Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[pandora-kernel.git] / drivers / mtd / nand / pxa3xx_nand.c
1 /*
2  * drivers/mtd/nand/pxa3xx_nand.c
3  *
4  * Copyright © 2005 Intel Corporation
5  * Copyright © 2006 Marvell International Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/delay.h>
18 #include <linux/clk.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/io.h>
23 #include <linux/irq.h>
24 #include <linux/slab.h>
25
26 #include <mach/dma.h>
27 #include <plat/pxa3xx_nand.h>
28
29 #define CHIP_DELAY_TIMEOUT      (2 * HZ/10)
30 #define NAND_STOP_DELAY         (2 * HZ/50)
31 #define PAGE_CHUNK_SIZE         (2048)
32
33 /* registers and bit definitions */
34 #define NDCR            (0x00) /* Control register */
35 #define NDTR0CS0        (0x04) /* Timing Parameter 0 for CS0 */
36 #define NDTR1CS0        (0x0C) /* Timing Parameter 1 for CS0 */
37 #define NDSR            (0x14) /* Status Register */
38 #define NDPCR           (0x18) /* Page Count Register */
39 #define NDBDR0          (0x1C) /* Bad Block Register 0 */
40 #define NDBDR1          (0x20) /* Bad Block Register 1 */
41 #define NDDB            (0x40) /* Data Buffer */
42 #define NDCB0           (0x48) /* Command Buffer0 */
43 #define NDCB1           (0x4C) /* Command Buffer1 */
44 #define NDCB2           (0x50) /* Command Buffer2 */
45
46 #define NDCR_SPARE_EN           (0x1 << 31)
47 #define NDCR_ECC_EN             (0x1 << 30)
48 #define NDCR_DMA_EN             (0x1 << 29)
49 #define NDCR_ND_RUN             (0x1 << 28)
50 #define NDCR_DWIDTH_C           (0x1 << 27)
51 #define NDCR_DWIDTH_M           (0x1 << 26)
52 #define NDCR_PAGE_SZ            (0x1 << 24)
53 #define NDCR_NCSX               (0x1 << 23)
54 #define NDCR_ND_MODE            (0x3 << 21)
55 #define NDCR_NAND_MODE          (0x0)
56 #define NDCR_CLR_PG_CNT         (0x1 << 20)
57 #define NDCR_STOP_ON_UNCOR      (0x1 << 19)
58 #define NDCR_RD_ID_CNT_MASK     (0x7 << 16)
59 #define NDCR_RD_ID_CNT(x)       (((x) << 16) & NDCR_RD_ID_CNT_MASK)
60
61 #define NDCR_RA_START           (0x1 << 15)
62 #define NDCR_PG_PER_BLK         (0x1 << 14)
63 #define NDCR_ND_ARB_EN          (0x1 << 12)
64 #define NDCR_INT_MASK           (0xFFF)
65
66 #define NDSR_MASK               (0xfff)
67 #define NDSR_RDY                (0x1 << 12)
68 #define NDSR_FLASH_RDY          (0x1 << 11)
69 #define NDSR_CS0_PAGED          (0x1 << 10)
70 #define NDSR_CS1_PAGED          (0x1 << 9)
71 #define NDSR_CS0_CMDD           (0x1 << 8)
72 #define NDSR_CS1_CMDD           (0x1 << 7)
73 #define NDSR_CS0_BBD            (0x1 << 6)
74 #define NDSR_CS1_BBD            (0x1 << 5)
75 #define NDSR_DBERR              (0x1 << 4)
76 #define NDSR_SBERR              (0x1 << 3)
77 #define NDSR_WRDREQ             (0x1 << 2)
78 #define NDSR_RDDREQ             (0x1 << 1)
79 #define NDSR_WRCMDREQ           (0x1)
80
81 #define NDCB0_ST_ROW_EN         (0x1 << 26)
82 #define NDCB0_AUTO_RS           (0x1 << 25)
83 #define NDCB0_CSEL              (0x1 << 24)
84 #define NDCB0_CMD_TYPE_MASK     (0x7 << 21)
85 #define NDCB0_CMD_TYPE(x)       (((x) << 21) & NDCB0_CMD_TYPE_MASK)
86 #define NDCB0_NC                (0x1 << 20)
87 #define NDCB0_DBC               (0x1 << 19)
88 #define NDCB0_ADDR_CYC_MASK     (0x7 << 16)
89 #define NDCB0_ADDR_CYC(x)       (((x) << 16) & NDCB0_ADDR_CYC_MASK)
90 #define NDCB0_CMD2_MASK         (0xff << 8)
91 #define NDCB0_CMD1_MASK         (0xff)
92 #define NDCB0_ADDR_CYC_SHIFT    (16)
93
94 /* macros for registers read/write */
95 #define nand_writel(info, off, val)     \
96         __raw_writel((val), (info)->mmio_base + (off))
97
98 #define nand_readl(info, off)           \
99         __raw_readl((info)->mmio_base + (off))
100
101 /* error code and state */
102 enum {
103         ERR_NONE        = 0,
104         ERR_DMABUSERR   = -1,
105         ERR_SENDCMD     = -2,
106         ERR_DBERR       = -3,
107         ERR_BBERR       = -4,
108         ERR_SBERR       = -5,
109 };
110
111 enum {
112         STATE_IDLE = 0,
113         STATE_PREPARED,
114         STATE_CMD_HANDLE,
115         STATE_DMA_READING,
116         STATE_DMA_WRITING,
117         STATE_DMA_DONE,
118         STATE_PIO_READING,
119         STATE_PIO_WRITING,
120         STATE_CMD_DONE,
121         STATE_READY,
122 };
123
124 struct pxa3xx_nand_host {
125         struct nand_chip        chip;
126         struct pxa3xx_nand_cmdset *cmdset;
127         struct mtd_info         *mtd;
128         void                    *info_data;
129
130         /* page size of attached chip */
131         unsigned int            page_size;
132         int                     use_ecc;
133         int                     cs;
134
135         /* calculated from pxa3xx_nand_flash data */
136         unsigned int            col_addr_cycles;
137         unsigned int            row_addr_cycles;
138         size_t                  read_id_bytes;
139
140         /* cached register value */
141         uint32_t                reg_ndcr;
142         uint32_t                ndtr0cs0;
143         uint32_t                ndtr1cs0;
144 };
145
146 struct pxa3xx_nand_info {
147         struct nand_hw_control  controller;
148         struct platform_device   *pdev;
149
150         struct clk              *clk;
151         void __iomem            *mmio_base;
152         unsigned long           mmio_phys;
153         struct completion       cmd_complete;
154
155         unsigned int            buf_start;
156         unsigned int            buf_count;
157
158         /* DMA information */
159         int                     drcmr_dat;
160         int                     drcmr_cmd;
161
162         unsigned char           *data_buff;
163         unsigned char           *oob_buff;
164         dma_addr_t              data_buff_phys;
165         int                     data_dma_ch;
166         struct pxa_dma_desc     *data_desc;
167         dma_addr_t              data_desc_addr;
168
169         struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
170         unsigned int            state;
171
172         int                     cs;
173         int                     use_ecc;        /* use HW ECC ? */
174         int                     use_dma;        /* use DMA ? */
175         int                     is_ready;
176
177         unsigned int            page_size;      /* page size of attached chip */
178         unsigned int            data_size;      /* data size in FIFO */
179         unsigned int            oob_size;
180         int                     retcode;
181
182         /* generated NDCBx register values */
183         uint32_t                ndcb0;
184         uint32_t                ndcb1;
185         uint32_t                ndcb2;
186 };
187
188 static int use_dma = 1;
189 module_param(use_dma, bool, 0444);
190 MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW");
191
192 /*
193  * Default NAND flash controller configuration setup by the
194  * bootloader. This configuration is used only when pdata->keep_config is set
195  */
196 static struct pxa3xx_nand_cmdset default_cmdset = {
197         .read1          = 0x3000,
198         .read2          = 0x0050,
199         .program        = 0x1080,
200         .read_status    = 0x0070,
201         .read_id        = 0x0090,
202         .erase          = 0xD060,
203         .reset          = 0x00FF,
204         .lock           = 0x002A,
205         .unlock         = 0x2423,
206         .lock_status    = 0x007A,
207 };
208
209 static struct pxa3xx_nand_timing timing[] = {
210         { 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
211         { 10,  0, 20,  40, 30,  40, 11123, 110, 10, },
212         { 10, 25, 15,  25, 15,  30, 25000,  60, 10, },
213         { 10, 35, 15,  25, 15,  25, 25000,  60, 10, },
214 };
215
216 static struct pxa3xx_nand_flash builtin_flash_types[] = {
217 { "DEFAULT FLASH",      0,   0, 2048,  8,  8,    0, &timing[0] },
218 { "64MiB 16-bit",  0x46ec,  32,  512, 16, 16, 4096, &timing[1] },
219 { "256MiB 8-bit",  0xdaec,  64, 2048,  8,  8, 2048, &timing[1] },
220 { "4GiB 8-bit",    0xd7ec, 128, 4096,  8,  8, 8192, &timing[1] },
221 { "128MiB 8-bit",  0xa12c,  64, 2048,  8,  8, 1024, &timing[2] },
222 { "128MiB 16-bit", 0xb12c,  64, 2048, 16, 16, 1024, &timing[2] },
223 { "512MiB 8-bit",  0xdc2c,  64, 2048,  8,  8, 4096, &timing[2] },
224 { "512MiB 16-bit", 0xcc2c,  64, 2048, 16, 16, 4096, &timing[2] },
225 { "256MiB 16-bit", 0xba20,  64, 2048, 16, 16, 2048, &timing[3] },
226 };
227
228 /* Define a default flash type setting serve as flash detecting only */
229 #define DEFAULT_FLASH_TYPE (&builtin_flash_types[0])
230
231 const char *mtd_names[] = {"pxa3xx_nand-0", "pxa3xx_nand-1", NULL};
232
233 #define NDTR0_tCH(c)    (min((c), 7) << 19)
234 #define NDTR0_tCS(c)    (min((c), 7) << 16)
235 #define NDTR0_tWH(c)    (min((c), 7) << 11)
236 #define NDTR0_tWP(c)    (min((c), 7) << 8)
237 #define NDTR0_tRH(c)    (min((c), 7) << 3)
238 #define NDTR0_tRP(c)    (min((c), 7) << 0)
239
240 #define NDTR1_tR(c)     (min((c), 65535) << 16)
241 #define NDTR1_tWHR(c)   (min((c), 15) << 4)
242 #define NDTR1_tAR(c)    (min((c), 15) << 0)
243
244 /* convert nano-seconds to nand flash controller clock cycles */
245 #define ns2cycle(ns, clk)       (int)((ns) * (clk / 1000000) / 1000)
246
247 static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
248                                    const struct pxa3xx_nand_timing *t)
249 {
250         struct pxa3xx_nand_info *info = host->info_data;
251         unsigned long nand_clk = clk_get_rate(info->clk);
252         uint32_t ndtr0, ndtr1;
253
254         ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
255                 NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
256                 NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
257                 NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
258                 NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
259                 NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
260
261         ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
262                 NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
263                 NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
264
265         host->ndtr0cs0 = ndtr0;
266         host->ndtr1cs0 = ndtr1;
267         nand_writel(info, NDTR0CS0, ndtr0);
268         nand_writel(info, NDTR1CS0, ndtr1);
269 }
270
271 static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info)
272 {
273         struct pxa3xx_nand_host *host = info->host[info->cs];
274         int oob_enable = host->reg_ndcr & NDCR_SPARE_EN;
275
276         info->data_size = host->page_size;
277         if (!oob_enable) {
278                 info->oob_size = 0;
279                 return;
280         }
281
282         switch (host->page_size) {
283         case 2048:
284                 info->oob_size = (info->use_ecc) ? 40 : 64;
285                 break;
286         case 512:
287                 info->oob_size = (info->use_ecc) ? 8 : 16;
288                 break;
289         }
290 }
291
292 /**
293  * NOTE: it is a must to set ND_RUN firstly, then write
294  * command buffer, otherwise, it does not work.
295  * We enable all the interrupt at the same time, and
296  * let pxa3xx_nand_irq to handle all logic.
297  */
298 static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
299 {
300         struct pxa3xx_nand_host *host = info->host[info->cs];
301         uint32_t ndcr;
302
303         ndcr = host->reg_ndcr;
304         ndcr |= info->use_ecc ? NDCR_ECC_EN : 0;
305         ndcr |= info->use_dma ? NDCR_DMA_EN : 0;
306         ndcr |= NDCR_ND_RUN;
307
308         /* clear status bits and run */
309         nand_writel(info, NDCR, 0);
310         nand_writel(info, NDSR, NDSR_MASK);
311         nand_writel(info, NDCR, ndcr);
312 }
313
314 static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info)
315 {
316         uint32_t ndcr;
317         int timeout = NAND_STOP_DELAY;
318
319         /* wait RUN bit in NDCR become 0 */
320         ndcr = nand_readl(info, NDCR);
321         while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) {
322                 ndcr = nand_readl(info, NDCR);
323                 udelay(1);
324         }
325
326         if (timeout <= 0) {
327                 ndcr &= ~NDCR_ND_RUN;
328                 nand_writel(info, NDCR, ndcr);
329         }
330         /* clear status bits */
331         nand_writel(info, NDSR, NDSR_MASK);
332 }
333
334 static void enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
335 {
336         uint32_t ndcr;
337
338         ndcr = nand_readl(info, NDCR);
339         nand_writel(info, NDCR, ndcr & ~int_mask);
340 }
341
342 static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
343 {
344         uint32_t ndcr;
345
346         ndcr = nand_readl(info, NDCR);
347         nand_writel(info, NDCR, ndcr | int_mask);
348 }
349
350 static void handle_data_pio(struct pxa3xx_nand_info *info)
351 {
352         switch (info->state) {
353         case STATE_PIO_WRITING:
354                 __raw_writesl(info->mmio_base + NDDB, info->data_buff,
355                                 DIV_ROUND_UP(info->data_size, 4));
356                 if (info->oob_size > 0)
357                         __raw_writesl(info->mmio_base + NDDB, info->oob_buff,
358                                         DIV_ROUND_UP(info->oob_size, 4));
359                 break;
360         case STATE_PIO_READING:
361                 __raw_readsl(info->mmio_base + NDDB, info->data_buff,
362                                 DIV_ROUND_UP(info->data_size, 4));
363                 if (info->oob_size > 0)
364                         __raw_readsl(info->mmio_base + NDDB, info->oob_buff,
365                                         DIV_ROUND_UP(info->oob_size, 4));
366                 break;
367         default:
368                 dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
369                                 info->state);
370                 BUG();
371         }
372 }
373
374 static void start_data_dma(struct pxa3xx_nand_info *info)
375 {
376         struct pxa_dma_desc *desc = info->data_desc;
377         int dma_len = ALIGN(info->data_size + info->oob_size, 32);
378
379         desc->ddadr = DDADR_STOP;
380         desc->dcmd = DCMD_ENDIRQEN | DCMD_WIDTH4 | DCMD_BURST32 | dma_len;
381
382         switch (info->state) {
383         case STATE_DMA_WRITING:
384                 desc->dsadr = info->data_buff_phys;
385                 desc->dtadr = info->mmio_phys + NDDB;
386                 desc->dcmd |= DCMD_INCSRCADDR | DCMD_FLOWTRG;
387                 break;
388         case STATE_DMA_READING:
389                 desc->dtadr = info->data_buff_phys;
390                 desc->dsadr = info->mmio_phys + NDDB;
391                 desc->dcmd |= DCMD_INCTRGADDR | DCMD_FLOWSRC;
392                 break;
393         default:
394                 dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
395                                 info->state);
396                 BUG();
397         }
398
399         DRCMR(info->drcmr_dat) = DRCMR_MAPVLD | info->data_dma_ch;
400         DDADR(info->data_dma_ch) = info->data_desc_addr;
401         DCSR(info->data_dma_ch) |= DCSR_RUN;
402 }
403
404 static void pxa3xx_nand_data_dma_irq(int channel, void *data)
405 {
406         struct pxa3xx_nand_info *info = data;
407         uint32_t dcsr;
408
409         dcsr = DCSR(channel);
410         DCSR(channel) = dcsr;
411
412         if (dcsr & DCSR_BUSERR) {
413                 info->retcode = ERR_DMABUSERR;
414         }
415
416         info->state = STATE_DMA_DONE;
417         enable_int(info, NDCR_INT_MASK);
418         nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
419 }
420
421 static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
422 {
423         struct pxa3xx_nand_info *info = devid;
424         unsigned int status, is_completed = 0;
425         unsigned int ready, cmd_done;
426
427         if (info->cs == 0) {
428                 ready           = NDSR_FLASH_RDY;
429                 cmd_done        = NDSR_CS0_CMDD;
430         } else {
431                 ready           = NDSR_RDY;
432                 cmd_done        = NDSR_CS1_CMDD;
433         }
434
435         status = nand_readl(info, NDSR);
436
437         if (status & NDSR_DBERR)
438                 info->retcode = ERR_DBERR;
439         if (status & NDSR_SBERR)
440                 info->retcode = ERR_SBERR;
441         if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
442                 /* whether use dma to transfer data */
443                 if (info->use_dma) {
444                         disable_int(info, NDCR_INT_MASK);
445                         info->state = (status & NDSR_RDDREQ) ?
446                                       STATE_DMA_READING : STATE_DMA_WRITING;
447                         start_data_dma(info);
448                         goto NORMAL_IRQ_EXIT;
449                 } else {
450                         info->state = (status & NDSR_RDDREQ) ?
451                                       STATE_PIO_READING : STATE_PIO_WRITING;
452                         handle_data_pio(info);
453                 }
454         }
455         if (status & cmd_done) {
456                 info->state = STATE_CMD_DONE;
457                 is_completed = 1;
458         }
459         if (status & ready) {
460                 info->is_ready = 1;
461                 info->state = STATE_READY;
462         }
463
464         if (status & NDSR_WRCMDREQ) {
465                 nand_writel(info, NDSR, NDSR_WRCMDREQ);
466                 status &= ~NDSR_WRCMDREQ;
467                 info->state = STATE_CMD_HANDLE;
468                 nand_writel(info, NDCB0, info->ndcb0);
469                 nand_writel(info, NDCB0, info->ndcb1);
470                 nand_writel(info, NDCB0, info->ndcb2);
471         }
472
473         /* clear NDSR to let the controller exit the IRQ */
474         nand_writel(info, NDSR, status);
475         if (is_completed)
476                 complete(&info->cmd_complete);
477 NORMAL_IRQ_EXIT:
478         return IRQ_HANDLED;
479 }
480
481 static inline int is_buf_blank(uint8_t *buf, size_t len)
482 {
483         for (; len > 0; len--)
484                 if (*buf++ != 0xff)
485                         return 0;
486         return 1;
487 }
488
489 static int prepare_command_pool(struct pxa3xx_nand_info *info, int command,
490                 uint16_t column, int page_addr)
491 {
492         uint16_t cmd;
493         int addr_cycle, exec_cmd;
494         struct pxa3xx_nand_host *host;
495         struct mtd_info *mtd;
496
497         host = info->host[info->cs];
498         mtd = host->mtd;
499         addr_cycle = 0;
500         exec_cmd = 1;
501
502         /* reset data and oob column point to handle data */
503         info->buf_start         = 0;
504         info->buf_count         = 0;
505         info->oob_size          = 0;
506         info->use_ecc           = 0;
507         info->is_ready          = 0;
508         info->retcode           = ERR_NONE;
509         if (info->cs != 0)
510                 info->ndcb0 = NDCB0_CSEL;
511         else
512                 info->ndcb0 = 0;
513
514         switch (command) {
515         case NAND_CMD_READ0:
516         case NAND_CMD_PAGEPROG:
517                 info->use_ecc = 1;
518         case NAND_CMD_READOOB:
519                 pxa3xx_set_datasize(info);
520                 break;
521         case NAND_CMD_SEQIN:
522                 exec_cmd = 0;
523                 break;
524         default:
525                 info->ndcb1 = 0;
526                 info->ndcb2 = 0;
527                 break;
528         }
529
530         addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
531                                     + host->col_addr_cycles);
532
533         switch (command) {
534         case NAND_CMD_READOOB:
535         case NAND_CMD_READ0:
536                 cmd = host->cmdset->read1;
537                 if (command == NAND_CMD_READOOB)
538                         info->buf_start = mtd->writesize + column;
539                 else
540                         info->buf_start = column;
541
542                 if (unlikely(host->page_size < PAGE_CHUNK_SIZE))
543                         info->ndcb0 |= NDCB0_CMD_TYPE(0)
544                                         | addr_cycle
545                                         | (cmd & NDCB0_CMD1_MASK);
546                 else
547                         info->ndcb0 |= NDCB0_CMD_TYPE(0)
548                                         | NDCB0_DBC
549                                         | addr_cycle
550                                         | cmd;
551
552         case NAND_CMD_SEQIN:
553                 /* small page addr setting */
554                 if (unlikely(host->page_size < PAGE_CHUNK_SIZE)) {
555                         info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
556                                         | (column & 0xFF);
557
558                         info->ndcb2 = 0;
559                 } else {
560                         info->ndcb1 = ((page_addr & 0xFFFF) << 16)
561                                         | (column & 0xFFFF);
562
563                         if (page_addr & 0xFF0000)
564                                 info->ndcb2 = (page_addr & 0xFF0000) >> 16;
565                         else
566                                 info->ndcb2 = 0;
567                 }
568
569                 info->buf_count = mtd->writesize + mtd->oobsize;
570                 memset(info->data_buff, 0xFF, info->buf_count);
571
572                 break;
573
574         case NAND_CMD_PAGEPROG:
575                 if (is_buf_blank(info->data_buff,
576                                         (mtd->writesize + mtd->oobsize))) {
577                         exec_cmd = 0;
578                         break;
579                 }
580
581                 cmd = host->cmdset->program;
582                 info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
583                                 | NDCB0_AUTO_RS
584                                 | NDCB0_ST_ROW_EN
585                                 | NDCB0_DBC
586                                 | cmd
587                                 | addr_cycle;
588                 break;
589
590         case NAND_CMD_READID:
591                 cmd = host->cmdset->read_id;
592                 info->buf_count = host->read_id_bytes;
593                 info->ndcb0 |= NDCB0_CMD_TYPE(3)
594                                 | NDCB0_ADDR_CYC(1)
595                                 | cmd;
596
597                 info->data_size = 8;
598                 break;
599         case NAND_CMD_STATUS:
600                 cmd = host->cmdset->read_status;
601                 info->buf_count = 1;
602                 info->ndcb0 |= NDCB0_CMD_TYPE(4)
603                                 | NDCB0_ADDR_CYC(1)
604                                 | cmd;
605
606                 info->data_size = 8;
607                 break;
608
609         case NAND_CMD_ERASE1:
610                 cmd = host->cmdset->erase;
611                 info->ndcb0 |= NDCB0_CMD_TYPE(2)
612                                 | NDCB0_AUTO_RS
613                                 | NDCB0_ADDR_CYC(3)
614                                 | NDCB0_DBC
615                                 | cmd;
616                 info->ndcb1 = page_addr;
617                 info->ndcb2 = 0;
618
619                 break;
620         case NAND_CMD_RESET:
621                 cmd = host->cmdset->reset;
622                 info->ndcb0 |= NDCB0_CMD_TYPE(5)
623                                 | cmd;
624
625                 break;
626
627         case NAND_CMD_ERASE2:
628                 exec_cmd = 0;
629                 break;
630
631         default:
632                 exec_cmd = 0;
633                 dev_err(&info->pdev->dev, "non-supported command %x\n",
634                                 command);
635                 break;
636         }
637
638         return exec_cmd;
639 }
640
641 static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
642                                 int column, int page_addr)
643 {
644         struct pxa3xx_nand_host *host = mtd->priv;
645         struct pxa3xx_nand_info *info = host->info_data;
646         int ret, exec_cmd;
647
648         /*
649          * if this is a x16 device ,then convert the input
650          * "byte" address into a "word" address appropriate
651          * for indexing a word-oriented device
652          */
653         if (host->reg_ndcr & NDCR_DWIDTH_M)
654                 column /= 2;
655
656         /*
657          * There may be different NAND chip hooked to
658          * different chip select, so check whether
659          * chip select has been changed, if yes, reset the timing
660          */
661         if (info->cs != host->cs) {
662                 info->cs = host->cs;
663                 nand_writel(info, NDTR0CS0, host->ndtr0cs0);
664                 nand_writel(info, NDTR1CS0, host->ndtr1cs0);
665         }
666
667         info->state = STATE_PREPARED;
668         exec_cmd = prepare_command_pool(info, command, column, page_addr);
669         if (exec_cmd) {
670                 init_completion(&info->cmd_complete);
671                 pxa3xx_nand_start(info);
672
673                 ret = wait_for_completion_timeout(&info->cmd_complete,
674                                 CHIP_DELAY_TIMEOUT);
675                 if (!ret) {
676                         dev_err(&info->pdev->dev, "Wait time out!!!\n");
677                         /* Stop State Machine for next command cycle */
678                         pxa3xx_nand_stop(info);
679                 }
680         }
681         info->state = STATE_IDLE;
682 }
683
684 static void pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
685                 struct nand_chip *chip, const uint8_t *buf)
686 {
687         chip->write_buf(mtd, buf, mtd->writesize);
688         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
689 }
690
691 static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
692                 struct nand_chip *chip, uint8_t *buf, int page)
693 {
694         struct pxa3xx_nand_host *host = mtd->priv;
695         struct pxa3xx_nand_info *info = host->info_data;
696
697         chip->read_buf(mtd, buf, mtd->writesize);
698         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
699
700         if (info->retcode == ERR_SBERR) {
701                 switch (info->use_ecc) {
702                 case 1:
703                         mtd->ecc_stats.corrected++;
704                         break;
705                 case 0:
706                 default:
707                         break;
708                 }
709         } else if (info->retcode == ERR_DBERR) {
710                 /*
711                  * for blank page (all 0xff), HW will calculate its ECC as
712                  * 0, which is different from the ECC information within
713                  * OOB, ignore such double bit errors
714                  */
715                 if (is_buf_blank(buf, mtd->writesize))
716                         info->retcode = ERR_NONE;
717                 else
718                         mtd->ecc_stats.failed++;
719         }
720
721         return 0;
722 }
723
724 static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
725 {
726         struct pxa3xx_nand_host *host = mtd->priv;
727         struct pxa3xx_nand_info *info = host->info_data;
728         char retval = 0xFF;
729
730         if (info->buf_start < info->buf_count)
731                 /* Has just send a new command? */
732                 retval = info->data_buff[info->buf_start++];
733
734         return retval;
735 }
736
737 static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
738 {
739         struct pxa3xx_nand_host *host = mtd->priv;
740         struct pxa3xx_nand_info *info = host->info_data;
741         u16 retval = 0xFFFF;
742
743         if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
744                 retval = *((u16 *)(info->data_buff+info->buf_start));
745                 info->buf_start += 2;
746         }
747         return retval;
748 }
749
750 static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
751 {
752         struct pxa3xx_nand_host *host = mtd->priv;
753         struct pxa3xx_nand_info *info = host->info_data;
754         int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
755
756         memcpy(buf, info->data_buff + info->buf_start, real_len);
757         info->buf_start += real_len;
758 }
759
760 static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
761                 const uint8_t *buf, int len)
762 {
763         struct pxa3xx_nand_host *host = mtd->priv;
764         struct pxa3xx_nand_info *info = host->info_data;
765         int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
766
767         memcpy(info->data_buff + info->buf_start, buf, real_len);
768         info->buf_start += real_len;
769 }
770
771 static int pxa3xx_nand_verify_buf(struct mtd_info *mtd,
772                 const uint8_t *buf, int len)
773 {
774         return 0;
775 }
776
777 static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
778 {
779         return;
780 }
781
782 static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
783 {
784         struct pxa3xx_nand_host *host = mtd->priv;
785         struct pxa3xx_nand_info *info = host->info_data;
786
787         /* pxa3xx_nand_send_command has waited for command complete */
788         if (this->state == FL_WRITING || this->state == FL_ERASING) {
789                 if (info->retcode == ERR_NONE)
790                         return 0;
791                 else {
792                         /*
793                          * any error make it return 0x01 which will tell
794                          * the caller the erase and write fail
795                          */
796                         return 0x01;
797                 }
798         }
799
800         return 0;
801 }
802
803 static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info,
804                                     const struct pxa3xx_nand_flash *f)
805 {
806         struct platform_device *pdev = info->pdev;
807         struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
808         struct pxa3xx_nand_host *host = info->host[info->cs];
809         uint32_t ndcr = 0x0; /* enable all interrupts */
810
811         if (f->page_size != 2048 && f->page_size != 512) {
812                 dev_err(&pdev->dev, "Current only support 2048 and 512 size\n");
813                 return -EINVAL;
814         }
815
816         if (f->flash_width != 16 && f->flash_width != 8) {
817                 dev_err(&pdev->dev, "Only support 8bit and 16 bit!\n");
818                 return -EINVAL;
819         }
820
821         /* calculate flash information */
822         host->cmdset = &default_cmdset;
823         host->page_size = f->page_size;
824         host->read_id_bytes = (f->page_size == 2048) ? 4 : 2;
825
826         /* calculate addressing information */
827         host->col_addr_cycles = (f->page_size == 2048) ? 2 : 1;
828
829         if (f->num_blocks * f->page_per_block > 65536)
830                 host->row_addr_cycles = 3;
831         else
832                 host->row_addr_cycles = 2;
833
834         ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
835         ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
836         ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0;
837         ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0;
838         ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0;
839         ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
840
841         ndcr |= NDCR_RD_ID_CNT(host->read_id_bytes);
842         ndcr |= NDCR_SPARE_EN; /* enable spare by default */
843
844         host->reg_ndcr = ndcr;
845
846         pxa3xx_nand_set_timing(host, f->timing);
847         return 0;
848 }
849
850 static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
851 {
852         /*
853          * We set 0 by hard coding here, for we don't support keep_config
854          * when there is more than one chip attached to the controller
855          */
856         struct pxa3xx_nand_host *host = info->host[0];
857         uint32_t ndcr = nand_readl(info, NDCR);
858
859         if (ndcr & NDCR_PAGE_SZ) {
860                 host->page_size = 2048;
861                 host->read_id_bytes = 4;
862         } else {
863                 host->page_size = 512;
864                 host->read_id_bytes = 2;
865         }
866
867         host->reg_ndcr = ndcr & ~NDCR_INT_MASK;
868         host->cmdset = &default_cmdset;
869
870         host->ndtr0cs0 = nand_readl(info, NDTR0CS0);
871         host->ndtr1cs0 = nand_readl(info, NDTR1CS0);
872
873         return 0;
874 }
875
876 /* the maximum possible buffer size for large page with OOB data
877  * is: 2048 + 64 = 2112 bytes, allocate a page here for both the
878  * data buffer and the DMA descriptor
879  */
880 #define MAX_BUFF_SIZE   PAGE_SIZE
881
882 static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
883 {
884         struct platform_device *pdev = info->pdev;
885         int data_desc_offset = MAX_BUFF_SIZE - sizeof(struct pxa_dma_desc);
886
887         if (use_dma == 0) {
888                 info->data_buff = kmalloc(MAX_BUFF_SIZE, GFP_KERNEL);
889                 if (info->data_buff == NULL)
890                         return -ENOMEM;
891                 return 0;
892         }
893
894         info->data_buff = dma_alloc_coherent(&pdev->dev, MAX_BUFF_SIZE,
895                                 &info->data_buff_phys, GFP_KERNEL);
896         if (info->data_buff == NULL) {
897                 dev_err(&pdev->dev, "failed to allocate dma buffer\n");
898                 return -ENOMEM;
899         }
900
901         info->data_desc = (void *)info->data_buff + data_desc_offset;
902         info->data_desc_addr = info->data_buff_phys + data_desc_offset;
903
904         info->data_dma_ch = pxa_request_dma("nand-data", DMA_PRIO_LOW,
905                                 pxa3xx_nand_data_dma_irq, info);
906         if (info->data_dma_ch < 0) {
907                 dev_err(&pdev->dev, "failed to request data dma\n");
908                 dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE,
909                                 info->data_buff, info->data_buff_phys);
910                 return info->data_dma_ch;
911         }
912
913         return 0;
914 }
915
916 static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info)
917 {
918         struct mtd_info *mtd;
919         int ret;
920         mtd = info->host[info->cs]->mtd;
921         /* use the common timing to make a try */
922         ret = pxa3xx_nand_config_flash(info, &builtin_flash_types[0]);
923         if (ret)
924                 return ret;
925
926         pxa3xx_nand_cmdfunc(mtd, NAND_CMD_RESET, 0, 0);
927         if (info->is_ready)
928                 return 0;
929
930         return -ENODEV;
931 }
932
933 static int pxa3xx_nand_scan(struct mtd_info *mtd)
934 {
935         struct pxa3xx_nand_host *host = mtd->priv;
936         struct pxa3xx_nand_info *info = host->info_data;
937         struct platform_device *pdev = info->pdev;
938         struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
939         struct nand_flash_dev pxa3xx_flash_ids[2], *def = NULL;
940         const struct pxa3xx_nand_flash *f = NULL;
941         struct nand_chip *chip = mtd->priv;
942         uint32_t id = -1;
943         uint64_t chipsize;
944         int i, ret, num;
945
946         if (pdata->keep_config && !pxa3xx_nand_detect_config(info))
947                 goto KEEP_CONFIG;
948
949         ret = pxa3xx_nand_sensing(info);
950         if (ret) {
951                 dev_info(&info->pdev->dev, "There is no chip on cs %d!\n",
952                          info->cs);
953
954                 return ret;
955         }
956
957         chip->cmdfunc(mtd, NAND_CMD_READID, 0, 0);
958         id = *((uint16_t *)(info->data_buff));
959         if (id != 0)
960                 dev_info(&info->pdev->dev, "Detect a flash id %x\n", id);
961         else {
962                 dev_warn(&info->pdev->dev,
963                          "Read out ID 0, potential timing set wrong!!\n");
964
965                 return -EINVAL;
966         }
967
968         num = ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1;
969         for (i = 0; i < num; i++) {
970                 if (i < pdata->num_flash)
971                         f = pdata->flash + i;
972                 else
973                         f = &builtin_flash_types[i - pdata->num_flash + 1];
974
975                 /* find the chip in default list */
976                 if (f->chip_id == id)
977                         break;
978         }
979
980         if (i >= (ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1)) {
981                 dev_err(&info->pdev->dev, "ERROR!! flash not defined!!!\n");
982
983                 return -EINVAL;
984         }
985
986         ret = pxa3xx_nand_config_flash(info, f);
987         if (ret) {
988                 dev_err(&info->pdev->dev, "ERROR! Configure failed\n");
989                 return ret;
990         }
991
992         pxa3xx_flash_ids[0].name = f->name;
993         pxa3xx_flash_ids[0].id = (f->chip_id >> 8) & 0xffff;
994         pxa3xx_flash_ids[0].pagesize = f->page_size;
995         chipsize = (uint64_t)f->num_blocks * f->page_per_block * f->page_size;
996         pxa3xx_flash_ids[0].chipsize = chipsize >> 20;
997         pxa3xx_flash_ids[0].erasesize = f->page_size * f->page_per_block;
998         if (f->flash_width == 16)
999                 pxa3xx_flash_ids[0].options = NAND_BUSWIDTH_16;
1000         pxa3xx_flash_ids[1].name = NULL;
1001         def = pxa3xx_flash_ids;
1002 KEEP_CONFIG:
1003         chip->ecc.mode = NAND_ECC_HW;
1004         chip->ecc.size = host->page_size;
1005
1006         chip->options = NAND_NO_AUTOINCR;
1007         chip->options |= NAND_NO_READRDY;
1008         if (host->reg_ndcr & NDCR_DWIDTH_M)
1009                 chip->options |= NAND_BUSWIDTH_16;
1010
1011         if (nand_scan_ident(mtd, 1, def))
1012                 return -ENODEV;
1013         /* calculate addressing information */
1014         if (mtd->writesize >= 2048)
1015                 host->col_addr_cycles = 2;
1016         else
1017                 host->col_addr_cycles = 1;
1018
1019         info->oob_buff = info->data_buff + mtd->writesize;
1020         if ((mtd->size >> chip->page_shift) > 65536)
1021                 host->row_addr_cycles = 3;
1022         else
1023                 host->row_addr_cycles = 2;
1024
1025         mtd->name = mtd_names[0];
1026         return nand_scan_tail(mtd);
1027 }
1028
1029 static int alloc_nand_resource(struct platform_device *pdev)
1030 {
1031         struct pxa3xx_nand_platform_data *pdata;
1032         struct pxa3xx_nand_info *info;
1033         struct pxa3xx_nand_host *host;
1034         struct nand_chip *chip;
1035         struct mtd_info *mtd;
1036         struct resource *r;
1037         int ret, irq, cs;
1038
1039         pdata = pdev->dev.platform_data;
1040         info = kzalloc(sizeof(*info) + (sizeof(*mtd) +
1041                        sizeof(*host)) * pdata->num_cs, GFP_KERNEL);
1042         if (!info) {
1043                 dev_err(&pdev->dev, "failed to allocate memory\n");
1044                 return -ENOMEM;
1045         }
1046
1047         info->pdev = pdev;
1048         for (cs = 0; cs < pdata->num_cs; cs++) {
1049                 mtd = (struct mtd_info *)((unsigned int)&info[1] +
1050                       (sizeof(*mtd) + sizeof(*host)) * cs);
1051                 chip = (struct nand_chip *)(&mtd[1]);
1052                 host = (struct pxa3xx_nand_host *)chip;
1053                 info->host[cs] = host;
1054                 host->mtd = mtd;
1055                 host->cs = cs;
1056                 host->info_data = info;
1057                 mtd->priv = host;
1058                 mtd->owner = THIS_MODULE;
1059
1060                 chip->ecc.read_page     = pxa3xx_nand_read_page_hwecc;
1061                 chip->ecc.write_page    = pxa3xx_nand_write_page_hwecc;
1062                 chip->controller        = &info->controller;
1063                 chip->waitfunc          = pxa3xx_nand_waitfunc;
1064                 chip->select_chip       = pxa3xx_nand_select_chip;
1065                 chip->cmdfunc           = pxa3xx_nand_cmdfunc;
1066                 chip->read_word         = pxa3xx_nand_read_word;
1067                 chip->read_byte         = pxa3xx_nand_read_byte;
1068                 chip->read_buf          = pxa3xx_nand_read_buf;
1069                 chip->write_buf         = pxa3xx_nand_write_buf;
1070                 chip->verify_buf        = pxa3xx_nand_verify_buf;
1071         }
1072
1073         spin_lock_init(&chip->controller->lock);
1074         init_waitqueue_head(&chip->controller->wq);
1075         info->clk = clk_get(&pdev->dev, NULL);
1076         if (IS_ERR(info->clk)) {
1077                 dev_err(&pdev->dev, "failed to get nand clock\n");
1078                 ret = PTR_ERR(info->clk);
1079                 goto fail_free_mtd;
1080         }
1081         clk_enable(info->clk);
1082
1083         r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1084         if (r == NULL) {
1085                 dev_err(&pdev->dev, "no resource defined for data DMA\n");
1086                 ret = -ENXIO;
1087                 goto fail_put_clk;
1088         }
1089         info->drcmr_dat = r->start;
1090
1091         r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
1092         if (r == NULL) {
1093                 dev_err(&pdev->dev, "no resource defined for command DMA\n");
1094                 ret = -ENXIO;
1095                 goto fail_put_clk;
1096         }
1097         info->drcmr_cmd = r->start;
1098
1099         irq = platform_get_irq(pdev, 0);
1100         if (irq < 0) {
1101                 dev_err(&pdev->dev, "no IRQ resource defined\n");
1102                 ret = -ENXIO;
1103                 goto fail_put_clk;
1104         }
1105
1106         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1107         if (r == NULL) {
1108                 dev_err(&pdev->dev, "no IO memory resource defined\n");
1109                 ret = -ENODEV;
1110                 goto fail_put_clk;
1111         }
1112
1113         r = request_mem_region(r->start, resource_size(r), pdev->name);
1114         if (r == NULL) {
1115                 dev_err(&pdev->dev, "failed to request memory resource\n");
1116                 ret = -EBUSY;
1117                 goto fail_put_clk;
1118         }
1119
1120         info->mmio_base = ioremap(r->start, resource_size(r));
1121         if (info->mmio_base == NULL) {
1122                 dev_err(&pdev->dev, "ioremap() failed\n");
1123                 ret = -ENODEV;
1124                 goto fail_free_res;
1125         }
1126         info->mmio_phys = r->start;
1127
1128         ret = pxa3xx_nand_init_buff(info);
1129         if (ret)
1130                 goto fail_free_io;
1131
1132         /* initialize all interrupts to be disabled */
1133         disable_int(info, NDSR_MASK);
1134
1135         ret = request_irq(irq, pxa3xx_nand_irq, IRQF_DISABLED,
1136                           pdev->name, info);
1137         if (ret < 0) {
1138                 dev_err(&pdev->dev, "failed to request IRQ\n");
1139                 goto fail_free_buf;
1140         }
1141
1142         platform_set_drvdata(pdev, info);
1143
1144         return 0;
1145
1146 fail_free_buf:
1147         free_irq(irq, info);
1148         if (use_dma) {
1149                 pxa_free_dma(info->data_dma_ch);
1150                 dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE,
1151                         info->data_buff, info->data_buff_phys);
1152         } else
1153                 kfree(info->data_buff);
1154 fail_free_io:
1155         iounmap(info->mmio_base);
1156 fail_free_res:
1157         release_mem_region(r->start, resource_size(r));
1158 fail_put_clk:
1159         clk_disable(info->clk);
1160         clk_put(info->clk);
1161 fail_free_mtd:
1162         kfree(info);
1163         return ret;
1164 }
1165
1166 static int pxa3xx_nand_remove(struct platform_device *pdev)
1167 {
1168         struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1169         struct pxa3xx_nand_platform_data *pdata;
1170         struct resource *r;
1171         int irq, cs;
1172
1173         if (!info)
1174                 return 0;
1175
1176         pdata = pdev->dev.platform_data;
1177         platform_set_drvdata(pdev, NULL);
1178
1179         irq = platform_get_irq(pdev, 0);
1180         if (irq >= 0)
1181                 free_irq(irq, info);
1182         if (use_dma) {
1183                 pxa_free_dma(info->data_dma_ch);
1184                 dma_free_writecombine(&pdev->dev, MAX_BUFF_SIZE,
1185                                 info->data_buff, info->data_buff_phys);
1186         } else
1187                 kfree(info->data_buff);
1188
1189         iounmap(info->mmio_base);
1190         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1191         release_mem_region(r->start, resource_size(r));
1192
1193         clk_disable(info->clk);
1194         clk_put(info->clk);
1195
1196         for (cs = 0; cs < pdata->num_cs; cs++)
1197                 nand_release(info->host[cs]->mtd);
1198         kfree(info);
1199         return 0;
1200 }
1201
1202 static int pxa3xx_nand_probe(struct platform_device *pdev)
1203 {
1204         struct pxa3xx_nand_platform_data *pdata;
1205         struct pxa3xx_nand_info *info;
1206         int ret, cs, probe_success;
1207
1208         pdata = pdev->dev.platform_data;
1209         if (!pdata) {
1210                 dev_err(&pdev->dev, "no platform data defined\n");
1211                 return -ENODEV;
1212         }
1213
1214         ret = alloc_nand_resource(pdev);
1215         if (ret) {
1216                 dev_err(&pdev->dev, "alloc nand resource failed\n");
1217                 return ret;
1218         }
1219
1220         info = platform_get_drvdata(pdev);
1221         probe_success = 0;
1222         for (cs = 0; cs < pdata->num_cs; cs++) {
1223                 info->cs = cs;
1224                 ret = pxa3xx_nand_scan(info->host[cs]->mtd);
1225                 if (ret) {
1226                         dev_warn(&pdev->dev, "failed to scan nand at cs %d\n",
1227                                 cs);
1228                         continue;
1229                 }
1230
1231                 ret = mtd_device_parse_register(info->host[cs]->mtd, NULL, 0,
1232                                 pdata->parts[cs], pdata->nr_parts[cs]);
1233                 if (!ret)
1234                         probe_success = 1;
1235         }
1236
1237         if (!probe_success) {
1238                 pxa3xx_nand_remove(pdev);
1239                 return -ENODEV;
1240         }
1241
1242         return 0;
1243 }
1244
1245 #ifdef CONFIG_PM
1246 static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state)
1247 {
1248         struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1249         struct pxa3xx_nand_platform_data *pdata;
1250         struct mtd_info *mtd;
1251         int cs;
1252
1253         pdata = pdev->dev.platform_data;
1254         if (info->state) {
1255                 dev_err(&pdev->dev, "driver busy, state = %d\n", info->state);
1256                 return -EAGAIN;
1257         }
1258
1259         for (cs = 0; cs < pdata->num_cs; cs++) {
1260                 mtd = info->host[cs]->mtd;
1261                 mtd->suspend(mtd);
1262         }
1263
1264         return 0;
1265 }
1266
1267 static int pxa3xx_nand_resume(struct platform_device *pdev)
1268 {
1269         struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1270         struct pxa3xx_nand_platform_data *pdata;
1271         struct mtd_info *mtd;
1272         int cs;
1273
1274         pdata = pdev->dev.platform_data;
1275         /* We don't want to handle interrupt without calling mtd routine */
1276         disable_int(info, NDCR_INT_MASK);
1277
1278         /*
1279          * Directly set the chip select to a invalid value,
1280          * then the driver would reset the timing according
1281          * to current chip select at the beginning of cmdfunc
1282          */
1283         info->cs = 0xff;
1284
1285         /*
1286          * As the spec says, the NDSR would be updated to 0x1800 when
1287          * doing the nand_clk disable/enable.
1288          * To prevent it damaging state machine of the driver, clear
1289          * all status before resume
1290          */
1291         nand_writel(info, NDSR, NDSR_MASK);
1292         for (cs = 0; cs < pdata->num_cs; cs++) {
1293                 mtd = info->host[cs]->mtd;
1294                 mtd->resume(mtd);
1295         }
1296
1297         return 0;
1298 }
1299 #else
1300 #define pxa3xx_nand_suspend     NULL
1301 #define pxa3xx_nand_resume      NULL
1302 #endif
1303
1304 static struct platform_driver pxa3xx_nand_driver = {
1305         .driver = {
1306                 .name   = "pxa3xx-nand",
1307         },
1308         .probe          = pxa3xx_nand_probe,
1309         .remove         = pxa3xx_nand_remove,
1310         .suspend        = pxa3xx_nand_suspend,
1311         .resume         = pxa3xx_nand_resume,
1312 };
1313
1314 static int __init pxa3xx_nand_init(void)
1315 {
1316         return platform_driver_register(&pxa3xx_nand_driver);
1317 }
1318 module_init(pxa3xx_nand_init);
1319
1320 static void __exit pxa3xx_nand_exit(void)
1321 {
1322         platform_driver_unregister(&pxa3xx_nand_driver);
1323 }
1324 module_exit(pxa3xx_nand_exit);
1325
1326 MODULE_LICENSE("GPL");
1327 MODULE_DESCRIPTION("PXA3xx NAND controller driver");