Merge branch 'timers-cleanup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33
34 enum {NETDEV_STATS, E1000_STATS};
35
36 struct e1000_stats {
37         char stat_string[ETH_GSTRING_LEN];
38         int type;
39         int sizeof_stat;
40         int stat_offset;
41 };
42
43 #define E1000_STAT(m)           E1000_STATS, \
44                                 sizeof(((struct e1000_adapter *)0)->m), \
45                                 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
47                                 sizeof(((struct net_device *)0)->m), \
48                                 offsetof(struct net_device, m)
49
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51         { "rx_packets", E1000_STAT(stats.gprc) },
52         { "tx_packets", E1000_STAT(stats.gptc) },
53         { "rx_bytes", E1000_STAT(stats.gorcl) },
54         { "tx_bytes", E1000_STAT(stats.gotcl) },
55         { "rx_broadcast", E1000_STAT(stats.bprc) },
56         { "tx_broadcast", E1000_STAT(stats.bptc) },
57         { "rx_multicast", E1000_STAT(stats.mprc) },
58         { "tx_multicast", E1000_STAT(stats.mptc) },
59         { "rx_errors", E1000_STAT(stats.rxerrc) },
60         { "tx_errors", E1000_STAT(stats.txerrc) },
61         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62         { "multicast", E1000_STAT(stats.mprc) },
63         { "collisions", E1000_STAT(stats.colc) },
64         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69         { "rx_missed_errors", E1000_STAT(stats.mpc) },
70         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74         { "tx_window_errors", E1000_STAT(stats.latecol) },
75         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76         { "tx_deferred_ok", E1000_STAT(stats.dc) },
77         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80         { "tx_restart_queue", E1000_STAT(restart_queue) },
81         { "rx_long_length_errors", E1000_STAT(stats.roc) },
82         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94         { "tx_smbus", E1000_STAT(stats.mgptc) },
95         { "rx_smbus", E1000_STAT(stats.mgprc) },
96         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
97 };
98
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103         "Register test  (offline)", "Eeprom test    (offline)",
104         "Interrupt test (offline)", "Loopback test  (offline)",
105         "Link test   (on/offline)"
106 };
107 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
108
109 static int e1000_get_settings(struct net_device *netdev,
110                               struct ethtool_cmd *ecmd)
111 {
112         struct e1000_adapter *adapter = netdev_priv(netdev);
113         struct e1000_hw *hw = &adapter->hw;
114
115         if (hw->media_type == e1000_media_type_copper) {
116
117                 ecmd->supported = (SUPPORTED_10baseT_Half |
118                                    SUPPORTED_10baseT_Full |
119                                    SUPPORTED_100baseT_Half |
120                                    SUPPORTED_100baseT_Full |
121                                    SUPPORTED_1000baseT_Full|
122                                    SUPPORTED_Autoneg |
123                                    SUPPORTED_TP);
124                 ecmd->advertising = ADVERTISED_TP;
125
126                 if (hw->autoneg == 1) {
127                         ecmd->advertising |= ADVERTISED_Autoneg;
128                         /* the e1000 autoneg seems to match ethtool nicely */
129                         ecmd->advertising |= hw->autoneg_advertised;
130                 }
131
132                 ecmd->port = PORT_TP;
133                 ecmd->phy_address = hw->phy_addr;
134
135                 if (hw->mac_type == e1000_82543)
136                         ecmd->transceiver = XCVR_EXTERNAL;
137                 else
138                         ecmd->transceiver = XCVR_INTERNAL;
139
140         } else {
141                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
142                                      SUPPORTED_FIBRE |
143                                      SUPPORTED_Autoneg);
144
145                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146                                      ADVERTISED_FIBRE |
147                                      ADVERTISED_Autoneg);
148
149                 ecmd->port = PORT_FIBRE;
150
151                 if (hw->mac_type >= e1000_82545)
152                         ecmd->transceiver = XCVR_INTERNAL;
153                 else
154                         ecmd->transceiver = XCVR_EXTERNAL;
155         }
156
157         if (er32(STATUS) & E1000_STATUS_LU) {
158
159                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160                                                    &adapter->link_duplex);
161                 ethtool_cmd_speed_set(ecmd, adapter->link_speed);
162
163                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164                  *          and HALF_DUPLEX != DUPLEX_HALF */
165
166                 if (adapter->link_duplex == FULL_DUPLEX)
167                         ecmd->duplex = DUPLEX_FULL;
168                 else
169                         ecmd->duplex = DUPLEX_HALF;
170         } else {
171                 ethtool_cmd_speed_set(ecmd, -1);
172                 ecmd->duplex = -1;
173         }
174
175         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177         return 0;
178 }
179
180 static int e1000_set_settings(struct net_device *netdev,
181                               struct ethtool_cmd *ecmd)
182 {
183         struct e1000_adapter *adapter = netdev_priv(netdev);
184         struct e1000_hw *hw = &adapter->hw;
185
186         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
187                 msleep(1);
188
189         if (ecmd->autoneg == AUTONEG_ENABLE) {
190                 hw->autoneg = 1;
191                 if (hw->media_type == e1000_media_type_fiber)
192                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
193                                      ADVERTISED_FIBRE |
194                                      ADVERTISED_Autoneg;
195                 else
196                         hw->autoneg_advertised = ecmd->advertising |
197                                                  ADVERTISED_TP |
198                                                  ADVERTISED_Autoneg;
199                 ecmd->advertising = hw->autoneg_advertised;
200         } else {
201                 u32 speed = ethtool_cmd_speed(ecmd);
202                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
203                         clear_bit(__E1000_RESETTING, &adapter->flags);
204                         return -EINVAL;
205                 }
206         }
207
208         /* reset the link */
209
210         if (netif_running(adapter->netdev)) {
211                 e1000_down(adapter);
212                 e1000_up(adapter);
213         } else
214                 e1000_reset(adapter);
215
216         clear_bit(__E1000_RESETTING, &adapter->flags);
217         return 0;
218 }
219
220 static u32 e1000_get_link(struct net_device *netdev)
221 {
222         struct e1000_adapter *adapter = netdev_priv(netdev);
223
224         /*
225          * If the link is not reported up to netdev, interrupts are disabled,
226          * and so the physical link state may have changed since we last
227          * looked. Set get_link_status to make sure that the true link
228          * state is interrogated, rather than pulling a cached and possibly
229          * stale link state from the driver.
230          */
231         if (!netif_carrier_ok(netdev))
232                 adapter->hw.get_link_status = 1;
233
234         return e1000_has_link(adapter);
235 }
236
237 static void e1000_get_pauseparam(struct net_device *netdev,
238                                  struct ethtool_pauseparam *pause)
239 {
240         struct e1000_adapter *adapter = netdev_priv(netdev);
241         struct e1000_hw *hw = &adapter->hw;
242
243         pause->autoneg =
244                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
245
246         if (hw->fc == E1000_FC_RX_PAUSE)
247                 pause->rx_pause = 1;
248         else if (hw->fc == E1000_FC_TX_PAUSE)
249                 pause->tx_pause = 1;
250         else if (hw->fc == E1000_FC_FULL) {
251                 pause->rx_pause = 1;
252                 pause->tx_pause = 1;
253         }
254 }
255
256 static int e1000_set_pauseparam(struct net_device *netdev,
257                                 struct ethtool_pauseparam *pause)
258 {
259         struct e1000_adapter *adapter = netdev_priv(netdev);
260         struct e1000_hw *hw = &adapter->hw;
261         int retval = 0;
262
263         adapter->fc_autoneg = pause->autoneg;
264
265         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
266                 msleep(1);
267
268         if (pause->rx_pause && pause->tx_pause)
269                 hw->fc = E1000_FC_FULL;
270         else if (pause->rx_pause && !pause->tx_pause)
271                 hw->fc = E1000_FC_RX_PAUSE;
272         else if (!pause->rx_pause && pause->tx_pause)
273                 hw->fc = E1000_FC_TX_PAUSE;
274         else if (!pause->rx_pause && !pause->tx_pause)
275                 hw->fc = E1000_FC_NONE;
276
277         hw->original_fc = hw->fc;
278
279         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
280                 if (netif_running(adapter->netdev)) {
281                         e1000_down(adapter);
282                         e1000_up(adapter);
283                 } else
284                         e1000_reset(adapter);
285         } else
286                 retval = ((hw->media_type == e1000_media_type_fiber) ?
287                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
288
289         clear_bit(__E1000_RESETTING, &adapter->flags);
290         return retval;
291 }
292
293 static u32 e1000_get_msglevel(struct net_device *netdev)
294 {
295         struct e1000_adapter *adapter = netdev_priv(netdev);
296         return adapter->msg_enable;
297 }
298
299 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
300 {
301         struct e1000_adapter *adapter = netdev_priv(netdev);
302         adapter->msg_enable = data;
303 }
304
305 static int e1000_get_regs_len(struct net_device *netdev)
306 {
307 #define E1000_REGS_LEN 32
308         return E1000_REGS_LEN * sizeof(u32);
309 }
310
311 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
312                            void *p)
313 {
314         struct e1000_adapter *adapter = netdev_priv(netdev);
315         struct e1000_hw *hw = &adapter->hw;
316         u32 *regs_buff = p;
317         u16 phy_data;
318
319         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
320
321         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
322
323         regs_buff[0]  = er32(CTRL);
324         regs_buff[1]  = er32(STATUS);
325
326         regs_buff[2]  = er32(RCTL);
327         regs_buff[3]  = er32(RDLEN);
328         regs_buff[4]  = er32(RDH);
329         regs_buff[5]  = er32(RDT);
330         regs_buff[6]  = er32(RDTR);
331
332         regs_buff[7]  = er32(TCTL);
333         regs_buff[8]  = er32(TDLEN);
334         regs_buff[9]  = er32(TDH);
335         regs_buff[10] = er32(TDT);
336         regs_buff[11] = er32(TIDV);
337
338         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
339         if (hw->phy_type == e1000_phy_igp) {
340                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
341                                     IGP01E1000_PHY_AGC_A);
342                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
343                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
344                 regs_buff[13] = (u32)phy_data; /* cable length */
345                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
346                                     IGP01E1000_PHY_AGC_B);
347                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
348                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
349                 regs_buff[14] = (u32)phy_data; /* cable length */
350                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
351                                     IGP01E1000_PHY_AGC_C);
352                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
353                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
354                 regs_buff[15] = (u32)phy_data; /* cable length */
355                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
356                                     IGP01E1000_PHY_AGC_D);
357                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
358                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
359                 regs_buff[16] = (u32)phy_data; /* cable length */
360                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
361                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
362                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
363                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
364                 regs_buff[18] = (u32)phy_data; /* cable polarity */
365                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
366                                     IGP01E1000_PHY_PCS_INIT_REG);
367                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
368                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
369                 regs_buff[19] = (u32)phy_data; /* cable polarity */
370                 regs_buff[20] = 0; /* polarity correction enabled (always) */
371                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
372                 regs_buff[23] = regs_buff[18]; /* mdix mode */
373                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
374         } else {
375                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
376                 regs_buff[13] = (u32)phy_data; /* cable length */
377                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
378                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
379                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
380                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
381                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
382                 regs_buff[18] = regs_buff[13]; /* cable polarity */
383                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
384                 regs_buff[20] = regs_buff[17]; /* polarity correction */
385                 /* phy receive errors */
386                 regs_buff[22] = adapter->phy_stats.receive_errors;
387                 regs_buff[23] = regs_buff[13]; /* mdix mode */
388         }
389         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
390         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
391         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
392         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
393         if (hw->mac_type >= e1000_82540 &&
394             hw->media_type == e1000_media_type_copper) {
395                 regs_buff[26] = er32(MANC);
396         }
397 }
398
399 static int e1000_get_eeprom_len(struct net_device *netdev)
400 {
401         struct e1000_adapter *adapter = netdev_priv(netdev);
402         struct e1000_hw *hw = &adapter->hw;
403
404         return hw->eeprom.word_size * 2;
405 }
406
407 static int e1000_get_eeprom(struct net_device *netdev,
408                             struct ethtool_eeprom *eeprom, u8 *bytes)
409 {
410         struct e1000_adapter *adapter = netdev_priv(netdev);
411         struct e1000_hw *hw = &adapter->hw;
412         u16 *eeprom_buff;
413         int first_word, last_word;
414         int ret_val = 0;
415         u16 i;
416
417         if (eeprom->len == 0)
418                 return -EINVAL;
419
420         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
421
422         first_word = eeprom->offset >> 1;
423         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
424
425         eeprom_buff = kmalloc(sizeof(u16) *
426                         (last_word - first_word + 1), GFP_KERNEL);
427         if (!eeprom_buff)
428                 return -ENOMEM;
429
430         if (hw->eeprom.type == e1000_eeprom_spi)
431                 ret_val = e1000_read_eeprom(hw, first_word,
432                                             last_word - first_word + 1,
433                                             eeprom_buff);
434         else {
435                 for (i = 0; i < last_word - first_word + 1; i++) {
436                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
437                                                     &eeprom_buff[i]);
438                         if (ret_val)
439                                 break;
440                 }
441         }
442
443         /* Device's eeprom is always little-endian, word addressable */
444         for (i = 0; i < last_word - first_word + 1; i++)
445                 le16_to_cpus(&eeprom_buff[i]);
446
447         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
448                         eeprom->len);
449         kfree(eeprom_buff);
450
451         return ret_val;
452 }
453
454 static int e1000_set_eeprom(struct net_device *netdev,
455                             struct ethtool_eeprom *eeprom, u8 *bytes)
456 {
457         struct e1000_adapter *adapter = netdev_priv(netdev);
458         struct e1000_hw *hw = &adapter->hw;
459         u16 *eeprom_buff;
460         void *ptr;
461         int max_len, first_word, last_word, ret_val = 0;
462         u16 i;
463
464         if (eeprom->len == 0)
465                 return -EOPNOTSUPP;
466
467         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
468                 return -EFAULT;
469
470         max_len = hw->eeprom.word_size * 2;
471
472         first_word = eeprom->offset >> 1;
473         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
474         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
475         if (!eeprom_buff)
476                 return -ENOMEM;
477
478         ptr = (void *)eeprom_buff;
479
480         if (eeprom->offset & 1) {
481                 /* need read/modify/write of first changed EEPROM word */
482                 /* only the second byte of the word is being modified */
483                 ret_val = e1000_read_eeprom(hw, first_word, 1,
484                                             &eeprom_buff[0]);
485                 ptr++;
486         }
487         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
488                 /* need read/modify/write of last changed EEPROM word */
489                 /* only the first byte of the word is being modified */
490                 ret_val = e1000_read_eeprom(hw, last_word, 1,
491                                   &eeprom_buff[last_word - first_word]);
492         }
493
494         /* Device's eeprom is always little-endian, word addressable */
495         for (i = 0; i < last_word - first_word + 1; i++)
496                 le16_to_cpus(&eeprom_buff[i]);
497
498         memcpy(ptr, bytes, eeprom->len);
499
500         for (i = 0; i < last_word - first_word + 1; i++)
501                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
502
503         ret_val = e1000_write_eeprom(hw, first_word,
504                                      last_word - first_word + 1, eeprom_buff);
505
506         /* Update the checksum over the first part of the EEPROM if needed */
507         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
508                 e1000_update_eeprom_checksum(hw);
509
510         kfree(eeprom_buff);
511         return ret_val;
512 }
513
514 static void e1000_get_drvinfo(struct net_device *netdev,
515                               struct ethtool_drvinfo *drvinfo)
516 {
517         struct e1000_adapter *adapter = netdev_priv(netdev);
518         char firmware_version[32];
519
520         strncpy(drvinfo->driver,  e1000_driver_name, 32);
521         strncpy(drvinfo->version, e1000_driver_version, 32);
522
523         sprintf(firmware_version, "N/A");
524         strncpy(drvinfo->fw_version, firmware_version, 32);
525         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
526         drvinfo->regdump_len = e1000_get_regs_len(netdev);
527         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
528 }
529
530 static void e1000_get_ringparam(struct net_device *netdev,
531                                 struct ethtool_ringparam *ring)
532 {
533         struct e1000_adapter *adapter = netdev_priv(netdev);
534         struct e1000_hw *hw = &adapter->hw;
535         e1000_mac_type mac_type = hw->mac_type;
536         struct e1000_tx_ring *txdr = adapter->tx_ring;
537         struct e1000_rx_ring *rxdr = adapter->rx_ring;
538
539         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
540                 E1000_MAX_82544_RXD;
541         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
542                 E1000_MAX_82544_TXD;
543         ring->rx_mini_max_pending = 0;
544         ring->rx_jumbo_max_pending = 0;
545         ring->rx_pending = rxdr->count;
546         ring->tx_pending = txdr->count;
547         ring->rx_mini_pending = 0;
548         ring->rx_jumbo_pending = 0;
549 }
550
551 static int e1000_set_ringparam(struct net_device *netdev,
552                                struct ethtool_ringparam *ring)
553 {
554         struct e1000_adapter *adapter = netdev_priv(netdev);
555         struct e1000_hw *hw = &adapter->hw;
556         e1000_mac_type mac_type = hw->mac_type;
557         struct e1000_tx_ring *txdr, *tx_old;
558         struct e1000_rx_ring *rxdr, *rx_old;
559         int i, err;
560
561         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
562                 return -EINVAL;
563
564         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
565                 msleep(1);
566
567         if (netif_running(adapter->netdev))
568                 e1000_down(adapter);
569
570         tx_old = adapter->tx_ring;
571         rx_old = adapter->rx_ring;
572
573         err = -ENOMEM;
574         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
575         if (!txdr)
576                 goto err_alloc_tx;
577
578         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
579         if (!rxdr)
580                 goto err_alloc_rx;
581
582         adapter->tx_ring = txdr;
583         adapter->rx_ring = rxdr;
584
585         rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
586         rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
587                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
588         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
589
590         txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
591         txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
592                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
593         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
594
595         for (i = 0; i < adapter->num_tx_queues; i++)
596                 txdr[i].count = txdr->count;
597         for (i = 0; i < adapter->num_rx_queues; i++)
598                 rxdr[i].count = rxdr->count;
599
600         if (netif_running(adapter->netdev)) {
601                 /* Try to get new resources before deleting old */
602                 err = e1000_setup_all_rx_resources(adapter);
603                 if (err)
604                         goto err_setup_rx;
605                 err = e1000_setup_all_tx_resources(adapter);
606                 if (err)
607                         goto err_setup_tx;
608
609                 /* save the new, restore the old in order to free it,
610                  * then restore the new back again */
611
612                 adapter->rx_ring = rx_old;
613                 adapter->tx_ring = tx_old;
614                 e1000_free_all_rx_resources(adapter);
615                 e1000_free_all_tx_resources(adapter);
616                 kfree(tx_old);
617                 kfree(rx_old);
618                 adapter->rx_ring = rxdr;
619                 adapter->tx_ring = txdr;
620                 err = e1000_up(adapter);
621                 if (err)
622                         goto err_setup;
623         }
624
625         clear_bit(__E1000_RESETTING, &adapter->flags);
626         return 0;
627 err_setup_tx:
628         e1000_free_all_rx_resources(adapter);
629 err_setup_rx:
630         adapter->rx_ring = rx_old;
631         adapter->tx_ring = tx_old;
632         kfree(rxdr);
633 err_alloc_rx:
634         kfree(txdr);
635 err_alloc_tx:
636         e1000_up(adapter);
637 err_setup:
638         clear_bit(__E1000_RESETTING, &adapter->flags);
639         return err;
640 }
641
642 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
643                              u32 mask, u32 write)
644 {
645         struct e1000_hw *hw = &adapter->hw;
646         static const u32 test[] =
647                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
648         u8 __iomem *address = hw->hw_addr + reg;
649         u32 read;
650         int i;
651
652         for (i = 0; i < ARRAY_SIZE(test); i++) {
653                 writel(write & test[i], address);
654                 read = readl(address);
655                 if (read != (write & test[i] & mask)) {
656                         e_err(drv, "pattern test reg %04X failed: "
657                               "got 0x%08X expected 0x%08X\n",
658                               reg, read, (write & test[i] & mask));
659                         *data = reg;
660                         return true;
661                 }
662         }
663         return false;
664 }
665
666 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
667                               u32 mask, u32 write)
668 {
669         struct e1000_hw *hw = &adapter->hw;
670         u8 __iomem *address = hw->hw_addr + reg;
671         u32 read;
672
673         writel(write & mask, address);
674         read = readl(address);
675         if ((read & mask) != (write & mask)) {
676                 e_err(drv, "set/check reg %04X test failed: "
677                       "got 0x%08X expected 0x%08X\n",
678                       reg, (read & mask), (write & mask));
679                 *data = reg;
680                 return true;
681         }
682         return false;
683 }
684
685 #define REG_PATTERN_TEST(reg, mask, write)                           \
686         do {                                                         \
687                 if (reg_pattern_test(adapter, data,                  \
688                              (hw->mac_type >= e1000_82543)   \
689                              ? E1000_##reg : E1000_82542_##reg,      \
690                              mask, write))                           \
691                         return 1;                                    \
692         } while (0)
693
694 #define REG_SET_AND_CHECK(reg, mask, write)                          \
695         do {                                                         \
696                 if (reg_set_and_check(adapter, data,                 \
697                               (hw->mac_type >= e1000_82543)  \
698                               ? E1000_##reg : E1000_82542_##reg,     \
699                               mask, write))                          \
700                         return 1;                                    \
701         } while (0)
702
703 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
704 {
705         u32 value, before, after;
706         u32 i, toggle;
707         struct e1000_hw *hw = &adapter->hw;
708
709         /* The status register is Read Only, so a write should fail.
710          * Some bits that get toggled are ignored.
711          */
712
713         /* there are several bits on newer hardware that are r/w */
714         toggle = 0xFFFFF833;
715
716         before = er32(STATUS);
717         value = (er32(STATUS) & toggle);
718         ew32(STATUS, toggle);
719         after = er32(STATUS) & toggle;
720         if (value != after) {
721                 e_err(drv, "failed STATUS register test got: "
722                       "0x%08X expected: 0x%08X\n", after, value);
723                 *data = 1;
724                 return 1;
725         }
726         /* restore previous status */
727         ew32(STATUS, before);
728
729         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
730         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
731         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
732         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
733
734         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
735         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
736         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
737         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
738         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
739         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
740         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
741         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
742         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
743         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
744
745         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
746
747         before = 0x06DFB3FE;
748         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
749         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
750
751         if (hw->mac_type >= e1000_82543) {
752
753                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
754                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
755                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
756                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
757                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
758                 value = E1000_RAR_ENTRIES;
759                 for (i = 0; i < value; i++) {
760                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
761                                          0xFFFFFFFF);
762                 }
763
764         } else {
765
766                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
767                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
768                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
769                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
770
771         }
772
773         value = E1000_MC_TBL_SIZE;
774         for (i = 0; i < value; i++)
775                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
776
777         *data = 0;
778         return 0;
779 }
780
781 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
782 {
783         struct e1000_hw *hw = &adapter->hw;
784         u16 temp;
785         u16 checksum = 0;
786         u16 i;
787
788         *data = 0;
789         /* Read and add up the contents of the EEPROM */
790         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
791                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
792                         *data = 1;
793                         break;
794                 }
795                 checksum += temp;
796         }
797
798         /* If Checksum is not Correct return error else test passed */
799         if ((checksum != (u16)EEPROM_SUM) && !(*data))
800                 *data = 2;
801
802         return *data;
803 }
804
805 static irqreturn_t e1000_test_intr(int irq, void *data)
806 {
807         struct net_device *netdev = (struct net_device *)data;
808         struct e1000_adapter *adapter = netdev_priv(netdev);
809         struct e1000_hw *hw = &adapter->hw;
810
811         adapter->test_icr |= er32(ICR);
812
813         return IRQ_HANDLED;
814 }
815
816 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
817 {
818         struct net_device *netdev = adapter->netdev;
819         u32 mask, i = 0;
820         bool shared_int = true;
821         u32 irq = adapter->pdev->irq;
822         struct e1000_hw *hw = &adapter->hw;
823
824         *data = 0;
825
826         /* NOTE: we don't test MSI interrupts here, yet */
827         /* Hook up test interrupt handler just for this test */
828         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
829                          netdev))
830                 shared_int = false;
831         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
832                  netdev->name, netdev)) {
833                 *data = 1;
834                 return -1;
835         }
836         e_info(hw, "testing %s interrupt\n", (shared_int ?
837                "shared" : "unshared"));
838
839         /* Disable all the interrupts */
840         ew32(IMC, 0xFFFFFFFF);
841         msleep(10);
842
843         /* Test each interrupt */
844         for (; i < 10; i++) {
845
846                 /* Interrupt to test */
847                 mask = 1 << i;
848
849                 if (!shared_int) {
850                         /* Disable the interrupt to be reported in
851                          * the cause register and then force the same
852                          * interrupt and see if one gets posted.  If
853                          * an interrupt was posted to the bus, the
854                          * test failed.
855                          */
856                         adapter->test_icr = 0;
857                         ew32(IMC, mask);
858                         ew32(ICS, mask);
859                         msleep(10);
860
861                         if (adapter->test_icr & mask) {
862                                 *data = 3;
863                                 break;
864                         }
865                 }
866
867                 /* Enable the interrupt to be reported in
868                  * the cause register and then force the same
869                  * interrupt and see if one gets posted.  If
870                  * an interrupt was not posted to the bus, the
871                  * test failed.
872                  */
873                 adapter->test_icr = 0;
874                 ew32(IMS, mask);
875                 ew32(ICS, mask);
876                 msleep(10);
877
878                 if (!(adapter->test_icr & mask)) {
879                         *data = 4;
880                         break;
881                 }
882
883                 if (!shared_int) {
884                         /* Disable the other interrupts to be reported in
885                          * the cause register and then force the other
886                          * interrupts and see if any get posted.  If
887                          * an interrupt was posted to the bus, the
888                          * test failed.
889                          */
890                         adapter->test_icr = 0;
891                         ew32(IMC, ~mask & 0x00007FFF);
892                         ew32(ICS, ~mask & 0x00007FFF);
893                         msleep(10);
894
895                         if (adapter->test_icr) {
896                                 *data = 5;
897                                 break;
898                         }
899                 }
900         }
901
902         /* Disable all the interrupts */
903         ew32(IMC, 0xFFFFFFFF);
904         msleep(10);
905
906         /* Unhook test interrupt handler */
907         free_irq(irq, netdev);
908
909         return *data;
910 }
911
912 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
913 {
914         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
915         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
916         struct pci_dev *pdev = adapter->pdev;
917         int i;
918
919         if (txdr->desc && txdr->buffer_info) {
920                 for (i = 0; i < txdr->count; i++) {
921                         if (txdr->buffer_info[i].dma)
922                                 dma_unmap_single(&pdev->dev,
923                                                  txdr->buffer_info[i].dma,
924                                                  txdr->buffer_info[i].length,
925                                                  DMA_TO_DEVICE);
926                         if (txdr->buffer_info[i].skb)
927                                 dev_kfree_skb(txdr->buffer_info[i].skb);
928                 }
929         }
930
931         if (rxdr->desc && rxdr->buffer_info) {
932                 for (i = 0; i < rxdr->count; i++) {
933                         if (rxdr->buffer_info[i].dma)
934                                 dma_unmap_single(&pdev->dev,
935                                                  rxdr->buffer_info[i].dma,
936                                                  rxdr->buffer_info[i].length,
937                                                  DMA_FROM_DEVICE);
938                         if (rxdr->buffer_info[i].skb)
939                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
940                 }
941         }
942
943         if (txdr->desc) {
944                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
945                                   txdr->dma);
946                 txdr->desc = NULL;
947         }
948         if (rxdr->desc) {
949                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
950                                   rxdr->dma);
951                 rxdr->desc = NULL;
952         }
953
954         kfree(txdr->buffer_info);
955         txdr->buffer_info = NULL;
956         kfree(rxdr->buffer_info);
957         rxdr->buffer_info = NULL;
958 }
959
960 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
961 {
962         struct e1000_hw *hw = &adapter->hw;
963         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
964         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
965         struct pci_dev *pdev = adapter->pdev;
966         u32 rctl;
967         int i, ret_val;
968
969         /* Setup Tx descriptor ring and Tx buffers */
970
971         if (!txdr->count)
972                 txdr->count = E1000_DEFAULT_TXD;
973
974         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
975                                     GFP_KERNEL);
976         if (!txdr->buffer_info) {
977                 ret_val = 1;
978                 goto err_nomem;
979         }
980
981         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
982         txdr->size = ALIGN(txdr->size, 4096);
983         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
984                                         GFP_KERNEL);
985         if (!txdr->desc) {
986                 ret_val = 2;
987                 goto err_nomem;
988         }
989         memset(txdr->desc, 0, txdr->size);
990         txdr->next_to_use = txdr->next_to_clean = 0;
991
992         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
993         ew32(TDBAH, ((u64)txdr->dma >> 32));
994         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
995         ew32(TDH, 0);
996         ew32(TDT, 0);
997         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
998              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
999              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1000
1001         for (i = 0; i < txdr->count; i++) {
1002                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1003                 struct sk_buff *skb;
1004                 unsigned int size = 1024;
1005
1006                 skb = alloc_skb(size, GFP_KERNEL);
1007                 if (!skb) {
1008                         ret_val = 3;
1009                         goto err_nomem;
1010                 }
1011                 skb_put(skb, size);
1012                 txdr->buffer_info[i].skb = skb;
1013                 txdr->buffer_info[i].length = skb->len;
1014                 txdr->buffer_info[i].dma =
1015                         dma_map_single(&pdev->dev, skb->data, skb->len,
1016                                        DMA_TO_DEVICE);
1017                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1018                 tx_desc->lower.data = cpu_to_le32(skb->len);
1019                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1020                                                    E1000_TXD_CMD_IFCS |
1021                                                    E1000_TXD_CMD_RPS);
1022                 tx_desc->upper.data = 0;
1023         }
1024
1025         /* Setup Rx descriptor ring and Rx buffers */
1026
1027         if (!rxdr->count)
1028                 rxdr->count = E1000_DEFAULT_RXD;
1029
1030         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1031                                     GFP_KERNEL);
1032         if (!rxdr->buffer_info) {
1033                 ret_val = 4;
1034                 goto err_nomem;
1035         }
1036
1037         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1038         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1039                                         GFP_KERNEL);
1040         if (!rxdr->desc) {
1041                 ret_val = 5;
1042                 goto err_nomem;
1043         }
1044         memset(rxdr->desc, 0, rxdr->size);
1045         rxdr->next_to_use = rxdr->next_to_clean = 0;
1046
1047         rctl = er32(RCTL);
1048         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1049         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1050         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1051         ew32(RDLEN, rxdr->size);
1052         ew32(RDH, 0);
1053         ew32(RDT, 0);
1054         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1055                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1056                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1057         ew32(RCTL, rctl);
1058
1059         for (i = 0; i < rxdr->count; i++) {
1060                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1061                 struct sk_buff *skb;
1062
1063                 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1064                 if (!skb) {
1065                         ret_val = 6;
1066                         goto err_nomem;
1067                 }
1068                 skb_reserve(skb, NET_IP_ALIGN);
1069                 rxdr->buffer_info[i].skb = skb;
1070                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1071                 rxdr->buffer_info[i].dma =
1072                         dma_map_single(&pdev->dev, skb->data,
1073                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1074                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1075                 memset(skb->data, 0x00, skb->len);
1076         }
1077
1078         return 0;
1079
1080 err_nomem:
1081         e1000_free_desc_rings(adapter);
1082         return ret_val;
1083 }
1084
1085 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1086 {
1087         struct e1000_hw *hw = &adapter->hw;
1088
1089         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1090         e1000_write_phy_reg(hw, 29, 0x001F);
1091         e1000_write_phy_reg(hw, 30, 0x8FFC);
1092         e1000_write_phy_reg(hw, 29, 0x001A);
1093         e1000_write_phy_reg(hw, 30, 0x8FF0);
1094 }
1095
1096 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1097 {
1098         struct e1000_hw *hw = &adapter->hw;
1099         u16 phy_reg;
1100
1101         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1102          * Extended PHY Specific Control Register to 25MHz clock.  This
1103          * value defaults back to a 2.5MHz clock when the PHY is reset.
1104          */
1105         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1106         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1107         e1000_write_phy_reg(hw,
1108                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1109
1110         /* In addition, because of the s/w reset above, we need to enable
1111          * CRS on TX.  This must be set for both full and half duplex
1112          * operation.
1113          */
1114         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1115         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1116         e1000_write_phy_reg(hw,
1117                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1118 }
1119
1120 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1121 {
1122         struct e1000_hw *hw = &adapter->hw;
1123         u32 ctrl_reg;
1124         u16 phy_reg;
1125
1126         /* Setup the Device Control Register for PHY loopback test. */
1127
1128         ctrl_reg = er32(CTRL);
1129         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1130                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1131                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1132                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1133                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1134
1135         ew32(CTRL, ctrl_reg);
1136
1137         /* Read the PHY Specific Control Register (0x10) */
1138         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1139
1140         /* Clear Auto-Crossover bits in PHY Specific Control Register
1141          * (bits 6:5).
1142          */
1143         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1144         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1145
1146         /* Perform software reset on the PHY */
1147         e1000_phy_reset(hw);
1148
1149         /* Have to setup TX_CLK and TX_CRS after software reset */
1150         e1000_phy_reset_clk_and_crs(adapter);
1151
1152         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1153
1154         /* Wait for reset to complete. */
1155         udelay(500);
1156
1157         /* Have to setup TX_CLK and TX_CRS after software reset */
1158         e1000_phy_reset_clk_and_crs(adapter);
1159
1160         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1161         e1000_phy_disable_receiver(adapter);
1162
1163         /* Set the loopback bit in the PHY control register. */
1164         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1165         phy_reg |= MII_CR_LOOPBACK;
1166         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1167
1168         /* Setup TX_CLK and TX_CRS one more time. */
1169         e1000_phy_reset_clk_and_crs(adapter);
1170
1171         /* Check Phy Configuration */
1172         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1173         if (phy_reg != 0x4100)
1174                  return 9;
1175
1176         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1177         if (phy_reg != 0x0070)
1178                 return 10;
1179
1180         e1000_read_phy_reg(hw, 29, &phy_reg);
1181         if (phy_reg != 0x001A)
1182                 return 11;
1183
1184         return 0;
1185 }
1186
1187 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1188 {
1189         struct e1000_hw *hw = &adapter->hw;
1190         u32 ctrl_reg = 0;
1191         u32 stat_reg = 0;
1192
1193         hw->autoneg = false;
1194
1195         if (hw->phy_type == e1000_phy_m88) {
1196                 /* Auto-MDI/MDIX Off */
1197                 e1000_write_phy_reg(hw,
1198                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1199                 /* reset to update Auto-MDI/MDIX */
1200                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1201                 /* autoneg off */
1202                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1203         }
1204
1205         ctrl_reg = er32(CTRL);
1206
1207         /* force 1000, set loopback */
1208         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1209
1210         /* Now set up the MAC to the same speed/duplex as the PHY. */
1211         ctrl_reg = er32(CTRL);
1212         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1213         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1214                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1215                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1216                         E1000_CTRL_FD);  /* Force Duplex to FULL */
1217
1218         if (hw->media_type == e1000_media_type_copper &&
1219            hw->phy_type == e1000_phy_m88)
1220                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1221         else {
1222                 /* Set the ILOS bit on the fiber Nic is half
1223                  * duplex link is detected. */
1224                 stat_reg = er32(STATUS);
1225                 if ((stat_reg & E1000_STATUS_FD) == 0)
1226                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1227         }
1228
1229         ew32(CTRL, ctrl_reg);
1230
1231         /* Disable the receiver on the PHY so when a cable is plugged in, the
1232          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1233          */
1234         if (hw->phy_type == e1000_phy_m88)
1235                 e1000_phy_disable_receiver(adapter);
1236
1237         udelay(500);
1238
1239         return 0;
1240 }
1241
1242 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1243 {
1244         struct e1000_hw *hw = &adapter->hw;
1245         u16 phy_reg = 0;
1246         u16 count = 0;
1247
1248         switch (hw->mac_type) {
1249         case e1000_82543:
1250                 if (hw->media_type == e1000_media_type_copper) {
1251                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1252                          * Some PHY registers get corrupted at random, so
1253                          * attempt this 10 times.
1254                          */
1255                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1256                               count++ < 10);
1257                         if (count < 11)
1258                                 return 0;
1259                 }
1260                 break;
1261
1262         case e1000_82544:
1263         case e1000_82540:
1264         case e1000_82545:
1265         case e1000_82545_rev_3:
1266         case e1000_82546:
1267         case e1000_82546_rev_3:
1268         case e1000_82541:
1269         case e1000_82541_rev_2:
1270         case e1000_82547:
1271         case e1000_82547_rev_2:
1272                 return e1000_integrated_phy_loopback(adapter);
1273                 break;
1274         default:
1275                 /* Default PHY loopback work is to read the MII
1276                  * control register and assert bit 14 (loopback mode).
1277                  */
1278                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1279                 phy_reg |= MII_CR_LOOPBACK;
1280                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1281                 return 0;
1282                 break;
1283         }
1284
1285         return 8;
1286 }
1287
1288 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1289 {
1290         struct e1000_hw *hw = &adapter->hw;
1291         u32 rctl;
1292
1293         if (hw->media_type == e1000_media_type_fiber ||
1294             hw->media_type == e1000_media_type_internal_serdes) {
1295                 switch (hw->mac_type) {
1296                 case e1000_82545:
1297                 case e1000_82546:
1298                 case e1000_82545_rev_3:
1299                 case e1000_82546_rev_3:
1300                         return e1000_set_phy_loopback(adapter);
1301                         break;
1302                 default:
1303                         rctl = er32(RCTL);
1304                         rctl |= E1000_RCTL_LBM_TCVR;
1305                         ew32(RCTL, rctl);
1306                         return 0;
1307                 }
1308         } else if (hw->media_type == e1000_media_type_copper)
1309                 return e1000_set_phy_loopback(adapter);
1310
1311         return 7;
1312 }
1313
1314 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1315 {
1316         struct e1000_hw *hw = &adapter->hw;
1317         u32 rctl;
1318         u16 phy_reg;
1319
1320         rctl = er32(RCTL);
1321         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1322         ew32(RCTL, rctl);
1323
1324         switch (hw->mac_type) {
1325         case e1000_82545:
1326         case e1000_82546:
1327         case e1000_82545_rev_3:
1328         case e1000_82546_rev_3:
1329         default:
1330                 hw->autoneg = true;
1331                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1332                 if (phy_reg & MII_CR_LOOPBACK) {
1333                         phy_reg &= ~MII_CR_LOOPBACK;
1334                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1335                         e1000_phy_reset(hw);
1336                 }
1337                 break;
1338         }
1339 }
1340
1341 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1342                                       unsigned int frame_size)
1343 {
1344         memset(skb->data, 0xFF, frame_size);
1345         frame_size &= ~1;
1346         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1347         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1348         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1349 }
1350
1351 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1352                                     unsigned int frame_size)
1353 {
1354         frame_size &= ~1;
1355         if (*(skb->data + 3) == 0xFF) {
1356                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1357                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1358                         return 0;
1359                 }
1360         }
1361         return 13;
1362 }
1363
1364 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1365 {
1366         struct e1000_hw *hw = &adapter->hw;
1367         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1368         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1369         struct pci_dev *pdev = adapter->pdev;
1370         int i, j, k, l, lc, good_cnt, ret_val=0;
1371         unsigned long time;
1372
1373         ew32(RDT, rxdr->count - 1);
1374
1375         /* Calculate the loop count based on the largest descriptor ring
1376          * The idea is to wrap the largest ring a number of times using 64
1377          * send/receive pairs during each loop
1378          */
1379
1380         if (rxdr->count <= txdr->count)
1381                 lc = ((txdr->count / 64) * 2) + 1;
1382         else
1383                 lc = ((rxdr->count / 64) * 2) + 1;
1384
1385         k = l = 0;
1386         for (j = 0; j <= lc; j++) { /* loop count loop */
1387                 for (i = 0; i < 64; i++) { /* send the packets */
1388                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1389                                         1024);
1390                         dma_sync_single_for_device(&pdev->dev,
1391                                                    txdr->buffer_info[k].dma,
1392                                                    txdr->buffer_info[k].length,
1393                                                    DMA_TO_DEVICE);
1394                         if (unlikely(++k == txdr->count)) k = 0;
1395                 }
1396                 ew32(TDT, k);
1397                 msleep(200);
1398                 time = jiffies; /* set the start time for the receive */
1399                 good_cnt = 0;
1400                 do { /* receive the sent packets */
1401                         dma_sync_single_for_cpu(&pdev->dev,
1402                                                 rxdr->buffer_info[l].dma,
1403                                                 rxdr->buffer_info[l].length,
1404                                                 DMA_FROM_DEVICE);
1405
1406                         ret_val = e1000_check_lbtest_frame(
1407                                         rxdr->buffer_info[l].skb,
1408                                         1024);
1409                         if (!ret_val)
1410                                 good_cnt++;
1411                         if (unlikely(++l == rxdr->count)) l = 0;
1412                         /* time + 20 msecs (200 msecs on 2.4) is more than
1413                          * enough time to complete the receives, if it's
1414                          * exceeded, break and error off
1415                          */
1416                 } while (good_cnt < 64 && jiffies < (time + 20));
1417                 if (good_cnt != 64) {
1418                         ret_val = 13; /* ret_val is the same as mis-compare */
1419                         break;
1420                 }
1421                 if (jiffies >= (time + 2)) {
1422                         ret_val = 14; /* error code for time out error */
1423                         break;
1424                 }
1425         } /* end loop count loop */
1426         return ret_val;
1427 }
1428
1429 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1430 {
1431         *data = e1000_setup_desc_rings(adapter);
1432         if (*data)
1433                 goto out;
1434         *data = e1000_setup_loopback_test(adapter);
1435         if (*data)
1436                 goto err_loopback;
1437         *data = e1000_run_loopback_test(adapter);
1438         e1000_loopback_cleanup(adapter);
1439
1440 err_loopback:
1441         e1000_free_desc_rings(adapter);
1442 out:
1443         return *data;
1444 }
1445
1446 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1447 {
1448         struct e1000_hw *hw = &adapter->hw;
1449         *data = 0;
1450         if (hw->media_type == e1000_media_type_internal_serdes) {
1451                 int i = 0;
1452                 hw->serdes_has_link = false;
1453
1454                 /* On some blade server designs, link establishment
1455                  * could take as long as 2-3 minutes */
1456                 do {
1457                         e1000_check_for_link(hw);
1458                         if (hw->serdes_has_link)
1459                                 return *data;
1460                         msleep(20);
1461                 } while (i++ < 3750);
1462
1463                 *data = 1;
1464         } else {
1465                 e1000_check_for_link(hw);
1466                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1467                         msleep(4000);
1468
1469                 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1470                         *data = 1;
1471                 }
1472         }
1473         return *data;
1474 }
1475
1476 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1477 {
1478         switch (sset) {
1479         case ETH_SS_TEST:
1480                 return E1000_TEST_LEN;
1481         case ETH_SS_STATS:
1482                 return E1000_STATS_LEN;
1483         default:
1484                 return -EOPNOTSUPP;
1485         }
1486 }
1487
1488 static void e1000_diag_test(struct net_device *netdev,
1489                             struct ethtool_test *eth_test, u64 *data)
1490 {
1491         struct e1000_adapter *adapter = netdev_priv(netdev);
1492         struct e1000_hw *hw = &adapter->hw;
1493         bool if_running = netif_running(netdev);
1494
1495         set_bit(__E1000_TESTING, &adapter->flags);
1496         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1497                 /* Offline tests */
1498
1499                 /* save speed, duplex, autoneg settings */
1500                 u16 autoneg_advertised = hw->autoneg_advertised;
1501                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1502                 u8 autoneg = hw->autoneg;
1503
1504                 e_info(hw, "offline testing starting\n");
1505
1506                 /* Link test performed before hardware reset so autoneg doesn't
1507                  * interfere with test result */
1508                 if (e1000_link_test(adapter, &data[4]))
1509                         eth_test->flags |= ETH_TEST_FL_FAILED;
1510
1511                 if (if_running)
1512                         /* indicate we're in test mode */
1513                         dev_close(netdev);
1514                 else
1515                         e1000_reset(adapter);
1516
1517                 if (e1000_reg_test(adapter, &data[0]))
1518                         eth_test->flags |= ETH_TEST_FL_FAILED;
1519
1520                 e1000_reset(adapter);
1521                 if (e1000_eeprom_test(adapter, &data[1]))
1522                         eth_test->flags |= ETH_TEST_FL_FAILED;
1523
1524                 e1000_reset(adapter);
1525                 if (e1000_intr_test(adapter, &data[2]))
1526                         eth_test->flags |= ETH_TEST_FL_FAILED;
1527
1528                 e1000_reset(adapter);
1529                 /* make sure the phy is powered up */
1530                 e1000_power_up_phy(adapter);
1531                 if (e1000_loopback_test(adapter, &data[3]))
1532                         eth_test->flags |= ETH_TEST_FL_FAILED;
1533
1534                 /* restore speed, duplex, autoneg settings */
1535                 hw->autoneg_advertised = autoneg_advertised;
1536                 hw->forced_speed_duplex = forced_speed_duplex;
1537                 hw->autoneg = autoneg;
1538
1539                 e1000_reset(adapter);
1540                 clear_bit(__E1000_TESTING, &adapter->flags);
1541                 if (if_running)
1542                         dev_open(netdev);
1543         } else {
1544                 e_info(hw, "online testing starting\n");
1545                 /* Online tests */
1546                 if (e1000_link_test(adapter, &data[4]))
1547                         eth_test->flags |= ETH_TEST_FL_FAILED;
1548
1549                 /* Online tests aren't run; pass by default */
1550                 data[0] = 0;
1551                 data[1] = 0;
1552                 data[2] = 0;
1553                 data[3] = 0;
1554
1555                 clear_bit(__E1000_TESTING, &adapter->flags);
1556         }
1557         msleep_interruptible(4 * 1000);
1558 }
1559
1560 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1561                                struct ethtool_wolinfo *wol)
1562 {
1563         struct e1000_hw *hw = &adapter->hw;
1564         int retval = 1; /* fail by default */
1565
1566         switch (hw->device_id) {
1567         case E1000_DEV_ID_82542:
1568         case E1000_DEV_ID_82543GC_FIBER:
1569         case E1000_DEV_ID_82543GC_COPPER:
1570         case E1000_DEV_ID_82544EI_FIBER:
1571         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1572         case E1000_DEV_ID_82545EM_FIBER:
1573         case E1000_DEV_ID_82545EM_COPPER:
1574         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1575         case E1000_DEV_ID_82546GB_PCIE:
1576                 /* these don't support WoL at all */
1577                 wol->supported = 0;
1578                 break;
1579         case E1000_DEV_ID_82546EB_FIBER:
1580         case E1000_DEV_ID_82546GB_FIBER:
1581                 /* Wake events not supported on port B */
1582                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1583                         wol->supported = 0;
1584                         break;
1585                 }
1586                 /* return success for non excluded adapter ports */
1587                 retval = 0;
1588                 break;
1589         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1590                 /* quad port adapters only support WoL on port A */
1591                 if (!adapter->quad_port_a) {
1592                         wol->supported = 0;
1593                         break;
1594                 }
1595                 /* return success for non excluded adapter ports */
1596                 retval = 0;
1597                 break;
1598         default:
1599                 /* dual port cards only support WoL on port A from now on
1600                  * unless it was enabled in the eeprom for port B
1601                  * so exclude FUNC_1 ports from having WoL enabled */
1602                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1603                     !adapter->eeprom_wol) {
1604                         wol->supported = 0;
1605                         break;
1606                 }
1607
1608                 retval = 0;
1609         }
1610
1611         return retval;
1612 }
1613
1614 static void e1000_get_wol(struct net_device *netdev,
1615                           struct ethtool_wolinfo *wol)
1616 {
1617         struct e1000_adapter *adapter = netdev_priv(netdev);
1618         struct e1000_hw *hw = &adapter->hw;
1619
1620         wol->supported = WAKE_UCAST | WAKE_MCAST |
1621                          WAKE_BCAST | WAKE_MAGIC;
1622         wol->wolopts = 0;
1623
1624         /* this function will set ->supported = 0 and return 1 if wol is not
1625          * supported by this hardware */
1626         if (e1000_wol_exclusion(adapter, wol) ||
1627             !device_can_wakeup(&adapter->pdev->dev))
1628                 return;
1629
1630         /* apply any specific unsupported masks here */
1631         switch (hw->device_id) {
1632         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1633                 /* KSP3 does not suppport UCAST wake-ups */
1634                 wol->supported &= ~WAKE_UCAST;
1635
1636                 if (adapter->wol & E1000_WUFC_EX)
1637                         e_err(drv, "Interface does not support directed "
1638                               "(unicast) frame wake-up packets\n");
1639                 break;
1640         default:
1641                 break;
1642         }
1643
1644         if (adapter->wol & E1000_WUFC_EX)
1645                 wol->wolopts |= WAKE_UCAST;
1646         if (adapter->wol & E1000_WUFC_MC)
1647                 wol->wolopts |= WAKE_MCAST;
1648         if (adapter->wol & E1000_WUFC_BC)
1649                 wol->wolopts |= WAKE_BCAST;
1650         if (adapter->wol & E1000_WUFC_MAG)
1651                 wol->wolopts |= WAKE_MAGIC;
1652 }
1653
1654 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1655 {
1656         struct e1000_adapter *adapter = netdev_priv(netdev);
1657         struct e1000_hw *hw = &adapter->hw;
1658
1659         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1660                 return -EOPNOTSUPP;
1661
1662         if (e1000_wol_exclusion(adapter, wol) ||
1663             !device_can_wakeup(&adapter->pdev->dev))
1664                 return wol->wolopts ? -EOPNOTSUPP : 0;
1665
1666         switch (hw->device_id) {
1667         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1668                 if (wol->wolopts & WAKE_UCAST) {
1669                         e_err(drv, "Interface does not support directed "
1670                               "(unicast) frame wake-up packets\n");
1671                         return -EOPNOTSUPP;
1672                 }
1673                 break;
1674         default:
1675                 break;
1676         }
1677
1678         /* these settings will always override what we currently have */
1679         adapter->wol = 0;
1680
1681         if (wol->wolopts & WAKE_UCAST)
1682                 adapter->wol |= E1000_WUFC_EX;
1683         if (wol->wolopts & WAKE_MCAST)
1684                 adapter->wol |= E1000_WUFC_MC;
1685         if (wol->wolopts & WAKE_BCAST)
1686                 adapter->wol |= E1000_WUFC_BC;
1687         if (wol->wolopts & WAKE_MAGIC)
1688                 adapter->wol |= E1000_WUFC_MAG;
1689
1690         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1691
1692         return 0;
1693 }
1694
1695 static int e1000_set_phys_id(struct net_device *netdev,
1696                              enum ethtool_phys_id_state state)
1697 {
1698         struct e1000_adapter *adapter = netdev_priv(netdev);
1699         struct e1000_hw *hw = &adapter->hw;
1700
1701         switch (state) {
1702         case ETHTOOL_ID_ACTIVE:
1703                 e1000_setup_led(hw);
1704                 return 2;
1705
1706         case ETHTOOL_ID_ON:
1707                 e1000_led_on(hw);
1708                 break;
1709
1710         case ETHTOOL_ID_OFF:
1711                 e1000_led_off(hw);
1712                 break;
1713
1714         case ETHTOOL_ID_INACTIVE:
1715                 e1000_cleanup_led(hw);
1716         }
1717
1718         return 0;
1719 }
1720
1721 static int e1000_get_coalesce(struct net_device *netdev,
1722                               struct ethtool_coalesce *ec)
1723 {
1724         struct e1000_adapter *adapter = netdev_priv(netdev);
1725
1726         if (adapter->hw.mac_type < e1000_82545)
1727                 return -EOPNOTSUPP;
1728
1729         if (adapter->itr_setting <= 4)
1730                 ec->rx_coalesce_usecs = adapter->itr_setting;
1731         else
1732                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1733
1734         return 0;
1735 }
1736
1737 static int e1000_set_coalesce(struct net_device *netdev,
1738                               struct ethtool_coalesce *ec)
1739 {
1740         struct e1000_adapter *adapter = netdev_priv(netdev);
1741         struct e1000_hw *hw = &adapter->hw;
1742
1743         if (hw->mac_type < e1000_82545)
1744                 return -EOPNOTSUPP;
1745
1746         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1747             ((ec->rx_coalesce_usecs > 4) &&
1748              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1749             (ec->rx_coalesce_usecs == 2))
1750                 return -EINVAL;
1751
1752         if (ec->rx_coalesce_usecs == 4) {
1753                 adapter->itr = adapter->itr_setting = 4;
1754         } else if (ec->rx_coalesce_usecs <= 3) {
1755                 adapter->itr = 20000;
1756                 adapter->itr_setting = ec->rx_coalesce_usecs;
1757         } else {
1758                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1759                 adapter->itr_setting = adapter->itr & ~3;
1760         }
1761
1762         if (adapter->itr_setting != 0)
1763                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1764         else
1765                 ew32(ITR, 0);
1766
1767         return 0;
1768 }
1769
1770 static int e1000_nway_reset(struct net_device *netdev)
1771 {
1772         struct e1000_adapter *adapter = netdev_priv(netdev);
1773         if (netif_running(netdev))
1774                 e1000_reinit_locked(adapter);
1775         return 0;
1776 }
1777
1778 static void e1000_get_ethtool_stats(struct net_device *netdev,
1779                                     struct ethtool_stats *stats, u64 *data)
1780 {
1781         struct e1000_adapter *adapter = netdev_priv(netdev);
1782         int i;
1783         char *p = NULL;
1784
1785         e1000_update_stats(adapter);
1786         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1787                 switch (e1000_gstrings_stats[i].type) {
1788                 case NETDEV_STATS:
1789                         p = (char *) netdev +
1790                                         e1000_gstrings_stats[i].stat_offset;
1791                         break;
1792                 case E1000_STATS:
1793                         p = (char *) adapter +
1794                                         e1000_gstrings_stats[i].stat_offset;
1795                         break;
1796                 }
1797
1798                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1799                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1800         }
1801 /*      BUG_ON(i != E1000_STATS_LEN); */
1802 }
1803
1804 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1805                               u8 *data)
1806 {
1807         u8 *p = data;
1808         int i;
1809
1810         switch (stringset) {
1811         case ETH_SS_TEST:
1812                 memcpy(data, *e1000_gstrings_test,
1813                         sizeof(e1000_gstrings_test));
1814                 break;
1815         case ETH_SS_STATS:
1816                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1817                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1818                                ETH_GSTRING_LEN);
1819                         p += ETH_GSTRING_LEN;
1820                 }
1821 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1822                 break;
1823         }
1824 }
1825
1826 static const struct ethtool_ops e1000_ethtool_ops = {
1827         .get_settings           = e1000_get_settings,
1828         .set_settings           = e1000_set_settings,
1829         .get_drvinfo            = e1000_get_drvinfo,
1830         .get_regs_len           = e1000_get_regs_len,
1831         .get_regs               = e1000_get_regs,
1832         .get_wol                = e1000_get_wol,
1833         .set_wol                = e1000_set_wol,
1834         .get_msglevel           = e1000_get_msglevel,
1835         .set_msglevel           = e1000_set_msglevel,
1836         .nway_reset             = e1000_nway_reset,
1837         .get_link               = e1000_get_link,
1838         .get_eeprom_len         = e1000_get_eeprom_len,
1839         .get_eeprom             = e1000_get_eeprom,
1840         .set_eeprom             = e1000_set_eeprom,
1841         .get_ringparam          = e1000_get_ringparam,
1842         .set_ringparam          = e1000_set_ringparam,
1843         .get_pauseparam         = e1000_get_pauseparam,
1844         .set_pauseparam         = e1000_set_pauseparam,
1845         .self_test              = e1000_diag_test,
1846         .get_strings            = e1000_get_strings,
1847         .set_phys_id            = e1000_set_phys_id,
1848         .get_ethtool_stats      = e1000_get_ethtool_stats,
1849         .get_sset_count         = e1000_get_sset_count,
1850         .get_coalesce           = e1000_get_coalesce,
1851         .set_coalesce           = e1000_set_coalesce,
1852 };
1853
1854 void e1000_set_ethtool_ops(struct net_device *netdev)
1855 {
1856         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1857 }