Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[pandora-kernel.git] / drivers / net / cxgb3 / cxgb3_main.c
1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
51
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
57
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
61
62 enum {
63         MAX_TXQ_ENTRIES = 16384,
64         MAX_CTRL_TXQ_ENTRIES = 1024,
65         MAX_RSPQ_ENTRIES = 16384,
66         MAX_RX_BUFFERS = 16384,
67         MAX_RX_JUMBO_BUFFERS = 16384,
68         MIN_TXQ_ENTRIES = 4,
69         MIN_CTRL_TXQ_ENTRIES = 4,
70         MIN_RSPQ_ENTRIES = 32,
71         MIN_FL_ENTRIES = 32
72 };
73
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
75
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
79
80 #define EEPROM_MAGIC 0x38E2F10C
81
82 #define CH_DEVICE(devid, idx) \
83         { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
84
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86         CH_DEVICE(0x20, 0),     /* PE9000 */
87         CH_DEVICE(0x21, 1),     /* T302E */
88         CH_DEVICE(0x22, 2),     /* T310E */
89         CH_DEVICE(0x23, 3),     /* T320X */
90         CH_DEVICE(0x24, 1),     /* T302X */
91         CH_DEVICE(0x25, 3),     /* T320E */
92         CH_DEVICE(0x26, 2),     /* T310X */
93         CH_DEVICE(0x30, 2),     /* T3B10 */
94         CH_DEVICE(0x31, 3),     /* T3B20 */
95         CH_DEVICE(0x32, 1),     /* T3B02 */
96         CH_DEVICE(0x35, 6),     /* T3C20-derived T3C10 */
97         CH_DEVICE(0x36, 3),     /* S320E-CR */
98         CH_DEVICE(0x37, 7),     /* N320E-G2 */
99         {0,}
100 };
101
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
107
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
109
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
112
113 /*
114  * The driver uses the best interrupt scheme available on a platform in the
115  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
116  * of these schemes the driver may consider as follows:
117  *
118  * msi = 2: choose from among all three options
119  * msi = 1: only consider MSI and pin interrupts
120  * msi = 0: force pin interrupts
121  */
122 static int msi = 2;
123
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
126
127 /*
128  * The driver enables offload as a default.
129  * To disable it, use ofld_disable = 1.
130  */
131
132 static int ofld_disable = 0;
133
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
136
137 /*
138  * We have work elements that we need to cancel when an interface is taken
139  * down.  Normally the work elements would be executed by keventd but that
140  * can deadlock because of linkwatch.  If our close method takes the rtnl
141  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143  * for our work to complete.  Get our own work queue to solve this.
144  */
145 struct workqueue_struct *cxgb3_wq;
146
147 /**
148  *      link_report - show link status and link speed/duplex
149  *      @p: the port whose settings are to be reported
150  *
151  *      Shows the link status, speed, and duplex of a port.
152  */
153 static void link_report(struct net_device *dev)
154 {
155         if (!netif_carrier_ok(dev))
156                 printk(KERN_INFO "%s: link down\n", dev->name);
157         else {
158                 const char *s = "10Mbps";
159                 const struct port_info *p = netdev_priv(dev);
160
161                 switch (p->link_config.speed) {
162                 case SPEED_10000:
163                         s = "10Gbps";
164                         break;
165                 case SPEED_1000:
166                         s = "1000Mbps";
167                         break;
168                 case SPEED_100:
169                         s = "100Mbps";
170                         break;
171                 }
172
173                 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174                        p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
175         }
176 }
177
178 static void enable_tx_fifo_drain(struct adapter *adapter,
179                                  struct port_info *pi)
180 {
181         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182                          F_ENDROPPKT);
183         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184         t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
186 }
187
188 static void disable_tx_fifo_drain(struct adapter *adapter,
189                                   struct port_info *pi)
190 {
191         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192                          F_ENDROPPKT, 0);
193 }
194
195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
196 {
197         struct net_device *dev = adap->port[port_id];
198         struct port_info *pi = netdev_priv(dev);
199
200         if (state == netif_carrier_ok(dev))
201                 return;
202
203         if (state) {
204                 struct cmac *mac = &pi->mac;
205
206                 netif_carrier_on(dev);
207
208                 disable_tx_fifo_drain(adap, pi);
209
210                 /* Clear local faults */
211                 t3_xgm_intr_disable(adap, pi->port_id);
212                 t3_read_reg(adap, A_XGM_INT_STATUS +
213                                     pi->mac.offset);
214                 t3_write_reg(adap,
215                              A_XGM_INT_CAUSE + pi->mac.offset,
216                              F_XGM_INT);
217
218                 t3_set_reg_field(adap,
219                                  A_XGM_INT_ENABLE +
220                                  pi->mac.offset,
221                                  F_XGM_INT, F_XGM_INT);
222                 t3_xgm_intr_enable(adap, pi->port_id);
223
224                 t3_mac_enable(mac, MAC_DIRECTION_TX);
225         } else {
226                 netif_carrier_off(dev);
227
228                 /* Flush TX FIFO */
229                 enable_tx_fifo_drain(adap, pi);
230         }
231         link_report(dev);
232 }
233
234 /**
235  *      t3_os_link_changed - handle link status changes
236  *      @adapter: the adapter associated with the link change
237  *      @port_id: the port index whose limk status has changed
238  *      @link_stat: the new status of the link
239  *      @speed: the new speed setting
240  *      @duplex: the new duplex setting
241  *      @pause: the new flow-control setting
242  *
243  *      This is the OS-dependent handler for link status changes.  The OS
244  *      neutral handler takes care of most of the processing for these events,
245  *      then calls this handler for any OS-specific processing.
246  */
247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248                         int speed, int duplex, int pause)
249 {
250         struct net_device *dev = adapter->port[port_id];
251         struct port_info *pi = netdev_priv(dev);
252         struct cmac *mac = &pi->mac;
253
254         /* Skip changes from disabled ports. */
255         if (!netif_running(dev))
256                 return;
257
258         if (link_stat != netif_carrier_ok(dev)) {
259                 if (link_stat) {
260                         disable_tx_fifo_drain(adapter, pi);
261
262                         t3_mac_enable(mac, MAC_DIRECTION_RX);
263
264                         /* Clear local faults */
265                         t3_xgm_intr_disable(adapter, pi->port_id);
266                         t3_read_reg(adapter, A_XGM_INT_STATUS +
267                                     pi->mac.offset);
268                         t3_write_reg(adapter,
269                                      A_XGM_INT_CAUSE + pi->mac.offset,
270                                      F_XGM_INT);
271
272                         t3_set_reg_field(adapter,
273                                          A_XGM_INT_ENABLE + pi->mac.offset,
274                                          F_XGM_INT, F_XGM_INT);
275                         t3_xgm_intr_enable(adapter, pi->port_id);
276
277                         netif_carrier_on(dev);
278                 } else {
279                         netif_carrier_off(dev);
280
281                         t3_xgm_intr_disable(adapter, pi->port_id);
282                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283                         t3_set_reg_field(adapter,
284                                          A_XGM_INT_ENABLE + pi->mac.offset,
285                                          F_XGM_INT, 0);
286
287                         if (is_10G(adapter))
288                                 pi->phy.ops->power_down(&pi->phy, 1);
289
290                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291                         t3_mac_disable(mac, MAC_DIRECTION_RX);
292                         t3_link_start(&pi->phy, mac, &pi->link_config);
293
294                         /* Flush TX FIFO */
295                         enable_tx_fifo_drain(adapter, pi);
296                 }
297
298                 link_report(dev);
299         }
300 }
301
302 /**
303  *      t3_os_phymod_changed - handle PHY module changes
304  *      @phy: the PHY reporting the module change
305  *      @mod_type: new module type
306  *
307  *      This is the OS-dependent handler for PHY module changes.  It is
308  *      invoked when a PHY module is removed or inserted for any OS-specific
309  *      processing.
310  */
311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
312 {
313         static const char *mod_str[] = {
314                 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
315         };
316
317         const struct net_device *dev = adap->port[port_id];
318         const struct port_info *pi = netdev_priv(dev);
319
320         if (pi->phy.modtype == phy_modtype_none)
321                 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322         else
323                 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324                        mod_str[pi->phy.modtype]);
325 }
326
327 static void cxgb_set_rxmode(struct net_device *dev)
328 {
329         struct port_info *pi = netdev_priv(dev);
330
331         t3_mac_set_rx_mode(&pi->mac, dev);
332 }
333
334 /**
335  *      link_start - enable a port
336  *      @dev: the device to enable
337  *
338  *      Performs the MAC and PHY actions needed to enable a port.
339  */
340 static void link_start(struct net_device *dev)
341 {
342         struct port_info *pi = netdev_priv(dev);
343         struct cmac *mac = &pi->mac;
344
345         t3_mac_reset(mac);
346         t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347         t3_mac_set_mtu(mac, dev->mtu);
348         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349         t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350         t3_mac_set_rx_mode(mac, dev);
351         t3_link_start(&pi->phy, mac, &pi->link_config);
352         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
353 }
354
355 static inline void cxgb_disable_msi(struct adapter *adapter)
356 {
357         if (adapter->flags & USING_MSIX) {
358                 pci_disable_msix(adapter->pdev);
359                 adapter->flags &= ~USING_MSIX;
360         } else if (adapter->flags & USING_MSI) {
361                 pci_disable_msi(adapter->pdev);
362                 adapter->flags &= ~USING_MSI;
363         }
364 }
365
366 /*
367  * Interrupt handler for asynchronous events used with MSI-X.
368  */
369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
370 {
371         t3_slow_intr_handler(cookie);
372         return IRQ_HANDLED;
373 }
374
375 /*
376  * Name the MSI-X interrupts.
377  */
378 static void name_msix_vecs(struct adapter *adap)
379 {
380         int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
381
382         snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383         adap->msix_info[0].desc[n] = 0;
384
385         for_each_port(adap, j) {
386                 struct net_device *d = adap->port[j];
387                 const struct port_info *pi = netdev_priv(d);
388
389                 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390                         snprintf(adap->msix_info[msi_idx].desc, n,
391                                  "%s-%d", d->name, pi->first_qset + i);
392                         adap->msix_info[msi_idx].desc[n] = 0;
393                 }
394         }
395 }
396
397 static int request_msix_data_irqs(struct adapter *adap)
398 {
399         int i, j, err, qidx = 0;
400
401         for_each_port(adap, i) {
402                 int nqsets = adap2pinfo(adap, i)->nqsets;
403
404                 for (j = 0; j < nqsets; ++j) {
405                         err = request_irq(adap->msix_info[qidx + 1].vec,
406                                           t3_intr_handler(adap,
407                                                           adap->sge.qs[qidx].
408                                                           rspq.polling), 0,
409                                           adap->msix_info[qidx + 1].desc,
410                                           &adap->sge.qs[qidx]);
411                         if (err) {
412                                 while (--qidx >= 0)
413                                         free_irq(adap->msix_info[qidx + 1].vec,
414                                                  &adap->sge.qs[qidx]);
415                                 return err;
416                         }
417                         qidx++;
418                 }
419         }
420         return 0;
421 }
422
423 static void free_irq_resources(struct adapter *adapter)
424 {
425         if (adapter->flags & USING_MSIX) {
426                 int i, n = 0;
427
428                 free_irq(adapter->msix_info[0].vec, adapter);
429                 for_each_port(adapter, i)
430                         n += adap2pinfo(adapter, i)->nqsets;
431
432                 for (i = 0; i < n; ++i)
433                         free_irq(adapter->msix_info[i + 1].vec,
434                                  &adapter->sge.qs[i]);
435         } else
436                 free_irq(adapter->pdev->irq, adapter);
437 }
438
439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440                               unsigned long n)
441 {
442         int attempts = 10;
443
444         while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445                 if (!--attempts)
446                         return -ETIMEDOUT;
447                 msleep(10);
448         }
449         return 0;
450 }
451
452 static int init_tp_parity(struct adapter *adap)
453 {
454         int i;
455         struct sk_buff *skb;
456         struct cpl_set_tcb_field *greq;
457         unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
458
459         t3_tp_set_offload_mode(adap, 1);
460
461         for (i = 0; i < 16; i++) {
462                 struct cpl_smt_write_req *req;
463
464                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465                 if (!skb)
466                         skb = adap->nofail_skb;
467                 if (!skb)
468                         goto alloc_skb_fail;
469
470                 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471                 memset(req, 0, sizeof(*req));
472                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474                 req->mtu_idx = NMTUS - 1;
475                 req->iff = i;
476                 t3_mgmt_tx(adap, skb);
477                 if (skb == adap->nofail_skb) {
478                         await_mgmt_replies(adap, cnt, i + 1);
479                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480                         if (!adap->nofail_skb)
481                                 goto alloc_skb_fail;
482                 }
483         }
484
485         for (i = 0; i < 2048; i++) {
486                 struct cpl_l2t_write_req *req;
487
488                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489                 if (!skb)
490                         skb = adap->nofail_skb;
491                 if (!skb)
492                         goto alloc_skb_fail;
493
494                 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495                 memset(req, 0, sizeof(*req));
496                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498                 req->params = htonl(V_L2T_W_IDX(i));
499                 t3_mgmt_tx(adap, skb);
500                 if (skb == adap->nofail_skb) {
501                         await_mgmt_replies(adap, cnt, 16 + i + 1);
502                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503                         if (!adap->nofail_skb)
504                                 goto alloc_skb_fail;
505                 }
506         }
507
508         for (i = 0; i < 2048; i++) {
509                 struct cpl_rte_write_req *req;
510
511                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512                 if (!skb)
513                         skb = adap->nofail_skb;
514                 if (!skb)
515                         goto alloc_skb_fail;
516
517                 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518                 memset(req, 0, sizeof(*req));
519                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521                 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522                 t3_mgmt_tx(adap, skb);
523                 if (skb == adap->nofail_skb) {
524                         await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526                         if (!adap->nofail_skb)
527                                 goto alloc_skb_fail;
528                 }
529         }
530
531         skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532         if (!skb)
533                 skb = adap->nofail_skb;
534         if (!skb)
535                 goto alloc_skb_fail;
536
537         greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538         memset(greq, 0, sizeof(*greq));
539         greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540         OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541         greq->mask = cpu_to_be64(1);
542         t3_mgmt_tx(adap, skb);
543
544         i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545         if (skb == adap->nofail_skb) {
546                 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547                 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
548         }
549
550         t3_tp_set_offload_mode(adap, 0);
551         return i;
552
553 alloc_skb_fail:
554         t3_tp_set_offload_mode(adap, 0);
555         return -ENOMEM;
556 }
557
558 /**
559  *      setup_rss - configure RSS
560  *      @adap: the adapter
561  *
562  *      Sets up RSS to distribute packets to multiple receive queues.  We
563  *      configure the RSS CPU lookup table to distribute to the number of HW
564  *      receive queues, and the response queue lookup table to narrow that
565  *      down to the response queues actually configured for each port.
566  *      We always configure the RSS mapping for two ports since the mapping
567  *      table has plenty of entries.
568  */
569 static void setup_rss(struct adapter *adap)
570 {
571         int i;
572         unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573         unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574         u8 cpus[SGE_QSETS + 1];
575         u16 rspq_map[RSS_TABLE_SIZE];
576
577         for (i = 0; i < SGE_QSETS; ++i)
578                 cpus[i] = i;
579         cpus[SGE_QSETS] = 0xff; /* terminator */
580
581         for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582                 rspq_map[i] = i % nq0;
583                 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
584         }
585
586         t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587                       F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588                       V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590
591 static void ring_dbs(struct adapter *adap)
592 {
593         int i, j;
594
595         for (i = 0; i < SGE_QSETS; i++) {
596                 struct sge_qset *qs = &adap->sge.qs[i];
597
598                 if (qs->adap)
599                         for (j = 0; j < SGE_TXQ_PER_SET; j++)
600                                 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601         }
602 }
603
604 static void init_napi(struct adapter *adap)
605 {
606         int i;
607
608         for (i = 0; i < SGE_QSETS; i++) {
609                 struct sge_qset *qs = &adap->sge.qs[i];
610
611                 if (qs->adap)
612                         netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613                                        64);
614         }
615
616         /*
617          * netif_napi_add() can be called only once per napi_struct because it
618          * adds each new napi_struct to a list.  Be careful not to call it a
619          * second time, e.g., during EEH recovery, by making a note of it.
620          */
621         adap->flags |= NAPI_INIT;
622 }
623
624 /*
625  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
626  * both netdevices representing interfaces and the dummy ones for the extra
627  * queues.
628  */
629 static void quiesce_rx(struct adapter *adap)
630 {
631         int i;
632
633         for (i = 0; i < SGE_QSETS; i++)
634                 if (adap->sge.qs[i].adap)
635                         napi_disable(&adap->sge.qs[i].napi);
636 }
637
638 static void enable_all_napi(struct adapter *adap)
639 {
640         int i;
641         for (i = 0; i < SGE_QSETS; i++)
642                 if (adap->sge.qs[i].adap)
643                         napi_enable(&adap->sge.qs[i].napi);
644 }
645
646 /**
647  *      setup_sge_qsets - configure SGE Tx/Rx/response queues
648  *      @adap: the adapter
649  *
650  *      Determines how many sets of SGE queues to use and initializes them.
651  *      We support multiple queue sets per port if we have MSI-X, otherwise
652  *      just one queue set per port.
653  */
654 static int setup_sge_qsets(struct adapter *adap)
655 {
656         int i, j, err, irq_idx = 0, qset_idx = 0;
657         unsigned int ntxq = SGE_TXQ_PER_SET;
658
659         if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
660                 irq_idx = -1;
661
662         for_each_port(adap, i) {
663                 struct net_device *dev = adap->port[i];
664                 struct port_info *pi = netdev_priv(dev);
665
666                 pi->qs = &adap->sge.qs[pi->first_qset];
667                 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
668                         err = t3_sge_alloc_qset(adap, qset_idx, 1,
669                                 (adap->flags & USING_MSIX) ? qset_idx + 1 :
670                                                              irq_idx,
671                                 &adap->params.sge.qset[qset_idx], ntxq, dev,
672                                 netdev_get_tx_queue(dev, j));
673                         if (err) {
674                                 t3_free_sge_resources(adap);
675                                 return err;
676                         }
677                 }
678         }
679
680         return 0;
681 }
682
683 static ssize_t attr_show(struct device *d, char *buf,
684                          ssize_t(*format) (struct net_device *, char *))
685 {
686         ssize_t len;
687
688         /* Synchronize with ioctls that may shut down the device */
689         rtnl_lock();
690         len = (*format) (to_net_dev(d), buf);
691         rtnl_unlock();
692         return len;
693 }
694
695 static ssize_t attr_store(struct device *d,
696                           const char *buf, size_t len,
697                           ssize_t(*set) (struct net_device *, unsigned int),
698                           unsigned int min_val, unsigned int max_val)
699 {
700         char *endp;
701         ssize_t ret;
702         unsigned int val;
703
704         if (!capable(CAP_NET_ADMIN))
705                 return -EPERM;
706
707         val = simple_strtoul(buf, &endp, 0);
708         if (endp == buf || val < min_val || val > max_val)
709                 return -EINVAL;
710
711         rtnl_lock();
712         ret = (*set) (to_net_dev(d), val);
713         if (!ret)
714                 ret = len;
715         rtnl_unlock();
716         return ret;
717 }
718
719 #define CXGB3_SHOW(name, val_expr) \
720 static ssize_t format_##name(struct net_device *dev, char *buf) \
721 { \
722         struct port_info *pi = netdev_priv(dev); \
723         struct adapter *adap = pi->adapter; \
724         return sprintf(buf, "%u\n", val_expr); \
725 } \
726 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
727                            char *buf) \
728 { \
729         return attr_show(d, buf, format_##name); \
730 }
731
732 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
733 {
734         struct port_info *pi = netdev_priv(dev);
735         struct adapter *adap = pi->adapter;
736         int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
737
738         if (adap->flags & FULL_INIT_DONE)
739                 return -EBUSY;
740         if (val && adap->params.rev == 0)
741                 return -EINVAL;
742         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
743             min_tids)
744                 return -EINVAL;
745         adap->params.mc5.nfilters = val;
746         return 0;
747 }
748
749 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
750                               const char *buf, size_t len)
751 {
752         return attr_store(d, buf, len, set_nfilters, 0, ~0);
753 }
754
755 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
756 {
757         struct port_info *pi = netdev_priv(dev);
758         struct adapter *adap = pi->adapter;
759
760         if (adap->flags & FULL_INIT_DONE)
761                 return -EBUSY;
762         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
763             MC5_MIN_TIDS)
764                 return -EINVAL;
765         adap->params.mc5.nservers = val;
766         return 0;
767 }
768
769 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
770                               const char *buf, size_t len)
771 {
772         return attr_store(d, buf, len, set_nservers, 0, ~0);
773 }
774
775 #define CXGB3_ATTR_R(name, val_expr) \
776 CXGB3_SHOW(name, val_expr) \
777 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
778
779 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
780 CXGB3_SHOW(name, val_expr) \
781 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
782
783 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
784 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
785 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
786
787 static struct attribute *cxgb3_attrs[] = {
788         &dev_attr_cam_size.attr,
789         &dev_attr_nfilters.attr,
790         &dev_attr_nservers.attr,
791         NULL
792 };
793
794 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
795
796 static ssize_t tm_attr_show(struct device *d,
797                             char *buf, int sched)
798 {
799         struct port_info *pi = netdev_priv(to_net_dev(d));
800         struct adapter *adap = pi->adapter;
801         unsigned int v, addr, bpt, cpt;
802         ssize_t len;
803
804         addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
805         rtnl_lock();
806         t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
807         v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
808         if (sched & 1)
809                 v >>= 16;
810         bpt = (v >> 8) & 0xff;
811         cpt = v & 0xff;
812         if (!cpt)
813                 len = sprintf(buf, "disabled\n");
814         else {
815                 v = (adap->params.vpd.cclk * 1000) / cpt;
816                 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
817         }
818         rtnl_unlock();
819         return len;
820 }
821
822 static ssize_t tm_attr_store(struct device *d,
823                              const char *buf, size_t len, int sched)
824 {
825         struct port_info *pi = netdev_priv(to_net_dev(d));
826         struct adapter *adap = pi->adapter;
827         unsigned int val;
828         char *endp;
829         ssize_t ret;
830
831         if (!capable(CAP_NET_ADMIN))
832                 return -EPERM;
833
834         val = simple_strtoul(buf, &endp, 0);
835         if (endp == buf || val > 10000000)
836                 return -EINVAL;
837
838         rtnl_lock();
839         ret = t3_config_sched(adap, val, sched);
840         if (!ret)
841                 ret = len;
842         rtnl_unlock();
843         return ret;
844 }
845
846 #define TM_ATTR(name, sched) \
847 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
848                            char *buf) \
849 { \
850         return tm_attr_show(d, buf, sched); \
851 } \
852 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
853                             const char *buf, size_t len) \
854 { \
855         return tm_attr_store(d, buf, len, sched); \
856 } \
857 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
858
859 TM_ATTR(sched0, 0);
860 TM_ATTR(sched1, 1);
861 TM_ATTR(sched2, 2);
862 TM_ATTR(sched3, 3);
863 TM_ATTR(sched4, 4);
864 TM_ATTR(sched5, 5);
865 TM_ATTR(sched6, 6);
866 TM_ATTR(sched7, 7);
867
868 static struct attribute *offload_attrs[] = {
869         &dev_attr_sched0.attr,
870         &dev_attr_sched1.attr,
871         &dev_attr_sched2.attr,
872         &dev_attr_sched3.attr,
873         &dev_attr_sched4.attr,
874         &dev_attr_sched5.attr,
875         &dev_attr_sched6.attr,
876         &dev_attr_sched7.attr,
877         NULL
878 };
879
880 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
881
882 /*
883  * Sends an sk_buff to an offload queue driver
884  * after dealing with any active network taps.
885  */
886 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
887 {
888         int ret;
889
890         local_bh_disable();
891         ret = t3_offload_tx(tdev, skb);
892         local_bh_enable();
893         return ret;
894 }
895
896 static int write_smt_entry(struct adapter *adapter, int idx)
897 {
898         struct cpl_smt_write_req *req;
899         struct port_info *pi = netdev_priv(adapter->port[idx]);
900         struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
901
902         if (!skb)
903                 return -ENOMEM;
904
905         req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
906         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
907         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
908         req->mtu_idx = NMTUS - 1;       /* should be 0 but there's a T3 bug */
909         req->iff = idx;
910         memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
911         memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
912         skb->priority = 1;
913         offload_tx(&adapter->tdev, skb);
914         return 0;
915 }
916
917 static int init_smt(struct adapter *adapter)
918 {
919         int i;
920
921         for_each_port(adapter, i)
922             write_smt_entry(adapter, i);
923         return 0;
924 }
925
926 static void init_port_mtus(struct adapter *adapter)
927 {
928         unsigned int mtus = adapter->port[0]->mtu;
929
930         if (adapter->port[1])
931                 mtus |= adapter->port[1]->mtu << 16;
932         t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
933 }
934
935 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
936                               int hi, int port)
937 {
938         struct sk_buff *skb;
939         struct mngt_pktsched_wr *req;
940         int ret;
941
942         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
943         if (!skb)
944                 skb = adap->nofail_skb;
945         if (!skb)
946                 return -ENOMEM;
947
948         req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
949         req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
950         req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
951         req->sched = sched;
952         req->idx = qidx;
953         req->min = lo;
954         req->max = hi;
955         req->binding = port;
956         ret = t3_mgmt_tx(adap, skb);
957         if (skb == adap->nofail_skb) {
958                 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
959                                              GFP_KERNEL);
960                 if (!adap->nofail_skb)
961                         ret = -ENOMEM;
962         }
963
964         return ret;
965 }
966
967 static int bind_qsets(struct adapter *adap)
968 {
969         int i, j, err = 0;
970
971         for_each_port(adap, i) {
972                 const struct port_info *pi = adap2pinfo(adap, i);
973
974                 for (j = 0; j < pi->nqsets; ++j) {
975                         int ret = send_pktsched_cmd(adap, 1,
976                                                     pi->first_qset + j, -1,
977                                                     -1, i);
978                         if (ret)
979                                 err = ret;
980                 }
981         }
982
983         return err;
984 }
985
986 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "."                    \
987         __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
988 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
989 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "."                \
990         __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
991 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
992 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
993 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
994 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
995 MODULE_FIRMWARE(FW_FNAME);
996 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
997 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
998 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
999 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1000 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1001
1002 static inline const char *get_edc_fw_name(int edc_idx)
1003 {
1004         const char *fw_name = NULL;
1005
1006         switch (edc_idx) {
1007         case EDC_OPT_AEL2005:
1008                 fw_name = AEL2005_OPT_EDC_NAME;
1009                 break;
1010         case EDC_TWX_AEL2005:
1011                 fw_name = AEL2005_TWX_EDC_NAME;
1012                 break;
1013         case EDC_TWX_AEL2020:
1014                 fw_name = AEL2020_TWX_EDC_NAME;
1015                 break;
1016         }
1017         return fw_name;
1018 }
1019
1020 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1021 {
1022         struct adapter *adapter = phy->adapter;
1023         const struct firmware *fw;
1024         char buf[64];
1025         u32 csum;
1026         const __be32 *p;
1027         u16 *cache = phy->phy_cache;
1028         int i, ret;
1029
1030         snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1031
1032         ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1033         if (ret < 0) {
1034                 dev_err(&adapter->pdev->dev,
1035                         "could not upgrade firmware: unable to load %s\n",
1036                         buf);
1037                 return ret;
1038         }
1039
1040         /* check size, take checksum in account */
1041         if (fw->size > size + 4) {
1042                 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1043                        (unsigned int)fw->size, size + 4);
1044                 ret = -EINVAL;
1045         }
1046
1047         /* compute checksum */
1048         p = (const __be32 *)fw->data;
1049         for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1050                 csum += ntohl(p[i]);
1051
1052         if (csum != 0xffffffff) {
1053                 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1054                        csum);
1055                 ret = -EINVAL;
1056         }
1057
1058         for (i = 0; i < size / 4 ; i++) {
1059                 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1060                 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1061         }
1062
1063         release_firmware(fw);
1064
1065         return ret;
1066 }
1067
1068 static int upgrade_fw(struct adapter *adap)
1069 {
1070         int ret;
1071         const struct firmware *fw;
1072         struct device *dev = &adap->pdev->dev;
1073
1074         ret = request_firmware(&fw, FW_FNAME, dev);
1075         if (ret < 0) {
1076                 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1077                         FW_FNAME);
1078                 return ret;
1079         }
1080         ret = t3_load_fw(adap, fw->data, fw->size);
1081         release_firmware(fw);
1082
1083         if (ret == 0)
1084                 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1085                          FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1086         else
1087                 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1088                         FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1089
1090         return ret;
1091 }
1092
1093 static inline char t3rev2char(struct adapter *adapter)
1094 {
1095         char rev = 0;
1096
1097         switch(adapter->params.rev) {
1098         case T3_REV_B:
1099         case T3_REV_B2:
1100                 rev = 'b';
1101                 break;
1102         case T3_REV_C:
1103                 rev = 'c';
1104                 break;
1105         }
1106         return rev;
1107 }
1108
1109 static int update_tpsram(struct adapter *adap)
1110 {
1111         const struct firmware *tpsram;
1112         char buf[64];
1113         struct device *dev = &adap->pdev->dev;
1114         int ret;
1115         char rev;
1116
1117         rev = t3rev2char(adap);
1118         if (!rev)
1119                 return 0;
1120
1121         snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1122
1123         ret = request_firmware(&tpsram, buf, dev);
1124         if (ret < 0) {
1125                 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1126                         buf);
1127                 return ret;
1128         }
1129
1130         ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1131         if (ret)
1132                 goto release_tpsram;
1133
1134         ret = t3_set_proto_sram(adap, tpsram->data);
1135         if (ret == 0)
1136                 dev_info(dev,
1137                          "successful update of protocol engine "
1138                          "to %d.%d.%d\n",
1139                          TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1140         else
1141                 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1142                         TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1143         if (ret)
1144                 dev_err(dev, "loading protocol SRAM failed\n");
1145
1146 release_tpsram:
1147         release_firmware(tpsram);
1148
1149         return ret;
1150 }
1151
1152 /**
1153  *      cxgb_up - enable the adapter
1154  *      @adapter: adapter being enabled
1155  *
1156  *      Called when the first port is enabled, this function performs the
1157  *      actions necessary to make an adapter operational, such as completing
1158  *      the initialization of HW modules, and enabling interrupts.
1159  *
1160  *      Must be called with the rtnl lock held.
1161  */
1162 static int cxgb_up(struct adapter *adap)
1163 {
1164         int err;
1165
1166         if (!(adap->flags & FULL_INIT_DONE)) {
1167                 err = t3_check_fw_version(adap);
1168                 if (err == -EINVAL) {
1169                         err = upgrade_fw(adap);
1170                         CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1171                                 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1172                                 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1173                 }
1174
1175                 err = t3_check_tpsram_version(adap);
1176                 if (err == -EINVAL) {
1177                         err = update_tpsram(adap);
1178                         CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1179                                 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1180                                 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1181                 }
1182
1183                 /*
1184                  * Clear interrupts now to catch errors if t3_init_hw fails.
1185                  * We clear them again later as initialization may trigger
1186                  * conditions that can interrupt.
1187                  */
1188                 t3_intr_clear(adap);
1189
1190                 err = t3_init_hw(adap, 0);
1191                 if (err)
1192                         goto out;
1193
1194                 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1195                 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1196
1197                 err = setup_sge_qsets(adap);
1198                 if (err)
1199                         goto out;
1200
1201                 setup_rss(adap);
1202                 if (!(adap->flags & NAPI_INIT))
1203                         init_napi(adap);
1204
1205                 t3_start_sge_timers(adap);
1206                 adap->flags |= FULL_INIT_DONE;
1207         }
1208
1209         t3_intr_clear(adap);
1210
1211         if (adap->flags & USING_MSIX) {
1212                 name_msix_vecs(adap);
1213                 err = request_irq(adap->msix_info[0].vec,
1214                                   t3_async_intr_handler, 0,
1215                                   adap->msix_info[0].desc, adap);
1216                 if (err)
1217                         goto irq_err;
1218
1219                 err = request_msix_data_irqs(adap);
1220                 if (err) {
1221                         free_irq(adap->msix_info[0].vec, adap);
1222                         goto irq_err;
1223                 }
1224         } else if ((err = request_irq(adap->pdev->irq,
1225                                       t3_intr_handler(adap,
1226                                                       adap->sge.qs[0].rspq.
1227                                                       polling),
1228                                       (adap->flags & USING_MSI) ?
1229                                        0 : IRQF_SHARED,
1230                                       adap->name, adap)))
1231                 goto irq_err;
1232
1233         enable_all_napi(adap);
1234         t3_sge_start(adap);
1235         t3_intr_enable(adap);
1236
1237         if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1238             is_offload(adap) && init_tp_parity(adap) == 0)
1239                 adap->flags |= TP_PARITY_INIT;
1240
1241         if (adap->flags & TP_PARITY_INIT) {
1242                 t3_write_reg(adap, A_TP_INT_CAUSE,
1243                              F_CMCACHEPERR | F_ARPLUTPERR);
1244                 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1245         }
1246
1247         if (!(adap->flags & QUEUES_BOUND)) {
1248                 int ret = bind_qsets(adap);
1249
1250                 if (ret < 0) {
1251                         CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1252                         t3_intr_disable(adap);
1253                         free_irq_resources(adap);
1254                         err = ret;
1255                         goto out;
1256                 }
1257                 adap->flags |= QUEUES_BOUND;
1258         }
1259
1260 out:
1261         return err;
1262 irq_err:
1263         CH_ERR(adap, "request_irq failed, err %d\n", err);
1264         goto out;
1265 }
1266
1267 /*
1268  * Release resources when all the ports and offloading have been stopped.
1269  */
1270 static void cxgb_down(struct adapter *adapter, int on_wq)
1271 {
1272         t3_sge_stop(adapter);
1273         spin_lock_irq(&adapter->work_lock);     /* sync with PHY intr task */
1274         t3_intr_disable(adapter);
1275         spin_unlock_irq(&adapter->work_lock);
1276
1277         free_irq_resources(adapter);
1278         quiesce_rx(adapter);
1279         t3_sge_stop(adapter);
1280         if (!on_wq)
1281                 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1282 }
1283
1284 static void schedule_chk_task(struct adapter *adap)
1285 {
1286         unsigned int timeo;
1287
1288         timeo = adap->params.linkpoll_period ?
1289             (HZ * adap->params.linkpoll_period) / 10 :
1290             adap->params.stats_update_period * HZ;
1291         if (timeo)
1292                 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1293 }
1294
1295 static int offload_open(struct net_device *dev)
1296 {
1297         struct port_info *pi = netdev_priv(dev);
1298         struct adapter *adapter = pi->adapter;
1299         struct t3cdev *tdev = dev2t3cdev(dev);
1300         int adap_up = adapter->open_device_map & PORT_MASK;
1301         int err;
1302
1303         if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1304                 return 0;
1305
1306         if (!adap_up && (err = cxgb_up(adapter)) < 0)
1307                 goto out;
1308
1309         t3_tp_set_offload_mode(adapter, 1);
1310         tdev->lldev = adapter->port[0];
1311         err = cxgb3_offload_activate(adapter);
1312         if (err)
1313                 goto out;
1314
1315         init_port_mtus(adapter);
1316         t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1317                      adapter->params.b_wnd,
1318                      adapter->params.rev == 0 ?
1319                      adapter->port[0]->mtu : 0xffff);
1320         init_smt(adapter);
1321
1322         if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1323                 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1324
1325         /* Call back all registered clients */
1326         cxgb3_add_clients(tdev);
1327
1328 out:
1329         /* restore them in case the offload module has changed them */
1330         if (err) {
1331                 t3_tp_set_offload_mode(adapter, 0);
1332                 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1333                 cxgb3_set_dummy_ops(tdev);
1334         }
1335         return err;
1336 }
1337
1338 static int offload_close(struct t3cdev *tdev)
1339 {
1340         struct adapter *adapter = tdev2adap(tdev);
1341         struct t3c_data *td = T3C_DATA(tdev);
1342
1343         if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1344                 return 0;
1345
1346         /* Call back all registered clients */
1347         cxgb3_remove_clients(tdev);
1348
1349         sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1350
1351         /* Flush work scheduled while releasing TIDs */
1352         flush_work_sync(&td->tid_release_task);
1353
1354         tdev->lldev = NULL;
1355         cxgb3_set_dummy_ops(tdev);
1356         t3_tp_set_offload_mode(adapter, 0);
1357         clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1358
1359         if (!adapter->open_device_map)
1360                 cxgb_down(adapter, 0);
1361
1362         cxgb3_offload_deactivate(adapter);
1363         return 0;
1364 }
1365
1366 static int cxgb_open(struct net_device *dev)
1367 {
1368         struct port_info *pi = netdev_priv(dev);
1369         struct adapter *adapter = pi->adapter;
1370         int other_ports = adapter->open_device_map & PORT_MASK;
1371         int err;
1372
1373         if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1374                 return err;
1375
1376         set_bit(pi->port_id, &adapter->open_device_map);
1377         if (is_offload(adapter) && !ofld_disable) {
1378                 err = offload_open(dev);
1379                 if (err)
1380                         printk(KERN_WARNING
1381                                "Could not initialize offload capabilities\n");
1382         }
1383
1384         netif_set_real_num_tx_queues(dev, pi->nqsets);
1385         err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1386         if (err)
1387                 return err;
1388         link_start(dev);
1389         t3_port_intr_enable(adapter, pi->port_id);
1390         netif_tx_start_all_queues(dev);
1391         if (!other_ports)
1392                 schedule_chk_task(adapter);
1393
1394         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1395         return 0;
1396 }
1397
1398 static int __cxgb_close(struct net_device *dev, int on_wq)
1399 {
1400         struct port_info *pi = netdev_priv(dev);
1401         struct adapter *adapter = pi->adapter;
1402
1403         
1404         if (!adapter->open_device_map)
1405                 return 0;
1406
1407         /* Stop link fault interrupts */
1408         t3_xgm_intr_disable(adapter, pi->port_id);
1409         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1410
1411         t3_port_intr_disable(adapter, pi->port_id);
1412         netif_tx_stop_all_queues(dev);
1413         pi->phy.ops->power_down(&pi->phy, 1);
1414         netif_carrier_off(dev);
1415         t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1416
1417         spin_lock_irq(&adapter->work_lock);     /* sync with update task */
1418         clear_bit(pi->port_id, &adapter->open_device_map);
1419         spin_unlock_irq(&adapter->work_lock);
1420
1421         if (!(adapter->open_device_map & PORT_MASK))
1422                 cancel_delayed_work_sync(&adapter->adap_check_task);
1423
1424         if (!adapter->open_device_map)
1425                 cxgb_down(adapter, on_wq);
1426
1427         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1428         return 0;
1429 }
1430
1431 static int cxgb_close(struct net_device *dev)
1432 {
1433         return __cxgb_close(dev, 0);
1434 }
1435
1436 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1437 {
1438         struct port_info *pi = netdev_priv(dev);
1439         struct adapter *adapter = pi->adapter;
1440         struct net_device_stats *ns = &pi->netstats;
1441         const struct mac_stats *pstats;
1442
1443         spin_lock(&adapter->stats_lock);
1444         pstats = t3_mac_update_stats(&pi->mac);
1445         spin_unlock(&adapter->stats_lock);
1446
1447         ns->tx_bytes = pstats->tx_octets;
1448         ns->tx_packets = pstats->tx_frames;
1449         ns->rx_bytes = pstats->rx_octets;
1450         ns->rx_packets = pstats->rx_frames;
1451         ns->multicast = pstats->rx_mcast_frames;
1452
1453         ns->tx_errors = pstats->tx_underrun;
1454         ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1455             pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1456             pstats->rx_fifo_ovfl;
1457
1458         /* detailed rx_errors */
1459         ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1460         ns->rx_over_errors = 0;
1461         ns->rx_crc_errors = pstats->rx_fcs_errs;
1462         ns->rx_frame_errors = pstats->rx_symbol_errs;
1463         ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1464         ns->rx_missed_errors = pstats->rx_cong_drops;
1465
1466         /* detailed tx_errors */
1467         ns->tx_aborted_errors = 0;
1468         ns->tx_carrier_errors = 0;
1469         ns->tx_fifo_errors = pstats->tx_underrun;
1470         ns->tx_heartbeat_errors = 0;
1471         ns->tx_window_errors = 0;
1472         return ns;
1473 }
1474
1475 static u32 get_msglevel(struct net_device *dev)
1476 {
1477         struct port_info *pi = netdev_priv(dev);
1478         struct adapter *adapter = pi->adapter;
1479
1480         return adapter->msg_enable;
1481 }
1482
1483 static void set_msglevel(struct net_device *dev, u32 val)
1484 {
1485         struct port_info *pi = netdev_priv(dev);
1486         struct adapter *adapter = pi->adapter;
1487
1488         adapter->msg_enable = val;
1489 }
1490
1491 static char stats_strings[][ETH_GSTRING_LEN] = {
1492         "TxOctetsOK         ",
1493         "TxFramesOK         ",
1494         "TxMulticastFramesOK",
1495         "TxBroadcastFramesOK",
1496         "TxPauseFrames      ",
1497         "TxUnderrun         ",
1498         "TxExtUnderrun      ",
1499
1500         "TxFrames64         ",
1501         "TxFrames65To127    ",
1502         "TxFrames128To255   ",
1503         "TxFrames256To511   ",
1504         "TxFrames512To1023  ",
1505         "TxFrames1024To1518 ",
1506         "TxFrames1519ToMax  ",
1507
1508         "RxOctetsOK         ",
1509         "RxFramesOK         ",
1510         "RxMulticastFramesOK",
1511         "RxBroadcastFramesOK",
1512         "RxPauseFrames      ",
1513         "RxFCSErrors        ",
1514         "RxSymbolErrors     ",
1515         "RxShortErrors      ",
1516         "RxJabberErrors     ",
1517         "RxLengthErrors     ",
1518         "RxFIFOoverflow     ",
1519
1520         "RxFrames64         ",
1521         "RxFrames65To127    ",
1522         "RxFrames128To255   ",
1523         "RxFrames256To511   ",
1524         "RxFrames512To1023  ",
1525         "RxFrames1024To1518 ",
1526         "RxFrames1519ToMax  ",
1527
1528         "PhyFIFOErrors      ",
1529         "TSO                ",
1530         "VLANextractions    ",
1531         "VLANinsertions     ",
1532         "TxCsumOffload      ",
1533         "RxCsumGood         ",
1534         "LroAggregated      ",
1535         "LroFlushed         ",
1536         "LroNoDesc          ",
1537         "RxDrops            ",
1538
1539         "CheckTXEnToggled   ",
1540         "CheckResets        ",
1541
1542         "LinkFaults         ",
1543 };
1544
1545 static int get_sset_count(struct net_device *dev, int sset)
1546 {
1547         switch (sset) {
1548         case ETH_SS_STATS:
1549                 return ARRAY_SIZE(stats_strings);
1550         default:
1551                 return -EOPNOTSUPP;
1552         }
1553 }
1554
1555 #define T3_REGMAP_SIZE (3 * 1024)
1556
1557 static int get_regs_len(struct net_device *dev)
1558 {
1559         return T3_REGMAP_SIZE;
1560 }
1561
1562 static int get_eeprom_len(struct net_device *dev)
1563 {
1564         return EEPROMSIZE;
1565 }
1566
1567 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1568 {
1569         struct port_info *pi = netdev_priv(dev);
1570         struct adapter *adapter = pi->adapter;
1571         u32 fw_vers = 0;
1572         u32 tp_vers = 0;
1573
1574         spin_lock(&adapter->stats_lock);
1575         t3_get_fw_version(adapter, &fw_vers);
1576         t3_get_tp_version(adapter, &tp_vers);
1577         spin_unlock(&adapter->stats_lock);
1578
1579         strcpy(info->driver, DRV_NAME);
1580         strcpy(info->version, DRV_VERSION);
1581         strcpy(info->bus_info, pci_name(adapter->pdev));
1582         if (!fw_vers)
1583                 strcpy(info->fw_version, "N/A");
1584         else {
1585                 snprintf(info->fw_version, sizeof(info->fw_version),
1586                          "%s %u.%u.%u TP %u.%u.%u",
1587                          G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1588                          G_FW_VERSION_MAJOR(fw_vers),
1589                          G_FW_VERSION_MINOR(fw_vers),
1590                          G_FW_VERSION_MICRO(fw_vers),
1591                          G_TP_VERSION_MAJOR(tp_vers),
1592                          G_TP_VERSION_MINOR(tp_vers),
1593                          G_TP_VERSION_MICRO(tp_vers));
1594         }
1595 }
1596
1597 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1598 {
1599         if (stringset == ETH_SS_STATS)
1600                 memcpy(data, stats_strings, sizeof(stats_strings));
1601 }
1602
1603 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1604                                             struct port_info *p, int idx)
1605 {
1606         int i;
1607         unsigned long tot = 0;
1608
1609         for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1610                 tot += adapter->sge.qs[i].port_stats[idx];
1611         return tot;
1612 }
1613
1614 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1615                       u64 *data)
1616 {
1617         struct port_info *pi = netdev_priv(dev);
1618         struct adapter *adapter = pi->adapter;
1619         const struct mac_stats *s;
1620
1621         spin_lock(&adapter->stats_lock);
1622         s = t3_mac_update_stats(&pi->mac);
1623         spin_unlock(&adapter->stats_lock);
1624
1625         *data++ = s->tx_octets;
1626         *data++ = s->tx_frames;
1627         *data++ = s->tx_mcast_frames;
1628         *data++ = s->tx_bcast_frames;
1629         *data++ = s->tx_pause;
1630         *data++ = s->tx_underrun;
1631         *data++ = s->tx_fifo_urun;
1632
1633         *data++ = s->tx_frames_64;
1634         *data++ = s->tx_frames_65_127;
1635         *data++ = s->tx_frames_128_255;
1636         *data++ = s->tx_frames_256_511;
1637         *data++ = s->tx_frames_512_1023;
1638         *data++ = s->tx_frames_1024_1518;
1639         *data++ = s->tx_frames_1519_max;
1640
1641         *data++ = s->rx_octets;
1642         *data++ = s->rx_frames;
1643         *data++ = s->rx_mcast_frames;
1644         *data++ = s->rx_bcast_frames;
1645         *data++ = s->rx_pause;
1646         *data++ = s->rx_fcs_errs;
1647         *data++ = s->rx_symbol_errs;
1648         *data++ = s->rx_short;
1649         *data++ = s->rx_jabber;
1650         *data++ = s->rx_too_long;
1651         *data++ = s->rx_fifo_ovfl;
1652
1653         *data++ = s->rx_frames_64;
1654         *data++ = s->rx_frames_65_127;
1655         *data++ = s->rx_frames_128_255;
1656         *data++ = s->rx_frames_256_511;
1657         *data++ = s->rx_frames_512_1023;
1658         *data++ = s->rx_frames_1024_1518;
1659         *data++ = s->rx_frames_1519_max;
1660
1661         *data++ = pi->phy.fifo_errors;
1662
1663         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1664         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1665         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1666         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1667         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1668         *data++ = 0;
1669         *data++ = 0;
1670         *data++ = 0;
1671         *data++ = s->rx_cong_drops;
1672
1673         *data++ = s->num_toggled;
1674         *data++ = s->num_resets;
1675
1676         *data++ = s->link_faults;
1677 }
1678
1679 static inline void reg_block_dump(struct adapter *ap, void *buf,
1680                                   unsigned int start, unsigned int end)
1681 {
1682         u32 *p = buf + start;
1683
1684         for (; start <= end; start += sizeof(u32))
1685                 *p++ = t3_read_reg(ap, start);
1686 }
1687
1688 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1689                      void *buf)
1690 {
1691         struct port_info *pi = netdev_priv(dev);
1692         struct adapter *ap = pi->adapter;
1693
1694         /*
1695          * Version scheme:
1696          * bits 0..9: chip version
1697          * bits 10..15: chip revision
1698          * bit 31: set for PCIe cards
1699          */
1700         regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1701
1702         /*
1703          * We skip the MAC statistics registers because they are clear-on-read.
1704          * Also reading multi-register stats would need to synchronize with the
1705          * periodic mac stats accumulation.  Hard to justify the complexity.
1706          */
1707         memset(buf, 0, T3_REGMAP_SIZE);
1708         reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1709         reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1710         reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1711         reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1712         reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1713         reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1714                        XGM_REG(A_XGM_SERDES_STAT3, 1));
1715         reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1716                        XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1717 }
1718
1719 static int restart_autoneg(struct net_device *dev)
1720 {
1721         struct port_info *p = netdev_priv(dev);
1722
1723         if (!netif_running(dev))
1724                 return -EAGAIN;
1725         if (p->link_config.autoneg != AUTONEG_ENABLE)
1726                 return -EINVAL;
1727         p->phy.ops->autoneg_restart(&p->phy);
1728         return 0;
1729 }
1730
1731 static int set_phys_id(struct net_device *dev,
1732                        enum ethtool_phys_id_state state)
1733 {
1734         struct port_info *pi = netdev_priv(dev);
1735         struct adapter *adapter = pi->adapter;
1736
1737         switch (state) {
1738         case ETHTOOL_ID_ACTIVE:
1739                 return 1;       /* cycle on/off once per second */
1740
1741         case ETHTOOL_ID_OFF:
1742                 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1743                 break;
1744
1745         case ETHTOOL_ID_ON:
1746         case ETHTOOL_ID_INACTIVE:
1747                 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1748                          F_GPIO0_OUT_VAL);
1749         }
1750
1751         return 0;
1752 }
1753
1754 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1755 {
1756         struct port_info *p = netdev_priv(dev);
1757
1758         cmd->supported = p->link_config.supported;
1759         cmd->advertising = p->link_config.advertising;
1760
1761         if (netif_carrier_ok(dev)) {
1762                 ethtool_cmd_speed_set(cmd, p->link_config.speed);
1763                 cmd->duplex = p->link_config.duplex;
1764         } else {
1765                 ethtool_cmd_speed_set(cmd, -1);
1766                 cmd->duplex = -1;
1767         }
1768
1769         cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1770         cmd->phy_address = p->phy.mdio.prtad;
1771         cmd->transceiver = XCVR_EXTERNAL;
1772         cmd->autoneg = p->link_config.autoneg;
1773         cmd->maxtxpkt = 0;
1774         cmd->maxrxpkt = 0;
1775         return 0;
1776 }
1777
1778 static int speed_duplex_to_caps(int speed, int duplex)
1779 {
1780         int cap = 0;
1781
1782         switch (speed) {
1783         case SPEED_10:
1784                 if (duplex == DUPLEX_FULL)
1785                         cap = SUPPORTED_10baseT_Full;
1786                 else
1787                         cap = SUPPORTED_10baseT_Half;
1788                 break;
1789         case SPEED_100:
1790                 if (duplex == DUPLEX_FULL)
1791                         cap = SUPPORTED_100baseT_Full;
1792                 else
1793                         cap = SUPPORTED_100baseT_Half;
1794                 break;
1795         case SPEED_1000:
1796                 if (duplex == DUPLEX_FULL)
1797                         cap = SUPPORTED_1000baseT_Full;
1798                 else
1799                         cap = SUPPORTED_1000baseT_Half;
1800                 break;
1801         case SPEED_10000:
1802                 if (duplex == DUPLEX_FULL)
1803                         cap = SUPPORTED_10000baseT_Full;
1804         }
1805         return cap;
1806 }
1807
1808 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1809                       ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1810                       ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1811                       ADVERTISED_10000baseT_Full)
1812
1813 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1814 {
1815         struct port_info *p = netdev_priv(dev);
1816         struct link_config *lc = &p->link_config;
1817
1818         if (!(lc->supported & SUPPORTED_Autoneg)) {
1819                 /*
1820                  * PHY offers a single speed/duplex.  See if that's what's
1821                  * being requested.
1822                  */
1823                 if (cmd->autoneg == AUTONEG_DISABLE) {
1824                         u32 speed = ethtool_cmd_speed(cmd);
1825                         int cap = speed_duplex_to_caps(speed, cmd->duplex);
1826                         if (lc->supported & cap)
1827                                 return 0;
1828                 }
1829                 return -EINVAL;
1830         }
1831
1832         if (cmd->autoneg == AUTONEG_DISABLE) {
1833                 u32 speed = ethtool_cmd_speed(cmd);
1834                 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1835
1836                 if (!(lc->supported & cap) || (speed == SPEED_1000))
1837                         return -EINVAL;
1838                 lc->requested_speed = speed;
1839                 lc->requested_duplex = cmd->duplex;
1840                 lc->advertising = 0;
1841         } else {
1842                 cmd->advertising &= ADVERTISED_MASK;
1843                 cmd->advertising &= lc->supported;
1844                 if (!cmd->advertising)
1845                         return -EINVAL;
1846                 lc->requested_speed = SPEED_INVALID;
1847                 lc->requested_duplex = DUPLEX_INVALID;
1848                 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1849         }
1850         lc->autoneg = cmd->autoneg;
1851         if (netif_running(dev))
1852                 t3_link_start(&p->phy, &p->mac, lc);
1853         return 0;
1854 }
1855
1856 static void get_pauseparam(struct net_device *dev,
1857                            struct ethtool_pauseparam *epause)
1858 {
1859         struct port_info *p = netdev_priv(dev);
1860
1861         epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1862         epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1863         epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1864 }
1865
1866 static int set_pauseparam(struct net_device *dev,
1867                           struct ethtool_pauseparam *epause)
1868 {
1869         struct port_info *p = netdev_priv(dev);
1870         struct link_config *lc = &p->link_config;
1871
1872         if (epause->autoneg == AUTONEG_DISABLE)
1873                 lc->requested_fc = 0;
1874         else if (lc->supported & SUPPORTED_Autoneg)
1875                 lc->requested_fc = PAUSE_AUTONEG;
1876         else
1877                 return -EINVAL;
1878
1879         if (epause->rx_pause)
1880                 lc->requested_fc |= PAUSE_RX;
1881         if (epause->tx_pause)
1882                 lc->requested_fc |= PAUSE_TX;
1883         if (lc->autoneg == AUTONEG_ENABLE) {
1884                 if (netif_running(dev))
1885                         t3_link_start(&p->phy, &p->mac, lc);
1886         } else {
1887                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1888                 if (netif_running(dev))
1889                         t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1890         }
1891         return 0;
1892 }
1893
1894 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1895 {
1896         struct port_info *pi = netdev_priv(dev);
1897         struct adapter *adapter = pi->adapter;
1898         const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1899
1900         e->rx_max_pending = MAX_RX_BUFFERS;
1901         e->rx_mini_max_pending = 0;
1902         e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1903         e->tx_max_pending = MAX_TXQ_ENTRIES;
1904
1905         e->rx_pending = q->fl_size;
1906         e->rx_mini_pending = q->rspq_size;
1907         e->rx_jumbo_pending = q->jumbo_size;
1908         e->tx_pending = q->txq_size[0];
1909 }
1910
1911 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1912 {
1913         struct port_info *pi = netdev_priv(dev);
1914         struct adapter *adapter = pi->adapter;
1915         struct qset_params *q;
1916         int i;
1917
1918         if (e->rx_pending > MAX_RX_BUFFERS ||
1919             e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1920             e->tx_pending > MAX_TXQ_ENTRIES ||
1921             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1922             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1923             e->rx_pending < MIN_FL_ENTRIES ||
1924             e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1925             e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1926                 return -EINVAL;
1927
1928         if (adapter->flags & FULL_INIT_DONE)
1929                 return -EBUSY;
1930
1931         q = &adapter->params.sge.qset[pi->first_qset];
1932         for (i = 0; i < pi->nqsets; ++i, ++q) {
1933                 q->rspq_size = e->rx_mini_pending;
1934                 q->fl_size = e->rx_pending;
1935                 q->jumbo_size = e->rx_jumbo_pending;
1936                 q->txq_size[0] = e->tx_pending;
1937                 q->txq_size[1] = e->tx_pending;
1938                 q->txq_size[2] = e->tx_pending;
1939         }
1940         return 0;
1941 }
1942
1943 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1944 {
1945         struct port_info *pi = netdev_priv(dev);
1946         struct adapter *adapter = pi->adapter;
1947         struct qset_params *qsp;
1948         struct sge_qset *qs;
1949         int i;
1950
1951         if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1952                 return -EINVAL;
1953
1954         for (i = 0; i < pi->nqsets; i++) {
1955                 qsp = &adapter->params.sge.qset[i];
1956                 qs = &adapter->sge.qs[i];
1957                 qsp->coalesce_usecs = c->rx_coalesce_usecs;
1958                 t3_update_qset_coalesce(qs, qsp);
1959         }
1960
1961         return 0;
1962 }
1963
1964 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1965 {
1966         struct port_info *pi = netdev_priv(dev);
1967         struct adapter *adapter = pi->adapter;
1968         struct qset_params *q = adapter->params.sge.qset;
1969
1970         c->rx_coalesce_usecs = q->coalesce_usecs;
1971         return 0;
1972 }
1973
1974 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1975                       u8 * data)
1976 {
1977         struct port_info *pi = netdev_priv(dev);
1978         struct adapter *adapter = pi->adapter;
1979         int i, err = 0;
1980
1981         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1982         if (!buf)
1983                 return -ENOMEM;
1984
1985         e->magic = EEPROM_MAGIC;
1986         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1987                 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
1988
1989         if (!err)
1990                 memcpy(data, buf + e->offset, e->len);
1991         kfree(buf);
1992         return err;
1993 }
1994
1995 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1996                       u8 * data)
1997 {
1998         struct port_info *pi = netdev_priv(dev);
1999         struct adapter *adapter = pi->adapter;
2000         u32 aligned_offset, aligned_len;
2001         __le32 *p;
2002         u8 *buf;
2003         int err;
2004
2005         if (eeprom->magic != EEPROM_MAGIC)
2006                 return -EINVAL;
2007
2008         aligned_offset = eeprom->offset & ~3;
2009         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2010
2011         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2012                 buf = kmalloc(aligned_len, GFP_KERNEL);
2013                 if (!buf)
2014                         return -ENOMEM;
2015                 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2016                 if (!err && aligned_len > 4)
2017                         err = t3_seeprom_read(adapter,
2018                                               aligned_offset + aligned_len - 4,
2019                                               (__le32 *) & buf[aligned_len - 4]);
2020                 if (err)
2021                         goto out;
2022                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2023         } else
2024                 buf = data;
2025
2026         err = t3_seeprom_wp(adapter, 0);
2027         if (err)
2028                 goto out;
2029
2030         for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2031                 err = t3_seeprom_write(adapter, aligned_offset, *p);
2032                 aligned_offset += 4;
2033         }
2034
2035         if (!err)
2036                 err = t3_seeprom_wp(adapter, 1);
2037 out:
2038         if (buf != data)
2039                 kfree(buf);
2040         return err;
2041 }
2042
2043 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2044 {
2045         wol->supported = 0;
2046         wol->wolopts = 0;
2047         memset(&wol->sopass, 0, sizeof(wol->sopass));
2048 }
2049
2050 static const struct ethtool_ops cxgb_ethtool_ops = {
2051         .get_settings = get_settings,
2052         .set_settings = set_settings,
2053         .get_drvinfo = get_drvinfo,
2054         .get_msglevel = get_msglevel,
2055         .set_msglevel = set_msglevel,
2056         .get_ringparam = get_sge_param,
2057         .set_ringparam = set_sge_param,
2058         .get_coalesce = get_coalesce,
2059         .set_coalesce = set_coalesce,
2060         .get_eeprom_len = get_eeprom_len,
2061         .get_eeprom = get_eeprom,
2062         .set_eeprom = set_eeprom,
2063         .get_pauseparam = get_pauseparam,
2064         .set_pauseparam = set_pauseparam,
2065         .get_link = ethtool_op_get_link,
2066         .get_strings = get_strings,
2067         .set_phys_id = set_phys_id,
2068         .nway_reset = restart_autoneg,
2069         .get_sset_count = get_sset_count,
2070         .get_ethtool_stats = get_stats,
2071         .get_regs_len = get_regs_len,
2072         .get_regs = get_regs,
2073         .get_wol = get_wol,
2074 };
2075
2076 static int in_range(int val, int lo, int hi)
2077 {
2078         return val < 0 || (val <= hi && val >= lo);
2079 }
2080
2081 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2082 {
2083         struct port_info *pi = netdev_priv(dev);
2084         struct adapter *adapter = pi->adapter;
2085         u32 cmd;
2086         int ret;
2087
2088         if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2089                 return -EFAULT;
2090
2091         switch (cmd) {
2092         case CHELSIO_SET_QSET_PARAMS:{
2093                 int i;
2094                 struct qset_params *q;
2095                 struct ch_qset_params t;
2096                 int q1 = pi->first_qset;
2097                 int nqsets = pi->nqsets;
2098
2099                 if (!capable(CAP_NET_ADMIN))
2100                         return -EPERM;
2101                 if (copy_from_user(&t, useraddr, sizeof(t)))
2102                         return -EFAULT;
2103                 if (t.qset_idx >= SGE_QSETS)
2104                         return -EINVAL;
2105                 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2106                     !in_range(t.cong_thres, 0, 255) ||
2107                     !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2108                               MAX_TXQ_ENTRIES) ||
2109                     !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2110                               MAX_TXQ_ENTRIES) ||
2111                     !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2112                               MAX_CTRL_TXQ_ENTRIES) ||
2113                     !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2114                               MAX_RX_BUFFERS) ||
2115                     !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2116                               MAX_RX_JUMBO_BUFFERS) ||
2117                     !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2118                               MAX_RSPQ_ENTRIES))
2119                         return -EINVAL;
2120
2121                 if ((adapter->flags & FULL_INIT_DONE) &&
2122                         (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2123                         t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2124                         t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2125                         t.polling >= 0 || t.cong_thres >= 0))
2126                         return -EBUSY;
2127
2128                 /* Allow setting of any available qset when offload enabled */
2129                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2130                         q1 = 0;
2131                         for_each_port(adapter, i) {
2132                                 pi = adap2pinfo(adapter, i);
2133                                 nqsets += pi->first_qset + pi->nqsets;
2134                         }
2135                 }
2136
2137                 if (t.qset_idx < q1)
2138                         return -EINVAL;
2139                 if (t.qset_idx > q1 + nqsets - 1)
2140                         return -EINVAL;
2141
2142                 q = &adapter->params.sge.qset[t.qset_idx];
2143
2144                 if (t.rspq_size >= 0)
2145                         q->rspq_size = t.rspq_size;
2146                 if (t.fl_size[0] >= 0)
2147                         q->fl_size = t.fl_size[0];
2148                 if (t.fl_size[1] >= 0)
2149                         q->jumbo_size = t.fl_size[1];
2150                 if (t.txq_size[0] >= 0)
2151                         q->txq_size[0] = t.txq_size[0];
2152                 if (t.txq_size[1] >= 0)
2153                         q->txq_size[1] = t.txq_size[1];
2154                 if (t.txq_size[2] >= 0)
2155                         q->txq_size[2] = t.txq_size[2];
2156                 if (t.cong_thres >= 0)
2157                         q->cong_thres = t.cong_thres;
2158                 if (t.intr_lat >= 0) {
2159                         struct sge_qset *qs =
2160                                 &adapter->sge.qs[t.qset_idx];
2161
2162                         q->coalesce_usecs = t.intr_lat;
2163                         t3_update_qset_coalesce(qs, q);
2164                 }
2165                 if (t.polling >= 0) {
2166                         if (adapter->flags & USING_MSIX)
2167                                 q->polling = t.polling;
2168                         else {
2169                                 /* No polling with INTx for T3A */
2170                                 if (adapter->params.rev == 0 &&
2171                                         !(adapter->flags & USING_MSI))
2172                                         t.polling = 0;
2173
2174                                 for (i = 0; i < SGE_QSETS; i++) {
2175                                         q = &adapter->params.sge.
2176                                                 qset[i];
2177                                         q->polling = t.polling;
2178                                 }
2179                         }
2180                 }
2181
2182                 if (t.lro >= 0) {
2183                         if (t.lro)
2184                                 dev->wanted_features |= NETIF_F_GRO;
2185                         else
2186                                 dev->wanted_features &= ~NETIF_F_GRO;
2187                         netdev_update_features(dev);
2188                 }
2189
2190                 break;
2191         }
2192         case CHELSIO_GET_QSET_PARAMS:{
2193                 struct qset_params *q;
2194                 struct ch_qset_params t;
2195                 int q1 = pi->first_qset;
2196                 int nqsets = pi->nqsets;
2197                 int i;
2198
2199                 if (copy_from_user(&t, useraddr, sizeof(t)))
2200                         return -EFAULT;
2201
2202                 /* Display qsets for all ports when offload enabled */
2203                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2204                         q1 = 0;
2205                         for_each_port(adapter, i) {
2206                                 pi = adap2pinfo(adapter, i);
2207                                 nqsets = pi->first_qset + pi->nqsets;
2208                         }
2209                 }
2210
2211                 if (t.qset_idx >= nqsets)
2212                         return -EINVAL;
2213
2214                 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2215                 t.rspq_size = q->rspq_size;
2216                 t.txq_size[0] = q->txq_size[0];
2217                 t.txq_size[1] = q->txq_size[1];
2218                 t.txq_size[2] = q->txq_size[2];
2219                 t.fl_size[0] = q->fl_size;
2220                 t.fl_size[1] = q->jumbo_size;
2221                 t.polling = q->polling;
2222                 t.lro = !!(dev->features & NETIF_F_GRO);
2223                 t.intr_lat = q->coalesce_usecs;
2224                 t.cong_thres = q->cong_thres;
2225                 t.qnum = q1;
2226
2227                 if (adapter->flags & USING_MSIX)
2228                         t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2229                 else
2230                         t.vector = adapter->pdev->irq;
2231
2232                 if (copy_to_user(useraddr, &t, sizeof(t)))
2233                         return -EFAULT;
2234                 break;
2235         }
2236         case CHELSIO_SET_QSET_NUM:{
2237                 struct ch_reg edata;
2238                 unsigned int i, first_qset = 0, other_qsets = 0;
2239
2240                 if (!capable(CAP_NET_ADMIN))
2241                         return -EPERM;
2242                 if (adapter->flags & FULL_INIT_DONE)
2243                         return -EBUSY;
2244                 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2245                         return -EFAULT;
2246                 if (edata.val < 1 ||
2247                         (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2248                         return -EINVAL;
2249
2250                 for_each_port(adapter, i)
2251                         if (adapter->port[i] && adapter->port[i] != dev)
2252                                 other_qsets += adap2pinfo(adapter, i)->nqsets;
2253
2254                 if (edata.val + other_qsets > SGE_QSETS)
2255                         return -EINVAL;
2256
2257                 pi->nqsets = edata.val;
2258
2259                 for_each_port(adapter, i)
2260                         if (adapter->port[i]) {
2261                                 pi = adap2pinfo(adapter, i);
2262                                 pi->first_qset = first_qset;
2263                                 first_qset += pi->nqsets;
2264                         }
2265                 break;
2266         }
2267         case CHELSIO_GET_QSET_NUM:{
2268                 struct ch_reg edata;
2269
2270                 memset(&edata, 0, sizeof(struct ch_reg));
2271
2272                 edata.cmd = CHELSIO_GET_QSET_NUM;
2273                 edata.val = pi->nqsets;
2274                 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2275                         return -EFAULT;
2276                 break;
2277         }
2278         case CHELSIO_LOAD_FW:{
2279                 u8 *fw_data;
2280                 struct ch_mem_range t;
2281
2282                 if (!capable(CAP_SYS_RAWIO))
2283                         return -EPERM;
2284                 if (copy_from_user(&t, useraddr, sizeof(t)))
2285                         return -EFAULT;
2286                 /* Check t.len sanity ? */
2287                 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2288                 if (IS_ERR(fw_data))
2289                         return PTR_ERR(fw_data);
2290
2291                 ret = t3_load_fw(adapter, fw_data, t.len);
2292                 kfree(fw_data);
2293                 if (ret)
2294                         return ret;
2295                 break;
2296         }
2297         case CHELSIO_SETMTUTAB:{
2298                 struct ch_mtus m;
2299                 int i;
2300
2301                 if (!is_offload(adapter))
2302                         return -EOPNOTSUPP;
2303                 if (!capable(CAP_NET_ADMIN))
2304                         return -EPERM;
2305                 if (offload_running(adapter))
2306                         return -EBUSY;
2307                 if (copy_from_user(&m, useraddr, sizeof(m)))
2308                         return -EFAULT;
2309                 if (m.nmtus != NMTUS)
2310                         return -EINVAL;
2311                 if (m.mtus[0] < 81)     /* accommodate SACK */
2312                         return -EINVAL;
2313
2314                 /* MTUs must be in ascending order */
2315                 for (i = 1; i < NMTUS; ++i)
2316                         if (m.mtus[i] < m.mtus[i - 1])
2317                                 return -EINVAL;
2318
2319                 memcpy(adapter->params.mtus, m.mtus,
2320                         sizeof(adapter->params.mtus));
2321                 break;
2322         }
2323         case CHELSIO_GET_PM:{
2324                 struct tp_params *p = &adapter->params.tp;
2325                 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2326
2327                 if (!is_offload(adapter))
2328                         return -EOPNOTSUPP;
2329                 m.tx_pg_sz = p->tx_pg_size;
2330                 m.tx_num_pg = p->tx_num_pgs;
2331                 m.rx_pg_sz = p->rx_pg_size;
2332                 m.rx_num_pg = p->rx_num_pgs;
2333                 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2334                 if (copy_to_user(useraddr, &m, sizeof(m)))
2335                         return -EFAULT;
2336                 break;
2337         }
2338         case CHELSIO_SET_PM:{
2339                 struct ch_pm m;
2340                 struct tp_params *p = &adapter->params.tp;
2341
2342                 if (!is_offload(adapter))
2343                         return -EOPNOTSUPP;
2344                 if (!capable(CAP_NET_ADMIN))
2345                         return -EPERM;
2346                 if (adapter->flags & FULL_INIT_DONE)
2347                         return -EBUSY;
2348                 if (copy_from_user(&m, useraddr, sizeof(m)))
2349                         return -EFAULT;
2350                 if (!is_power_of_2(m.rx_pg_sz) ||
2351                         !is_power_of_2(m.tx_pg_sz))
2352                         return -EINVAL; /* not power of 2 */
2353                 if (!(m.rx_pg_sz & 0x14000))
2354                         return -EINVAL; /* not 16KB or 64KB */
2355                 if (!(m.tx_pg_sz & 0x1554000))
2356                         return -EINVAL;
2357                 if (m.tx_num_pg == -1)
2358                         m.tx_num_pg = p->tx_num_pgs;
2359                 if (m.rx_num_pg == -1)
2360                         m.rx_num_pg = p->rx_num_pgs;
2361                 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2362                         return -EINVAL;
2363                 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2364                         m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2365                         return -EINVAL;
2366                 p->rx_pg_size = m.rx_pg_sz;
2367                 p->tx_pg_size = m.tx_pg_sz;
2368                 p->rx_num_pgs = m.rx_num_pg;
2369                 p->tx_num_pgs = m.tx_num_pg;
2370                 break;
2371         }
2372         case CHELSIO_GET_MEM:{
2373                 struct ch_mem_range t;
2374                 struct mc7 *mem;
2375                 u64 buf[32];
2376
2377                 if (!is_offload(adapter))
2378                         return -EOPNOTSUPP;
2379                 if (!(adapter->flags & FULL_INIT_DONE))
2380                         return -EIO;    /* need the memory controllers */
2381                 if (copy_from_user(&t, useraddr, sizeof(t)))
2382                         return -EFAULT;
2383                 if ((t.addr & 7) || (t.len & 7))
2384                         return -EINVAL;
2385                 if (t.mem_id == MEM_CM)
2386                         mem = &adapter->cm;
2387                 else if (t.mem_id == MEM_PMRX)
2388                         mem = &adapter->pmrx;
2389                 else if (t.mem_id == MEM_PMTX)
2390                         mem = &adapter->pmtx;
2391                 else
2392                         return -EINVAL;
2393
2394                 /*
2395                  * Version scheme:
2396                  * bits 0..9: chip version
2397                  * bits 10..15: chip revision
2398                  */
2399                 t.version = 3 | (adapter->params.rev << 10);
2400                 if (copy_to_user(useraddr, &t, sizeof(t)))
2401                         return -EFAULT;
2402
2403                 /*
2404                  * Read 256 bytes at a time as len can be large and we don't
2405                  * want to use huge intermediate buffers.
2406                  */
2407                 useraddr += sizeof(t);  /* advance to start of buffer */
2408                 while (t.len) {
2409                         unsigned int chunk =
2410                                 min_t(unsigned int, t.len, sizeof(buf));
2411
2412                         ret =
2413                                 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2414                                                 buf);
2415                         if (ret)
2416                                 return ret;
2417                         if (copy_to_user(useraddr, buf, chunk))
2418                                 return -EFAULT;
2419                         useraddr += chunk;
2420                         t.addr += chunk;
2421                         t.len -= chunk;
2422                 }
2423                 break;
2424         }
2425         case CHELSIO_SET_TRACE_FILTER:{
2426                 struct ch_trace t;
2427                 const struct trace_params *tp;
2428
2429                 if (!capable(CAP_NET_ADMIN))
2430                         return -EPERM;
2431                 if (!offload_running(adapter))
2432                         return -EAGAIN;
2433                 if (copy_from_user(&t, useraddr, sizeof(t)))
2434                         return -EFAULT;
2435
2436                 tp = (const struct trace_params *)&t.sip;
2437                 if (t.config_tx)
2438                         t3_config_trace_filter(adapter, tp, 0,
2439                                                 t.invert_match,
2440                                                 t.trace_tx);
2441                 if (t.config_rx)
2442                         t3_config_trace_filter(adapter, tp, 1,
2443                                                 t.invert_match,
2444                                                 t.trace_rx);
2445                 break;
2446         }
2447         default:
2448                 return -EOPNOTSUPP;
2449         }
2450         return 0;
2451 }
2452
2453 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2454 {
2455         struct mii_ioctl_data *data = if_mii(req);
2456         struct port_info *pi = netdev_priv(dev);
2457         struct adapter *adapter = pi->adapter;
2458
2459         switch (cmd) {
2460         case SIOCGMIIREG:
2461         case SIOCSMIIREG:
2462                 /* Convert phy_id from older PRTAD/DEVAD format */
2463                 if (is_10G(adapter) &&
2464                     !mdio_phy_id_is_c45(data->phy_id) &&
2465                     (data->phy_id & 0x1f00) &&
2466                     !(data->phy_id & 0xe0e0))
2467                         data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2468                                                        data->phy_id & 0x1f);
2469                 /* FALLTHRU */
2470         case SIOCGMIIPHY:
2471                 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2472         case SIOCCHIOCTL:
2473                 return cxgb_extension_ioctl(dev, req->ifr_data);
2474         default:
2475                 return -EOPNOTSUPP;
2476         }
2477 }
2478
2479 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2480 {
2481         struct port_info *pi = netdev_priv(dev);
2482         struct adapter *adapter = pi->adapter;
2483         int ret;
2484
2485         if (new_mtu < 81)       /* accommodate SACK */
2486                 return -EINVAL;
2487         if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2488                 return ret;
2489         dev->mtu = new_mtu;
2490         init_port_mtus(adapter);
2491         if (adapter->params.rev == 0 && offload_running(adapter))
2492                 t3_load_mtus(adapter, adapter->params.mtus,
2493                              adapter->params.a_wnd, adapter->params.b_wnd,
2494                              adapter->port[0]->mtu);
2495         return 0;
2496 }
2497
2498 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2499 {
2500         struct port_info *pi = netdev_priv(dev);
2501         struct adapter *adapter = pi->adapter;
2502         struct sockaddr *addr = p;
2503
2504         if (!is_valid_ether_addr(addr->sa_data))
2505                 return -EINVAL;
2506
2507         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2508         t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2509         if (offload_running(adapter))
2510                 write_smt_entry(adapter, pi->port_id);
2511         return 0;
2512 }
2513
2514 /**
2515  * t3_synchronize_rx - wait for current Rx processing on a port to complete
2516  * @adap: the adapter
2517  * @p: the port
2518  *
2519  * Ensures that current Rx processing on any of the queues associated with
2520  * the given port completes before returning.  We do this by acquiring and
2521  * releasing the locks of the response queues associated with the port.
2522  */
2523 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2524 {
2525         int i;
2526
2527         for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2528                 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2529
2530                 spin_lock_irq(&q->lock);
2531                 spin_unlock_irq(&q->lock);
2532         }
2533 }
2534
2535 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2536 {
2537         struct port_info *pi = netdev_priv(dev);
2538         struct adapter *adapter = pi->adapter;
2539
2540         pi->vlan_grp = grp;
2541         if (adapter->params.rev > 0)
2542                 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2543         else {
2544                 /* single control for all ports */
2545                 unsigned int i, have_vlans = 0;
2546                 for_each_port(adapter, i)
2547                     have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2548
2549                 t3_set_vlan_accel(adapter, 1, have_vlans);
2550         }
2551         t3_synchronize_rx(adapter, pi);
2552 }
2553
2554 #ifdef CONFIG_NET_POLL_CONTROLLER
2555 static void cxgb_netpoll(struct net_device *dev)
2556 {
2557         struct port_info *pi = netdev_priv(dev);
2558         struct adapter *adapter = pi->adapter;
2559         int qidx;
2560
2561         for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2562                 struct sge_qset *qs = &adapter->sge.qs[qidx];
2563                 void *source;
2564
2565                 if (adapter->flags & USING_MSIX)
2566                         source = qs;
2567                 else
2568                         source = adapter;
2569
2570                 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2571         }
2572 }
2573 #endif
2574
2575 /*
2576  * Periodic accumulation of MAC statistics.
2577  */
2578 static void mac_stats_update(struct adapter *adapter)
2579 {
2580         int i;
2581
2582         for_each_port(adapter, i) {
2583                 struct net_device *dev = adapter->port[i];
2584                 struct port_info *p = netdev_priv(dev);
2585
2586                 if (netif_running(dev)) {
2587                         spin_lock(&adapter->stats_lock);
2588                         t3_mac_update_stats(&p->mac);
2589                         spin_unlock(&adapter->stats_lock);
2590                 }
2591         }
2592 }
2593
2594 static void check_link_status(struct adapter *adapter)
2595 {
2596         int i;
2597
2598         for_each_port(adapter, i) {
2599                 struct net_device *dev = adapter->port[i];
2600                 struct port_info *p = netdev_priv(dev);
2601                 int link_fault;
2602
2603                 spin_lock_irq(&adapter->work_lock);
2604                 link_fault = p->link_fault;
2605                 spin_unlock_irq(&adapter->work_lock);
2606
2607                 if (link_fault) {
2608                         t3_link_fault(adapter, i);
2609                         continue;
2610                 }
2611
2612                 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2613                         t3_xgm_intr_disable(adapter, i);
2614                         t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2615
2616                         t3_link_changed(adapter, i);
2617                         t3_xgm_intr_enable(adapter, i);
2618                 }
2619         }
2620 }
2621
2622 static void check_t3b2_mac(struct adapter *adapter)
2623 {
2624         int i;
2625
2626         if (!rtnl_trylock())    /* synchronize with ifdown */
2627                 return;
2628
2629         for_each_port(adapter, i) {
2630                 struct net_device *dev = adapter->port[i];
2631                 struct port_info *p = netdev_priv(dev);
2632                 int status;
2633
2634                 if (!netif_running(dev))
2635                         continue;
2636
2637                 status = 0;
2638                 if (netif_running(dev) && netif_carrier_ok(dev))
2639                         status = t3b2_mac_watchdog_task(&p->mac);
2640                 if (status == 1)
2641                         p->mac.stats.num_toggled++;
2642                 else if (status == 2) {
2643                         struct cmac *mac = &p->mac;
2644
2645                         t3_mac_set_mtu(mac, dev->mtu);
2646                         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2647                         cxgb_set_rxmode(dev);
2648                         t3_link_start(&p->phy, mac, &p->link_config);
2649                         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2650                         t3_port_intr_enable(adapter, p->port_id);
2651                         p->mac.stats.num_resets++;
2652                 }
2653         }
2654         rtnl_unlock();
2655 }
2656
2657
2658 static void t3_adap_check_task(struct work_struct *work)
2659 {
2660         struct adapter *adapter = container_of(work, struct adapter,
2661                                                adap_check_task.work);
2662         const struct adapter_params *p = &adapter->params;
2663         int port;
2664         unsigned int v, status, reset;
2665
2666         adapter->check_task_cnt++;
2667
2668         check_link_status(adapter);
2669
2670         /* Accumulate MAC stats if needed */
2671         if (!p->linkpoll_period ||
2672             (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2673             p->stats_update_period) {
2674                 mac_stats_update(adapter);
2675                 adapter->check_task_cnt = 0;
2676         }
2677
2678         if (p->rev == T3_REV_B2)
2679                 check_t3b2_mac(adapter);
2680
2681         /*
2682          * Scan the XGMAC's to check for various conditions which we want to
2683          * monitor in a periodic polling manner rather than via an interrupt
2684          * condition.  This is used for conditions which would otherwise flood
2685          * the system with interrupts and we only really need to know that the
2686          * conditions are "happening" ...  For each condition we count the
2687          * detection of the condition and reset it for the next polling loop.
2688          */
2689         for_each_port(adapter, port) {
2690                 struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2691                 u32 cause;
2692
2693                 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2694                 reset = 0;
2695                 if (cause & F_RXFIFO_OVERFLOW) {
2696                         mac->stats.rx_fifo_ovfl++;
2697                         reset |= F_RXFIFO_OVERFLOW;
2698                 }
2699
2700                 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2701         }
2702
2703         /*
2704          * We do the same as above for FL_EMPTY interrupts.
2705          */
2706         status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2707         reset = 0;
2708
2709         if (status & F_FLEMPTY) {
2710                 struct sge_qset *qs = &adapter->sge.qs[0];
2711                 int i = 0;
2712
2713                 reset |= F_FLEMPTY;
2714
2715                 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2716                     0xffff;
2717
2718                 while (v) {
2719                         qs->fl[i].empty += (v & 1);
2720                         if (i)
2721                                 qs++;
2722                         i ^= 1;
2723                         v >>= 1;
2724                 }
2725         }
2726
2727         t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2728
2729         /* Schedule the next check update if any port is active. */
2730         spin_lock_irq(&adapter->work_lock);
2731         if (adapter->open_device_map & PORT_MASK)
2732                 schedule_chk_task(adapter);
2733         spin_unlock_irq(&adapter->work_lock);
2734 }
2735
2736 static void db_full_task(struct work_struct *work)
2737 {
2738         struct adapter *adapter = container_of(work, struct adapter,
2739                                                db_full_task);
2740
2741         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2742 }
2743
2744 static void db_empty_task(struct work_struct *work)
2745 {
2746         struct adapter *adapter = container_of(work, struct adapter,
2747                                                db_empty_task);
2748
2749         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2750 }
2751
2752 static void db_drop_task(struct work_struct *work)
2753 {
2754         struct adapter *adapter = container_of(work, struct adapter,
2755                                                db_drop_task);
2756         unsigned long delay = 1000;
2757         unsigned short r;
2758
2759         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2760
2761         /*
2762          * Sleep a while before ringing the driver qset dbs.
2763          * The delay is between 1000-2023 usecs.
2764          */
2765         get_random_bytes(&r, 2);
2766         delay += r & 1023;
2767         set_current_state(TASK_UNINTERRUPTIBLE);
2768         schedule_timeout(usecs_to_jiffies(delay));
2769         ring_dbs(adapter);
2770 }
2771
2772 /*
2773  * Processes external (PHY) interrupts in process context.
2774  */
2775 static void ext_intr_task(struct work_struct *work)
2776 {
2777         struct adapter *adapter = container_of(work, struct adapter,
2778                                                ext_intr_handler_task);
2779         int i;
2780
2781         /* Disable link fault interrupts */
2782         for_each_port(adapter, i) {
2783                 struct net_device *dev = adapter->port[i];
2784                 struct port_info *p = netdev_priv(dev);
2785
2786                 t3_xgm_intr_disable(adapter, i);
2787                 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2788         }
2789
2790         /* Re-enable link fault interrupts */
2791         t3_phy_intr_handler(adapter);
2792
2793         for_each_port(adapter, i)
2794                 t3_xgm_intr_enable(adapter, i);
2795
2796         /* Now reenable external interrupts */
2797         spin_lock_irq(&adapter->work_lock);
2798         if (adapter->slow_intr_mask) {
2799                 adapter->slow_intr_mask |= F_T3DBG;
2800                 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2801                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2802                              adapter->slow_intr_mask);
2803         }
2804         spin_unlock_irq(&adapter->work_lock);
2805 }
2806
2807 /*
2808  * Interrupt-context handler for external (PHY) interrupts.
2809  */
2810 void t3_os_ext_intr_handler(struct adapter *adapter)
2811 {
2812         /*
2813          * Schedule a task to handle external interrupts as they may be slow
2814          * and we use a mutex to protect MDIO registers.  We disable PHY
2815          * interrupts in the meantime and let the task reenable them when
2816          * it's done.
2817          */
2818         spin_lock(&adapter->work_lock);
2819         if (adapter->slow_intr_mask) {
2820                 adapter->slow_intr_mask &= ~F_T3DBG;
2821                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2822                              adapter->slow_intr_mask);
2823                 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2824         }
2825         spin_unlock(&adapter->work_lock);
2826 }
2827
2828 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2829 {
2830         struct net_device *netdev = adapter->port[port_id];
2831         struct port_info *pi = netdev_priv(netdev);
2832
2833         spin_lock(&adapter->work_lock);
2834         pi->link_fault = 1;
2835         spin_unlock(&adapter->work_lock);
2836 }
2837
2838 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2839 {
2840         int i, ret = 0;
2841
2842         if (is_offload(adapter) &&
2843             test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2844                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2845                 offload_close(&adapter->tdev);
2846         }
2847
2848         /* Stop all ports */
2849         for_each_port(adapter, i) {
2850                 struct net_device *netdev = adapter->port[i];
2851
2852                 if (netif_running(netdev))
2853                         __cxgb_close(netdev, on_wq);
2854         }
2855
2856         /* Stop SGE timers */
2857         t3_stop_sge_timers(adapter);
2858
2859         adapter->flags &= ~FULL_INIT_DONE;
2860
2861         if (reset)
2862                 ret = t3_reset_adapter(adapter);
2863
2864         pci_disable_device(adapter->pdev);
2865
2866         return ret;
2867 }
2868
2869 static int t3_reenable_adapter(struct adapter *adapter)
2870 {
2871         if (pci_enable_device(adapter->pdev)) {
2872                 dev_err(&adapter->pdev->dev,
2873                         "Cannot re-enable PCI device after reset.\n");
2874                 goto err;
2875         }
2876         pci_set_master(adapter->pdev);
2877         pci_restore_state(adapter->pdev);
2878         pci_save_state(adapter->pdev);
2879
2880         /* Free sge resources */
2881         t3_free_sge_resources(adapter);
2882
2883         if (t3_replay_prep_adapter(adapter))
2884                 goto err;
2885
2886         return 0;
2887 err:
2888         return -1;
2889 }
2890
2891 static void t3_resume_ports(struct adapter *adapter)
2892 {
2893         int i;
2894
2895         /* Restart the ports */
2896         for_each_port(adapter, i) {
2897                 struct net_device *netdev = adapter->port[i];
2898
2899                 if (netif_running(netdev)) {
2900                         if (cxgb_open(netdev)) {
2901                                 dev_err(&adapter->pdev->dev,
2902                                         "can't bring device back up"
2903                                         " after reset\n");
2904                                 continue;
2905                         }
2906                 }
2907         }
2908
2909         if (is_offload(adapter) && !ofld_disable)
2910                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2911 }
2912
2913 /*
2914  * processes a fatal error.
2915  * Bring the ports down, reset the chip, bring the ports back up.
2916  */
2917 static void fatal_error_task(struct work_struct *work)
2918 {
2919         struct adapter *adapter = container_of(work, struct adapter,
2920                                                fatal_error_handler_task);
2921         int err = 0;
2922
2923         rtnl_lock();
2924         err = t3_adapter_error(adapter, 1, 1);
2925         if (!err)
2926                 err = t3_reenable_adapter(adapter);
2927         if (!err)
2928                 t3_resume_ports(adapter);
2929
2930         CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2931         rtnl_unlock();
2932 }
2933
2934 void t3_fatal_err(struct adapter *adapter)
2935 {
2936         unsigned int fw_status[4];
2937
2938         if (adapter->flags & FULL_INIT_DONE) {
2939                 t3_sge_stop(adapter);
2940                 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2941                 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2942                 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2943                 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2944
2945                 spin_lock(&adapter->work_lock);
2946                 t3_intr_disable(adapter);
2947                 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2948                 spin_unlock(&adapter->work_lock);
2949         }
2950         CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2951         if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2952                 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2953                          fw_status[0], fw_status[1],
2954                          fw_status[2], fw_status[3]);
2955 }
2956
2957 /**
2958  * t3_io_error_detected - called when PCI error is detected
2959  * @pdev: Pointer to PCI device
2960  * @state: The current pci connection state
2961  *
2962  * This function is called after a PCI bus error affecting
2963  * this device has been detected.
2964  */
2965 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2966                                              pci_channel_state_t state)
2967 {
2968         struct adapter *adapter = pci_get_drvdata(pdev);
2969
2970         if (state == pci_channel_io_perm_failure)
2971                 return PCI_ERS_RESULT_DISCONNECT;
2972
2973         t3_adapter_error(adapter, 0, 0);
2974
2975         /* Request a slot reset. */
2976         return PCI_ERS_RESULT_NEED_RESET;
2977 }
2978
2979 /**
2980  * t3_io_slot_reset - called after the pci bus has been reset.
2981  * @pdev: Pointer to PCI device
2982  *
2983  * Restart the card from scratch, as if from a cold-boot.
2984  */
2985 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
2986 {
2987         struct adapter *adapter = pci_get_drvdata(pdev);
2988
2989         if (!t3_reenable_adapter(adapter))
2990                 return PCI_ERS_RESULT_RECOVERED;
2991
2992         return PCI_ERS_RESULT_DISCONNECT;
2993 }
2994
2995 /**
2996  * t3_io_resume - called when traffic can start flowing again.
2997  * @pdev: Pointer to PCI device
2998  *
2999  * This callback is called when the error recovery driver tells us that
3000  * its OK to resume normal operation.
3001  */
3002 static void t3_io_resume(struct pci_dev *pdev)
3003 {
3004         struct adapter *adapter = pci_get_drvdata(pdev);
3005
3006         CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3007                  t3_read_reg(adapter, A_PCIE_PEX_ERR));
3008
3009         t3_resume_ports(adapter);
3010 }
3011
3012 static struct pci_error_handlers t3_err_handler = {
3013         .error_detected = t3_io_error_detected,
3014         .slot_reset = t3_io_slot_reset,
3015         .resume = t3_io_resume,
3016 };
3017
3018 /*
3019  * Set the number of qsets based on the number of CPUs and the number of ports,
3020  * not to exceed the number of available qsets, assuming there are enough qsets
3021  * per port in HW.
3022  */
3023 static void set_nqsets(struct adapter *adap)
3024 {
3025         int i, j = 0;
3026         int num_cpus = num_online_cpus();
3027         int hwports = adap->params.nports;
3028         int nqsets = adap->msix_nvectors - 1;
3029
3030         if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3031                 if (hwports == 2 &&
3032                     (hwports * nqsets > SGE_QSETS ||
3033                      num_cpus >= nqsets / hwports))
3034                         nqsets /= hwports;
3035                 if (nqsets > num_cpus)
3036                         nqsets = num_cpus;
3037                 if (nqsets < 1 || hwports == 4)
3038                         nqsets = 1;
3039         } else
3040                 nqsets = 1;
3041
3042         for_each_port(adap, i) {
3043                 struct port_info *pi = adap2pinfo(adap, i);
3044
3045                 pi->first_qset = j;
3046                 pi->nqsets = nqsets;
3047                 j = pi->first_qset + nqsets;
3048
3049                 dev_info(&adap->pdev->dev,
3050                          "Port %d using %d queue sets.\n", i, nqsets);
3051         }
3052 }
3053
3054 static int __devinit cxgb_enable_msix(struct adapter *adap)
3055 {
3056         struct msix_entry entries[SGE_QSETS + 1];
3057         int vectors;
3058         int i, err;
3059
3060         vectors = ARRAY_SIZE(entries);
3061         for (i = 0; i < vectors; ++i)
3062                 entries[i].entry = i;
3063
3064         while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3065                 vectors = err;
3066
3067         if (err < 0)
3068                 pci_disable_msix(adap->pdev);
3069
3070         if (!err && vectors < (adap->params.nports + 1)) {
3071                 pci_disable_msix(adap->pdev);
3072                 err = -1;
3073         }
3074
3075         if (!err) {
3076                 for (i = 0; i < vectors; ++i)
3077                         adap->msix_info[i].vec = entries[i].vector;
3078                 adap->msix_nvectors = vectors;
3079         }
3080
3081         return err;
3082 }
3083
3084 static void __devinit print_port_info(struct adapter *adap,
3085                                       const struct adapter_info *ai)
3086 {
3087         static const char *pci_variant[] = {
3088                 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3089         };
3090
3091         int i;
3092         char buf[80];
3093
3094         if (is_pcie(adap))
3095                 snprintf(buf, sizeof(buf), "%s x%d",
3096                          pci_variant[adap->params.pci.variant],
3097                          adap->params.pci.width);
3098         else
3099                 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3100                          pci_variant[adap->params.pci.variant],
3101                          adap->params.pci.speed, adap->params.pci.width);
3102
3103         for_each_port(adap, i) {
3104                 struct net_device *dev = adap->port[i];
3105                 const struct port_info *pi = netdev_priv(dev);
3106
3107                 if (!test_bit(i, &adap->registered_device_map))
3108                         continue;
3109                 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3110                        dev->name, ai->desc, pi->phy.desc,
3111                        is_offload(adap) ? "R" : "", adap->params.rev, buf,
3112                        (adap->flags & USING_MSIX) ? " MSI-X" :
3113                        (adap->flags & USING_MSI) ? " MSI" : "");
3114                 if (adap->name == dev->name && adap->params.vpd.mclk)
3115                         printk(KERN_INFO
3116                                "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3117                                adap->name, t3_mc7_size(&adap->cm) >> 20,
3118                                t3_mc7_size(&adap->pmtx) >> 20,
3119                                t3_mc7_size(&adap->pmrx) >> 20,
3120                                adap->params.vpd.sn);
3121         }
3122 }
3123
3124 static const struct net_device_ops cxgb_netdev_ops = {
3125         .ndo_open               = cxgb_open,
3126         .ndo_stop               = cxgb_close,
3127         .ndo_start_xmit         = t3_eth_xmit,
3128         .ndo_get_stats          = cxgb_get_stats,
3129         .ndo_validate_addr      = eth_validate_addr,
3130         .ndo_set_multicast_list = cxgb_set_rxmode,
3131         .ndo_do_ioctl           = cxgb_ioctl,
3132         .ndo_change_mtu         = cxgb_change_mtu,
3133         .ndo_set_mac_address    = cxgb_set_mac_addr,
3134         .ndo_vlan_rx_register   = vlan_rx_register,
3135 #ifdef CONFIG_NET_POLL_CONTROLLER
3136         .ndo_poll_controller    = cxgb_netpoll,
3137 #endif
3138 };
3139
3140 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3141 {
3142         struct port_info *pi = netdev_priv(dev);
3143
3144         memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3145         pi->iscsic.mac_addr[3] |= 0x80;
3146 }
3147
3148 static int __devinit init_one(struct pci_dev *pdev,
3149                               const struct pci_device_id *ent)
3150 {
3151         static int version_printed;
3152
3153         int i, err, pci_using_dac = 0;
3154         resource_size_t mmio_start, mmio_len;
3155         const struct adapter_info *ai;
3156         struct adapter *adapter = NULL;
3157         struct port_info *pi;
3158
3159         if (!version_printed) {
3160                 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3161                 ++version_printed;
3162         }
3163
3164         if (!cxgb3_wq) {
3165                 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3166                 if (!cxgb3_wq) {
3167                         printk(KERN_ERR DRV_NAME
3168                                ": cannot initialize work queue\n");
3169                         return -ENOMEM;
3170                 }
3171         }
3172
3173         err = pci_enable_device(pdev);
3174         if (err) {
3175                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3176                 goto out;
3177         }
3178
3179         err = pci_request_regions(pdev, DRV_NAME);
3180         if (err) {
3181                 /* Just info, some other driver may have claimed the device. */
3182                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3183                 goto out_disable_device;
3184         }
3185
3186         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3187                 pci_using_dac = 1;
3188                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3189                 if (err) {
3190                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3191                                "coherent allocations\n");
3192                         goto out_release_regions;
3193                 }
3194         } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3195                 dev_err(&pdev->dev, "no usable DMA configuration\n");
3196                 goto out_release_regions;
3197         }
3198
3199         pci_set_master(pdev);
3200         pci_save_state(pdev);
3201
3202         mmio_start = pci_resource_start(pdev, 0);
3203         mmio_len = pci_resource_len(pdev, 0);
3204         ai = t3_get_adapter_info(ent->driver_data);
3205
3206         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3207         if (!adapter) {
3208                 err = -ENOMEM;
3209                 goto out_release_regions;
3210         }
3211
3212         adapter->nofail_skb =
3213                 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3214         if (!adapter->nofail_skb) {
3215                 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3216                 err = -ENOMEM;
3217                 goto out_free_adapter;
3218         }
3219
3220         adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3221         if (!adapter->regs) {
3222                 dev_err(&pdev->dev, "cannot map device registers\n");
3223                 err = -ENOMEM;
3224                 goto out_free_adapter;
3225         }
3226
3227         adapter->pdev = pdev;
3228         adapter->name = pci_name(pdev);
3229         adapter->msg_enable = dflt_msg_enable;
3230         adapter->mmio_len = mmio_len;
3231
3232         mutex_init(&adapter->mdio_lock);
3233         spin_lock_init(&adapter->work_lock);
3234         spin_lock_init(&adapter->stats_lock);
3235
3236         INIT_LIST_HEAD(&adapter->adapter_list);
3237         INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3238         INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3239
3240         INIT_WORK(&adapter->db_full_task, db_full_task);
3241         INIT_WORK(&adapter->db_empty_task, db_empty_task);
3242         INIT_WORK(&adapter->db_drop_task, db_drop_task);
3243
3244         INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3245
3246         for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3247                 struct net_device *netdev;
3248
3249                 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3250                 if (!netdev) {
3251                         err = -ENOMEM;
3252                         goto out_free_dev;
3253                 }
3254
3255                 SET_NETDEV_DEV(netdev, &pdev->dev);
3256
3257                 adapter->port[i] = netdev;
3258                 pi = netdev_priv(netdev);
3259                 pi->adapter = adapter;
3260                 pi->port_id = i;
3261                 netif_carrier_off(netdev);
3262                 netdev->irq = pdev->irq;
3263                 netdev->mem_start = mmio_start;
3264                 netdev->mem_end = mmio_start + mmio_len - 1;
3265                 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3266                         NETIF_F_TSO | NETIF_F_RXCSUM;
3267                 netdev->features |= netdev->hw_features |
3268                         NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3269                 if (pci_using_dac)
3270                         netdev->features |= NETIF_F_HIGHDMA;
3271
3272                 netdev->netdev_ops = &cxgb_netdev_ops;
3273                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3274         }
3275
3276         pci_set_drvdata(pdev, adapter);
3277         if (t3_prep_adapter(adapter, ai, 1) < 0) {
3278                 err = -ENODEV;
3279                 goto out_free_dev;
3280         }
3281
3282         /*
3283          * The card is now ready to go.  If any errors occur during device
3284          * registration we do not fail the whole card but rather proceed only
3285          * with the ports we manage to register successfully.  However we must
3286          * register at least one net device.
3287          */
3288         for_each_port(adapter, i) {
3289                 err = register_netdev(adapter->port[i]);
3290                 if (err)
3291                         dev_warn(&pdev->dev,
3292                                  "cannot register net device %s, skipping\n",
3293                                  adapter->port[i]->name);
3294                 else {
3295                         /*
3296                          * Change the name we use for messages to the name of
3297                          * the first successfully registered interface.
3298                          */
3299                         if (!adapter->registered_device_map)
3300                                 adapter->name = adapter->port[i]->name;
3301
3302                         __set_bit(i, &adapter->registered_device_map);
3303                 }
3304         }
3305         if (!adapter->registered_device_map) {
3306                 dev_err(&pdev->dev, "could not register any net devices\n");
3307                 goto out_free_dev;
3308         }
3309
3310         for_each_port(adapter, i)
3311                 cxgb3_init_iscsi_mac(adapter->port[i]);
3312
3313         /* Driver's ready. Reflect it on LEDs */
3314         t3_led_ready(adapter);
3315
3316         if (is_offload(adapter)) {
3317                 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3318                 cxgb3_adapter_ofld(adapter);
3319         }
3320
3321         /* See what interrupts we'll be using */
3322         if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3323                 adapter->flags |= USING_MSIX;
3324         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3325                 adapter->flags |= USING_MSI;
3326
3327         set_nqsets(adapter);
3328
3329         err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3330                                  &cxgb3_attr_group);
3331
3332         print_port_info(adapter, ai);
3333         return 0;
3334
3335 out_free_dev:
3336         iounmap(adapter->regs);
3337         for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3338                 if (adapter->port[i])
3339                         free_netdev(adapter->port[i]);
3340
3341 out_free_adapter:
3342         kfree(adapter);
3343
3344 out_release_regions:
3345         pci_release_regions(pdev);
3346 out_disable_device:
3347         pci_disable_device(pdev);
3348         pci_set_drvdata(pdev, NULL);
3349 out:
3350         return err;
3351 }
3352
3353 static void __devexit remove_one(struct pci_dev *pdev)
3354 {
3355         struct adapter *adapter = pci_get_drvdata(pdev);
3356
3357         if (adapter) {
3358                 int i;
3359
3360                 t3_sge_stop(adapter);
3361                 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3362                                    &cxgb3_attr_group);
3363
3364                 if (is_offload(adapter)) {
3365                         cxgb3_adapter_unofld(adapter);
3366                         if (test_bit(OFFLOAD_DEVMAP_BIT,
3367                                      &adapter->open_device_map))
3368                                 offload_close(&adapter->tdev);
3369                 }
3370
3371                 for_each_port(adapter, i)
3372                     if (test_bit(i, &adapter->registered_device_map))
3373                         unregister_netdev(adapter->port[i]);
3374
3375                 t3_stop_sge_timers(adapter);
3376                 t3_free_sge_resources(adapter);
3377                 cxgb_disable_msi(adapter);
3378
3379                 for_each_port(adapter, i)
3380                         if (adapter->port[i])
3381                                 free_netdev(adapter->port[i]);
3382
3383                 iounmap(adapter->regs);
3384                 if (adapter->nofail_skb)
3385                         kfree_skb(adapter->nofail_skb);
3386                 kfree(adapter);
3387                 pci_release_regions(pdev);
3388                 pci_disable_device(pdev);
3389                 pci_set_drvdata(pdev, NULL);
3390         }
3391 }
3392
3393 static struct pci_driver driver = {
3394         .name = DRV_NAME,
3395         .id_table = cxgb3_pci_tbl,
3396         .probe = init_one,
3397         .remove = __devexit_p(remove_one),
3398         .err_handler = &t3_err_handler,
3399 };
3400
3401 static int __init cxgb3_init_module(void)
3402 {
3403         int ret;
3404
3405         cxgb3_offload_init();
3406
3407         ret = pci_register_driver(&driver);
3408         return ret;
3409 }
3410
3411 static void __exit cxgb3_cleanup_module(void)
3412 {
3413         pci_unregister_driver(&driver);
3414         if (cxgb3_wq)
3415                 destroy_workqueue(cxgb3_wq);
3416 }
3417
3418 module_init(cxgb3_init_module);
3419 module_exit(cxgb3_cleanup_module);