Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-serial
[pandora-kernel.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reinit_locked(struct e1000_adapter *adapter);
41 extern void e1000_reset(struct e1000_adapter *adapter);
42 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
43 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
44 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
46 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
47 extern void e1000_update_stats(struct e1000_adapter *adapter);
48
49
50 struct e1000_stats {
51         char stat_string[ETH_GSTRING_LEN];
52         int sizeof_stat;
53         int stat_offset;
54 };
55
56 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
57                       offsetof(struct e1000_adapter, m)
58 static const struct e1000_stats e1000_gstrings_stats[] = {
59         { "rx_packets", E1000_STAT(stats.gprc) },
60         { "tx_packets", E1000_STAT(stats.gptc) },
61         { "rx_bytes", E1000_STAT(stats.gorcl) },
62         { "tx_bytes", E1000_STAT(stats.gotcl) },
63         { "rx_broadcast", E1000_STAT(stats.bprc) },
64         { "tx_broadcast", E1000_STAT(stats.bptc) },
65         { "rx_multicast", E1000_STAT(stats.mprc) },
66         { "tx_multicast", E1000_STAT(stats.mptc) },
67         { "rx_errors", E1000_STAT(stats.rxerrc) },
68         { "tx_errors", E1000_STAT(stats.txerrc) },
69         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
70         { "multicast", E1000_STAT(stats.mprc) },
71         { "collisions", E1000_STAT(stats.colc) },
72         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
73         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
74         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
75         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
76         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
77         { "rx_missed_errors", E1000_STAT(stats.mpc) },
78         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
79         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
80         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
81         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
82         { "tx_window_errors", E1000_STAT(stats.latecol) },
83         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
84         { "tx_deferred_ok", E1000_STAT(stats.dc) },
85         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
86         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
87         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
88         { "rx_long_length_errors", E1000_STAT(stats.roc) },
89         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
90         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
91         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
92         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
93         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
94         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
95         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
96         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
97         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
98         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
99         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
100         { "rx_header_split", E1000_STAT(rx_hdr_split) },
101         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
102 };
103
104 #define E1000_QUEUE_STATS_LEN 0
105 #define E1000_GLOBAL_STATS_LEN  \
106         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
108 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
109         "Register test  (offline)", "Eeprom test    (offline)",
110         "Interrupt test (offline)", "Loopback test  (offline)",
111         "Link test   (on/offline)"
112 };
113 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
114
115 static int
116 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
117 {
118         struct e1000_adapter *adapter = netdev_priv(netdev);
119         struct e1000_hw *hw = &adapter->hw;
120
121         if (hw->media_type == e1000_media_type_copper) {
122
123                 ecmd->supported = (SUPPORTED_10baseT_Half |
124                                    SUPPORTED_10baseT_Full |
125                                    SUPPORTED_100baseT_Half |
126                                    SUPPORTED_100baseT_Full |
127                                    SUPPORTED_1000baseT_Full|
128                                    SUPPORTED_Autoneg |
129                                    SUPPORTED_TP);
130                 if (hw->phy_type == e1000_phy_ife)
131                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
132                 ecmd->advertising = ADVERTISED_TP;
133
134                 if (hw->autoneg == 1) {
135                         ecmd->advertising |= ADVERTISED_Autoneg;
136
137                         /* the e1000 autoneg seems to match ethtool nicely */
138
139                         ecmd->advertising |= hw->autoneg_advertised;
140                 }
141
142                 ecmd->port = PORT_TP;
143                 ecmd->phy_address = hw->phy_addr;
144
145                 if (hw->mac_type == e1000_82543)
146                         ecmd->transceiver = XCVR_EXTERNAL;
147                 else
148                         ecmd->transceiver = XCVR_INTERNAL;
149
150         } else {
151                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
152                                      SUPPORTED_FIBRE |
153                                      SUPPORTED_Autoneg);
154
155                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
156                                      ADVERTISED_FIBRE |
157                                      ADVERTISED_Autoneg);
158
159                 ecmd->port = PORT_FIBRE;
160
161                 if (hw->mac_type >= e1000_82545)
162                         ecmd->transceiver = XCVR_INTERNAL;
163                 else
164                         ecmd->transceiver = XCVR_EXTERNAL;
165         }
166
167         if (netif_carrier_ok(adapter->netdev)) {
168
169                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
170                                                    &adapter->link_duplex);
171                 ecmd->speed = adapter->link_speed;
172
173                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
174                  *          and HALF_DUPLEX != DUPLEX_HALF */
175
176                 if (adapter->link_duplex == FULL_DUPLEX)
177                         ecmd->duplex = DUPLEX_FULL;
178                 else
179                         ecmd->duplex = DUPLEX_HALF;
180         } else {
181                 ecmd->speed = -1;
182                 ecmd->duplex = -1;
183         }
184
185         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
186                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
187         return 0;
188 }
189
190 static int
191 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
192 {
193         struct e1000_adapter *adapter = netdev_priv(netdev);
194         struct e1000_hw *hw = &adapter->hw;
195
196         /* When SoL/IDER sessions are active, autoneg/speed/duplex
197          * cannot be changed */
198         if (e1000_check_phy_reset_block(hw)) {
199                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
200                         "when SoL/IDER is active.\n");
201                 return -EINVAL;
202         }
203
204         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
205                 msleep(1);
206
207         if (ecmd->autoneg == AUTONEG_ENABLE) {
208                 hw->autoneg = 1;
209                 if (hw->media_type == e1000_media_type_fiber)
210                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
211                                      ADVERTISED_FIBRE |
212                                      ADVERTISED_Autoneg;
213                 else
214                         hw->autoneg_advertised = ecmd->advertising |
215                                                  ADVERTISED_TP |
216                                                  ADVERTISED_Autoneg;
217                 ecmd->advertising = hw->autoneg_advertised;
218         } else
219                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
220                         clear_bit(__E1000_RESETTING, &adapter->flags);
221                         return -EINVAL;
222                 }
223
224         /* reset the link */
225
226         if (netif_running(adapter->netdev)) {
227                 e1000_down(adapter);
228                 e1000_up(adapter);
229         } else
230                 e1000_reset(adapter);
231
232         clear_bit(__E1000_RESETTING, &adapter->flags);
233         return 0;
234 }
235
236 static void
237 e1000_get_pauseparam(struct net_device *netdev,
238                      struct ethtool_pauseparam *pause)
239 {
240         struct e1000_adapter *adapter = netdev_priv(netdev);
241         struct e1000_hw *hw = &adapter->hw;
242
243         pause->autoneg =
244                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
245
246         if (hw->fc == E1000_FC_RX_PAUSE)
247                 pause->rx_pause = 1;
248         else if (hw->fc == E1000_FC_TX_PAUSE)
249                 pause->tx_pause = 1;
250         else if (hw->fc == E1000_FC_FULL) {
251                 pause->rx_pause = 1;
252                 pause->tx_pause = 1;
253         }
254 }
255
256 static int
257 e1000_set_pauseparam(struct net_device *netdev,
258                      struct ethtool_pauseparam *pause)
259 {
260         struct e1000_adapter *adapter = netdev_priv(netdev);
261         struct e1000_hw *hw = &adapter->hw;
262         int retval = 0;
263
264         adapter->fc_autoneg = pause->autoneg;
265
266         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
267                 msleep(1);
268
269         if (pause->rx_pause && pause->tx_pause)
270                 hw->fc = E1000_FC_FULL;
271         else if (pause->rx_pause && !pause->tx_pause)
272                 hw->fc = E1000_FC_RX_PAUSE;
273         else if (!pause->rx_pause && pause->tx_pause)
274                 hw->fc = E1000_FC_TX_PAUSE;
275         else if (!pause->rx_pause && !pause->tx_pause)
276                 hw->fc = E1000_FC_NONE;
277
278         hw->original_fc = hw->fc;
279
280         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
281                 if (netif_running(adapter->netdev)) {
282                         e1000_down(adapter);
283                         e1000_up(adapter);
284                 } else
285                         e1000_reset(adapter);
286         } else
287                 retval = ((hw->media_type == e1000_media_type_fiber) ?
288                            e1000_setup_link(hw) : e1000_force_mac_fc(hw));
289
290         clear_bit(__E1000_RESETTING, &adapter->flags);
291         return retval;
292 }
293
294 static uint32_t
295 e1000_get_rx_csum(struct net_device *netdev)
296 {
297         struct e1000_adapter *adapter = netdev_priv(netdev);
298         return adapter->rx_csum;
299 }
300
301 static int
302 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
303 {
304         struct e1000_adapter *adapter = netdev_priv(netdev);
305         adapter->rx_csum = data;
306
307         if (netif_running(netdev))
308                 e1000_reinit_locked(adapter);
309         else
310                 e1000_reset(adapter);
311         return 0;
312 }
313
314 static uint32_t
315 e1000_get_tx_csum(struct net_device *netdev)
316 {
317         return (netdev->features & NETIF_F_HW_CSUM) != 0;
318 }
319
320 static int
321 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
322 {
323         struct e1000_adapter *adapter = netdev_priv(netdev);
324
325         if (adapter->hw.mac_type < e1000_82543) {
326                 if (!data)
327                         return -EINVAL;
328                 return 0;
329         }
330
331         if (data)
332                 netdev->features |= NETIF_F_HW_CSUM;
333         else
334                 netdev->features &= ~NETIF_F_HW_CSUM;
335
336         return 0;
337 }
338
339 #ifdef NETIF_F_TSO
340 static int
341 e1000_set_tso(struct net_device *netdev, uint32_t data)
342 {
343         struct e1000_adapter *adapter = netdev_priv(netdev);
344         if ((adapter->hw.mac_type < e1000_82544) ||
345             (adapter->hw.mac_type == e1000_82547))
346                 return data ? -EINVAL : 0;
347
348         if (data)
349                 netdev->features |= NETIF_F_TSO;
350         else
351                 netdev->features &= ~NETIF_F_TSO;
352
353         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
354         adapter->tso_force = TRUE;
355         return 0;
356 }
357 #endif /* NETIF_F_TSO */
358
359 static uint32_t
360 e1000_get_msglevel(struct net_device *netdev)
361 {
362         struct e1000_adapter *adapter = netdev_priv(netdev);
363         return adapter->msg_enable;
364 }
365
366 static void
367 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
368 {
369         struct e1000_adapter *adapter = netdev_priv(netdev);
370         adapter->msg_enable = data;
371 }
372
373 static int
374 e1000_get_regs_len(struct net_device *netdev)
375 {
376 #define E1000_REGS_LEN 32
377         return E1000_REGS_LEN * sizeof(uint32_t);
378 }
379
380 static void
381 e1000_get_regs(struct net_device *netdev,
382                struct ethtool_regs *regs, void *p)
383 {
384         struct e1000_adapter *adapter = netdev_priv(netdev);
385         struct e1000_hw *hw = &adapter->hw;
386         uint32_t *regs_buff = p;
387         uint16_t phy_data;
388
389         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
390
391         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
392
393         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
394         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
395
396         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
397         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
398         regs_buff[4]  = E1000_READ_REG(hw, RDH);
399         regs_buff[5]  = E1000_READ_REG(hw, RDT);
400         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
401
402         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
403         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
404         regs_buff[9]  = E1000_READ_REG(hw, TDH);
405         regs_buff[10] = E1000_READ_REG(hw, TDT);
406         regs_buff[11] = E1000_READ_REG(hw, TIDV);
407
408         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
409         if (hw->phy_type == e1000_phy_igp) {
410                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
411                                     IGP01E1000_PHY_AGC_A);
412                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
413                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
415                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
416                                     IGP01E1000_PHY_AGC_B);
417                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
418                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
419                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
420                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
421                                     IGP01E1000_PHY_AGC_C);
422                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
423                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
424                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
425                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
426                                     IGP01E1000_PHY_AGC_D);
427                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
428                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
429                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
430                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
431                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
432                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
433                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
434                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
435                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
436                                     IGP01E1000_PHY_PCS_INIT_REG);
437                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
438                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
439                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
440                 regs_buff[20] = 0; /* polarity correction enabled (always) */
441                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
442                 regs_buff[23] = regs_buff[18]; /* mdix mode */
443                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
444         } else {
445                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
446                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
447                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
448                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
449                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
450                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
451                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
452                 regs_buff[18] = regs_buff[13]; /* cable polarity */
453                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
454                 regs_buff[20] = regs_buff[17]; /* polarity correction */
455                 /* phy receive errors */
456                 regs_buff[22] = adapter->phy_stats.receive_errors;
457                 regs_buff[23] = regs_buff[13]; /* mdix mode */
458         }
459         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
460         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
461         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
462         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
463         if (hw->mac_type >= e1000_82540 &&
464            hw->media_type == e1000_media_type_copper) {
465                 regs_buff[26] = E1000_READ_REG(hw, MANC);
466         }
467 }
468
469 static int
470 e1000_get_eeprom_len(struct net_device *netdev)
471 {
472         struct e1000_adapter *adapter = netdev_priv(netdev);
473         return adapter->hw.eeprom.word_size * 2;
474 }
475
476 static int
477 e1000_get_eeprom(struct net_device *netdev,
478                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
479 {
480         struct e1000_adapter *adapter = netdev_priv(netdev);
481         struct e1000_hw *hw = &adapter->hw;
482         uint16_t *eeprom_buff;
483         int first_word, last_word;
484         int ret_val = 0;
485         uint16_t i;
486
487         if (eeprom->len == 0)
488                 return -EINVAL;
489
490         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
491
492         first_word = eeprom->offset >> 1;
493         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
494
495         eeprom_buff = kmalloc(sizeof(uint16_t) *
496                         (last_word - first_word + 1), GFP_KERNEL);
497         if (!eeprom_buff)
498                 return -ENOMEM;
499
500         if (hw->eeprom.type == e1000_eeprom_spi)
501                 ret_val = e1000_read_eeprom(hw, first_word,
502                                             last_word - first_word + 1,
503                                             eeprom_buff);
504         else {
505                 for (i = 0; i < last_word - first_word + 1; i++)
506                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
507                                                         &eeprom_buff[i])))
508                                 break;
509         }
510
511         /* Device's eeprom is always little-endian, word addressable */
512         for (i = 0; i < last_word - first_word + 1; i++)
513                 le16_to_cpus(&eeprom_buff[i]);
514
515         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
516                         eeprom->len);
517         kfree(eeprom_buff);
518
519         return ret_val;
520 }
521
522 static int
523 e1000_set_eeprom(struct net_device *netdev,
524                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
525 {
526         struct e1000_adapter *adapter = netdev_priv(netdev);
527         struct e1000_hw *hw = &adapter->hw;
528         uint16_t *eeprom_buff;
529         void *ptr;
530         int max_len, first_word, last_word, ret_val = 0;
531         uint16_t i;
532
533         if (eeprom->len == 0)
534                 return -EOPNOTSUPP;
535
536         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
537                 return -EFAULT;
538
539         max_len = hw->eeprom.word_size * 2;
540
541         first_word = eeprom->offset >> 1;
542         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
543         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
544         if (!eeprom_buff)
545                 return -ENOMEM;
546
547         ptr = (void *)eeprom_buff;
548
549         if (eeprom->offset & 1) {
550                 /* need read/modify/write of first changed EEPROM word */
551                 /* only the second byte of the word is being modified */
552                 ret_val = e1000_read_eeprom(hw, first_word, 1,
553                                             &eeprom_buff[0]);
554                 ptr++;
555         }
556         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
557                 /* need read/modify/write of last changed EEPROM word */
558                 /* only the first byte of the word is being modified */
559                 ret_val = e1000_read_eeprom(hw, last_word, 1,
560                                   &eeprom_buff[last_word - first_word]);
561         }
562
563         /* Device's eeprom is always little-endian, word addressable */
564         for (i = 0; i < last_word - first_word + 1; i++)
565                 le16_to_cpus(&eeprom_buff[i]);
566
567         memcpy(ptr, bytes, eeprom->len);
568
569         for (i = 0; i < last_word - first_word + 1; i++)
570                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
571
572         ret_val = e1000_write_eeprom(hw, first_word,
573                                      last_word - first_word + 1, eeprom_buff);
574
575         /* Update the checksum over the first part of the EEPROM if needed
576          * and flush shadow RAM for 82573 conrollers */
577         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
578                                 (hw->mac_type == e1000_82573)))
579                 e1000_update_eeprom_checksum(hw);
580
581         kfree(eeprom_buff);
582         return ret_val;
583 }
584
585 static void
586 e1000_get_drvinfo(struct net_device *netdev,
587                        struct ethtool_drvinfo *drvinfo)
588 {
589         struct e1000_adapter *adapter = netdev_priv(netdev);
590         char firmware_version[32];
591         uint16_t eeprom_data;
592
593         strncpy(drvinfo->driver,  e1000_driver_name, 32);
594         strncpy(drvinfo->version, e1000_driver_version, 32);
595
596         /* EEPROM image version # is reported as firmware version # for
597          * 8257{1|2|3} controllers */
598         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
599         switch (adapter->hw.mac_type) {
600         case e1000_82571:
601         case e1000_82572:
602         case e1000_82573:
603         case e1000_80003es2lan:
604         case e1000_ich8lan:
605                 sprintf(firmware_version, "%d.%d-%d",
606                         (eeprom_data & 0xF000) >> 12,
607                         (eeprom_data & 0x0FF0) >> 4,
608                         eeprom_data & 0x000F);
609                 break;
610         default:
611                 sprintf(firmware_version, "N/A");
612         }
613
614         strncpy(drvinfo->fw_version, firmware_version, 32);
615         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
616         drvinfo->n_stats = E1000_STATS_LEN;
617         drvinfo->testinfo_len = E1000_TEST_LEN;
618         drvinfo->regdump_len = e1000_get_regs_len(netdev);
619         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
620 }
621
622 static void
623 e1000_get_ringparam(struct net_device *netdev,
624                     struct ethtool_ringparam *ring)
625 {
626         struct e1000_adapter *adapter = netdev_priv(netdev);
627         e1000_mac_type mac_type = adapter->hw.mac_type;
628         struct e1000_tx_ring *txdr = adapter->tx_ring;
629         struct e1000_rx_ring *rxdr = adapter->rx_ring;
630
631         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
632                 E1000_MAX_82544_RXD;
633         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
634                 E1000_MAX_82544_TXD;
635         ring->rx_mini_max_pending = 0;
636         ring->rx_jumbo_max_pending = 0;
637         ring->rx_pending = rxdr->count;
638         ring->tx_pending = txdr->count;
639         ring->rx_mini_pending = 0;
640         ring->rx_jumbo_pending = 0;
641 }
642
643 static int
644 e1000_set_ringparam(struct net_device *netdev,
645                     struct ethtool_ringparam *ring)
646 {
647         struct e1000_adapter *adapter = netdev_priv(netdev);
648         e1000_mac_type mac_type = adapter->hw.mac_type;
649         struct e1000_tx_ring *txdr, *tx_old;
650         struct e1000_rx_ring *rxdr, *rx_old;
651         int i, err, tx_ring_size, rx_ring_size;
652
653         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
654                 return -EINVAL;
655
656         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
657         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
658
659         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
660                 msleep(1);
661
662         if (netif_running(adapter->netdev))
663                 e1000_down(adapter);
664
665         tx_old = adapter->tx_ring;
666         rx_old = adapter->rx_ring;
667
668         err = -ENOMEM;
669         txdr = kzalloc(tx_ring_size, GFP_KERNEL);
670         if (!txdr)
671                 goto err_alloc_tx;
672
673         rxdr = kzalloc(rx_ring_size, GFP_KERNEL);
674         if (!rxdr)
675                 goto err_alloc_rx;
676
677         adapter->tx_ring = txdr;
678         adapter->rx_ring = rxdr;
679
680         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
681         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
682                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
683         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
684
685         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
686         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
687                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
688         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
689
690         for (i = 0; i < adapter->num_tx_queues; i++)
691                 txdr[i].count = txdr->count;
692         for (i = 0; i < adapter->num_rx_queues; i++)
693                 rxdr[i].count = rxdr->count;
694
695         if (netif_running(adapter->netdev)) {
696                 /* Try to get new resources before deleting old */
697                 if ((err = e1000_setup_all_rx_resources(adapter)))
698                         goto err_setup_rx;
699                 if ((err = e1000_setup_all_tx_resources(adapter)))
700                         goto err_setup_tx;
701
702                 /* save the new, restore the old in order to free it,
703                  * then restore the new back again */
704
705                 adapter->rx_ring = rx_old;
706                 adapter->tx_ring = tx_old;
707                 e1000_free_all_rx_resources(adapter);
708                 e1000_free_all_tx_resources(adapter);
709                 kfree(tx_old);
710                 kfree(rx_old);
711                 adapter->rx_ring = rxdr;
712                 adapter->tx_ring = txdr;
713                 if ((err = e1000_up(adapter)))
714                         goto err_setup;
715         }
716
717         clear_bit(__E1000_RESETTING, &adapter->flags);
718         return 0;
719 err_setup_tx:
720         e1000_free_all_rx_resources(adapter);
721 err_setup_rx:
722         adapter->rx_ring = rx_old;
723         adapter->tx_ring = tx_old;
724         kfree(rxdr);
725 err_alloc_rx:
726         kfree(txdr);
727 err_alloc_tx:
728         e1000_up(adapter);
729 err_setup:
730         clear_bit(__E1000_RESETTING, &adapter->flags);
731         return err;
732 }
733
734 #define REG_PATTERN_TEST(R, M, W)                                              \
735 {                                                                              \
736         uint32_t pat, value;                                                   \
737         uint32_t test[] =                                                      \
738                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
739         for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
740                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
741                 value = E1000_READ_REG(&adapter->hw, R);                       \
742                 if (value != (test[pat] & W & M)) {                             \
743                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
744                                 "0x%08X expected 0x%08X\n",                    \
745                                 E1000_##R, value, (test[pat] & W & M));        \
746                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
747                                 E1000_82542_##R : E1000_##R;                   \
748                         return 1;                                              \
749                 }                                                              \
750         }                                                                      \
751 }
752
753 #define REG_SET_AND_CHECK(R, M, W)                                             \
754 {                                                                              \
755         uint32_t value;                                                        \
756         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
757         value = E1000_READ_REG(&adapter->hw, R);                               \
758         if ((W & M) != (value & M)) {                                          \
759                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
760                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
761                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
762                         E1000_82542_##R : E1000_##R;                           \
763                 return 1;                                                      \
764         }                                                                      \
765 }
766
767 static int
768 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
769 {
770         uint32_t value, before, after;
771         uint32_t i, toggle;
772
773         /* The status register is Read Only, so a write should fail.
774          * Some bits that get toggled are ignored.
775          */
776         switch (adapter->hw.mac_type) {
777         /* there are several bits on newer hardware that are r/w */
778         case e1000_82571:
779         case e1000_82572:
780         case e1000_80003es2lan:
781                 toggle = 0x7FFFF3FF;
782                 break;
783         case e1000_82573:
784         case e1000_ich8lan:
785                 toggle = 0x7FFFF033;
786                 break;
787         default:
788                 toggle = 0xFFFFF833;
789                 break;
790         }
791
792         before = E1000_READ_REG(&adapter->hw, STATUS);
793         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
794         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
795         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
796         if (value != after) {
797                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
798                         "0x%08X expected: 0x%08X\n", after, value);
799                 *data = 1;
800                 return 1;
801         }
802         /* restore previous status */
803         E1000_WRITE_REG(&adapter->hw, STATUS, before);
804         if (adapter->hw.mac_type != e1000_ich8lan) {
805                 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
806                 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
807                 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
808                 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
809         }
810         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
811         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
812         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
813         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
814         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
815         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
816         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
817         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
818         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
819         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
820
821         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
822         before = (adapter->hw.mac_type == e1000_ich8lan ?
823                         0x06C3B33E : 0x06DFB3FE);
824         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
825         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
826
827         if (adapter->hw.mac_type >= e1000_82543) {
828
829                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
830                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
831                 if (adapter->hw.mac_type != e1000_ich8lan)
832                         REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
833                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
834                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
835                 value = (adapter->hw.mac_type == e1000_ich8lan ?
836                                 E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
837                 for (i = 0; i < value; i++) {
838                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
839                                          0xFFFFFFFF);
840                 }
841
842         } else {
843
844                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
845                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
846                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
847                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
848
849         }
850
851         value = (adapter->hw.mac_type == e1000_ich8lan ?
852                         E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
853         for (i = 0; i < value; i++)
854                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
855
856         *data = 0;
857         return 0;
858 }
859
860 static int
861 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
862 {
863         uint16_t temp;
864         uint16_t checksum = 0;
865         uint16_t i;
866
867         *data = 0;
868         /* Read and add up the contents of the EEPROM */
869         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
870                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
871                         *data = 1;
872                         break;
873                 }
874                 checksum += temp;
875         }
876
877         /* If Checksum is not Correct return error else test passed */
878         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
879                 *data = 2;
880
881         return *data;
882 }
883
884 static irqreturn_t
885 e1000_test_intr(int irq,
886                 void *data,
887                 struct pt_regs *regs)
888 {
889         struct net_device *netdev = (struct net_device *) data;
890         struct e1000_adapter *adapter = netdev_priv(netdev);
891
892         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
893
894         return IRQ_HANDLED;
895 }
896
897 static int
898 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
899 {
900         struct net_device *netdev = adapter->netdev;
901         uint32_t mask, i=0, shared_int = TRUE;
902         uint32_t irq = adapter->pdev->irq;
903
904         *data = 0;
905
906         /* NOTE: we don't test MSI interrupts here, yet */
907         /* Hook up test interrupt handler just for this test */
908         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED,
909                          netdev->name, netdev))
910                 shared_int = FALSE;
911         else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
912                               netdev->name, netdev)) {
913                 *data = 1;
914                 return -1;
915         }
916         DPRINTK(HW, INFO, "testing %s interrupt\n",
917                 (shared_int ? "shared" : "unshared"));
918
919         /* Disable all the interrupts */
920         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
921         msleep(10);
922
923         /* Test each interrupt */
924         for (; i < 10; i++) {
925
926                 if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
927                         continue;
928                 /* Interrupt to test */
929                 mask = 1 << i;
930
931                 if (!shared_int) {
932                         /* Disable the interrupt to be reported in
933                          * the cause register and then force the same
934                          * interrupt and see if one gets posted.  If
935                          * an interrupt was posted to the bus, the
936                          * test failed.
937                          */
938                         adapter->test_icr = 0;
939                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
940                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
941                         msleep(10);
942
943                         if (adapter->test_icr & mask) {
944                                 *data = 3;
945                                 break;
946                         }
947                 }
948
949                 /* Enable the interrupt to be reported in
950                  * the cause register and then force the same
951                  * interrupt and see if one gets posted.  If
952                  * an interrupt was not posted to the bus, the
953                  * test failed.
954                  */
955                 adapter->test_icr = 0;
956                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
957                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
958                 msleep(10);
959
960                 if (!(adapter->test_icr & mask)) {
961                         *data = 4;
962                         break;
963                 }
964
965                 if (!shared_int) {
966                         /* Disable the other interrupts to be reported in
967                          * the cause register and then force the other
968                          * interrupts and see if any get posted.  If
969                          * an interrupt was posted to the bus, the
970                          * test failed.
971                          */
972                         adapter->test_icr = 0;
973                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
974                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
975                         msleep(10);
976
977                         if (adapter->test_icr) {
978                                 *data = 5;
979                                 break;
980                         }
981                 }
982         }
983
984         /* Disable all the interrupts */
985         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
986         msleep(10);
987
988         /* Unhook test interrupt handler */
989         free_irq(irq, netdev);
990
991         return *data;
992 }
993
994 static void
995 e1000_free_desc_rings(struct e1000_adapter *adapter)
996 {
997         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
998         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
999         struct pci_dev *pdev = adapter->pdev;
1000         int i;
1001
1002         if (txdr->desc && txdr->buffer_info) {
1003                 for (i = 0; i < txdr->count; i++) {
1004                         if (txdr->buffer_info[i].dma)
1005                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1006                                                  txdr->buffer_info[i].length,
1007                                                  PCI_DMA_TODEVICE);
1008                         if (txdr->buffer_info[i].skb)
1009                                 dev_kfree_skb(txdr->buffer_info[i].skb);
1010                 }
1011         }
1012
1013         if (rxdr->desc && rxdr->buffer_info) {
1014                 for (i = 0; i < rxdr->count; i++) {
1015                         if (rxdr->buffer_info[i].dma)
1016                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1017                                                  rxdr->buffer_info[i].length,
1018                                                  PCI_DMA_FROMDEVICE);
1019                         if (rxdr->buffer_info[i].skb)
1020                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
1021                 }
1022         }
1023
1024         if (txdr->desc) {
1025                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1026                 txdr->desc = NULL;
1027         }
1028         if (rxdr->desc) {
1029                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1030                 rxdr->desc = NULL;
1031         }
1032
1033         kfree(txdr->buffer_info);
1034         txdr->buffer_info = NULL;
1035         kfree(rxdr->buffer_info);
1036         rxdr->buffer_info = NULL;
1037
1038         return;
1039 }
1040
1041 static int
1042 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1043 {
1044         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1045         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1046         struct pci_dev *pdev = adapter->pdev;
1047         uint32_t rctl;
1048         int size, i, ret_val;
1049
1050         /* Setup Tx descriptor ring and Tx buffers */
1051
1052         if (!txdr->count)
1053                 txdr->count = E1000_DEFAULT_TXD;
1054
1055         size = txdr->count * sizeof(struct e1000_buffer);
1056         if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1057                 ret_val = 1;
1058                 goto err_nomem;
1059         }
1060         memset(txdr->buffer_info, 0, size);
1061
1062         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1063         E1000_ROUNDUP(txdr->size, 4096);
1064         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1065                 ret_val = 2;
1066                 goto err_nomem;
1067         }
1068         memset(txdr->desc, 0, txdr->size);
1069         txdr->next_to_use = txdr->next_to_clean = 0;
1070
1071         E1000_WRITE_REG(&adapter->hw, TDBAL,
1072                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1073         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1074         E1000_WRITE_REG(&adapter->hw, TDLEN,
1075                         txdr->count * sizeof(struct e1000_tx_desc));
1076         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1077         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1078         E1000_WRITE_REG(&adapter->hw, TCTL,
1079                         E1000_TCTL_PSP | E1000_TCTL_EN |
1080                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1081                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1082
1083         for (i = 0; i < txdr->count; i++) {
1084                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1085                 struct sk_buff *skb;
1086                 unsigned int size = 1024;
1087
1088                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1089                         ret_val = 3;
1090                         goto err_nomem;
1091                 }
1092                 skb_put(skb, size);
1093                 txdr->buffer_info[i].skb = skb;
1094                 txdr->buffer_info[i].length = skb->len;
1095                 txdr->buffer_info[i].dma =
1096                         pci_map_single(pdev, skb->data, skb->len,
1097                                        PCI_DMA_TODEVICE);
1098                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1099                 tx_desc->lower.data = cpu_to_le32(skb->len);
1100                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1101                                                    E1000_TXD_CMD_IFCS |
1102                                                    E1000_TXD_CMD_RPS);
1103                 tx_desc->upper.data = 0;
1104         }
1105
1106         /* Setup Rx descriptor ring and Rx buffers */
1107
1108         if (!rxdr->count)
1109                 rxdr->count = E1000_DEFAULT_RXD;
1110
1111         size = rxdr->count * sizeof(struct e1000_buffer);
1112         if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1113                 ret_val = 4;
1114                 goto err_nomem;
1115         }
1116         memset(rxdr->buffer_info, 0, size);
1117
1118         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1119         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1120                 ret_val = 5;
1121                 goto err_nomem;
1122         }
1123         memset(rxdr->desc, 0, rxdr->size);
1124         rxdr->next_to_use = rxdr->next_to_clean = 0;
1125
1126         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1127         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1128         E1000_WRITE_REG(&adapter->hw, RDBAL,
1129                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1130         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1131         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1132         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1133         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1134         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1135                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1136                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1137         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1138
1139         for (i = 0; i < rxdr->count; i++) {
1140                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1141                 struct sk_buff *skb;
1142
1143                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1144                                 GFP_KERNEL))) {
1145                         ret_val = 6;
1146                         goto err_nomem;
1147                 }
1148                 skb_reserve(skb, NET_IP_ALIGN);
1149                 rxdr->buffer_info[i].skb = skb;
1150                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1151                 rxdr->buffer_info[i].dma =
1152                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1153                                        PCI_DMA_FROMDEVICE);
1154                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1155                 memset(skb->data, 0x00, skb->len);
1156         }
1157
1158         return 0;
1159
1160 err_nomem:
1161         e1000_free_desc_rings(adapter);
1162         return ret_val;
1163 }
1164
1165 static void
1166 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1167 {
1168         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1169         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1170         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1171         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1172         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1173 }
1174
1175 static void
1176 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1177 {
1178         uint16_t phy_reg;
1179
1180         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1181          * Extended PHY Specific Control Register to 25MHz clock.  This
1182          * value defaults back to a 2.5MHz clock when the PHY is reset.
1183          */
1184         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1185         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1186         e1000_write_phy_reg(&adapter->hw,
1187                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1188
1189         /* In addition, because of the s/w reset above, we need to enable
1190          * CRS on TX.  This must be set for both full and half duplex
1191          * operation.
1192          */
1193         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1194         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1195         e1000_write_phy_reg(&adapter->hw,
1196                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1197 }
1198
1199 static int
1200 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1201 {
1202         uint32_t ctrl_reg;
1203         uint16_t phy_reg;
1204
1205         /* Setup the Device Control Register for PHY loopback test. */
1206
1207         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1208         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1209                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1210                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1211                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1212                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1213
1214         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1215
1216         /* Read the PHY Specific Control Register (0x10) */
1217         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1218
1219         /* Clear Auto-Crossover bits in PHY Specific Control Register
1220          * (bits 6:5).
1221          */
1222         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1223         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1224
1225         /* Perform software reset on the PHY */
1226         e1000_phy_reset(&adapter->hw);
1227
1228         /* Have to setup TX_CLK and TX_CRS after software reset */
1229         e1000_phy_reset_clk_and_crs(adapter);
1230
1231         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1232
1233         /* Wait for reset to complete. */
1234         udelay(500);
1235
1236         /* Have to setup TX_CLK and TX_CRS after software reset */
1237         e1000_phy_reset_clk_and_crs(adapter);
1238
1239         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1240         e1000_phy_disable_receiver(adapter);
1241
1242         /* Set the loopback bit in the PHY control register. */
1243         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1244         phy_reg |= MII_CR_LOOPBACK;
1245         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1246
1247         /* Setup TX_CLK and TX_CRS one more time. */
1248         e1000_phy_reset_clk_and_crs(adapter);
1249
1250         /* Check Phy Configuration */
1251         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1252         if (phy_reg != 0x4100)
1253                  return 9;
1254
1255         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1256         if (phy_reg != 0x0070)
1257                 return 10;
1258
1259         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1260         if (phy_reg != 0x001A)
1261                 return 11;
1262
1263         return 0;
1264 }
1265
1266 static int
1267 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1268 {
1269         uint32_t ctrl_reg = 0;
1270         uint32_t stat_reg = 0;
1271
1272         adapter->hw.autoneg = FALSE;
1273
1274         if (adapter->hw.phy_type == e1000_phy_m88) {
1275                 /* Auto-MDI/MDIX Off */
1276                 e1000_write_phy_reg(&adapter->hw,
1277                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1278                 /* reset to update Auto-MDI/MDIX */
1279                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1280                 /* autoneg off */
1281                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1282         } else if (adapter->hw.phy_type == e1000_phy_gg82563)
1283                 e1000_write_phy_reg(&adapter->hw,
1284                                     GG82563_PHY_KMRN_MODE_CTRL,
1285                                     0x1CC);
1286
1287         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1288
1289         if (adapter->hw.phy_type == e1000_phy_ife) {
1290                 /* force 100, set loopback */
1291                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
1292
1293                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1294                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1295                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1296                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1297                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1298                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1299         } else {
1300                 /* force 1000, set loopback */
1301                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1302
1303                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1304                 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1305                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1306                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1307                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1308                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1309                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1310         }
1311
1312         if (adapter->hw.media_type == e1000_media_type_copper &&
1313            adapter->hw.phy_type == e1000_phy_m88)
1314                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1315         else {
1316                 /* Set the ILOS bit on the fiber Nic is half
1317                  * duplex link is detected. */
1318                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1319                 if ((stat_reg & E1000_STATUS_FD) == 0)
1320                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1321         }
1322
1323         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1324
1325         /* Disable the receiver on the PHY so when a cable is plugged in, the
1326          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1327          */
1328         if (adapter->hw.phy_type == e1000_phy_m88)
1329                 e1000_phy_disable_receiver(adapter);
1330
1331         udelay(500);
1332
1333         return 0;
1334 }
1335
1336 static int
1337 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1338 {
1339         uint16_t phy_reg = 0;
1340         uint16_t count = 0;
1341
1342         switch (adapter->hw.mac_type) {
1343         case e1000_82543:
1344                 if (adapter->hw.media_type == e1000_media_type_copper) {
1345                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1346                          * Some PHY registers get corrupted at random, so
1347                          * attempt this 10 times.
1348                          */
1349                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1350                               count++ < 10);
1351                         if (count < 11)
1352                                 return 0;
1353                 }
1354                 break;
1355
1356         case e1000_82544:
1357         case e1000_82540:
1358         case e1000_82545:
1359         case e1000_82545_rev_3:
1360         case e1000_82546:
1361         case e1000_82546_rev_3:
1362         case e1000_82541:
1363         case e1000_82541_rev_2:
1364         case e1000_82547:
1365         case e1000_82547_rev_2:
1366         case e1000_82571:
1367         case e1000_82572:
1368         case e1000_82573:
1369         case e1000_80003es2lan:
1370         case e1000_ich8lan:
1371                 return e1000_integrated_phy_loopback(adapter);
1372                 break;
1373
1374         default:
1375                 /* Default PHY loopback work is to read the MII
1376                  * control register and assert bit 14 (loopback mode).
1377                  */
1378                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1379                 phy_reg |= MII_CR_LOOPBACK;
1380                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1381                 return 0;
1382                 break;
1383         }
1384
1385         return 8;
1386 }
1387
1388 static int
1389 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1390 {
1391         struct e1000_hw *hw = &adapter->hw;
1392         uint32_t rctl;
1393
1394         if (hw->media_type == e1000_media_type_fiber ||
1395             hw->media_type == e1000_media_type_internal_serdes) {
1396                 switch (hw->mac_type) {
1397                 case e1000_82545:
1398                 case e1000_82546:
1399                 case e1000_82545_rev_3:
1400                 case e1000_82546_rev_3:
1401                         return e1000_set_phy_loopback(adapter);
1402                         break;
1403                 case e1000_82571:
1404                 case e1000_82572:
1405 #define E1000_SERDES_LB_ON 0x410
1406                         e1000_set_phy_loopback(adapter);
1407                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1408                         msleep(10);
1409                         return 0;
1410                         break;
1411                 default:
1412                         rctl = E1000_READ_REG(hw, RCTL);
1413                         rctl |= E1000_RCTL_LBM_TCVR;
1414                         E1000_WRITE_REG(hw, RCTL, rctl);
1415                         return 0;
1416                 }
1417         } else if (hw->media_type == e1000_media_type_copper)
1418                 return e1000_set_phy_loopback(adapter);
1419
1420         return 7;
1421 }
1422
1423 static void
1424 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1425 {
1426         struct e1000_hw *hw = &adapter->hw;
1427         uint32_t rctl;
1428         uint16_t phy_reg;
1429
1430         rctl = E1000_READ_REG(hw, RCTL);
1431         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1432         E1000_WRITE_REG(hw, RCTL, rctl);
1433
1434         switch (hw->mac_type) {
1435         case e1000_82571:
1436         case e1000_82572:
1437                 if (hw->media_type == e1000_media_type_fiber ||
1438                     hw->media_type == e1000_media_type_internal_serdes) {
1439 #define E1000_SERDES_LB_OFF 0x400
1440                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1441                         msleep(10);
1442                         break;
1443                 }
1444                 /* Fall Through */
1445         case e1000_82545:
1446         case e1000_82546:
1447         case e1000_82545_rev_3:
1448         case e1000_82546_rev_3:
1449         default:
1450                 hw->autoneg = TRUE;
1451                 if (hw->phy_type == e1000_phy_gg82563)
1452                         e1000_write_phy_reg(hw,
1453                                             GG82563_PHY_KMRN_MODE_CTRL,
1454                                             0x180);
1455                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1456                 if (phy_reg & MII_CR_LOOPBACK) {
1457                         phy_reg &= ~MII_CR_LOOPBACK;
1458                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1459                         e1000_phy_reset(hw);
1460                 }
1461                 break;
1462         }
1463 }
1464
1465 static void
1466 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1467 {
1468         memset(skb->data, 0xFF, frame_size);
1469         frame_size &= ~1;
1470         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1471         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1472         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1473 }
1474
1475 static int
1476 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1477 {
1478         frame_size &= ~1;
1479         if (*(skb->data + 3) == 0xFF) {
1480                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1481                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1482                         return 0;
1483                 }
1484         }
1485         return 13;
1486 }
1487
1488 static int
1489 e1000_run_loopback_test(struct e1000_adapter *adapter)
1490 {
1491         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1492         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1493         struct pci_dev *pdev = adapter->pdev;
1494         int i, j, k, l, lc, good_cnt, ret_val=0;
1495         unsigned long time;
1496
1497         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1498
1499         /* Calculate the loop count based on the largest descriptor ring
1500          * The idea is to wrap the largest ring a number of times using 64
1501          * send/receive pairs during each loop
1502          */
1503
1504         if (rxdr->count <= txdr->count)
1505                 lc = ((txdr->count / 64) * 2) + 1;
1506         else
1507                 lc = ((rxdr->count / 64) * 2) + 1;
1508
1509         k = l = 0;
1510         for (j = 0; j <= lc; j++) { /* loop count loop */
1511                 for (i = 0; i < 64; i++) { /* send the packets */
1512                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1513                                         1024);
1514                         pci_dma_sync_single_for_device(pdev,
1515                                         txdr->buffer_info[k].dma,
1516                                         txdr->buffer_info[k].length,
1517                                         PCI_DMA_TODEVICE);
1518                         if (unlikely(++k == txdr->count)) k = 0;
1519                 }
1520                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1521                 msleep(200);
1522                 time = jiffies; /* set the start time for the receive */
1523                 good_cnt = 0;
1524                 do { /* receive the sent packets */
1525                         pci_dma_sync_single_for_cpu(pdev,
1526                                         rxdr->buffer_info[l].dma,
1527                                         rxdr->buffer_info[l].length,
1528                                         PCI_DMA_FROMDEVICE);
1529
1530                         ret_val = e1000_check_lbtest_frame(
1531                                         rxdr->buffer_info[l].skb,
1532                                         1024);
1533                         if (!ret_val)
1534                                 good_cnt++;
1535                         if (unlikely(++l == rxdr->count)) l = 0;
1536                         /* time + 20 msecs (200 msecs on 2.4) is more than
1537                          * enough time to complete the receives, if it's
1538                          * exceeded, break and error off
1539                          */
1540                 } while (good_cnt < 64 && jiffies < (time + 20));
1541                 if (good_cnt != 64) {
1542                         ret_val = 13; /* ret_val is the same as mis-compare */
1543                         break;
1544                 }
1545                 if (jiffies >= (time + 2)) {
1546                         ret_val = 14; /* error code for time out error */
1547                         break;
1548                 }
1549         } /* end loop count loop */
1550         return ret_val;
1551 }
1552
1553 static int
1554 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1555 {
1556         /* PHY loopback cannot be performed if SoL/IDER
1557          * sessions are active */
1558         if (e1000_check_phy_reset_block(&adapter->hw)) {
1559                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1560                         "when SoL/IDER is active.\n");
1561                 *data = 0;
1562                 goto out;
1563         }
1564
1565         if ((*data = e1000_setup_desc_rings(adapter)))
1566                 goto out;
1567         if ((*data = e1000_setup_loopback_test(adapter)))
1568                 goto err_loopback;
1569         *data = e1000_run_loopback_test(adapter);
1570         e1000_loopback_cleanup(adapter);
1571
1572 err_loopback:
1573         e1000_free_desc_rings(adapter);
1574 out:
1575         return *data;
1576 }
1577
1578 static int
1579 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1580 {
1581         *data = 0;
1582         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1583                 int i = 0;
1584                 adapter->hw.serdes_link_down = TRUE;
1585
1586                 /* On some blade server designs, link establishment
1587                  * could take as long as 2-3 minutes */
1588                 do {
1589                         e1000_check_for_link(&adapter->hw);
1590                         if (adapter->hw.serdes_link_down == FALSE)
1591                                 return *data;
1592                         msleep(20);
1593                 } while (i++ < 3750);
1594
1595                 *data = 1;
1596         } else {
1597                 e1000_check_for_link(&adapter->hw);
1598                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1599                         msleep(4000);
1600
1601                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1602                         *data = 1;
1603                 }
1604         }
1605         return *data;
1606 }
1607
1608 static int
1609 e1000_diag_test_count(struct net_device *netdev)
1610 {
1611         return E1000_TEST_LEN;
1612 }
1613
1614 extern void e1000_power_up_phy(struct e1000_adapter *);
1615
1616 static void
1617 e1000_diag_test(struct net_device *netdev,
1618                    struct ethtool_test *eth_test, uint64_t *data)
1619 {
1620         struct e1000_adapter *adapter = netdev_priv(netdev);
1621         boolean_t if_running = netif_running(netdev);
1622
1623         set_bit(__E1000_TESTING, &adapter->flags);
1624         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1625                 /* Offline tests */
1626
1627                 /* save speed, duplex, autoneg settings */
1628                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1629                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1630                 uint8_t autoneg = adapter->hw.autoneg;
1631
1632                 DPRINTK(HW, INFO, "offline testing starting\n");
1633
1634                 /* Link test performed before hardware reset so autoneg doesn't
1635                  * interfere with test result */
1636                 if (e1000_link_test(adapter, &data[4]))
1637                         eth_test->flags |= ETH_TEST_FL_FAILED;
1638
1639                 if (if_running)
1640                         /* indicate we're in test mode */
1641                         dev_close(netdev);
1642                 else
1643                         e1000_reset(adapter);
1644
1645                 if (e1000_reg_test(adapter, &data[0]))
1646                         eth_test->flags |= ETH_TEST_FL_FAILED;
1647
1648                 e1000_reset(adapter);
1649                 if (e1000_eeprom_test(adapter, &data[1]))
1650                         eth_test->flags |= ETH_TEST_FL_FAILED;
1651
1652                 e1000_reset(adapter);
1653                 if (e1000_intr_test(adapter, &data[2]))
1654                         eth_test->flags |= ETH_TEST_FL_FAILED;
1655
1656                 e1000_reset(adapter);
1657                 /* make sure the phy is powered up */
1658                 e1000_power_up_phy(adapter);
1659                 if (e1000_loopback_test(adapter, &data[3]))
1660                         eth_test->flags |= ETH_TEST_FL_FAILED;
1661
1662                 /* restore speed, duplex, autoneg settings */
1663                 adapter->hw.autoneg_advertised = autoneg_advertised;
1664                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1665                 adapter->hw.autoneg = autoneg;
1666
1667                 e1000_reset(adapter);
1668                 clear_bit(__E1000_TESTING, &adapter->flags);
1669                 if (if_running)
1670                         dev_open(netdev);
1671         } else {
1672                 DPRINTK(HW, INFO, "online testing starting\n");
1673                 /* Online tests */
1674                 if (e1000_link_test(adapter, &data[4]))
1675                         eth_test->flags |= ETH_TEST_FL_FAILED;
1676
1677                 /* Offline tests aren't run; pass by default */
1678                 data[0] = 0;
1679                 data[1] = 0;
1680                 data[2] = 0;
1681                 data[3] = 0;
1682
1683                 clear_bit(__E1000_TESTING, &adapter->flags);
1684         }
1685         msleep_interruptible(4 * 1000);
1686 }
1687
1688 static int e1000_wol_exclusion(struct e1000_adapter *adapter, struct ethtool_wolinfo *wol)
1689 {
1690         struct e1000_hw *hw = &adapter->hw;
1691         int retval = 1; /* fail by default */
1692
1693         switch (hw->device_id) {
1694         case E1000_DEV_ID_82543GC_FIBER:
1695         case E1000_DEV_ID_82543GC_COPPER:
1696         case E1000_DEV_ID_82544EI_FIBER:
1697         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1698         case E1000_DEV_ID_82545EM_FIBER:
1699         case E1000_DEV_ID_82545EM_COPPER:
1700         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1701         case E1000_DEV_ID_82546GB_PCIE:
1702                 /* these don't support WoL at all */
1703                 wol->supported = 0;
1704                 break;
1705         case E1000_DEV_ID_82546EB_FIBER:
1706         case E1000_DEV_ID_82546GB_FIBER:
1707         case E1000_DEV_ID_82571EB_FIBER:
1708         case E1000_DEV_ID_82571EB_SERDES:
1709         case E1000_DEV_ID_82571EB_COPPER:
1710                 /* Wake events not supported on port B */
1711                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1712                         wol->supported = 0;
1713                         break;
1714                 }
1715                 /* return success for non excluded adapter ports */
1716                 retval = 0;
1717                 break;
1718         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1719         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1720                 /* quad port adapters only support WoL on port A */
1721                 if (!adapter->quad_port_a) {
1722                         wol->supported = 0;
1723                         break;
1724                 }
1725                 /* return success for non excluded adapter ports */
1726                 retval = 0;
1727                 break;
1728         default:
1729                 /* dual port cards only support WoL on port A from now on
1730                  * unless it was enabled in the eeprom for port B
1731                  * so exclude FUNC_1 ports from having WoL enabled */
1732                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 &&
1733                     !adapter->eeprom_wol) {
1734                         wol->supported = 0;
1735                         break;
1736                 }
1737
1738                 retval = 0;
1739         }
1740
1741         return retval;
1742 }
1743
1744 static void
1745 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1746 {
1747         struct e1000_adapter *adapter = netdev_priv(netdev);
1748
1749         wol->supported = WAKE_UCAST | WAKE_MCAST |
1750                          WAKE_BCAST | WAKE_MAGIC;
1751         wol->wolopts = 0;
1752
1753         /* this function will set ->supported = 0 and return 1 if wol is not
1754          * supported by this hardware */
1755         if (e1000_wol_exclusion(adapter, wol))
1756                 return;
1757
1758         /* apply any specific unsupported masks here */
1759         switch (adapter->hw.device_id) {
1760         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1761                 /* KSP3 does not suppport UCAST wake-ups */
1762                 wol->supported &= ~WAKE_UCAST;
1763
1764                 if (adapter->wol & E1000_WUFC_EX)
1765                         DPRINTK(DRV, ERR, "Interface does not support "
1766                         "directed (unicast) frame wake-up packets\n");
1767                 break;
1768         default:
1769                 break;
1770         }
1771
1772         if (adapter->wol & E1000_WUFC_EX)
1773                 wol->wolopts |= WAKE_UCAST;
1774         if (adapter->wol & E1000_WUFC_MC)
1775                 wol->wolopts |= WAKE_MCAST;
1776         if (adapter->wol & E1000_WUFC_BC)
1777                 wol->wolopts |= WAKE_BCAST;
1778         if (adapter->wol & E1000_WUFC_MAG)
1779                 wol->wolopts |= WAKE_MAGIC;
1780
1781         return;
1782 }
1783
1784 static int
1785 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1786 {
1787         struct e1000_adapter *adapter = netdev_priv(netdev);
1788         struct e1000_hw *hw = &adapter->hw;
1789
1790         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1791                 return -EOPNOTSUPP;
1792
1793         if (e1000_wol_exclusion(adapter, wol))
1794                 return wol->wolopts ? -EOPNOTSUPP : 0;
1795
1796         switch (hw->device_id) {
1797         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1798                 if (wol->wolopts & WAKE_UCAST) {
1799                         DPRINTK(DRV, ERR, "Interface does not support "
1800                         "directed (unicast) frame wake-up packets\n");
1801                         return -EOPNOTSUPP;
1802                 }
1803                 break;
1804         default:
1805                 break;
1806         }
1807
1808         /* these settings will always override what we currently have */
1809         adapter->wol = 0;
1810
1811         if (wol->wolopts & WAKE_UCAST)
1812                 adapter->wol |= E1000_WUFC_EX;
1813         if (wol->wolopts & WAKE_MCAST)
1814                 adapter->wol |= E1000_WUFC_MC;
1815         if (wol->wolopts & WAKE_BCAST)
1816                 adapter->wol |= E1000_WUFC_BC;
1817         if (wol->wolopts & WAKE_MAGIC)
1818                 adapter->wol |= E1000_WUFC_MAG;
1819
1820         return 0;
1821 }
1822
1823 /* toggle LED 4 times per second = 2 "blinks" per second */
1824 #define E1000_ID_INTERVAL       (HZ/4)
1825
1826 /* bit defines for adapter->led_status */
1827 #define E1000_LED_ON            0
1828
1829 static void
1830 e1000_led_blink_callback(unsigned long data)
1831 {
1832         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1833
1834         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1835                 e1000_led_off(&adapter->hw);
1836         else
1837                 e1000_led_on(&adapter->hw);
1838
1839         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1840 }
1841
1842 static int
1843 e1000_phys_id(struct net_device *netdev, uint32_t data)
1844 {
1845         struct e1000_adapter *adapter = netdev_priv(netdev);
1846
1847         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1848                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1849
1850         if (adapter->hw.mac_type < e1000_82571) {
1851                 if (!adapter->blink_timer.function) {
1852                         init_timer(&adapter->blink_timer);
1853                         adapter->blink_timer.function = e1000_led_blink_callback;
1854                         adapter->blink_timer.data = (unsigned long) adapter;
1855                 }
1856                 e1000_setup_led(&adapter->hw);
1857                 mod_timer(&adapter->blink_timer, jiffies);
1858                 msleep_interruptible(data * 1000);
1859                 del_timer_sync(&adapter->blink_timer);
1860         } else if (adapter->hw.phy_type == e1000_phy_ife) {
1861                 if (!adapter->blink_timer.function) {
1862                         init_timer(&adapter->blink_timer);
1863                         adapter->blink_timer.function = e1000_led_blink_callback;
1864                         adapter->blink_timer.data = (unsigned long) adapter;
1865                 }
1866                 mod_timer(&adapter->blink_timer, jiffies);
1867                 msleep_interruptible(data * 1000);
1868                 del_timer_sync(&adapter->blink_timer);
1869                 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1870         } else {
1871                 e1000_blink_led_start(&adapter->hw);
1872                 msleep_interruptible(data * 1000);
1873         }
1874
1875         e1000_led_off(&adapter->hw);
1876         clear_bit(E1000_LED_ON, &adapter->led_status);
1877         e1000_cleanup_led(&adapter->hw);
1878
1879         return 0;
1880 }
1881
1882 static int
1883 e1000_nway_reset(struct net_device *netdev)
1884 {
1885         struct e1000_adapter *adapter = netdev_priv(netdev);
1886         if (netif_running(netdev))
1887                 e1000_reinit_locked(adapter);
1888         return 0;
1889 }
1890
1891 static int
1892 e1000_get_stats_count(struct net_device *netdev)
1893 {
1894         return E1000_STATS_LEN;
1895 }
1896
1897 static void
1898 e1000_get_ethtool_stats(struct net_device *netdev,
1899                 struct ethtool_stats *stats, uint64_t *data)
1900 {
1901         struct e1000_adapter *adapter = netdev_priv(netdev);
1902         int i;
1903
1904         e1000_update_stats(adapter);
1905         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1906                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1907                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1908                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1909         }
1910 /*      BUG_ON(i != E1000_STATS_LEN); */
1911 }
1912
1913 static void
1914 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1915 {
1916         uint8_t *p = data;
1917         int i;
1918
1919         switch (stringset) {
1920         case ETH_SS_TEST:
1921                 memcpy(data, *e1000_gstrings_test,
1922                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1923                 break;
1924         case ETH_SS_STATS:
1925                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1926                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1927                                ETH_GSTRING_LEN);
1928                         p += ETH_GSTRING_LEN;
1929                 }
1930 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1931                 break;
1932         }
1933 }
1934
1935 static const struct ethtool_ops e1000_ethtool_ops = {
1936         .get_settings           = e1000_get_settings,
1937         .set_settings           = e1000_set_settings,
1938         .get_drvinfo            = e1000_get_drvinfo,
1939         .get_regs_len           = e1000_get_regs_len,
1940         .get_regs               = e1000_get_regs,
1941         .get_wol                = e1000_get_wol,
1942         .set_wol                = e1000_set_wol,
1943         .get_msglevel           = e1000_get_msglevel,
1944         .set_msglevel           = e1000_set_msglevel,
1945         .nway_reset             = e1000_nway_reset,
1946         .get_link               = ethtool_op_get_link,
1947         .get_eeprom_len         = e1000_get_eeprom_len,
1948         .get_eeprom             = e1000_get_eeprom,
1949         .set_eeprom             = e1000_set_eeprom,
1950         .get_ringparam          = e1000_get_ringparam,
1951         .set_ringparam          = e1000_set_ringparam,
1952         .get_pauseparam         = e1000_get_pauseparam,
1953         .set_pauseparam         = e1000_set_pauseparam,
1954         .get_rx_csum            = e1000_get_rx_csum,
1955         .set_rx_csum            = e1000_set_rx_csum,
1956         .get_tx_csum            = e1000_get_tx_csum,
1957         .set_tx_csum            = e1000_set_tx_csum,
1958         .get_sg                 = ethtool_op_get_sg,
1959         .set_sg                 = ethtool_op_set_sg,
1960 #ifdef NETIF_F_TSO
1961         .get_tso                = ethtool_op_get_tso,
1962         .set_tso                = e1000_set_tso,
1963 #endif
1964         .self_test_count        = e1000_diag_test_count,
1965         .self_test              = e1000_diag_test,
1966         .get_strings            = e1000_get_strings,
1967         .phys_id                = e1000_phys_id,
1968         .get_stats_count        = e1000_get_stats_count,
1969         .get_ethtool_stats      = e1000_get_ethtool_stats,
1970         .get_perm_addr          = ethtool_op_get_perm_addr,
1971 };
1972
1973 void e1000_set_ethtool_ops(struct net_device *netdev)
1974 {
1975         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1976 }