart_queue", E1000_STAT(restart_queue) },
81         { "rx_long_length_errors", E1000_STAT(stats.roc) },
82         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94         { "tx_smbus", E1000_STAT(stats.mgptc) },
95         { "rx_smbus", E1000_STAT(stats.mgprc) },
96         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
97 };
98
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103         "Register test  (offline)", "Eeprom test    (offline)",
104         "Interrupt test (offline)", "Loopback test  (offline)",
105         "Link test   (on/offline)"
106 };
107 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
108
109 static int e1000_get_settings(struct net_device *netdev,
110                               struct ethtool_cmd *ecmd)
111 {
112         struct e1000_adapter *adapter = netdev_priv(netdev);
113         struct e1000_hw *hw = &adapter->hw;
114
115         if (hw->media_type == e1000_media_type_copper) {
116
117                 ecmd->supported = (SUPPORTED_10baseT_Half |
118                                    SUPPORTED_10baseT_Full |
119                                    SUPPORTED_100baseT_Half |
120                                    SUPPORTED_100baseT_Full |
121                                    SUPPORTED_1000baseT_Full|
122                                    SUPPORTED_Autoneg |
123                                    SUPPORTED_TP);
124                 ecmd->advertising = ADVERTISED_TP;
125
126                 if (hw->autoneg == 1) {
127                         ecmd->advertising |= ADVERTISED_Autoneg;
128                         /* the e1000 autoneg seems to match ethtool nicely */
129                         ecmd->advertising |= hw->autoneg_advertised;
130                 }
131
132                 ecmd->port = PORT_TP;
133                 ecmd->phy_address = hw->phy_addr;
134
135                 if (hw->mac_type == e1000_82543)
136                         ecmd->transceiver = XCVR_EXTERNAL;
137                 else
138                         ecmd->transceiver = XCVR_INTERNAL;
139
140         } else {
141                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
142                                      SUPPORTED_FIBRE |
143                                      SUPPORTED_Autoneg);
144
145                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146                                      ADVERTISED_FIBRE |
147                                      ADVERTISED_Autoneg);
148
149                 ecmd->port = PORT_FIBRE;
150
151                 if (hw->mac_type >= e1000_82545)
152                         ecmd->transceiver = XCVR_INTERNAL;
153                 else
154                         ecmd->transceiver = XCVR_EXTERNAL;
155         }
156
157         if (er32(STATUS) & E1000_STATUS_LU) {
158
159                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160                                                    &adapter->link_duplex);
161                 ecmd->speed = adapter->link_speed;
162
163                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
164                  *          and HALF_DUPLEX != DUPLEX_HALF */
165
166                 if (adapter->link_duplex == FULL_DUPLEX)
167                         ecmd->duplex = DUPLEX_FULL;
168                 else
169                         ecmd->duplex = DUPLEX_HALF;
170         } else {
171                 ecmd->speed = -1;
172                 ecmd->duplex = -1;
173         }
174
175         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177         return 0;
178 }
179
180 static int e1000_set_settings(struct net_device *netdev,
181                               struct ethtool_cmd *ecmd)
182 {
183         struct e1000_adapter *adapter = netdev_priv(netdev);
184         struct e1000_hw *hw = &adapter->hw;
185
186         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
187                 msleep(1);
188
189         if (ecmd->autoneg == AUTONEG_ENABLE) {
190                 hw->autoneg = 1;
191                 if (hw->media_type == e1000_media_type_fiber)
192                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
193                                      ADVERTISED_FIBRE |
194                                      ADVERTISED_Autoneg;
195                 else
196                         hw->autoneg_advertised = ecmd->advertising |
197                                                  ADVERTISED_TP |
198                                                  ADVERTISED_Autoneg;
199                 ecmd->advertising = hw->autoneg_advertised;
200         } else
201                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
202                         clear_bit(__E1000_RESETTING, &adapter->flags);
203                         return -EINVAL;
204                 }
205
206         /* reset the link */
207
208         if (netif_running(adapter->netdev)) {
209                 e1000_down(adapter);
210                 e1000_up(adapter);
211         } else
212                 e1000_reset(adapter);
213
214         clear_bit(__E1000_RESETTING, &adapter->flags);
215         return 0;
216 }
217
218 static u32 e1000_get_link(struct net_device *netdev)
219 {
220         struct e1000_adapter *adapter = netdev_priv(netdev);
221
222         /*
223          * If the link is not reported up to netdev, interrupts are disabled,
224          * and so the physical link state may have changed since we last
225          * looked. Set get_link_status to make sure that the true link
226          * state is interrogated, rather than pulling a cached and possibly
227          * stale link state from the driver.
228          */
229         if (!netif_carrier_ok(netdev))
230                 adapter->hw.get_link_status = 1;
231
232         return e1000_has_link(adapter);
233 }
234
235 static void e1000_get_pauseparam(struct net_device *netdev,
236                                  struct ethtool_pauseparam *pause)
237 {
238         struct e1000_adapter *adapter = netdev_priv(netdev);
239         struct e1000_hw *hw = &adapter->hw;
240
241         pause->autoneg =
242                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
243
244         if (hw->fc == E1000_FC_RX_PAUSE)
245                 pause->rx_pause = 1;
246         else if (hw->fc == E1000_FC_TX_PAUSE)
247                 pause->tx_pause = 1;
248         else if (hw->fc == E1000_FC_FULL) {
249                 pause->rx_pause = 1;
250                 pause->tx_pause = 1;
251         }
252 }
253
254 static int e1000_set_pauseparam(struct net_device *netdev,
255                                 struct ethtool_pauseparam *pause)
256 {
257         struct e1000_adapter *adapter = netdev_priv(netdev);
258         struct e1000_hw *hw = &adapter->hw;
259         int retval = 0;
260
261         adapter->fc_autoneg = pause->autoneg;
262
263         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
264                 msleep(1);
265
266         if (pause->rx_pause && pause->tx_pause)
267                 hw->fc = E1000_FC_FULL;
268         else if (pause->rx_pause && !pause->tx_pause)
269                 hw->fc = E1000_FC_RX_PAUSE;
270         else if (!pause->rx_pause && pause->tx_pause)
271                 hw->fc = E1000_FC_TX_PAUSE;
272         else if (!pause->rx_pause && !pause->tx_pause)
273                 hw->fc = E1000_FC_NONE;
274
275         hw->original_fc = hw->fc;
276
277         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
278                 if (netif_running(adapter->netdev)) {
279                         e1000_down(adapter);
280                         e1000_up(adapter);
281                 } else
282                         e1000_reset(adapter);
283         } else
284                 retval = ((hw->media_type == e1000_media_type_fiber) ?
285                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
286
287         clear_bit(__E1000_RESETTING, &adapter->flags);
288         return retval;
289 }
290
291 static u32 e1000_get_rx_csum(struct net_device *netdev)
292 {
293         struct e1000_adapter *adapter = netdev_priv(netdev);
294         return adapter->rx_csum;
295 }
296
297 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
298 {
299         struct e1000_adapter *adapter = netdev_priv(netdev);
300         adapter->rx_csum = data;
301
302         if (netif_running(netdev))
303                 e1000_reinit_locked(adapter);
304         else
305                 e1000_reset(adapter);
306         return 0;
307 }
308
309 static u32 e1000_get_tx_csum(struct net_device *netdev)
310 {
311         return (netdev->features & NETIF_F_HW_CSUM) != 0;
312 }
313
314 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
315 {
316         struct e1000_adapter *adapter = netdev_priv(netdev);
317         struct e1000_hw *hw = &adapter->hw;
318
319         if (hw->mac_type < e1000_82543) {
320                 if (!data)
321                         return -EINVAL;
322                 return 0;
323         }
324
325         if (data)
326                 netdev->features |= NETIF_F_HW_CSUM;
327         else
328                 netdev->features &= ~NETIF_F_HW_CSUM;
329
330         return 0;
331 }
332
333 static int e1000_set_tso(struct net_device *netdev, u32 data)
334 {
335         struct e1000_adapter *adapter = netdev_priv(netdev);
336         struct e1000_hw *hw = &adapter->hw;
337
338         if ((hw->mac_type < e1000_82544) ||
339             (hw->mac_type == e1000_82547))
340                 return data ? -EINVAL : 0;
341
342         if (data)
343                 netdev->features |= NETIF_F_TSO;
344         else
345                 netdev->features &= ~NETIF_F_TSO;
346
347         netdev->features &= ~NETIF_F_TSO6;
348
349         e_info(probe, "TSO is %s\n", data ? "Enabled" : "Disabled");
350         adapter->tso_force = true;
351         return 0;
352 }
353
354 static u32 e1000_get_msglevel(struct net_device *netdev)
355 {
356         struct e1000_adapter *adapter = netdev_priv(netdev);
357         return adapter->msg_enable;
358 }
359
360 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
361 {
362         struct e1000_adapter *adapter = netdev_priv(netdev);
363         adapter->msg_enable = data;
364 }
365
366 static int e1000_get_regs_len(struct net_device *netdev)
367 {
368 #define E1000_REGS_LEN 32
369         return E1000_REGS_LEN * sizeof(u32);
370 }
371
372 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
373                            void *p)
374 {
375         struct e1000_adapter *adapter = netdev_priv(netdev);
376         struct e1000_hw *hw = &adapter->hw;
377         u32 *regs_buff = p;
378         u16 phy_data;
379
380         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
381
382         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
383
384         regs_buff[0]  = er32(CTRL);
385         regs_buff[1]  = er32(STATUS);
386
387         regs_buff[2]  = er32(RCTL);
388         regs_buff[3]  = er32(RDLEN);
389         regs_buff[4]  = er32(RDH);
390         regs_buff[5]  = er32(RDT);
391         regs_buff[6]  = er32(RDTR);
392
393         regs_buff[7]  = er32(TCTL);
394         regs_buff[8]  = er32(TDLEN);
395         regs_buff[9]  = er32(TDH);
396         regs_buff[10] = er32(TDT);
397         regs_buff[11] = er32(TIDV);
398
399         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
400         if (hw->phy_type == e1000_phy_igp) {
401                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
402                                     IGP01E1000_PHY_AGC_A);
403                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
404                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
405                 regs_buff[13] = (u32)phy_data; /* cable length */
406                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
407                                     IGP01E1000_PHY_AGC_B);
408                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
409                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
410                 regs_buff[14] = (u32)phy_data; /* cable length */
411                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
412                                     IGP01E1000_PHY_AGC_C);
413                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
414                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
415                 regs_buff[15] = (u32)phy_data; /* cable length */
416                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
417                                     IGP01E1000_PHY_AGC_D);
418                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
419                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
420                 regs_buff[16] = (u32)phy_data; /* cable length */
421                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
422                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
423                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
424                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
425                 regs_buff[18] = (u32)phy_data; /* cable polarity */
426                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
427                                     IGP01E1000_PHY_PCS_INIT_REG);
428                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
429                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
430                 regs_buff[19] = (u32)phy_data; /* cable polarity */
431                 regs_buff[20] = 0; /* polarity correction enabled (always) */
432                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
433                 regs_buff[23] = regs_buff[18]; /* mdix mode */
434                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
435         } else {
436                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
437                 regs_buff[13] = (u32)phy_data; /* cable length */
438                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
439                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
440                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
441                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
442                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
443                 regs_buff[18] = regs_buff[13]; /* cable polarity */
444                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
445                 regs_buff[20] = regs_buff[17]; /* polarity correction */
446                 /* phy receive errors */
447                 regs_buff[22] = adapter->phy_stats.receive_errors;
448                 regs_buff[23] = regs_buff[13]; /* mdix mode */
449         }
450         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
451         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
452         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
453         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
454         if (hw->mac_type >= e1000_82540 &&
455             hw->media_type == e1000_media_type_copper) {
456                 regs_buff[26] = er32(MANC);
457         }
458 }
459
460 static int e1000_get_eeprom_len(struct net_device *netdev)
461 {
462         struct e1000_adapter *adapter = netdev_priv(netdev);
463         struct e1000_hw *hw = &adapter->hw;
464
465         return hw->eeprom.word_size * 2;
466 }
467
468 static int e1000_get_eeprom(struct net_device *netdev,
469                             struct ethtool_eeprom *eeprom, u8 *bytes)
470 {
471         struct e1000_adapter *adapter = netdev_priv(netdev);
472         struct e1000_hw *hw = &adapter->hw;
473         u16 *eeprom_buff;
474         int first_word, last_word;
475         int ret_val = 0;
476         u16 i;
477
478         if (eeprom->len == 0)
479                 return -EINVAL;
480
481         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
482
483         first_word = eeprom->offset >> 1;
484         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
485
486         eeprom_buff = kmalloc(sizeof(u16) *
487                         (last_word - first_word + 1), GFP_KERNEL);
488         if (!eeprom_buff)
489                 return -ENOMEM;
490
491         if (hw->eeprom.type == e1000_eeprom_spi)
492                 ret_val = e1000_read_eeprom(hw, first_word,
493                                             last_word - first_word + 1,
494                                             eeprom_buff);
495         else {
496                 for (i = 0; i < last_word - first_word + 1; i++) {
497                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
498                                                     &eeprom_buff[i]);
499                         if (ret_val)
500                                 break;
501                 }
502         }
503
504         /* Device's eeprom is always little-endian, word addressable */
505         for (i = 0; i < last_word - first_word + 1; i++)
506                 le16_to_cpus(&eeprom_buff[i]);
507
508         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
509                         eeprom->len);
510         kfree(eeprom_buff);
511
512         return ret_val;
513 }
514
515 static int e1000_set_eeprom(struct net_device *netdev,
516                             struct ethtool_eeprom *eeprom, u8 *bytes)
517 {
518         struct e1000_adapter *adapter = netdev_priv(netdev);
519         struct e1000_hw *hw = &adapter->hw;
520         u16 *eeprom_buff;
521         void *ptr;
522         int max_len, first_word, last_word, ret_val = 0;
523         u16 i;
524
525         if (eeprom->len == 0)
526                 return -EOPNOTSUPP;
527
528         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
529                 return -EFAULT;
530
531         max_len = hw->eeprom.word_size * 2;
532
533         first_word = eeprom->offset >> 1;
534         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
535         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
536         if (!eeprom_buff)
537                 return -ENOMEM;
538
539         ptr = (void *)eeprom_buff;
540
541         if (eeprom->offset & 1) {
542                 /* need read/modify/write of first changed EEPROM word */
543                 /* only the second byte of the word is being modified */
544                 ret_val = e1000_read_eeprom(hw, first_word, 1,
545                                             &eeprom_buff[0]);
546                 ptr++;
547         }
548         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
549                 /* need read/modify/write of last changed EEPROM word */
550                 /* only the first byte of the word is being modified */
551                 ret_val = e1000_read_eeprom(hw, last_word, 1,
552                                   &eeprom_buff[last_word - first_word]);
553         }
554
555         /* Device's eeprom is always little-endian, word addressable */
556         for (i = 0; i < last_word - first_word + 1; i++)
557                 le16_to_cpus(&eeprom_buff[i]);
558
559         memcpy(ptr, bytes, eeprom->len);
560
561         for (i = 0; i < last_word - first_word + 1; i++)
562                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
563
564         ret_val = e1000_write_eeprom(hw, first_word,
565                                      last_word - first_word + 1, eeprom_buff);
566
567         /* Update the checksum over the first part of the EEPROM if needed */
568         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
569                 e1000_update_eeprom_checksum(hw);
570
571         kfree(eeprom_buff);
572         return ret_val;
573 }
574
575 static void e1000_get_drvinfo(struct net_device *netdev,
576                               struct ethtool_drvinfo *drvinfo)
577 {
578         struct e1000_adapter *adapter = netdev_priv(netdev);
579         char firmware_version[32];
580
581         strncpy(drvinfo->driver,  e1000_driver_name, 32);
582         strncpy(drvinfo->version, e1000_driver_version, 32);
583
584         sprintf(firmware_version, "N/A");
585         strncpy(drvinfo->fw_version, firmware_version, 32);
586         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
587         drvinfo->regdump_len = e1000_get_regs_len(netdev);
588         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
589 }
590
591 static void e1000_get_ringparam(struct net_device *netdev,
592                                 struct ethtool_ringparam *ring)
593 {
594         struct e1000_adapter *adapter = netdev_priv(netdev);
595         struct e1000_hw *hw = &adapter->hw;
596         e1000_mac_type mac_type = hw->mac_type;
597         struct e1000_tx_ring *txdr = adapter->tx_ring;
598         struct e1000_rx_ring *rxdr = adapter->rx_ring;
599
600         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
601                 E1000_MAX_82544_RXD;
602         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
603                 E1000_MAX_82544_TXD;
604         ring->rx_mini_max_pending = 0;
605         ring->rx_jumbo_max_pending = 0;
606         ring->rx_pending = rxdr->count;
607         ring->tx_pending = txdr->count;
608         ring->rx_mini_pending = 0;
609         ring->rx_jumbo_pending = 0;
610 }
611
612 static int e1000_set_ringparam(struct net_device *netdev,
613                                struct ethtool_ringparam *ring)
614 {
615         struct e1000_adapter *adapter = netdev_priv(netdev);
616         struct e1000_hw *hw = &adapter->hw;
617         e1000_mac_type mac_type = hw->mac_type;
618         struct e1000_tx_ring *txdr, *tx_old;
619         struct e1000_rx_ring *rxdr, *rx_old;
620         int i, err;
621
622         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
623                 return -EINVAL;
624
625         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
626                 msleep(1);
627
628         if (netif_running(adapter->netdev))
629                 e1000_down(adapter);
630
631         tx_old = adapter->tx_ring;
632         rx_old = adapter->rx_ring;
633
634         err = -ENOMEM;
635         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
636         if (!txdr)
637                 goto err_alloc_tx;
638
639         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
640         if (!rxdr)
641                 goto err_alloc_rx;
642
643         adapter->tx_ring = txdr;
644         adapter->rx_ring = rxdr;
645
646         rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
647         rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
648                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
649         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
650
651         txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
652         txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
653                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
654         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
655
656         for (i = 0; i < adapter->num_tx_queues; i++)
657                 txdr[i].count = txdr->count;
658         for (i = 0; i < adapter->num_rx_queues; i++)
659                 rxdr[i].count = rxdr->count;
660
661         if (netif_running(adapter->netdev)) {
662                 /* Try to get new resources before deleting old */
663                 err = e1000_setup_all_rx_resources(adapter);
664                 if (err)
665                         goto err_setup_rx;
666                 err = e1000_setup_all_tx_resources(adapter);
667                 if (err)
668                         goto err_setup_tx;
669
670                 /* save the new, restore the old in order to free it,
671                  * then restore the new back again */
672
673                 adapter->rx_ring = rx_old;
674                 adapter->tx_ring = tx_old;
675                 e1000_free_all_rx_resources(adapter);
676                 e1000_free_all_tx_resources(adapter);
677                 kfree(tx_old);
678                 kfree(rx_old);
679                 adapter->rx_ring = rxdr;
680                 adapter->tx_ring = txdr;
681                 err = e1000_up(adapter);
682                 if (err)
683                         goto err_setup;
684         }
685
686         clear_bit(__E1000_RESETTING, &adapter->flags);
687         return 0;
688 err_setup_tx:
689         e1000_free_all_rx_resources(adapter);
690 err_setup_rx:
691         adapter->rx_ring = rx_old;
692         adapter->tx_ring = tx_old;
693         kfree(rxdr);
694 err_alloc_rx:
695         kfree(txdr);
696 err_alloc_tx:
697         e1000_up(adapter);
698 err_setup:
699         clear_bit(__E1000_RESETTING, &adapter->flags);
700         return err;
701 }
702
703 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
704                              u32 mask, u32 write)
705 {
706         struct e1000_hw *hw = &adapter->hw;
707         static const u32 test[] =
708                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
709         u8 __iomem *address = hw->hw_addr + reg;
710         u32 read;
711         int i;
712
713         for (i = 0; i < ARRAY_SIZE(test); i++) {
714                 writel(write & test[i], address);
715                 read = readl(address);
716                 if (read != (write & test[i] & mask)) {
717                         e_err(drv, "pattern test reg %04X failed: "
718                               "got 0x%08X expected 0x%08X\n",
719                               reg, read, (write & test[i] & mask));
720                         *data = reg;
721                         return true;
722                 }
723         }
724         return false;
725 }
726
727 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
728                               u32 mask, u32 write)
729 {
730         struct e1000_hw *hw = &adapter->hw;
731         u8 __iomem *address = hw->hw_addr + reg;
732         u32 read;
733
734         writel(write & mask, address);
735         read = readl(address);
736         if ((read & mask) != (write & mask)) {
737                 e_err(drv, "set/check reg %04X test failed: "
738                       "got 0x%08X expected 0x%08X\n",
739                       reg, (read & mask), (write & mask));
740                 *data = reg;
741                 return true;
742         }
743         return false;
744 }
745
746 #define REG_PATTERN_TEST(reg, mask, write)                           \
747         do {                                                         \
748                 if (reg_pattern_test(adapter, data,                  \
749                              (hw->mac_type >= e1000_82543)   \
750                              ? E1000_##reg : E1000_82542_##reg,      \
751                              mask, write))                           \
752                         return 1;                                    \
753         } while (0)
754
755 #define REG_SET_AND_CHECK(reg, mask, write)                          \
756         do {                                                         \
757                 if (reg_set_and_check(adapter, data,                 \
758                               (hw->mac_type >= e1000_82543)  \
759                               ? E1000_##reg : E1000_82542_##reg,     \
760                               mask, write))                          \
761                         return 1;                                    \
762         } while (0)
763
764 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
765 {
766         u32 value, before, after;
767         u32 i, toggle;
768         struct e1000_hw *hw = &adapter->hw;
769
770         /* The status register is Read Only, so a write should fail.
771          * Some bits that get toggled are ignored.
772          */
773
774         /* there are several bits on newer hardware that are r/w */
775         toggle = 0xFFFFF833;
776
777         before = er32(STATUS);
778         value = (er32(STATUS) & toggle);
779         ew32(STATUS, toggle);
780         after = er32(STATUS) & toggle;
781         if (value != after) {
782                 e_err(drv, "failed STATUS register test got: "
783                       "0x%08X expected: 0x%08X\n", after, value);
784                 *data = 1;
785                 return 1;
786         }
787         /* restore previous status */
788         ew32(STATUS, before);
789
790         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
791         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
792         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
793         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
794
795         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
796         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
797         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
798         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
799         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
800         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
801         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
802         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
803         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
804         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
805
806         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
807
808         before = 0x06DFB3FE;
809         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
810         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
811
812         if (hw->mac_type >= e1000_82543) {
813
814                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
815                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
816                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
817                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
818                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
819                 value = E1000_RAR_ENTRIES;
820                 for (i = 0; i < value; i++) {
821                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
822                                          0xFFFFFFFF);
823                 }
824
825         } else {
826
827                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
828                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
829                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
830                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
831
832         }
833
834         value = E1000_MC_TBL_SIZE;
835         for (i = 0; i < value; i++)
836                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
837
838         *data = 0;
839         return 0;
840 }
841
842 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
843 {
844         struct e1000_hw *hw = &adapter->hw;
845         u16 temp;
846         u16 checksum = 0;
847         u16 i;
848
849         *data = 0;
850         /* Read and add up the contents of the EEPROM */
851         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
852                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
853                         *data = 1;
854                         break;
855                 }
856                 checksum += temp;
857         }
858
859         /* If Checksum is not Correct return error else test passed */
860         if ((checksum != (u16)EEPROM_SUM) && !(*data))
861                 *data = 2;
862
863         return *data;
864 }
865
866 static irqreturn_t e1000_test_intr(int irq, void *data)
867 {
868         struct net_device *netdev = (struct net_device *)data;
869         struct e1000_adapter *adapter = netdev_priv(netdev);
870         struct e1000_hw *hw = &adapter->hw;
871
872         adapter->test_icr |= er32(ICR);
873
874         return IRQ_HANDLED;
875 }
876
877 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
878 {
879         struct net_device *netdev = adapter->netdev;
880         u32 mask, i = 0;
881         bool shared_int = true;
882         u32 irq = adapter->pdev->irq;
883         struct e1000_hw *hw = &adapter->hw;
884
885         *data = 0;
886
887         /* NOTE: we don't test MSI interrupts here, yet */
888         /* Hook up test interrupt handler just for this test */
889         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
890                          netdev))
891                 shared_int = false;
892         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
893                  netdev->name, netdev)) {
894                 *data = 1;
895                 return -1;
896         }
897         e_info(hw, "testing %s interrupt\n", (shared_int ?
898                "shared" : "unshared"));
899
900         /* Disable all the interrupts */
901         ew32(IMC, 0xFFFFFFFF);
902         msleep(10);
903
904         /* Test each interrupt */
905         for (; i < 10; i++) {
906
907                 /* Interrupt to test */
908                 mask = 1 << i;
909
910                 if (!shared_int) {
911                         /* Disable the interrupt to be reported in
912                          * the cause register and then force the same
913                          * interrupt and see if one gets posted.  If
914                          * an interrupt was posted to the bus, the
915                          * test failed.
916                          */
917                         adapter->test_icr = 0;
918                         ew32(IMC, mask);
919                         ew32(ICS, mask);
920                         msleep(10);
921
922                         if (adapter->test_icr & mask) {
923                                 *data = 3;
924                                 break;
925                         }
926                 }
927
928                 /* Enable the interrupt to be reported in
929                  * the cause register and then force the same
930                  * interrupt and see if one gets posted.  If
931                  * an interrupt was not posted to the bus, the
932                  * test failed.
933                  */
934                 adapter->test_icr = 0;
935                 ew32(IMS, mask);
936                 ew32(ICS, mask);
937                 msleep(10);
938
939                 if (!(adapter->test_icr & mask)) {
940                         *data = 4;
941                         break;
942                 }
943
944                 if (!shared_int) {
945                         /* Disable the other interrupts to be reported in
946                          * the cause register and then force the other
947                          * interrupts and see if any get posted.  If
948                          * an interrupt was posted to the bus, the
949                          * test failed.
950                          */
951                         adapter->test_icr = 0;
952                         ew32(IMC, ~mask & 0x00007FFF);
953                         ew32(ICS, ~mask & 0x00007FFF);
954                         msleep(10);
955
956                         if (adapter->test_icr) {
957                                 *data = 5;
958                                 break;
959                         }
960                 }
961         }
962
963         /* Disable all the interrupts */
964         ew32(IMC, 0xFFFFFFFF);
965         msleep(10);
966
967         /* Unhook test interrupt handler */
968         free_irq(irq, netdev);
969
970         return *data;
971 }
972
973 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
974 {
975         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
976         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
977         struct pci_dev *pdev = adapter->pdev;
978         int i;
979
980         if (txdr->desc && txdr->buffer_info) {
981                 for (i = 0; i < txdr->count; i++) {
982                         if (txdr->buffer_info[i].dma)
983                                 dma_unmap_single(&pdev->dev,
984                                                  txdr->buffer_info[i].dma,
985                                                  txdr->buffer_info[i].length,
986                                                  DMA_TO_DEVICE);
987                         if (txdr->buffer_info[i].skb)
988                                 dev_kfree_skb(txdr->buffer_info[i].skb);
989                 }
990         }
991
992         if (rxdr->desc && rxdr->buffer_info) {
993                 for (i = 0; i < rxdr->count; i++) {
994                         if (rxdr->buffer_info[i].dma)
995                                 dma_unmap_single(&pdev->dev,
996                                                  rxdr->buffer_info[i].dma,
997                                                  rxdr->buffer_info[i].length,
998                                                  DMA_FROM_DEVICE);
999                         if (rxdr->buffer_info[i].skb)
1000                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
1001                 }
1002         }
1003
1004         if (txdr->desc) {
1005                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1006                                   txdr->dma);
1007                 txdr->desc = NULL;
1008         }
1009         if (rxdr->desc) {
1010                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1011                                   rxdr->dma);
1012                 rxdr->desc = NULL;
1013         }
1014
1015         kfree(txdr->buffer_info);
1016         txdr->buffer_info = NULL;
1017         kfree(rxdr->buffer_info);
1018         rxdr->buffer_info = NULL;
1019 }
1020
1021 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1022 {
1023         struct e1000_hw *hw = &adapter->hw;
1024         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1025         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1026         struct pci_dev *pdev = adapter->pdev;
1027         u32 rctl;
1028         int i, ret_val;
1029
1030         /* Setup Tx descriptor ring and Tx buffers */
1031
1032         if (!txdr->count)
1033                 txdr->count = E1000_DEFAULT_TXD;
1034
1035         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1036                                     GFP_KERNEL);
1037         if (!txdr->buffer_info) {
1038                 ret_val = 1;
1039                 goto err_nomem;
1040         }
1041
1042         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1043         txdr->size = ALIGN(txdr->size, 4096);
1044         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1045                                         GFP_KERNEL);
1046         if (!txdr->desc) {
1047                 ret_val = 2;
1048                 goto err_nomem;
1049         }
1050         memset(txdr->desc, 0, txdr->size);
1051         txdr->next_to_use = txdr->next_to_clean = 0;
1052
1053         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1054         ew32(TDBAH, ((u64)txdr->dma >> 32));
1055         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1056         ew32(TDH, 0);
1057         ew32(TDT, 0);
1058         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1059              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1060              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1061
1062         for (i = 0; i < txdr->count; i++) {
1063                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1064                 struct sk_buff *skb;
1065                 unsigned int size = 1024;
1066
1067                 skb = alloc_skb(size, GFP_KERNEL);
1068                 if (!skb) {
1069                         ret_val = 3;
1070                         goto err_nomem;
1071                 }
1072                 skb_put(skb, size);
1073                 txdr->buffer_info[i].skb = skb;
1074                 txdr->buffer_info[i].length = skb->len;
1075                 txdr->buffer_info[i].dma =
1076                         dma_map_single(&pdev->dev, skb->data, skb->len,
1077                                        DMA_TO_DEVICE);
1078                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1079                 tx_desc->lower.data = cpu_to_le32(skb->len);
1080                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1081                                                    E1000_TXD_CMD_IFCS |
1082                                                    E1000_TXD_CMD_RPS);
1083                 tx_desc->upper.data = 0;
1084         }
1085
1086         /* Setup Rx descriptor ring and Rx buffers */
1087
1088         if (!rxdr->count)
1089                 rxdr->count = E1000_DEFAULT_RXD;
1090
1091         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1092                                     GFP_KERNEL);
1093         if (!rxdr->buffer_info) {
1094                 ret_val = 4;
1095                 goto err_nomem;
1096         }
1097
1098         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1099         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1100                                         GFP_KERNEL);
1101         if (!rxdr->desc) {
1102                 ret_val = 5;
1103                 goto err_nomem;
1104         }
1105         memset(rxdr->desc, 0, rxdr->size);
1106         rxdr->next_to_use = rxdr->next_to_clean = 0;
1107
1108         rctl = er32(RCTL);
1109         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1110         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1111         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1112         ew32(RDLEN, rxdr->size);
1113         ew32(RDH, 0);
1114         ew32(RDT, 0);
1115         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1116                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1117                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1118         ew32(RCTL, rctl);
1119
1120         for (i = 0; i < rxdr->count; i++) {
1121                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1122                 struct sk_buff *skb;
1123
1124                 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1125                 if (!skb) {
1126                         ret_val = 6;
1127                         goto err_nomem;
1128                 }
1129                 skb_reserve(skb, NET_IP_ALIGN);
1130                 rxdr->buffer_info[i].skb = skb;
1131                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1132                 rxdr->buffer_info[i].dma =
1133                         dma_map_single(&pdev->dev, skb->data,
1134                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1135                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1136                 memset(skb->data, 0x00, skb->len);
1137         }
1138
1139         return 0;
1140
1141 err_nomem:
1142         e1000_free_desc_rings(adapter);
1143         return ret_val;
1144 }
1145
1146 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1147 {
1148         struct e1000_hw *hw = &adapter->hw;
1149
1150         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1151         e1000_write_phy_reg(hw, 29, 0x001F);
1152         e1000_write_phy_reg(hw, 30, 0x8FFC);
1153         e1000_write_phy_reg(hw, 29, 0x001A);
1154         e1000_write_phy_reg(hw, 30, 0x8FF0);
1155 }
1156
1157 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1158 {
1159         struct e1000_hw *hw = &adapter->hw;
1160         u16 phy_reg;
1161
1162         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1163          * Extended PHY Specific Control Register to 25MHz clock.  This
1164          * value defaults back to a 2.5MHz clock when the PHY is reset.
1165          */
1166         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1167         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1168         e1000_write_phy_reg(hw,
1169                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1170
1171         /* In addition, because of the s/w reset above, we need to enable
1172          * CRS on TX.  This must be set for both full and half duplex
1173          * operation.
1174          */
1175         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1176         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1177         e1000_write_phy_reg(hw,
1178                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1179 }
1180
1181 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1182 {
1183         struct e1000_hw *hw = &adapter->hw;
1184         u32 ctrl_reg;
1185         u16 phy_reg;
1186
1187         /* Setup the Device Control Register for PHY loopback test. */
1188
1189         ctrl_reg = er32(CTRL);
1190         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1191                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1192                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1193                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1194                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1195
1196         ew32(CTRL, ctrl_reg);
1197
1198         /* Read the PHY Specific Control Register (0x10) */
1199         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1200
1201         /* Clear Auto-Crossover bits in PHY Specific Control Register
1202          * (bits 6:5).
1203          */
1204         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1205         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1206
1207         /* Perform software reset on the PHY */
1208         e1000_phy_reset(hw);
1209
1210         /* Have to setup TX_CLK and TX_CRS after software reset */
1211         e1000_phy_reset_clk_and_crs(adapter);
1212
1213         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1214
1215         /* Wait for reset to complete. */
1216         udelay(500);
1217
1218         /* Have to setup TX_CLK and TX_CRS after software reset */
1219         e1000_phy_reset_clk_and_crs(adapter);
1220
1221         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1222         e1000_phy_disable_receiver(adapter);
1223
1224         /* Set the loopback bit in the PHY control register. */
1225         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1226         phy_reg |= MII_CR_LOOPBACK;
1227         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1228
1229         /* Setup TX_CLK and TX_CRS one more time. */
1230         e1000_phy_reset_clk_and_crs(adapter);
1231
1232         /* Check Phy Configuration */
1233         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1234         if (phy_reg != 0x4100)
1235                  return 9;
1236
1237         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1238         if (phy_reg != 0x0070)
1239                 return 10;
1240
1241         e1000_read_phy_reg(hw, 29, &phy_reg);
1242         if (phy_reg != 0x001A)
1243                 return 11;
1244
1245         return 0;
1246 }
1247
1248 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1249 {
1250         struct e1000_hw *hw = &adapter->hw;
1251         u32 ctrl_reg = 0;
1252         u32 stat_reg = 0;
1253
1254         hw->autoneg = false;
1255
1256         if (hw->phy_type == e1000_phy_m88) {
1257                 /* Auto-MDI/MDIX Off */
1258                 e1000_write_phy_reg(hw,
1259                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1260                 /* reset to update Auto-MDI/MDIX */
1261                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1262                 /* autoneg off */
1263                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1264         }
1265
1266         ctrl_reg = er32(CTRL);
1267
1268         /* force 1000, set loopback */
1269         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1270
1271         /* Now set up the MAC to the same speed/duplex as the PHY. */
1272         ctrl_reg = er32(CTRL);
1273         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1274         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1275                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1276                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1277                         E1000_CTRL_FD);  /* Force Duplex to FULL */
1278
1279         if (hw->media_type == e1000_media_type_copper &&
1280            hw->phy_type == e1000_phy_m88)
1281                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1282         else {
1283                 /* Set the ILOS bit on the fiber Nic is half
1284                  * duplex link is detected. */
1285                 stat_reg = er32(STATUS);
1286                 if ((stat_reg & E1000_STATUS_FD) == 0)
1287                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1288         }
1289
1290         ew32(CTRL, ctrl_reg);
1291
1292         /* Disable the receiver on the PHY so when a cable is plugged in, the
1293          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1294          */
1295         if (hw->phy_type == e1000_phy_m88)
1296                 e1000_phy_disable_receiver(adapter);
1297
1298         udelay(500);
1299
1300         return 0;
1301 }
1302
1303 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1304 {
1305         struct e1000_hw *hw = &adapter->hw;
1306         u16 phy_reg = 0;
1307         u16 count = 0;
1308
1309         switch (hw->mac_type) {
1310         case e1000_82543:
1311                 if (hw->media_type == e1000_media_type_copper) {
1312                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1313                          * Some PHY registers get corrupted at random, so
1314                          * attempt this 10 times.
1315                          */
1316                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1317                               count++ < 10);
1318                         if (count < 11)
1319                                 return 0;
1320                 }
1321                 break;
1322
1323         case e1000_82544:
1324         case e1000_82540:
1325         case e1000_82545:
1326         case e1000_82545_rev_3:
1327         case e1000_82546:
1328         case e1000_82546_rev_3:
1329         case e1000_82541:
1330         case e1000_82541_rev_2:
1331         case e1000_82547:
1332         case e1000_82547_rev_2:
1333                 return e1000_integrated_phy_loopback(adapter);
1334                 break;
1335         default:
1336                 /* Default PHY loopback work is to read the MII
1337                  * control register and assert bit 14 (loopback mode).
1338                  */
1339                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1340                 phy_reg |= MII_CR_LOOPBACK;
1341                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1342                 return 0;
1343                 break;
1344         }
1345
1346         return 8;
1347 }
1348
1349 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1350 {
1351         struct e1000_hw *hw = &adapter->hw;
1352         u32 rctl;
1353
1354         if (hw->media_type == e1000_media_type_fiber ||
1355             hw->media_type == e1000_media_type_internal_serdes) {
1356                 switch (hw->mac_type) {
1357                 case e1000_82545:
1358                 case e1000_82546:
1359                 case e1000_82545_rev_3:
1360                 case e1000_82546_rev_3:
1361                         return e1000_set_phy_loopback(adapter);
1362                         break;
1363                 default:
1364                         rctl = er32(RCTL);
1365                         rctl |= E1000_RCTL_LBM_TCVR;
1366                         ew32(RCTL, rctl);
1367                         return 0;
1368                 }
1369         } else if (hw->media_type == e1000_media_type_copper)
1370                 return e1000_set_phy_loopback(adapter);
1371
1372         return 7;
1373 }
1374
1375 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1376 {
1377         struct e1000_hw *hw = &adapter->hw;
1378         u32 rctl;
1379         u16 phy_reg;
1380
1381         rctl = er32(RCTL);
1382         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1383         ew32(RCTL, rctl);
1384
1385         switch (hw->mac_type) {
1386         case e1000_82545:
1387         case e1000_82546:
1388         case e1000_82545_rev_3:
1389         case e1000_82546_rev_3:
1390         default:
1391                 hw->autoneg = true;
1392                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1393                 if (phy_reg & MII_CR_LOOPBACK) {
1394                         phy_reg &= ~MII_CR_LOOPBACK;
1395                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1396                         e1000_phy_reset(hw);
1397                 }
1398                 break;
1399         }
1400 }
1401
1402 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1403                                       unsigned int frame_size)
1404 {
1405         memset(skb->data, 0xFF, frame_size);
1406         frame_size &= ~1;
1407         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1408         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1409         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1410 }
1411
1412 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1413                                     unsigned int frame_size)
1414 {
1415         frame_size &= ~1;
1416         if (*(skb->data + 3) == 0xFF) {
1417                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1418                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1419                         return 0;
1420                 }
1421         }
1422         return 13;
1423 }
1424
1425 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1426 {
1427         struct e1000_hw *hw = &adapter->hw;
1428         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1429         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1430         struct pci_dev *pdev = adapter->pdev;
1431         int i, j, k, l, lc, good_cnt, ret_val=0;
1432         unsigned long time;
1433
1434         ew32(RDT, rxdr->count - 1);
1435
1436         /* Calculate the loop count based on the largest descriptor ring
1437          * The idea is to wrap the largest ring a number of times using 64
1438          * send/receive pairs during each loop
1439          */
1440
1441         if (rxdr->count <= txdr->count)
1442                 lc = ((txdr->count / 64) * 2) + 1;
1443         else
1444                 lc = ((rxdr->count / 64) * 2) + 1;
1445
1446         k = l = 0;
1447         for (j = 0; j <= lc; j++) { /* loop count loop */
1448                 for (i = 0; i < 64; i++) { /* send the packets */
1449                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1450                                         1024);
1451                         dma_sync_single_for_device(&pdev->dev,
1452                                                    txdr->buffer_info[k].dma,
1453                                                    txdr->buffer_info[k].length,
1454                                                    DMA_TO_DEVICE);
1455                         if (unlikely(++k == txdr->count)) k = 0;
1456                 }
1457                 ew32(TDT, k);
1458                 msleep(200);
1459                 time = jiffies; /* set the start time for the receive */
1460                 good_cnt = 0;
1461                 do { /* receive the sent packets */
1462                         dma_sync_single_for_cpu(&pdev->dev,
1463                                                 rxdr->buffer_info[l].dma,
1464                                                 rxdr->buffer_info[l].length,
1465                                                 DMA_FROM_DEVICE);
1466
1467                         ret_val = e1000_check_lbtest_frame(
1468                                         rxdr->buffer_info[l].skb,
1469                                         1024);
1470                         if (!ret_val)
1471                                 good_cnt++;
1472                         if (unlikely(++l == rxdr->count)) l = 0;
1473                         /* time + 20 msecs (200 msecs on 2.4) is more than
1474                          * enough time to complete the receives, if it's
1475                          * exceeded, break and error off
1476                          */
1477                 } while (good_cnt < 64 && jiffies < (time + 20));
1478                 if (good_cnt != 64) {
1479                         ret_val = 13; /* ret_val is the same as mis-compare */
1480                         break;
1481                 }
1482                 if (jiffies >= (time + 2)) {
1483                         ret_val = 14; /* error code for time out error */
1484                         break;
1485                 }
1486         } /* end loop count loop */
1487         return ret_val;
1488 }
1489
1490 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1491 {
1492         *data = e1000_setup_desc_rings(adapter);
1493         if (*data)
1494                 goto out;
1495         *data = e1000_setup_loopback_test(adapter);
1496         if (*data)
1497                 goto err_loopback;
1498         *data = e1000_run_loopback_test(adapter);
1499         e1000_loopback_cleanup(adapter);
1500
1501 err_loopback:
1502         e1000_free_desc_rings(adapter);
1503 out:
1504         return *data;
1505 }
1506
1507 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1508 {
1509         struct e1000_hw *hw = &adapter->hw;
1510         *data = 0;
1511         if (hw->media_type == e1000_media_type_internal_serdes) {
1512                 int i = 0;
1513                 hw->serdes_has_link = false;
1514
1515                 /* On some blade server designs, link establishment
1516                  * could take as long as 2-3 minutes */
1517                 do {
1518                         e1000_check_for_link(hw);
1519                         if (hw->serdes_has_link)
1520                                 return *data;
1521                         msleep(20);
1522                 } while (i++ < 3750);
1523
1524                 *data = 1;
1525         } else {
1526                 e1000_check_for_link(hw);
1527                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1528                         msleep(4000);
1529
1530                 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1531                         *data = 1;
1532                 }
1533         }
1534         return *data;
1535 }
1536
1537 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1538 {
1539         switch (sset) {
1540         case ETH_SS_TEST:
1541                 return E1000_TEST_LEN;
1542         case ETH_SS_STATS:
1543                 return E1000_STATS_LEN;
1544         default:
1545                 return -EOPNOTSUPP;
1546         }
1547 }
1548
1549 static void e1000_diag_test(struct net_device *netdev,
1550                             struct ethtool_test *eth_test, u64 *data)
1551 {
1552         struct e1000_adapter *adapter = netdev_priv(netdev);
1553         struct e1000_hw *hw = &adapter->hw;
1554         bool if_running = netif_running(netdev);
1555
1556         set_bit(__E1000_TESTING, &adapter->flags);
1557         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1558                 /* Offline tests */
1559
1560                 /* save speed, duplex, autoneg settings */
1561                 u16 autoneg_advertised = hw->autoneg_advertised;
1562                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1563                 u8 autoneg = hw->autoneg;
1564
1565                 e_info(hw, "offline testing starting\n");
1566
1567                 /* Link test performed before hardware reset so autoneg doesn't
1568                  * interfere with test result */
1569                 if (e1000_link_test(adapter, &data[4]))
1570                         eth_test->flags |= ETH_TEST_FL_FAILED;
1571
1572                 if (if_running)
1573                         /* indicate we're in test mode */
1574                         dev_close(netdev);
1575                 else
1576                         e1000_reset(adapter);
1577
1578                 if (e1000_reg_test(adapter, &data[0]))
1579                         eth_test->flags |= ETH_TEST_FL_FAILED;
1580
1581                 e1000_reset(adapter);
1582                 if (e1000_eeprom_test(adapter, &data[1]))
1583                         eth_test->flags |= ETH_TEST_FL_FAILED;
1584
1585                 e1000_reset(adapter);
1586                 if (e1000_intr_test(adapter, &data[2]))
1587                         eth_test->flags |= ETH_TEST_FL_FAILED;
1588
1589                 e1000_reset(adapter);
1590                 /* make sure the phy is powered up */
1591                 e1000_power_up_phy(adapter);
1592                 if (e1000_loopback_test(adapter, &data[3]))
1593                         eth_test->flags |= ETH_TEST_FL_FAILED;
1594
1595                 /* restore speed, duplex, autoneg settings */
1596                 hw->autoneg_advertised = autoneg_advertised;
1597                 hw->forced_speed_duplex = forced_speed_duplex;
1598                 hw->autoneg = autoneg;
1599
1600                 e1000_reset(adapter);
1601                 clear_bit(__E1000_TESTING, &adapter->flags);
1602                 if (if_running)
1603                         dev_open(netdev);
1604         } else {
1605                 e_info(hw, "online testing starting\n");
1606                 /* Online tests */
1607                 if (e1000_link_test(adapter, &data[4]))
1608                         eth_test->flags |= ETH_TEST_FL_FAILED;
1609
1610                 /* Online tests aren't run; pass by default */
1611                 data[0] = 0;
1612                 data[1] = 0;
1613                 data[2] = 0;
1614                 data[3] = 0;
1615
1616                 clear_bit(__E1000_TESTING, &adapter->flags);
1617         }
1618         msleep_interruptible(4 * 1000);
1619 }
1620
1621 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1622                                struct ethtool_wolinfo *wol)
1623 {
1624         struct e1000_hw *hw = &adapter->hw;
1625         int retval = 1; /* fail by default */
1626
1627         switch (hw->device_id) {
1628         case E1000_DEV_ID_82542:
1629         case E1000_DEV_ID_82543GC_FIBER:
1630         case E1000_DEV_ID_82543GC_COPPER:
1631         case E1000_DEV_ID_82544EI_FIBER:
1632         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1633         case E1000_DEV_ID_82545EM_FIBER:
1634         case E1000_DEV_ID_82545EM_COPPER:
1635         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1636         case E1000_DEV_ID_82546GB_PCIE:
1637                 /* these don't support WoL at all */
1638                 wol->supported = 0;
1639                 break;
1640         case E1000_DEV_ID_82546EB_FIBER:
1641         case E1000_DEV_ID_82546GB_FIBER:
1642                 /* Wake events not supported on port B */
1643                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1644                         wol->supported = 0;
1645                         break;
1646                 }
1647                 /* return success for non excluded adapter ports */
1648                 retval = 0;
1649                 break;
1650         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1651                 /* quad port adapters only support WoL on port A */
1652                 if (!adapter->quad_port_a) {
1653                         wol->supported = 0;
1654                         break;
1655                 }
1656                 /* return success for non excluded adapter ports */
1657                 retval = 0;
1658                 break;
1659         default:
1660                 /* dual port cards only support WoL on port A from now on
1661                  * unless it was enabled in the eeprom for port B
1662                  * so exclude FUNC_1 ports from having WoL enabled */
1663                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1664                     !adapter->eeprom_wol) {
1665                         wol->supported = 0;
1666                         break;
1667                 }
1668
1669                 retval = 0;
1670         }
1671
1672         return retval;
1673 }
1674
1675 static void e1000_get_wol(struct net_device *netdev,
1676                           struct ethtool_wolinfo *wol)
1677 {
1678         struct e1000_adapter *adapter = netdev_priv(netdev);
1679         struct e1000_hw *hw = &adapter->hw;
1680
1681         wol->supported = WAKE_UCAST | WAKE_MCAST |
1682                          WAKE_BCAST | WAKE_MAGIC;
1683         wol->wolopts = 0;
1684
1685         /* this function will set ->supported = 0 and return 1 if wol is not
1686          * supported by this hardware */
1687         if (e1000_wol_exclusion(adapter, wol) ||
1688             !device_can_wakeup(&adapter->pdev->dev))
1689                 return;
1690
1691         /* apply any specific unsupported masks here */
1692         switch (hw->device_id) {
1693         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1694                 /* KSP3 does not suppport UCAST wake-ups */
1695                 wol->supported &= ~WAKE_UCAST;
1696
1697                 if (adapter->wol & E1000_WUFC_EX)
1698                         e_err(drv, "Interface does not support directed "
1699                               "(unicast) frame wake-up packets\n");
1700                 break;
1701         default:
1702                 break;
1703         }
1704
1705         if (adapter->wol & E1000_WUFC_EX)
1706                 wol->wolopts |= WAKE_UCAST;
1707         if (adapter->wol & E1000_WUFC_MC)
1708                 wol->wolopts |= WAKE_MCAST;
1709         if (adapter->wol & E1000_WUFC_BC)
1710                 wol->wolopts |= WAKE_BCAST;
1711         if (adapter->wol & E1000_WUFC_MAG)
1712                 wol->wolopts |= WAKE_MAGIC;
1713 }
1714
1715 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1716 {
1717         struct e1000_adapter *adapter = netdev_priv(netdev);
1718         struct e1000_hw *hw = &adapter->hw;
1719
1720         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1721                 return -EOPNOTSUPP;
1722
1723         if (e1000_wol_exclusion(adapter, wol) ||
1724             !device_can_wakeup(&adapter->pdev->dev))
1725                 return wol->wolopts ? -EOPNOTSUPP : 0;
1726
1727         switch (hw->device_id) {
1728         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1729                 if (wol->wolopts & WAKE_UCAST) {
1730                         e_err(drv, "Interface does not support directed "
1731                               "(unicast) frame wake-up packets\n");
1732                         return -EOPNOTSUPP;
1733                 }
1734                 break;
1735         default:
1736                 break;
1737         }
1738
1739         /* these settings will always override what we currently have */
1740         adapter->wol = 0;
1741
1742         if (wol->wolopts & WAKE_UCAST)
1743                 adapter->wol |= E1000_WUFC_EX;
1744         if (wol->wolopts & WAKE_MCAST)
1745                 adapter->wol |= E1000_WUFC_MC;
1746         if (wol->wolopts & WAKE_BCAST)
1747                 adapter->wol |= E1000_WUFC_BC;
1748         if (wol->wolopts & WAKE_MAGIC)
1749                 adapter->wol |= E1000_WUFC_MAG;
1750
1751         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1752
1753         return 0;
1754 }
1755
1756 /* toggle LED 4 times per second = 2 "blinks" per second */
1757 #define E1000_ID_INTERVAL       (HZ/4)
1758
1759 /* bit defines for adapter->led_status */
1760 #define E1000_LED_ON            0
1761
1762 static void e1000_led_blink_callback(unsigned long data)
1763 {
1764         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1765         struct e1000_hw *hw = &adapter->hw;
1766
1767         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1768                 e1000_led_off(hw);
1769         else
1770                 e1000_led_on(hw);
1771
1772         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1773 }
1774
1775 static int e1000_phys_id(struct net_device *netdev, u32 data)
1776 {
1777         struct e1000_adapter *adapter = netdev_priv(netdev);
1778         struct e1000_hw *hw = &adapter->hw;
1779
1780         if (!data)
1781                 data = INT_MAX;
1782
1783         if (!adapter->blink_timer.function) {
1784                 init_timer(&adapter->blink_timer);
1785                 adapter->blink_timer.function = e1000_led_blink_callback;
1786                 adapter->blink_timer.data = (unsigned long)adapter;
1787         }
1788         e1000_setup_led(hw);
1789         mod_timer(&adapter->blink_timer, jiffies);
1790         msleep_interruptible(data * 1000);
1791         del_timer_sync(&adapter->blink_timer);
1792
1793         e1000_led_off(hw);
1794         clear_bit(E1000_LED_ON, &adapter->led_status);
1795         e1000_cleanup_led(hw);
1796
1797         return 0;
1798 }
1799
1800 static int e1000_get_coalesce(struct net_device *netdev,
1801                               struct ethtool_coalesce *ec)
1802 {
1803         struct e1000_adapter *adapter = netdev_priv(netdev);
1804
1805         if (adapter->hw.mac_type < e1000_82545)
1806                 return -EOPNOTSUPP;
1807
1808         if (adapter->itr_setting <= 4)
1809                 ec->rx_coalesce_usecs = adapter->itr_setting;
1810         else
1811                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1812
1813         return 0;
1814 }
1815
1816 static int e1000_set_coalesce(struct net_device *netdev,
1817                               struct ethtool_coalesce *ec)
1818 {
1819         struct e1000_adapter *adapter = netdev_priv(netdev);
1820         struct e1000_hw *hw = &adapter->hw;
1821
1822         if (hw->mac_type < e1000_82545)
1823                 return -EOPNOTSUPP;
1824
1825         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1826             ((ec->rx_coalesce_usecs > 4) &&
1827              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1828             (ec->rx_coalesce_usecs == 2))
1829                 return -EINVAL;
1830
1831         if (ec->rx_coalesce_usecs == 4) {
1832                 adapter->itr = adapter->itr_setting = 4;
1833         } else if (ec->rx_coalesce_usecs <= 3) {
1834                 adapter->itr = 20000;
1835                 adapter->itr_setting = ec->rx_coalesce_usecs;
1836         } else {
1837                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1838                 adapter->itr_setting = adapter->itr & ~3;
1839         }
1840
1841         if (adapter->itr_setting != 0)
1842                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1843         else
1844                 ew32(ITR, 0);
1845
1846         return 0;
1847 }
1848
1849 static int e1000_nway_reset(struct net_device *netdev)
1850 {
1851         struct e1000_adapter *adapter = netdev_priv(netdev);
1852         if (netif_running(netdev))
1853                 e1000_reinit_locked(adapter);
1854         return 0;
1855 }
1856
1857 static void e1000_get_ethtool_stats(struct net_device *netdev,
1858                                     struct ethtool_stats *stats, u64 *data)
1859 {
1860         struct e1000_adapter *adapter = netdev_priv(netdev);
1861         int i;
1862         char *p = NULL;
1863
1864         e1000_update_stats(adapter);
1865         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1866                 switch (e1000_gstrings_stats[i].type) {
1867                 case NETDEV_STATS:
1868                         p = (char *) netdev +
1869                                         e1000_gstrings_stats[i].stat_offset;
1870                         break;
1871                 case E1000_STATS:
1872                         p = (char *) adapter +
1873                                         e1000_gstrings_stats[i].stat_offset;
1874                         break;
1875                 }
1876
1877                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1878                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1879         }
1880 /*      BUG_ON(i != E1000_STATS_LEN); */
1881 }
1882
1883 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1884                               u8 *data)
1885 {
1886         u8 *p = data;
1887         int i;
1888
1889         switch (stringset) {
1890         case ETH_SS_TEST:
1891                 memcpy(data, *e1000_gstrings_test,
1892                         sizeof(e1000_gstrings_test));
1893                 break;
1894         case ETH_SS_STATS:
1895                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1896                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1897                                ETH_GSTRING_LEN);
1898                         p += ETH_GSTRING_LEN;
1899                 }
1900 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1901                 break;
1902         }
1903 }
1904
1905 static const struct ethtool_ops e1000_ethtool_ops = {
1906         .get_settings           = e1000_get_settings,
1907         .set_settings           = e1000_set_settings,
1908         .get_drvinfo            = e1000_get_drvinfo,
1909         .get_regs_len           = e1000_get_regs_len,
1910         .get_regs               = e1000_get_regs,
1911         .get_wol                = e1000_get_wol,
1912         .set_wol                = e1000_set_wol,
1913         .get_msglevel           = e1000_get_msglevel,
1914         .set_msglevel           = e1000_set_msglevel,
1915         .nway_reset             = e1000_nway_reset,
1916         .get_link               = e1000_get_link,
1917         .get_eeprom_len         = e1000_get_eeprom_len,
1918         .get_eeprom             = e1000_get_eeprom,
1919         .set_eeprom             = e1000_set_eeprom,
1920         .get_ringparam          = e1000_get_ringparam,
1921         .set_ringparam          = e1000_set_ringparam,
1922         .get_pauseparam         = e1000_get_pauseparam,
1923         .set_pauseparam         = e1000_set_pauseparam,
1924         .get_rx_csum            = e1000_get_rx_csum,
1925         .set_rx_csum            = e1000_set_rx_csum,
1926         .get_tx_csum            = e1000_get_tx_csum,
1927         .set_tx_csum            = e1000_set_tx_csum,
1928         .set_sg                 = ethtool_op_set_sg,
1929         .set_tso                = e1000_set_tso,
1930         .self_test              = e1000_diag_test,
1931         .get_strings            = e1000_get_strings,
1932         .phys_id                = e1000_phys_id,
1933         .get_ethtool_stats      = e1000_get_ethtool_stats,
1934         .get_sset_count         = e1000_get_sset_count,
1935         .get_coalesce           = e1000_get_coalesce,
1936         .set_coalesce           = e1000_set_coalesce,
1937 };
1938
1939 void e1000_set_ethtool_ops(struct net_device *netdev)
1940 {
1941         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1942 }