mtd: cleanup style on pr_debug messages
[pandora-kernel.git] / drivers / mtd / nand / omap2.c
1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/jiffies.h>
16 #include <linux/sched.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/io.h>
21 #include <linux/slab.h>
22
23 #include <plat/dma.h>
24 #include <plat/gpmc.h>
25 #include <plat/nand.h>
26
27 #define DRIVER_NAME     "omap2-nand"
28 #define OMAP_NAND_TIMEOUT_MS    5000
29
30 #define NAND_Ecc_P1e            (1 << 0)
31 #define NAND_Ecc_P2e            (1 << 1)
32 #define NAND_Ecc_P4e            (1 << 2)
33 #define NAND_Ecc_P8e            (1 << 3)
34 #define NAND_Ecc_P16e           (1 << 4)
35 #define NAND_Ecc_P32e           (1 << 5)
36 #define NAND_Ecc_P64e           (1 << 6)
37 #define NAND_Ecc_P128e          (1 << 7)
38 #define NAND_Ecc_P256e          (1 << 8)
39 #define NAND_Ecc_P512e          (1 << 9)
40 #define NAND_Ecc_P1024e         (1 << 10)
41 #define NAND_Ecc_P2048e         (1 << 11)
42
43 #define NAND_Ecc_P1o            (1 << 16)
44 #define NAND_Ecc_P2o            (1 << 17)
45 #define NAND_Ecc_P4o            (1 << 18)
46 #define NAND_Ecc_P8o            (1 << 19)
47 #define NAND_Ecc_P16o           (1 << 20)
48 #define NAND_Ecc_P32o           (1 << 21)
49 #define NAND_Ecc_P64o           (1 << 22)
50 #define NAND_Ecc_P128o          (1 << 23)
51 #define NAND_Ecc_P256o          (1 << 24)
52 #define NAND_Ecc_P512o          (1 << 25)
53 #define NAND_Ecc_P1024o         (1 << 26)
54 #define NAND_Ecc_P2048o         (1 << 27)
55
56 #define TF(value)       (value ? 1 : 0)
57
58 #define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
59 #define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
60 #define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
61 #define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
62 #define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
63 #define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
64 #define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
65 #define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
66
67 #define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
68 #define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
69 #define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
70 #define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
71 #define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
72 #define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
73 #define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
74 #define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
75
76 #define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
77 #define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
78 #define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
79 #define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
80 #define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
81 #define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
82 #define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
83 #define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
84
85 #define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
86 #define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
87 #define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
88 #define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
89 #define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
90 #define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
91 #define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
92 #define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
93
94 #define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
95 #define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
96
97 /* oob info generated runtime depending on ecc algorithm and layout selected */
98 static struct nand_ecclayout omap_oobinfo;
99 /* Define some generic bad / good block scan pattern which are used
100  * while scanning a device for factory marked good / bad blocks
101  */
102 static uint8_t scan_ff_pattern[] = { 0xff };
103 static struct nand_bbt_descr bb_descrip_flashbased = {
104         .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
105         .offs = 0,
106         .len = 1,
107         .pattern = scan_ff_pattern,
108 };
109
110
111 struct omap_nand_info {
112         struct nand_hw_control          controller;
113         struct omap_nand_platform_data  *pdata;
114         struct mtd_info                 mtd;
115         struct nand_chip                nand;
116         struct platform_device          *pdev;
117
118         int                             gpmc_cs;
119         unsigned long                   phys_base;
120         struct completion               comp;
121         int                             dma_ch;
122         int                             gpmc_irq;
123         enum {
124                 OMAP_NAND_IO_READ = 0,  /* read */
125                 OMAP_NAND_IO_WRITE,     /* write */
126         } iomode;
127         u_char                          *buf;
128         int                                     buf_len;
129 };
130
131 /**
132  * omap_hwcontrol - hardware specific access to control-lines
133  * @mtd: MTD device structure
134  * @cmd: command to device
135  * @ctrl:
136  * NAND_NCE: bit 0 -> don't care
137  * NAND_CLE: bit 1 -> Command Latch
138  * NAND_ALE: bit 2 -> Address Latch
139  *
140  * NOTE: boards may use different bits for these!!
141  */
142 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
143 {
144         struct omap_nand_info *info = container_of(mtd,
145                                         struct omap_nand_info, mtd);
146
147         if (cmd != NAND_CMD_NONE) {
148                 if (ctrl & NAND_CLE)
149                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
150
151                 else if (ctrl & NAND_ALE)
152                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
153
154                 else /* NAND_NCE */
155                         gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
156         }
157 }
158
159 /**
160  * omap_read_buf8 - read data from NAND controller into buffer
161  * @mtd: MTD device structure
162  * @buf: buffer to store date
163  * @len: number of bytes to read
164  */
165 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
166 {
167         struct nand_chip *nand = mtd->priv;
168
169         ioread8_rep(nand->IO_ADDR_R, buf, len);
170 }
171
172 /**
173  * omap_write_buf8 - write buffer to NAND controller
174  * @mtd: MTD device structure
175  * @buf: data buffer
176  * @len: number of bytes to write
177  */
178 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
179 {
180         struct omap_nand_info *info = container_of(mtd,
181                                                 struct omap_nand_info, mtd);
182         u_char *p = (u_char *)buf;
183         u32     status = 0;
184
185         while (len--) {
186                 iowrite8(*p++, info->nand.IO_ADDR_W);
187                 /* wait until buffer is available for write */
188                 do {
189                         status = gpmc_read_status(GPMC_STATUS_BUFFER);
190                 } while (!status);
191         }
192 }
193
194 /**
195  * omap_read_buf16 - read data from NAND controller into buffer
196  * @mtd: MTD device structure
197  * @buf: buffer to store date
198  * @len: number of bytes to read
199  */
200 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
201 {
202         struct nand_chip *nand = mtd->priv;
203
204         ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
205 }
206
207 /**
208  * omap_write_buf16 - write buffer to NAND controller
209  * @mtd: MTD device structure
210  * @buf: data buffer
211  * @len: number of bytes to write
212  */
213 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
214 {
215         struct omap_nand_info *info = container_of(mtd,
216                                                 struct omap_nand_info, mtd);
217         u16 *p = (u16 *) buf;
218         u32     status = 0;
219         /* FIXME try bursts of writesw() or DMA ... */
220         len >>= 1;
221
222         while (len--) {
223                 iowrite16(*p++, info->nand.IO_ADDR_W);
224                 /* wait until buffer is available for write */
225                 do {
226                         status = gpmc_read_status(GPMC_STATUS_BUFFER);
227                 } while (!status);
228         }
229 }
230
231 /**
232  * omap_read_buf_pref - read data from NAND controller into buffer
233  * @mtd: MTD device structure
234  * @buf: buffer to store date
235  * @len: number of bytes to read
236  */
237 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
238 {
239         struct omap_nand_info *info = container_of(mtd,
240                                                 struct omap_nand_info, mtd);
241         uint32_t r_count = 0;
242         int ret = 0;
243         u32 *p = (u32 *)buf;
244
245         /* take care of subpage reads */
246         if (len % 4) {
247                 if (info->nand.options & NAND_BUSWIDTH_16)
248                         omap_read_buf16(mtd, buf, len % 4);
249                 else
250                         omap_read_buf8(mtd, buf, len % 4);
251                 p = (u32 *) (buf + len % 4);
252                 len -= len % 4;
253         }
254
255         /* configure and start prefetch transfer */
256         ret = gpmc_prefetch_enable(info->gpmc_cs,
257                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
258         if (ret) {
259                 /* PFPW engine is busy, use cpu copy method */
260                 if (info->nand.options & NAND_BUSWIDTH_16)
261                         omap_read_buf16(mtd, (u_char *)p, len);
262                 else
263                         omap_read_buf8(mtd, (u_char *)p, len);
264         } else {
265                 do {
266                         r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
267                         r_count = r_count >> 2;
268                         ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
269                         p += r_count;
270                         len -= r_count << 2;
271                 } while (len);
272                 /* disable and stop the PFPW engine */
273                 gpmc_prefetch_reset(info->gpmc_cs);
274         }
275 }
276
277 /**
278  * omap_write_buf_pref - write buffer to NAND controller
279  * @mtd: MTD device structure
280  * @buf: data buffer
281  * @len: number of bytes to write
282  */
283 static void omap_write_buf_pref(struct mtd_info *mtd,
284                                         const u_char *buf, int len)
285 {
286         struct omap_nand_info *info = container_of(mtd,
287                                                 struct omap_nand_info, mtd);
288         uint32_t w_count = 0;
289         int i = 0, ret = 0;
290         u16 *p = (u16 *)buf;
291         unsigned long tim, limit;
292
293         /* take care of subpage writes */
294         if (len % 2 != 0) {
295                 writeb(*buf, info->nand.IO_ADDR_W);
296                 p = (u16 *)(buf + 1);
297                 len--;
298         }
299
300         /*  configure and start prefetch transfer */
301         ret = gpmc_prefetch_enable(info->gpmc_cs,
302                         PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
303         if (ret) {
304                 /* PFPW engine is busy, use cpu copy method */
305                 if (info->nand.options & NAND_BUSWIDTH_16)
306                         omap_write_buf16(mtd, (u_char *)p, len);
307                 else
308                         omap_write_buf8(mtd, (u_char *)p, len);
309         } else {
310                 while (len) {
311                         w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
312                         w_count = w_count >> 1;
313                         for (i = 0; (i < w_count) && len; i++, len -= 2)
314                                 iowrite16(*p++, info->nand.IO_ADDR_W);
315                 }
316                 /* wait for data to flushed-out before reset the prefetch */
317                 tim = 0;
318                 limit = (loops_per_jiffy *
319                                         msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
320                 while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
321                         cpu_relax();
322
323                 /* disable and stop the PFPW engine */
324                 gpmc_prefetch_reset(info->gpmc_cs);
325         }
326 }
327
328 /*
329  * omap_nand_dma_cb: callback on the completion of dma transfer
330  * @lch: logical channel
331  * @ch_satuts: channel status
332  * @data: pointer to completion data structure
333  */
334 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
335 {
336         complete((struct completion *) data);
337 }
338
339 /*
340  * omap_nand_dma_transfer: configer and start dma transfer
341  * @mtd: MTD device structure
342  * @addr: virtual address in RAM of source/destination
343  * @len: number of data bytes to be transferred
344  * @is_write: flag for read/write operation
345  */
346 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
347                                         unsigned int len, int is_write)
348 {
349         struct omap_nand_info *info = container_of(mtd,
350                                         struct omap_nand_info, mtd);
351         enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
352                                                         DMA_FROM_DEVICE;
353         dma_addr_t dma_addr;
354         int ret;
355         unsigned long tim, limit;
356
357         /* The fifo depth is 64 bytes max.
358          * But configure the FIFO-threahold to 32 to get a sync at each frame
359          * and frame length is 32 bytes.
360          */
361         int buf_len = len >> 6;
362
363         if (addr >= high_memory) {
364                 struct page *p1;
365
366                 if (((size_t)addr & PAGE_MASK) !=
367                         ((size_t)(addr + len - 1) & PAGE_MASK))
368                         goto out_copy;
369                 p1 = vmalloc_to_page(addr);
370                 if (!p1)
371                         goto out_copy;
372                 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
373         }
374
375         dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
376         if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
377                 dev_err(&info->pdev->dev,
378                         "Couldn't DMA map a %d byte buffer\n", len);
379                 goto out_copy;
380         }
381
382         if (is_write) {
383             omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
384                                                 info->phys_base, 0, 0);
385             omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
386                                                         dma_addr, 0, 0);
387             omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
388                                         0x10, buf_len, OMAP_DMA_SYNC_FRAME,
389                                         OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
390         } else {
391             omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
392                                                 info->phys_base, 0, 0);
393             omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
394                                                         dma_addr, 0, 0);
395             omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
396                                         0x10, buf_len, OMAP_DMA_SYNC_FRAME,
397                                         OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
398         }
399         /*  configure and start prefetch transfer */
400         ret = gpmc_prefetch_enable(info->gpmc_cs,
401                         PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
402         if (ret)
403                 /* PFPW engine is busy, use cpu copy method */
404                 goto out_copy;
405
406         init_completion(&info->comp);
407
408         omap_start_dma(info->dma_ch);
409
410         /* setup and start DMA using dma_addr */
411         wait_for_completion(&info->comp);
412         tim = 0;
413         limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
414         while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
415                 cpu_relax();
416
417         /* disable and stop the PFPW engine */
418         gpmc_prefetch_reset(info->gpmc_cs);
419
420         dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
421         return 0;
422
423 out_copy:
424         if (info->nand.options & NAND_BUSWIDTH_16)
425                 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
426                         : omap_write_buf16(mtd, (u_char *) addr, len);
427         else
428                 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
429                         : omap_write_buf8(mtd, (u_char *) addr, len);
430         return 0;
431 }
432
433 /**
434  * omap_read_buf_dma_pref - read data from NAND controller into buffer
435  * @mtd: MTD device structure
436  * @buf: buffer to store date
437  * @len: number of bytes to read
438  */
439 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
440 {
441         if (len <= mtd->oobsize)
442                 omap_read_buf_pref(mtd, buf, len);
443         else
444                 /* start transfer in DMA mode */
445                 omap_nand_dma_transfer(mtd, buf, len, 0x0);
446 }
447
448 /**
449  * omap_write_buf_dma_pref - write buffer to NAND controller
450  * @mtd: MTD device structure
451  * @buf: data buffer
452  * @len: number of bytes to write
453  */
454 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
455                                         const u_char *buf, int len)
456 {
457         if (len <= mtd->oobsize)
458                 omap_write_buf_pref(mtd, buf, len);
459         else
460                 /* start transfer in DMA mode */
461                 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
462 }
463
464 /*
465  * omap_nand_irq - GMPC irq handler
466  * @this_irq: gpmc irq number
467  * @dev: omap_nand_info structure pointer is passed here
468  */
469 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
470 {
471         struct omap_nand_info *info = (struct omap_nand_info *) dev;
472         u32 bytes;
473         u32 irq_stat;
474
475         irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
476         bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
477         bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
478         if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
479                 if (irq_stat & 0x2)
480                         goto done;
481
482                 if (info->buf_len && (info->buf_len < bytes))
483                         bytes = info->buf_len;
484                 else if (!info->buf_len)
485                         bytes = 0;
486                 iowrite32_rep(info->nand.IO_ADDR_W,
487                                                 (u32 *)info->buf, bytes >> 2);
488                 info->buf = info->buf + bytes;
489                 info->buf_len -= bytes;
490
491         } else {
492                 ioread32_rep(info->nand.IO_ADDR_R,
493                                                 (u32 *)info->buf, bytes >> 2);
494                 info->buf = info->buf + bytes;
495
496                 if (irq_stat & 0x2)
497                         goto done;
498         }
499         gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
500
501         return IRQ_HANDLED;
502
503 done:
504         complete(&info->comp);
505         /* disable irq */
506         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
507
508         /* clear status */
509         gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
510
511         return IRQ_HANDLED;
512 }
513
514 /*
515  * omap_read_buf_irq_pref - read data from NAND controller into buffer
516  * @mtd: MTD device structure
517  * @buf: buffer to store date
518  * @len: number of bytes to read
519  */
520 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
521 {
522         struct omap_nand_info *info = container_of(mtd,
523                                                 struct omap_nand_info, mtd);
524         int ret = 0;
525
526         if (len <= mtd->oobsize) {
527                 omap_read_buf_pref(mtd, buf, len);
528                 return;
529         }
530
531         info->iomode = OMAP_NAND_IO_READ;
532         info->buf = buf;
533         init_completion(&info->comp);
534
535         /*  configure and start prefetch transfer */
536         ret = gpmc_prefetch_enable(info->gpmc_cs,
537                         PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
538         if (ret)
539                 /* PFPW engine is busy, use cpu copy method */
540                 goto out_copy;
541
542         info->buf_len = len;
543         /* enable irq */
544         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
545                 (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
546
547         /* waiting for read to complete */
548         wait_for_completion(&info->comp);
549
550         /* disable and stop the PFPW engine */
551         gpmc_prefetch_reset(info->gpmc_cs);
552         return;
553
554 out_copy:
555         if (info->nand.options & NAND_BUSWIDTH_16)
556                 omap_read_buf16(mtd, buf, len);
557         else
558                 omap_read_buf8(mtd, buf, len);
559 }
560
561 /*
562  * omap_write_buf_irq_pref - write buffer to NAND controller
563  * @mtd: MTD device structure
564  * @buf: data buffer
565  * @len: number of bytes to write
566  */
567 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
568                                         const u_char *buf, int len)
569 {
570         struct omap_nand_info *info = container_of(mtd,
571                                                 struct omap_nand_info, mtd);
572         int ret = 0;
573         unsigned long tim, limit;
574
575         if (len <= mtd->oobsize) {
576                 omap_write_buf_pref(mtd, buf, len);
577                 return;
578         }
579
580         info->iomode = OMAP_NAND_IO_WRITE;
581         info->buf = (u_char *) buf;
582         init_completion(&info->comp);
583
584         /* configure and start prefetch transfer : size=24 */
585         ret = gpmc_prefetch_enable(info->gpmc_cs,
586                         (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
587         if (ret)
588                 /* PFPW engine is busy, use cpu copy method */
589                 goto out_copy;
590
591         info->buf_len = len;
592         /* enable irq */
593         gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
594                         (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
595
596         /* waiting for write to complete */
597         wait_for_completion(&info->comp);
598         /* wait for data to flushed-out before reset the prefetch */
599         tim = 0;
600         limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
601         while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
602                 cpu_relax();
603
604         /* disable and stop the PFPW engine */
605         gpmc_prefetch_reset(info->gpmc_cs);
606         return;
607
608 out_copy:
609         if (info->nand.options & NAND_BUSWIDTH_16)
610                 omap_write_buf16(mtd, buf, len);
611         else
612                 omap_write_buf8(mtd, buf, len);
613 }
614
615 /**
616  * omap_verify_buf - Verify chip data against buffer
617  * @mtd: MTD device structure
618  * @buf: buffer containing the data to compare
619  * @len: number of bytes to compare
620  */
621 static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
622 {
623         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
624                                                         mtd);
625         u16 *p = (u16 *) buf;
626
627         len >>= 1;
628         while (len--) {
629                 if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
630                         return -EFAULT;
631         }
632
633         return 0;
634 }
635
636 /**
637  * gen_true_ecc - This function will generate true ECC value
638  * @ecc_buf: buffer to store ecc code
639  *
640  * This generated true ECC value can be used when correcting
641  * data read from NAND flash memory core
642  */
643 static void gen_true_ecc(u8 *ecc_buf)
644 {
645         u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
646                 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
647
648         ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
649                         P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
650         ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
651                         P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
652         ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
653                         P1e(tmp) | P2048o(tmp) | P2048e(tmp));
654 }
655
656 /**
657  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
658  * @ecc_data1:  ecc code from nand spare area
659  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
660  * @page_data:  page data
661  *
662  * This function compares two ECC's and indicates if there is an error.
663  * If the error can be corrected it will be corrected to the buffer.
664  * If there is no error, %0 is returned. If there is an error but it
665  * was corrected, %1 is returned. Otherwise, %-1 is returned.
666  */
667 static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
668                             u8 *ecc_data2,      /* read from register */
669                             u8 *page_data)
670 {
671         uint    i;
672         u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
673         u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
674         u8      ecc_bit[24];
675         u8      ecc_sum = 0;
676         u8      find_bit = 0;
677         uint    find_byte = 0;
678         int     isEccFF;
679
680         isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
681
682         gen_true_ecc(ecc_data1);
683         gen_true_ecc(ecc_data2);
684
685         for (i = 0; i <= 2; i++) {
686                 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
687                 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
688         }
689
690         for (i = 0; i < 8; i++) {
691                 tmp0_bit[i]     = *ecc_data1 % 2;
692                 *ecc_data1      = *ecc_data1 / 2;
693         }
694
695         for (i = 0; i < 8; i++) {
696                 tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
697                 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
698         }
699
700         for (i = 0; i < 8; i++) {
701                 tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
702                 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
703         }
704
705         for (i = 0; i < 8; i++) {
706                 comp0_bit[i]     = *ecc_data2 % 2;
707                 *ecc_data2       = *ecc_data2 / 2;
708         }
709
710         for (i = 0; i < 8; i++) {
711                 comp1_bit[i]     = *(ecc_data2 + 1) % 2;
712                 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
713         }
714
715         for (i = 0; i < 8; i++) {
716                 comp2_bit[i]     = *(ecc_data2 + 2) % 2;
717                 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
718         }
719
720         for (i = 0; i < 6; i++)
721                 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
722
723         for (i = 0; i < 8; i++)
724                 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
725
726         for (i = 0; i < 8; i++)
727                 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
728
729         ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
730         ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
731
732         for (i = 0; i < 24; i++)
733                 ecc_sum += ecc_bit[i];
734
735         switch (ecc_sum) {
736         case 0:
737                 /* Not reached because this function is not called if
738                  *  ECC values are equal
739                  */
740                 return 0;
741
742         case 1:
743                 /* Uncorrectable error */
744                 pr_debug("ECC UNCORRECTED_ERROR 1\n");
745                 return -1;
746
747         case 11:
748                 /* UN-Correctable error */
749                 pr_debug("ECC UNCORRECTED_ERROR B\n");
750                 return -1;
751
752         case 12:
753                 /* Correctable error */
754                 find_byte = (ecc_bit[23] << 8) +
755                             (ecc_bit[21] << 7) +
756                             (ecc_bit[19] << 6) +
757                             (ecc_bit[17] << 5) +
758                             (ecc_bit[15] << 4) +
759                             (ecc_bit[13] << 3) +
760                             (ecc_bit[11] << 2) +
761                             (ecc_bit[9]  << 1) +
762                             ecc_bit[7];
763
764                 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
765
766                 pr_debug("Correcting single bit ECC error at offset: "
767                                 "%d, bit: %d\n", find_byte, find_bit);
768
769                 page_data[find_byte] ^= (1 << find_bit);
770
771                 return 1;
772         default:
773                 if (isEccFF) {
774                         if (ecc_data2[0] == 0 &&
775                             ecc_data2[1] == 0 &&
776                             ecc_data2[2] == 0)
777                                 return 0;
778                 }
779                 pr_debug("UNCORRECTED_ERROR default\n");
780                 return -1;
781         }
782 }
783
784 /**
785  * omap_correct_data - Compares the ECC read with HW generated ECC
786  * @mtd: MTD device structure
787  * @dat: page data
788  * @read_ecc: ecc read from nand flash
789  * @calc_ecc: ecc read from HW ECC registers
790  *
791  * Compares the ecc read from nand spare area with ECC registers values
792  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
793  * detection and correction. If there are no errors, %0 is returned. If
794  * there were errors and all of the errors were corrected, the number of
795  * corrected errors is returned. If uncorrectable errors exist, %-1 is
796  * returned.
797  */
798 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
799                                 u_char *read_ecc, u_char *calc_ecc)
800 {
801         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
802                                                         mtd);
803         int blockCnt = 0, i = 0, ret = 0;
804         int stat = 0;
805
806         /* Ex NAND_ECC_HW12_2048 */
807         if ((info->nand.ecc.mode == NAND_ECC_HW) &&
808                         (info->nand.ecc.size  == 2048))
809                 blockCnt = 4;
810         else
811                 blockCnt = 1;
812
813         for (i = 0; i < blockCnt; i++) {
814                 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
815                         ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
816                         if (ret < 0)
817                                 return ret;
818                         /* keep track of the number of corrected errors */
819                         stat += ret;
820                 }
821                 read_ecc += 3;
822                 calc_ecc += 3;
823                 dat      += 512;
824         }
825         return stat;
826 }
827
828 /**
829  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
830  * @mtd: MTD device structure
831  * @dat: The pointer to data on which ecc is computed
832  * @ecc_code: The ecc_code buffer
833  *
834  * Using noninverted ECC can be considered ugly since writing a blank
835  * page ie. padding will clear the ECC bytes. This is no problem as long
836  * nobody is trying to write data on the seemingly unused page. Reading
837  * an erased page will produce an ECC mismatch between generated and read
838  * ECC bytes that has to be dealt with separately.
839  */
840 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
841                                 u_char *ecc_code)
842 {
843         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
844                                                         mtd);
845         return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
846 }
847
848 /**
849  * omap_enable_hwecc - This function enables the hardware ecc functionality
850  * @mtd: MTD device structure
851  * @mode: Read/Write mode
852  */
853 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
854 {
855         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
856                                                         mtd);
857         struct nand_chip *chip = mtd->priv;
858         unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
859
860         gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
861 }
862
863 /**
864  * omap_wait - wait until the command is done
865  * @mtd: MTD device structure
866  * @chip: NAND Chip structure
867  *
868  * Wait function is called during Program and erase operations and
869  * the way it is called from MTD layer, we should wait till the NAND
870  * chip is ready after the programming/erase operation has completed.
871  *
872  * Erase can take up to 400ms and program up to 20ms according to
873  * general NAND and SmartMedia specs
874  */
875 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
876 {
877         struct nand_chip *this = mtd->priv;
878         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
879                                                         mtd);
880         unsigned long timeo = jiffies;
881         int status = NAND_STATUS_FAIL, state = this->state;
882
883         if (state == FL_ERASING)
884                 timeo += (HZ * 400) / 1000;
885         else
886                 timeo += (HZ * 20) / 1000;
887
888         gpmc_nand_write(info->gpmc_cs,
889                         GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
890         while (time_before(jiffies, timeo)) {
891                 status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
892                 if (status & NAND_STATUS_READY)
893                         break;
894                 cond_resched();
895         }
896         return status;
897 }
898
899 /**
900  * omap_dev_ready - calls the platform specific dev_ready function
901  * @mtd: MTD device structure
902  */
903 static int omap_dev_ready(struct mtd_info *mtd)
904 {
905         unsigned int val = 0;
906         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
907                                                         mtd);
908
909         val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
910         if ((val & 0x100) == 0x100) {
911                 /* Clear IRQ Interrupt */
912                 val |= 0x100;
913                 val &= ~(0x0);
914                 gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
915         } else {
916                 unsigned int cnt = 0;
917                 while (cnt++ < 0x1FF) {
918                         if  ((val & 0x100) == 0x100)
919                                 return 0;
920                         val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
921                 }
922         }
923
924         return 1;
925 }
926
927 static int __devinit omap_nand_probe(struct platform_device *pdev)
928 {
929         struct omap_nand_info           *info;
930         struct omap_nand_platform_data  *pdata;
931         int                             err;
932         int                             i, offset;
933
934         pdata = pdev->dev.platform_data;
935         if (pdata == NULL) {
936                 dev_err(&pdev->dev, "platform data missing\n");
937                 return -ENODEV;
938         }
939
940         info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
941         if (!info)
942                 return -ENOMEM;
943
944         platform_set_drvdata(pdev, info);
945
946         spin_lock_init(&info->controller.lock);
947         init_waitqueue_head(&info->controller.wq);
948
949         info->pdev = pdev;
950
951         info->gpmc_cs           = pdata->cs;
952         info->phys_base         = pdata->phys_base;
953
954         info->mtd.priv          = &info->nand;
955         info->mtd.name          = dev_name(&pdev->dev);
956         info->mtd.owner         = THIS_MODULE;
957
958         info->nand.options      = pdata->devsize;
959         info->nand.options      |= NAND_SKIP_BBTSCAN;
960
961         /* NAND write protect off */
962         gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
963
964         if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
965                                 pdev->dev.driver->name)) {
966                 err = -EBUSY;
967                 goto out_free_info;
968         }
969
970         info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
971         if (!info->nand.IO_ADDR_R) {
972                 err = -ENOMEM;
973                 goto out_release_mem_region;
974         }
975
976         info->nand.controller = &info->controller;
977
978         info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
979         info->nand.cmd_ctrl  = omap_hwcontrol;
980
981         /*
982          * If RDY/BSY line is connected to OMAP then use the omap ready
983          * funcrtion and the generic nand_wait function which reads the status
984          * register after monitoring the RDY/BSY line.Otherwise use a standard
985          * chip delay which is slightly more than tR (AC Timing) of the NAND
986          * device and read status register until you get a failure or success
987          */
988         if (pdata->dev_ready) {
989                 info->nand.dev_ready = omap_dev_ready;
990                 info->nand.chip_delay = 0;
991         } else {
992                 info->nand.waitfunc = omap_wait;
993                 info->nand.chip_delay = 50;
994         }
995
996         switch (pdata->xfer_type) {
997         case NAND_OMAP_PREFETCH_POLLED:
998                 info->nand.read_buf   = omap_read_buf_pref;
999                 info->nand.write_buf  = omap_write_buf_pref;
1000                 break;
1001
1002         case NAND_OMAP_POLLED:
1003                 if (info->nand.options & NAND_BUSWIDTH_16) {
1004                         info->nand.read_buf   = omap_read_buf16;
1005                         info->nand.write_buf  = omap_write_buf16;
1006                 } else {
1007                         info->nand.read_buf   = omap_read_buf8;
1008                         info->nand.write_buf  = omap_write_buf8;
1009                 }
1010                 break;
1011
1012         case NAND_OMAP_PREFETCH_DMA:
1013                 err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1014                                 omap_nand_dma_cb, &info->comp, &info->dma_ch);
1015                 if (err < 0) {
1016                         info->dma_ch = -1;
1017                         dev_err(&pdev->dev, "DMA request failed!\n");
1018                         goto out_release_mem_region;
1019                 } else {
1020                         omap_set_dma_dest_burst_mode(info->dma_ch,
1021                                         OMAP_DMA_DATA_BURST_16);
1022                         omap_set_dma_src_burst_mode(info->dma_ch,
1023                                         OMAP_DMA_DATA_BURST_16);
1024
1025                         info->nand.read_buf   = omap_read_buf_dma_pref;
1026                         info->nand.write_buf  = omap_write_buf_dma_pref;
1027                 }
1028                 break;
1029
1030         case NAND_OMAP_PREFETCH_IRQ:
1031                 err = request_irq(pdata->gpmc_irq,
1032                                 omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1033                 if (err) {
1034                         dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1035                                                         pdata->gpmc_irq, err);
1036                         goto out_release_mem_region;
1037                 } else {
1038                         info->gpmc_irq       = pdata->gpmc_irq;
1039                         info->nand.read_buf  = omap_read_buf_irq_pref;
1040                         info->nand.write_buf = omap_write_buf_irq_pref;
1041                 }
1042                 break;
1043
1044         default:
1045                 dev_err(&pdev->dev,
1046                         "xfer_type(%d) not supported!\n", pdata->xfer_type);
1047                 err = -EINVAL;
1048                 goto out_release_mem_region;
1049         }
1050
1051         info->nand.verify_buf = omap_verify_buf;
1052
1053         /* selsect the ecc type */
1054         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1055                 info->nand.ecc.mode = NAND_ECC_SOFT;
1056         else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1057                 (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1058                 info->nand.ecc.bytes            = 3;
1059                 info->nand.ecc.size             = 512;
1060                 info->nand.ecc.calculate        = omap_calculate_ecc;
1061                 info->nand.ecc.hwctl            = omap_enable_hwecc;
1062                 info->nand.ecc.correct          = omap_correct_data;
1063                 info->nand.ecc.mode             = NAND_ECC_HW;
1064         }
1065
1066         /* DIP switches on some boards change between 8 and 16 bit
1067          * bus widths for flash.  Try the other width if the first try fails.
1068          */
1069         if (nand_scan_ident(&info->mtd, 1, NULL)) {
1070                 info->nand.options ^= NAND_BUSWIDTH_16;
1071                 if (nand_scan_ident(&info->mtd, 1, NULL)) {
1072                         err = -ENXIO;
1073                         goto out_release_mem_region;
1074                 }
1075         }
1076
1077         /* rom code layout */
1078         if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1079
1080                 if (info->nand.options & NAND_BUSWIDTH_16)
1081                         offset = 2;
1082                 else {
1083                         offset = 1;
1084                         info->nand.badblock_pattern = &bb_descrip_flashbased;
1085                 }
1086                 omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1087                 for (i = 0; i < omap_oobinfo.eccbytes; i++)
1088                         omap_oobinfo.eccpos[i] = i+offset;
1089
1090                 omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1091                 omap_oobinfo.oobfree->length = info->mtd.oobsize -
1092                                         (offset + omap_oobinfo.eccbytes);
1093
1094                 info->nand.ecc.layout = &omap_oobinfo;
1095         }
1096
1097         /* second phase scan */
1098         if (nand_scan_tail(&info->mtd)) {
1099                 err = -ENXIO;
1100                 goto out_release_mem_region;
1101         }
1102
1103         mtd_device_parse_register(&info->mtd, NULL, 0,
1104                         pdata->parts, pdata->nr_parts);
1105
1106         platform_set_drvdata(pdev, &info->mtd);
1107
1108         return 0;
1109
1110 out_release_mem_region:
1111         release_mem_region(info->phys_base, NAND_IO_SIZE);
1112 out_free_info:
1113         kfree(info);
1114
1115         return err;
1116 }
1117
1118 static int omap_nand_remove(struct platform_device *pdev)
1119 {
1120         struct mtd_info *mtd = platform_get_drvdata(pdev);
1121         struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1122                                                         mtd);
1123
1124         platform_set_drvdata(pdev, NULL);
1125         if (info->dma_ch != -1)
1126                 omap_free_dma(info->dma_ch);
1127
1128         if (info->gpmc_irq)
1129                 free_irq(info->gpmc_irq, info);
1130
1131         /* Release NAND device, its internal structures and partitions */
1132         nand_release(&info->mtd);
1133         iounmap(info->nand.IO_ADDR_R);
1134         kfree(&info->mtd);
1135         return 0;
1136 }
1137
1138 static struct platform_driver omap_nand_driver = {
1139         .probe          = omap_nand_probe,
1140         .remove         = omap_nand_remove,
1141         .driver         = {
1142                 .name   = DRIVER_NAME,
1143                 .owner  = THIS_MODULE,
1144         },
1145 };
1146
1147 static int __init omap_nand_init(void)
1148 {
1149         pr_info("%s driver initializing\n", DRIVER_NAME);
1150
1151         return platform_driver_register(&omap_nand_driver);
1152 }
1153
1154 static void __exit omap_nand_exit(void)
1155 {
1156         platform_driver_unregister(&omap_nand_driver);
1157 }
1158
1159 module_init(omap_nand_init);
1160 module_exit(omap_nand_exit);
1161
1162 MODULE_ALIAS("platform:" DRIVER_NAME);
1163 MODULE_LICENSE("GPL");
1164 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");