Merge branch 'next' into for-linus-3.0
[pandora-kernel.git] / drivers / net / bna / bnad.c
1 /*
2  * Linux network driver for Brocade Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15  * All rights reserved
16  * www.brocade.com
17  */
18 #include <linux/netdevice.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/in.h>
22 #include <linux/ethtool.h>
23 #include <linux/if_vlan.h>
24 #include <linux/if_ether.h>
25 #include <linux/ip.h>
26 #include <linux/prefetch.h>
27
28 #include "bnad.h"
29 #include "bna.h"
30 #include "cna.h"
31
32 static DEFINE_MUTEX(bnad_fwimg_mutex);
33
34 /*
35  * Module params
36  */
37 static uint bnad_msix_disable;
38 module_param(bnad_msix_disable, uint, 0444);
39 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
40
41 static uint bnad_ioc_auto_recover = 1;
42 module_param(bnad_ioc_auto_recover, uint, 0444);
43 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
44
45 /*
46  * Global variables
47  */
48 u32 bnad_rxqs_per_cq = 2;
49
50 static const u8 bnad_bcast_addr[] =  {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
51
52 /*
53  * Local MACROS
54  */
55 #define BNAD_TX_UNMAPQ_DEPTH (bnad->txq_depth * 2)
56
57 #define BNAD_RX_UNMAPQ_DEPTH (bnad->rxq_depth)
58
59 #define BNAD_GET_MBOX_IRQ(_bnad)                                \
60         (((_bnad)->cfg_flags & BNAD_CF_MSIX) ?                  \
61          ((_bnad)->msix_table[(_bnad)->msix_num - 1].vector) :  \
62          ((_bnad)->pcidev->irq))
63
64 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _depth)       \
65 do {                                                            \
66         (_res_info)->res_type = BNA_RES_T_MEM;                  \
67         (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;   \
68         (_res_info)->res_u.mem_info.num = (_num);               \
69         (_res_info)->res_u.mem_info.len =                       \
70         sizeof(struct bnad_unmap_q) +                           \
71         (sizeof(struct bnad_skb_unmap) * ((_depth) - 1));       \
72 } while (0)
73
74 #define BNAD_TXRX_SYNC_MDELAY   250     /* 250 msecs */
75
76 /*
77  * Reinitialize completions in CQ, once Rx is taken down
78  */
79 static void
80 bnad_cq_cmpl_init(struct bnad *bnad, struct bna_ccb *ccb)
81 {
82         struct bna_cq_entry *cmpl, *next_cmpl;
83         unsigned int wi_range, wis = 0, ccb_prod = 0;
84         int i;
85
86         BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt, cmpl,
87                             wi_range);
88
89         for (i = 0; i < ccb->q_depth; i++) {
90                 wis++;
91                 if (likely(--wi_range))
92                         next_cmpl = cmpl + 1;
93                 else {
94                         BNA_QE_INDX_ADD(ccb_prod, wis, ccb->q_depth);
95                         wis = 0;
96                         BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt,
97                                                 next_cmpl, wi_range);
98                 }
99                 cmpl->valid = 0;
100                 cmpl = next_cmpl;
101         }
102 }
103
104 /*
105  * Frees all pending Tx Bufs
106  * At this point no activity is expected on the Q,
107  * so DMA unmap & freeing is fine.
108  */
109 static void
110 bnad_free_all_txbufs(struct bnad *bnad,
111                  struct bna_tcb *tcb)
112 {
113         u32             unmap_cons;
114         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
115         struct bnad_skb_unmap *unmap_array;
116         struct sk_buff          *skb = NULL;
117         int                     i;
118
119         unmap_array = unmap_q->unmap_array;
120
121         unmap_cons = 0;
122         while (unmap_cons < unmap_q->q_depth) {
123                 skb = unmap_array[unmap_cons].skb;
124                 if (!skb) {
125                         unmap_cons++;
126                         continue;
127                 }
128                 unmap_array[unmap_cons].skb = NULL;
129
130                 dma_unmap_single(&bnad->pcidev->dev,
131                                  dma_unmap_addr(&unmap_array[unmap_cons],
132                                                 dma_addr), skb_headlen(skb),
133                                                 DMA_TO_DEVICE);
134
135                 dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr, 0);
136                 if (++unmap_cons >= unmap_q->q_depth)
137                         break;
138
139                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
140                         dma_unmap_page(&bnad->pcidev->dev,
141                                        dma_unmap_addr(&unmap_array[unmap_cons],
142                                                       dma_addr),
143                                        skb_shinfo(skb)->frags[i].size,
144                                        DMA_TO_DEVICE);
145                         dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr,
146                                            0);
147                         if (++unmap_cons >= unmap_q->q_depth)
148                                 break;
149                 }
150                 dev_kfree_skb_any(skb);
151         }
152 }
153
154 /* Data Path Handlers */
155
156 /*
157  * bnad_free_txbufs : Frees the Tx bufs on Tx completion
158  * Can be called in a) Interrupt context
159  *                  b) Sending context
160  *                  c) Tasklet context
161  */
162 static u32
163 bnad_free_txbufs(struct bnad *bnad,
164                  struct bna_tcb *tcb)
165 {
166         u32             sent_packets = 0, sent_bytes = 0;
167         u16             wis, unmap_cons, updated_hw_cons;
168         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
169         struct bnad_skb_unmap *unmap_array;
170         struct sk_buff          *skb;
171         int i;
172
173         /*
174          * Just return if TX is stopped. This check is useful
175          * when bnad_free_txbufs() runs out of a tasklet scheduled
176          * before bnad_cb_tx_cleanup() cleared BNAD_TXQ_TX_STARTED bit
177          * but this routine runs actually after the cleanup has been
178          * executed.
179          */
180         if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
181                 return 0;
182
183         updated_hw_cons = *(tcb->hw_consumer_index);
184
185         wis = BNA_Q_INDEX_CHANGE(tcb->consumer_index,
186                                   updated_hw_cons, tcb->q_depth);
187
188         BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
189
190         unmap_array = unmap_q->unmap_array;
191         unmap_cons = unmap_q->consumer_index;
192
193         prefetch(&unmap_array[unmap_cons + 1]);
194         while (wis) {
195                 skb = unmap_array[unmap_cons].skb;
196
197                 unmap_array[unmap_cons].skb = NULL;
198
199                 sent_packets++;
200                 sent_bytes += skb->len;
201                 wis -= BNA_TXQ_WI_NEEDED(1 + skb_shinfo(skb)->nr_frags);
202
203                 dma_unmap_single(&bnad->pcidev->dev,
204                                  dma_unmap_addr(&unmap_array[unmap_cons],
205                                                 dma_addr), skb_headlen(skb),
206                                  DMA_TO_DEVICE);
207                 dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr, 0);
208                 BNA_QE_INDX_ADD(unmap_cons, 1, unmap_q->q_depth);
209
210                 prefetch(&unmap_array[unmap_cons + 1]);
211                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
212                         prefetch(&unmap_array[unmap_cons + 1]);
213
214                         dma_unmap_page(&bnad->pcidev->dev,
215                                        dma_unmap_addr(&unmap_array[unmap_cons],
216                                                       dma_addr),
217                                        skb_shinfo(skb)->frags[i].size,
218                                        DMA_TO_DEVICE);
219                         dma_unmap_addr_set(&unmap_array[unmap_cons], dma_addr,
220                                            0);
221                         BNA_QE_INDX_ADD(unmap_cons, 1, unmap_q->q_depth);
222                 }
223                 dev_kfree_skb_any(skb);
224         }
225
226         /* Update consumer pointers. */
227         tcb->consumer_index = updated_hw_cons;
228         unmap_q->consumer_index = unmap_cons;
229
230         tcb->txq->tx_packets += sent_packets;
231         tcb->txq->tx_bytes += sent_bytes;
232
233         return sent_packets;
234 }
235
236 /* Tx Free Tasklet function */
237 /* Frees for all the tcb's in all the Tx's */
238 /*
239  * Scheduled from sending context, so that
240  * the fat Tx lock is not held for too long
241  * in the sending context.
242  */
243 static void
244 bnad_tx_free_tasklet(unsigned long bnad_ptr)
245 {
246         struct bnad *bnad = (struct bnad *)bnad_ptr;
247         struct bna_tcb *tcb;
248         u32             acked = 0;
249         int                     i, j;
250
251         for (i = 0; i < bnad->num_tx; i++) {
252                 for (j = 0; j < bnad->num_txq_per_tx; j++) {
253                         tcb = bnad->tx_info[i].tcb[j];
254                         if (!tcb)
255                                 continue;
256                         if (((u16) (*tcb->hw_consumer_index) !=
257                                 tcb->consumer_index) &&
258                                 (!test_and_set_bit(BNAD_TXQ_FREE_SENT,
259                                                   &tcb->flags))) {
260                                 acked = bnad_free_txbufs(bnad, tcb);
261                                 if (likely(test_bit(BNAD_TXQ_TX_STARTED,
262                                         &tcb->flags)))
263                                         bna_ib_ack(tcb->i_dbell, acked);
264                                 smp_mb__before_clear_bit();
265                                 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
266                         }
267                         if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED,
268                                                 &tcb->flags)))
269                                 continue;
270                         if (netif_queue_stopped(bnad->netdev)) {
271                                 if (acked && netif_carrier_ok(bnad->netdev) &&
272                                         BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
273                                                 BNAD_NETIF_WAKE_THRESHOLD) {
274                                         netif_wake_queue(bnad->netdev);
275                                         /* TODO */
276                                         /* Counters for individual TxQs? */
277                                         BNAD_UPDATE_CTR(bnad,
278                                                 netif_queue_wakeup);
279                                 }
280                         }
281                 }
282         }
283 }
284
285 static u32
286 bnad_tx(struct bnad *bnad, struct bna_tcb *tcb)
287 {
288         struct net_device *netdev = bnad->netdev;
289         u32 sent = 0;
290
291         if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
292                 return 0;
293
294         sent = bnad_free_txbufs(bnad, tcb);
295         if (sent) {
296                 if (netif_queue_stopped(netdev) &&
297                     netif_carrier_ok(netdev) &&
298                     BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
299                                     BNAD_NETIF_WAKE_THRESHOLD) {
300                         if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
301                                 netif_wake_queue(netdev);
302                                 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
303                         }
304                 }
305         }
306
307         if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
308                 bna_ib_ack(tcb->i_dbell, sent);
309
310         smp_mb__before_clear_bit();
311         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
312
313         return sent;
314 }
315
316 /* MSIX Tx Completion Handler */
317 static irqreturn_t
318 bnad_msix_tx(int irq, void *data)
319 {
320         struct bna_tcb *tcb = (struct bna_tcb *)data;
321         struct bnad *bnad = tcb->bnad;
322
323         bnad_tx(bnad, tcb);
324
325         return IRQ_HANDLED;
326 }
327
328 static void
329 bnad_reset_rcb(struct bnad *bnad, struct bna_rcb *rcb)
330 {
331         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
332
333         rcb->producer_index = 0;
334         rcb->consumer_index = 0;
335
336         unmap_q->producer_index = 0;
337         unmap_q->consumer_index = 0;
338 }
339
340 static void
341 bnad_free_all_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
342 {
343         struct bnad_unmap_q *unmap_q;
344         struct bnad_skb_unmap *unmap_array;
345         struct sk_buff *skb;
346         int unmap_cons;
347
348         unmap_q = rcb->unmap_q;
349         unmap_array = unmap_q->unmap_array;
350         for (unmap_cons = 0; unmap_cons < unmap_q->q_depth; unmap_cons++) {
351                 skb = unmap_array[unmap_cons].skb;
352                 if (!skb)
353                         continue;
354                 unmap_array[unmap_cons].skb = NULL;
355                 dma_unmap_single(&bnad->pcidev->dev,
356                                  dma_unmap_addr(&unmap_array[unmap_cons],
357                                                 dma_addr),
358                                  rcb->rxq->buffer_size,
359                                  DMA_FROM_DEVICE);
360                 dev_kfree_skb(skb);
361         }
362         bnad_reset_rcb(bnad, rcb);
363 }
364
365 static void
366 bnad_alloc_n_post_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
367 {
368         u16 to_alloc, alloced, unmap_prod, wi_range;
369         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
370         struct bnad_skb_unmap *unmap_array;
371         struct bna_rxq_entry *rxent;
372         struct sk_buff *skb;
373         dma_addr_t dma_addr;
374
375         alloced = 0;
376         to_alloc =
377                 BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth);
378
379         unmap_array = unmap_q->unmap_array;
380         unmap_prod = unmap_q->producer_index;
381
382         BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent, wi_range);
383
384         while (to_alloc--) {
385                 if (!wi_range) {
386                         BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent,
387                                              wi_range);
388                 }
389                 skb = alloc_skb(rcb->rxq->buffer_size + NET_IP_ALIGN,
390                                      GFP_ATOMIC);
391                 if (unlikely(!skb)) {
392                         BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
393                         goto finishing;
394                 }
395                 skb->dev = bnad->netdev;
396                 skb_reserve(skb, NET_IP_ALIGN);
397                 unmap_array[unmap_prod].skb = skb;
398                 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
399                                           rcb->rxq->buffer_size,
400                                           DMA_FROM_DEVICE);
401                 dma_unmap_addr_set(&unmap_array[unmap_prod], dma_addr,
402                                    dma_addr);
403                 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
404                 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
405
406                 rxent++;
407                 wi_range--;
408                 alloced++;
409         }
410
411 finishing:
412         if (likely(alloced)) {
413                 unmap_q->producer_index = unmap_prod;
414                 rcb->producer_index = unmap_prod;
415                 smp_mb();
416                 if (likely(test_bit(BNAD_RXQ_STARTED, &rcb->flags)))
417                         bna_rxq_prod_indx_doorbell(rcb);
418         }
419 }
420
421 static inline void
422 bnad_refill_rxq(struct bnad *bnad, struct bna_rcb *rcb)
423 {
424         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
425
426         if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
427                 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
428                          >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
429                         bnad_alloc_n_post_rxbufs(bnad, rcb);
430                 smp_mb__before_clear_bit();
431                 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
432         }
433 }
434
435 static u32
436 bnad_poll_cq(struct bnad *bnad, struct bna_ccb *ccb, int budget)
437 {
438         struct bna_cq_entry *cmpl, *next_cmpl;
439         struct bna_rcb *rcb = NULL;
440         unsigned int wi_range, packets = 0, wis = 0;
441         struct bnad_unmap_q *unmap_q;
442         struct bnad_skb_unmap *unmap_array;
443         struct sk_buff *skb;
444         u32 flags, unmap_cons;
445         u32 qid0 = ccb->rcb[0]->rxq->rxq_id;
446         struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
447
448         if (!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags))
449                 return 0;
450
451         prefetch(bnad->netdev);
452         BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt, cmpl,
453                             wi_range);
454         BUG_ON(!(wi_range <= ccb->q_depth));
455         while (cmpl->valid && packets < budget) {
456                 packets++;
457                 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
458
459                 if (qid0 == cmpl->rxq_id)
460                         rcb = ccb->rcb[0];
461                 else
462                         rcb = ccb->rcb[1];
463
464                 unmap_q = rcb->unmap_q;
465                 unmap_array = unmap_q->unmap_array;
466                 unmap_cons = unmap_q->consumer_index;
467
468                 skb = unmap_array[unmap_cons].skb;
469                 BUG_ON(!(skb));
470                 unmap_array[unmap_cons].skb = NULL;
471                 dma_unmap_single(&bnad->pcidev->dev,
472                                  dma_unmap_addr(&unmap_array[unmap_cons],
473                                                 dma_addr),
474                                  rcb->rxq->buffer_size,
475                                  DMA_FROM_DEVICE);
476                 BNA_QE_INDX_ADD(unmap_q->consumer_index, 1, unmap_q->q_depth);
477
478                 /* Should be more efficient ? Performance ? */
479                 BNA_QE_INDX_ADD(rcb->consumer_index, 1, rcb->q_depth);
480
481                 wis++;
482                 if (likely(--wi_range))
483                         next_cmpl = cmpl + 1;
484                 else {
485                         BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
486                         wis = 0;
487                         BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt,
488                                                 next_cmpl, wi_range);
489                         BUG_ON(!(wi_range <= ccb->q_depth));
490                 }
491                 prefetch(next_cmpl);
492
493                 flags = ntohl(cmpl->flags);
494                 if (unlikely
495                     (flags &
496                      (BNA_CQ_EF_MAC_ERROR | BNA_CQ_EF_FCS_ERROR |
497                       BNA_CQ_EF_TOO_LONG))) {
498                         dev_kfree_skb_any(skb);
499                         rcb->rxq->rx_packets_with_error++;
500                         goto next;
501                 }
502
503                 skb_put(skb, ntohs(cmpl->length));
504                 if (likely
505                     ((bnad->netdev->features & NETIF_F_RXCSUM) &&
506                      (((flags & BNA_CQ_EF_IPV4) &&
507                       (flags & BNA_CQ_EF_L3_CKSUM_OK)) ||
508                       (flags & BNA_CQ_EF_IPV6)) &&
509                       (flags & (BNA_CQ_EF_TCP | BNA_CQ_EF_UDP)) &&
510                       (flags & BNA_CQ_EF_L4_CKSUM_OK)))
511                         skb->ip_summed = CHECKSUM_UNNECESSARY;
512                 else
513                         skb_checksum_none_assert(skb);
514
515                 rcb->rxq->rx_packets++;
516                 rcb->rxq->rx_bytes += skb->len;
517                 skb->protocol = eth_type_trans(skb, bnad->netdev);
518
519                 if (bnad->vlan_grp && (flags & BNA_CQ_EF_VLAN)) {
520                         struct bnad_rx_ctrl *rx_ctrl =
521                                 (struct bnad_rx_ctrl *)ccb->ctrl;
522                         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
523                                 vlan_gro_receive(&rx_ctrl->napi, bnad->vlan_grp,
524                                                 ntohs(cmpl->vlan_tag), skb);
525                         else
526                                 vlan_hwaccel_receive_skb(skb,
527                                                          bnad->vlan_grp,
528                                                          ntohs(cmpl->vlan_tag));
529
530                 } else { /* Not VLAN tagged/stripped */
531                         struct bnad_rx_ctrl *rx_ctrl =
532                                 (struct bnad_rx_ctrl *)ccb->ctrl;
533                         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
534                                 napi_gro_receive(&rx_ctrl->napi, skb);
535                         else
536                                 netif_receive_skb(skb);
537                 }
538
539 next:
540                 cmpl->valid = 0;
541                 cmpl = next_cmpl;
542         }
543
544         BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
545
546         if (likely(ccb)) {
547                 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
548                         bna_ib_ack(ccb->i_dbell, packets);
549                 bnad_refill_rxq(bnad, ccb->rcb[0]);
550                 if (ccb->rcb[1])
551                         bnad_refill_rxq(bnad, ccb->rcb[1]);
552         } else {
553                 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
554                         bna_ib_ack(ccb->i_dbell, 0);
555         }
556
557         return packets;
558 }
559
560 static void
561 bnad_disable_rx_irq(struct bnad *bnad, struct bna_ccb *ccb)
562 {
563         if (unlikely(!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
564                 return;
565
566         bna_ib_coalescing_timer_set(ccb->i_dbell, 0);
567         bna_ib_ack(ccb->i_dbell, 0);
568 }
569
570 static void
571 bnad_enable_rx_irq(struct bnad *bnad, struct bna_ccb *ccb)
572 {
573         unsigned long flags;
574
575         /* Because of polling context */
576         spin_lock_irqsave(&bnad->bna_lock, flags);
577         bnad_enable_rx_irq_unsafe(ccb);
578         spin_unlock_irqrestore(&bnad->bna_lock, flags);
579 }
580
581 static void
582 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
583 {
584         struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
585         struct napi_struct *napi = &rx_ctrl->napi;
586
587         if (likely(napi_schedule_prep(napi))) {
588                 bnad_disable_rx_irq(bnad, ccb);
589                 __napi_schedule(napi);
590         }
591         BNAD_UPDATE_CTR(bnad, netif_rx_schedule);
592 }
593
594 /* MSIX Rx Path Handler */
595 static irqreturn_t
596 bnad_msix_rx(int irq, void *data)
597 {
598         struct bna_ccb *ccb = (struct bna_ccb *)data;
599         struct bnad *bnad = ccb->bnad;
600
601         bnad_netif_rx_schedule_poll(bnad, ccb);
602
603         return IRQ_HANDLED;
604 }
605
606 /* Interrupt handlers */
607
608 /* Mbox Interrupt Handlers */
609 static irqreturn_t
610 bnad_msix_mbox_handler(int irq, void *data)
611 {
612         u32 intr_status;
613         unsigned long flags;
614         struct bnad *bnad = (struct bnad *)data;
615
616         if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags)))
617                 return IRQ_HANDLED;
618
619         spin_lock_irqsave(&bnad->bna_lock, flags);
620
621         bna_intr_status_get(&bnad->bna, intr_status);
622
623         if (BNA_IS_MBOX_ERR_INTR(intr_status))
624                 bna_mbox_handler(&bnad->bna, intr_status);
625
626         spin_unlock_irqrestore(&bnad->bna_lock, flags);
627
628         return IRQ_HANDLED;
629 }
630
631 static irqreturn_t
632 bnad_isr(int irq, void *data)
633 {
634         int i, j;
635         u32 intr_status;
636         unsigned long flags;
637         struct bnad *bnad = (struct bnad *)data;
638         struct bnad_rx_info *rx_info;
639         struct bnad_rx_ctrl *rx_ctrl;
640
641         if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags)))
642                 return IRQ_NONE;
643
644         bna_intr_status_get(&bnad->bna, intr_status);
645
646         if (unlikely(!intr_status))
647                 return IRQ_NONE;
648
649         spin_lock_irqsave(&bnad->bna_lock, flags);
650
651         if (BNA_IS_MBOX_ERR_INTR(intr_status))
652                 bna_mbox_handler(&bnad->bna, intr_status);
653
654         spin_unlock_irqrestore(&bnad->bna_lock, flags);
655
656         if (!BNA_IS_INTX_DATA_INTR(intr_status))
657                 return IRQ_HANDLED;
658
659         /* Process data interrupts */
660         /* Tx processing */
661         for (i = 0; i < bnad->num_tx; i++) {
662                 for (j = 0; j < bnad->num_txq_per_tx; j++)
663                         bnad_tx(bnad, bnad->tx_info[i].tcb[j]);
664         }
665         /* Rx processing */
666         for (i = 0; i < bnad->num_rx; i++) {
667                 rx_info = &bnad->rx_info[i];
668                 if (!rx_info->rx)
669                         continue;
670                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
671                         rx_ctrl = &rx_info->rx_ctrl[j];
672                         if (rx_ctrl->ccb)
673                                 bnad_netif_rx_schedule_poll(bnad,
674                                                             rx_ctrl->ccb);
675                 }
676         }
677         return IRQ_HANDLED;
678 }
679
680 /*
681  * Called in interrupt / callback context
682  * with bna_lock held, so cfg_flags access is OK
683  */
684 static void
685 bnad_enable_mbox_irq(struct bnad *bnad)
686 {
687         clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
688
689         BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
690 }
691
692 /*
693  * Called with bnad->bna_lock held b'cos of
694  * bnad->cfg_flags access.
695  */
696 static void
697 bnad_disable_mbox_irq(struct bnad *bnad)
698 {
699         set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
700
701         BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
702 }
703
704 static void
705 bnad_set_netdev_perm_addr(struct bnad *bnad)
706 {
707         struct net_device *netdev = bnad->netdev;
708
709         memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
710         if (is_zero_ether_addr(netdev->dev_addr))
711                 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
712 }
713
714 /* Control Path Handlers */
715
716 /* Callbacks */
717 void
718 bnad_cb_device_enable_mbox_intr(struct bnad *bnad)
719 {
720         bnad_enable_mbox_irq(bnad);
721 }
722
723 void
724 bnad_cb_device_disable_mbox_intr(struct bnad *bnad)
725 {
726         bnad_disable_mbox_irq(bnad);
727 }
728
729 void
730 bnad_cb_device_enabled(struct bnad *bnad, enum bna_cb_status status)
731 {
732         complete(&bnad->bnad_completions.ioc_comp);
733         bnad->bnad_completions.ioc_comp_status = status;
734 }
735
736 void
737 bnad_cb_device_disabled(struct bnad *bnad, enum bna_cb_status status)
738 {
739         complete(&bnad->bnad_completions.ioc_comp);
740         bnad->bnad_completions.ioc_comp_status = status;
741 }
742
743 static void
744 bnad_cb_port_disabled(void *arg, enum bna_cb_status status)
745 {
746         struct bnad *bnad = (struct bnad *)arg;
747
748         complete(&bnad->bnad_completions.port_comp);
749
750         netif_carrier_off(bnad->netdev);
751 }
752
753 void
754 bnad_cb_port_link_status(struct bnad *bnad,
755                         enum bna_link_status link_status)
756 {
757         bool link_up = 0;
758
759         link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
760
761         if (link_status == BNA_CEE_UP) {
762                 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
763                 BNAD_UPDATE_CTR(bnad, cee_up);
764         } else
765                 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
766
767         if (link_up) {
768                 if (!netif_carrier_ok(bnad->netdev)) {
769                         struct bna_tcb *tcb = bnad->tx_info[0].tcb[0];
770                         if (!tcb)
771                                 return;
772                         pr_warn("bna: %s link up\n",
773                                 bnad->netdev->name);
774                         netif_carrier_on(bnad->netdev);
775                         BNAD_UPDATE_CTR(bnad, link_toggle);
776                         if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
777                                 /* Force an immediate Transmit Schedule */
778                                 pr_info("bna: %s TX_STARTED\n",
779                                         bnad->netdev->name);
780                                 netif_wake_queue(bnad->netdev);
781                                 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
782                         } else {
783                                 netif_stop_queue(bnad->netdev);
784                                 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
785                         }
786                 }
787         } else {
788                 if (netif_carrier_ok(bnad->netdev)) {
789                         pr_warn("bna: %s link down\n",
790                                 bnad->netdev->name);
791                         netif_carrier_off(bnad->netdev);
792                         BNAD_UPDATE_CTR(bnad, link_toggle);
793                 }
794         }
795 }
796
797 static void
798 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx,
799                         enum bna_cb_status status)
800 {
801         struct bnad *bnad = (struct bnad *)arg;
802
803         complete(&bnad->bnad_completions.tx_comp);
804 }
805
806 static void
807 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
808 {
809         struct bnad_tx_info *tx_info =
810                         (struct bnad_tx_info *)tcb->txq->tx->priv;
811         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
812
813         tx_info->tcb[tcb->id] = tcb;
814         unmap_q->producer_index = 0;
815         unmap_q->consumer_index = 0;
816         unmap_q->q_depth = BNAD_TX_UNMAPQ_DEPTH;
817 }
818
819 static void
820 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
821 {
822         struct bnad_tx_info *tx_info =
823                         (struct bnad_tx_info *)tcb->txq->tx->priv;
824         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
825
826         while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
827                 cpu_relax();
828
829         bnad_free_all_txbufs(bnad, tcb);
830
831         unmap_q->producer_index = 0;
832         unmap_q->consumer_index = 0;
833
834         smp_mb__before_clear_bit();
835         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
836
837         tx_info->tcb[tcb->id] = NULL;
838 }
839
840 static void
841 bnad_cb_rcb_setup(struct bnad *bnad, struct bna_rcb *rcb)
842 {
843         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
844
845         unmap_q->producer_index = 0;
846         unmap_q->consumer_index = 0;
847         unmap_q->q_depth = BNAD_RX_UNMAPQ_DEPTH;
848 }
849
850 static void
851 bnad_cb_rcb_destroy(struct bnad *bnad, struct bna_rcb *rcb)
852 {
853         bnad_free_all_rxbufs(bnad, rcb);
854 }
855
856 static void
857 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
858 {
859         struct bnad_rx_info *rx_info =
860                         (struct bnad_rx_info *)ccb->cq->rx->priv;
861
862         rx_info->rx_ctrl[ccb->id].ccb = ccb;
863         ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
864 }
865
866 static void
867 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
868 {
869         struct bnad_rx_info *rx_info =
870                         (struct bnad_rx_info *)ccb->cq->rx->priv;
871
872         rx_info->rx_ctrl[ccb->id].ccb = NULL;
873 }
874
875 static void
876 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tcb *tcb)
877 {
878         struct bnad_tx_info *tx_info =
879                         (struct bnad_tx_info *)tcb->txq->tx->priv;
880
881         if (tx_info != &bnad->tx_info[0])
882                 return;
883
884         clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
885         netif_stop_queue(bnad->netdev);
886         pr_info("bna: %s TX_STOPPED\n", bnad->netdev->name);
887 }
888
889 static void
890 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tcb *tcb)
891 {
892         struct bnad_unmap_q *unmap_q = tcb->unmap_q;
893
894         if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
895                 return;
896
897         clear_bit(BNAD_RF_TX_SHUTDOWN_DELAYED, &bnad->run_flags);
898
899         while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
900                 cpu_relax();
901
902         bnad_free_all_txbufs(bnad, tcb);
903
904         unmap_q->producer_index = 0;
905         unmap_q->consumer_index = 0;
906
907         smp_mb__before_clear_bit();
908         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
909
910         /*
911          * Workaround for first device enable failure & we
912          * get a 0 MAC address. We try to get the MAC address
913          * again here.
914          */
915         if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
916                 bna_port_mac_get(&bnad->bna.port, &bnad->perm_addr);
917                 bnad_set_netdev_perm_addr(bnad);
918         }
919
920         set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
921
922         if (netif_carrier_ok(bnad->netdev)) {
923                 pr_info("bna: %s TX_STARTED\n", bnad->netdev->name);
924                 netif_wake_queue(bnad->netdev);
925                 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
926         }
927 }
928
929 static void
930 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
931 {
932         /* Delay only once for the whole Tx Path Shutdown */
933         if (!test_and_set_bit(BNAD_RF_TX_SHUTDOWN_DELAYED, &bnad->run_flags))
934                 mdelay(BNAD_TXRX_SYNC_MDELAY);
935 }
936
937 static void
938 bnad_cb_rx_cleanup(struct bnad *bnad,
939                         struct bna_ccb *ccb)
940 {
941         clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
942
943         if (ccb->rcb[1])
944                 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
945
946         if (!test_and_set_bit(BNAD_RF_RX_SHUTDOWN_DELAYED, &bnad->run_flags))
947                 mdelay(BNAD_TXRX_SYNC_MDELAY);
948 }
949
950 static void
951 bnad_cb_rx_post(struct bnad *bnad, struct bna_rcb *rcb)
952 {
953         struct bnad_unmap_q *unmap_q = rcb->unmap_q;
954
955         clear_bit(BNAD_RF_RX_SHUTDOWN_DELAYED, &bnad->run_flags);
956
957         if (rcb == rcb->cq->ccb->rcb[0])
958                 bnad_cq_cmpl_init(bnad, rcb->cq->ccb);
959
960         bnad_free_all_rxbufs(bnad, rcb);
961
962         set_bit(BNAD_RXQ_STARTED, &rcb->flags);
963
964         /* Now allocate & post buffers for this RCB */
965         /* !!Allocation in callback context */
966         if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
967                 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
968                          >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
969                         bnad_alloc_n_post_rxbufs(bnad, rcb);
970                 smp_mb__before_clear_bit();
971                 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
972         }
973 }
974
975 static void
976 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx,
977                         enum bna_cb_status status)
978 {
979         struct bnad *bnad = (struct bnad *)arg;
980
981         complete(&bnad->bnad_completions.rx_comp);
982 }
983
984 static void
985 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx,
986                                 enum bna_cb_status status)
987 {
988         bnad->bnad_completions.mcast_comp_status = status;
989         complete(&bnad->bnad_completions.mcast_comp);
990 }
991
992 void
993 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
994                        struct bna_stats *stats)
995 {
996         if (status == BNA_CB_SUCCESS)
997                 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
998
999         if (!netif_running(bnad->netdev) ||
1000                 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1001                 return;
1002
1003         mod_timer(&bnad->stats_timer,
1004                   jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1005 }
1006
1007 /* Resource allocation, free functions */
1008
1009 static void
1010 bnad_mem_free(struct bnad *bnad,
1011               struct bna_mem_info *mem_info)
1012 {
1013         int i;
1014         dma_addr_t dma_pa;
1015
1016         if (mem_info->mdl == NULL)
1017                 return;
1018
1019         for (i = 0; i < mem_info->num; i++) {
1020                 if (mem_info->mdl[i].kva != NULL) {
1021                         if (mem_info->mem_type == BNA_MEM_T_DMA) {
1022                                 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1023                                                 dma_pa);
1024                                 dma_free_coherent(&bnad->pcidev->dev,
1025                                                   mem_info->mdl[i].len,
1026                                                   mem_info->mdl[i].kva, dma_pa);
1027                         } else
1028                                 kfree(mem_info->mdl[i].kva);
1029                 }
1030         }
1031         kfree(mem_info->mdl);
1032         mem_info->mdl = NULL;
1033 }
1034
1035 static int
1036 bnad_mem_alloc(struct bnad *bnad,
1037                struct bna_mem_info *mem_info)
1038 {
1039         int i;
1040         dma_addr_t dma_pa;
1041
1042         if ((mem_info->num == 0) || (mem_info->len == 0)) {
1043                 mem_info->mdl = NULL;
1044                 return 0;
1045         }
1046
1047         mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1048                                 GFP_KERNEL);
1049         if (mem_info->mdl == NULL)
1050                 return -ENOMEM;
1051
1052         if (mem_info->mem_type == BNA_MEM_T_DMA) {
1053                 for (i = 0; i < mem_info->num; i++) {
1054                         mem_info->mdl[i].len = mem_info->len;
1055                         mem_info->mdl[i].kva =
1056                                 dma_alloc_coherent(&bnad->pcidev->dev,
1057                                                 mem_info->len, &dma_pa,
1058                                                 GFP_KERNEL);
1059
1060                         if (mem_info->mdl[i].kva == NULL)
1061                                 goto err_return;
1062
1063                         BNA_SET_DMA_ADDR(dma_pa,
1064                                          &(mem_info->mdl[i].dma));
1065                 }
1066         } else {
1067                 for (i = 0; i < mem_info->num; i++) {
1068                         mem_info->mdl[i].len = mem_info->len;
1069                         mem_info->mdl[i].kva = kzalloc(mem_info->len,
1070                                                         GFP_KERNEL);
1071                         if (mem_info->mdl[i].kva == NULL)
1072                                 goto err_return;
1073                 }
1074         }
1075
1076         return 0;
1077
1078 err_return:
1079         bnad_mem_free(bnad, mem_info);
1080         return -ENOMEM;
1081 }
1082
1083 /* Free IRQ for Mailbox */
1084 static void
1085 bnad_mbox_irq_free(struct bnad *bnad,
1086                    struct bna_intr_info *intr_info)
1087 {
1088         int irq;
1089         unsigned long flags;
1090
1091         if (intr_info->idl == NULL)
1092                 return;
1093
1094         spin_lock_irqsave(&bnad->bna_lock, flags);
1095         bnad_disable_mbox_irq(bnad);
1096         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1097
1098         irq = BNAD_GET_MBOX_IRQ(bnad);
1099         free_irq(irq, bnad);
1100
1101         kfree(intr_info->idl);
1102 }
1103
1104 /*
1105  * Allocates IRQ for Mailbox, but keep it disabled
1106  * This will be enabled once we get the mbox enable callback
1107  * from bna
1108  */
1109 static int
1110 bnad_mbox_irq_alloc(struct bnad *bnad,
1111                     struct bna_intr_info *intr_info)
1112 {
1113         int             err = 0;
1114         unsigned long   irq_flags = 0, flags;
1115         u32     irq;
1116         irq_handler_t   irq_handler;
1117
1118         /* Mbox should use only 1 vector */
1119
1120         intr_info->idl = kzalloc(sizeof(*(intr_info->idl)), GFP_KERNEL);
1121         if (!intr_info->idl)
1122                 return -ENOMEM;
1123
1124         spin_lock_irqsave(&bnad->bna_lock, flags);
1125         if (bnad->cfg_flags & BNAD_CF_MSIX) {
1126                 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1127                 irq = bnad->msix_table[bnad->msix_num - 1].vector;
1128                 intr_info->intr_type = BNA_INTR_T_MSIX;
1129                 intr_info->idl[0].vector = bnad->msix_num - 1;
1130         } else {
1131                 irq_handler = (irq_handler_t)bnad_isr;
1132                 irq = bnad->pcidev->irq;
1133                 irq_flags = IRQF_SHARED;
1134                 intr_info->intr_type = BNA_INTR_T_INTX;
1135                 /* intr_info->idl.vector = 0 ? */
1136         }
1137         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1138         flags = irq_flags;
1139         sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1140
1141         /*
1142          * Set the Mbox IRQ disable flag, so that the IRQ handler
1143          * called from request_irq() for SHARED IRQs do not execute
1144          */
1145         set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1146
1147         BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1148
1149         err = request_irq(irq, irq_handler, flags,
1150                           bnad->mbox_irq_name, bnad);
1151
1152         if (err) {
1153                 kfree(intr_info->idl);
1154                 intr_info->idl = NULL;
1155         }
1156
1157         return err;
1158 }
1159
1160 static void
1161 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1162 {
1163         kfree(intr_info->idl);
1164         intr_info->idl = NULL;
1165 }
1166
1167 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1168 static int
1169 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1170                     uint txrx_id, struct bna_intr_info *intr_info)
1171 {
1172         int i, vector_start = 0;
1173         u32 cfg_flags;
1174         unsigned long flags;
1175
1176         spin_lock_irqsave(&bnad->bna_lock, flags);
1177         cfg_flags = bnad->cfg_flags;
1178         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1179
1180         if (cfg_flags & BNAD_CF_MSIX) {
1181                 intr_info->intr_type = BNA_INTR_T_MSIX;
1182                 intr_info->idl = kcalloc(intr_info->num,
1183                                         sizeof(struct bna_intr_descr),
1184                                         GFP_KERNEL);
1185                 if (!intr_info->idl)
1186                         return -ENOMEM;
1187
1188                 switch (src) {
1189                 case BNAD_INTR_TX:
1190                         vector_start = txrx_id;
1191                         break;
1192
1193                 case BNAD_INTR_RX:
1194                         vector_start = bnad->num_tx * bnad->num_txq_per_tx +
1195                                         txrx_id;
1196                         break;
1197
1198                 default:
1199                         BUG();
1200                 }
1201
1202                 for (i = 0; i < intr_info->num; i++)
1203                         intr_info->idl[i].vector = vector_start + i;
1204         } else {
1205                 intr_info->intr_type = BNA_INTR_T_INTX;
1206                 intr_info->num = 1;
1207                 intr_info->idl = kcalloc(intr_info->num,
1208                                         sizeof(struct bna_intr_descr),
1209                                         GFP_KERNEL);
1210                 if (!intr_info->idl)
1211                         return -ENOMEM;
1212
1213                 switch (src) {
1214                 case BNAD_INTR_TX:
1215                         intr_info->idl[0].vector = 0x1; /* Bit mask : Tx IB */
1216                         break;
1217
1218                 case BNAD_INTR_RX:
1219                         intr_info->idl[0].vector = 0x2; /* Bit mask : Rx IB */
1220                         break;
1221                 }
1222         }
1223         return 0;
1224 }
1225
1226 /**
1227  * NOTE: Should be called for MSIX only
1228  * Unregisters Tx MSIX vector(s) from the kernel
1229  */
1230 static void
1231 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1232                         int num_txqs)
1233 {
1234         int i;
1235         int vector_num;
1236
1237         for (i = 0; i < num_txqs; i++) {
1238                 if (tx_info->tcb[i] == NULL)
1239                         continue;
1240
1241                 vector_num = tx_info->tcb[i]->intr_vector;
1242                 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1243         }
1244 }
1245
1246 /**
1247  * NOTE: Should be called for MSIX only
1248  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1249  */
1250 static int
1251 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1252                         uint tx_id, int num_txqs)
1253 {
1254         int i;
1255         int err;
1256         int vector_num;
1257
1258         for (i = 0; i < num_txqs; i++) {
1259                 vector_num = tx_info->tcb[i]->intr_vector;
1260                 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1261                                 tx_id + tx_info->tcb[i]->id);
1262                 err = request_irq(bnad->msix_table[vector_num].vector,
1263                                   (irq_handler_t)bnad_msix_tx, 0,
1264                                   tx_info->tcb[i]->name,
1265                                   tx_info->tcb[i]);
1266                 if (err)
1267                         goto err_return;
1268         }
1269
1270         return 0;
1271
1272 err_return:
1273         if (i > 0)
1274                 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1275         return -1;
1276 }
1277
1278 /**
1279  * NOTE: Should be called for MSIX only
1280  * Unregisters Rx MSIX vector(s) from the kernel
1281  */
1282 static void
1283 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1284                         int num_rxps)
1285 {
1286         int i;
1287         int vector_num;
1288
1289         for (i = 0; i < num_rxps; i++) {
1290                 if (rx_info->rx_ctrl[i].ccb == NULL)
1291                         continue;
1292
1293                 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1294                 free_irq(bnad->msix_table[vector_num].vector,
1295                          rx_info->rx_ctrl[i].ccb);
1296         }
1297 }
1298
1299 /**
1300  * NOTE: Should be called for MSIX only
1301  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1302  */
1303 static int
1304 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1305                         uint rx_id, int num_rxps)
1306 {
1307         int i;
1308         int err;
1309         int vector_num;
1310
1311         for (i = 0; i < num_rxps; i++) {
1312                 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1313                 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1314                         bnad->netdev->name,
1315                         rx_id + rx_info->rx_ctrl[i].ccb->id);
1316                 err = request_irq(bnad->msix_table[vector_num].vector,
1317                                   (irq_handler_t)bnad_msix_rx, 0,
1318                                   rx_info->rx_ctrl[i].ccb->name,
1319                                   rx_info->rx_ctrl[i].ccb);
1320                 if (err)
1321                         goto err_return;
1322         }
1323
1324         return 0;
1325
1326 err_return:
1327         if (i > 0)
1328                 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1329         return -1;
1330 }
1331
1332 /* Free Tx object Resources */
1333 static void
1334 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1335 {
1336         int i;
1337
1338         for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1339                 if (res_info[i].res_type == BNA_RES_T_MEM)
1340                         bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1341                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1342                         bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1343         }
1344 }
1345
1346 /* Allocates memory and interrupt resources for Tx object */
1347 static int
1348 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1349                   uint tx_id)
1350 {
1351         int i, err = 0;
1352
1353         for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1354                 if (res_info[i].res_type == BNA_RES_T_MEM)
1355                         err = bnad_mem_alloc(bnad,
1356                                         &res_info[i].res_u.mem_info);
1357                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1358                         err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1359                                         &res_info[i].res_u.intr_info);
1360                 if (err)
1361                         goto err_return;
1362         }
1363         return 0;
1364
1365 err_return:
1366         bnad_tx_res_free(bnad, res_info);
1367         return err;
1368 }
1369
1370 /* Free Rx object Resources */
1371 static void
1372 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1373 {
1374         int i;
1375
1376         for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1377                 if (res_info[i].res_type == BNA_RES_T_MEM)
1378                         bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1379                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1380                         bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1381         }
1382 }
1383
1384 /* Allocates memory and interrupt resources for Rx object */
1385 static int
1386 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1387                   uint rx_id)
1388 {
1389         int i, err = 0;
1390
1391         /* All memory needs to be allocated before setup_ccbs */
1392         for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1393                 if (res_info[i].res_type == BNA_RES_T_MEM)
1394                         err = bnad_mem_alloc(bnad,
1395                                         &res_info[i].res_u.mem_info);
1396                 else if (res_info[i].res_type == BNA_RES_T_INTR)
1397                         err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1398                                         &res_info[i].res_u.intr_info);
1399                 if (err)
1400                         goto err_return;
1401         }
1402         return 0;
1403
1404 err_return:
1405         bnad_rx_res_free(bnad, res_info);
1406         return err;
1407 }
1408
1409 /* Timer callbacks */
1410 /* a) IOC timer */
1411 static void
1412 bnad_ioc_timeout(unsigned long data)
1413 {
1414         struct bnad *bnad = (struct bnad *)data;
1415         unsigned long flags;
1416
1417         spin_lock_irqsave(&bnad->bna_lock, flags);
1418         bfa_nw_ioc_timeout((void *) &bnad->bna.device.ioc);
1419         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1420 }
1421
1422 static void
1423 bnad_ioc_hb_check(unsigned long data)
1424 {
1425         struct bnad *bnad = (struct bnad *)data;
1426         unsigned long flags;
1427
1428         spin_lock_irqsave(&bnad->bna_lock, flags);
1429         bfa_nw_ioc_hb_check((void *) &bnad->bna.device.ioc);
1430         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1431 }
1432
1433 static void
1434 bnad_iocpf_timeout(unsigned long data)
1435 {
1436         struct bnad *bnad = (struct bnad *)data;
1437         unsigned long flags;
1438
1439         spin_lock_irqsave(&bnad->bna_lock, flags);
1440         bfa_nw_iocpf_timeout((void *) &bnad->bna.device.ioc);
1441         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1442 }
1443
1444 static void
1445 bnad_iocpf_sem_timeout(unsigned long data)
1446 {
1447         struct bnad *bnad = (struct bnad *)data;
1448         unsigned long flags;
1449
1450         spin_lock_irqsave(&bnad->bna_lock, flags);
1451         bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.device.ioc);
1452         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1453 }
1454
1455 /*
1456  * All timer routines use bnad->bna_lock to protect against
1457  * the following race, which may occur in case of no locking:
1458  *      Time    CPU m           CPU n
1459  *      0       1 = test_bit
1460  *      1                       clear_bit
1461  *      2                       del_timer_sync
1462  *      3       mod_timer
1463  */
1464
1465 /* b) Dynamic Interrupt Moderation Timer */
1466 static void
1467 bnad_dim_timeout(unsigned long data)
1468 {
1469         struct bnad *bnad = (struct bnad *)data;
1470         struct bnad_rx_info *rx_info;
1471         struct bnad_rx_ctrl *rx_ctrl;
1472         int i, j;
1473         unsigned long flags;
1474
1475         if (!netif_carrier_ok(bnad->netdev))
1476                 return;
1477
1478         spin_lock_irqsave(&bnad->bna_lock, flags);
1479         for (i = 0; i < bnad->num_rx; i++) {
1480                 rx_info = &bnad->rx_info[i];
1481                 if (!rx_info->rx)
1482                         continue;
1483                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1484                         rx_ctrl = &rx_info->rx_ctrl[j];
1485                         if (!rx_ctrl->ccb)
1486                                 continue;
1487                         bna_rx_dim_update(rx_ctrl->ccb);
1488                 }
1489         }
1490
1491         /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1492         if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1493                 mod_timer(&bnad->dim_timer,
1494                           jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1495         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1496 }
1497
1498 /* c)  Statistics Timer */
1499 static void
1500 bnad_stats_timeout(unsigned long data)
1501 {
1502         struct bnad *bnad = (struct bnad *)data;
1503         unsigned long flags;
1504
1505         if (!netif_running(bnad->netdev) ||
1506                 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1507                 return;
1508
1509         spin_lock_irqsave(&bnad->bna_lock, flags);
1510         bna_stats_get(&bnad->bna);
1511         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1512 }
1513
1514 /*
1515  * Set up timer for DIM
1516  * Called with bnad->bna_lock held
1517  */
1518 void
1519 bnad_dim_timer_start(struct bnad *bnad)
1520 {
1521         if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1522             !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1523                 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1524                             (unsigned long)bnad);
1525                 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1526                 mod_timer(&bnad->dim_timer,
1527                           jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1528         }
1529 }
1530
1531 /*
1532  * Set up timer for statistics
1533  * Called with mutex_lock(&bnad->conf_mutex) held
1534  */
1535 static void
1536 bnad_stats_timer_start(struct bnad *bnad)
1537 {
1538         unsigned long flags;
1539
1540         spin_lock_irqsave(&bnad->bna_lock, flags);
1541         if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1542                 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1543                             (unsigned long)bnad);
1544                 mod_timer(&bnad->stats_timer,
1545                           jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1546         }
1547         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1548 }
1549
1550 /*
1551  * Stops the stats timer
1552  * Called with mutex_lock(&bnad->conf_mutex) held
1553  */
1554 static void
1555 bnad_stats_timer_stop(struct bnad *bnad)
1556 {
1557         int to_del = 0;
1558         unsigned long flags;
1559
1560         spin_lock_irqsave(&bnad->bna_lock, flags);
1561         if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1562                 to_del = 1;
1563         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1564         if (to_del)
1565                 del_timer_sync(&bnad->stats_timer);
1566 }
1567
1568 /* Utilities */
1569
1570 static void
1571 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1572 {
1573         int i = 1; /* Index 0 has broadcast address */
1574         struct netdev_hw_addr *mc_addr;
1575
1576         netdev_for_each_mc_addr(mc_addr, netdev) {
1577                 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1578                                                         ETH_ALEN);
1579                 i++;
1580         }
1581 }
1582
1583 static int
1584 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1585 {
1586         struct bnad_rx_ctrl *rx_ctrl =
1587                 container_of(napi, struct bnad_rx_ctrl, napi);
1588         struct bna_ccb *ccb;
1589         struct bnad *bnad;
1590         int rcvd = 0;
1591
1592         ccb = rx_ctrl->ccb;
1593
1594         bnad = ccb->bnad;
1595
1596         if (!netif_carrier_ok(bnad->netdev))
1597                 goto poll_exit;
1598
1599         rcvd = bnad_poll_cq(bnad, ccb, budget);
1600         if (rcvd == budget)
1601                 return rcvd;
1602
1603 poll_exit:
1604         napi_complete((napi));
1605
1606         BNAD_UPDATE_CTR(bnad, netif_rx_complete);
1607
1608         bnad_enable_rx_irq(bnad, ccb);
1609         return rcvd;
1610 }
1611
1612 static void
1613 bnad_napi_enable(struct bnad *bnad, u32 rx_id)
1614 {
1615         struct bnad_rx_ctrl *rx_ctrl;
1616         int i;
1617
1618         /* Initialize & enable NAPI */
1619         for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1620                 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1621
1622                 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1623                                bnad_napi_poll_rx, 64);
1624
1625                 napi_enable(&rx_ctrl->napi);
1626         }
1627 }
1628
1629 static void
1630 bnad_napi_disable(struct bnad *bnad, u32 rx_id)
1631 {
1632         int i;
1633
1634         /* First disable and then clean up */
1635         for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1636                 napi_disable(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1637                 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1638         }
1639 }
1640
1641 /* Should be held with conf_lock held */
1642 void
1643 bnad_cleanup_tx(struct bnad *bnad, uint tx_id)
1644 {
1645         struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1646         struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1647         unsigned long flags;
1648
1649         if (!tx_info->tx)
1650                 return;
1651
1652         init_completion(&bnad->bnad_completions.tx_comp);
1653         spin_lock_irqsave(&bnad->bna_lock, flags);
1654         bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1655         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1656         wait_for_completion(&bnad->bnad_completions.tx_comp);
1657
1658         if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1659                 bnad_tx_msix_unregister(bnad, tx_info,
1660                         bnad->num_txq_per_tx);
1661
1662         spin_lock_irqsave(&bnad->bna_lock, flags);
1663         bna_tx_destroy(tx_info->tx);
1664         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1665
1666         tx_info->tx = NULL;
1667
1668         if (0 == tx_id)
1669                 tasklet_kill(&bnad->tx_free_tasklet);
1670
1671         bnad_tx_res_free(bnad, res_info);
1672 }
1673
1674 /* Should be held with conf_lock held */
1675 int
1676 bnad_setup_tx(struct bnad *bnad, uint tx_id)
1677 {
1678         int err;
1679         struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1680         struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1681         struct bna_intr_info *intr_info =
1682                         &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1683         struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1684         struct bna_tx_event_cbfn tx_cbfn;
1685         struct bna_tx *tx;
1686         unsigned long flags;
1687
1688         /* Initialize the Tx object configuration */
1689         tx_config->num_txq = bnad->num_txq_per_tx;
1690         tx_config->txq_depth = bnad->txq_depth;
1691         tx_config->tx_type = BNA_TX_T_REGULAR;
1692
1693         /* Initialize the tx event handlers */
1694         tx_cbfn.tcb_setup_cbfn = bnad_cb_tcb_setup;
1695         tx_cbfn.tcb_destroy_cbfn = bnad_cb_tcb_destroy;
1696         tx_cbfn.tx_stall_cbfn = bnad_cb_tx_stall;
1697         tx_cbfn.tx_resume_cbfn = bnad_cb_tx_resume;
1698         tx_cbfn.tx_cleanup_cbfn = bnad_cb_tx_cleanup;
1699
1700         /* Get BNA's resource requirement for one tx object */
1701         spin_lock_irqsave(&bnad->bna_lock, flags);
1702         bna_tx_res_req(bnad->num_txq_per_tx,
1703                 bnad->txq_depth, res_info);
1704         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1705
1706         /* Fill Unmap Q memory requirements */
1707         BNAD_FILL_UNMAPQ_MEM_REQ(
1708                         &res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1709                         bnad->num_txq_per_tx,
1710                         BNAD_TX_UNMAPQ_DEPTH);
1711
1712         /* Allocate resources */
1713         err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1714         if (err)
1715                 return err;
1716
1717         /* Ask BNA to create one Tx object, supplying required resources */
1718         spin_lock_irqsave(&bnad->bna_lock, flags);
1719         tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1720                         tx_info);
1721         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1722         if (!tx)
1723                 goto err_return;
1724         tx_info->tx = tx;
1725
1726         /* Register ISR for the Tx object */
1727         if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1728                 err = bnad_tx_msix_register(bnad, tx_info,
1729                         tx_id, bnad->num_txq_per_tx);
1730                 if (err)
1731                         goto err_return;
1732         }
1733
1734         spin_lock_irqsave(&bnad->bna_lock, flags);
1735         bna_tx_enable(tx);
1736         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1737
1738         return 0;
1739
1740 err_return:
1741         bnad_tx_res_free(bnad, res_info);
1742         return err;
1743 }
1744
1745 /* Setup the rx config for bna_rx_create */
1746 /* bnad decides the configuration */
1747 static void
1748 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1749 {
1750         rx_config->rx_type = BNA_RX_T_REGULAR;
1751         rx_config->num_paths = bnad->num_rxp_per_rx;
1752
1753         if (bnad->num_rxp_per_rx > 1) {
1754                 rx_config->rss_status = BNA_STATUS_T_ENABLED;
1755                 rx_config->rss_config.hash_type =
1756                                 (BFI_RSS_T_V4_TCP |
1757                                  BFI_RSS_T_V6_TCP |
1758                                  BFI_RSS_T_V4_IP  |
1759                                  BFI_RSS_T_V6_IP);
1760                 rx_config->rss_config.hash_mask =
1761                                 bnad->num_rxp_per_rx - 1;
1762                 get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1763                         sizeof(rx_config->rss_config.toeplitz_hash_key));
1764         } else {
1765                 rx_config->rss_status = BNA_STATUS_T_DISABLED;
1766                 memset(&rx_config->rss_config, 0,
1767                        sizeof(rx_config->rss_config));
1768         }
1769         rx_config->rxp_type = BNA_RXP_SLR;
1770         rx_config->q_depth = bnad->rxq_depth;
1771
1772         rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1773
1774         rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1775 }
1776
1777 /* Called with mutex_lock(&bnad->conf_mutex) held */
1778 void
1779 bnad_cleanup_rx(struct bnad *bnad, uint rx_id)
1780 {
1781         struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1782         struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1783         struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1784         unsigned long flags;
1785         int dim_timer_del = 0;
1786
1787         if (!rx_info->rx)
1788                 return;
1789
1790         if (0 == rx_id) {
1791                 spin_lock_irqsave(&bnad->bna_lock, flags);
1792                 dim_timer_del = bnad_dim_timer_running(bnad);
1793                 if (dim_timer_del)
1794                         clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1795                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1796                 if (dim_timer_del)
1797                         del_timer_sync(&bnad->dim_timer);
1798         }
1799
1800         bnad_napi_disable(bnad, rx_id);
1801
1802         init_completion(&bnad->bnad_completions.rx_comp);
1803         spin_lock_irqsave(&bnad->bna_lock, flags);
1804         bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
1805         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1806         wait_for_completion(&bnad->bnad_completions.rx_comp);
1807
1808         if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
1809                 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
1810
1811         spin_lock_irqsave(&bnad->bna_lock, flags);
1812         bna_rx_destroy(rx_info->rx);
1813         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1814
1815         rx_info->rx = NULL;
1816
1817         bnad_rx_res_free(bnad, res_info);
1818 }
1819
1820 /* Called with mutex_lock(&bnad->conf_mutex) held */
1821 int
1822 bnad_setup_rx(struct bnad *bnad, uint rx_id)
1823 {
1824         int err;
1825         struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1826         struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1827         struct bna_intr_info *intr_info =
1828                         &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
1829         struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1830         struct bna_rx_event_cbfn rx_cbfn;
1831         struct bna_rx *rx;
1832         unsigned long flags;
1833
1834         /* Initialize the Rx object configuration */
1835         bnad_init_rx_config(bnad, rx_config);
1836
1837         /* Initialize the Rx event handlers */
1838         rx_cbfn.rcb_setup_cbfn = bnad_cb_rcb_setup;
1839         rx_cbfn.rcb_destroy_cbfn = bnad_cb_rcb_destroy;
1840         rx_cbfn.ccb_setup_cbfn = bnad_cb_ccb_setup;
1841         rx_cbfn.ccb_destroy_cbfn = bnad_cb_ccb_destroy;
1842         rx_cbfn.rx_cleanup_cbfn = bnad_cb_rx_cleanup;
1843         rx_cbfn.rx_post_cbfn = bnad_cb_rx_post;
1844
1845         /* Get BNA's resource requirement for one Rx object */
1846         spin_lock_irqsave(&bnad->bna_lock, flags);
1847         bna_rx_res_req(rx_config, res_info);
1848         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1849
1850         /* Fill Unmap Q memory requirements */
1851         BNAD_FILL_UNMAPQ_MEM_REQ(
1852                         &res_info[BNA_RX_RES_MEM_T_UNMAPQ],
1853                         rx_config->num_paths +
1854                         ((rx_config->rxp_type == BNA_RXP_SINGLE) ? 0 :
1855                                 rx_config->num_paths), BNAD_RX_UNMAPQ_DEPTH);
1856
1857         /* Allocate resource */
1858         err = bnad_rx_res_alloc(bnad, res_info, rx_id);
1859         if (err)
1860                 return err;
1861
1862         /* Ask BNA to create one Rx object, supplying required resources */
1863         spin_lock_irqsave(&bnad->bna_lock, flags);
1864         rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
1865                         rx_info);
1866         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1867         if (!rx)
1868                 goto err_return;
1869         rx_info->rx = rx;
1870
1871         /* Register ISR for the Rx object */
1872         if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1873                 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
1874                                                 rx_config->num_paths);
1875                 if (err)
1876                         goto err_return;
1877         }
1878
1879         /* Enable NAPI */
1880         bnad_napi_enable(bnad, rx_id);
1881
1882         spin_lock_irqsave(&bnad->bna_lock, flags);
1883         if (0 == rx_id) {
1884                 /* Set up Dynamic Interrupt Moderation Vector */
1885                 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
1886                         bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
1887
1888                 /* Enable VLAN filtering only on the default Rx */
1889                 bna_rx_vlanfilter_enable(rx);
1890
1891                 /* Start the DIM timer */
1892                 bnad_dim_timer_start(bnad);
1893         }
1894
1895         bna_rx_enable(rx);
1896         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1897
1898         return 0;
1899
1900 err_return:
1901         bnad_cleanup_rx(bnad, rx_id);
1902         return err;
1903 }
1904
1905 /* Called with conf_lock & bnad->bna_lock held */
1906 void
1907 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
1908 {
1909         struct bnad_tx_info *tx_info;
1910
1911         tx_info = &bnad->tx_info[0];
1912         if (!tx_info->tx)
1913                 return;
1914
1915         bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
1916 }
1917
1918 /* Called with conf_lock & bnad->bna_lock held */
1919 void
1920 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
1921 {
1922         struct bnad_rx_info *rx_info;
1923         int     i;
1924
1925         for (i = 0; i < bnad->num_rx; i++) {
1926                 rx_info = &bnad->rx_info[i];
1927                 if (!rx_info->rx)
1928                         continue;
1929                 bna_rx_coalescing_timeo_set(rx_info->rx,
1930                                 bnad->rx_coalescing_timeo);
1931         }
1932 }
1933
1934 /*
1935  * Called with bnad->bna_lock held
1936  */
1937 static int
1938 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
1939 {
1940         int ret;
1941
1942         if (!is_valid_ether_addr(mac_addr))
1943                 return -EADDRNOTAVAIL;
1944
1945         /* If datapath is down, pretend everything went through */
1946         if (!bnad->rx_info[0].rx)
1947                 return 0;
1948
1949         ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
1950         if (ret != BNA_CB_SUCCESS)
1951                 return -EADDRNOTAVAIL;
1952
1953         return 0;
1954 }
1955
1956 /* Should be called with conf_lock held */
1957 static int
1958 bnad_enable_default_bcast(struct bnad *bnad)
1959 {
1960         struct bnad_rx_info *rx_info = &bnad->rx_info[0];
1961         int ret;
1962         unsigned long flags;
1963
1964         init_completion(&bnad->bnad_completions.mcast_comp);
1965
1966         spin_lock_irqsave(&bnad->bna_lock, flags);
1967         ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
1968                                 bnad_cb_rx_mcast_add);
1969         spin_unlock_irqrestore(&bnad->bna_lock, flags);
1970
1971         if (ret == BNA_CB_SUCCESS)
1972                 wait_for_completion(&bnad->bnad_completions.mcast_comp);
1973         else
1974                 return -ENODEV;
1975
1976         if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
1977                 return -ENODEV;
1978
1979         return 0;
1980 }
1981
1982 /* Called with bnad_conf_lock() held */
1983 static void
1984 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
1985 {
1986         u16 vlan_id;
1987         unsigned long flags;
1988
1989         if (!bnad->vlan_grp)
1990                 return;
1991
1992         BUG_ON(!(VLAN_N_VID == (BFI_MAX_VLAN + 1)));
1993
1994         for (vlan_id = 0; vlan_id < VLAN_N_VID; vlan_id++) {
1995                 if (!vlan_group_get_device(bnad->vlan_grp, vlan_id))
1996                         continue;
1997                 spin_lock_irqsave(&bnad->bna_lock, flags);
1998                 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vlan_id);
1999                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2000         }
2001 }
2002
2003 /* Statistics utilities */
2004 void
2005 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2006 {
2007         int i, j;
2008
2009         for (i = 0; i < bnad->num_rx; i++) {
2010                 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2011                         if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2012                                 stats->rx_packets += bnad->rx_info[i].
2013                                 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2014                                 stats->rx_bytes += bnad->rx_info[i].
2015                                         rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2016                                 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2017                                         bnad->rx_info[i].rx_ctrl[j].ccb->
2018                                         rcb[1]->rxq) {
2019                                         stats->rx_packets +=
2020                                                 bnad->rx_info[i].rx_ctrl[j].
2021                                                 ccb->rcb[1]->rxq->rx_packets;
2022                                         stats->rx_bytes +=
2023                                                 bnad->rx_info[i].rx_ctrl[j].
2024                                                 ccb->rcb[1]->rxq->rx_bytes;
2025                                 }
2026                         }
2027                 }
2028         }
2029         for (i = 0; i < bnad->num_tx; i++) {
2030                 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2031                         if (bnad->tx_info[i].tcb[j]) {
2032                                 stats->tx_packets +=
2033                                 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2034                                 stats->tx_bytes +=
2035                                         bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2036                         }
2037                 }
2038         }
2039 }
2040
2041 /*
2042  * Must be called with the bna_lock held.
2043  */
2044 void
2045 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2046 {
2047         struct bfi_ll_stats_mac *mac_stats;
2048         u64 bmap;
2049         int i;
2050
2051         mac_stats = &bnad->stats.bna_stats->hw_stats->mac_stats;
2052         stats->rx_errors =
2053                 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2054                 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2055                 mac_stats->rx_undersize;
2056         stats->tx_errors = mac_stats->tx_fcs_error +
2057                                         mac_stats->tx_undersize;
2058         stats->rx_dropped = mac_stats->rx_drop;
2059         stats->tx_dropped = mac_stats->tx_drop;
2060         stats->multicast = mac_stats->rx_multicast;
2061         stats->collisions = mac_stats->tx_total_collision;
2062
2063         stats->rx_length_errors = mac_stats->rx_frame_length_error;
2064
2065         /* receive ring buffer overflow  ?? */
2066
2067         stats->rx_crc_errors = mac_stats->rx_fcs_error;
2068         stats->rx_frame_errors = mac_stats->rx_alignment_error;
2069         /* recv'r fifo overrun */
2070         bmap = (u64)bnad->stats.bna_stats->rxf_bmap[0] |
2071                 ((u64)bnad->stats.bna_stats->rxf_bmap[1] << 32);
2072         for (i = 0; bmap && (i < BFI_LL_RXF_ID_MAX); i++) {
2073                 if (bmap & 1) {
2074                         stats->rx_fifo_errors +=
2075                                 bnad->stats.bna_stats->
2076                                         hw_stats->rxf_stats[i].frame_drops;
2077                         break;
2078                 }
2079                 bmap >>= 1;
2080         }
2081 }
2082
2083 static void
2084 bnad_mbox_irq_sync(struct bnad *bnad)
2085 {
2086         u32 irq;
2087         unsigned long flags;
2088
2089         spin_lock_irqsave(&bnad->bna_lock, flags);
2090         if (bnad->cfg_flags & BNAD_CF_MSIX)
2091                 irq = bnad->msix_table[bnad->msix_num - 1].vector;
2092         else
2093                 irq = bnad->pcidev->irq;
2094         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2095
2096         synchronize_irq(irq);
2097 }
2098
2099 /* Utility used by bnad_start_xmit, for doing TSO */
2100 static int
2101 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2102 {
2103         int err;
2104
2105         /* SKB_GSO_TCPV4 and SKB_GSO_TCPV6 is defined since 2.6.18. */
2106         BUG_ON(!(skb_shinfo(skb)->gso_type == SKB_GSO_TCPV4 ||
2107                    skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6));
2108         if (skb_header_cloned(skb)) {
2109                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2110                 if (err) {
2111                         BNAD_UPDATE_CTR(bnad, tso_err);
2112                         return err;
2113                 }
2114         }
2115
2116         /*
2117          * For TSO, the TCP checksum field is seeded with pseudo-header sum
2118          * excluding the length field.
2119          */
2120         if (skb->protocol == htons(ETH_P_IP)) {
2121                 struct iphdr *iph = ip_hdr(skb);
2122
2123                 /* Do we really need these? */
2124                 iph->tot_len = 0;
2125                 iph->check = 0;
2126
2127                 tcp_hdr(skb)->check =
2128                         ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2129                                            IPPROTO_TCP, 0);
2130                 BNAD_UPDATE_CTR(bnad, tso4);
2131         } else {
2132                 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2133
2134                 BUG_ON(!(skb->protocol == htons(ETH_P_IPV6)));
2135                 ipv6h->payload_len = 0;
2136                 tcp_hdr(skb)->check =
2137                         ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2138                                          IPPROTO_TCP, 0);
2139                 BNAD_UPDATE_CTR(bnad, tso6);
2140         }
2141
2142         return 0;
2143 }
2144
2145 /*
2146  * Initialize Q numbers depending on Rx Paths
2147  * Called with bnad->bna_lock held, because of cfg_flags
2148  * access.
2149  */
2150 static void
2151 bnad_q_num_init(struct bnad *bnad)
2152 {
2153         int rxps;
2154
2155         rxps = min((uint)num_online_cpus(),
2156                         (uint)(BNAD_MAX_RXS * BNAD_MAX_RXPS_PER_RX));
2157
2158         if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2159                 rxps = 1;       /* INTx */
2160
2161         bnad->num_rx = 1;
2162         bnad->num_tx = 1;
2163         bnad->num_rxp_per_rx = rxps;
2164         bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2165 }
2166
2167 /*
2168  * Adjusts the Q numbers, given a number of msix vectors
2169  * Give preference to RSS as opposed to Tx priority Queues,
2170  * in such a case, just use 1 Tx Q
2171  * Called with bnad->bna_lock held b'cos of cfg_flags access
2172  */
2173 static void
2174 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors)
2175 {
2176         bnad->num_txq_per_tx = 1;
2177         if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2178              bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2179             (bnad->cfg_flags & BNAD_CF_MSIX)) {
2180                 bnad->num_rxp_per_rx = msix_vectors -
2181                         (bnad->num_tx * bnad->num_txq_per_tx) -
2182                         BNAD_MAILBOX_MSIX_VECTORS;
2183         } else
2184                 bnad->num_rxp_per_rx = 1;
2185 }
2186
2187 /* Enable / disable device */
2188 static void
2189 bnad_device_disable(struct bnad *bnad)
2190 {
2191         unsigned long flags;
2192
2193         init_completion(&bnad->bnad_completions.ioc_comp);
2194
2195         spin_lock_irqsave(&bnad->bna_lock, flags);
2196         bna_device_disable(&bnad->bna.device, BNA_HARD_CLEANUP);
2197         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2198
2199         wait_for_completion(&bnad->bnad_completions.ioc_comp);
2200 }
2201
2202 static int
2203 bnad_device_enable(struct bnad *bnad)
2204 {
2205         int err = 0;
2206         unsigned long flags;
2207
2208         init_completion(&bnad->bnad_completions.ioc_comp);
2209
2210         spin_lock_irqsave(&bnad->bna_lock, flags);
2211         bna_device_enable(&bnad->bna.device);
2212         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2213
2214         wait_for_completion(&bnad->bnad_completions.ioc_comp);
2215
2216         if (bnad->bnad_completions.ioc_comp_status)
2217                 err = bnad->bnad_completions.ioc_comp_status;
2218
2219         return err;
2220 }
2221
2222 /* Free BNA resources */
2223 static void
2224 bnad_res_free(struct bnad *bnad)
2225 {
2226         int i;
2227         struct bna_res_info *res_info = &bnad->res_info[0];
2228
2229         for (i = 0; i < BNA_RES_T_MAX; i++) {
2230                 if (res_info[i].res_type == BNA_RES_T_MEM)
2231                         bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2232                 else
2233                         bnad_mbox_irq_free(bnad, &res_info[i].res_u.intr_info);
2234         }
2235 }
2236
2237 /* Allocates memory and interrupt resources for BNA */
2238 static int
2239 bnad_res_alloc(struct bnad *bnad)
2240 {
2241         int i, err;
2242         struct bna_res_info *res_info = &bnad->res_info[0];
2243
2244         for (i = 0; i < BNA_RES_T_MAX; i++) {
2245                 if (res_info[i].res_type == BNA_RES_T_MEM)
2246                         err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2247                 else
2248                         err = bnad_mbox_irq_alloc(bnad,
2249                                                   &res_info[i].res_u.intr_info);
2250                 if (err)
2251                         goto err_return;
2252         }
2253         return 0;
2254
2255 err_return:
2256         bnad_res_free(bnad);
2257         return err;
2258 }
2259
2260 /* Interrupt enable / disable */
2261 static void
2262 bnad_enable_msix(struct bnad *bnad)
2263 {
2264         int i, ret;
2265         unsigned long flags;
2266
2267         spin_lock_irqsave(&bnad->bna_lock, flags);
2268         if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2269                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2270                 return;
2271         }
2272         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2273
2274         if (bnad->msix_table)
2275                 return;
2276
2277         bnad->msix_table =
2278                 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2279
2280         if (!bnad->msix_table)
2281                 goto intx_mode;
2282
2283         for (i = 0; i < bnad->msix_num; i++)
2284                 bnad->msix_table[i].entry = i;
2285
2286         ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2287         if (ret > 0) {
2288                 /* Not enough MSI-X vectors. */
2289
2290                 spin_lock_irqsave(&bnad->bna_lock, flags);
2291                 /* ret = #of vectors that we got */
2292                 bnad_q_num_adjust(bnad, ret);
2293                 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2294
2295                 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx)
2296                         + (bnad->num_rx
2297                         * bnad->num_rxp_per_rx) +
2298                          BNAD_MAILBOX_MSIX_VECTORS;
2299
2300                 /* Try once more with adjusted numbers */
2301                 /* If this fails, fall back to INTx */
2302                 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2303                                       bnad->msix_num);
2304                 if (ret)
2305                         goto intx_mode;
2306
2307         } else if (ret < 0)
2308                 goto intx_mode;
2309         return;
2310
2311 intx_mode:
2312
2313         kfree(bnad->msix_table);
2314         bnad->msix_table = NULL;
2315         bnad->msix_num = 0;
2316         spin_lock_irqsave(&bnad->bna_lock, flags);
2317         bnad->cfg_flags &= ~BNAD_CF_MSIX;
2318         bnad_q_num_init(bnad);
2319         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2320 }
2321
2322 static void
2323 bnad_disable_msix(struct bnad *bnad)
2324 {
2325         u32 cfg_flags;
2326         unsigned long flags;
2327
2328         spin_lock_irqsave(&bnad->bna_lock, flags);
2329         cfg_flags = bnad->cfg_flags;
2330         if (bnad->cfg_flags & BNAD_CF_MSIX)
2331                 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2332         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2333
2334         if (cfg_flags & BNAD_CF_MSIX) {
2335                 pci_disable_msix(bnad->pcidev);
2336                 kfree(bnad->msix_table);
2337                 bnad->msix_table = NULL;
2338         }
2339 }
2340
2341 /* Netdev entry points */
2342 static int
2343 bnad_open(struct net_device *netdev)
2344 {
2345         int err;
2346         struct bnad *bnad = netdev_priv(netdev);
2347         struct bna_pause_config pause_config;
2348         int mtu;
2349         unsigned long flags;
2350
2351         mutex_lock(&bnad->conf_mutex);
2352
2353         /* Tx */
2354         err = bnad_setup_tx(bnad, 0);
2355         if (err)
2356                 goto err_return;
2357
2358         /* Rx */
2359         err = bnad_setup_rx(bnad, 0);
2360         if (err)
2361                 goto cleanup_tx;
2362
2363         /* Port */
2364         pause_config.tx_pause = 0;
2365         pause_config.rx_pause = 0;
2366
2367         mtu = ETH_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2368
2369         spin_lock_irqsave(&bnad->bna_lock, flags);
2370         bna_port_mtu_set(&bnad->bna.port, mtu, NULL);
2371         bna_port_pause_config(&bnad->bna.port, &pause_config, NULL);
2372         bna_port_enable(&bnad->bna.port);
2373         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2374
2375         /* Enable broadcast */
2376         bnad_enable_default_bcast(bnad);
2377
2378         /* Restore VLANs, if any */
2379         bnad_restore_vlans(bnad, 0);
2380
2381         /* Set the UCAST address */
2382         spin_lock_irqsave(&bnad->bna_lock, flags);
2383         bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2384         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2385
2386         /* Start the stats timer */
2387         bnad_stats_timer_start(bnad);
2388
2389         mutex_unlock(&bnad->conf_mutex);
2390
2391         return 0;
2392
2393 cleanup_tx:
2394         bnad_cleanup_tx(bnad, 0);
2395
2396 err_return:
2397         mutex_unlock(&bnad->conf_mutex);
2398         return err;
2399 }
2400
2401 static int
2402 bnad_stop(struct net_device *netdev)
2403 {
2404         struct bnad *bnad = netdev_priv(netdev);
2405         unsigned long flags;
2406
2407         mutex_lock(&bnad->conf_mutex);
2408
2409         /* Stop the stats timer */
2410         bnad_stats_timer_stop(bnad);
2411
2412         init_completion(&bnad->bnad_completions.port_comp);
2413
2414         spin_lock_irqsave(&bnad->bna_lock, flags);
2415         bna_port_disable(&bnad->bna.port, BNA_HARD_CLEANUP,
2416                         bnad_cb_port_disabled);
2417         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2418
2419         wait_for_completion(&bnad->bnad_completions.port_comp);
2420
2421         bnad_cleanup_tx(bnad, 0);
2422         bnad_cleanup_rx(bnad, 0);
2423
2424         /* Synchronize mailbox IRQ */
2425         bnad_mbox_irq_sync(bnad);
2426
2427         mutex_unlock(&bnad->conf_mutex);
2428
2429         return 0;
2430 }
2431
2432 /* TX */
2433 /*
2434  * bnad_start_xmit : Netdev entry point for Transmit
2435  *                   Called under lock held by net_device
2436  */
2437 static netdev_tx_t
2438 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2439 {
2440         struct bnad *bnad = netdev_priv(netdev);
2441
2442         u16             txq_prod, vlan_tag = 0;
2443         u32             unmap_prod, wis, wis_used, wi_range;
2444         u32             vectors, vect_id, i, acked;
2445         u32             tx_id;
2446         int                     err;
2447
2448         struct bnad_tx_info *tx_info;
2449         struct bna_tcb *tcb;
2450         struct bnad_unmap_q *unmap_q;
2451         dma_addr_t              dma_addr;
2452         struct bna_txq_entry *txqent;
2453         bna_txq_wi_ctrl_flag_t  flags;
2454
2455         if (unlikely
2456             (skb->len <= ETH_HLEN || skb->len > BFI_TX_MAX_DATA_PER_PKT)) {
2457                 dev_kfree_skb(skb);
2458                 return NETDEV_TX_OK;
2459         }
2460
2461         tx_id = 0;
2462
2463         tx_info = &bnad->tx_info[tx_id];
2464         tcb = tx_info->tcb[tx_id];
2465         unmap_q = tcb->unmap_q;
2466
2467         /*
2468          * Takes care of the Tx that is scheduled between clearing the flag
2469          * and the netif_stop_queue() call.
2470          */
2471         if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2472                 dev_kfree_skb(skb);
2473                 return NETDEV_TX_OK;
2474         }
2475
2476         vectors = 1 + skb_shinfo(skb)->nr_frags;
2477         if (vectors > BFI_TX_MAX_VECTORS_PER_PKT) {
2478                 dev_kfree_skb(skb);
2479                 return NETDEV_TX_OK;
2480         }
2481         wis = BNA_TXQ_WI_NEEDED(vectors);       /* 4 vectors per work item */
2482         acked = 0;
2483         if (unlikely
2484             (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2485              vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2486                 if ((u16) (*tcb->hw_consumer_index) !=
2487                     tcb->consumer_index &&
2488                     !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2489                         acked = bnad_free_txbufs(bnad, tcb);
2490                         if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2491                                 bna_ib_ack(tcb->i_dbell, acked);
2492                         smp_mb__before_clear_bit();
2493                         clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2494                 } else {
2495                         netif_stop_queue(netdev);
2496                         BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2497                 }
2498
2499                 smp_mb();
2500                 /*
2501                  * Check again to deal with race condition between
2502                  * netif_stop_queue here, and netif_wake_queue in
2503                  * interrupt handler which is not inside netif tx lock.
2504                  */
2505                 if (likely
2506                     (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2507                      vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2508                         BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2509                         return NETDEV_TX_BUSY;
2510                 } else {
2511                         netif_wake_queue(netdev);
2512                         BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2513                 }
2514         }
2515
2516         unmap_prod = unmap_q->producer_index;
2517         wis_used = 1;
2518         vect_id = 0;
2519         flags = 0;
2520
2521         txq_prod = tcb->producer_index;
2522         BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt, txqent, wi_range);
2523         BUG_ON(!(wi_range <= tcb->q_depth));
2524         txqent->hdr.wi.reserved = 0;
2525         txqent->hdr.wi.num_vectors = vectors;
2526         txqent->hdr.wi.opcode =
2527                 htons((skb_is_gso(skb) ? BNA_TXQ_WI_SEND_LSO :
2528                        BNA_TXQ_WI_SEND));
2529
2530         if (vlan_tx_tag_present(skb)) {
2531                 vlan_tag = (u16) vlan_tx_tag_get(skb);
2532                 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2533         }
2534         if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2535                 vlan_tag =
2536                         (tcb->priority & 0x7) << 13 | (vlan_tag & 0x1fff);
2537                 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2538         }
2539
2540         txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2541
2542         if (skb_is_gso(skb)) {
2543                 err = bnad_tso_prepare(bnad, skb);
2544                 if (err) {
2545                         dev_kfree_skb(skb);
2546                         return NETDEV_TX_OK;
2547                 }
2548                 txqent->hdr.wi.lso_mss = htons(skb_is_gso(skb));
2549                 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2550                 txqent->hdr.wi.l4_hdr_size_n_offset =
2551                         htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2552                               (tcp_hdrlen(skb) >> 2,
2553                                skb_transport_offset(skb)));
2554         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2555                 u8 proto = 0;
2556
2557                 txqent->hdr.wi.lso_mss = 0;
2558
2559                 if (skb->protocol == htons(ETH_P_IP))
2560                         proto = ip_hdr(skb)->protocol;
2561                 else if (skb->protocol == htons(ETH_P_IPV6)) {
2562                         /* nexthdr may not be TCP immediately. */
2563                         proto = ipv6_hdr(skb)->nexthdr;
2564                 }
2565                 if (proto == IPPROTO_TCP) {
2566                         flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2567                         txqent->hdr.wi.l4_hdr_size_n_offset =
2568                                 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2569                                       (0, skb_transport_offset(skb)));
2570
2571                         BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2572
2573                         BUG_ON(!(skb_headlen(skb) >=
2574                                 skb_transport_offset(skb) + tcp_hdrlen(skb)));
2575
2576                 } else if (proto == IPPROTO_UDP) {
2577                         flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2578                         txqent->hdr.wi.l4_hdr_size_n_offset =
2579                                 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2580                                       (0, skb_transport_offset(skb)));
2581
2582                         BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2583
2584                         BUG_ON(!(skb_headlen(skb) >=
2585                                    skb_transport_offset(skb) +
2586                                    sizeof(struct udphdr)));
2587                 } else {
2588                         err = skb_checksum_help(skb);
2589                         BNAD_UPDATE_CTR(bnad, csum_help);
2590                         if (err) {
2591                                 dev_kfree_skb(skb);
2592                                 BNAD_UPDATE_CTR(bnad, csum_help_err);
2593                                 return NETDEV_TX_OK;
2594                         }
2595                 }
2596         } else {
2597                 txqent->hdr.wi.lso_mss = 0;
2598                 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2599         }
2600
2601         txqent->hdr.wi.flags = htons(flags);
2602
2603         txqent->hdr.wi.frame_length = htonl(skb->len);
2604
2605         unmap_q->unmap_array[unmap_prod].skb = skb;
2606         BUG_ON(!(skb_headlen(skb) <= BFI_TX_MAX_DATA_PER_VECTOR));
2607         txqent->vector[vect_id].length = htons(skb_headlen(skb));
2608         dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
2609                                   skb_headlen(skb), DMA_TO_DEVICE);
2610         dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2611                            dma_addr);
2612
2613         BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2614         BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2615
2616         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2617                 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2618                 u32             size = frag->size;
2619
2620                 if (++vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2621                         vect_id = 0;
2622                         if (--wi_range)
2623                                 txqent++;
2624                         else {
2625                                 BNA_QE_INDX_ADD(txq_prod, wis_used,
2626                                                 tcb->q_depth);
2627                                 wis_used = 0;
2628                                 BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt,
2629                                                      txqent, wi_range);
2630                                 BUG_ON(!(wi_range <= tcb->q_depth));
2631                         }
2632                         wis_used++;
2633                         txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
2634                 }
2635
2636                 BUG_ON(!(size <= BFI_TX_MAX_DATA_PER_VECTOR));
2637                 txqent->vector[vect_id].length = htons(size);
2638                 dma_addr = dma_map_page(&bnad->pcidev->dev, frag->page,
2639                                         frag->page_offset, size, DMA_TO_DEVICE);
2640                 dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2641                                    dma_addr);
2642                 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2643                 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2644         }
2645
2646         unmap_q->producer_index = unmap_prod;
2647         BNA_QE_INDX_ADD(txq_prod, wis_used, tcb->q_depth);
2648         tcb->producer_index = txq_prod;
2649
2650         smp_mb();
2651
2652         if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2653                 return NETDEV_TX_OK;
2654
2655         bna_txq_prod_indx_doorbell(tcb);
2656
2657         if ((u16) (*tcb->hw_consumer_index) != tcb->consumer_index)
2658                 tasklet_schedule(&bnad->tx_free_tasklet);
2659
2660         return NETDEV_TX_OK;
2661 }
2662
2663 /*
2664  * Used spin_lock to synchronize reading of stats structures, which
2665  * is written by BNA under the same lock.
2666  */
2667 static struct rtnl_link_stats64 *
2668 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2669 {
2670         struct bnad *bnad = netdev_priv(netdev);
2671         unsigned long flags;
2672
2673         spin_lock_irqsave(&bnad->bna_lock, flags);
2674
2675         bnad_netdev_qstats_fill(bnad, stats);
2676         bnad_netdev_hwstats_fill(bnad, stats);
2677
2678         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2679
2680         return stats;
2681 }
2682
2683 static void
2684 bnad_set_rx_mode(struct net_device *netdev)
2685 {
2686         struct bnad *bnad = netdev_priv(netdev);
2687         u32     new_mask, valid_mask;
2688         unsigned long flags;
2689
2690         spin_lock_irqsave(&bnad->bna_lock, flags);
2691
2692         new_mask = valid_mask = 0;
2693
2694         if (netdev->flags & IFF_PROMISC) {
2695                 if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2696                         new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2697                         valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2698                         bnad->cfg_flags |= BNAD_CF_PROMISC;
2699                 }
2700         } else {
2701                 if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2702                         new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2703                         valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2704                         bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2705                 }
2706         }
2707
2708         if (netdev->flags & IFF_ALLMULTI) {
2709                 if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2710                         new_mask |= BNA_RXMODE_ALLMULTI;
2711                         valid_mask |= BNA_RXMODE_ALLMULTI;
2712                         bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2713                 }
2714         } else {
2715                 if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2716                         new_mask &= ~BNA_RXMODE_ALLMULTI;
2717                         valid_mask |= BNA_RXMODE_ALLMULTI;
2718                         bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2719                 }
2720         }
2721
2722         bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2723
2724         if (!netdev_mc_empty(netdev)) {
2725                 u8 *mcaddr_list;
2726                 int mc_count = netdev_mc_count(netdev);
2727
2728                 /* Index 0 holds the broadcast address */
2729                 mcaddr_list =
2730                         kzalloc((mc_count + 1) * ETH_ALEN,
2731                                 GFP_ATOMIC);
2732                 if (!mcaddr_list)
2733                         goto unlock;
2734
2735                 memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2736
2737                 /* Copy rest of the MC addresses */
2738                 bnad_netdev_mc_list_get(netdev, mcaddr_list);
2739
2740                 bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2741                                         mcaddr_list, NULL);
2742
2743                 /* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
2744                 kfree(mcaddr_list);
2745         }
2746 unlock:
2747         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2748 }
2749
2750 /*
2751  * bna_lock is used to sync writes to netdev->addr
2752  * conf_lock cannot be used since this call may be made
2753  * in a non-blocking context.
2754  */
2755 static int
2756 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
2757 {
2758         int err;
2759         struct bnad *bnad = netdev_priv(netdev);
2760         struct sockaddr *sa = (struct sockaddr *)mac_addr;
2761         unsigned long flags;
2762
2763         spin_lock_irqsave(&bnad->bna_lock, flags);
2764
2765         err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
2766
2767         if (!err)
2768                 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
2769
2770         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2771
2772         return err;
2773 }
2774
2775 static int
2776 bnad_change_mtu(struct net_device *netdev, int new_mtu)
2777 {
2778         int mtu, err = 0;
2779         unsigned long flags;
2780
2781         struct bnad *bnad = netdev_priv(netdev);
2782
2783         if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
2784                 return -EINVAL;
2785
2786         mutex_lock(&bnad->conf_mutex);
2787
2788         netdev->mtu = new_mtu;
2789
2790         mtu = ETH_HLEN + new_mtu + ETH_FCS_LEN;
2791
2792         spin_lock_irqsave(&bnad->bna_lock, flags);
2793         bna_port_mtu_set(&bnad->bna.port, mtu, NULL);
2794         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2795
2796         mutex_unlock(&bnad->conf_mutex);
2797         return err;
2798 }
2799
2800 static void
2801 bnad_vlan_rx_register(struct net_device *netdev,
2802                                   struct vlan_group *vlan_grp)
2803 {
2804         struct bnad *bnad = netdev_priv(netdev);
2805
2806         mutex_lock(&bnad->conf_mutex);
2807         bnad->vlan_grp = vlan_grp;
2808         mutex_unlock(&bnad->conf_mutex);
2809 }
2810
2811 static void
2812 bnad_vlan_rx_add_vid(struct net_device *netdev,
2813                                  unsigned short vid)
2814 {
2815         struct bnad *bnad = netdev_priv(netdev);
2816         unsigned long flags;
2817
2818         if (!bnad->rx_info[0].rx)
2819                 return;
2820
2821         mutex_lock(&bnad->conf_mutex);
2822
2823         spin_lock_irqsave(&bnad->bna_lock, flags);
2824         bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
2825         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2826
2827         mutex_unlock(&bnad->conf_mutex);
2828 }
2829
2830 static void
2831 bnad_vlan_rx_kill_vid(struct net_device *netdev,
2832                                   unsigned short vid)
2833 {
2834         struct bnad *bnad = netdev_priv(netdev);
2835         unsigned long flags;
2836
2837         if (!bnad->rx_info[0].rx)
2838                 return;
2839
2840         mutex_lock(&bnad->conf_mutex);
2841
2842         spin_lock_irqsave(&bnad->bna_lock, flags);
2843         bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
2844         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2845
2846         mutex_unlock(&bnad->conf_mutex);
2847 }
2848
2849 #ifdef CONFIG_NET_POLL_CONTROLLER
2850 static void
2851 bnad_netpoll(struct net_device *netdev)
2852 {
2853         struct bnad *bnad = netdev_priv(netdev);
2854         struct bnad_rx_info *rx_info;
2855         struct bnad_rx_ctrl *rx_ctrl;
2856         u32 curr_mask;
2857         int i, j;
2858
2859         if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2860                 bna_intx_disable(&bnad->bna, curr_mask);
2861                 bnad_isr(bnad->pcidev->irq, netdev);
2862                 bna_intx_enable(&bnad->bna, curr_mask);
2863         } else {
2864                 for (i = 0; i < bnad->num_rx; i++) {
2865                         rx_info = &bnad->rx_info[i];
2866                         if (!rx_info->rx)
2867                                 continue;
2868                         for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2869                                 rx_ctrl = &rx_info->rx_ctrl[j];
2870                                 if (rx_ctrl->ccb) {
2871                                         bnad_disable_rx_irq(bnad,
2872                                                             rx_ctrl->ccb);
2873                                         bnad_netif_rx_schedule_poll(bnad,
2874                                                             rx_ctrl->ccb);
2875                                 }
2876                         }
2877                 }
2878         }
2879 }
2880 #endif
2881
2882 static const struct net_device_ops bnad_netdev_ops = {
2883         .ndo_open               = bnad_open,
2884         .ndo_stop               = bnad_stop,
2885         .ndo_start_xmit         = bnad_start_xmit,
2886         .ndo_get_stats64                = bnad_get_stats64,
2887         .ndo_set_rx_mode        = bnad_set_rx_mode,
2888         .ndo_set_multicast_list = bnad_set_rx_mode,
2889         .ndo_validate_addr      = eth_validate_addr,
2890         .ndo_set_mac_address    = bnad_set_mac_address,
2891         .ndo_change_mtu         = bnad_change_mtu,
2892         .ndo_vlan_rx_register   = bnad_vlan_rx_register,
2893         .ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
2894         .ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
2895 #ifdef CONFIG_NET_POLL_CONTROLLER
2896         .ndo_poll_controller    = bnad_netpoll
2897 #endif
2898 };
2899
2900 static void
2901 bnad_netdev_init(struct bnad *bnad, bool using_dac)
2902 {
2903         struct net_device *netdev = bnad->netdev;
2904
2905         netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
2906                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2907                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_TX;
2908
2909         netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
2910                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2911                 NETIF_F_TSO | NETIF_F_TSO6;
2912
2913         netdev->features |= netdev->hw_features |
2914                 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
2915
2916         if (using_dac)
2917                 netdev->features |= NETIF_F_HIGHDMA;
2918
2919         netdev->mem_start = bnad->mmio_start;
2920         netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
2921
2922         netdev->netdev_ops = &bnad_netdev_ops;
2923         bnad_set_ethtool_ops(netdev);
2924 }
2925
2926 /*
2927  * 1. Initialize the bnad structure
2928  * 2. Setup netdev pointer in pci_dev
2929  * 3. Initialze Tx free tasklet
2930  * 4. Initialize no. of TxQ & CQs & MSIX vectors
2931  */
2932 static int
2933 bnad_init(struct bnad *bnad,
2934           struct pci_dev *pdev, struct net_device *netdev)
2935 {
2936         unsigned long flags;
2937
2938         SET_NETDEV_DEV(netdev, &pdev->dev);
2939         pci_set_drvdata(pdev, netdev);
2940
2941         bnad->netdev = netdev;
2942         bnad->pcidev = pdev;
2943         bnad->mmio_start = pci_resource_start(pdev, 0);
2944         bnad->mmio_len = pci_resource_len(pdev, 0);
2945         bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
2946         if (!bnad->bar0) {
2947                 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
2948                 pci_set_drvdata(pdev, NULL);
2949                 return -ENOMEM;
2950         }
2951         pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
2952                (unsigned long long) bnad->mmio_len);
2953
2954         spin_lock_irqsave(&bnad->bna_lock, flags);
2955         if (!bnad_msix_disable)
2956                 bnad->cfg_flags = BNAD_CF_MSIX;
2957
2958         bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
2959
2960         bnad_q_num_init(bnad);
2961         spin_unlock_irqrestore(&bnad->bna_lock, flags);
2962
2963         bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
2964                 (bnad->num_rx * bnad->num_rxp_per_rx) +
2965                          BNAD_MAILBOX_MSIX_VECTORS;
2966
2967         bnad->txq_depth = BNAD_TXQ_DEPTH;
2968         bnad->rxq_depth = BNAD_RXQ_DEPTH;
2969
2970         bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
2971         bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
2972
2973         tasklet_init(&bnad->tx_free_tasklet, bnad_tx_free_tasklet,
2974                      (unsigned long)bnad);
2975
2976         return 0;
2977 }
2978
2979 /*
2980  * Must be called after bnad_pci_uninit()
2981  * so that iounmap() and pci_set_drvdata(NULL)
2982  * happens only after PCI uninitialization.
2983  */
2984 static void
2985 bnad_uninit(struct bnad *bnad)
2986 {
2987         if (bnad->bar0)
2988                 iounmap(bnad->bar0);
2989         pci_set_drvdata(bnad->pcidev, NULL);
2990 }
2991
2992 /*
2993  * Initialize locks
2994         a) Per device mutes used for serializing configuration
2995            changes from OS interface
2996         b) spin lock used to protect bna state machine
2997  */
2998 static void
2999 bnad_lock_init(struct bnad *bnad)
3000 {
3001         spin_lock_init(&bnad->bna_lock);
3002         mutex_init(&bnad->conf_mutex);
3003 }
3004
3005 static void
3006 bnad_lock_uninit(struct bnad *bnad)
3007 {
3008         mutex_destroy(&bnad->conf_mutex);
3009 }
3010
3011 /* PCI Initialization */
3012 static int
3013 bnad_pci_init(struct bnad *bnad,
3014               struct pci_dev *pdev, bool *using_dac)
3015 {
3016         int err;
3017
3018         err = pci_enable_device(pdev);
3019         if (err)
3020                 return err;
3021         err = pci_request_regions(pdev, BNAD_NAME);
3022         if (err)
3023                 goto disable_device;
3024         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3025             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3026                 *using_dac = 1;
3027         } else {
3028                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3029                 if (err) {
3030                         err = dma_set_coherent_mask(&pdev->dev,
3031                                                     DMA_BIT_MASK(32));
3032                         if (err)
3033                                 goto release_regions;
3034                 }
3035                 *using_dac = 0;
3036         }
3037         pci_set_master(pdev);
3038         return 0;
3039
3040 release_regions:
3041         pci_release_regions(pdev);
3042 disable_device:
3043         pci_disable_device(pdev);
3044
3045         return err;
3046 }
3047
3048 static void
3049 bnad_pci_uninit(struct pci_dev *pdev)
3050 {
3051         pci_release_regions(pdev);
3052         pci_disable_device(pdev);
3053 }
3054
3055 static int __devinit
3056 bnad_pci_probe(struct pci_dev *pdev,
3057                 const struct pci_device_id *pcidev_id)
3058 {
3059         bool    using_dac = false;
3060         int     err;
3061         struct bnad *bnad;
3062         struct bna *bna;
3063         struct net_device *netdev;
3064         struct bfa_pcidev pcidev_info;
3065         unsigned long flags;
3066
3067         pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3068                pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3069
3070         mutex_lock(&bnad_fwimg_mutex);
3071         if (!cna_get_firmware_buf(pdev)) {
3072                 mutex_unlock(&bnad_fwimg_mutex);
3073                 pr_warn("Failed to load Firmware Image!\n");
3074                 return -ENODEV;
3075         }
3076         mutex_unlock(&bnad_fwimg_mutex);
3077
3078         /*
3079          * Allocates sizeof(struct net_device + struct bnad)
3080          * bnad = netdev->priv
3081          */
3082         netdev = alloc_etherdev(sizeof(struct bnad));
3083         if (!netdev) {
3084                 dev_err(&pdev->dev, "alloc_etherdev failed\n");
3085                 err = -ENOMEM;
3086                 return err;
3087         }
3088         bnad = netdev_priv(netdev);
3089
3090         /*
3091          * PCI initialization
3092          *      Output : using_dac = 1 for 64 bit DMA
3093          *                         = 0 for 32 bit DMA
3094          */
3095         err = bnad_pci_init(bnad, pdev, &using_dac);
3096         if (err)
3097                 goto free_netdev;
3098
3099         bnad_lock_init(bnad);
3100         /*
3101          * Initialize bnad structure
3102          * Setup relation between pci_dev & netdev
3103          * Init Tx free tasklet
3104          */
3105         err = bnad_init(bnad, pdev, netdev);
3106         if (err)
3107                 goto pci_uninit;
3108         /* Initialize netdev structure, set up ethtool ops */
3109         bnad_netdev_init(bnad, using_dac);
3110
3111         /* Set link to down state */
3112         netif_carrier_off(netdev);
3113
3114         bnad_enable_msix(bnad);
3115
3116         /* Get resource requirement form bna */
3117         bna_res_req(&bnad->res_info[0]);
3118
3119         /* Allocate resources from bna */
3120         err = bnad_res_alloc(bnad);
3121         if (err)
3122                 goto free_netdev;
3123
3124         bna = &bnad->bna;
3125
3126         /* Setup pcidev_info for bna_init() */
3127         pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3128         pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3129         pcidev_info.device_id = bnad->pcidev->device;
3130         pcidev_info.pci_bar_kva = bnad->bar0;
3131
3132         mutex_lock(&bnad->conf_mutex);
3133
3134         spin_lock_irqsave(&bnad->bna_lock, flags);
3135         bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3136         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3137
3138         bnad->stats.bna_stats = &bna->stats;
3139
3140         /* Set up timers */
3141         setup_timer(&bnad->bna.device.ioc.ioc_timer, bnad_ioc_timeout,
3142                                 ((unsigned long)bnad));
3143         setup_timer(&bnad->bna.device.ioc.hb_timer, bnad_ioc_hb_check,
3144                                 ((unsigned long)bnad));
3145         setup_timer(&bnad->bna.device.ioc.iocpf_timer, bnad_iocpf_timeout,
3146                                 ((unsigned long)bnad));
3147         setup_timer(&bnad->bna.device.ioc.sem_timer, bnad_iocpf_sem_timeout,
3148                                 ((unsigned long)bnad));
3149
3150         /* Now start the timer before calling IOC */
3151         mod_timer(&bnad->bna.device.ioc.iocpf_timer,
3152                   jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3153
3154         /*
3155          * Start the chip
3156          * Don't care even if err != 0, bna state machine will
3157          * deal with it
3158          */
3159         err = bnad_device_enable(bnad);
3160
3161         /* Get the burnt-in mac */
3162         spin_lock_irqsave(&bnad->bna_lock, flags);
3163         bna_port_mac_get(&bna->port, &bnad->perm_addr);
3164         bnad_set_netdev_perm_addr(bnad);
3165         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3166
3167         mutex_unlock(&bnad->conf_mutex);
3168
3169         /* Finally, reguister with net_device layer */
3170         err = register_netdev(netdev);
3171         if (err) {
3172                 pr_err("BNA : Registering with netdev failed\n");
3173                 goto disable_device;
3174         }
3175
3176         return 0;
3177
3178 disable_device:
3179         mutex_lock(&bnad->conf_mutex);
3180         bnad_device_disable(bnad);
3181         del_timer_sync(&bnad->bna.device.ioc.ioc_timer);
3182         del_timer_sync(&bnad->bna.device.ioc.sem_timer);
3183         del_timer_sync(&bnad->bna.device.ioc.hb_timer);
3184         spin_lock_irqsave(&bnad->bna_lock, flags);
3185         bna_uninit(bna);
3186         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3187         mutex_unlock(&bnad->conf_mutex);
3188
3189         bnad_res_free(bnad);
3190         bnad_disable_msix(bnad);
3191 pci_uninit:
3192         bnad_pci_uninit(pdev);
3193         bnad_lock_uninit(bnad);
3194         bnad_uninit(bnad);
3195 free_netdev:
3196         free_netdev(netdev);
3197         return err;
3198 }
3199
3200 static void __devexit
3201 bnad_pci_remove(struct pci_dev *pdev)
3202 {
3203         struct net_device *netdev = pci_get_drvdata(pdev);
3204         struct bnad *bnad;
3205         struct bna *bna;
3206         unsigned long flags;
3207
3208         if (!netdev)
3209                 return;
3210
3211         pr_info("%s bnad_pci_remove\n", netdev->name);
3212         bnad = netdev_priv(netdev);
3213         bna = &bnad->bna;
3214
3215         unregister_netdev(netdev);
3216
3217         mutex_lock(&bnad->conf_mutex);
3218         bnad_device_disable(bnad);
3219         del_timer_sync(&bnad->bna.device.ioc.ioc_timer);
3220         del_timer_sync(&bnad->bna.device.ioc.sem_timer);
3221         del_timer_sync(&bnad->bna.device.ioc.hb_timer);
3222         spin_lock_irqsave(&bnad->bna_lock, flags);
3223         bna_uninit(bna);
3224         spin_unlock_irqrestore(&bnad->bna_lock, flags);
3225         mutex_unlock(&bnad->conf_mutex);
3226
3227         bnad_res_free(bnad);
3228         bnad_disable_msix(bnad);
3229         bnad_pci_uninit(pdev);
3230         bnad_lock_uninit(bnad);
3231         bnad_uninit(bnad);
3232         free_netdev(netdev);
3233 }
3234
3235 static const struct pci_device_id bnad_pci_id_table[] = {
3236         {
3237                 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3238                         PCI_DEVICE_ID_BROCADE_CT),
3239                 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3240                 .class_mask =  0xffff00
3241         }, {0,  }
3242 };
3243
3244 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3245
3246 static struct pci_driver bnad_pci_driver = {
3247         .name = BNAD_NAME,
3248         .id_table = bnad_pci_id_table,
3249         .probe = bnad_pci_probe,
3250         .remove = __devexit_p(bnad_pci_remove),
3251 };
3252
3253 static int __init
3254 bnad_module_init(void)
3255 {
3256         int err;
3257
3258         pr_info("Brocade 10G Ethernet driver\n");
3259
3260         bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3261
3262         err = pci_register_driver(&bnad_pci_driver);
3263         if (err < 0) {
3264                 pr_err("bna : PCI registration failed in module init "
3265                        "(%d)\n", err);
3266                 return err;
3267         }
3268
3269         return 0;
3270 }
3271
3272 static void __exit
3273 bnad_module_exit(void)
3274 {
3275         pci_unregister_driver(&bnad_pci_driver);
3276
3277         if (bfi_fw)
3278                 release_firmware(bfi_fw);
3279 }
3280
3281 module_init(bnad_module_init);
3282 module_exit(bnad_module_exit);
3283
3284 MODULE_AUTHOR("Brocade");
3285 MODULE_LICENSE("GPL");
3286 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3287 MODULE_VERSION(BNAD_VERSION);
3288 MODULE_FIRMWARE(CNA_FW_FILE_CT);