[netdrvr] Stop using legacy hooks ->self_test_count, ->get_stats_count
[pandora-kernel.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reinit_locked(struct e1000_adapter *adapter);
41 extern void e1000_reset(struct e1000_adapter *adapter);
42 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
43 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
44 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
46 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
47 extern void e1000_update_stats(struct e1000_adapter *adapter);
48
49
50 struct e1000_stats {
51         char stat_string[ETH_GSTRING_LEN];
52         int sizeof_stat;
53         int stat_offset;
54 };
55
56 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
57                       offsetof(struct e1000_adapter, m)
58 static const struct e1000_stats e1000_gstrings_stats[] = {
59         { "rx_packets", E1000_STAT(stats.gprc) },
60         { "tx_packets", E1000_STAT(stats.gptc) },
61         { "rx_bytes", E1000_STAT(stats.gorcl) },
62         { "tx_bytes", E1000_STAT(stats.gotcl) },
63         { "rx_broadcast", E1000_STAT(stats.bprc) },
64         { "tx_broadcast", E1000_STAT(stats.bptc) },
65         { "rx_multicast", E1000_STAT(stats.mprc) },
66         { "tx_multicast", E1000_STAT(stats.mptc) },
67         { "rx_errors", E1000_STAT(stats.rxerrc) },
68         { "tx_errors", E1000_STAT(stats.txerrc) },
69         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
70         { "multicast", E1000_STAT(stats.mprc) },
71         { "collisions", E1000_STAT(stats.colc) },
72         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
73         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
74         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
75         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
76         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
77         { "rx_missed_errors", E1000_STAT(stats.mpc) },
78         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
79         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
80         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
81         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
82         { "tx_window_errors", E1000_STAT(stats.latecol) },
83         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
84         { "tx_deferred_ok", E1000_STAT(stats.dc) },
85         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
86         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
87         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
88         { "tx_restart_queue", E1000_STAT(restart_queue) },
89         { "rx_long_length_errors", E1000_STAT(stats.roc) },
90         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
91         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
92         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
93         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
94         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
95         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
96         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
97         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
98         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
99         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
100         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
101         { "rx_header_split", E1000_STAT(rx_hdr_split) },
102         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
103         { "tx_smbus", E1000_STAT(stats.mgptc) },
104         { "rx_smbus", E1000_STAT(stats.mgprc) },
105         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
106 };
107
108 #define E1000_QUEUE_STATS_LEN 0
109 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
110 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
111 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
112         "Register test  (offline)", "Eeprom test    (offline)",
113         "Interrupt test (offline)", "Loopback test  (offline)",
114         "Link test   (on/offline)"
115 };
116 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
117
118 static int
119 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
120 {
121         struct e1000_adapter *adapter = netdev_priv(netdev);
122         struct e1000_hw *hw = &adapter->hw;
123
124         if (hw->media_type == e1000_media_type_copper) {
125
126                 ecmd->supported = (SUPPORTED_10baseT_Half |
127                                    SUPPORTED_10baseT_Full |
128                                    SUPPORTED_100baseT_Half |
129                                    SUPPORTED_100baseT_Full |
130                                    SUPPORTED_1000baseT_Full|
131                                    SUPPORTED_Autoneg |
132                                    SUPPORTED_TP);
133                 if (hw->phy_type == e1000_phy_ife)
134                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
135                 ecmd->advertising = ADVERTISED_TP;
136
137                 if (hw->autoneg == 1) {
138                         ecmd->advertising |= ADVERTISED_Autoneg;
139                         /* the e1000 autoneg seems to match ethtool nicely */
140                         ecmd->advertising |= hw->autoneg_advertised;
141                 }
142
143                 ecmd->port = PORT_TP;
144                 ecmd->phy_address = hw->phy_addr;
145
146                 if (hw->mac_type == e1000_82543)
147                         ecmd->transceiver = XCVR_EXTERNAL;
148                 else
149                         ecmd->transceiver = XCVR_INTERNAL;
150
151         } else {
152                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
153                                      SUPPORTED_FIBRE |
154                                      SUPPORTED_Autoneg);
155
156                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
157                                      ADVERTISED_FIBRE |
158                                      ADVERTISED_Autoneg);
159
160                 ecmd->port = PORT_FIBRE;
161
162                 if (hw->mac_type >= e1000_82545)
163                         ecmd->transceiver = XCVR_INTERNAL;
164                 else
165                         ecmd->transceiver = XCVR_EXTERNAL;
166         }
167
168         if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
169
170                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
171                                                    &adapter->link_duplex);
172                 ecmd->speed = adapter->link_speed;
173
174                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
175                  *          and HALF_DUPLEX != DUPLEX_HALF */
176
177                 if (adapter->link_duplex == FULL_DUPLEX)
178                         ecmd->duplex = DUPLEX_FULL;
179                 else
180                         ecmd->duplex = DUPLEX_HALF;
181         } else {
182                 ecmd->speed = -1;
183                 ecmd->duplex = -1;
184         }
185
186         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
187                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
188         return 0;
189 }
190
191 static int
192 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
193 {
194         struct e1000_adapter *adapter = netdev_priv(netdev);
195         struct e1000_hw *hw = &adapter->hw;
196
197         /* When SoL/IDER sessions are active, autoneg/speed/duplex
198          * cannot be changed */
199         if (e1000_check_phy_reset_block(hw)) {
200                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
201                         "when SoL/IDER is active.\n");
202                 return -EINVAL;
203         }
204
205         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
206                 msleep(1);
207
208         if (ecmd->autoneg == AUTONEG_ENABLE) {
209                 hw->autoneg = 1;
210                 if (hw->media_type == e1000_media_type_fiber)
211                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
212                                      ADVERTISED_FIBRE |
213                                      ADVERTISED_Autoneg;
214                 else
215                         hw->autoneg_advertised = ecmd->advertising |
216                                                  ADVERTISED_TP |
217                                                  ADVERTISED_Autoneg;
218                 ecmd->advertising = hw->autoneg_advertised;
219         } else
220                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
221                         clear_bit(__E1000_RESETTING, &adapter->flags);
222                         return -EINVAL;
223                 }
224
225         /* reset the link */
226
227         if (netif_running(adapter->netdev)) {
228                 e1000_down(adapter);
229                 e1000_up(adapter);
230         } else
231                 e1000_reset(adapter);
232
233         clear_bit(__E1000_RESETTING, &adapter->flags);
234         return 0;
235 }
236
237 static void
238 e1000_get_pauseparam(struct net_device *netdev,
239                      struct ethtool_pauseparam *pause)
240 {
241         struct e1000_adapter *adapter = netdev_priv(netdev);
242         struct e1000_hw *hw = &adapter->hw;
243
244         pause->autoneg =
245                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
246
247         if (hw->fc == E1000_FC_RX_PAUSE)
248                 pause->rx_pause = 1;
249         else if (hw->fc == E1000_FC_TX_PAUSE)
250                 pause->tx_pause = 1;
251         else if (hw->fc == E1000_FC_FULL) {
252                 pause->rx_pause = 1;
253                 pause->tx_pause = 1;
254         }
255 }
256
257 static int
258 e1000_set_pauseparam(struct net_device *netdev,
259                      struct ethtool_pauseparam *pause)
260 {
261         struct e1000_adapter *adapter = netdev_priv(netdev);
262         struct e1000_hw *hw = &adapter->hw;
263         int retval = 0;
264
265         adapter->fc_autoneg = pause->autoneg;
266
267         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
268                 msleep(1);
269
270         if (pause->rx_pause && pause->tx_pause)
271                 hw->fc = E1000_FC_FULL;
272         else if (pause->rx_pause && !pause->tx_pause)
273                 hw->fc = E1000_FC_RX_PAUSE;
274         else if (!pause->rx_pause && pause->tx_pause)
275                 hw->fc = E1000_FC_TX_PAUSE;
276         else if (!pause->rx_pause && !pause->tx_pause)
277                 hw->fc = E1000_FC_NONE;
278
279         hw->original_fc = hw->fc;
280
281         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
282                 if (netif_running(adapter->netdev)) {
283                         e1000_down(adapter);
284                         e1000_up(adapter);
285                 } else
286                         e1000_reset(adapter);
287         } else
288                 retval = ((hw->media_type == e1000_media_type_fiber) ?
289                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
290
291         clear_bit(__E1000_RESETTING, &adapter->flags);
292         return retval;
293 }
294
295 static uint32_t
296 e1000_get_rx_csum(struct net_device *netdev)
297 {
298         struct e1000_adapter *adapter = netdev_priv(netdev);
299         return adapter->rx_csum;
300 }
301
302 static int
303 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
304 {
305         struct e1000_adapter *adapter = netdev_priv(netdev);
306         adapter->rx_csum = data;
307
308         if (netif_running(netdev))
309                 e1000_reinit_locked(adapter);
310         else
311                 e1000_reset(adapter);
312         return 0;
313 }
314
315 static uint32_t
316 e1000_get_tx_csum(struct net_device *netdev)
317 {
318         return (netdev->features & NETIF_F_HW_CSUM) != 0;
319 }
320
321 static int
322 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
323 {
324         struct e1000_adapter *adapter = netdev_priv(netdev);
325
326         if (adapter->hw.mac_type < e1000_82543) {
327                 if (!data)
328                         return -EINVAL;
329                 return 0;
330         }
331
332         if (data)
333                 netdev->features |= NETIF_F_HW_CSUM;
334         else
335                 netdev->features &= ~NETIF_F_HW_CSUM;
336
337         return 0;
338 }
339
340 static int
341 e1000_set_tso(struct net_device *netdev, uint32_t data)
342 {
343         struct e1000_adapter *adapter = netdev_priv(netdev);
344         if ((adapter->hw.mac_type < e1000_82544) ||
345             (adapter->hw.mac_type == e1000_82547))
346                 return data ? -EINVAL : 0;
347
348         if (data)
349                 netdev->features |= NETIF_F_TSO;
350         else
351                 netdev->features &= ~NETIF_F_TSO;
352
353         if (data)
354                 netdev->features |= NETIF_F_TSO6;
355         else
356                 netdev->features &= ~NETIF_F_TSO6;
357
358         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
359         adapter->tso_force = TRUE;
360         return 0;
361 }
362
363 static uint32_t
364 e1000_get_msglevel(struct net_device *netdev)
365 {
366         struct e1000_adapter *adapter = netdev_priv(netdev);
367         return adapter->msg_enable;
368 }
369
370 static void
371 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
372 {
373         struct e1000_adapter *adapter = netdev_priv(netdev);
374         adapter->msg_enable = data;
375 }
376
377 static int
378 e1000_get_regs_len(struct net_device *netdev)
379 {
380 #define E1000_REGS_LEN 32
381         return E1000_REGS_LEN * sizeof(uint32_t);
382 }
383
384 static void
385 e1000_get_regs(struct net_device *netdev,
386                struct ethtool_regs *regs, void *p)
387 {
388         struct e1000_adapter *adapter = netdev_priv(netdev);
389         struct e1000_hw *hw = &adapter->hw;
390         uint32_t *regs_buff = p;
391         uint16_t phy_data;
392
393         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
394
395         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
396
397         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
398         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
399
400         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
401         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
402         regs_buff[4]  = E1000_READ_REG(hw, RDH);
403         regs_buff[5]  = E1000_READ_REG(hw, RDT);
404         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
405
406         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
407         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
408         regs_buff[9]  = E1000_READ_REG(hw, TDH);
409         regs_buff[10] = E1000_READ_REG(hw, TDT);
410         regs_buff[11] = E1000_READ_REG(hw, TIDV);
411
412         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
413         if (hw->phy_type == e1000_phy_igp) {
414                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
415                                     IGP01E1000_PHY_AGC_A);
416                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
417                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
418                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
419                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
420                                     IGP01E1000_PHY_AGC_B);
421                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
422                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
423                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
424                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
425                                     IGP01E1000_PHY_AGC_C);
426                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
427                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
428                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
429                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
430                                     IGP01E1000_PHY_AGC_D);
431                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
432                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
433                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
434                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
435                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
436                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
437                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
438                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
439                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
440                                     IGP01E1000_PHY_PCS_INIT_REG);
441                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
442                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
443                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
444                 regs_buff[20] = 0; /* polarity correction enabled (always) */
445                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
446                 regs_buff[23] = regs_buff[18]; /* mdix mode */
447                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
448         } else {
449                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
450                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
451                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
452                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
453                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
454                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
455                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
456                 regs_buff[18] = regs_buff[13]; /* cable polarity */
457                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
458                 regs_buff[20] = regs_buff[17]; /* polarity correction */
459                 /* phy receive errors */
460                 regs_buff[22] = adapter->phy_stats.receive_errors;
461                 regs_buff[23] = regs_buff[13]; /* mdix mode */
462         }
463         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
464         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
465         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
466         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
467         if (hw->mac_type >= e1000_82540 &&
468             hw->mac_type < e1000_82571 &&
469             hw->media_type == e1000_media_type_copper) {
470                 regs_buff[26] = E1000_READ_REG(hw, MANC);
471         }
472 }
473
474 static int
475 e1000_get_eeprom_len(struct net_device *netdev)
476 {
477         struct e1000_adapter *adapter = netdev_priv(netdev);
478         return adapter->hw.eeprom.word_size * 2;
479 }
480
481 static int
482 e1000_get_eeprom(struct net_device *netdev,
483                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
484 {
485         struct e1000_adapter *adapter = netdev_priv(netdev);
486         struct e1000_hw *hw = &adapter->hw;
487         uint16_t *eeprom_buff;
488         int first_word, last_word;
489         int ret_val = 0;
490         uint16_t i;
491
492         if (eeprom->len == 0)
493                 return -EINVAL;
494
495         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
496
497         first_word = eeprom->offset >> 1;
498         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
499
500         eeprom_buff = kmalloc(sizeof(uint16_t) *
501                         (last_word - first_word + 1), GFP_KERNEL);
502         if (!eeprom_buff)
503                 return -ENOMEM;
504
505         if (hw->eeprom.type == e1000_eeprom_spi)
506                 ret_val = e1000_read_eeprom(hw, first_word,
507                                             last_word - first_word + 1,
508                                             eeprom_buff);
509         else {
510                 for (i = 0; i < last_word - first_word + 1; i++)
511                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
512                                                         &eeprom_buff[i])))
513                                 break;
514         }
515
516         /* Device's eeprom is always little-endian, word addressable */
517         for (i = 0; i < last_word - first_word + 1; i++)
518                 le16_to_cpus(&eeprom_buff[i]);
519
520         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
521                         eeprom->len);
522         kfree(eeprom_buff);
523
524         return ret_val;
525 }
526
527 static int
528 e1000_set_eeprom(struct net_device *netdev,
529                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
530 {
531         struct e1000_adapter *adapter = netdev_priv(netdev);
532         struct e1000_hw *hw = &adapter->hw;
533         uint16_t *eeprom_buff;
534         void *ptr;
535         int max_len, first_word, last_word, ret_val = 0;
536         uint16_t i;
537
538         if (eeprom->len == 0)
539                 return -EOPNOTSUPP;
540
541         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
542                 return -EFAULT;
543
544         max_len = hw->eeprom.word_size * 2;
545
546         first_word = eeprom->offset >> 1;
547         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
548         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
549         if (!eeprom_buff)
550                 return -ENOMEM;
551
552         ptr = (void *)eeprom_buff;
553
554         if (eeprom->offset & 1) {
555                 /* need read/modify/write of first changed EEPROM word */
556                 /* only the second byte of the word is being modified */
557                 ret_val = e1000_read_eeprom(hw, first_word, 1,
558                                             &eeprom_buff[0]);
559                 ptr++;
560         }
561         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
562                 /* need read/modify/write of last changed EEPROM word */
563                 /* only the first byte of the word is being modified */
564                 ret_val = e1000_read_eeprom(hw, last_word, 1,
565                                   &eeprom_buff[last_word - first_word]);
566         }
567
568         /* Device's eeprom is always little-endian, word addressable */
569         for (i = 0; i < last_word - first_word + 1; i++)
570                 le16_to_cpus(&eeprom_buff[i]);
571
572         memcpy(ptr, bytes, eeprom->len);
573
574         for (i = 0; i < last_word - first_word + 1; i++)
575                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
576
577         ret_val = e1000_write_eeprom(hw, first_word,
578                                      last_word - first_word + 1, eeprom_buff);
579
580         /* Update the checksum over the first part of the EEPROM if needed
581          * and flush shadow RAM for 82573 conrollers */
582         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
583                                 (hw->mac_type == e1000_82573)))
584                 e1000_update_eeprom_checksum(hw);
585
586         kfree(eeprom_buff);
587         return ret_val;
588 }
589
590 static void
591 e1000_get_drvinfo(struct net_device *netdev,
592                        struct ethtool_drvinfo *drvinfo)
593 {
594         struct e1000_adapter *adapter = netdev_priv(netdev);
595         char firmware_version[32];
596         uint16_t eeprom_data;
597
598         strncpy(drvinfo->driver,  e1000_driver_name, 32);
599         strncpy(drvinfo->version, e1000_driver_version, 32);
600
601         /* EEPROM image version # is reported as firmware version # for
602          * 8257{1|2|3} controllers */
603         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
604         switch (adapter->hw.mac_type) {
605         case e1000_82571:
606         case e1000_82572:
607         case e1000_82573:
608         case e1000_80003es2lan:
609         case e1000_ich8lan:
610                 sprintf(firmware_version, "%d.%d-%d",
611                         (eeprom_data & 0xF000) >> 12,
612                         (eeprom_data & 0x0FF0) >> 4,
613                         eeprom_data & 0x000F);
614                 break;
615         default:
616                 sprintf(firmware_version, "N/A");
617         }
618
619         strncpy(drvinfo->fw_version, firmware_version, 32);
620         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
621         drvinfo->regdump_len = e1000_get_regs_len(netdev);
622         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
623 }
624
625 static void
626 e1000_get_ringparam(struct net_device *netdev,
627                     struct ethtool_ringparam *ring)
628 {
629         struct e1000_adapter *adapter = netdev_priv(netdev);
630         e1000_mac_type mac_type = adapter->hw.mac_type;
631         struct e1000_tx_ring *txdr = adapter->tx_ring;
632         struct e1000_rx_ring *rxdr = adapter->rx_ring;
633
634         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
635                 E1000_MAX_82544_RXD;
636         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
637                 E1000_MAX_82544_TXD;
638         ring->rx_mini_max_pending = 0;
639         ring->rx_jumbo_max_pending = 0;
640         ring->rx_pending = rxdr->count;
641         ring->tx_pending = txdr->count;
642         ring->rx_mini_pending = 0;
643         ring->rx_jumbo_pending = 0;
644 }
645
646 static int
647 e1000_set_ringparam(struct net_device *netdev,
648                     struct ethtool_ringparam *ring)
649 {
650         struct e1000_adapter *adapter = netdev_priv(netdev);
651         e1000_mac_type mac_type = adapter->hw.mac_type;
652         struct e1000_tx_ring *txdr, *tx_old;
653         struct e1000_rx_ring *rxdr, *rx_old;
654         int i, err;
655
656         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
657                 return -EINVAL;
658
659         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
660                 msleep(1);
661
662         if (netif_running(adapter->netdev))
663                 e1000_down(adapter);
664
665         tx_old = adapter->tx_ring;
666         rx_old = adapter->rx_ring;
667
668         err = -ENOMEM;
669         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
670         if (!txdr)
671                 goto err_alloc_tx;
672
673         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
674         if (!rxdr)
675                 goto err_alloc_rx;
676
677         adapter->tx_ring = txdr;
678         adapter->rx_ring = rxdr;
679
680         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
681         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
682                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
683         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
684
685         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
686         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
687                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
688         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
689
690         for (i = 0; i < adapter->num_tx_queues; i++)
691                 txdr[i].count = txdr->count;
692         for (i = 0; i < adapter->num_rx_queues; i++)
693                 rxdr[i].count = rxdr->count;
694
695         if (netif_running(adapter->netdev)) {
696                 /* Try to get new resources before deleting old */
697                 if ((err = e1000_setup_all_rx_resources(adapter)))
698                         goto err_setup_rx;
699                 if ((err = e1000_setup_all_tx_resources(adapter)))
700                         goto err_setup_tx;
701
702                 /* save the new, restore the old in order to free it,
703                  * then restore the new back again */
704
705                 adapter->rx_ring = rx_old;
706                 adapter->tx_ring = tx_old;
707                 e1000_free_all_rx_resources(adapter);
708                 e1000_free_all_tx_resources(adapter);
709                 kfree(tx_old);
710                 kfree(rx_old);
711                 adapter->rx_ring = rxdr;
712                 adapter->tx_ring = txdr;
713                 if ((err = e1000_up(adapter)))
714                         goto err_setup;
715         }
716
717         clear_bit(__E1000_RESETTING, &adapter->flags);
718         return 0;
719 err_setup_tx:
720         e1000_free_all_rx_resources(adapter);
721 err_setup_rx:
722         adapter->rx_ring = rx_old;
723         adapter->tx_ring = tx_old;
724         kfree(rxdr);
725 err_alloc_rx:
726         kfree(txdr);
727 err_alloc_tx:
728         e1000_up(adapter);
729 err_setup:
730         clear_bit(__E1000_RESETTING, &adapter->flags);
731         return err;
732 }
733
734 #define REG_PATTERN_TEST(R, M, W)                                              \
735 {                                                                              \
736         uint32_t pat, value;                                                   \
737         uint32_t test[] =                                                      \
738                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
739         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {              \
740                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
741                 value = E1000_READ_REG(&adapter->hw, R);                       \
742                 if (value != (test[pat] & W & M)) {                             \
743                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
744                                 "0x%08X expected 0x%08X\n",                    \
745                                 E1000_##R, value, (test[pat] & W & M));        \
746                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
747                                 E1000_82542_##R : E1000_##R;                   \
748                         return 1;                                              \
749                 }                                                              \
750         }                                                                      \
751 }
752
753 #define REG_SET_AND_CHECK(R, M, W)                                             \
754 {                                                                              \
755         uint32_t value;                                                        \
756         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
757         value = E1000_READ_REG(&adapter->hw, R);                               \
758         if ((W & M) != (value & M)) {                                          \
759                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
760                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
761                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
762                         E1000_82542_##R : E1000_##R;                           \
763                 return 1;                                                      \
764         }                                                                      \
765 }
766
767 static int
768 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
769 {
770         uint32_t value, before, after;
771         uint32_t i, toggle;
772
773         /* The status register is Read Only, so a write should fail.
774          * Some bits that get toggled are ignored.
775          */
776         switch (adapter->hw.mac_type) {
777         /* there are several bits on newer hardware that are r/w */
778         case e1000_82571:
779         case e1000_82572:
780         case e1000_80003es2lan:
781                 toggle = 0x7FFFF3FF;
782                 break;
783         case e1000_82573:
784         case e1000_ich8lan:
785                 toggle = 0x7FFFF033;
786                 break;
787         default:
788                 toggle = 0xFFFFF833;
789                 break;
790         }
791
792         before = E1000_READ_REG(&adapter->hw, STATUS);
793         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
794         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
795         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
796         if (value != after) {
797                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
798                         "0x%08X expected: 0x%08X\n", after, value);
799                 *data = 1;
800                 return 1;
801         }
802         /* restore previous status */
803         E1000_WRITE_REG(&adapter->hw, STATUS, before);
804
805         if (adapter->hw.mac_type != e1000_ich8lan) {
806                 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
807                 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
808                 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
809                 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
810         }
811
812         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
813         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
814         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
815         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
816         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
817         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
818         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
819         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
820         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
821         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
822
823         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
824
825         before = (adapter->hw.mac_type == e1000_ich8lan ?
826                   0x06C3B33E : 0x06DFB3FE);
827         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
828         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
829
830         if (adapter->hw.mac_type >= e1000_82543) {
831
832                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
833                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
834                 if (adapter->hw.mac_type != e1000_ich8lan)
835                         REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
836                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
837                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
838                 value = (adapter->hw.mac_type == e1000_ich8lan ?
839                          E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
840                 for (i = 0; i < value; i++) {
841                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
842                                          0xFFFFFFFF);
843                 }
844
845         } else {
846
847                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
848                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
849                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
850                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
851
852         }
853
854         value = (adapter->hw.mac_type == e1000_ich8lan ?
855                         E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
856         for (i = 0; i < value; i++)
857                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
858
859         *data = 0;
860         return 0;
861 }
862
863 static int
864 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
865 {
866         uint16_t temp;
867         uint16_t checksum = 0;
868         uint16_t i;
869
870         *data = 0;
871         /* Read and add up the contents of the EEPROM */
872         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
873                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
874                         *data = 1;
875                         break;
876                 }
877                 checksum += temp;
878         }
879
880         /* If Checksum is not Correct return error else test passed */
881         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
882                 *data = 2;
883
884         return *data;
885 }
886
887 static irqreturn_t
888 e1000_test_intr(int irq, void *data)
889 {
890         struct net_device *netdev = (struct net_device *) data;
891         struct e1000_adapter *adapter = netdev_priv(netdev);
892
893         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
894
895         return IRQ_HANDLED;
896 }
897
898 static int
899 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
900 {
901         struct net_device *netdev = adapter->netdev;
902         uint32_t mask, i=0, shared_int = TRUE;
903         uint32_t irq = adapter->pdev->irq;
904
905         *data = 0;
906
907         /* NOTE: we don't test MSI interrupts here, yet */
908         /* Hook up test interrupt handler just for this test */
909         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
910                          netdev))
911                 shared_int = FALSE;
912         else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
913                  netdev->name, netdev)) {
914                 *data = 1;
915                 return -1;
916         }
917         DPRINTK(HW, INFO, "testing %s interrupt\n",
918                 (shared_int ? "shared" : "unshared"));
919
920         /* Disable all the interrupts */
921         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
922         msleep(10);
923
924         /* Test each interrupt */
925         for (; i < 10; i++) {
926
927                 if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
928                         continue;
929
930                 /* Interrupt to test */
931                 mask = 1 << i;
932
933                 if (!shared_int) {
934                         /* Disable the interrupt to be reported in
935                          * the cause register and then force the same
936                          * interrupt and see if one gets posted.  If
937                          * an interrupt was posted to the bus, the
938                          * test failed.
939                          */
940                         adapter->test_icr = 0;
941                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
942                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
943                         msleep(10);
944
945                         if (adapter->test_icr & mask) {
946                                 *data = 3;
947                                 break;
948                         }
949                 }
950
951                 /* Enable the interrupt to be reported in
952                  * the cause register and then force the same
953                  * interrupt and see if one gets posted.  If
954                  * an interrupt was not posted to the bus, the
955                  * test failed.
956                  */
957                 adapter->test_icr = 0;
958                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
959                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
960                 msleep(10);
961
962                 if (!(adapter->test_icr & mask)) {
963                         *data = 4;
964                         break;
965                 }
966
967                 if (!shared_int) {
968                         /* Disable the other interrupts to be reported in
969                          * the cause register and then force the other
970                          * interrupts and see if any get posted.  If
971                          * an interrupt was posted to the bus, the
972                          * test failed.
973                          */
974                         adapter->test_icr = 0;
975                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
976                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
977                         msleep(10);
978
979                         if (adapter->test_icr) {
980                                 *data = 5;
981                                 break;
982                         }
983                 }
984         }
985
986         /* Disable all the interrupts */
987         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
988         msleep(10);
989
990         /* Unhook test interrupt handler */
991         free_irq(irq, netdev);
992
993         return *data;
994 }
995
996 static void
997 e1000_free_desc_rings(struct e1000_adapter *adapter)
998 {
999         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1000         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1001         struct pci_dev *pdev = adapter->pdev;
1002         int i;
1003
1004         if (txdr->desc && txdr->buffer_info) {
1005                 for (i = 0; i < txdr->count; i++) {
1006                         if (txdr->buffer_info[i].dma)
1007                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1008                                                  txdr->buffer_info[i].length,
1009                                                  PCI_DMA_TODEVICE);
1010                         if (txdr->buffer_info[i].skb)
1011                                 dev_kfree_skb(txdr->buffer_info[i].skb);
1012                 }
1013         }
1014
1015         if (rxdr->desc && rxdr->buffer_info) {
1016                 for (i = 0; i < rxdr->count; i++) {
1017                         if (rxdr->buffer_info[i].dma)
1018                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1019                                                  rxdr->buffer_info[i].length,
1020                                                  PCI_DMA_FROMDEVICE);
1021                         if (rxdr->buffer_info[i].skb)
1022                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
1023                 }
1024         }
1025
1026         if (txdr->desc) {
1027                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1028                 txdr->desc = NULL;
1029         }
1030         if (rxdr->desc) {
1031                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1032                 rxdr->desc = NULL;
1033         }
1034
1035         kfree(txdr->buffer_info);
1036         txdr->buffer_info = NULL;
1037         kfree(rxdr->buffer_info);
1038         rxdr->buffer_info = NULL;
1039
1040         return;
1041 }
1042
1043 static int
1044 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1045 {
1046         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1047         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1048         struct pci_dev *pdev = adapter->pdev;
1049         uint32_t rctl;
1050         int i, ret_val;
1051
1052         /* Setup Tx descriptor ring and Tx buffers */
1053
1054         if (!txdr->count)
1055                 txdr->count = E1000_DEFAULT_TXD;
1056
1057         if (!(txdr->buffer_info = kcalloc(txdr->count,
1058                                           sizeof(struct e1000_buffer),
1059                                           GFP_KERNEL))) {
1060                 ret_val = 1;
1061                 goto err_nomem;
1062         }
1063
1064         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1065         txdr->size = ALIGN(txdr->size, 4096);
1066         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size,
1067                                                 &txdr->dma))) {
1068                 ret_val = 2;
1069                 goto err_nomem;
1070         }
1071         memset(txdr->desc, 0, txdr->size);
1072         txdr->next_to_use = txdr->next_to_clean = 0;
1073
1074         E1000_WRITE_REG(&adapter->hw, TDBAL,
1075                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1076         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1077         E1000_WRITE_REG(&adapter->hw, TDLEN,
1078                         txdr->count * sizeof(struct e1000_tx_desc));
1079         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1080         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1081         E1000_WRITE_REG(&adapter->hw, TCTL,
1082                         E1000_TCTL_PSP | E1000_TCTL_EN |
1083                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1084                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1085
1086         for (i = 0; i < txdr->count; i++) {
1087                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1088                 struct sk_buff *skb;
1089                 unsigned int size = 1024;
1090
1091                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1092                         ret_val = 3;
1093                         goto err_nomem;
1094                 }
1095                 skb_put(skb, size);
1096                 txdr->buffer_info[i].skb = skb;
1097                 txdr->buffer_info[i].length = skb->len;
1098                 txdr->buffer_info[i].dma =
1099                         pci_map_single(pdev, skb->data, skb->len,
1100                                        PCI_DMA_TODEVICE);
1101                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1102                 tx_desc->lower.data = cpu_to_le32(skb->len);
1103                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1104                                                    E1000_TXD_CMD_IFCS |
1105                                                    E1000_TXD_CMD_RPS);
1106                 tx_desc->upper.data = 0;
1107         }
1108
1109         /* Setup Rx descriptor ring and Rx buffers */
1110
1111         if (!rxdr->count)
1112                 rxdr->count = E1000_DEFAULT_RXD;
1113
1114         if (!(rxdr->buffer_info = kcalloc(rxdr->count,
1115                                           sizeof(struct e1000_buffer),
1116                                           GFP_KERNEL))) {
1117                 ret_val = 4;
1118                 goto err_nomem;
1119         }
1120
1121         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1122         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1123                 ret_val = 5;
1124                 goto err_nomem;
1125         }
1126         memset(rxdr->desc, 0, rxdr->size);
1127         rxdr->next_to_use = rxdr->next_to_clean = 0;
1128
1129         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1130         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1131         E1000_WRITE_REG(&adapter->hw, RDBAL,
1132                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1133         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1134         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1135         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1136         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1137         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1138                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1139                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1140         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1141
1142         for (i = 0; i < rxdr->count; i++) {
1143                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1144                 struct sk_buff *skb;
1145
1146                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1147                                 GFP_KERNEL))) {
1148                         ret_val = 6;
1149                         goto err_nomem;
1150                 }
1151                 skb_reserve(skb, NET_IP_ALIGN);
1152                 rxdr->buffer_info[i].skb = skb;
1153                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1154                 rxdr->buffer_info[i].dma =
1155                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1156                                        PCI_DMA_FROMDEVICE);
1157                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1158                 memset(skb->data, 0x00, skb->len);
1159         }
1160
1161         return 0;
1162
1163 err_nomem:
1164         e1000_free_desc_rings(adapter);
1165         return ret_val;
1166 }
1167
1168 static void
1169 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1170 {
1171         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1172         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1173         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1174         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1175         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1176 }
1177
1178 static void
1179 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1180 {
1181         uint16_t phy_reg;
1182
1183         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1184          * Extended PHY Specific Control Register to 25MHz clock.  This
1185          * value defaults back to a 2.5MHz clock when the PHY is reset.
1186          */
1187         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1188         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1189         e1000_write_phy_reg(&adapter->hw,
1190                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1191
1192         /* In addition, because of the s/w reset above, we need to enable
1193          * CRS on TX.  This must be set for both full and half duplex
1194          * operation.
1195          */
1196         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1197         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1198         e1000_write_phy_reg(&adapter->hw,
1199                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1200 }
1201
1202 static int
1203 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1204 {
1205         uint32_t ctrl_reg;
1206         uint16_t phy_reg;
1207
1208         /* Setup the Device Control Register for PHY loopback test. */
1209
1210         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1211         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1212                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1213                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1214                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1215                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1216
1217         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1218
1219         /* Read the PHY Specific Control Register (0x10) */
1220         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1221
1222         /* Clear Auto-Crossover bits in PHY Specific Control Register
1223          * (bits 6:5).
1224          */
1225         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1226         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1227
1228         /* Perform software reset on the PHY */
1229         e1000_phy_reset(&adapter->hw);
1230
1231         /* Have to setup TX_CLK and TX_CRS after software reset */
1232         e1000_phy_reset_clk_and_crs(adapter);
1233
1234         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1235
1236         /* Wait for reset to complete. */
1237         udelay(500);
1238
1239         /* Have to setup TX_CLK and TX_CRS after software reset */
1240         e1000_phy_reset_clk_and_crs(adapter);
1241
1242         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1243         e1000_phy_disable_receiver(adapter);
1244
1245         /* Set the loopback bit in the PHY control register. */
1246         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1247         phy_reg |= MII_CR_LOOPBACK;
1248         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1249
1250         /* Setup TX_CLK and TX_CRS one more time. */
1251         e1000_phy_reset_clk_and_crs(adapter);
1252
1253         /* Check Phy Configuration */
1254         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1255         if (phy_reg != 0x4100)
1256                  return 9;
1257
1258         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1259         if (phy_reg != 0x0070)
1260                 return 10;
1261
1262         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1263         if (phy_reg != 0x001A)
1264                 return 11;
1265
1266         return 0;
1267 }
1268
1269 static int
1270 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1271 {
1272         uint32_t ctrl_reg = 0;
1273         uint32_t stat_reg = 0;
1274
1275         adapter->hw.autoneg = FALSE;
1276
1277         if (adapter->hw.phy_type == e1000_phy_m88) {
1278                 /* Auto-MDI/MDIX Off */
1279                 e1000_write_phy_reg(&adapter->hw,
1280                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1281                 /* reset to update Auto-MDI/MDIX */
1282                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1283                 /* autoneg off */
1284                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1285         } else if (adapter->hw.phy_type == e1000_phy_gg82563)
1286                 e1000_write_phy_reg(&adapter->hw,
1287                                     GG82563_PHY_KMRN_MODE_CTRL,
1288                                     0x1CC);
1289
1290         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1291
1292         if (adapter->hw.phy_type == e1000_phy_ife) {
1293                 /* force 100, set loopback */
1294                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
1295
1296                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1297                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1298                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1299                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1300                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1301                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1302         } else {
1303                 /* force 1000, set loopback */
1304                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1305
1306                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1307                 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1308                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1309                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1310                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1311                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1312                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1313         }
1314
1315         if (adapter->hw.media_type == e1000_media_type_copper &&
1316            adapter->hw.phy_type == e1000_phy_m88)
1317                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1318         else {
1319                 /* Set the ILOS bit on the fiber Nic is half
1320                  * duplex link is detected. */
1321                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1322                 if ((stat_reg & E1000_STATUS_FD) == 0)
1323                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1324         }
1325
1326         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1327
1328         /* Disable the receiver on the PHY so when a cable is plugged in, the
1329          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1330          */
1331         if (adapter->hw.phy_type == e1000_phy_m88)
1332                 e1000_phy_disable_receiver(adapter);
1333
1334         udelay(500);
1335
1336         return 0;
1337 }
1338
1339 static int
1340 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1341 {
1342         uint16_t phy_reg = 0;
1343         uint16_t count = 0;
1344
1345         switch (adapter->hw.mac_type) {
1346         case e1000_82543:
1347                 if (adapter->hw.media_type == e1000_media_type_copper) {
1348                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1349                          * Some PHY registers get corrupted at random, so
1350                          * attempt this 10 times.
1351                          */
1352                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1353                               count++ < 10);
1354                         if (count < 11)
1355                                 return 0;
1356                 }
1357                 break;
1358
1359         case e1000_82544:
1360         case e1000_82540:
1361         case e1000_82545:
1362         case e1000_82545_rev_3:
1363         case e1000_82546:
1364         case e1000_82546_rev_3:
1365         case e1000_82541:
1366         case e1000_82541_rev_2:
1367         case e1000_82547:
1368         case e1000_82547_rev_2:
1369         case e1000_82571:
1370         case e1000_82572:
1371         case e1000_82573:
1372         case e1000_80003es2lan:
1373         case e1000_ich8lan:
1374                 return e1000_integrated_phy_loopback(adapter);
1375                 break;
1376
1377         default:
1378                 /* Default PHY loopback work is to read the MII
1379                  * control register and assert bit 14 (loopback mode).
1380                  */
1381                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1382                 phy_reg |= MII_CR_LOOPBACK;
1383                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1384                 return 0;
1385                 break;
1386         }
1387
1388         return 8;
1389 }
1390
1391 static int
1392 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1393 {
1394         struct e1000_hw *hw = &adapter->hw;
1395         uint32_t rctl;
1396
1397         if (hw->media_type == e1000_media_type_fiber ||
1398             hw->media_type == e1000_media_type_internal_serdes) {
1399                 switch (hw->mac_type) {
1400                 case e1000_82545:
1401                 case e1000_82546:
1402                 case e1000_82545_rev_3:
1403                 case e1000_82546_rev_3:
1404                         return e1000_set_phy_loopback(adapter);
1405                         break;
1406                 case e1000_82571:
1407                 case e1000_82572:
1408 #define E1000_SERDES_LB_ON 0x410
1409                         e1000_set_phy_loopback(adapter);
1410                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1411                         msleep(10);
1412                         return 0;
1413                         break;
1414                 default:
1415                         rctl = E1000_READ_REG(hw, RCTL);
1416                         rctl |= E1000_RCTL_LBM_TCVR;
1417                         E1000_WRITE_REG(hw, RCTL, rctl);
1418                         return 0;
1419                 }
1420         } else if (hw->media_type == e1000_media_type_copper)
1421                 return e1000_set_phy_loopback(adapter);
1422
1423         return 7;
1424 }
1425
1426 static void
1427 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1428 {
1429         struct e1000_hw *hw = &adapter->hw;
1430         uint32_t rctl;
1431         uint16_t phy_reg;
1432
1433         rctl = E1000_READ_REG(hw, RCTL);
1434         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1435         E1000_WRITE_REG(hw, RCTL, rctl);
1436
1437         switch (hw->mac_type) {
1438         case e1000_82571:
1439         case e1000_82572:
1440                 if (hw->media_type == e1000_media_type_fiber ||
1441                     hw->media_type == e1000_media_type_internal_serdes) {
1442 #define E1000_SERDES_LB_OFF 0x400
1443                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1444                         msleep(10);
1445                         break;
1446                 }
1447                 /* Fall Through */
1448         case e1000_82545:
1449         case e1000_82546:
1450         case e1000_82545_rev_3:
1451         case e1000_82546_rev_3:
1452         default:
1453                 hw->autoneg = TRUE;
1454                 if (hw->phy_type == e1000_phy_gg82563)
1455                         e1000_write_phy_reg(hw,
1456                                             GG82563_PHY_KMRN_MODE_CTRL,
1457                                             0x180);
1458                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1459                 if (phy_reg & MII_CR_LOOPBACK) {
1460                         phy_reg &= ~MII_CR_LOOPBACK;
1461                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1462                         e1000_phy_reset(hw);
1463                 }
1464                 break;
1465         }
1466 }
1467
1468 static void
1469 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1470 {
1471         memset(skb->data, 0xFF, frame_size);
1472         frame_size &= ~1;
1473         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1474         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1475         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1476 }
1477
1478 static int
1479 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1480 {
1481         frame_size &= ~1;
1482         if (*(skb->data + 3) == 0xFF) {
1483                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1484                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1485                         return 0;
1486                 }
1487         }
1488         return 13;
1489 }
1490
1491 static int
1492 e1000_run_loopback_test(struct e1000_adapter *adapter)
1493 {
1494         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1495         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1496         struct pci_dev *pdev = adapter->pdev;
1497         int i, j, k, l, lc, good_cnt, ret_val=0;
1498         unsigned long time;
1499
1500         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1501
1502         /* Calculate the loop count based on the largest descriptor ring
1503          * The idea is to wrap the largest ring a number of times using 64
1504          * send/receive pairs during each loop
1505          */
1506
1507         if (rxdr->count <= txdr->count)
1508                 lc = ((txdr->count / 64) * 2) + 1;
1509         else
1510                 lc = ((rxdr->count / 64) * 2) + 1;
1511
1512         k = l = 0;
1513         for (j = 0; j <= lc; j++) { /* loop count loop */
1514                 for (i = 0; i < 64; i++) { /* send the packets */
1515                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1516                                         1024);
1517                         pci_dma_sync_single_for_device(pdev,
1518                                         txdr->buffer_info[k].dma,
1519                                         txdr->buffer_info[k].length,
1520                                         PCI_DMA_TODEVICE);
1521                         if (unlikely(++k == txdr->count)) k = 0;
1522                 }
1523                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1524                 msleep(200);
1525                 time = jiffies; /* set the start time for the receive */
1526                 good_cnt = 0;
1527                 do { /* receive the sent packets */
1528                         pci_dma_sync_single_for_cpu(pdev,
1529                                         rxdr->buffer_info[l].dma,
1530                                         rxdr->buffer_info[l].length,
1531                                         PCI_DMA_FROMDEVICE);
1532
1533                         ret_val = e1000_check_lbtest_frame(
1534                                         rxdr->buffer_info[l].skb,
1535                                         1024);
1536                         if (!ret_val)
1537                                 good_cnt++;
1538                         if (unlikely(++l == rxdr->count)) l = 0;
1539                         /* time + 20 msecs (200 msecs on 2.4) is more than
1540                          * enough time to complete the receives, if it's
1541                          * exceeded, break and error off
1542                          */
1543                 } while (good_cnt < 64 && jiffies < (time + 20));
1544                 if (good_cnt != 64) {
1545                         ret_val = 13; /* ret_val is the same as mis-compare */
1546                         break;
1547                 }
1548                 if (jiffies >= (time + 2)) {
1549                         ret_val = 14; /* error code for time out error */
1550                         break;
1551                 }
1552         } /* end loop count loop */
1553         return ret_val;
1554 }
1555
1556 static int
1557 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1558 {
1559         /* PHY loopback cannot be performed if SoL/IDER
1560          * sessions are active */
1561         if (e1000_check_phy_reset_block(&adapter->hw)) {
1562                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1563                         "when SoL/IDER is active.\n");
1564                 *data = 0;
1565                 goto out;
1566         }
1567
1568         if ((*data = e1000_setup_desc_rings(adapter)))
1569                 goto out;
1570         if ((*data = e1000_setup_loopback_test(adapter)))
1571                 goto err_loopback;
1572         *data = e1000_run_loopback_test(adapter);
1573         e1000_loopback_cleanup(adapter);
1574
1575 err_loopback:
1576         e1000_free_desc_rings(adapter);
1577 out:
1578         return *data;
1579 }
1580
1581 static int
1582 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1583 {
1584         *data = 0;
1585         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1586                 int i = 0;
1587                 adapter->hw.serdes_link_down = TRUE;
1588
1589                 /* On some blade server designs, link establishment
1590                  * could take as long as 2-3 minutes */
1591                 do {
1592                         e1000_check_for_link(&adapter->hw);
1593                         if (adapter->hw.serdes_link_down == FALSE)
1594                                 return *data;
1595                         msleep(20);
1596                 } while (i++ < 3750);
1597
1598                 *data = 1;
1599         } else {
1600                 e1000_check_for_link(&adapter->hw);
1601                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1602                         msleep(4000);
1603
1604                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1605                         *data = 1;
1606                 }
1607         }
1608         return *data;
1609 }
1610
1611 static int
1612 e1000_get_sset_count(struct net_device *netdev, int sset)
1613 {
1614         switch (sset) {
1615         case ETH_SS_TEST:
1616                 return E1000_TEST_LEN;
1617         case ETH_SS_STATS:
1618                 return E1000_STATS_LEN;
1619         default:
1620                 return -EOPNOTSUPP;
1621         }
1622 }
1623
1624 extern void e1000_power_up_phy(struct e1000_adapter *);
1625
1626 static void
1627 e1000_diag_test(struct net_device *netdev,
1628                    struct ethtool_test *eth_test, uint64_t *data)
1629 {
1630         struct e1000_adapter *adapter = netdev_priv(netdev);
1631         boolean_t if_running = netif_running(netdev);
1632
1633         set_bit(__E1000_TESTING, &adapter->flags);
1634         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1635                 /* Offline tests */
1636
1637                 /* save speed, duplex, autoneg settings */
1638                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1639                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1640                 uint8_t autoneg = adapter->hw.autoneg;
1641
1642                 DPRINTK(HW, INFO, "offline testing starting\n");
1643
1644                 /* Link test performed before hardware reset so autoneg doesn't
1645                  * interfere with test result */
1646                 if (e1000_link_test(adapter, &data[4]))
1647                         eth_test->flags |= ETH_TEST_FL_FAILED;
1648
1649                 if (if_running)
1650                         /* indicate we're in test mode */
1651                         dev_close(netdev);
1652                 else
1653                         e1000_reset(adapter);
1654
1655                 if (e1000_reg_test(adapter, &data[0]))
1656                         eth_test->flags |= ETH_TEST_FL_FAILED;
1657
1658                 e1000_reset(adapter);
1659                 if (e1000_eeprom_test(adapter, &data[1]))
1660                         eth_test->flags |= ETH_TEST_FL_FAILED;
1661
1662                 e1000_reset(adapter);
1663                 if (e1000_intr_test(adapter, &data[2]))
1664                         eth_test->flags |= ETH_TEST_FL_FAILED;
1665
1666                 e1000_reset(adapter);
1667                 /* make sure the phy is powered up */
1668                 e1000_power_up_phy(adapter);
1669                 if (e1000_loopback_test(adapter, &data[3]))
1670                         eth_test->flags |= ETH_TEST_FL_FAILED;
1671
1672                 /* restore speed, duplex, autoneg settings */
1673                 adapter->hw.autoneg_advertised = autoneg_advertised;
1674                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1675                 adapter->hw.autoneg = autoneg;
1676
1677                 e1000_reset(adapter);
1678                 clear_bit(__E1000_TESTING, &adapter->flags);
1679                 if (if_running)
1680                         dev_open(netdev);
1681         } else {
1682                 DPRINTK(HW, INFO, "online testing starting\n");
1683                 /* Online tests */
1684                 if (e1000_link_test(adapter, &data[4]))
1685                         eth_test->flags |= ETH_TEST_FL_FAILED;
1686
1687                 /* Online tests aren't run; pass by default */
1688                 data[0] = 0;
1689                 data[1] = 0;
1690                 data[2] = 0;
1691                 data[3] = 0;
1692
1693                 clear_bit(__E1000_TESTING, &adapter->flags);
1694         }
1695         msleep_interruptible(4 * 1000);
1696 }
1697
1698 static int e1000_wol_exclusion(struct e1000_adapter *adapter, struct ethtool_wolinfo *wol)
1699 {
1700         struct e1000_hw *hw = &adapter->hw;
1701         int retval = 1; /* fail by default */
1702
1703         switch (hw->device_id) {
1704         case E1000_DEV_ID_82542:
1705         case E1000_DEV_ID_82543GC_FIBER:
1706         case E1000_DEV_ID_82543GC_COPPER:
1707         case E1000_DEV_ID_82544EI_FIBER:
1708         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1709         case E1000_DEV_ID_82545EM_FIBER:
1710         case E1000_DEV_ID_82545EM_COPPER:
1711         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1712         case E1000_DEV_ID_82546GB_PCIE:
1713         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1714                 /* these don't support WoL at all */
1715                 wol->supported = 0;
1716                 break;
1717         case E1000_DEV_ID_82546EB_FIBER:
1718         case E1000_DEV_ID_82546GB_FIBER:
1719         case E1000_DEV_ID_82571EB_FIBER:
1720         case E1000_DEV_ID_82571EB_SERDES:
1721         case E1000_DEV_ID_82571EB_COPPER:
1722                 /* Wake events not supported on port B */
1723                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1724                         wol->supported = 0;
1725                         break;
1726                 }
1727                 /* return success for non excluded adapter ports */
1728                 retval = 0;
1729                 break;
1730         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1731         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1732         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1733         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1734         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1735                 /* quad port adapters only support WoL on port A */
1736                 if (!adapter->quad_port_a) {
1737                         wol->supported = 0;
1738                         break;
1739                 }
1740                 /* return success for non excluded adapter ports */
1741                 retval = 0;
1742                 break;
1743         default:
1744                 /* dual port cards only support WoL on port A from now on
1745                  * unless it was enabled in the eeprom for port B
1746                  * so exclude FUNC_1 ports from having WoL enabled */
1747                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 &&
1748                     !adapter->eeprom_wol) {
1749                         wol->supported = 0;
1750                         break;
1751                 }
1752
1753                 retval = 0;
1754         }
1755
1756         return retval;
1757 }
1758
1759 static void
1760 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1761 {
1762         struct e1000_adapter *adapter = netdev_priv(netdev);
1763
1764         wol->supported = WAKE_UCAST | WAKE_MCAST |
1765                          WAKE_BCAST | WAKE_MAGIC;
1766         wol->wolopts = 0;
1767
1768         /* this function will set ->supported = 0 and return 1 if wol is not
1769          * supported by this hardware */
1770         if (e1000_wol_exclusion(adapter, wol))
1771                 return;
1772
1773         /* apply any specific unsupported masks here */
1774         switch (adapter->hw.device_id) {
1775         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1776                 /* KSP3 does not suppport UCAST wake-ups */
1777                 wol->supported &= ~WAKE_UCAST;
1778
1779                 if (adapter->wol & E1000_WUFC_EX)
1780                         DPRINTK(DRV, ERR, "Interface does not support "
1781                         "directed (unicast) frame wake-up packets\n");
1782                 break;
1783         default:
1784                 break;
1785         }
1786
1787         if (adapter->wol & E1000_WUFC_EX)
1788                 wol->wolopts |= WAKE_UCAST;
1789         if (adapter->wol & E1000_WUFC_MC)
1790                 wol->wolopts |= WAKE_MCAST;
1791         if (adapter->wol & E1000_WUFC_BC)
1792                 wol->wolopts |= WAKE_BCAST;
1793         if (adapter->wol & E1000_WUFC_MAG)
1794                 wol->wolopts |= WAKE_MAGIC;
1795
1796         return;
1797 }
1798
1799 static int
1800 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1801 {
1802         struct e1000_adapter *adapter = netdev_priv(netdev);
1803         struct e1000_hw *hw = &adapter->hw;
1804
1805         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1806                 return -EOPNOTSUPP;
1807
1808         if (e1000_wol_exclusion(adapter, wol))
1809                 return wol->wolopts ? -EOPNOTSUPP : 0;
1810
1811         switch (hw->device_id) {
1812         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1813                 if (wol->wolopts & WAKE_UCAST) {
1814                         DPRINTK(DRV, ERR, "Interface does not support "
1815                         "directed (unicast) frame wake-up packets\n");
1816                         return -EOPNOTSUPP;
1817                 }
1818                 break;
1819         default:
1820                 break;
1821         }
1822
1823         /* these settings will always override what we currently have */
1824         adapter->wol = 0;
1825
1826         if (wol->wolopts & WAKE_UCAST)
1827                 adapter->wol |= E1000_WUFC_EX;
1828         if (wol->wolopts & WAKE_MCAST)
1829                 adapter->wol |= E1000_WUFC_MC;
1830         if (wol->wolopts & WAKE_BCAST)
1831                 adapter->wol |= E1000_WUFC_BC;
1832         if (wol->wolopts & WAKE_MAGIC)
1833                 adapter->wol |= E1000_WUFC_MAG;
1834
1835         return 0;
1836 }
1837
1838 /* toggle LED 4 times per second = 2 "blinks" per second */
1839 #define E1000_ID_INTERVAL       (HZ/4)
1840
1841 /* bit defines for adapter->led_status */
1842 #define E1000_LED_ON            0
1843
1844 static void
1845 e1000_led_blink_callback(unsigned long data)
1846 {
1847         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1848
1849         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1850                 e1000_led_off(&adapter->hw);
1851         else
1852                 e1000_led_on(&adapter->hw);
1853
1854         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1855 }
1856
1857 static int
1858 e1000_phys_id(struct net_device *netdev, uint32_t data)
1859 {
1860         struct e1000_adapter *adapter = netdev_priv(netdev);
1861
1862         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1863                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1864
1865         if (adapter->hw.mac_type < e1000_82571) {
1866                 if (!adapter->blink_timer.function) {
1867                         init_timer(&adapter->blink_timer);
1868                         adapter->blink_timer.function = e1000_led_blink_callback;
1869                         adapter->blink_timer.data = (unsigned long) adapter;
1870                 }
1871                 e1000_setup_led(&adapter->hw);
1872                 mod_timer(&adapter->blink_timer, jiffies);
1873                 msleep_interruptible(data * 1000);
1874                 del_timer_sync(&adapter->blink_timer);
1875         } else if (adapter->hw.phy_type == e1000_phy_ife) {
1876                 if (!adapter->blink_timer.function) {
1877                         init_timer(&adapter->blink_timer);
1878                         adapter->blink_timer.function = e1000_led_blink_callback;
1879                         adapter->blink_timer.data = (unsigned long) adapter;
1880                 }
1881                 mod_timer(&adapter->blink_timer, jiffies);
1882                 msleep_interruptible(data * 1000);
1883                 del_timer_sync(&adapter->blink_timer);
1884                 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1885         } else {
1886                 e1000_blink_led_start(&adapter->hw);
1887                 msleep_interruptible(data * 1000);
1888         }
1889
1890         e1000_led_off(&adapter->hw);
1891         clear_bit(E1000_LED_ON, &adapter->led_status);
1892         e1000_cleanup_led(&adapter->hw);
1893
1894         return 0;
1895 }
1896
1897 static int
1898 e1000_nway_reset(struct net_device *netdev)
1899 {
1900         struct e1000_adapter *adapter = netdev_priv(netdev);
1901         if (netif_running(netdev))
1902                 e1000_reinit_locked(adapter);
1903         return 0;
1904 }
1905
1906 static void
1907 e1000_get_ethtool_stats(struct net_device *netdev,
1908                 struct ethtool_stats *stats, uint64_t *data)
1909 {
1910         struct e1000_adapter *adapter = netdev_priv(netdev);
1911         int i;
1912
1913         e1000_update_stats(adapter);
1914         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1915                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1916                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1917                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1918         }
1919 /*      BUG_ON(i != E1000_STATS_LEN); */
1920 }
1921
1922 static void
1923 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1924 {
1925         uint8_t *p = data;
1926         int i;
1927
1928         switch (stringset) {
1929         case ETH_SS_TEST:
1930                 memcpy(data, *e1000_gstrings_test,
1931                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1932                 break;
1933         case ETH_SS_STATS:
1934                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1935                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1936                                ETH_GSTRING_LEN);
1937                         p += ETH_GSTRING_LEN;
1938                 }
1939 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1940                 break;
1941         }
1942 }
1943
1944 static const struct ethtool_ops e1000_ethtool_ops = {
1945         .get_settings           = e1000_get_settings,
1946         .set_settings           = e1000_set_settings,
1947         .get_drvinfo            = e1000_get_drvinfo,
1948         .get_regs_len           = e1000_get_regs_len,
1949         .get_regs               = e1000_get_regs,
1950         .get_wol                = e1000_get_wol,
1951         .set_wol                = e1000_set_wol,
1952         .get_msglevel           = e1000_get_msglevel,
1953         .set_msglevel           = e1000_set_msglevel,
1954         .nway_reset             = e1000_nway_reset,
1955         .get_link               = ethtool_op_get_link,
1956         .get_eeprom_len         = e1000_get_eeprom_len,
1957         .get_eeprom             = e1000_get_eeprom,
1958         .set_eeprom             = e1000_set_eeprom,
1959         .get_ringparam          = e1000_get_ringparam,
1960         .set_ringparam          = e1000_set_ringparam,
1961         .get_pauseparam         = e1000_get_pauseparam,
1962         .set_pauseparam         = e1000_set_pauseparam,
1963         .get_rx_csum            = e1000_get_rx_csum,
1964         .set_rx_csum            = e1000_set_rx_csum,
1965         .get_tx_csum            = e1000_get_tx_csum,
1966         .set_tx_csum            = e1000_set_tx_csum,
1967         .set_sg                 = ethtool_op_set_sg,
1968         .set_tso                = e1000_set_tso,
1969         .self_test              = e1000_diag_test,
1970         .get_strings            = e1000_get_strings,
1971         .phys_id                = e1000_phys_id,
1972         .get_ethtool_stats      = e1000_get_ethtool_stats,
1973         .get_sset_count         = e1000_get_sset_count,
1974 };
1975
1976 void e1000_set_ethtool_ops(struct net_device *netdev)
1977 {
1978         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1979 }