pandora: update defconfig
[pandora-kernel.git] / drivers / net / cassini.c
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19  * 02111-1307, USA.
20  *
21  * This driver uses the sungem driver (c) David Miller
22  * (davem@redhat.com) as its basis.
23  *
24  * The cassini chip has a number of features that distinguish it from
25  * the gem chip:
26  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
27  *      load balancing (non-VLAN mode)
28  *  batching of multiple packets
29  *  multiple CPU dispatching
30  *  page-based RX descriptor engine with separate completion rings
31  *  Gigabit support (GMII and PCS interface)
32  *  MIF link up/down detection works
33  *
34  * RX is handled by page sized buffers that are attached as fragments to
35  * the skb. here's what's done:
36  *  -- driver allocates pages at a time and keeps reference counts
37  *     on them.
38  *  -- the upper protocol layers assume that the header is in the skb
39  *     itself. as a result, cassini will copy a small amount (64 bytes)
40  *     to make them happy.
41  *  -- driver appends the rest of the data pages as frags to skbuffs
42  *     and increments the reference count
43  *  -- on page reclamation, the driver swaps the page with a spare page.
44  *     if that page is still in use, it frees its reference to that page,
45  *     and allocates a new page for use. otherwise, it just recycles the
46  *     the page.
47  *
48  * NOTE: cassini can parse the header. however, it's not worth it
49  *       as long as the network stack requires a header copy.
50  *
51  * TX has 4 queues. currently these queues are used in a round-robin
52  * fashion for load balancing. They can also be used for QoS. for that
53  * to work, however, QoS information needs to be exposed down to the driver
54  * level so that subqueues get targetted to particular transmit rings.
55  * alternatively, the queues can be configured via use of the all-purpose
56  * ioctl.
57  *
58  * RX DATA: the rx completion ring has all the info, but the rx desc
59  * ring has all of the data. RX can conceivably come in under multiple
60  * interrupts, but the INT# assignment needs to be set up properly by
61  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62  * that. also, the two descriptor rings are designed to distinguish between
63  * encrypted and non-encrypted packets, but we use them for buffering
64  * instead.
65  *
66  * by default, the selective clear mask is set up to process rx packets.
67  */
68
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/vmalloc.h>
79 #include <linux/ioport.h>
80 #include <linux/pci.h>
81 #include <linux/mm.h>
82 #include <linux/highmem.h>
83 #include <linux/list.h>
84 #include <linux/dma-mapping.h>
85
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 #include <linux/ethtool.h>
90 #include <linux/crc32.h>
91 #include <linux/random.h>
92 #include <linux/mii.h>
93 #include <linux/ip.h>
94 #include <linux/tcp.h>
95 #include <linux/mutex.h>
96 #include <linux/firmware.h>
97
98 #include <net/checksum.h>
99
100 #include <asm/atomic.h>
101 #include <asm/system.h>
102 #include <asm/io.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
105
106 #define cas_page_map(x)      kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
107 #define cas_page_unmap(x)    kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
108 #define CAS_NCPUS            num_online_cpus()
109
110 #ifdef CONFIG_CASSINI_NAPI
111 #define USE_NAPI
112 #define cas_skb_release(x)  netif_receive_skb(x)
113 #else
114 #define cas_skb_release(x)  netif_rx(x)
115 #endif
116
117 /* select which firmware to use */
118 #define USE_HP_WORKAROUND
119 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
120 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
121
122 #include "cassini.h"
123
124 #define USE_TX_COMPWB      /* use completion writeback registers */
125 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
126 #define USE_RX_BLANK       /* hw interrupt mitigation */
127 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
128
129 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
130  * also, we need to make cp->lock finer-grained.
131  */
132 #undef  USE_PCI_INTB
133 #undef  USE_PCI_INTC
134 #undef  USE_PCI_INTD
135 #undef  USE_QOS
136
137 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
138
139 /* rx processing options */
140 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
141 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
142 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
143 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
144 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
145
146 #define DRV_MODULE_NAME         "cassini"
147 #define DRV_MODULE_VERSION      "1.6"
148 #define DRV_MODULE_RELDATE      "21 May 2008"
149
150 #define CAS_DEF_MSG_ENABLE        \
151         (NETIF_MSG_DRV          | \
152          NETIF_MSG_PROBE        | \
153          NETIF_MSG_LINK         | \
154          NETIF_MSG_TIMER        | \
155          NETIF_MSG_IFDOWN       | \
156          NETIF_MSG_IFUP         | \
157          NETIF_MSG_RX_ERR       | \
158          NETIF_MSG_TX_ERR)
159
160 /* length of time before we decide the hardware is borked,
161  * and dev->tx_timeout() should be called to fix the problem
162  */
163 #define CAS_TX_TIMEOUT                  (HZ)
164 #define CAS_LINK_TIMEOUT                (22*HZ/10)
165 #define CAS_LINK_FAST_TIMEOUT           (1)
166
167 /* timeout values for state changing. these specify the number
168  * of 10us delays to be used before giving up.
169  */
170 #define STOP_TRIES_PHY 1000
171 #define STOP_TRIES     5000
172
173 /* specify a minimum frame size to deal with some fifo issues
174  * max mtu == 2 * page size - ethernet header - 64 - swivel =
175  *            2 * page_size - 0x50
176  */
177 #define CAS_MIN_FRAME                   97
178 #define CAS_1000MB_MIN_FRAME            255
179 #define CAS_MIN_MTU                     60
180 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
181
182 #if 1
183 /*
184  * Eliminate these and use separate atomic counters for each, to
185  * avoid a race condition.
186  */
187 #else
188 #define CAS_RESET_MTU                   1
189 #define CAS_RESET_ALL                   2
190 #define CAS_RESET_SPARE                 3
191 #endif
192
193 static char version[] __devinitdata =
194         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
195
196 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
197 static int link_mode;
198
199 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
200 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
201 MODULE_LICENSE("GPL");
202 MODULE_FIRMWARE("sun/cassini.bin");
203 module_param(cassini_debug, int, 0);
204 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
205 module_param(link_mode, int, 0);
206 MODULE_PARM_DESC(link_mode, "default link mode");
207
208 /*
209  * Work around for a PCS bug in which the link goes down due to the chip
210  * being confused and never showing a link status of "up."
211  */
212 #define DEFAULT_LINKDOWN_TIMEOUT 5
213 /*
214  * Value in seconds, for user input.
215  */
216 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
217 module_param(linkdown_timeout, int, 0);
218 MODULE_PARM_DESC(linkdown_timeout,
219 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
220
221 /*
222  * value in 'ticks' (units used by jiffies). Set when we init the
223  * module because 'HZ' in actually a function call on some flavors of
224  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
225  */
226 static int link_transition_timeout;
227
228
229
230 static u16 link_modes[] __devinitdata = {
231         BMCR_ANENABLE,                   /* 0 : autoneg */
232         0,                               /* 1 : 10bt half duplex */
233         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
234         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
235         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
236         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
237 };
238
239 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
240         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
241           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
242         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
243           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
244         { 0, }
245 };
246
247 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
248
249 static void cas_set_link_modes(struct cas *cp);
250
251 static inline void cas_lock_tx(struct cas *cp)
252 {
253         int i;
254
255         for (i = 0; i < N_TX_RINGS; i++)
256                 spin_lock(&cp->tx_lock[i]);
257 }
258
259 static inline void cas_lock_all(struct cas *cp)
260 {
261         spin_lock_irq(&cp->lock);
262         cas_lock_tx(cp);
263 }
264
265 /* WTZ: QA was finding deadlock problems with the previous
266  * versions after long test runs with multiple cards per machine.
267  * See if replacing cas_lock_all with safer versions helps. The
268  * symptoms QA is reporting match those we'd expect if interrupts
269  * aren't being properly restored, and we fixed a previous deadlock
270  * with similar symptoms by using save/restore versions in other
271  * places.
272  */
273 #define cas_lock_all_save(cp, flags) \
274 do { \
275         struct cas *xxxcp = (cp); \
276         spin_lock_irqsave(&xxxcp->lock, flags); \
277         cas_lock_tx(xxxcp); \
278 } while (0)
279
280 static inline void cas_unlock_tx(struct cas *cp)
281 {
282         int i;
283
284         for (i = N_TX_RINGS; i > 0; i--)
285                 spin_unlock(&cp->tx_lock[i - 1]);
286 }
287
288 static inline void cas_unlock_all(struct cas *cp)
289 {
290         cas_unlock_tx(cp);
291         spin_unlock_irq(&cp->lock);
292 }
293
294 #define cas_unlock_all_restore(cp, flags) \
295 do { \
296         struct cas *xxxcp = (cp); \
297         cas_unlock_tx(xxxcp); \
298         spin_unlock_irqrestore(&xxxcp->lock, flags); \
299 } while (0)
300
301 static void cas_disable_irq(struct cas *cp, const int ring)
302 {
303         /* Make sure we won't get any more interrupts */
304         if (ring == 0) {
305                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
306                 return;
307         }
308
309         /* disable completion interrupts and selectively mask */
310         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
311                 switch (ring) {
312 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
313 #ifdef USE_PCI_INTB
314                 case 1:
315 #endif
316 #ifdef USE_PCI_INTC
317                 case 2:
318 #endif
319 #ifdef USE_PCI_INTD
320                 case 3:
321 #endif
322                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
323                                cp->regs + REG_PLUS_INTRN_MASK(ring));
324                         break;
325 #endif
326                 default:
327                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
328                                REG_PLUS_INTRN_MASK(ring));
329                         break;
330                 }
331         }
332 }
333
334 static inline void cas_mask_intr(struct cas *cp)
335 {
336         int i;
337
338         for (i = 0; i < N_RX_COMP_RINGS; i++)
339                 cas_disable_irq(cp, i);
340 }
341
342 static void cas_enable_irq(struct cas *cp, const int ring)
343 {
344         if (ring == 0) { /* all but TX_DONE */
345                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
346                 return;
347         }
348
349         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
350                 switch (ring) {
351 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
352 #ifdef USE_PCI_INTB
353                 case 1:
354 #endif
355 #ifdef USE_PCI_INTC
356                 case 2:
357 #endif
358 #ifdef USE_PCI_INTD
359                 case 3:
360 #endif
361                         writel(INTRN_MASK_RX_EN, cp->regs +
362                                REG_PLUS_INTRN_MASK(ring));
363                         break;
364 #endif
365                 default:
366                         break;
367                 }
368         }
369 }
370
371 static inline void cas_unmask_intr(struct cas *cp)
372 {
373         int i;
374
375         for (i = 0; i < N_RX_COMP_RINGS; i++)
376                 cas_enable_irq(cp, i);
377 }
378
379 static inline void cas_entropy_gather(struct cas *cp)
380 {
381 #ifdef USE_ENTROPY_DEV
382         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
383                 return;
384
385         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
386                             readl(cp->regs + REG_ENTROPY_IV),
387                             sizeof(uint64_t)*8);
388 #endif
389 }
390
391 static inline void cas_entropy_reset(struct cas *cp)
392 {
393 #ifdef USE_ENTROPY_DEV
394         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
395                 return;
396
397         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
398                cp->regs + REG_BIM_LOCAL_DEV_EN);
399         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
400         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
401
402         /* if we read back 0x0, we don't have an entropy device */
403         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
404                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
405 #endif
406 }
407
408 /* access to the phy. the following assumes that we've initialized the MIF to
409  * be in frame rather than bit-bang mode
410  */
411 static u16 cas_phy_read(struct cas *cp, int reg)
412 {
413         u32 cmd;
414         int limit = STOP_TRIES_PHY;
415
416         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
417         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
418         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
419         cmd |= MIF_FRAME_TURN_AROUND_MSB;
420         writel(cmd, cp->regs + REG_MIF_FRAME);
421
422         /* poll for completion */
423         while (limit-- > 0) {
424                 udelay(10);
425                 cmd = readl(cp->regs + REG_MIF_FRAME);
426                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
427                         return (cmd & MIF_FRAME_DATA_MASK);
428         }
429         return 0xFFFF; /* -1 */
430 }
431
432 static int cas_phy_write(struct cas *cp, int reg, u16 val)
433 {
434         int limit = STOP_TRIES_PHY;
435         u32 cmd;
436
437         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
438         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
439         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
440         cmd |= MIF_FRAME_TURN_AROUND_MSB;
441         cmd |= val & MIF_FRAME_DATA_MASK;
442         writel(cmd, cp->regs + REG_MIF_FRAME);
443
444         /* poll for completion */
445         while (limit-- > 0) {
446                 udelay(10);
447                 cmd = readl(cp->regs + REG_MIF_FRAME);
448                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
449                         return 0;
450         }
451         return -1;
452 }
453
454 static void cas_phy_powerup(struct cas *cp)
455 {
456         u16 ctl = cas_phy_read(cp, MII_BMCR);
457
458         if ((ctl & BMCR_PDOWN) == 0)
459                 return;
460         ctl &= ~BMCR_PDOWN;
461         cas_phy_write(cp, MII_BMCR, ctl);
462 }
463
464 static void cas_phy_powerdown(struct cas *cp)
465 {
466         u16 ctl = cas_phy_read(cp, MII_BMCR);
467
468         if (ctl & BMCR_PDOWN)
469                 return;
470         ctl |= BMCR_PDOWN;
471         cas_phy_write(cp, MII_BMCR, ctl);
472 }
473
474 /* cp->lock held. note: the last put_page will free the buffer */
475 static int cas_page_free(struct cas *cp, cas_page_t *page)
476 {
477         pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
478                        PCI_DMA_FROMDEVICE);
479         __free_pages(page->buffer, cp->page_order);
480         kfree(page);
481         return 0;
482 }
483
484 #ifdef RX_COUNT_BUFFERS
485 #define RX_USED_ADD(x, y)       ((x)->used += (y))
486 #define RX_USED_SET(x, y)       ((x)->used  = (y))
487 #else
488 #define RX_USED_ADD(x, y)
489 #define RX_USED_SET(x, y)
490 #endif
491
492 /* local page allocation routines for the receive buffers. jumbo pages
493  * require at least 8K contiguous and 8K aligned buffers.
494  */
495 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
496 {
497         cas_page_t *page;
498
499         page = kmalloc(sizeof(cas_page_t), flags);
500         if (!page)
501                 return NULL;
502
503         INIT_LIST_HEAD(&page->list);
504         RX_USED_SET(page, 0);
505         page->buffer = alloc_pages(flags, cp->page_order);
506         if (!page->buffer)
507                 goto page_err;
508         page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
509                                       cp->page_size, PCI_DMA_FROMDEVICE);
510         return page;
511
512 page_err:
513         kfree(page);
514         return NULL;
515 }
516
517 /* initialize spare pool of rx buffers, but allocate during the open */
518 static void cas_spare_init(struct cas *cp)
519 {
520         spin_lock(&cp->rx_inuse_lock);
521         INIT_LIST_HEAD(&cp->rx_inuse_list);
522         spin_unlock(&cp->rx_inuse_lock);
523
524         spin_lock(&cp->rx_spare_lock);
525         INIT_LIST_HEAD(&cp->rx_spare_list);
526         cp->rx_spares_needed = RX_SPARE_COUNT;
527         spin_unlock(&cp->rx_spare_lock);
528 }
529
530 /* used on close. free all the spare buffers. */
531 static void cas_spare_free(struct cas *cp)
532 {
533         struct list_head list, *elem, *tmp;
534
535         /* free spare buffers */
536         INIT_LIST_HEAD(&list);
537         spin_lock(&cp->rx_spare_lock);
538         list_splice_init(&cp->rx_spare_list, &list);
539         spin_unlock(&cp->rx_spare_lock);
540         list_for_each_safe(elem, tmp, &list) {
541                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
542         }
543
544         INIT_LIST_HEAD(&list);
545 #if 1
546         /*
547          * Looks like Adrian had protected this with a different
548          * lock than used everywhere else to manipulate this list.
549          */
550         spin_lock(&cp->rx_inuse_lock);
551         list_splice_init(&cp->rx_inuse_list, &list);
552         spin_unlock(&cp->rx_inuse_lock);
553 #else
554         spin_lock(&cp->rx_spare_lock);
555         list_splice_init(&cp->rx_inuse_list, &list);
556         spin_unlock(&cp->rx_spare_lock);
557 #endif
558         list_for_each_safe(elem, tmp, &list) {
559                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
560         }
561 }
562
563 /* replenish spares if needed */
564 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
565 {
566         struct list_head list, *elem, *tmp;
567         int needed, i;
568
569         /* check inuse list. if we don't need any more free buffers,
570          * just free it
571          */
572
573         /* make a local copy of the list */
574         INIT_LIST_HEAD(&list);
575         spin_lock(&cp->rx_inuse_lock);
576         list_splice_init(&cp->rx_inuse_list, &list);
577         spin_unlock(&cp->rx_inuse_lock);
578
579         list_for_each_safe(elem, tmp, &list) {
580                 cas_page_t *page = list_entry(elem, cas_page_t, list);
581
582                 /*
583                  * With the lockless pagecache, cassini buffering scheme gets
584                  * slightly less accurate: we might find that a page has an
585                  * elevated reference count here, due to a speculative ref,
586                  * and skip it as in-use. Ideally we would be able to reclaim
587                  * it. However this would be such a rare case, it doesn't
588                  * matter too much as we should pick it up the next time round.
589                  *
590                  * Importantly, if we find that the page has a refcount of 1
591                  * here (our refcount), then we know it is definitely not inuse
592                  * so we can reuse it.
593                  */
594                 if (page_count(page->buffer) > 1)
595                         continue;
596
597                 list_del(elem);
598                 spin_lock(&cp->rx_spare_lock);
599                 if (cp->rx_spares_needed > 0) {
600                         list_add(elem, &cp->rx_spare_list);
601                         cp->rx_spares_needed--;
602                         spin_unlock(&cp->rx_spare_lock);
603                 } else {
604                         spin_unlock(&cp->rx_spare_lock);
605                         cas_page_free(cp, page);
606                 }
607         }
608
609         /* put any inuse buffers back on the list */
610         if (!list_empty(&list)) {
611                 spin_lock(&cp->rx_inuse_lock);
612                 list_splice(&list, &cp->rx_inuse_list);
613                 spin_unlock(&cp->rx_inuse_lock);
614         }
615
616         spin_lock(&cp->rx_spare_lock);
617         needed = cp->rx_spares_needed;
618         spin_unlock(&cp->rx_spare_lock);
619         if (!needed)
620                 return;
621
622         /* we still need spares, so try to allocate some */
623         INIT_LIST_HEAD(&list);
624         i = 0;
625         while (i < needed) {
626                 cas_page_t *spare = cas_page_alloc(cp, flags);
627                 if (!spare)
628                         break;
629                 list_add(&spare->list, &list);
630                 i++;
631         }
632
633         spin_lock(&cp->rx_spare_lock);
634         list_splice(&list, &cp->rx_spare_list);
635         cp->rx_spares_needed -= i;
636         spin_unlock(&cp->rx_spare_lock);
637 }
638
639 /* pull a page from the list. */
640 static cas_page_t *cas_page_dequeue(struct cas *cp)
641 {
642         struct list_head *entry;
643         int recover;
644
645         spin_lock(&cp->rx_spare_lock);
646         if (list_empty(&cp->rx_spare_list)) {
647                 /* try to do a quick recovery */
648                 spin_unlock(&cp->rx_spare_lock);
649                 cas_spare_recover(cp, GFP_ATOMIC);
650                 spin_lock(&cp->rx_spare_lock);
651                 if (list_empty(&cp->rx_spare_list)) {
652                         netif_err(cp, rx_err, cp->dev,
653                                   "no spare buffers available\n");
654                         spin_unlock(&cp->rx_spare_lock);
655                         return NULL;
656                 }
657         }
658
659         entry = cp->rx_spare_list.next;
660         list_del(entry);
661         recover = ++cp->rx_spares_needed;
662         spin_unlock(&cp->rx_spare_lock);
663
664         /* trigger the timer to do the recovery */
665         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
666 #if 1
667                 atomic_inc(&cp->reset_task_pending);
668                 atomic_inc(&cp->reset_task_pending_spare);
669                 schedule_work(&cp->reset_task);
670 #else
671                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
672                 schedule_work(&cp->reset_task);
673 #endif
674         }
675         return list_entry(entry, cas_page_t, list);
676 }
677
678
679 static void cas_mif_poll(struct cas *cp, const int enable)
680 {
681         u32 cfg;
682
683         cfg  = readl(cp->regs + REG_MIF_CFG);
684         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
685
686         if (cp->phy_type & CAS_PHY_MII_MDIO1)
687                 cfg |= MIF_CFG_PHY_SELECT;
688
689         /* poll and interrupt on link status change. */
690         if (enable) {
691                 cfg |= MIF_CFG_POLL_EN;
692                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
693                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
694         }
695         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
696                cp->regs + REG_MIF_MASK);
697         writel(cfg, cp->regs + REG_MIF_CFG);
698 }
699
700 /* Must be invoked under cp->lock */
701 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
702 {
703         u16 ctl;
704 #if 1
705         int lcntl;
706         int changed = 0;
707         int oldstate = cp->lstate;
708         int link_was_not_down = !(oldstate == link_down);
709 #endif
710         /* Setup link parameters */
711         if (!ep)
712                 goto start_aneg;
713         lcntl = cp->link_cntl;
714         if (ep->autoneg == AUTONEG_ENABLE)
715                 cp->link_cntl = BMCR_ANENABLE;
716         else {
717                 cp->link_cntl = 0;
718                 if (ep->speed == SPEED_100)
719                         cp->link_cntl |= BMCR_SPEED100;
720                 else if (ep->speed == SPEED_1000)
721                         cp->link_cntl |= CAS_BMCR_SPEED1000;
722                 if (ep->duplex == DUPLEX_FULL)
723                         cp->link_cntl |= BMCR_FULLDPLX;
724         }
725 #if 1
726         changed = (lcntl != cp->link_cntl);
727 #endif
728 start_aneg:
729         if (cp->lstate == link_up) {
730                 netdev_info(cp->dev, "PCS link down\n");
731         } else {
732                 if (changed) {
733                         netdev_info(cp->dev, "link configuration changed\n");
734                 }
735         }
736         cp->lstate = link_down;
737         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
738         if (!cp->hw_running)
739                 return;
740 #if 1
741         /*
742          * WTZ: If the old state was link_up, we turn off the carrier
743          * to replicate everything we do elsewhere on a link-down
744          * event when we were already in a link-up state..
745          */
746         if (oldstate == link_up)
747                 netif_carrier_off(cp->dev);
748         if (changed  && link_was_not_down) {
749                 /*
750                  * WTZ: This branch will simply schedule a full reset after
751                  * we explicitly changed link modes in an ioctl. See if this
752                  * fixes the link-problems we were having for forced mode.
753                  */
754                 atomic_inc(&cp->reset_task_pending);
755                 atomic_inc(&cp->reset_task_pending_all);
756                 schedule_work(&cp->reset_task);
757                 cp->timer_ticks = 0;
758                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
759                 return;
760         }
761 #endif
762         if (cp->phy_type & CAS_PHY_SERDES) {
763                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
764
765                 if (cp->link_cntl & BMCR_ANENABLE) {
766                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
767                         cp->lstate = link_aneg;
768                 } else {
769                         if (cp->link_cntl & BMCR_FULLDPLX)
770                                 val |= PCS_MII_CTRL_DUPLEX;
771                         val &= ~PCS_MII_AUTONEG_EN;
772                         cp->lstate = link_force_ok;
773                 }
774                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
775                 writel(val, cp->regs + REG_PCS_MII_CTRL);
776
777         } else {
778                 cas_mif_poll(cp, 0);
779                 ctl = cas_phy_read(cp, MII_BMCR);
780                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
781                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
782                 ctl |= cp->link_cntl;
783                 if (ctl & BMCR_ANENABLE) {
784                         ctl |= BMCR_ANRESTART;
785                         cp->lstate = link_aneg;
786                 } else {
787                         cp->lstate = link_force_ok;
788                 }
789                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
790                 cas_phy_write(cp, MII_BMCR, ctl);
791                 cas_mif_poll(cp, 1);
792         }
793
794         cp->timer_ticks = 0;
795         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
796 }
797
798 /* Must be invoked under cp->lock. */
799 static int cas_reset_mii_phy(struct cas *cp)
800 {
801         int limit = STOP_TRIES_PHY;
802         u16 val;
803
804         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
805         udelay(100);
806         while (--limit) {
807                 val = cas_phy_read(cp, MII_BMCR);
808                 if ((val & BMCR_RESET) == 0)
809                         break;
810                 udelay(10);
811         }
812         return (limit <= 0);
813 }
814
815 static int cas_saturn_firmware_init(struct cas *cp)
816 {
817         const struct firmware *fw;
818         const char fw_name[] = "sun/cassini.bin";
819         int err;
820
821         if (PHY_NS_DP83065 != cp->phy_id)
822                 return 0;
823
824         err = request_firmware(&fw, fw_name, &cp->pdev->dev);
825         if (err) {
826                 pr_err("Failed to load firmware \"%s\"\n",
827                        fw_name);
828                 return err;
829         }
830         if (fw->size < 2) {
831                 pr_err("bogus length %zu in \"%s\"\n",
832                        fw->size, fw_name);
833                 err = -EINVAL;
834                 goto out;
835         }
836         cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
837         cp->fw_size = fw->size - 2;
838         cp->fw_data = vmalloc(cp->fw_size);
839         if (!cp->fw_data) {
840                 err = -ENOMEM;
841                 pr_err("\"%s\" Failed %d\n", fw_name, err);
842                 goto out;
843         }
844         memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
845 out:
846         release_firmware(fw);
847         return err;
848 }
849
850 static void cas_saturn_firmware_load(struct cas *cp)
851 {
852         int i;
853
854         cas_phy_powerdown(cp);
855
856         /* expanded memory access mode */
857         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
858
859         /* pointer configuration for new firmware */
860         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
861         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
862         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
863         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
864         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
865         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
866         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
867         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
868
869         /* download new firmware */
870         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
871         cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
872         for (i = 0; i < cp->fw_size; i++)
873                 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
874
875         /* enable firmware */
876         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
877         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
878 }
879
880
881 /* phy initialization */
882 static void cas_phy_init(struct cas *cp)
883 {
884         u16 val;
885
886         /* if we're in MII/GMII mode, set up phy */
887         if (CAS_PHY_MII(cp->phy_type)) {
888                 writel(PCS_DATAPATH_MODE_MII,
889                        cp->regs + REG_PCS_DATAPATH_MODE);
890
891                 cas_mif_poll(cp, 0);
892                 cas_reset_mii_phy(cp); /* take out of isolate mode */
893
894                 if (PHY_LUCENT_B0 == cp->phy_id) {
895                         /* workaround link up/down issue with lucent */
896                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
897                         cas_phy_write(cp, MII_BMCR, 0x00f1);
898                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
899
900                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
901                         /* workarounds for broadcom phy */
902                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
903                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
904                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
905                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
906                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
907                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
908                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
909                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
910                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
911                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
912                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
913
914                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
915                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
916                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
917                         if (val & 0x0080) {
918                                 /* link workaround */
919                                 cas_phy_write(cp, BROADCOM_MII_REG4,
920                                               val & ~0x0080);
921                         }
922
923                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
924                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
925                                SATURN_PCFG_FSI : 0x0,
926                                cp->regs + REG_SATURN_PCFG);
927
928                         /* load firmware to address 10Mbps auto-negotiation
929                          * issue. NOTE: this will need to be changed if the
930                          * default firmware gets fixed.
931                          */
932                         if (PHY_NS_DP83065 == cp->phy_id) {
933                                 cas_saturn_firmware_load(cp);
934                         }
935                         cas_phy_powerup(cp);
936                 }
937
938                 /* advertise capabilities */
939                 val = cas_phy_read(cp, MII_BMCR);
940                 val &= ~BMCR_ANENABLE;
941                 cas_phy_write(cp, MII_BMCR, val);
942                 udelay(10);
943
944                 cas_phy_write(cp, MII_ADVERTISE,
945                               cas_phy_read(cp, MII_ADVERTISE) |
946                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
947                                ADVERTISE_100HALF | ADVERTISE_100FULL |
948                                CAS_ADVERTISE_PAUSE |
949                                CAS_ADVERTISE_ASYM_PAUSE));
950
951                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
952                         /* make sure that we don't advertise half
953                          * duplex to avoid a chip issue
954                          */
955                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
956                         val &= ~CAS_ADVERTISE_1000HALF;
957                         val |= CAS_ADVERTISE_1000FULL;
958                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
959                 }
960
961         } else {
962                 /* reset pcs for serdes */
963                 u32 val;
964                 int limit;
965
966                 writel(PCS_DATAPATH_MODE_SERDES,
967                        cp->regs + REG_PCS_DATAPATH_MODE);
968
969                 /* enable serdes pins on saturn */
970                 if (cp->cas_flags & CAS_FLAG_SATURN)
971                         writel(0, cp->regs + REG_SATURN_PCFG);
972
973                 /* Reset PCS unit. */
974                 val = readl(cp->regs + REG_PCS_MII_CTRL);
975                 val |= PCS_MII_RESET;
976                 writel(val, cp->regs + REG_PCS_MII_CTRL);
977
978                 limit = STOP_TRIES;
979                 while (--limit > 0) {
980                         udelay(10);
981                         if ((readl(cp->regs + REG_PCS_MII_CTRL) &
982                              PCS_MII_RESET) == 0)
983                                 break;
984                 }
985                 if (limit <= 0)
986                         netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
987                                     readl(cp->regs + REG_PCS_STATE_MACHINE));
988
989                 /* Make sure PCS is disabled while changing advertisement
990                  * configuration.
991                  */
992                 writel(0x0, cp->regs + REG_PCS_CFG);
993
994                 /* Advertise all capabilities except half-duplex. */
995                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
996                 val &= ~PCS_MII_ADVERT_HD;
997                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
998                         PCS_MII_ADVERT_ASYM_PAUSE);
999                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
1000
1001                 /* enable PCS */
1002                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
1003
1004                 /* pcs workaround: enable sync detect */
1005                 writel(PCS_SERDES_CTRL_SYNCD_EN,
1006                        cp->regs + REG_PCS_SERDES_CTRL);
1007         }
1008 }
1009
1010
1011 static int cas_pcs_link_check(struct cas *cp)
1012 {
1013         u32 stat, state_machine;
1014         int retval = 0;
1015
1016         /* The link status bit latches on zero, so you must
1017          * read it twice in such a case to see a transition
1018          * to the link being up.
1019          */
1020         stat = readl(cp->regs + REG_PCS_MII_STATUS);
1021         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1022                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1023
1024         /* The remote-fault indication is only valid
1025          * when autoneg has completed.
1026          */
1027         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1028                      PCS_MII_STATUS_REMOTE_FAULT)) ==
1029             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1030                 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1031
1032         /* work around link detection issue by querying the PCS state
1033          * machine directly.
1034          */
1035         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1036         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1037                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1038         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1039                 stat |= PCS_MII_STATUS_LINK_STATUS;
1040         }
1041
1042         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1043                 if (cp->lstate != link_up) {
1044                         if (cp->opened) {
1045                                 cp->lstate = link_up;
1046                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1047
1048                                 cas_set_link_modes(cp);
1049                                 netif_carrier_on(cp->dev);
1050                         }
1051                 }
1052         } else if (cp->lstate == link_up) {
1053                 cp->lstate = link_down;
1054                 if (link_transition_timeout != 0 &&
1055                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1056                     !cp->link_transition_jiffies_valid) {
1057                         /*
1058                          * force a reset, as a workaround for the
1059                          * link-failure problem. May want to move this to a
1060                          * point a bit earlier in the sequence. If we had
1061                          * generated a reset a short time ago, we'll wait for
1062                          * the link timer to check the status until a
1063                          * timer expires (link_transistion_jiffies_valid is
1064                          * true when the timer is running.)  Instead of using
1065                          * a system timer, we just do a check whenever the
1066                          * link timer is running - this clears the flag after
1067                          * a suitable delay.
1068                          */
1069                         retval = 1;
1070                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1071                         cp->link_transition_jiffies = jiffies;
1072                         cp->link_transition_jiffies_valid = 1;
1073                 } else {
1074                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1075                 }
1076                 netif_carrier_off(cp->dev);
1077                 if (cp->opened)
1078                         netif_info(cp, link, cp->dev, "PCS link down\n");
1079
1080                 /* Cassini only: if you force a mode, there can be
1081                  * sync problems on link down. to fix that, the following
1082                  * things need to be checked:
1083                  * 1) read serialink state register
1084                  * 2) read pcs status register to verify link down.
1085                  * 3) if link down and serial link == 0x03, then you need
1086                  *    to global reset the chip.
1087                  */
1088                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1089                         /* should check to see if we're in a forced mode */
1090                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1091                         if (stat == 0x03)
1092                                 return 1;
1093                 }
1094         } else if (cp->lstate == link_down) {
1095                 if (link_transition_timeout != 0 &&
1096                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1097                     !cp->link_transition_jiffies_valid) {
1098                         /* force a reset, as a workaround for the
1099                          * link-failure problem.  May want to move
1100                          * this to a point a bit earlier in the
1101                          * sequence.
1102                          */
1103                         retval = 1;
1104                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1105                         cp->link_transition_jiffies = jiffies;
1106                         cp->link_transition_jiffies_valid = 1;
1107                 } else {
1108                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1109                 }
1110         }
1111
1112         return retval;
1113 }
1114
1115 static int cas_pcs_interrupt(struct net_device *dev,
1116                              struct cas *cp, u32 status)
1117 {
1118         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1119
1120         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1121                 return 0;
1122         return cas_pcs_link_check(cp);
1123 }
1124
1125 static int cas_txmac_interrupt(struct net_device *dev,
1126                                struct cas *cp, u32 status)
1127 {
1128         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1129
1130         if (!txmac_stat)
1131                 return 0;
1132
1133         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1134                      "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1135
1136         /* Defer timer expiration is quite normal,
1137          * don't even log the event.
1138          */
1139         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1140             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1141                 return 0;
1142
1143         spin_lock(&cp->stat_lock[0]);
1144         if (txmac_stat & MAC_TX_UNDERRUN) {
1145                 netdev_err(dev, "TX MAC xmit underrun\n");
1146                 cp->net_stats[0].tx_fifo_errors++;
1147         }
1148
1149         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1150                 netdev_err(dev, "TX MAC max packet size error\n");
1151                 cp->net_stats[0].tx_errors++;
1152         }
1153
1154         /* The rest are all cases of one of the 16-bit TX
1155          * counters expiring.
1156          */
1157         if (txmac_stat & MAC_TX_COLL_NORMAL)
1158                 cp->net_stats[0].collisions += 0x10000;
1159
1160         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1161                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1162                 cp->net_stats[0].collisions += 0x10000;
1163         }
1164
1165         if (txmac_stat & MAC_TX_COLL_LATE) {
1166                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1167                 cp->net_stats[0].collisions += 0x10000;
1168         }
1169         spin_unlock(&cp->stat_lock[0]);
1170
1171         /* We do not keep track of MAC_TX_COLL_FIRST and
1172          * MAC_TX_PEAK_ATTEMPTS events.
1173          */
1174         return 0;
1175 }
1176
1177 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1178 {
1179         cas_hp_inst_t *inst;
1180         u32 val;
1181         int i;
1182
1183         i = 0;
1184         while ((inst = firmware) && inst->note) {
1185                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1186
1187                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1188                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1189                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1190
1191                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1192                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1193                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1194                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1195                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1196                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1197                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1198                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1199
1200                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1201                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1202                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1203                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1204                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1205                 ++firmware;
1206                 ++i;
1207         }
1208 }
1209
1210 static void cas_init_rx_dma(struct cas *cp)
1211 {
1212         u64 desc_dma = cp->block_dvma;
1213         u32 val;
1214         int i, size;
1215
1216         /* rx free descriptors */
1217         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1218         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1219         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1220         if ((N_RX_DESC_RINGS > 1) &&
1221             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1222                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1223         writel(val, cp->regs + REG_RX_CFG);
1224
1225         val = (unsigned long) cp->init_rxds[0] -
1226                 (unsigned long) cp->init_block;
1227         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1228         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1229         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1230
1231         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1232                 /* rx desc 2 is for IPSEC packets. however,
1233                  * we don't it that for that purpose.
1234                  */
1235                 val = (unsigned long) cp->init_rxds[1] -
1236                         (unsigned long) cp->init_block;
1237                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1238                 writel((desc_dma + val) & 0xffffffff, cp->regs +
1239                        REG_PLUS_RX_DB1_LOW);
1240                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1241                        REG_PLUS_RX_KICK1);
1242         }
1243
1244         /* rx completion registers */
1245         val = (unsigned long) cp->init_rxcs[0] -
1246                 (unsigned long) cp->init_block;
1247         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1248         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1249
1250         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1251                 /* rx comp 2-4 */
1252                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1253                         val = (unsigned long) cp->init_rxcs[i] -
1254                                 (unsigned long) cp->init_block;
1255                         writel((desc_dma + val) >> 32, cp->regs +
1256                                REG_PLUS_RX_CBN_HI(i));
1257                         writel((desc_dma + val) & 0xffffffff, cp->regs +
1258                                REG_PLUS_RX_CBN_LOW(i));
1259                 }
1260         }
1261
1262         /* read selective clear regs to prevent spurious interrupts
1263          * on reset because complete == kick.
1264          * selective clear set up to prevent interrupts on resets
1265          */
1266         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1267         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1268         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1269                 for (i = 1; i < N_RX_COMP_RINGS; i++)
1270                         readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1271
1272                 /* 2 is different from 3 and 4 */
1273                 if (N_RX_COMP_RINGS > 1)
1274                         writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1275                                cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1276
1277                 for (i = 2; i < N_RX_COMP_RINGS; i++)
1278                         writel(INTR_RX_DONE_ALT,
1279                                cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1280         }
1281
1282         /* set up pause thresholds */
1283         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1284                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1285         val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1286                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1287         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1288
1289         /* zero out dma reassembly buffers */
1290         for (i = 0; i < 64; i++) {
1291                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1292                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1293                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1294                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1295         }
1296
1297         /* make sure address register is 0 for normal operation */
1298         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1299         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1300
1301         /* interrupt mitigation */
1302 #ifdef USE_RX_BLANK
1303         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1304         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1305         writel(val, cp->regs + REG_RX_BLANK);
1306 #else
1307         writel(0x0, cp->regs + REG_RX_BLANK);
1308 #endif
1309
1310         /* interrupt generation as a function of low water marks for
1311          * free desc and completion entries. these are used to trigger
1312          * housekeeping for rx descs. we don't use the free interrupt
1313          * as it's not very useful
1314          */
1315         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1316         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1317         writel(val, cp->regs + REG_RX_AE_THRESH);
1318         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1319                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1320                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1321         }
1322
1323         /* Random early detect registers. useful for congestion avoidance.
1324          * this should be tunable.
1325          */
1326         writel(0x0, cp->regs + REG_RX_RED);
1327
1328         /* receive page sizes. default == 2K (0x800) */
1329         val = 0;
1330         if (cp->page_size == 0x1000)
1331                 val = 0x1;
1332         else if (cp->page_size == 0x2000)
1333                 val = 0x2;
1334         else if (cp->page_size == 0x4000)
1335                 val = 0x3;
1336
1337         /* round mtu + offset. constrain to page size. */
1338         size = cp->dev->mtu + 64;
1339         if (size > cp->page_size)
1340                 size = cp->page_size;
1341
1342         if (size <= 0x400)
1343                 i = 0x0;
1344         else if (size <= 0x800)
1345                 i = 0x1;
1346         else if (size <= 0x1000)
1347                 i = 0x2;
1348         else
1349                 i = 0x3;
1350
1351         cp->mtu_stride = 1 << (i + 10);
1352         val  = CAS_BASE(RX_PAGE_SIZE, val);
1353         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1354         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1355         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1356         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1357
1358         /* enable the header parser if desired */
1359         if (CAS_HP_FIRMWARE == cas_prog_null)
1360                 return;
1361
1362         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1363         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1364         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1365         writel(val, cp->regs + REG_HP_CFG);
1366 }
1367
1368 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1369 {
1370         memset(rxc, 0, sizeof(*rxc));
1371         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1372 }
1373
1374 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1375  * flipping is protected by the fact that the chip will not
1376  * hand back the same page index while it's being processed.
1377  */
1378 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1379 {
1380         cas_page_t *page = cp->rx_pages[1][index];
1381         cas_page_t *new;
1382
1383         if (page_count(page->buffer) == 1)
1384                 return page;
1385
1386         new = cas_page_dequeue(cp);
1387         if (new) {
1388                 spin_lock(&cp->rx_inuse_lock);
1389                 list_add(&page->list, &cp->rx_inuse_list);
1390                 spin_unlock(&cp->rx_inuse_lock);
1391         }
1392         return new;
1393 }
1394
1395 /* this needs to be changed if we actually use the ENC RX DESC ring */
1396 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1397                                  const int index)
1398 {
1399         cas_page_t **page0 = cp->rx_pages[0];
1400         cas_page_t **page1 = cp->rx_pages[1];
1401
1402         /* swap if buffer is in use */
1403         if (page_count(page0[index]->buffer) > 1) {
1404                 cas_page_t *new = cas_page_spare(cp, index);
1405                 if (new) {
1406                         page1[index] = page0[index];
1407                         page0[index] = new;
1408                 }
1409         }
1410         RX_USED_SET(page0[index], 0);
1411         return page0[index];
1412 }
1413
1414 static void cas_clean_rxds(struct cas *cp)
1415 {
1416         /* only clean ring 0 as ring 1 is used for spare buffers */
1417         struct cas_rx_desc *rxd = cp->init_rxds[0];
1418         int i, size;
1419
1420         /* release all rx flows */
1421         for (i = 0; i < N_RX_FLOWS; i++) {
1422                 struct sk_buff *skb;
1423                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1424                         cas_skb_release(skb);
1425                 }
1426         }
1427
1428         /* initialize descriptors */
1429         size = RX_DESC_RINGN_SIZE(0);
1430         for (i = 0; i < size; i++) {
1431                 cas_page_t *page = cas_page_swap(cp, 0, i);
1432                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1433                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1434                                             CAS_BASE(RX_INDEX_RING, 0));
1435         }
1436
1437         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1438         cp->rx_last[0] = 0;
1439         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1440 }
1441
1442 static void cas_clean_rxcs(struct cas *cp)
1443 {
1444         int i, j;
1445
1446         /* take ownership of rx comp descriptors */
1447         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1448         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1449         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1450                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1451                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1452                         cas_rxc_init(rxc + j);
1453                 }
1454         }
1455 }
1456
1457 #if 0
1458 /* When we get a RX fifo overflow, the RX unit is probably hung
1459  * so we do the following.
1460  *
1461  * If any part of the reset goes wrong, we return 1 and that causes the
1462  * whole chip to be reset.
1463  */
1464 static int cas_rxmac_reset(struct cas *cp)
1465 {
1466         struct net_device *dev = cp->dev;
1467         int limit;
1468         u32 val;
1469
1470         /* First, reset MAC RX. */
1471         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1472         for (limit = 0; limit < STOP_TRIES; limit++) {
1473                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1474                         break;
1475                 udelay(10);
1476         }
1477         if (limit == STOP_TRIES) {
1478                 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1479                 return 1;
1480         }
1481
1482         /* Second, disable RX DMA. */
1483         writel(0, cp->regs + REG_RX_CFG);
1484         for (limit = 0; limit < STOP_TRIES; limit++) {
1485                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1486                         break;
1487                 udelay(10);
1488         }
1489         if (limit == STOP_TRIES) {
1490                 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1491                 return 1;
1492         }
1493
1494         mdelay(5);
1495
1496         /* Execute RX reset command. */
1497         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1498         for (limit = 0; limit < STOP_TRIES; limit++) {
1499                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1500                         break;
1501                 udelay(10);
1502         }
1503         if (limit == STOP_TRIES) {
1504                 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1505                 return 1;
1506         }
1507
1508         /* reset driver rx state */
1509         cas_clean_rxds(cp);
1510         cas_clean_rxcs(cp);
1511
1512         /* Now, reprogram the rest of RX unit. */
1513         cas_init_rx_dma(cp);
1514
1515         /* re-enable */
1516         val = readl(cp->regs + REG_RX_CFG);
1517         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1518         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1519         val = readl(cp->regs + REG_MAC_RX_CFG);
1520         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1521         return 0;
1522 }
1523 #endif
1524
1525 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1526                                u32 status)
1527 {
1528         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1529
1530         if (!stat)
1531                 return 0;
1532
1533         netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1534
1535         /* these are all rollovers */
1536         spin_lock(&cp->stat_lock[0]);
1537         if (stat & MAC_RX_ALIGN_ERR)
1538                 cp->net_stats[0].rx_frame_errors += 0x10000;
1539
1540         if (stat & MAC_RX_CRC_ERR)
1541                 cp->net_stats[0].rx_crc_errors += 0x10000;
1542
1543         if (stat & MAC_RX_LEN_ERR)
1544                 cp->net_stats[0].rx_length_errors += 0x10000;
1545
1546         if (stat & MAC_RX_OVERFLOW) {
1547                 cp->net_stats[0].rx_over_errors++;
1548                 cp->net_stats[0].rx_fifo_errors++;
1549         }
1550
1551         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1552          * events.
1553          */
1554         spin_unlock(&cp->stat_lock[0]);
1555         return 0;
1556 }
1557
1558 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1559                              u32 status)
1560 {
1561         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1562
1563         if (!stat)
1564                 return 0;
1565
1566         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1567                      "mac interrupt, stat: 0x%x\n", stat);
1568
1569         /* This interrupt is just for pause frame and pause
1570          * tracking.  It is useful for diagnostics and debug
1571          * but probably by default we will mask these events.
1572          */
1573         if (stat & MAC_CTRL_PAUSE_STATE)
1574                 cp->pause_entered++;
1575
1576         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1577                 cp->pause_last_time_recvd = (stat >> 16);
1578
1579         return 0;
1580 }
1581
1582
1583 /* Must be invoked under cp->lock. */
1584 static inline int cas_mdio_link_not_up(struct cas *cp)
1585 {
1586         u16 val;
1587
1588         switch (cp->lstate) {
1589         case link_force_ret:
1590                 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1591                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1592                 cp->timer_ticks = 5;
1593                 cp->lstate = link_force_ok;
1594                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1595                 break;
1596
1597         case link_aneg:
1598                 val = cas_phy_read(cp, MII_BMCR);
1599
1600                 /* Try forced modes. we try things in the following order:
1601                  * 1000 full -> 100 full/half -> 10 half
1602                  */
1603                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1604                 val |= BMCR_FULLDPLX;
1605                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1606                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1607                 cas_phy_write(cp, MII_BMCR, val);
1608                 cp->timer_ticks = 5;
1609                 cp->lstate = link_force_try;
1610                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1611                 break;
1612
1613         case link_force_try:
1614                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1615                 val = cas_phy_read(cp, MII_BMCR);
1616                 cp->timer_ticks = 5;
1617                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1618                         val &= ~CAS_BMCR_SPEED1000;
1619                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1620                         cas_phy_write(cp, MII_BMCR, val);
1621                         break;
1622                 }
1623
1624                 if (val & BMCR_SPEED100) {
1625                         if (val & BMCR_FULLDPLX) /* fd failed */
1626                                 val &= ~BMCR_FULLDPLX;
1627                         else { /* 100Mbps failed */
1628                                 val &= ~BMCR_SPEED100;
1629                         }
1630                         cas_phy_write(cp, MII_BMCR, val);
1631                         break;
1632                 }
1633         default:
1634                 break;
1635         }
1636         return 0;
1637 }
1638
1639
1640 /* must be invoked with cp->lock held */
1641 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1642 {
1643         int restart;
1644
1645         if (bmsr & BMSR_LSTATUS) {
1646                 /* Ok, here we got a link. If we had it due to a forced
1647                  * fallback, and we were configured for autoneg, we
1648                  * retry a short autoneg pass. If you know your hub is
1649                  * broken, use ethtool ;)
1650                  */
1651                 if ((cp->lstate == link_force_try) &&
1652                     (cp->link_cntl & BMCR_ANENABLE)) {
1653                         cp->lstate = link_force_ret;
1654                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1655                         cas_mif_poll(cp, 0);
1656                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1657                         cp->timer_ticks = 5;
1658                         if (cp->opened)
1659                                 netif_info(cp, link, cp->dev,
1660                                            "Got link after fallback, retrying autoneg once...\n");
1661                         cas_phy_write(cp, MII_BMCR,
1662                                       cp->link_fcntl | BMCR_ANENABLE |
1663                                       BMCR_ANRESTART);
1664                         cas_mif_poll(cp, 1);
1665
1666                 } else if (cp->lstate != link_up) {
1667                         cp->lstate = link_up;
1668                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1669
1670                         if (cp->opened) {
1671                                 cas_set_link_modes(cp);
1672                                 netif_carrier_on(cp->dev);
1673                         }
1674                 }
1675                 return 0;
1676         }
1677
1678         /* link not up. if the link was previously up, we restart the
1679          * whole process
1680          */
1681         restart = 0;
1682         if (cp->lstate == link_up) {
1683                 cp->lstate = link_down;
1684                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1685
1686                 netif_carrier_off(cp->dev);
1687                 if (cp->opened)
1688                         netif_info(cp, link, cp->dev, "Link down\n");
1689                 restart = 1;
1690
1691         } else if (++cp->timer_ticks > 10)
1692                 cas_mdio_link_not_up(cp);
1693
1694         return restart;
1695 }
1696
1697 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1698                              u32 status)
1699 {
1700         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1701         u16 bmsr;
1702
1703         /* check for a link change */
1704         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1705                 return 0;
1706
1707         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1708         return cas_mii_link_check(cp, bmsr);
1709 }
1710
1711 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1712                              u32 status)
1713 {
1714         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1715
1716         if (!stat)
1717                 return 0;
1718
1719         netdev_err(dev, "PCI error [%04x:%04x]",
1720                    stat, readl(cp->regs + REG_BIM_DIAG));
1721
1722         /* cassini+ has this reserved */
1723         if ((stat & PCI_ERR_BADACK) &&
1724             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1725                 pr_cont(" <No ACK64# during ABS64 cycle>");
1726
1727         if (stat & PCI_ERR_DTRTO)
1728                 pr_cont(" <Delayed transaction timeout>");
1729         if (stat & PCI_ERR_OTHER)
1730                 pr_cont(" <other>");
1731         if (stat & PCI_ERR_BIM_DMA_WRITE)
1732                 pr_cont(" <BIM DMA 0 write req>");
1733         if (stat & PCI_ERR_BIM_DMA_READ)
1734                 pr_cont(" <BIM DMA 0 read req>");
1735         pr_cont("\n");
1736
1737         if (stat & PCI_ERR_OTHER) {
1738                 u16 cfg;
1739
1740                 /* Interrogate PCI config space for the
1741                  * true cause.
1742                  */
1743                 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1744                 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1745                 if (cfg & PCI_STATUS_PARITY)
1746                         netdev_err(dev, "PCI parity error detected\n");
1747                 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1748                         netdev_err(dev, "PCI target abort\n");
1749                 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1750                         netdev_err(dev, "PCI master acks target abort\n");
1751                 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1752                         netdev_err(dev, "PCI master abort\n");
1753                 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1754                         netdev_err(dev, "PCI system error SERR#\n");
1755                 if (cfg & PCI_STATUS_DETECTED_PARITY)
1756                         netdev_err(dev, "PCI parity error\n");
1757
1758                 /* Write the error bits back to clear them. */
1759                 cfg &= (PCI_STATUS_PARITY |
1760                         PCI_STATUS_SIG_TARGET_ABORT |
1761                         PCI_STATUS_REC_TARGET_ABORT |
1762                         PCI_STATUS_REC_MASTER_ABORT |
1763                         PCI_STATUS_SIG_SYSTEM_ERROR |
1764                         PCI_STATUS_DETECTED_PARITY);
1765                 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1766         }
1767
1768         /* For all PCI errors, we should reset the chip. */
1769         return 1;
1770 }
1771
1772 /* All non-normal interrupt conditions get serviced here.
1773  * Returns non-zero if we should just exit the interrupt
1774  * handler right now (ie. if we reset the card which invalidates
1775  * all of the other original irq status bits).
1776  */
1777 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1778                             u32 status)
1779 {
1780         if (status & INTR_RX_TAG_ERROR) {
1781                 /* corrupt RX tag framing */
1782                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1783                              "corrupt rx tag framing\n");
1784                 spin_lock(&cp->stat_lock[0]);
1785                 cp->net_stats[0].rx_errors++;
1786                 spin_unlock(&cp->stat_lock[0]);
1787                 goto do_reset;
1788         }
1789
1790         if (status & INTR_RX_LEN_MISMATCH) {
1791                 /* length mismatch. */
1792                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1793                              "length mismatch for rx frame\n");
1794                 spin_lock(&cp->stat_lock[0]);
1795                 cp->net_stats[0].rx_errors++;
1796                 spin_unlock(&cp->stat_lock[0]);
1797                 goto do_reset;
1798         }
1799
1800         if (status & INTR_PCS_STATUS) {
1801                 if (cas_pcs_interrupt(dev, cp, status))
1802                         goto do_reset;
1803         }
1804
1805         if (status & INTR_TX_MAC_STATUS) {
1806                 if (cas_txmac_interrupt(dev, cp, status))
1807                         goto do_reset;
1808         }
1809
1810         if (status & INTR_RX_MAC_STATUS) {
1811                 if (cas_rxmac_interrupt(dev, cp, status))
1812                         goto do_reset;
1813         }
1814
1815         if (status & INTR_MAC_CTRL_STATUS) {
1816                 if (cas_mac_interrupt(dev, cp, status))
1817                         goto do_reset;
1818         }
1819
1820         if (status & INTR_MIF_STATUS) {
1821                 if (cas_mif_interrupt(dev, cp, status))
1822                         goto do_reset;
1823         }
1824
1825         if (status & INTR_PCI_ERROR_STATUS) {
1826                 if (cas_pci_interrupt(dev, cp, status))
1827                         goto do_reset;
1828         }
1829         return 0;
1830
1831 do_reset:
1832 #if 1
1833         atomic_inc(&cp->reset_task_pending);
1834         atomic_inc(&cp->reset_task_pending_all);
1835         netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1836         schedule_work(&cp->reset_task);
1837 #else
1838         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1839         netdev_err(dev, "reset called in cas_abnormal_irq\n");
1840         schedule_work(&cp->reset_task);
1841 #endif
1842         return 1;
1843 }
1844
1845 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1846  *       determining whether to do a netif_stop/wakeup
1847  */
1848 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1849 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1850 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1851                                   const int len)
1852 {
1853         unsigned long off = addr + len;
1854
1855         if (CAS_TABORT(cp) == 1)
1856                 return 0;
1857         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1858                 return 0;
1859         return TX_TARGET_ABORT_LEN;
1860 }
1861
1862 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1863 {
1864         struct cas_tx_desc *txds;
1865         struct sk_buff **skbs;
1866         struct net_device *dev = cp->dev;
1867         int entry, count;
1868
1869         spin_lock(&cp->tx_lock[ring]);
1870         txds = cp->init_txds[ring];
1871         skbs = cp->tx_skbs[ring];
1872         entry = cp->tx_old[ring];
1873
1874         count = TX_BUFF_COUNT(ring, entry, limit);
1875         while (entry != limit) {
1876                 struct sk_buff *skb = skbs[entry];
1877                 dma_addr_t daddr;
1878                 u32 dlen;
1879                 int frag;
1880
1881                 if (!skb) {
1882                         /* this should never occur */
1883                         entry = TX_DESC_NEXT(ring, entry);
1884                         continue;
1885                 }
1886
1887                 /* however, we might get only a partial skb release. */
1888                 count -= skb_shinfo(skb)->nr_frags +
1889                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1890                 if (count < 0)
1891                         break;
1892
1893                 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1894                              "tx[%d] done, slot %d\n", ring, entry);
1895
1896                 skbs[entry] = NULL;
1897                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1898
1899                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1900                         struct cas_tx_desc *txd = txds + entry;
1901
1902                         daddr = le64_to_cpu(txd->buffer);
1903                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1904                                        le64_to_cpu(txd->control));
1905                         pci_unmap_page(cp->pdev, daddr, dlen,
1906                                        PCI_DMA_TODEVICE);
1907                         entry = TX_DESC_NEXT(ring, entry);
1908
1909                         /* tiny buffer may follow */
1910                         if (cp->tx_tiny_use[ring][entry].used) {
1911                                 cp->tx_tiny_use[ring][entry].used = 0;
1912                                 entry = TX_DESC_NEXT(ring, entry);
1913                         }
1914                 }
1915
1916                 spin_lock(&cp->stat_lock[ring]);
1917                 cp->net_stats[ring].tx_packets++;
1918                 cp->net_stats[ring].tx_bytes += skb->len;
1919                 spin_unlock(&cp->stat_lock[ring]);
1920                 dev_kfree_skb_irq(skb);
1921         }
1922         cp->tx_old[ring] = entry;
1923
1924         /* this is wrong for multiple tx rings. the net device needs
1925          * multiple queues for this to do the right thing.  we wait
1926          * for 2*packets to be available when using tiny buffers
1927          */
1928         if (netif_queue_stopped(dev) &&
1929             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1930                 netif_wake_queue(dev);
1931         spin_unlock(&cp->tx_lock[ring]);
1932 }
1933
1934 static void cas_tx(struct net_device *dev, struct cas *cp,
1935                    u32 status)
1936 {
1937         int limit, ring;
1938 #ifdef USE_TX_COMPWB
1939         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1940 #endif
1941         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1942                      "tx interrupt, status: 0x%x, %llx\n",
1943                      status, (unsigned long long)compwb);
1944         /* process all the rings */
1945         for (ring = 0; ring < N_TX_RINGS; ring++) {
1946 #ifdef USE_TX_COMPWB
1947                 /* use the completion writeback registers */
1948                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1949                         CAS_VAL(TX_COMPWB_LSB, compwb);
1950                 compwb = TX_COMPWB_NEXT(compwb);
1951 #else
1952                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1953 #endif
1954                 if (cp->tx_old[ring] != limit)
1955                         cas_tx_ringN(cp, ring, limit);
1956         }
1957 }
1958
1959
1960 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1961                               int entry, const u64 *words,
1962                               struct sk_buff **skbref)
1963 {
1964         int dlen, hlen, len, i, alloclen;
1965         int off, swivel = RX_SWIVEL_OFF_VAL;
1966         struct cas_page *page;
1967         struct sk_buff *skb;
1968         void *addr, *crcaddr;
1969         __sum16 csum;
1970         char *p;
1971
1972         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1973         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1974         len  = hlen + dlen;
1975
1976         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1977                 alloclen = len;
1978         else
1979                 alloclen = max(hlen, RX_COPY_MIN);
1980
1981         skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1982         if (skb == NULL)
1983                 return -1;
1984
1985         *skbref = skb;
1986         skb_reserve(skb, swivel);
1987
1988         p = skb->data;
1989         addr = crcaddr = NULL;
1990         if (hlen) { /* always copy header pages */
1991                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1992                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1993                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1994                         swivel;
1995
1996                 i = hlen;
1997                 if (!dlen) /* attach FCS */
1998                         i += cp->crc_size;
1999                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2000                                     PCI_DMA_FROMDEVICE);
2001                 addr = cas_page_map(page->buffer);
2002                 memcpy(p, addr + off, i);
2003                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2004                                     PCI_DMA_FROMDEVICE);
2005                 cas_page_unmap(addr);
2006                 RX_USED_ADD(page, 0x100);
2007                 p += hlen;
2008                 swivel = 0;
2009         }
2010
2011
2012         if (alloclen < (hlen + dlen)) {
2013                 skb_frag_t *frag = skb_shinfo(skb)->frags;
2014
2015                 /* normal or jumbo packets. we use frags */
2016                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2017                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2018                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2019
2020                 hlen = min(cp->page_size - off, dlen);
2021                 if (hlen < 0) {
2022                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2023                                      "rx page overflow: %d\n", hlen);
2024                         dev_kfree_skb_irq(skb);
2025                         return -1;
2026                 }
2027                 i = hlen;
2028                 if (i == dlen)  /* attach FCS */
2029                         i += cp->crc_size;
2030                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2031                                     PCI_DMA_FROMDEVICE);
2032
2033                 /* make sure we always copy a header */
2034                 swivel = 0;
2035                 if (p == (char *) skb->data) { /* not split */
2036                         addr = cas_page_map(page->buffer);
2037                         memcpy(p, addr + off, RX_COPY_MIN);
2038                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2039                                         PCI_DMA_FROMDEVICE);
2040                         cas_page_unmap(addr);
2041                         off += RX_COPY_MIN;
2042                         swivel = RX_COPY_MIN;
2043                         RX_USED_ADD(page, cp->mtu_stride);
2044                 } else {
2045                         RX_USED_ADD(page, hlen);
2046                 }
2047                 skb_put(skb, alloclen);
2048
2049                 skb_shinfo(skb)->nr_frags++;
2050                 skb->data_len += hlen - swivel;
2051                 skb->truesize += hlen - swivel;
2052                 skb->len      += hlen - swivel;
2053
2054                 get_page(page->buffer);
2055                 frag->page = page->buffer;
2056                 frag->page_offset = off;
2057                 frag->size = hlen - swivel;
2058
2059                 /* any more data? */
2060                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2061                         hlen = dlen;
2062                         off = 0;
2063
2064                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2065                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2066                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2067                                             hlen + cp->crc_size,
2068                                             PCI_DMA_FROMDEVICE);
2069                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2070                                             hlen + cp->crc_size,
2071                                             PCI_DMA_FROMDEVICE);
2072
2073                         skb_shinfo(skb)->nr_frags++;
2074                         skb->data_len += hlen;
2075                         skb->len      += hlen;
2076                         frag++;
2077
2078                         get_page(page->buffer);
2079                         frag->page = page->buffer;
2080                         frag->page_offset = 0;
2081                         frag->size = hlen;
2082                         RX_USED_ADD(page, hlen + cp->crc_size);
2083                 }
2084
2085                 if (cp->crc_size) {
2086                         addr = cas_page_map(page->buffer);
2087                         crcaddr  = addr + off + hlen;
2088                 }
2089
2090         } else {
2091                 /* copying packet */
2092                 if (!dlen)
2093                         goto end_copy_pkt;
2094
2095                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2096                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2097                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2098                 hlen = min(cp->page_size - off, dlen);
2099                 if (hlen < 0) {
2100                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2101                                      "rx page overflow: %d\n", hlen);
2102                         dev_kfree_skb_irq(skb);
2103                         return -1;
2104                 }
2105                 i = hlen;
2106                 if (i == dlen) /* attach FCS */
2107                         i += cp->crc_size;
2108                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2109                                     PCI_DMA_FROMDEVICE);
2110                 addr = cas_page_map(page->buffer);
2111                 memcpy(p, addr + off, i);
2112                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2113                                     PCI_DMA_FROMDEVICE);
2114                 cas_page_unmap(addr);
2115                 if (p == (char *) skb->data) /* not split */
2116                         RX_USED_ADD(page, cp->mtu_stride);
2117                 else
2118                         RX_USED_ADD(page, i);
2119
2120                 /* any more data? */
2121                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2122                         p += hlen;
2123                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2124                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2125                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2126                                             dlen + cp->crc_size,
2127                                             PCI_DMA_FROMDEVICE);
2128                         addr = cas_page_map(page->buffer);
2129                         memcpy(p, addr, dlen + cp->crc_size);
2130                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2131                                             dlen + cp->crc_size,
2132                                             PCI_DMA_FROMDEVICE);
2133                         cas_page_unmap(addr);
2134                         RX_USED_ADD(page, dlen + cp->crc_size);
2135                 }
2136 end_copy_pkt:
2137                 if (cp->crc_size) {
2138                         addr    = NULL;
2139                         crcaddr = skb->data + alloclen;
2140                 }
2141                 skb_put(skb, alloclen);
2142         }
2143
2144         csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2145         if (cp->crc_size) {
2146                 /* checksum includes FCS. strip it out. */
2147                 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2148                                               csum_unfold(csum)));
2149                 if (addr)
2150                         cas_page_unmap(addr);
2151         }
2152         skb->protocol = eth_type_trans(skb, cp->dev);
2153         if (skb->protocol == htons(ETH_P_IP)) {
2154                 skb->csum = csum_unfold(~csum);
2155                 skb->ip_summed = CHECKSUM_COMPLETE;
2156         } else
2157                 skb->ip_summed = CHECKSUM_NONE;
2158         return len;
2159 }
2160
2161
2162 /* we can handle up to 64 rx flows at a time. we do the same thing
2163  * as nonreassm except that we batch up the buffers.
2164  * NOTE: we currently just treat each flow as a bunch of packets that
2165  *       we pass up. a better way would be to coalesce the packets
2166  *       into a jumbo packet. to do that, we need to do the following:
2167  *       1) the first packet will have a clean split between header and
2168  *          data. save both.
2169  *       2) each time the next flow packet comes in, extend the
2170  *          data length and merge the checksums.
2171  *       3) on flow release, fix up the header.
2172  *       4) make sure the higher layer doesn't care.
2173  * because packets get coalesced, we shouldn't run into fragment count
2174  * issues.
2175  */
2176 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2177                                    struct sk_buff *skb)
2178 {
2179         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2180         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2181
2182         /* this is protected at a higher layer, so no need to
2183          * do any additional locking here. stick the buffer
2184          * at the end.
2185          */
2186         __skb_queue_tail(flow, skb);
2187         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2188                 while ((skb = __skb_dequeue(flow))) {
2189                         cas_skb_release(skb);
2190                 }
2191         }
2192 }
2193
2194 /* put rx descriptor back on ring. if a buffer is in use by a higher
2195  * layer, this will need to put in a replacement.
2196  */
2197 static void cas_post_page(struct cas *cp, const int ring, const int index)
2198 {
2199         cas_page_t *new;
2200         int entry;
2201
2202         entry = cp->rx_old[ring];
2203
2204         new = cas_page_swap(cp, ring, index);
2205         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2206         cp->init_rxds[ring][entry].index  =
2207                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2208                             CAS_BASE(RX_INDEX_RING, ring));
2209
2210         entry = RX_DESC_ENTRY(ring, entry + 1);
2211         cp->rx_old[ring] = entry;
2212
2213         if (entry % 4)
2214                 return;
2215
2216         if (ring == 0)
2217                 writel(entry, cp->regs + REG_RX_KICK);
2218         else if ((N_RX_DESC_RINGS > 1) &&
2219                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2220                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2221 }
2222
2223
2224 /* only when things are bad */
2225 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2226 {
2227         unsigned int entry, last, count, released;
2228         int cluster;
2229         cas_page_t **page = cp->rx_pages[ring];
2230
2231         entry = cp->rx_old[ring];
2232
2233         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2234                      "rxd[%d] interrupt, done: %d\n", ring, entry);
2235
2236         cluster = -1;
2237         count = entry & 0x3;
2238         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2239         released = 0;
2240         while (entry != last) {
2241                 /* make a new buffer if it's still in use */
2242                 if (page_count(page[entry]->buffer) > 1) {
2243                         cas_page_t *new = cas_page_dequeue(cp);
2244                         if (!new) {
2245                                 /* let the timer know that we need to
2246                                  * do this again
2247                                  */
2248                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2249                                 if (!timer_pending(&cp->link_timer))
2250                                         mod_timer(&cp->link_timer, jiffies +
2251                                                   CAS_LINK_FAST_TIMEOUT);
2252                                 cp->rx_old[ring]  = entry;
2253                                 cp->rx_last[ring] = num ? num - released : 0;
2254                                 return -ENOMEM;
2255                         }
2256                         spin_lock(&cp->rx_inuse_lock);
2257                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2258                         spin_unlock(&cp->rx_inuse_lock);
2259                         cp->init_rxds[ring][entry].buffer =
2260                                 cpu_to_le64(new->dma_addr);
2261                         page[entry] = new;
2262
2263                 }
2264
2265                 if (++count == 4) {
2266                         cluster = entry;
2267                         count = 0;
2268                 }
2269                 released++;
2270                 entry = RX_DESC_ENTRY(ring, entry + 1);
2271         }
2272         cp->rx_old[ring] = entry;
2273
2274         if (cluster < 0)
2275                 return 0;
2276
2277         if (ring == 0)
2278                 writel(cluster, cp->regs + REG_RX_KICK);
2279         else if ((N_RX_DESC_RINGS > 1) &&
2280                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2281                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2282         return 0;
2283 }
2284
2285
2286 /* process a completion ring. packets are set up in three basic ways:
2287  * small packets: should be copied header + data in single buffer.
2288  * large packets: header and data in a single buffer.
2289  * split packets: header in a separate buffer from data.
2290  *                data may be in multiple pages. data may be > 256
2291  *                bytes but in a single page.
2292  *
2293  * NOTE: RX page posting is done in this routine as well. while there's
2294  *       the capability of using multiple RX completion rings, it isn't
2295  *       really worthwhile due to the fact that the page posting will
2296  *       force serialization on the single descriptor ring.
2297  */
2298 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2299 {
2300         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2301         int entry, drops;
2302         int npackets = 0;
2303
2304         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2305                      "rx[%d] interrupt, done: %d/%d\n",
2306                      ring,
2307                      readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2308
2309         entry = cp->rx_new[ring];
2310         drops = 0;
2311         while (1) {
2312                 struct cas_rx_comp *rxc = rxcs + entry;
2313                 struct sk_buff *uninitialized_var(skb);
2314                 int type, len;
2315                 u64 words[4];
2316                 int i, dring;
2317
2318                 words[0] = le64_to_cpu(rxc->word1);
2319                 words[1] = le64_to_cpu(rxc->word2);
2320                 words[2] = le64_to_cpu(rxc->word3);
2321                 words[3] = le64_to_cpu(rxc->word4);
2322
2323                 /* don't touch if still owned by hw */
2324                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2325                 if (type == 0)
2326                         break;
2327
2328                 /* hw hasn't cleared the zero bit yet */
2329                 if (words[3] & RX_COMP4_ZERO) {
2330                         break;
2331                 }
2332
2333                 /* get info on the packet */
2334                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2335                         spin_lock(&cp->stat_lock[ring]);
2336                         cp->net_stats[ring].rx_errors++;
2337                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2338                                 cp->net_stats[ring].rx_length_errors++;
2339                         if (words[3] & RX_COMP4_BAD)
2340                                 cp->net_stats[ring].rx_crc_errors++;
2341                         spin_unlock(&cp->stat_lock[ring]);
2342
2343                         /* We'll just return it to Cassini. */
2344                 drop_it:
2345                         spin_lock(&cp->stat_lock[ring]);
2346                         ++cp->net_stats[ring].rx_dropped;
2347                         spin_unlock(&cp->stat_lock[ring]);
2348                         goto next;
2349                 }
2350
2351                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2352                 if (len < 0) {
2353                         ++drops;
2354                         goto drop_it;
2355                 }
2356
2357                 /* see if it's a flow re-assembly or not. the driver
2358                  * itself handles release back up.
2359                  */
2360                 if (RX_DONT_BATCH || (type == 0x2)) {
2361                         /* non-reassm: these always get released */
2362                         cas_skb_release(skb);
2363                 } else {
2364                         cas_rx_flow_pkt(cp, words, skb);
2365                 }
2366
2367                 spin_lock(&cp->stat_lock[ring]);
2368                 cp->net_stats[ring].rx_packets++;
2369                 cp->net_stats[ring].rx_bytes += len;
2370                 spin_unlock(&cp->stat_lock[ring]);
2371
2372         next:
2373                 npackets++;
2374
2375                 /* should it be released? */
2376                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2377                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2378                         dring = CAS_VAL(RX_INDEX_RING, i);
2379                         i = CAS_VAL(RX_INDEX_NUM, i);
2380                         cas_post_page(cp, dring, i);
2381                 }
2382
2383                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2384                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2385                         dring = CAS_VAL(RX_INDEX_RING, i);
2386                         i = CAS_VAL(RX_INDEX_NUM, i);
2387                         cas_post_page(cp, dring, i);
2388                 }
2389
2390                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2391                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2392                         dring = CAS_VAL(RX_INDEX_RING, i);
2393                         i = CAS_VAL(RX_INDEX_NUM, i);
2394                         cas_post_page(cp, dring, i);
2395                 }
2396
2397                 /* skip to the next entry */
2398                 entry = RX_COMP_ENTRY(ring, entry + 1 +
2399                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2400 #ifdef USE_NAPI
2401                 if (budget && (npackets >= budget))
2402                         break;
2403 #endif
2404         }
2405         cp->rx_new[ring] = entry;
2406
2407         if (drops)
2408                 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2409         return npackets;
2410 }
2411
2412
2413 /* put completion entries back on the ring */
2414 static void cas_post_rxcs_ringN(struct net_device *dev,
2415                                 struct cas *cp, int ring)
2416 {
2417         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2418         int last, entry;
2419
2420         last = cp->rx_cur[ring];
2421         entry = cp->rx_new[ring];
2422         netif_printk(cp, intr, KERN_DEBUG, dev,
2423                      "rxc[%d] interrupt, done: %d/%d\n",
2424                      ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2425
2426         /* zero and re-mark descriptors */
2427         while (last != entry) {
2428                 cas_rxc_init(rxc + last);
2429                 last = RX_COMP_ENTRY(ring, last + 1);
2430         }
2431         cp->rx_cur[ring] = last;
2432
2433         if (ring == 0)
2434                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2435         else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2436                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2437 }
2438
2439
2440
2441 /* cassini can use all four PCI interrupts for the completion ring.
2442  * rings 3 and 4 are identical
2443  */
2444 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2445 static inline void cas_handle_irqN(struct net_device *dev,
2446                                    struct cas *cp, const u32 status,
2447                                    const int ring)
2448 {
2449         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2450                 cas_post_rxcs_ringN(dev, cp, ring);
2451 }
2452
2453 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2454 {
2455         struct net_device *dev = dev_id;
2456         struct cas *cp = netdev_priv(dev);
2457         unsigned long flags;
2458         int ring;
2459         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2460
2461         /* check for shared irq */
2462         if (status == 0)
2463                 return IRQ_NONE;
2464
2465         ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2466         spin_lock_irqsave(&cp->lock, flags);
2467         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2468 #ifdef USE_NAPI
2469                 cas_mask_intr(cp);
2470                 napi_schedule(&cp->napi);
2471 #else
2472                 cas_rx_ringN(cp, ring, 0);
2473 #endif
2474                 status &= ~INTR_RX_DONE_ALT;
2475         }
2476
2477         if (status)
2478                 cas_handle_irqN(dev, cp, status, ring);
2479         spin_unlock_irqrestore(&cp->lock, flags);
2480         return IRQ_HANDLED;
2481 }
2482 #endif
2483
2484 #ifdef USE_PCI_INTB
2485 /* everything but rx packets */
2486 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2487 {
2488         if (status & INTR_RX_BUF_UNAVAIL_1) {
2489                 /* Frame arrived, no free RX buffers available.
2490                  * NOTE: we can get this on a link transition. */
2491                 cas_post_rxds_ringN(cp, 1, 0);
2492                 spin_lock(&cp->stat_lock[1]);
2493                 cp->net_stats[1].rx_dropped++;
2494                 spin_unlock(&cp->stat_lock[1]);
2495         }
2496
2497         if (status & INTR_RX_BUF_AE_1)
2498                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2499                                     RX_AE_FREEN_VAL(1));
2500
2501         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2502                 cas_post_rxcs_ringN(cp, 1);
2503 }
2504
2505 /* ring 2 handles a few more events than 3 and 4 */
2506 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2507 {
2508         struct net_device *dev = dev_id;
2509         struct cas *cp = netdev_priv(dev);
2510         unsigned long flags;
2511         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2512
2513         /* check for shared interrupt */
2514         if (status == 0)
2515                 return IRQ_NONE;
2516
2517         spin_lock_irqsave(&cp->lock, flags);
2518         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2519 #ifdef USE_NAPI
2520                 cas_mask_intr(cp);
2521                 napi_schedule(&cp->napi);
2522 #else
2523                 cas_rx_ringN(cp, 1, 0);
2524 #endif
2525                 status &= ~INTR_RX_DONE_ALT;
2526         }
2527         if (status)
2528                 cas_handle_irq1(cp, status);
2529         spin_unlock_irqrestore(&cp->lock, flags);
2530         return IRQ_HANDLED;
2531 }
2532 #endif
2533
2534 static inline void cas_handle_irq(struct net_device *dev,
2535                                   struct cas *cp, const u32 status)
2536 {
2537         /* housekeeping interrupts */
2538         if (status & INTR_ERROR_MASK)
2539                 cas_abnormal_irq(dev, cp, status);
2540
2541         if (status & INTR_RX_BUF_UNAVAIL) {
2542                 /* Frame arrived, no free RX buffers available.
2543                  * NOTE: we can get this on a link transition.
2544                  */
2545                 cas_post_rxds_ringN(cp, 0, 0);
2546                 spin_lock(&cp->stat_lock[0]);
2547                 cp->net_stats[0].rx_dropped++;
2548                 spin_unlock(&cp->stat_lock[0]);
2549         } else if (status & INTR_RX_BUF_AE) {
2550                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2551                                     RX_AE_FREEN_VAL(0));
2552         }
2553
2554         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2555                 cas_post_rxcs_ringN(dev, cp, 0);
2556 }
2557
2558 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2559 {
2560         struct net_device *dev = dev_id;
2561         struct cas *cp = netdev_priv(dev);
2562         unsigned long flags;
2563         u32 status = readl(cp->regs + REG_INTR_STATUS);
2564
2565         if (status == 0)
2566                 return IRQ_NONE;
2567
2568         spin_lock_irqsave(&cp->lock, flags);
2569         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2570                 cas_tx(dev, cp, status);
2571                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2572         }
2573
2574         if (status & INTR_RX_DONE) {
2575 #ifdef USE_NAPI
2576                 cas_mask_intr(cp);
2577                 napi_schedule(&cp->napi);
2578 #else
2579                 cas_rx_ringN(cp, 0, 0);
2580 #endif
2581                 status &= ~INTR_RX_DONE;
2582         }
2583
2584         if (status)
2585                 cas_handle_irq(dev, cp, status);
2586         spin_unlock_irqrestore(&cp->lock, flags);
2587         return IRQ_HANDLED;
2588 }
2589
2590
2591 #ifdef USE_NAPI
2592 static int cas_poll(struct napi_struct *napi, int budget)
2593 {
2594         struct cas *cp = container_of(napi, struct cas, napi);
2595         struct net_device *dev = cp->dev;
2596         int i, enable_intr, credits;
2597         u32 status = readl(cp->regs + REG_INTR_STATUS);
2598         unsigned long flags;
2599
2600         spin_lock_irqsave(&cp->lock, flags);
2601         cas_tx(dev, cp, status);
2602         spin_unlock_irqrestore(&cp->lock, flags);
2603
2604         /* NAPI rx packets. we spread the credits across all of the
2605          * rxc rings
2606          *
2607          * to make sure we're fair with the work we loop through each
2608          * ring N_RX_COMP_RING times with a request of
2609          * budget / N_RX_COMP_RINGS
2610          */
2611         enable_intr = 1;
2612         credits = 0;
2613         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2614                 int j;
2615                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2616                         credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2617                         if (credits >= budget) {
2618                                 enable_intr = 0;
2619                                 goto rx_comp;
2620                         }
2621                 }
2622         }
2623
2624 rx_comp:
2625         /* final rx completion */
2626         spin_lock_irqsave(&cp->lock, flags);
2627         if (status)
2628                 cas_handle_irq(dev, cp, status);
2629
2630 #ifdef USE_PCI_INTB
2631         if (N_RX_COMP_RINGS > 1) {
2632                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2633                 if (status)
2634                         cas_handle_irq1(dev, cp, status);
2635         }
2636 #endif
2637
2638 #ifdef USE_PCI_INTC
2639         if (N_RX_COMP_RINGS > 2) {
2640                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2641                 if (status)
2642                         cas_handle_irqN(dev, cp, status, 2);
2643         }
2644 #endif
2645
2646 #ifdef USE_PCI_INTD
2647         if (N_RX_COMP_RINGS > 3) {
2648                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2649                 if (status)
2650                         cas_handle_irqN(dev, cp, status, 3);
2651         }
2652 #endif
2653         spin_unlock_irqrestore(&cp->lock, flags);
2654         if (enable_intr) {
2655                 napi_complete(napi);
2656                 cas_unmask_intr(cp);
2657         }
2658         return credits;
2659 }
2660 #endif
2661
2662 #ifdef CONFIG_NET_POLL_CONTROLLER
2663 static void cas_netpoll(struct net_device *dev)
2664 {
2665         struct cas *cp = netdev_priv(dev);
2666
2667         cas_disable_irq(cp, 0);
2668         cas_interrupt(cp->pdev->irq, dev);
2669         cas_enable_irq(cp, 0);
2670
2671 #ifdef USE_PCI_INTB
2672         if (N_RX_COMP_RINGS > 1) {
2673                 /* cas_interrupt1(); */
2674         }
2675 #endif
2676 #ifdef USE_PCI_INTC
2677         if (N_RX_COMP_RINGS > 2) {
2678                 /* cas_interruptN(); */
2679         }
2680 #endif
2681 #ifdef USE_PCI_INTD
2682         if (N_RX_COMP_RINGS > 3) {
2683                 /* cas_interruptN(); */
2684         }
2685 #endif
2686 }
2687 #endif
2688
2689 static void cas_tx_timeout(struct net_device *dev)
2690 {
2691         struct cas *cp = netdev_priv(dev);
2692
2693         netdev_err(dev, "transmit timed out, resetting\n");
2694         if (!cp->hw_running) {
2695                 netdev_err(dev, "hrm.. hw not running!\n");
2696                 return;
2697         }
2698
2699         netdev_err(dev, "MIF_STATE[%08x]\n",
2700                    readl(cp->regs + REG_MIF_STATE_MACHINE));
2701
2702         netdev_err(dev, "MAC_STATE[%08x]\n",
2703                    readl(cp->regs + REG_MAC_STATE_MACHINE));
2704
2705         netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2706                    readl(cp->regs + REG_TX_CFG),
2707                    readl(cp->regs + REG_MAC_TX_STATUS),
2708                    readl(cp->regs + REG_MAC_TX_CFG),
2709                    readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2710                    readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2711                    readl(cp->regs + REG_TX_FIFO_READ_PTR),
2712                    readl(cp->regs + REG_TX_SM_1),
2713                    readl(cp->regs + REG_TX_SM_2));
2714
2715         netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2716                    readl(cp->regs + REG_RX_CFG),
2717                    readl(cp->regs + REG_MAC_RX_STATUS),
2718                    readl(cp->regs + REG_MAC_RX_CFG));
2719
2720         netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2721                    readl(cp->regs + REG_HP_STATE_MACHINE),
2722                    readl(cp->regs + REG_HP_STATUS0),
2723                    readl(cp->regs + REG_HP_STATUS1),
2724                    readl(cp->regs + REG_HP_STATUS2));
2725
2726 #if 1
2727         atomic_inc(&cp->reset_task_pending);
2728         atomic_inc(&cp->reset_task_pending_all);
2729         schedule_work(&cp->reset_task);
2730 #else
2731         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2732         schedule_work(&cp->reset_task);
2733 #endif
2734 }
2735
2736 static inline int cas_intme(int ring, int entry)
2737 {
2738         /* Algorithm: IRQ every 1/2 of descriptors. */
2739         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2740                 return 1;
2741         return 0;
2742 }
2743
2744
2745 static void cas_write_txd(struct cas *cp, int ring, int entry,
2746                           dma_addr_t mapping, int len, u64 ctrl, int last)
2747 {
2748         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2749
2750         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2751         if (cas_intme(ring, entry))
2752                 ctrl |= TX_DESC_INTME;
2753         if (last)
2754                 ctrl |= TX_DESC_EOF;
2755         txd->control = cpu_to_le64(ctrl);
2756         txd->buffer = cpu_to_le64(mapping);
2757 }
2758
2759 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2760                                 const int entry)
2761 {
2762         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2763 }
2764
2765 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2766                                      const int entry, const int tentry)
2767 {
2768         cp->tx_tiny_use[ring][tentry].nbufs++;
2769         cp->tx_tiny_use[ring][entry].used = 1;
2770         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2771 }
2772
2773 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2774                                     struct sk_buff *skb)
2775 {
2776         struct net_device *dev = cp->dev;
2777         int entry, nr_frags, frag, tabort, tentry;
2778         dma_addr_t mapping;
2779         unsigned long flags;
2780         u64 ctrl;
2781         u32 len;
2782
2783         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2784
2785         /* This is a hard error, log it. */
2786         if (TX_BUFFS_AVAIL(cp, ring) <=
2787             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2788                 netif_stop_queue(dev);
2789                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2790                 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2791                 return 1;
2792         }
2793
2794         ctrl = 0;
2795         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2796                 const u64 csum_start_off = skb_transport_offset(skb);
2797                 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2798
2799                 ctrl =  TX_DESC_CSUM_EN |
2800                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2801                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2802         }
2803
2804         entry = cp->tx_new[ring];
2805         cp->tx_skbs[ring][entry] = skb;
2806
2807         nr_frags = skb_shinfo(skb)->nr_frags;
2808         len = skb_headlen(skb);
2809         mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2810                                offset_in_page(skb->data), len,
2811                                PCI_DMA_TODEVICE);
2812
2813         tentry = entry;
2814         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2815         if (unlikely(tabort)) {
2816                 /* NOTE: len is always >  tabort */
2817                 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2818                               ctrl | TX_DESC_SOF, 0);
2819                 entry = TX_DESC_NEXT(ring, entry);
2820
2821                 skb_copy_from_linear_data_offset(skb, len - tabort,
2822                               tx_tiny_buf(cp, ring, entry), tabort);
2823                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2824                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2825                               (nr_frags == 0));
2826         } else {
2827                 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2828                               TX_DESC_SOF, (nr_frags == 0));
2829         }
2830         entry = TX_DESC_NEXT(ring, entry);
2831
2832         for (frag = 0; frag < nr_frags; frag++) {
2833                 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2834
2835                 len = fragp->size;
2836                 mapping = pci_map_page(cp->pdev, fragp->page,
2837                                        fragp->page_offset, len,
2838                                        PCI_DMA_TODEVICE);
2839
2840                 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2841                 if (unlikely(tabort)) {
2842                         void *addr;
2843
2844                         /* NOTE: len is always > tabort */
2845                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2846                                       ctrl, 0);
2847                         entry = TX_DESC_NEXT(ring, entry);
2848
2849                         addr = cas_page_map(fragp->page);
2850                         memcpy(tx_tiny_buf(cp, ring, entry),
2851                                addr + fragp->page_offset + len - tabort,
2852                                tabort);
2853                         cas_page_unmap(addr);
2854                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2855                         len     = tabort;
2856                 }
2857
2858                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2859                               (frag + 1 == nr_frags));
2860                 entry = TX_DESC_NEXT(ring, entry);
2861         }
2862
2863         cp->tx_new[ring] = entry;
2864         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2865                 netif_stop_queue(dev);
2866
2867         netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2868                      "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2869                      ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2870         writel(entry, cp->regs + REG_TX_KICKN(ring));
2871         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2872         return 0;
2873 }
2874
2875 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2876 {
2877         struct cas *cp = netdev_priv(dev);
2878
2879         /* this is only used as a load-balancing hint, so it doesn't
2880          * need to be SMP safe
2881          */
2882         static int ring;
2883
2884         if (skb_padto(skb, cp->min_frame_size))
2885                 return NETDEV_TX_OK;
2886
2887         /* XXX: we need some higher-level QoS hooks to steer packets to
2888          *      individual queues.
2889          */
2890         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2891                 return NETDEV_TX_BUSY;
2892         return NETDEV_TX_OK;
2893 }
2894
2895 static void cas_init_tx_dma(struct cas *cp)
2896 {
2897         u64 desc_dma = cp->block_dvma;
2898         unsigned long off;
2899         u32 val;
2900         int i;
2901
2902         /* set up tx completion writeback registers. must be 8-byte aligned */
2903 #ifdef USE_TX_COMPWB
2904         off = offsetof(struct cas_init_block, tx_compwb);
2905         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2906         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2907 #endif
2908
2909         /* enable completion writebacks, enable paced mode,
2910          * disable read pipe, and disable pre-interrupt compwbs
2911          */
2912         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2913                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2914                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2915                 TX_CFG_INTR_COMPWB_DIS;
2916
2917         /* write out tx ring info and tx desc bases */
2918         for (i = 0; i < MAX_TX_RINGS; i++) {
2919                 off = (unsigned long) cp->init_txds[i] -
2920                         (unsigned long) cp->init_block;
2921
2922                 val |= CAS_TX_RINGN_BASE(i);
2923                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2924                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2925                        REG_TX_DBN_LOW(i));
2926                 /* don't zero out the kick register here as the system
2927                  * will wedge
2928                  */
2929         }
2930         writel(val, cp->regs + REG_TX_CFG);
2931
2932         /* program max burst sizes. these numbers should be different
2933          * if doing QoS.
2934          */
2935 #ifdef USE_QOS
2936         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2937         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2938         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2939         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2940 #else
2941         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2942         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2943         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2944         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2945 #endif
2946 }
2947
2948 /* Must be invoked under cp->lock. */
2949 static inline void cas_init_dma(struct cas *cp)
2950 {
2951         cas_init_tx_dma(cp);
2952         cas_init_rx_dma(cp);
2953 }
2954
2955 static void cas_process_mc_list(struct cas *cp)
2956 {
2957         u16 hash_table[16];
2958         u32 crc;
2959         struct netdev_hw_addr *ha;
2960         int i = 1;
2961
2962         memset(hash_table, 0, sizeof(hash_table));
2963         netdev_for_each_mc_addr(ha, cp->dev) {
2964                 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2965                         /* use the alternate mac address registers for the
2966                          * first 15 multicast addresses
2967                          */
2968                         writel((ha->addr[4] << 8) | ha->addr[5],
2969                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
2970                         writel((ha->addr[2] << 8) | ha->addr[3],
2971                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
2972                         writel((ha->addr[0] << 8) | ha->addr[1],
2973                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
2974                         i++;
2975                 }
2976                 else {
2977                         /* use hw hash table for the next series of
2978                          * multicast addresses
2979                          */
2980                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2981                         crc >>= 24;
2982                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2983                 }
2984         }
2985         for (i = 0; i < 16; i++)
2986                 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2987 }
2988
2989 /* Must be invoked under cp->lock. */
2990 static u32 cas_setup_multicast(struct cas *cp)
2991 {
2992         u32 rxcfg = 0;
2993         int i;
2994
2995         if (cp->dev->flags & IFF_PROMISC) {
2996                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2997
2998         } else if (cp->dev->flags & IFF_ALLMULTI) {
2999                 for (i=0; i < 16; i++)
3000                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
3001                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3002
3003         } else {
3004                 cas_process_mc_list(cp);
3005                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3006         }
3007
3008         return rxcfg;
3009 }
3010
3011 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3012 static void cas_clear_mac_err(struct cas *cp)
3013 {
3014         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3015         writel(0, cp->regs + REG_MAC_COLL_FIRST);
3016         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3017         writel(0, cp->regs + REG_MAC_COLL_LATE);
3018         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3019         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3020         writel(0, cp->regs + REG_MAC_RECV_FRAME);
3021         writel(0, cp->regs + REG_MAC_LEN_ERR);
3022         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3023         writel(0, cp->regs + REG_MAC_FCS_ERR);
3024         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3025 }
3026
3027
3028 static void cas_mac_reset(struct cas *cp)
3029 {
3030         int i;
3031
3032         /* do both TX and RX reset */
3033         writel(0x1, cp->regs + REG_MAC_TX_RESET);
3034         writel(0x1, cp->regs + REG_MAC_RX_RESET);
3035
3036         /* wait for TX */
3037         i = STOP_TRIES;
3038         while (i-- > 0) {
3039                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3040                         break;
3041                 udelay(10);
3042         }
3043
3044         /* wait for RX */
3045         i = STOP_TRIES;
3046         while (i-- > 0) {
3047                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3048                         break;
3049                 udelay(10);
3050         }
3051
3052         if (readl(cp->regs + REG_MAC_TX_RESET) |
3053             readl(cp->regs + REG_MAC_RX_RESET))
3054                 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3055                            readl(cp->regs + REG_MAC_TX_RESET),
3056                            readl(cp->regs + REG_MAC_RX_RESET),
3057                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3058 }
3059
3060
3061 /* Must be invoked under cp->lock. */
3062 static void cas_init_mac(struct cas *cp)
3063 {
3064         unsigned char *e = &cp->dev->dev_addr[0];
3065         int i;
3066 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3067         u32 rxcfg;
3068 #endif
3069         cas_mac_reset(cp);
3070
3071         /* setup core arbitration weight register */
3072         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3073
3074         /* XXX Use pci_dma_burst_advice() */
3075 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3076         /* set the infinite burst register for chips that don't have
3077          * pci issues.
3078          */
3079         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3080                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3081 #endif
3082
3083         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3084
3085         writel(0x00, cp->regs + REG_MAC_IPG0);
3086         writel(0x08, cp->regs + REG_MAC_IPG1);
3087         writel(0x04, cp->regs + REG_MAC_IPG2);
3088
3089         /* change later for 802.3z */
3090         writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3091
3092         /* min frame + FCS */
3093         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3094
3095         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3096          * specify the maximum frame size to prevent RX tag errors on
3097          * oversized frames.
3098          */
3099         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3100                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3101                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3102                cp->regs + REG_MAC_FRAMESIZE_MAX);
3103
3104         /* NOTE: crc_size is used as a surrogate for half-duplex.
3105          * workaround saturn half-duplex issue by increasing preamble
3106          * size to 65 bytes.
3107          */
3108         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3109                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3110         else
3111                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3112         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3113         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3114         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3115
3116         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3117
3118         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3119         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3120         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3121         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3122         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3123
3124         /* setup mac address in perfect filter array */
3125         for (i = 0; i < 45; i++)
3126                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3127
3128         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3129         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3130         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3131
3132         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3133         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3134         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3135
3136 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3137         cp->mac_rx_cfg = cas_setup_multicast(cp);
3138 #else
3139         /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3140          * a writel does not seem to be necessary because Cassini
3141          * seems to preserve the configuration when we do the reset.
3142          * If the chip is in trouble, though, it is not clear if we
3143          * can really count on this behavior. cas_set_multicast uses
3144          * spin_lock_irqsave, but we are called only in cas_init_hw and
3145          * cas_init_hw is protected by cas_lock_all, which calls
3146          * spin_lock_irq (so it doesn't need to save the flags, and
3147          * we should be OK for the writel, as that is the only
3148          * difference).
3149          */
3150         cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3151         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3152 #endif
3153         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3154         cas_clear_mac_err(cp);
3155         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3156
3157         /* Setup MAC interrupts.  We want to get all of the interesting
3158          * counter expiration events, but we do not want to hear about
3159          * normal rx/tx as the DMA engine tells us that.
3160          */
3161         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3162         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3163
3164         /* Don't enable even the PAUSE interrupts for now, we
3165          * make no use of those events other than to record them.
3166          */
3167         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3168 }
3169
3170 /* Must be invoked under cp->lock. */
3171 static void cas_init_pause_thresholds(struct cas *cp)
3172 {
3173         /* Calculate pause thresholds.  Setting the OFF threshold to the
3174          * full RX fifo size effectively disables PAUSE generation
3175          */
3176         if (cp->rx_fifo_size <= (2 * 1024)) {
3177                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3178         } else {
3179                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3180                 if (max_frame * 3 > cp->rx_fifo_size) {
3181                         cp->rx_pause_off = 7104;
3182                         cp->rx_pause_on  = 960;
3183                 } else {
3184                         int off = (cp->rx_fifo_size - (max_frame * 2));
3185                         int on = off - max_frame;
3186                         cp->rx_pause_off = off;
3187                         cp->rx_pause_on = on;
3188                 }
3189         }
3190 }
3191
3192 static int cas_vpd_match(const void __iomem *p, const char *str)
3193 {
3194         int len = strlen(str) + 1;
3195         int i;
3196
3197         for (i = 0; i < len; i++) {
3198                 if (readb(p + i) != str[i])
3199                         return 0;
3200         }
3201         return 1;
3202 }
3203
3204
3205 /* get the mac address by reading the vpd information in the rom.
3206  * also get the phy type and determine if there's an entropy generator.
3207  * NOTE: this is a bit convoluted for the following reasons:
3208  *  1) vpd info has order-dependent mac addresses for multinic cards
3209  *  2) the only way to determine the nic order is to use the slot
3210  *     number.
3211  *  3) fiber cards don't have bridges, so their slot numbers don't
3212  *     mean anything.
3213  *  4) we don't actually know we have a fiber card until after
3214  *     the mac addresses are parsed.
3215  */
3216 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3217                             const int offset)
3218 {
3219         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3220         void __iomem *base, *kstart;
3221         int i, len;
3222         int found = 0;
3223 #define VPD_FOUND_MAC        0x01
3224 #define VPD_FOUND_PHY        0x02
3225
3226         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3227         int mac_off  = 0;
3228
3229         /* give us access to the PROM */
3230         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3231                cp->regs + REG_BIM_LOCAL_DEV_EN);
3232
3233         /* check for an expansion rom */
3234         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3235                 goto use_random_mac_addr;
3236
3237         /* search for beginning of vpd */
3238         base = NULL;
3239         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3240                 /* check for PCIR */
3241                 if ((readb(p + i + 0) == 0x50) &&
3242                     (readb(p + i + 1) == 0x43) &&
3243                     (readb(p + i + 2) == 0x49) &&
3244                     (readb(p + i + 3) == 0x52)) {
3245                         base = p + (readb(p + i + 8) |
3246                                     (readb(p + i + 9) << 8));
3247                         break;
3248                 }
3249         }
3250
3251         if (!base || (readb(base) != 0x82))
3252                 goto use_random_mac_addr;
3253
3254         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3255         while (i < EXPANSION_ROM_SIZE) {
3256                 if (readb(base + i) != 0x90) /* no vpd found */
3257                         goto use_random_mac_addr;
3258
3259                 /* found a vpd field */
3260                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3261
3262                 /* extract keywords */
3263                 kstart = base + i + 3;
3264                 p = kstart;
3265                 while ((p - kstart) < len) {
3266                         int klen = readb(p + 2);
3267                         int j;
3268                         char type;
3269
3270                         p += 3;
3271
3272                         /* look for the following things:
3273                          * -- correct length == 29
3274                          * 3 (type) + 2 (size) +
3275                          * 18 (strlen("local-mac-address") + 1) +
3276                          * 6 (mac addr)
3277                          * -- VPD Instance 'I'
3278                          * -- VPD Type Bytes 'B'
3279                          * -- VPD data length == 6
3280                          * -- property string == local-mac-address
3281                          *
3282                          * -- correct length == 24
3283                          * 3 (type) + 2 (size) +
3284                          * 12 (strlen("entropy-dev") + 1) +
3285                          * 7 (strlen("vms110") + 1)
3286                          * -- VPD Instance 'I'
3287                          * -- VPD Type String 'B'
3288                          * -- VPD data length == 7
3289                          * -- property string == entropy-dev
3290                          *
3291                          * -- correct length == 18
3292                          * 3 (type) + 2 (size) +
3293                          * 9 (strlen("phy-type") + 1) +
3294                          * 4 (strlen("pcs") + 1)
3295                          * -- VPD Instance 'I'
3296                          * -- VPD Type String 'S'
3297                          * -- VPD data length == 4
3298                          * -- property string == phy-type
3299                          *
3300                          * -- correct length == 23
3301                          * 3 (type) + 2 (size) +
3302                          * 14 (strlen("phy-interface") + 1) +
3303                          * 4 (strlen("pcs") + 1)
3304                          * -- VPD Instance 'I'
3305                          * -- VPD Type String 'S'
3306                          * -- VPD data length == 4
3307                          * -- property string == phy-interface
3308                          */
3309                         if (readb(p) != 'I')
3310                                 goto next;
3311
3312                         /* finally, check string and length */
3313                         type = readb(p + 3);
3314                         if (type == 'B') {
3315                                 if ((klen == 29) && readb(p + 4) == 6 &&
3316                                     cas_vpd_match(p + 5,
3317                                                   "local-mac-address")) {
3318                                         if (mac_off++ > offset)
3319                                                 goto next;
3320
3321                                         /* set mac address */
3322                                         for (j = 0; j < 6; j++)
3323                                                 dev_addr[j] =
3324                                                         readb(p + 23 + j);
3325                                         goto found_mac;
3326                                 }
3327                         }
3328
3329                         if (type != 'S')
3330                                 goto next;
3331
3332 #ifdef USE_ENTROPY_DEV
3333                         if ((klen == 24) &&
3334                             cas_vpd_match(p + 5, "entropy-dev") &&
3335                             cas_vpd_match(p + 17, "vms110")) {
3336                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3337                                 goto next;
3338                         }
3339 #endif
3340
3341                         if (found & VPD_FOUND_PHY)
3342                                 goto next;
3343
3344                         if ((klen == 18) && readb(p + 4) == 4 &&
3345                             cas_vpd_match(p + 5, "phy-type")) {
3346                                 if (cas_vpd_match(p + 14, "pcs")) {
3347                                         phy_type = CAS_PHY_SERDES;
3348                                         goto found_phy;
3349                                 }
3350                         }
3351
3352                         if ((klen == 23) && readb(p + 4) == 4 &&
3353                             cas_vpd_match(p + 5, "phy-interface")) {
3354                                 if (cas_vpd_match(p + 19, "pcs")) {
3355                                         phy_type = CAS_PHY_SERDES;
3356                                         goto found_phy;
3357                                 }
3358                         }
3359 found_mac:
3360                         found |= VPD_FOUND_MAC;
3361                         goto next;
3362
3363 found_phy:
3364                         found |= VPD_FOUND_PHY;
3365
3366 next:
3367                         p += klen;
3368                 }
3369                 i += len + 3;
3370         }
3371
3372 use_random_mac_addr:
3373         if (found & VPD_FOUND_MAC)
3374                 goto done;
3375
3376         /* Sun MAC prefix then 3 random bytes. */
3377         pr_info("MAC address not found in ROM VPD\n");
3378         dev_addr[0] = 0x08;
3379         dev_addr[1] = 0x00;
3380         dev_addr[2] = 0x20;
3381         get_random_bytes(dev_addr + 3, 3);
3382
3383 done:
3384         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3385         return phy_type;
3386 }
3387
3388 /* check pci invariants */
3389 static void cas_check_pci_invariants(struct cas *cp)
3390 {
3391         struct pci_dev *pdev = cp->pdev;
3392
3393         cp->cas_flags = 0;
3394         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3395             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3396                 if (pdev->revision >= CAS_ID_REVPLUS)
3397                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3398                 if (pdev->revision < CAS_ID_REVPLUS02u)
3399                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3400
3401                 /* Original Cassini supports HW CSUM, but it's not
3402                  * enabled by default as it can trigger TX hangs.
3403                  */
3404                 if (pdev->revision < CAS_ID_REV2)
3405                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3406         } else {
3407                 /* Only sun has original cassini chips.  */
3408                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3409
3410                 /* We use a flag because the same phy might be externally
3411                  * connected.
3412                  */
3413                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3414                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3415                         cp->cas_flags |= CAS_FLAG_SATURN;
3416         }
3417 }
3418
3419
3420 static int cas_check_invariants(struct cas *cp)
3421 {
3422         struct pci_dev *pdev = cp->pdev;
3423         u32 cfg;
3424         int i;
3425
3426         /* get page size for rx buffers. */
3427         cp->page_order = 0;
3428 #ifdef USE_PAGE_ORDER
3429         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3430                 /* see if we can allocate larger pages */
3431                 struct page *page = alloc_pages(GFP_ATOMIC,
3432                                                 CAS_JUMBO_PAGE_SHIFT -
3433                                                 PAGE_SHIFT);
3434                 if (page) {
3435                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3436                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3437                 } else {
3438                         printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3439                 }
3440         }
3441 #endif
3442         cp->page_size = (PAGE_SIZE << cp->page_order);
3443
3444         /* Fetch the FIFO configurations. */
3445         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3446         cp->rx_fifo_size = RX_FIFO_SIZE;
3447
3448         /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3449          * they're both connected.
3450          */
3451         cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3452                                         PCI_SLOT(pdev->devfn));
3453         if (cp->phy_type & CAS_PHY_SERDES) {
3454                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3455                 return 0; /* no more checking needed */
3456         }
3457
3458         /* MII */
3459         cfg = readl(cp->regs + REG_MIF_CFG);
3460         if (cfg & MIF_CFG_MDIO_1) {
3461                 cp->phy_type = CAS_PHY_MII_MDIO1;
3462         } else if (cfg & MIF_CFG_MDIO_0) {
3463                 cp->phy_type = CAS_PHY_MII_MDIO0;
3464         }
3465
3466         cas_mif_poll(cp, 0);
3467         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3468
3469         for (i = 0; i < 32; i++) {
3470                 u32 phy_id;
3471                 int j;
3472
3473                 for (j = 0; j < 3; j++) {
3474                         cp->phy_addr = i;
3475                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3476                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3477                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3478                                 cp->phy_id = phy_id;
3479                                 goto done;
3480                         }
3481                 }
3482         }
3483         pr_err("MII phy did not respond [%08x]\n",
3484                readl(cp->regs + REG_MIF_STATE_MACHINE));
3485         return -1;
3486
3487 done:
3488         /* see if we can do gigabit */
3489         cfg = cas_phy_read(cp, MII_BMSR);
3490         if ((cfg & CAS_BMSR_1000_EXTEND) &&
3491             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3492                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3493         return 0;
3494 }
3495
3496 /* Must be invoked under cp->lock. */
3497 static inline void cas_start_dma(struct cas *cp)
3498 {
3499         int i;
3500         u32 val;
3501         int txfailed = 0;
3502
3503         /* enable dma */
3504         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3505         writel(val, cp->regs + REG_TX_CFG);
3506         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3507         writel(val, cp->regs + REG_RX_CFG);
3508
3509         /* enable the mac */
3510         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3511         writel(val, cp->regs + REG_MAC_TX_CFG);
3512         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3513         writel(val, cp->regs + REG_MAC_RX_CFG);
3514
3515         i = STOP_TRIES;
3516         while (i-- > 0) {
3517                 val = readl(cp->regs + REG_MAC_TX_CFG);
3518                 if ((val & MAC_TX_CFG_EN))
3519                         break;
3520                 udelay(10);
3521         }
3522         if (i < 0) txfailed = 1;
3523         i = STOP_TRIES;
3524         while (i-- > 0) {
3525                 val = readl(cp->regs + REG_MAC_RX_CFG);
3526                 if ((val & MAC_RX_CFG_EN)) {
3527                         if (txfailed) {
3528                                 netdev_err(cp->dev,
3529                                            "enabling mac failed [tx:%08x:%08x]\n",
3530                                            readl(cp->regs + REG_MIF_STATE_MACHINE),
3531                                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3532                         }
3533                         goto enable_rx_done;
3534                 }
3535                 udelay(10);
3536         }
3537         netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3538                    (txfailed ? "tx,rx" : "rx"),
3539                    readl(cp->regs + REG_MIF_STATE_MACHINE),
3540                    readl(cp->regs + REG_MAC_STATE_MACHINE));
3541
3542 enable_rx_done:
3543         cas_unmask_intr(cp); /* enable interrupts */
3544         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3545         writel(0, cp->regs + REG_RX_COMP_TAIL);
3546
3547         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3548                 if (N_RX_DESC_RINGS > 1)
3549                         writel(RX_DESC_RINGN_SIZE(1) - 4,
3550                                cp->regs + REG_PLUS_RX_KICK1);
3551
3552                 for (i = 1; i < N_RX_COMP_RINGS; i++)
3553                         writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3554         }
3555 }
3556
3557 /* Must be invoked under cp->lock. */
3558 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3559                                    int *pause)
3560 {
3561         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3562         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3563         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3564         if (val & PCS_MII_LPA_ASYM_PAUSE)
3565                 *pause |= 0x10;
3566         *spd = 1000;
3567 }
3568
3569 /* Must be invoked under cp->lock. */
3570 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3571                                    int *pause)
3572 {
3573         u32 val;
3574
3575         *fd = 0;
3576         *spd = 10;
3577         *pause = 0;
3578
3579         /* use GMII registers */
3580         val = cas_phy_read(cp, MII_LPA);
3581         if (val & CAS_LPA_PAUSE)
3582                 *pause = 0x01;
3583
3584         if (val & CAS_LPA_ASYM_PAUSE)
3585                 *pause |= 0x10;
3586
3587         if (val & LPA_DUPLEX)
3588                 *fd = 1;
3589         if (val & LPA_100)
3590                 *spd = 100;
3591
3592         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3593                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3594                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3595                         *spd = 1000;
3596                 if (val & CAS_LPA_1000FULL)
3597                         *fd = 1;
3598         }
3599 }
3600
3601 /* A link-up condition has occurred, initialize and enable the
3602  * rest of the chip.
3603  *
3604  * Must be invoked under cp->lock.
3605  */
3606 static void cas_set_link_modes(struct cas *cp)
3607 {
3608         u32 val;
3609         int full_duplex, speed, pause;
3610
3611         full_duplex = 0;
3612         speed = 10;
3613         pause = 0;
3614
3615         if (CAS_PHY_MII(cp->phy_type)) {
3616                 cas_mif_poll(cp, 0);
3617                 val = cas_phy_read(cp, MII_BMCR);
3618                 if (val & BMCR_ANENABLE) {
3619                         cas_read_mii_link_mode(cp, &full_duplex, &speed,
3620                                                &pause);
3621                 } else {
3622                         if (val & BMCR_FULLDPLX)
3623                                 full_duplex = 1;
3624
3625                         if (val & BMCR_SPEED100)
3626                                 speed = 100;
3627                         else if (val & CAS_BMCR_SPEED1000)
3628                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3629                                         1000 : 100;
3630                 }
3631                 cas_mif_poll(cp, 1);
3632
3633         } else {
3634                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3635                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3636                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3637                         if (val & PCS_MII_CTRL_DUPLEX)
3638                                 full_duplex = 1;
3639                 }
3640         }
3641
3642         netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3643                    speed, full_duplex ? "full" : "half");
3644
3645         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3646         if (CAS_PHY_MII(cp->phy_type)) {
3647                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3648                 if (!full_duplex)
3649                         val |= MAC_XIF_DISABLE_ECHO;
3650         }
3651         if (full_duplex)
3652                 val |= MAC_XIF_FDPLX_LED;
3653         if (speed == 1000)
3654                 val |= MAC_XIF_GMII_MODE;
3655         writel(val, cp->regs + REG_MAC_XIF_CFG);
3656
3657         /* deal with carrier and collision detect. */
3658         val = MAC_TX_CFG_IPG_EN;
3659         if (full_duplex) {
3660                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3661                 val |= MAC_TX_CFG_IGNORE_COLL;
3662         } else {
3663 #ifndef USE_CSMA_CD_PROTO
3664                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3665                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3666 #endif
3667         }
3668         /* val now set up for REG_MAC_TX_CFG */
3669
3670         /* If gigabit and half-duplex, enable carrier extension
3671          * mode.  increase slot time to 512 bytes as well.
3672          * else, disable it and make sure slot time is 64 bytes.
3673          * also activate checksum bug workaround
3674          */
3675         if ((speed == 1000) && !full_duplex) {
3676                 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3677                        cp->regs + REG_MAC_TX_CFG);
3678
3679                 val = readl(cp->regs + REG_MAC_RX_CFG);
3680                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3681                 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3682                        cp->regs + REG_MAC_RX_CFG);
3683
3684                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3685
3686                 cp->crc_size = 4;
3687                 /* minimum size gigabit frame at half duplex */
3688                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3689
3690         } else {
3691                 writel(val, cp->regs + REG_MAC_TX_CFG);
3692
3693                 /* checksum bug workaround. don't strip FCS when in
3694                  * half-duplex mode
3695                  */
3696                 val = readl(cp->regs + REG_MAC_RX_CFG);
3697                 if (full_duplex) {
3698                         val |= MAC_RX_CFG_STRIP_FCS;
3699                         cp->crc_size = 0;
3700                         cp->min_frame_size = CAS_MIN_MTU;
3701                 } else {
3702                         val &= ~MAC_RX_CFG_STRIP_FCS;
3703                         cp->crc_size = 4;
3704                         cp->min_frame_size = CAS_MIN_FRAME;
3705                 }
3706                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3707                        cp->regs + REG_MAC_RX_CFG);
3708                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3709         }
3710
3711         if (netif_msg_link(cp)) {
3712                 if (pause & 0x01) {
3713                         netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3714                                     cp->rx_fifo_size,
3715                                     cp->rx_pause_off,
3716                                     cp->rx_pause_on);
3717                 } else if (pause & 0x10) {
3718                         netdev_info(cp->dev, "TX pause enabled\n");
3719                 } else {
3720                         netdev_info(cp->dev, "Pause is disabled\n");
3721                 }
3722         }
3723
3724         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3725         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3726         if (pause) { /* symmetric or asymmetric pause */
3727                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3728                 if (pause & 0x01) { /* symmetric pause */
3729                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3730                 }
3731         }
3732         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3733         cas_start_dma(cp);
3734 }
3735
3736 /* Must be invoked under cp->lock. */
3737 static void cas_init_hw(struct cas *cp, int restart_link)
3738 {
3739         if (restart_link)
3740                 cas_phy_init(cp);
3741
3742         cas_init_pause_thresholds(cp);
3743         cas_init_mac(cp);
3744         cas_init_dma(cp);
3745
3746         if (restart_link) {
3747                 /* Default aneg parameters */
3748                 cp->timer_ticks = 0;
3749                 cas_begin_auto_negotiation(cp, NULL);
3750         } else if (cp->lstate == link_up) {
3751                 cas_set_link_modes(cp);
3752                 netif_carrier_on(cp->dev);
3753         }
3754 }
3755
3756 /* Must be invoked under cp->lock. on earlier cassini boards,
3757  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3758  * let it settle out, and then restore pci state.
3759  */
3760 static void cas_hard_reset(struct cas *cp)
3761 {
3762         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3763         udelay(20);
3764         pci_restore_state(cp->pdev);
3765 }
3766
3767
3768 static void cas_global_reset(struct cas *cp, int blkflag)
3769 {
3770         int limit;
3771
3772         /* issue a global reset. don't use RSTOUT. */
3773         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3774                 /* For PCS, when the blkflag is set, we should set the
3775                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3776                  * the last autonegotiation from being cleared.  We'll
3777                  * need some special handling if the chip is set into a
3778                  * loopback mode.
3779                  */
3780                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3781                        cp->regs + REG_SW_RESET);
3782         } else {
3783                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3784         }
3785
3786         /* need to wait at least 3ms before polling register */
3787         mdelay(3);
3788
3789         limit = STOP_TRIES;
3790         while (limit-- > 0) {
3791                 u32 val = readl(cp->regs + REG_SW_RESET);
3792                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3793                         goto done;
3794                 udelay(10);
3795         }
3796         netdev_err(cp->dev, "sw reset failed\n");
3797
3798 done:
3799         /* enable various BIM interrupts */
3800         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3801                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3802
3803         /* clear out pci error status mask for handled errors.
3804          * we don't deal with DMA counter overflows as they happen
3805          * all the time.
3806          */
3807         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3808                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3809                                PCI_ERR_BIM_DMA_READ), cp->regs +
3810                REG_PCI_ERR_STATUS_MASK);
3811
3812         /* set up for MII by default to address mac rx reset timeout
3813          * issue
3814          */
3815         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3816 }
3817
3818 static void cas_reset(struct cas *cp, int blkflag)
3819 {
3820         u32 val;
3821
3822         cas_mask_intr(cp);
3823         cas_global_reset(cp, blkflag);
3824         cas_mac_reset(cp);
3825         cas_entropy_reset(cp);
3826
3827         /* disable dma engines. */
3828         val = readl(cp->regs + REG_TX_CFG);
3829         val &= ~TX_CFG_DMA_EN;
3830         writel(val, cp->regs + REG_TX_CFG);
3831
3832         val = readl(cp->regs + REG_RX_CFG);
3833         val &= ~RX_CFG_DMA_EN;
3834         writel(val, cp->regs + REG_RX_CFG);
3835
3836         /* program header parser */
3837         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3838             (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3839                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3840         } else {
3841                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3842         }
3843
3844         /* clear out error registers */
3845         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3846         cas_clear_mac_err(cp);
3847         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3848 }
3849
3850 /* Shut down the chip, must be called with pm_mutex held.  */
3851 static void cas_shutdown(struct cas *cp)
3852 {
3853         unsigned long flags;
3854
3855         /* Make us not-running to avoid timers respawning */
3856         cp->hw_running = 0;
3857
3858         del_timer_sync(&cp->link_timer);
3859
3860         /* Stop the reset task */
3861 #if 0
3862         while (atomic_read(&cp->reset_task_pending_mtu) ||
3863                atomic_read(&cp->reset_task_pending_spare) ||
3864                atomic_read(&cp->reset_task_pending_all))
3865                 schedule();
3866
3867 #else
3868         while (atomic_read(&cp->reset_task_pending))
3869                 schedule();
3870 #endif
3871         /* Actually stop the chip */
3872         cas_lock_all_save(cp, flags);
3873         cas_reset(cp, 0);
3874         if (cp->cas_flags & CAS_FLAG_SATURN)
3875                 cas_phy_powerdown(cp);
3876         cas_unlock_all_restore(cp, flags);
3877 }
3878
3879 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3880 {
3881         struct cas *cp = netdev_priv(dev);
3882
3883         if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3884                 return -EINVAL;
3885
3886         dev->mtu = new_mtu;
3887         if (!netif_running(dev) || !netif_device_present(dev))
3888                 return 0;
3889
3890         /* let the reset task handle it */
3891 #if 1
3892         atomic_inc(&cp->reset_task_pending);
3893         if ((cp->phy_type & CAS_PHY_SERDES)) {
3894                 atomic_inc(&cp->reset_task_pending_all);
3895         } else {
3896                 atomic_inc(&cp->reset_task_pending_mtu);
3897         }
3898         schedule_work(&cp->reset_task);
3899 #else
3900         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3901                    CAS_RESET_ALL : CAS_RESET_MTU);
3902         pr_err("reset called in cas_change_mtu\n");
3903         schedule_work(&cp->reset_task);
3904 #endif
3905
3906         flush_scheduled_work();
3907         return 0;
3908 }
3909
3910 static void cas_clean_txd(struct cas *cp, int ring)
3911 {
3912         struct cas_tx_desc *txd = cp->init_txds[ring];
3913         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3914         u64 daddr, dlen;
3915         int i, size;
3916
3917         size = TX_DESC_RINGN_SIZE(ring);
3918         for (i = 0; i < size; i++) {
3919                 int frag;
3920
3921                 if (skbs[i] == NULL)
3922                         continue;
3923
3924                 skb = skbs[i];
3925                 skbs[i] = NULL;
3926
3927                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3928                         int ent = i & (size - 1);
3929
3930                         /* first buffer is never a tiny buffer and so
3931                          * needs to be unmapped.
3932                          */
3933                         daddr = le64_to_cpu(txd[ent].buffer);
3934                         dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3935                                          le64_to_cpu(txd[ent].control));
3936                         pci_unmap_page(cp->pdev, daddr, dlen,
3937                                        PCI_DMA_TODEVICE);
3938
3939                         if (frag != skb_shinfo(skb)->nr_frags) {
3940                                 i++;
3941
3942                                 /* next buffer might by a tiny buffer.
3943                                  * skip past it.
3944                                  */
3945                                 ent = i & (size - 1);
3946                                 if (cp->tx_tiny_use[ring][ent].used)
3947                                         i++;
3948                         }
3949                 }
3950                 dev_kfree_skb_any(skb);
3951         }
3952
3953         /* zero out tiny buf usage */
3954         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3955 }
3956
3957 /* freed on close */
3958 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3959 {
3960         cas_page_t **page = cp->rx_pages[ring];
3961         int i, size;
3962
3963         size = RX_DESC_RINGN_SIZE(ring);
3964         for (i = 0; i < size; i++) {
3965                 if (page[i]) {
3966                         cas_page_free(cp, page[i]);
3967                         page[i] = NULL;
3968                 }
3969         }
3970 }
3971
3972 static void cas_free_rxds(struct cas *cp)
3973 {
3974         int i;
3975
3976         for (i = 0; i < N_RX_DESC_RINGS; i++)
3977                 cas_free_rx_desc(cp, i);
3978 }
3979
3980 /* Must be invoked under cp->lock. */
3981 static void cas_clean_rings(struct cas *cp)
3982 {
3983         int i;
3984
3985         /* need to clean all tx rings */
3986         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3987         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3988         for (i = 0; i < N_TX_RINGS; i++)
3989                 cas_clean_txd(cp, i);
3990
3991         /* zero out init block */
3992         memset(cp->init_block, 0, sizeof(struct cas_init_block));
3993         cas_clean_rxds(cp);
3994         cas_clean_rxcs(cp);
3995 }
3996
3997 /* allocated on open */
3998 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3999 {
4000         cas_page_t **page = cp->rx_pages[ring];
4001         int size, i = 0;
4002
4003         size = RX_DESC_RINGN_SIZE(ring);
4004         for (i = 0; i < size; i++) {
4005                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4006                         return -1;
4007         }
4008         return 0;
4009 }
4010
4011 static int cas_alloc_rxds(struct cas *cp)
4012 {
4013         int i;
4014
4015         for (i = 0; i < N_RX_DESC_RINGS; i++) {
4016                 if (cas_alloc_rx_desc(cp, i) < 0) {
4017                         cas_free_rxds(cp);
4018                         return -1;
4019                 }
4020         }
4021         return 0;
4022 }
4023
4024 static void cas_reset_task(struct work_struct *work)
4025 {
4026         struct cas *cp = container_of(work, struct cas, reset_task);
4027 #if 0
4028         int pending = atomic_read(&cp->reset_task_pending);
4029 #else
4030         int pending_all = atomic_read(&cp->reset_task_pending_all);
4031         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4032         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4033
4034         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4035                 /* We can have more tasks scheduled than actually
4036                  * needed.
4037                  */
4038                 atomic_dec(&cp->reset_task_pending);
4039                 return;
4040         }
4041 #endif
4042         /* The link went down, we reset the ring, but keep
4043          * DMA stopped. Use this function for reset
4044          * on error as well.
4045          */
4046         if (cp->hw_running) {
4047                 unsigned long flags;
4048
4049                 /* Make sure we don't get interrupts or tx packets */
4050                 netif_device_detach(cp->dev);
4051                 cas_lock_all_save(cp, flags);
4052
4053                 if (cp->opened) {
4054                         /* We call cas_spare_recover when we call cas_open.
4055                          * but we do not initialize the lists cas_spare_recover
4056                          * uses until cas_open is called.
4057                          */
4058                         cas_spare_recover(cp, GFP_ATOMIC);
4059                 }
4060 #if 1
4061                 /* test => only pending_spare set */
4062                 if (!pending_all && !pending_mtu)
4063                         goto done;
4064 #else
4065                 if (pending == CAS_RESET_SPARE)
4066                         goto done;
4067 #endif
4068                 /* when pending == CAS_RESET_ALL, the following
4069                  * call to cas_init_hw will restart auto negotiation.
4070                  * Setting the second argument of cas_reset to
4071                  * !(pending == CAS_RESET_ALL) will set this argument
4072                  * to 1 (avoiding reinitializing the PHY for the normal
4073                  * PCS case) when auto negotiation is not restarted.
4074                  */
4075 #if 1
4076                 cas_reset(cp, !(pending_all > 0));
4077                 if (cp->opened)
4078                         cas_clean_rings(cp);
4079                 cas_init_hw(cp, (pending_all > 0));
4080 #else
4081                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4082                 if (cp->opened)
4083                         cas_clean_rings(cp);
4084                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4085 #endif
4086
4087 done:
4088                 cas_unlock_all_restore(cp, flags);
4089                 netif_device_attach(cp->dev);
4090         }
4091 #if 1
4092         atomic_sub(pending_all, &cp->reset_task_pending_all);
4093         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4094         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4095         atomic_dec(&cp->reset_task_pending);
4096 #else
4097         atomic_set(&cp->reset_task_pending, 0);
4098 #endif
4099 }
4100
4101 static void cas_link_timer(unsigned long data)
4102 {
4103         struct cas *cp = (struct cas *) data;
4104         int mask, pending = 0, reset = 0;
4105         unsigned long flags;
4106
4107         if (link_transition_timeout != 0 &&
4108             cp->link_transition_jiffies_valid &&
4109             ((jiffies - cp->link_transition_jiffies) >
4110               (link_transition_timeout))) {
4111                 /* One-second counter so link-down workaround doesn't
4112                  * cause resets to occur so fast as to fool the switch
4113                  * into thinking the link is down.
4114                  */
4115                 cp->link_transition_jiffies_valid = 0;
4116         }
4117
4118         if (!cp->hw_running)
4119                 return;
4120
4121         spin_lock_irqsave(&cp->lock, flags);
4122         cas_lock_tx(cp);
4123         cas_entropy_gather(cp);
4124
4125         /* If the link task is still pending, we just
4126          * reschedule the link timer
4127          */
4128 #if 1
4129         if (atomic_read(&cp->reset_task_pending_all) ||
4130             atomic_read(&cp->reset_task_pending_spare) ||
4131             atomic_read(&cp->reset_task_pending_mtu))
4132                 goto done;
4133 #else
4134         if (atomic_read(&cp->reset_task_pending))
4135                 goto done;
4136 #endif
4137
4138         /* check for rx cleaning */
4139         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4140                 int i, rmask;
4141
4142                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4143                         rmask = CAS_FLAG_RXD_POST(i);
4144                         if ((mask & rmask) == 0)
4145                                 continue;
4146
4147                         /* post_rxds will do a mod_timer */
4148                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4149                                 pending = 1;
4150                                 continue;
4151                         }
4152                         cp->cas_flags &= ~rmask;
4153                 }
4154         }
4155
4156         if (CAS_PHY_MII(cp->phy_type)) {
4157                 u16 bmsr;
4158                 cas_mif_poll(cp, 0);
4159                 bmsr = cas_phy_read(cp, MII_BMSR);
4160                 /* WTZ: Solaris driver reads this twice, but that
4161                  * may be due to the PCS case and the use of a
4162                  * common implementation. Read it twice here to be
4163                  * safe.
4164                  */
4165                 bmsr = cas_phy_read(cp, MII_BMSR);
4166                 cas_mif_poll(cp, 1);
4167                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4168                 reset = cas_mii_link_check(cp, bmsr);
4169         } else {
4170                 reset = cas_pcs_link_check(cp);
4171         }
4172
4173         if (reset)
4174                 goto done;
4175
4176         /* check for tx state machine confusion */
4177         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4178                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4179                 u32 wptr, rptr;
4180                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4181
4182                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4183                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4184                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4185                                      "tx err: MAC_STATE[%08x]\n", val);
4186                         reset = 1;
4187                         goto done;
4188                 }
4189
4190                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4191                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4192                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4193                 if ((val == 0) && (wptr != rptr)) {
4194                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4195                                      "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4196                                      val, wptr, rptr);
4197                         reset = 1;
4198                 }
4199
4200                 if (reset)
4201                         cas_hard_reset(cp);
4202         }
4203
4204 done:
4205         if (reset) {
4206 #if 1
4207                 atomic_inc(&cp->reset_task_pending);
4208                 atomic_inc(&cp->reset_task_pending_all);
4209                 schedule_work(&cp->reset_task);
4210 #else
4211                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4212                 pr_err("reset called in cas_link_timer\n");
4213                 schedule_work(&cp->reset_task);
4214 #endif
4215         }
4216
4217         if (!pending)
4218                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4219         cas_unlock_tx(cp);
4220         spin_unlock_irqrestore(&cp->lock, flags);
4221 }
4222
4223 /* tiny buffers are used to avoid target abort issues with
4224  * older cassini's
4225  */
4226 static void cas_tx_tiny_free(struct cas *cp)
4227 {
4228         struct pci_dev *pdev = cp->pdev;
4229         int i;
4230
4231         for (i = 0; i < N_TX_RINGS; i++) {
4232                 if (!cp->tx_tiny_bufs[i])
4233                         continue;
4234
4235                 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4236                                     cp->tx_tiny_bufs[i],
4237                                     cp->tx_tiny_dvma[i]);
4238                 cp->tx_tiny_bufs[i] = NULL;
4239         }
4240 }
4241
4242 static int cas_tx_tiny_alloc(struct cas *cp)
4243 {
4244         struct pci_dev *pdev = cp->pdev;
4245         int i;
4246
4247         for (i = 0; i < N_TX_RINGS; i++) {
4248                 cp->tx_tiny_bufs[i] =
4249                         pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4250                                              &cp->tx_tiny_dvma[i]);
4251                 if (!cp->tx_tiny_bufs[i]) {
4252                         cas_tx_tiny_free(cp);
4253                         return -1;
4254                 }
4255         }
4256         return 0;
4257 }
4258
4259
4260 static int cas_open(struct net_device *dev)
4261 {
4262         struct cas *cp = netdev_priv(dev);
4263         int hw_was_up, err;
4264         unsigned long flags;
4265
4266         mutex_lock(&cp->pm_mutex);
4267
4268         hw_was_up = cp->hw_running;
4269
4270         /* The power-management mutex protects the hw_running
4271          * etc. state so it is safe to do this bit without cp->lock
4272          */
4273         if (!cp->hw_running) {
4274                 /* Reset the chip */
4275                 cas_lock_all_save(cp, flags);
4276                 /* We set the second arg to cas_reset to zero
4277                  * because cas_init_hw below will have its second
4278                  * argument set to non-zero, which will force
4279                  * autonegotiation to start.
4280                  */
4281                 cas_reset(cp, 0);
4282                 cp->hw_running = 1;
4283                 cas_unlock_all_restore(cp, flags);
4284         }
4285
4286         err = -ENOMEM;
4287         if (cas_tx_tiny_alloc(cp) < 0)
4288                 goto err_unlock;
4289
4290         /* alloc rx descriptors */
4291         if (cas_alloc_rxds(cp) < 0)
4292                 goto err_tx_tiny;
4293
4294         /* allocate spares */
4295         cas_spare_init(cp);
4296         cas_spare_recover(cp, GFP_KERNEL);
4297
4298         /* We can now request the interrupt as we know it's masked
4299          * on the controller. cassini+ has up to 4 interrupts
4300          * that can be used, but you need to do explicit pci interrupt
4301          * mapping to expose them
4302          */
4303         if (request_irq(cp->pdev->irq, cas_interrupt,
4304                         IRQF_SHARED, dev->name, (void *) dev)) {
4305                 netdev_err(cp->dev, "failed to request irq !\n");
4306                 err = -EAGAIN;
4307                 goto err_spare;
4308         }
4309
4310 #ifdef USE_NAPI
4311         napi_enable(&cp->napi);
4312 #endif
4313         /* init hw */
4314         cas_lock_all_save(cp, flags);
4315         cas_clean_rings(cp);
4316         cas_init_hw(cp, !hw_was_up);
4317         cp->opened = 1;
4318         cas_unlock_all_restore(cp, flags);
4319
4320         netif_start_queue(dev);
4321         mutex_unlock(&cp->pm_mutex);
4322         return 0;
4323
4324 err_spare:
4325         cas_spare_free(cp);
4326         cas_free_rxds(cp);
4327 err_tx_tiny:
4328         cas_tx_tiny_free(cp);
4329 err_unlock:
4330         mutex_unlock(&cp->pm_mutex);
4331         return err;
4332 }
4333
4334 static int cas_close(struct net_device *dev)
4335 {
4336         unsigned long flags;
4337         struct cas *cp = netdev_priv(dev);
4338
4339 #ifdef USE_NAPI
4340         napi_disable(&cp->napi);
4341 #endif
4342         /* Make sure we don't get distracted by suspend/resume */
4343         mutex_lock(&cp->pm_mutex);
4344
4345         netif_stop_queue(dev);
4346
4347         /* Stop traffic, mark us closed */
4348         cas_lock_all_save(cp, flags);
4349         cp->opened = 0;
4350         cas_reset(cp, 0);
4351         cas_phy_init(cp);
4352         cas_begin_auto_negotiation(cp, NULL);
4353         cas_clean_rings(cp);
4354         cas_unlock_all_restore(cp, flags);
4355
4356         free_irq(cp->pdev->irq, (void *) dev);
4357         cas_spare_free(cp);
4358         cas_free_rxds(cp);
4359         cas_tx_tiny_free(cp);
4360         mutex_unlock(&cp->pm_mutex);
4361         return 0;
4362 }
4363
4364 static struct {
4365         const char name[ETH_GSTRING_LEN];
4366 } ethtool_cassini_statnames[] = {
4367         {"collisions"},
4368         {"rx_bytes"},
4369         {"rx_crc_errors"},
4370         {"rx_dropped"},
4371         {"rx_errors"},
4372         {"rx_fifo_errors"},
4373         {"rx_frame_errors"},
4374         {"rx_length_errors"},
4375         {"rx_over_errors"},
4376         {"rx_packets"},
4377         {"tx_aborted_errors"},
4378         {"tx_bytes"},
4379         {"tx_dropped"},
4380         {"tx_errors"},
4381         {"tx_fifo_errors"},
4382         {"tx_packets"}
4383 };
4384 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4385
4386 static struct {
4387         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4388 } ethtool_register_table[] = {
4389         {-MII_BMSR},
4390         {-MII_BMCR},
4391         {REG_CAWR},
4392         {REG_INF_BURST},
4393         {REG_BIM_CFG},
4394         {REG_RX_CFG},
4395         {REG_HP_CFG},
4396         {REG_MAC_TX_CFG},
4397         {REG_MAC_RX_CFG},
4398         {REG_MAC_CTRL_CFG},
4399         {REG_MAC_XIF_CFG},
4400         {REG_MIF_CFG},
4401         {REG_PCS_CFG},
4402         {REG_SATURN_PCFG},
4403         {REG_PCS_MII_STATUS},
4404         {REG_PCS_STATE_MACHINE},
4405         {REG_MAC_COLL_EXCESS},
4406         {REG_MAC_COLL_LATE}
4407 };
4408 #define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4409 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4410
4411 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4412 {
4413         u8 *p;
4414         int i;
4415         unsigned long flags;
4416
4417         spin_lock_irqsave(&cp->lock, flags);
4418         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4419                 u16 hval;
4420                 u32 val;
4421                 if (ethtool_register_table[i].offsets < 0) {
4422                         hval = cas_phy_read(cp,
4423                                     -ethtool_register_table[i].offsets);
4424                         val = hval;
4425                 } else {
4426                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4427                 }
4428                 memcpy(p, (u8 *)&val, sizeof(u32));
4429         }
4430         spin_unlock_irqrestore(&cp->lock, flags);
4431 }
4432
4433 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4434 {
4435         struct cas *cp = netdev_priv(dev);
4436         struct net_device_stats *stats = cp->net_stats;
4437         unsigned long flags;
4438         int i;
4439         unsigned long tmp;
4440
4441         /* we collate all of the stats into net_stats[N_TX_RING] */
4442         if (!cp->hw_running)
4443                 return stats + N_TX_RINGS;
4444
4445         /* collect outstanding stats */
4446         /* WTZ: the Cassini spec gives these as 16 bit counters but
4447          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4448          * in case the chip somehow puts any garbage in the other bits.
4449          * Also, counter usage didn't seem to mach what Adrian did
4450          * in the parts of the code that set these quantities. Made
4451          * that consistent.
4452          */
4453         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4454         stats[N_TX_RINGS].rx_crc_errors +=
4455           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4456         stats[N_TX_RINGS].rx_frame_errors +=
4457                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4458         stats[N_TX_RINGS].rx_length_errors +=
4459                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4460 #if 1
4461         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4462                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4463         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4464         stats[N_TX_RINGS].collisions +=
4465           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4466 #else
4467         stats[N_TX_RINGS].tx_aborted_errors +=
4468                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4469         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4470                 readl(cp->regs + REG_MAC_COLL_LATE);
4471 #endif
4472         cas_clear_mac_err(cp);
4473
4474         /* saved bits that are unique to ring 0 */
4475         spin_lock(&cp->stat_lock[0]);
4476         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4477         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4478         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4479         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4480         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4481         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4482         spin_unlock(&cp->stat_lock[0]);
4483
4484         for (i = 0; i < N_TX_RINGS; i++) {
4485                 spin_lock(&cp->stat_lock[i]);
4486                 stats[N_TX_RINGS].rx_length_errors +=
4487                         stats[i].rx_length_errors;
4488                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4489                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4490                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4491                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4492                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4493                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4494                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4495                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4496                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4497                 memset(stats + i, 0, sizeof(struct net_device_stats));
4498                 spin_unlock(&cp->stat_lock[i]);
4499         }
4500         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4501         return stats + N_TX_RINGS;
4502 }
4503
4504
4505 static void cas_set_multicast(struct net_device *dev)
4506 {
4507         struct cas *cp = netdev_priv(dev);
4508         u32 rxcfg, rxcfg_new;
4509         unsigned long flags;
4510         int limit = STOP_TRIES;
4511
4512         if (!cp->hw_running)
4513                 return;
4514
4515         spin_lock_irqsave(&cp->lock, flags);
4516         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4517
4518         /* disable RX MAC and wait for completion */
4519         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4520         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4521                 if (!limit--)
4522                         break;
4523                 udelay(10);
4524         }
4525
4526         /* disable hash filter and wait for completion */
4527         limit = STOP_TRIES;
4528         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4529         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4530         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4531                 if (!limit--)
4532                         break;
4533                 udelay(10);
4534         }
4535
4536         /* program hash filters */
4537         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4538         rxcfg |= rxcfg_new;
4539         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4540         spin_unlock_irqrestore(&cp->lock, flags);
4541 }
4542
4543 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4544 {
4545         struct cas *cp = netdev_priv(dev);
4546         strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4547         strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4548         info->fw_version[0] = '\0';
4549         strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4550         info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4551                 cp->casreg_len : CAS_MAX_REGS;
4552         info->n_stats = CAS_NUM_STAT_KEYS;
4553 }
4554
4555 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4556 {
4557         struct cas *cp = netdev_priv(dev);
4558         u16 bmcr;
4559         int full_duplex, speed, pause;
4560         unsigned long flags;
4561         enum link_state linkstate = link_up;
4562
4563         cmd->advertising = 0;
4564         cmd->supported = SUPPORTED_Autoneg;
4565         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4566                 cmd->supported |= SUPPORTED_1000baseT_Full;
4567                 cmd->advertising |= ADVERTISED_1000baseT_Full;
4568         }
4569
4570         /* Record PHY settings if HW is on. */
4571         spin_lock_irqsave(&cp->lock, flags);
4572         bmcr = 0;
4573         linkstate = cp->lstate;
4574         if (CAS_PHY_MII(cp->phy_type)) {
4575                 cmd->port = PORT_MII;
4576                 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4577                         XCVR_INTERNAL : XCVR_EXTERNAL;
4578                 cmd->phy_address = cp->phy_addr;
4579                 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4580                         ADVERTISED_10baseT_Half |
4581                         ADVERTISED_10baseT_Full |
4582                         ADVERTISED_100baseT_Half |
4583                         ADVERTISED_100baseT_Full;
4584
4585                 cmd->supported |=
4586                         (SUPPORTED_10baseT_Half |
4587                          SUPPORTED_10baseT_Full |
4588                          SUPPORTED_100baseT_Half |
4589                          SUPPORTED_100baseT_Full |
4590                          SUPPORTED_TP | SUPPORTED_MII);
4591
4592                 if (cp->hw_running) {
4593                         cas_mif_poll(cp, 0);
4594                         bmcr = cas_phy_read(cp, MII_BMCR);
4595                         cas_read_mii_link_mode(cp, &full_duplex,
4596                                                &speed, &pause);
4597                         cas_mif_poll(cp, 1);
4598                 }
4599
4600         } else {
4601                 cmd->port = PORT_FIBRE;
4602                 cmd->transceiver = XCVR_INTERNAL;
4603                 cmd->phy_address = 0;
4604                 cmd->supported   |= SUPPORTED_FIBRE;
4605                 cmd->advertising |= ADVERTISED_FIBRE;
4606
4607                 if (cp->hw_running) {
4608                         /* pcs uses the same bits as mii */
4609                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4610                         cas_read_pcs_link_mode(cp, &full_duplex,
4611                                                &speed, &pause);
4612                 }
4613         }
4614         spin_unlock_irqrestore(&cp->lock, flags);
4615
4616         if (bmcr & BMCR_ANENABLE) {
4617                 cmd->advertising |= ADVERTISED_Autoneg;
4618                 cmd->autoneg = AUTONEG_ENABLE;
4619                 cmd->speed = ((speed == 10) ?
4620                               SPEED_10 :
4621                               ((speed == 1000) ?
4622                                SPEED_1000 : SPEED_100));
4623                 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4624         } else {
4625                 cmd->autoneg = AUTONEG_DISABLE;
4626                 cmd->speed =
4627                         (bmcr & CAS_BMCR_SPEED1000) ?
4628                         SPEED_1000 :
4629                         ((bmcr & BMCR_SPEED100) ? SPEED_100:
4630                          SPEED_10);
4631                 cmd->duplex =
4632                         (bmcr & BMCR_FULLDPLX) ?
4633                         DUPLEX_FULL : DUPLEX_HALF;
4634         }
4635         if (linkstate != link_up) {
4636                 /* Force these to "unknown" if the link is not up and
4637                  * autonogotiation in enabled. We can set the link
4638                  * speed to 0, but not cmd->duplex,
4639                  * because its legal values are 0 and 1.  Ethtool will
4640                  * print the value reported in parentheses after the
4641                  * word "Unknown" for unrecognized values.
4642                  *
4643                  * If in forced mode, we report the speed and duplex
4644                  * settings that we configured.
4645                  */
4646                 if (cp->link_cntl & BMCR_ANENABLE) {
4647                         cmd->speed = 0;
4648                         cmd->duplex = 0xff;
4649                 } else {
4650                         cmd->speed = SPEED_10;
4651                         if (cp->link_cntl & BMCR_SPEED100) {
4652                                 cmd->speed = SPEED_100;
4653                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4654                                 cmd->speed = SPEED_1000;
4655                         }
4656                         cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4657                                 DUPLEX_FULL : DUPLEX_HALF;
4658                 }
4659         }
4660         return 0;
4661 }
4662
4663 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4664 {
4665         struct cas *cp = netdev_priv(dev);
4666         unsigned long flags;
4667
4668         /* Verify the settings we care about. */
4669         if (cmd->autoneg != AUTONEG_ENABLE &&
4670             cmd->autoneg != AUTONEG_DISABLE)
4671                 return -EINVAL;
4672
4673         if (cmd->autoneg == AUTONEG_DISABLE &&
4674             ((cmd->speed != SPEED_1000 &&
4675               cmd->speed != SPEED_100 &&
4676               cmd->speed != SPEED_10) ||
4677              (cmd->duplex != DUPLEX_HALF &&
4678               cmd->duplex != DUPLEX_FULL)))
4679                 return -EINVAL;
4680
4681         /* Apply settings and restart link process. */
4682         spin_lock_irqsave(&cp->lock, flags);
4683         cas_begin_auto_negotiation(cp, cmd);
4684         spin_unlock_irqrestore(&cp->lock, flags);
4685         return 0;
4686 }
4687
4688 static int cas_nway_reset(struct net_device *dev)
4689 {
4690         struct cas *cp = netdev_priv(dev);
4691         unsigned long flags;
4692
4693         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4694                 return -EINVAL;
4695
4696         /* Restart link process. */
4697         spin_lock_irqsave(&cp->lock, flags);
4698         cas_begin_auto_negotiation(cp, NULL);
4699         spin_unlock_irqrestore(&cp->lock, flags);
4700
4701         return 0;
4702 }
4703
4704 static u32 cas_get_link(struct net_device *dev)
4705 {
4706         struct cas *cp = netdev_priv(dev);
4707         return cp->lstate == link_up;
4708 }
4709
4710 static u32 cas_get_msglevel(struct net_device *dev)
4711 {
4712         struct cas *cp = netdev_priv(dev);
4713         return cp->msg_enable;
4714 }
4715
4716 static void cas_set_msglevel(struct net_device *dev, u32 value)
4717 {
4718         struct cas *cp = netdev_priv(dev);
4719         cp->msg_enable = value;
4720 }
4721
4722 static int cas_get_regs_len(struct net_device *dev)
4723 {
4724         struct cas *cp = netdev_priv(dev);
4725         return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4726 }
4727
4728 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4729                              void *p)
4730 {
4731         struct cas *cp = netdev_priv(dev);
4732         regs->version = 0;
4733         /* cas_read_regs handles locks (cp->lock).  */
4734         cas_read_regs(cp, p, regs->len / sizeof(u32));
4735 }
4736
4737 static int cas_get_sset_count(struct net_device *dev, int sset)
4738 {
4739         switch (sset) {
4740         case ETH_SS_STATS:
4741                 return CAS_NUM_STAT_KEYS;
4742         default:
4743                 return -EOPNOTSUPP;
4744         }
4745 }
4746
4747 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4748 {
4749          memcpy(data, &ethtool_cassini_statnames,
4750                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4751 }
4752
4753 static void cas_get_ethtool_stats(struct net_device *dev,
4754                                       struct ethtool_stats *estats, u64 *data)
4755 {
4756         struct cas *cp = netdev_priv(dev);
4757         struct net_device_stats *stats = cas_get_stats(cp->dev);
4758         int i = 0;
4759         data[i++] = stats->collisions;
4760         data[i++] = stats->rx_bytes;
4761         data[i++] = stats->rx_crc_errors;
4762         data[i++] = stats->rx_dropped;
4763         data[i++] = stats->rx_errors;
4764         data[i++] = stats->rx_fifo_errors;
4765         data[i++] = stats->rx_frame_errors;
4766         data[i++] = stats->rx_length_errors;
4767         data[i++] = stats->rx_over_errors;
4768         data[i++] = stats->rx_packets;
4769         data[i++] = stats->tx_aborted_errors;
4770         data[i++] = stats->tx_bytes;
4771         data[i++] = stats->tx_dropped;
4772         data[i++] = stats->tx_errors;
4773         data[i++] = stats->tx_fifo_errors;
4774         data[i++] = stats->tx_packets;
4775         BUG_ON(i != CAS_NUM_STAT_KEYS);
4776 }
4777
4778 static const struct ethtool_ops cas_ethtool_ops = {
4779         .get_drvinfo            = cas_get_drvinfo,
4780         .get_settings           = cas_get_settings,
4781         .set_settings           = cas_set_settings,
4782         .nway_reset             = cas_nway_reset,
4783         .get_link               = cas_get_link,
4784         .get_msglevel           = cas_get_msglevel,
4785         .set_msglevel           = cas_set_msglevel,
4786         .get_regs_len           = cas_get_regs_len,
4787         .get_regs               = cas_get_regs,
4788         .get_sset_count         = cas_get_sset_count,
4789         .get_strings            = cas_get_strings,
4790         .get_ethtool_stats      = cas_get_ethtool_stats,
4791 };
4792
4793 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4794 {
4795         struct cas *cp = netdev_priv(dev);
4796         struct mii_ioctl_data *data = if_mii(ifr);
4797         unsigned long flags;
4798         int rc = -EOPNOTSUPP;
4799
4800         /* Hold the PM mutex while doing ioctl's or we may collide
4801          * with open/close and power management and oops.
4802          */
4803         mutex_lock(&cp->pm_mutex);
4804         switch (cmd) {
4805         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4806                 data->phy_id = cp->phy_addr;
4807                 /* Fallthrough... */
4808
4809         case SIOCGMIIREG:               /* Read MII PHY register. */
4810                 spin_lock_irqsave(&cp->lock, flags);
4811                 cas_mif_poll(cp, 0);
4812                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4813                 cas_mif_poll(cp, 1);
4814                 spin_unlock_irqrestore(&cp->lock, flags);
4815                 rc = 0;
4816                 break;
4817
4818         case SIOCSMIIREG:               /* Write MII PHY register. */
4819                 spin_lock_irqsave(&cp->lock, flags);
4820                 cas_mif_poll(cp, 0);
4821                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4822                 cas_mif_poll(cp, 1);
4823                 spin_unlock_irqrestore(&cp->lock, flags);
4824                 break;
4825         default:
4826                 break;
4827         }
4828
4829         mutex_unlock(&cp->pm_mutex);
4830         return rc;
4831 }
4832
4833 /* When this chip sits underneath an Intel 31154 bridge, it is the
4834  * only subordinate device and we can tweak the bridge settings to
4835  * reflect that fact.
4836  */
4837 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4838 {
4839         struct pci_dev *pdev = cas_pdev->bus->self;
4840         u32 val;
4841
4842         if (!pdev)
4843                 return;
4844
4845         if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4846                 return;
4847
4848         /* Clear bit 10 (Bus Parking Control) in the Secondary
4849          * Arbiter Control/Status Register which lives at offset
4850          * 0x41.  Using a 32-bit word read/modify/write at 0x40
4851          * is much simpler so that's how we do this.
4852          */
4853         pci_read_config_dword(pdev, 0x40, &val);
4854         val &= ~0x00040000;
4855         pci_write_config_dword(pdev, 0x40, val);
4856
4857         /* Max out the Multi-Transaction Timer settings since
4858          * Cassini is the only device present.
4859          *
4860          * The register is 16-bit and lives at 0x50.  When the
4861          * settings are enabled, it extends the GRANT# signal
4862          * for a requestor after a transaction is complete.  This
4863          * allows the next request to run without first needing
4864          * to negotiate the GRANT# signal back.
4865          *
4866          * Bits 12:10 define the grant duration:
4867          *
4868          *      1       --      16 clocks
4869          *      2       --      32 clocks
4870          *      3       --      64 clocks
4871          *      4       --      128 clocks
4872          *      5       --      256 clocks
4873          *
4874          * All other values are illegal.
4875          *
4876          * Bits 09:00 define which REQ/GNT signal pairs get the
4877          * GRANT# signal treatment.  We set them all.
4878          */
4879         pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4880
4881         /* The Read Prefecth Policy register is 16-bit and sits at
4882          * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4883          * enable it and max out all of the settings since only one
4884          * device is sitting underneath and thus bandwidth sharing is
4885          * not an issue.
4886          *
4887          * The register has several 3 bit fields, which indicates a
4888          * multiplier applied to the base amount of prefetching the
4889          * chip would do.  These fields are at:
4890          *
4891          *      15:13   ---     ReRead Primary Bus
4892          *      12:10   ---     FirstRead Primary Bus
4893          *      09:07   ---     ReRead Secondary Bus
4894          *      06:04   ---     FirstRead Secondary Bus
4895          *
4896          * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4897          * get enabled on.  Bit 3 is a grouped enabler which controls
4898          * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4899          * the individual REQ/GNT pairs [2:0].
4900          */
4901         pci_write_config_word(pdev, 0x52,
4902                               (0x7 << 13) |
4903                               (0x7 << 10) |
4904                               (0x7 <<  7) |
4905                               (0x7 <<  4) |
4906                               (0xf <<  0));
4907
4908         /* Force cacheline size to 0x8 */
4909         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4910
4911         /* Force latency timer to maximum setting so Cassini can
4912          * sit on the bus as long as it likes.
4913          */
4914         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4915 }
4916
4917 static const struct net_device_ops cas_netdev_ops = {
4918         .ndo_open               = cas_open,
4919         .ndo_stop               = cas_close,
4920         .ndo_start_xmit         = cas_start_xmit,
4921         .ndo_get_stats          = cas_get_stats,
4922         .ndo_set_multicast_list = cas_set_multicast,
4923         .ndo_do_ioctl           = cas_ioctl,
4924         .ndo_tx_timeout         = cas_tx_timeout,
4925         .ndo_change_mtu         = cas_change_mtu,
4926         .ndo_set_mac_address    = eth_mac_addr,
4927         .ndo_validate_addr      = eth_validate_addr,
4928 #ifdef CONFIG_NET_POLL_CONTROLLER
4929         .ndo_poll_controller    = cas_netpoll,
4930 #endif
4931 };
4932
4933 static int __devinit cas_init_one(struct pci_dev *pdev,
4934                                   const struct pci_device_id *ent)
4935 {
4936         static int cas_version_printed = 0;
4937         unsigned long casreg_len;
4938         struct net_device *dev;
4939         struct cas *cp;
4940         int i, err, pci_using_dac;
4941         u16 pci_cmd;
4942         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4943
4944         if (cas_version_printed++ == 0)
4945                 pr_info("%s", version);
4946
4947         err = pci_enable_device(pdev);
4948         if (err) {
4949                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4950                 return err;
4951         }
4952
4953         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4954                 dev_err(&pdev->dev, "Cannot find proper PCI device "
4955                        "base address, aborting\n");
4956                 err = -ENODEV;
4957                 goto err_out_disable_pdev;
4958         }
4959
4960         dev = alloc_etherdev(sizeof(*cp));
4961         if (!dev) {
4962                 dev_err(&pdev->dev, "Etherdev alloc failed, aborting\n");
4963                 err = -ENOMEM;
4964                 goto err_out_disable_pdev;
4965         }
4966         SET_NETDEV_DEV(dev, &pdev->dev);
4967
4968         err = pci_request_regions(pdev, dev->name);
4969         if (err) {
4970                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4971                 goto err_out_free_netdev;
4972         }
4973         pci_set_master(pdev);
4974
4975         /* we must always turn on parity response or else parity
4976          * doesn't get generated properly. disable SERR/PERR as well.
4977          * in addition, we want to turn MWI on.
4978          */
4979         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4980         pci_cmd &= ~PCI_COMMAND_SERR;
4981         pci_cmd |= PCI_COMMAND_PARITY;
4982         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4983         if (pci_try_set_mwi(pdev))
4984                 pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4985
4986         cas_program_bridge(pdev);
4987
4988         /*
4989          * On some architectures, the default cache line size set
4990          * by pci_try_set_mwi reduces perforamnce.  We have to increase
4991          * it for this case.  To start, we'll print some configuration
4992          * data.
4993          */
4994 #if 1
4995         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4996                              &orig_cacheline_size);
4997         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4998                 cas_cacheline_size =
4999                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
5000                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
5001                 if (pci_write_config_byte(pdev,
5002                                           PCI_CACHE_LINE_SIZE,
5003                                           cas_cacheline_size)) {
5004                         dev_err(&pdev->dev, "Could not set PCI cache "
5005                                "line size\n");
5006                         goto err_write_cacheline;
5007                 }
5008         }
5009 #endif
5010
5011
5012         /* Configure DMA attributes. */
5013         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5014                 pci_using_dac = 1;
5015                 err = pci_set_consistent_dma_mask(pdev,
5016                                                   DMA_BIT_MASK(64));
5017                 if (err < 0) {
5018                         dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5019                                "for consistent allocations\n");
5020                         goto err_out_free_res;
5021                 }
5022
5023         } else {
5024                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5025                 if (err) {
5026                         dev_err(&pdev->dev, "No usable DMA configuration, "
5027                                "aborting\n");
5028                         goto err_out_free_res;
5029                 }
5030                 pci_using_dac = 0;
5031         }
5032
5033         casreg_len = pci_resource_len(pdev, 0);
5034
5035         cp = netdev_priv(dev);
5036         cp->pdev = pdev;
5037 #if 1
5038         /* A value of 0 indicates we never explicitly set it */
5039         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5040 #endif
5041         cp->dev = dev;
5042         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5043           cassini_debug;
5044
5045         cp->link_transition = LINK_TRANSITION_UNKNOWN;
5046         cp->link_transition_jiffies_valid = 0;
5047
5048         spin_lock_init(&cp->lock);
5049         spin_lock_init(&cp->rx_inuse_lock);
5050         spin_lock_init(&cp->rx_spare_lock);
5051         for (i = 0; i < N_TX_RINGS; i++) {
5052                 spin_lock_init(&cp->stat_lock[i]);
5053                 spin_lock_init(&cp->tx_lock[i]);
5054         }
5055         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5056         mutex_init(&cp->pm_mutex);
5057
5058         init_timer(&cp->link_timer);
5059         cp->link_timer.function = cas_link_timer;
5060         cp->link_timer.data = (unsigned long) cp;
5061
5062 #if 1
5063         /* Just in case the implementation of atomic operations
5064          * change so that an explicit initialization is necessary.
5065          */
5066         atomic_set(&cp->reset_task_pending, 0);
5067         atomic_set(&cp->reset_task_pending_all, 0);
5068         atomic_set(&cp->reset_task_pending_spare, 0);
5069         atomic_set(&cp->reset_task_pending_mtu, 0);
5070 #endif
5071         INIT_WORK(&cp->reset_task, cas_reset_task);
5072
5073         /* Default link parameters */
5074         if (link_mode >= 0 && link_mode < 6)
5075                 cp->link_cntl = link_modes[link_mode];
5076         else
5077                 cp->link_cntl = BMCR_ANENABLE;
5078         cp->lstate = link_down;
5079         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5080         netif_carrier_off(cp->dev);
5081         cp->timer_ticks = 0;
5082
5083         /* give us access to cassini registers */
5084         cp->regs = pci_iomap(pdev, 0, casreg_len);
5085         if (!cp->regs) {
5086                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5087                 goto err_out_free_res;
5088         }
5089         cp->casreg_len = casreg_len;
5090
5091         pci_save_state(pdev);
5092         cas_check_pci_invariants(cp);
5093         cas_hard_reset(cp);
5094         cas_reset(cp, 0);
5095         if (cas_check_invariants(cp))
5096                 goto err_out_iounmap;
5097         if (cp->cas_flags & CAS_FLAG_SATURN)
5098                 if (cas_saturn_firmware_init(cp))
5099                         goto err_out_iounmap;
5100
5101         cp->init_block = (struct cas_init_block *)
5102                 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5103                                      &cp->block_dvma);
5104         if (!cp->init_block) {
5105                 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5106                 goto err_out_iounmap;
5107         }
5108
5109         for (i = 0; i < N_TX_RINGS; i++)
5110                 cp->init_txds[i] = cp->init_block->txds[i];
5111
5112         for (i = 0; i < N_RX_DESC_RINGS; i++)
5113                 cp->init_rxds[i] = cp->init_block->rxds[i];
5114
5115         for (i = 0; i < N_RX_COMP_RINGS; i++)
5116                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5117
5118         for (i = 0; i < N_RX_FLOWS; i++)
5119                 skb_queue_head_init(&cp->rx_flows[i]);
5120
5121         dev->netdev_ops = &cas_netdev_ops;
5122         dev->ethtool_ops = &cas_ethtool_ops;
5123         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5124
5125 #ifdef USE_NAPI
5126         netif_napi_add(dev, &cp->napi, cas_poll, 64);
5127 #endif
5128         dev->irq = pdev->irq;
5129         dev->dma = 0;
5130
5131         /* Cassini features. */
5132         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5133                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5134
5135         if (pci_using_dac)
5136                 dev->features |= NETIF_F_HIGHDMA;
5137
5138         if (register_netdev(dev)) {
5139                 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5140                 goto err_out_free_consistent;
5141         }
5142
5143         i = readl(cp->regs + REG_BIM_CFG);
5144         netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5145                     (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5146                     (i & BIM_CFG_32BIT) ? "32" : "64",
5147                     (i & BIM_CFG_66MHZ) ? "66" : "33",
5148                     (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5149                     dev->dev_addr);
5150
5151         pci_set_drvdata(pdev, dev);
5152         cp->hw_running = 1;
5153         cas_entropy_reset(cp);
5154         cas_phy_init(cp);
5155         cas_begin_auto_negotiation(cp, NULL);
5156         return 0;
5157
5158 err_out_free_consistent:
5159         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5160                             cp->init_block, cp->block_dvma);
5161
5162 err_out_iounmap:
5163         mutex_lock(&cp->pm_mutex);
5164         if (cp->hw_running)
5165                 cas_shutdown(cp);
5166         mutex_unlock(&cp->pm_mutex);
5167
5168         pci_iounmap(pdev, cp->regs);
5169
5170
5171 err_out_free_res:
5172         pci_release_regions(pdev);
5173
5174 err_write_cacheline:
5175         /* Try to restore it in case the error occured after we
5176          * set it.
5177          */
5178         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5179
5180 err_out_free_netdev:
5181         free_netdev(dev);
5182
5183 err_out_disable_pdev:
5184         pci_disable_device(pdev);
5185         pci_set_drvdata(pdev, NULL);
5186         return -ENODEV;
5187 }
5188
5189 static void __devexit cas_remove_one(struct pci_dev *pdev)
5190 {
5191         struct net_device *dev = pci_get_drvdata(pdev);
5192         struct cas *cp;
5193         if (!dev)
5194                 return;
5195
5196         cp = netdev_priv(dev);
5197         unregister_netdev(dev);
5198
5199         if (cp->fw_data)
5200                 vfree(cp->fw_data);
5201
5202         mutex_lock(&cp->pm_mutex);
5203         flush_scheduled_work();
5204         if (cp->hw_running)
5205                 cas_shutdown(cp);
5206         mutex_unlock(&cp->pm_mutex);
5207
5208 #if 1
5209         if (cp->orig_cacheline_size) {
5210                 /* Restore the cache line size if we had modified
5211                  * it.
5212                  */
5213                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5214                                       cp->orig_cacheline_size);
5215         }
5216 #endif
5217         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5218                             cp->init_block, cp->block_dvma);
5219         pci_iounmap(pdev, cp->regs);
5220         free_netdev(dev);
5221         pci_release_regions(pdev);
5222         pci_disable_device(pdev);
5223         pci_set_drvdata(pdev, NULL);
5224 }
5225
5226 #ifdef CONFIG_PM
5227 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5228 {
5229         struct net_device *dev = pci_get_drvdata(pdev);
5230         struct cas *cp = netdev_priv(dev);
5231         unsigned long flags;
5232
5233         mutex_lock(&cp->pm_mutex);
5234
5235         /* If the driver is opened, we stop the DMA */
5236         if (cp->opened) {
5237                 netif_device_detach(dev);
5238
5239                 cas_lock_all_save(cp, flags);
5240
5241                 /* We can set the second arg of cas_reset to 0
5242                  * because on resume, we'll call cas_init_hw with
5243                  * its second arg set so that autonegotiation is
5244                  * restarted.
5245                  */
5246                 cas_reset(cp, 0);
5247                 cas_clean_rings(cp);
5248                 cas_unlock_all_restore(cp, flags);
5249         }
5250
5251         if (cp->hw_running)
5252                 cas_shutdown(cp);
5253         mutex_unlock(&cp->pm_mutex);
5254
5255         return 0;
5256 }
5257
5258 static int cas_resume(struct pci_dev *pdev)
5259 {
5260         struct net_device *dev = pci_get_drvdata(pdev);
5261         struct cas *cp = netdev_priv(dev);
5262
5263         netdev_info(dev, "resuming\n");
5264
5265         mutex_lock(&cp->pm_mutex);
5266         cas_hard_reset(cp);
5267         if (cp->opened) {
5268                 unsigned long flags;
5269                 cas_lock_all_save(cp, flags);
5270                 cas_reset(cp, 0);
5271                 cp->hw_running = 1;
5272                 cas_clean_rings(cp);
5273                 cas_init_hw(cp, 1);
5274                 cas_unlock_all_restore(cp, flags);
5275
5276                 netif_device_attach(dev);
5277         }
5278         mutex_unlock(&cp->pm_mutex);
5279         return 0;
5280 }
5281 #endif /* CONFIG_PM */
5282
5283 static struct pci_driver cas_driver = {
5284         .name           = DRV_MODULE_NAME,
5285         .id_table       = cas_pci_tbl,
5286         .probe          = cas_init_one,
5287         .remove         = __devexit_p(cas_remove_one),
5288 #ifdef CONFIG_PM
5289         .suspend        = cas_suspend,
5290         .resume         = cas_resume
5291 #endif
5292 };
5293
5294 static int __init cas_init(void)
5295 {
5296         if (linkdown_timeout > 0)
5297                 link_transition_timeout = linkdown_timeout * HZ;
5298         else
5299                 link_transition_timeout = 0;
5300
5301         return pci_register_driver(&cas_driver);
5302 }
5303
5304 static void __exit cas_cleanup(void)
5305 {
5306         pci_unregister_driver(&cas_driver);
5307 }
5308
5309 module_init(cas_init);
5310 module_exit(cas_cleanup);