Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / net / bnx2x / bnx2x_init_ops.h
1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2  *               Static functions needed during the initialization.
3  *               This file is "included" in bnx2x_main.c.
4  *
5  * Copyright (c) 2007-2010 Broadcom Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12  * Written by: Vladislav Zolotarov <vladz@broadcom.com>
13  */
14
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
17
18 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
19 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
20 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
21                                       u32 addr, u32 len);
22
23 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
24                               u32 len)
25 {
26         u32 i;
27
28         for (i = 0; i < len; i++)
29                 REG_WR(bp, addr + i*4, data[i]);
30 }
31
32 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
33                               u32 len)
34 {
35         u32 i;
36
37         for (i = 0; i < len; i++)
38                 REG_WR_IND(bp, addr + i*4, data[i]);
39 }
40
41 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
42 {
43         if (bp->dmae_ready)
44                 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
45         else
46                 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
47 }
48
49 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
50 {
51         u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
52         u32 buf_len32 = buf_len/4;
53         u32 i;
54
55         memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
56
57         for (i = 0; i < len; i += buf_len32) {
58                 u32 cur_len = min(buf_len32, len - i);
59
60                 bnx2x_write_big_buf(bp, addr + i*4, cur_len);
61         }
62 }
63
64 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
65                              u32 len64)
66 {
67         u32 buf_len32 = FW_BUF_SIZE/4;
68         u32 len = len64*2;
69         u64 data64 = 0;
70         u32 i;
71
72         /* 64 bit value is in a blob: first low DWORD, then high DWORD */
73         data64 = HILO_U64((*(data + 1)), (*data));
74
75         len64 = min((u32)(FW_BUF_SIZE/8), len64);
76         for (i = 0; i < len64; i++) {
77                 u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
78
79                 *pdata = data64;
80         }
81
82         for (i = 0; i < len; i += buf_len32) {
83                 u32 cur_len = min(buf_len32, len - i);
84
85                 bnx2x_write_big_buf(bp, addr + i*4, cur_len);
86         }
87 }
88
89 /*********************************************************
90    There are different blobs for each PRAM section.
91    In addition, each blob write operation is divided into a few operations
92    in order to decrease the amount of phys. contiguous buffer needed.
93    Thus, when we select a blob the address may be with some offset
94    from the beginning of PRAM section.
95    The same holds for the INT_TABLE sections.
96 **********************************************************/
97 #define IF_IS_INT_TABLE_ADDR(base, addr) \
98                         if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
99
100 #define IF_IS_PRAM_ADDR(base, addr) \
101                         if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
102
103 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
104 {
105         IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
106                 data = INIT_TSEM_INT_TABLE_DATA(bp);
107         else
108                 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
109                         data = INIT_CSEM_INT_TABLE_DATA(bp);
110         else
111                 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
112                         data = INIT_USEM_INT_TABLE_DATA(bp);
113         else
114                 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
115                         data = INIT_XSEM_INT_TABLE_DATA(bp);
116         else
117                 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
118                         data = INIT_TSEM_PRAM_DATA(bp);
119         else
120                 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
121                         data = INIT_CSEM_PRAM_DATA(bp);
122         else
123                 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
124                         data = INIT_USEM_PRAM_DATA(bp);
125         else
126                 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
127                         data = INIT_XSEM_PRAM_DATA(bp);
128
129         return data;
130 }
131
132 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
133 {
134         if (bp->dmae_ready)
135                 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
136         else
137                 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
138 }
139
140 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
141                              u32 len)
142 {
143         const u32 *old_data = data;
144
145         data = (const u32 *)bnx2x_sel_blob(bp, addr, (const u8 *)data);
146
147         if (bp->dmae_ready) {
148                 if (old_data != data)
149                         VIRT_WR_DMAE_LEN(bp, data, addr, len, 1);
150                 else
151                         VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
152         } else
153                 bnx2x_init_ind_wr(bp, addr, data, len);
154 }
155
156 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo, u32 val_hi)
157 {
158         u32 wb_write[2];
159
160         wb_write[0] = val_lo;
161         wb_write[1] = val_hi;
162         REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
163 }
164
165 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off)
166 {
167         const u8 *data = NULL;
168         int rc;
169         u32 i;
170
171         data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
172
173         rc = bnx2x_gunzip(bp, data, len);
174         if (rc)
175                 return;
176
177         /* gunzip_outlen is in dwords */
178         len = GUNZIP_OUTLEN(bp);
179         for (i = 0; i < len; i++)
180                 ((u32 *)GUNZIP_BUF(bp))[i] =
181                                 cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
182
183         bnx2x_write_big_buf_wb(bp, addr, len);
184 }
185
186 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
187 {
188         u16 op_start =
189                 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)];
190         u16 op_end =
191                 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)];
192         union init_op *op;
193         int hw_wr;
194         u32 i, op_type, addr, len;
195         const u32 *data, *data_base;
196
197         /* If empty block */
198         if (op_start == op_end)
199                 return;
200
201         if (CHIP_REV_IS_FPGA(bp))
202                 hw_wr = OP_WR_FPGA;
203         else if (CHIP_REV_IS_EMUL(bp))
204                 hw_wr = OP_WR_EMUL;
205         else
206                 hw_wr = OP_WR_ASIC;
207
208         data_base = INIT_DATA(bp);
209
210         for (i = op_start; i < op_end; i++) {
211
212                 op = (union init_op *)&(INIT_OPS(bp)[i]);
213
214                 op_type = op->str_wr.op;
215                 addr = op->str_wr.offset;
216                 len = op->str_wr.data_len;
217                 data = data_base + op->str_wr.data_off;
218
219                 /* HW/EMUL specific */
220                 if ((op_type > OP_WB) && (op_type == hw_wr))
221                         op_type = OP_WR;
222
223                 switch (op_type) {
224                 case OP_RD:
225                         REG_RD(bp, addr);
226                         break;
227                 case OP_WR:
228                         REG_WR(bp, addr, op->write.val);
229                         break;
230                 case OP_SW:
231                         bnx2x_init_str_wr(bp, addr, data, len);
232                         break;
233                 case OP_WB:
234                         bnx2x_init_wr_wb(bp, addr, data, len);
235                         break;
236                 case OP_SI:
237                         bnx2x_init_ind_wr(bp, addr, data, len);
238                         break;
239                 case OP_ZR:
240                         bnx2x_init_fill(bp, addr, 0, op->zero.len);
241                         break;
242                 case OP_ZP:
243                         bnx2x_init_wr_zp(bp, addr, len,
244                                          op->str_wr.data_off);
245                         break;
246                 case OP_WR_64:
247                         bnx2x_init_wr_64(bp, addr, data, len);
248                         break;
249                 default:
250                         /* happens whenever an op is of a diff HW */
251                         break;
252                 }
253         }
254 }
255
256
257 /****************************************************************************
258 * PXP Arbiter
259 ****************************************************************************/
260 /*
261  * This code configures the PCI read/write arbiter
262  * which implements a weighted round robin
263  * between the virtual queues in the chip.
264  *
265  * The values were derived for each PCI max payload and max request size.
266  * since max payload and max request size are only known at run time,
267  * this is done as a separate init stage.
268  */
269
270 #define NUM_WR_Q                        13
271 #define NUM_RD_Q                        29
272 #define MAX_RD_ORD                      3
273 #define MAX_WR_ORD                      2
274
275 /* configuration for one arbiter queue */
276 struct arb_line {
277         int l;
278         int add;
279         int ubound;
280 };
281
282 /* derived configuration for each read queue for each max request size */
283 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
284 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
285         { {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
286         { {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
287         { {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
288         { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
289         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
290         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
291         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
292         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
293 /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
294         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
295         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
296         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
297         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
298         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
299         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
300         { {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
301         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
302         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
303 /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
304         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
305         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
306         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
307         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
308         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
309         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
310         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
311         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
312         { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
313 };
314
315 /* derived configuration for each write queue for each max request size */
316 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
317 /* 1 */ { {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
318         { {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
319         { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
320         { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
321         { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
322         { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
323         { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
324         { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
325         { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
326 /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
327         { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
328         { {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
329         { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
330 };
331
332 /* register addresses for read queues */
333 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
334 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
335                 PXP2_REG_RQ_BW_RD_UBOUND0},
336         {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
337                 PXP2_REG_PSWRQ_BW_UB1},
338         {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
339                 PXP2_REG_PSWRQ_BW_UB2},
340         {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
341                 PXP2_REG_PSWRQ_BW_UB3},
342         {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
343                 PXP2_REG_RQ_BW_RD_UBOUND4},
344         {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
345                 PXP2_REG_RQ_BW_RD_UBOUND5},
346         {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
347                 PXP2_REG_PSWRQ_BW_UB6},
348         {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
349                 PXP2_REG_PSWRQ_BW_UB7},
350         {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
351                 PXP2_REG_PSWRQ_BW_UB8},
352 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
353                 PXP2_REG_PSWRQ_BW_UB9},
354         {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
355                 PXP2_REG_PSWRQ_BW_UB10},
356         {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
357                 PXP2_REG_PSWRQ_BW_UB11},
358         {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
359                 PXP2_REG_RQ_BW_RD_UBOUND12},
360         {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
361                 PXP2_REG_RQ_BW_RD_UBOUND13},
362         {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
363                 PXP2_REG_RQ_BW_RD_UBOUND14},
364         {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
365                 PXP2_REG_RQ_BW_RD_UBOUND15},
366         {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
367                 PXP2_REG_RQ_BW_RD_UBOUND16},
368         {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
369                 PXP2_REG_RQ_BW_RD_UBOUND17},
370         {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
371                 PXP2_REG_RQ_BW_RD_UBOUND18},
372 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
373                 PXP2_REG_RQ_BW_RD_UBOUND19},
374         {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
375                 PXP2_REG_RQ_BW_RD_UBOUND20},
376         {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
377                 PXP2_REG_RQ_BW_RD_UBOUND22},
378         {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
379                 PXP2_REG_RQ_BW_RD_UBOUND23},
380         {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
381                 PXP2_REG_RQ_BW_RD_UBOUND24},
382         {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
383                 PXP2_REG_RQ_BW_RD_UBOUND25},
384         {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
385                 PXP2_REG_RQ_BW_RD_UBOUND26},
386         {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
387                 PXP2_REG_RQ_BW_RD_UBOUND27},
388         {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
389                 PXP2_REG_PSWRQ_BW_UB28}
390 };
391
392 /* register addresses for write queues */
393 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
394 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
395                 PXP2_REG_PSWRQ_BW_UB1},
396         {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
397                 PXP2_REG_PSWRQ_BW_UB2},
398         {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
399                 PXP2_REG_PSWRQ_BW_UB3},
400         {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
401                 PXP2_REG_PSWRQ_BW_UB6},
402         {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
403                 PXP2_REG_PSWRQ_BW_UB7},
404         {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
405                 PXP2_REG_PSWRQ_BW_UB8},
406         {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
407                 PXP2_REG_PSWRQ_BW_UB9},
408         {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
409                 PXP2_REG_PSWRQ_BW_UB10},
410         {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
411                 PXP2_REG_PSWRQ_BW_UB11},
412 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
413                 PXP2_REG_PSWRQ_BW_UB28},
414         {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
415                 PXP2_REG_RQ_BW_WR_UBOUND29},
416         {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
417                 PXP2_REG_RQ_BW_WR_UBOUND30}
418 };
419
420 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order)
421 {
422         u32 val, i;
423
424         if (r_order > MAX_RD_ORD) {
425                 DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
426                    r_order, MAX_RD_ORD);
427                 r_order = MAX_RD_ORD;
428         }
429         if (w_order > MAX_WR_ORD) {
430                 DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
431                    w_order, MAX_WR_ORD);
432                 w_order = MAX_WR_ORD;
433         }
434         if (CHIP_REV_IS_FPGA(bp)) {
435                 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
436                 w_order = 0;
437         }
438         DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
439
440         for (i = 0; i < NUM_RD_Q-1; i++) {
441                 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
442                 REG_WR(bp, read_arb_addr[i].add,
443                        read_arb_data[i][r_order].add);
444                 REG_WR(bp, read_arb_addr[i].ubound,
445                        read_arb_data[i][r_order].ubound);
446         }
447
448         for (i = 0; i < NUM_WR_Q-1; i++) {
449                 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
450                     (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
451
452                         REG_WR(bp, write_arb_addr[i].l,
453                                write_arb_data[i][w_order].l);
454
455                         REG_WR(bp, write_arb_addr[i].add,
456                                write_arb_data[i][w_order].add);
457
458                         REG_WR(bp, write_arb_addr[i].ubound,
459                                write_arb_data[i][w_order].ubound);
460                 } else {
461
462                         val = REG_RD(bp, write_arb_addr[i].l);
463                         REG_WR(bp, write_arb_addr[i].l,
464                                val | (write_arb_data[i][w_order].l << 10));
465
466                         val = REG_RD(bp, write_arb_addr[i].add);
467                         REG_WR(bp, write_arb_addr[i].add,
468                                val | (write_arb_data[i][w_order].add << 10));
469
470                         val = REG_RD(bp, write_arb_addr[i].ubound);
471                         REG_WR(bp, write_arb_addr[i].ubound,
472                                val | (write_arb_data[i][w_order].ubound << 7));
473                 }
474         }
475
476         val =  write_arb_data[NUM_WR_Q-1][w_order].add;
477         val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
478         val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
479         REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
480
481         val =  read_arb_data[NUM_RD_Q-1][r_order].add;
482         val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
483         val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
484         REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
485
486         REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
487         REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
488         REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
489         REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
490
491         if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
492                 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
493
494         if (CHIP_IS_E2(bp))
495                 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
496         else
497                 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
498
499         if (CHIP_IS_E1H(bp) || CHIP_IS_E2(bp)) {
500                 /*    MPS      w_order     optimal TH      presently TH
501                  *    128         0             0               2
502                  *    256         1             1               3
503                  *    >=512       2             2               3
504                  */
505                 /* DMAE is special */
506                 if (CHIP_IS_E2(bp)) {
507                         /* E2 can use optimal TH */
508                         val = w_order;
509                         REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
510                 } else {
511                         val = ((w_order == 0) ? 2 : 3);
512                         REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
513                 }
514
515                 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
516                 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
517                 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
518                 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
519                 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
520                 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
521                 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
522                 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
523                 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
524                 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
525         }
526
527         /* Validate number of tags suppoted by device */
528 #define PCIE_REG_PCIER_TL_HDR_FC_ST             0x2980
529         val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
530         val &= 0xFF;
531         if (val <= 0x20)
532                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
533 }
534
535 /****************************************************************************
536 * ILT management
537 ****************************************************************************/
538 /*
539  * This codes hides the low level HW interaction for ILT management and
540  * configuration. The API consists of a shadow ILT table which is set by the
541  * driver and a set of routines to use it to configure the HW.
542  *
543  */
544
545 /* ILT HW init operations */
546
547 /* ILT memory management operations */
548 #define ILT_MEMOP_ALLOC         0
549 #define ILT_MEMOP_FREE          1
550
551 /* the phys address is shifted right 12 bits and has an added
552  * 1=valid bit added to the 53rd bit
553  * then since this is a wide register(TM)
554  * we split it into two 32 bit writes
555  */
556 #define ILT_ADDR1(x)            ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
557 #define ILT_ADDR2(x)            ((u32)((1 << 20) | ((u64)x >> 44)))
558 #define ILT_RANGE(f, l)         (((l) << 10) | f)
559
560 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp, struct ilt_line *line,
561                                  u32 size, u8 memop)
562 {
563         if (memop == ILT_MEMOP_FREE) {
564                 BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
565                 return 0;
566         }
567         BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
568         if (!line->page)
569                 return -1;
570         line->size = size;
571         return 0;
572 }
573
574
575 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num, u8 memop)
576 {
577         int i, rc;
578         struct bnx2x_ilt *ilt = BP_ILT(bp);
579         struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
580
581         if (!ilt || !ilt->lines)
582                 return -1;
583
584         if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
585                 return 0;
586
587         for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
588                 rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
589                                            ilt_cli->page_size, memop);
590         }
591         return rc;
592 }
593
594 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
595 {
596         int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
597         if (!rc)
598                 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
599         if (!rc)
600                 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
601         if (!rc)
602                 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
603
604         return rc;
605 }
606
607 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
608                               dma_addr_t page_mapping)
609 {
610         u32 reg;
611
612         if (CHIP_IS_E1(bp))
613                 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
614         else
615                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
616
617         bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
618 }
619
620 static void bnx2x_ilt_line_init_op(struct bnx2x *bp, struct bnx2x_ilt *ilt,
621                                    int idx, u8 initop)
622 {
623         dma_addr_t      null_mapping;
624         int abs_idx = ilt->start_line + idx;
625
626
627         switch (initop) {
628         case INITOP_INIT:
629                 /* set in the init-value array */
630         case INITOP_SET:
631                 bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
632                 break;
633         case INITOP_CLEAR:
634                 null_mapping = 0;
635                 bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
636                 break;
637         }
638 }
639
640 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
641                                       struct ilt_client_info *ilt_cli,
642                                       u32 ilt_start, u8 initop)
643 {
644         u32 start_reg = 0;
645         u32 end_reg = 0;
646
647         /* The boundary is either SET or INIT,
648            CLEAR => SET and for now SET ~~ INIT */
649
650         /* find the appropriate regs */
651         if (CHIP_IS_E1(bp)) {
652                 switch (ilt_cli->client_num) {
653                 case ILT_CLIENT_CDU:
654                         start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
655                         break;
656                 case ILT_CLIENT_QM:
657                         start_reg = PXP2_REG_PSWRQ_QM0_L2P;
658                         break;
659                 case ILT_CLIENT_SRC:
660                         start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
661                         break;
662                 case ILT_CLIENT_TM:
663                         start_reg = PXP2_REG_PSWRQ_TM0_L2P;
664                         break;
665                 }
666                 REG_WR(bp, start_reg + BP_FUNC(bp)*4,
667                        ILT_RANGE((ilt_start + ilt_cli->start),
668                                  (ilt_start + ilt_cli->end)));
669         } else {
670                 switch (ilt_cli->client_num) {
671                 case ILT_CLIENT_CDU:
672                         start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
673                         end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
674                         break;
675                 case ILT_CLIENT_QM:
676                         start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
677                         end_reg = PXP2_REG_RQ_QM_LAST_ILT;
678                         break;
679                 case ILT_CLIENT_SRC:
680                         start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
681                         end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
682                         break;
683                 case ILT_CLIENT_TM:
684                         start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
685                         end_reg = PXP2_REG_RQ_TM_LAST_ILT;
686                         break;
687                 }
688                 REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
689                 REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
690         }
691 }
692
693 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
694                                          struct bnx2x_ilt *ilt,
695                                          struct ilt_client_info *ilt_cli,
696                                          u8 initop)
697 {
698         int i;
699
700         if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
701                 return;
702
703         for (i = ilt_cli->start; i <= ilt_cli->end; i++)
704                 bnx2x_ilt_line_init_op(bp, ilt, i, initop);
705
706         /* init/clear the ILT boundries */
707         bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
708 }
709
710 static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
711                                      struct ilt_client_info *ilt_cli, u8 initop)
712 {
713         struct bnx2x_ilt *ilt = BP_ILT(bp);
714
715         bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
716 }
717
718 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
719                                         int cli_num, u8 initop)
720 {
721         struct bnx2x_ilt *ilt = BP_ILT(bp);
722         struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
723
724         bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
725 }
726
727 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
728 {
729         bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
730         bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
731         bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
732         bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
733 }
734
735 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
736                                             u32 psz_reg, u8 initop)
737 {
738         struct bnx2x_ilt *ilt = BP_ILT(bp);
739         struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
740
741         if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
742                 return;
743
744         switch (initop) {
745         case INITOP_INIT:
746                 /* set in the init-value array */
747         case INITOP_SET:
748                 REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
749                 break;
750         case INITOP_CLEAR:
751                 break;
752         }
753 }
754
755 /*
756  * called during init common stage, ilt clients should be initialized
757  * prioir to calling this function
758  */
759 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
760 {
761         bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
762                                   PXP2_REG_RQ_CDU_P_SIZE, initop);
763         bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
764                                   PXP2_REG_RQ_QM_P_SIZE, initop);
765         bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
766                                   PXP2_REG_RQ_SRC_P_SIZE, initop);
767         bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
768                                   PXP2_REG_RQ_TM_P_SIZE, initop);
769 }
770
771 /****************************************************************************
772 * QM initializations
773 ****************************************************************************/
774 #define QM_QUEUES_PER_FUNC      16 /* E1 has 32, but only 16 are used */
775 #define QM_INIT_MIN_CID_COUNT   31
776 #define QM_INIT(cid_cnt)        (cid_cnt > QM_INIT_MIN_CID_COUNT)
777
778 /* called during init port stage */
779 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
780                                     u8 initop)
781 {
782         int port = BP_PORT(bp);
783
784         if (QM_INIT(qm_cid_count)) {
785                 switch (initop) {
786                 case INITOP_INIT:
787                         /* set in the init-value array */
788                 case INITOP_SET:
789                         REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
790                                qm_cid_count/16 - 1);
791                         break;
792                 case INITOP_CLEAR:
793                         break;
794                 }
795         }
796 }
797
798 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count)
799 {
800         int i;
801         u32 wb_data[2];
802
803         wb_data[0] = wb_data[1] = 0;
804
805         for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
806                 REG_WR(bp, QM_REG_BASEADDR + i*4,
807                        qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
808                 bnx2x_init_ind_wr(bp, QM_REG_PTRTBL + i*8,
809                                   wb_data, 2);
810
811                 if (CHIP_IS_E1H(bp)) {
812                         REG_WR(bp, QM_REG_BASEADDR_EXT_A + i*4,
813                                qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
814                         bnx2x_init_ind_wr(bp, QM_REG_PTRTBL_EXT_A + i*8,
815                                           wb_data, 2);
816                 }
817         }
818 }
819
820 /* called during init common stage */
821 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
822                                     u8 initop)
823 {
824         if (!QM_INIT(qm_cid_count))
825                 return;
826
827         switch (initop) {
828         case INITOP_INIT:
829                 /* set in the init-value array */
830         case INITOP_SET:
831                 bnx2x_qm_set_ptr_table(bp, qm_cid_count);
832                 break;
833         case INITOP_CLEAR:
834                 break;
835         }
836 }
837
838 /****************************************************************************
839 * SRC initializations
840 ****************************************************************************/
841
842 /* called during init func stage */
843 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
844                               dma_addr_t t2_mapping, int src_cid_count)
845 {
846         int i;
847         int port = BP_PORT(bp);
848
849         /* Initialize T2 */
850         for (i = 0; i < src_cid_count-1; i++)
851                 t2[i].next = (u64)(t2_mapping + (i+1)*sizeof(struct src_ent));
852
853         /* tell the searcher where the T2 table is */
854         REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
855
856         bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
857                     U64_LO(t2_mapping), U64_HI(t2_mapping));
858
859         bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
860                     U64_LO((u64)t2_mapping +
861                            (src_cid_count-1) * sizeof(struct src_ent)),
862                     U64_HI((u64)t2_mapping +
863                            (src_cid_count-1) * sizeof(struct src_ent)));
864 }
865
866 #endif /* BNX2X_INIT_OPS_H */