Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
41 #include <linux/sched.h>
42 #include <linux/fs.h>
43 #include <linux/pagemap.h>
44
45 /* Default simulator parameters values */
46 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
47     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
48     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
49     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
50 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
51 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
52 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
53 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
54 #endif
55
56 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
57 #define CONFIG_NANDSIM_ACCESS_DELAY 25
58 #endif
59 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
60 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
61 #endif
62 #ifndef CONFIG_NANDSIM_ERASE_DELAY
63 #define CONFIG_NANDSIM_ERASE_DELAY 2
64 #endif
65 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
66 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
67 #endif
68 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
69 #define CONFIG_NANDSIM_INPUT_CYCLE  50
70 #endif
71 #ifndef CONFIG_NANDSIM_BUS_WIDTH
72 #define CONFIG_NANDSIM_BUS_WIDTH  8
73 #endif
74 #ifndef CONFIG_NANDSIM_DO_DELAYS
75 #define CONFIG_NANDSIM_DO_DELAYS  0
76 #endif
77 #ifndef CONFIG_NANDSIM_LOG
78 #define CONFIG_NANDSIM_LOG        0
79 #endif
80 #ifndef CONFIG_NANDSIM_DBG
81 #define CONFIG_NANDSIM_DBG        0
82 #endif
83 #ifndef CONFIG_NANDSIM_MAX_PARTS
84 #define CONFIG_NANDSIM_MAX_PARTS  32
85 #endif
86
87 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
88 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
89 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
90 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
91 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
92 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
93 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
94 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
95 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
96 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
97 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
98 static uint log            = CONFIG_NANDSIM_LOG;
99 static uint dbg            = CONFIG_NANDSIM_DBG;
100 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
101 static unsigned int parts_num;
102 static char *badblocks = NULL;
103 static char *weakblocks = NULL;
104 static char *weakpages = NULL;
105 static unsigned int bitflips = 0;
106 static char *gravepages = NULL;
107 static unsigned int rptwear = 0;
108 static unsigned int overridesize = 0;
109 static char *cache_file = NULL;
110
111 module_param(first_id_byte,  uint, 0400);
112 module_param(second_id_byte, uint, 0400);
113 module_param(third_id_byte,  uint, 0400);
114 module_param(fourth_id_byte, uint, 0400);
115 module_param(access_delay,   uint, 0400);
116 module_param(programm_delay, uint, 0400);
117 module_param(erase_delay,    uint, 0400);
118 module_param(output_cycle,   uint, 0400);
119 module_param(input_cycle,    uint, 0400);
120 module_param(bus_width,      uint, 0400);
121 module_param(do_delays,      uint, 0400);
122 module_param(log,            uint, 0400);
123 module_param(dbg,            uint, 0400);
124 module_param_array(parts, ulong, &parts_num, 0400);
125 module_param(badblocks,      charp, 0400);
126 module_param(weakblocks,     charp, 0400);
127 module_param(weakpages,      charp, 0400);
128 module_param(bitflips,       uint, 0400);
129 module_param(gravepages,     charp, 0400);
130 module_param(rptwear,        uint, 0400);
131 module_param(overridesize,   uint, 0400);
132 module_param(cache_file,     charp, 0400);
133
134 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
135 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
136 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
137 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
138 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
139 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
140 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
141 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
142 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
143 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
144 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
145 MODULE_PARM_DESC(log,            "Perform logging if not zero");
146 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
147 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
148 /* Page and erase block positions for the following parameters are independent of any partitions */
149 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
150 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
151                                  " separated by commas e.g. 113:2 means eb 113"
152                                  " can be erased only twice before failing");
153 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
154                                  " separated by commas e.g. 1401:2 means page 1401"
155                                  " can be written only twice before failing");
156 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
157 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
158                                  " separated by commas e.g. 1401:2 means page 1401"
159                                  " can be read only twice before failing");
160 MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
161 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
162                                  "The size is specified in erase blocks and as the exponent of a power of two"
163                                  " e.g. 5 means a size of 32 erase blocks");
164 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
165
166 /* The largest possible page size */
167 #define NS_LARGEST_PAGE_SIZE    4096
168
169 /* The prefix for simulator output */
170 #define NS_OUTPUT_PREFIX "[nandsim]"
171
172 /* Simulator's output macros (logging, debugging, warning, error) */
173 #define NS_LOG(args...) \
174         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
175 #define NS_DBG(args...) \
176         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
177 #define NS_WARN(args...) \
178         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
179 #define NS_ERR(args...) \
180         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
181 #define NS_INFO(args...) \
182         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
183
184 /* Busy-wait delay macros (microseconds, milliseconds) */
185 #define NS_UDELAY(us) \
186         do { if (do_delays) udelay(us); } while(0)
187 #define NS_MDELAY(us) \
188         do { if (do_delays) mdelay(us); } while(0)
189
190 /* Is the nandsim structure initialized ? */
191 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
192
193 /* Good operation completion status */
194 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
195
196 /* Operation failed completion status */
197 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
198
199 /* Calculate the page offset in flash RAM image by (row, column) address */
200 #define NS_RAW_OFFSET(ns) \
201         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
202
203 /* Calculate the OOB offset in flash RAM image by (row, column) address */
204 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
205
206 /* After a command is input, the simulator goes to one of the following states */
207 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
208 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
209 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
210 #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
211 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
212 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
213 #define STATE_CMD_STATUS       0x00000007 /* read status */
214 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
215 #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
216 #define STATE_CMD_READID       0x0000000A /* read ID */
217 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
218 #define STATE_CMD_RESET        0x0000000C /* reset */
219 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
220 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
221 #define STATE_CMD_MASK         0x0000000F /* command states mask */
222
223 /* After an address is input, the simulator goes to one of these states */
224 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
225 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
226 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
227 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
228 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
229
230 /* Durind data input/output the simulator is in these states */
231 #define STATE_DATAIN           0x00000100 /* waiting for data input */
232 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
233
234 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
235 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
236 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
237 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
238 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
239
240 /* Previous operation is done, ready to accept new requests */
241 #define STATE_READY            0x00000000
242
243 /* This state is used to mark that the next state isn't known yet */
244 #define STATE_UNKNOWN          0x10000000
245
246 /* Simulator's actions bit masks */
247 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
248 #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
249 #define ACTION_SECERASE  0x00300000 /* erase sector */
250 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
251 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
252 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
253 #define ACTION_MASK      0x00700000 /* action mask */
254
255 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
256 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
257
258 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
259 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
260 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
261 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
262 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
263 #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
264 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
265 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
266 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
267 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
268
269 /* Remove action bits ftom state */
270 #define NS_STATE(x) ((x) & ~ACTION_MASK)
271
272 /*
273  * Maximum previous states which need to be saved. Currently saving is
274  * only needed for page programm operation with preceeded read command
275  * (which is only valid for 512-byte pages).
276  */
277 #define NS_MAX_PREVSTATES 1
278
279 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
280 #define NS_MAX_HELD_PAGES 16
281
282 /*
283  * A union to represent flash memory contents and flash buffer.
284  */
285 union ns_mem {
286         u_char *byte;    /* for byte access */
287         uint16_t *word;  /* for 16-bit word access */
288 };
289
290 /*
291  * The structure which describes all the internal simulator data.
292  */
293 struct nandsim {
294         struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
295         unsigned int nbparts;
296
297         uint busw;              /* flash chip bus width (8 or 16) */
298         u_char ids[4];          /* chip's ID bytes */
299         uint32_t options;       /* chip's characteristic bits */
300         uint32_t state;         /* current chip state */
301         uint32_t nxstate;       /* next expected state */
302
303         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
304         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
305         uint16_t npstates;      /* number of previous states saved */
306         uint16_t stateidx;      /* current state index */
307
308         /* The simulated NAND flash pages array */
309         union ns_mem *pages;
310
311         /* Slab allocator for nand pages */
312         struct kmem_cache *nand_pages_slab;
313
314         /* Internal buffer of page + OOB size bytes */
315         union ns_mem buf;
316
317         /* NAND flash "geometry" */
318         struct {
319                 uint64_t totsz;     /* total flash size, bytes */
320                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
321                 uint pgsz;          /* NAND flash page size, bytes */
322                 uint oobsz;         /* page OOB area size, bytes */
323                 uint64_t totszoob;  /* total flash size including OOB, bytes */
324                 uint pgszoob;       /* page size including OOB , bytes*/
325                 uint secszoob;      /* sector size including OOB, bytes */
326                 uint pgnum;         /* total number of pages */
327                 uint pgsec;         /* number of pages per sector */
328                 uint secshift;      /* bits number in sector size */
329                 uint pgshift;       /* bits number in page size */
330                 uint oobshift;      /* bits number in OOB size */
331                 uint pgaddrbytes;   /* bytes per page address */
332                 uint secaddrbytes;  /* bytes per sector address */
333                 uint idbytes;       /* the number ID bytes that this chip outputs */
334         } geom;
335
336         /* NAND flash internal registers */
337         struct {
338                 unsigned command; /* the command register */
339                 u_char   status;  /* the status register */
340                 uint     row;     /* the page number */
341                 uint     column;  /* the offset within page */
342                 uint     count;   /* internal counter */
343                 uint     num;     /* number of bytes which must be processed */
344                 uint     off;     /* fixed page offset */
345         } regs;
346
347         /* NAND flash lines state */
348         struct {
349                 int ce;  /* chip Enable */
350                 int cle; /* command Latch Enable */
351                 int ale; /* address Latch Enable */
352                 int wp;  /* write Protect */
353         } lines;
354
355         /* Fields needed when using a cache file */
356         struct file *cfile; /* Open file */
357         unsigned char *pages_written; /* Which pages have been written */
358         void *file_buf;
359         struct page *held_pages[NS_MAX_HELD_PAGES];
360         int held_cnt;
361 };
362
363 /*
364  * Operations array. To perform any operation the simulator must pass
365  * through the correspondent states chain.
366  */
367 static struct nandsim_operations {
368         uint32_t reqopts;  /* options which are required to perform the operation */
369         uint32_t states[NS_OPER_STATES]; /* operation's states */
370 } ops[NS_OPER_NUM] = {
371         /* Read page + OOB from the beginning */
372         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
373                         STATE_DATAOUT, STATE_READY}},
374         /* Read page + OOB from the second half */
375         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
376                         STATE_DATAOUT, STATE_READY}},
377         /* Read OOB */
378         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
379                         STATE_DATAOUT, STATE_READY}},
380         /* Programm page starting from the beginning */
381         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
382                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
383         /* Programm page starting from the beginning */
384         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
385                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
386         /* Programm page starting from the second half */
387         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
388                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
389         /* Programm OOB */
390         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
391                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
392         /* Erase sector */
393         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
394         /* Read status */
395         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
396         /* Read multi-plane status */
397         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
398         /* Read ID */
399         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
400         /* Large page devices read page */
401         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
402                                STATE_DATAOUT, STATE_READY}},
403         /* Large page devices random page read */
404         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
405                                STATE_DATAOUT, STATE_READY}},
406 };
407
408 struct weak_block {
409         struct list_head list;
410         unsigned int erase_block_no;
411         unsigned int max_erases;
412         unsigned int erases_done;
413 };
414
415 static LIST_HEAD(weak_blocks);
416
417 struct weak_page {
418         struct list_head list;
419         unsigned int page_no;
420         unsigned int max_writes;
421         unsigned int writes_done;
422 };
423
424 static LIST_HEAD(weak_pages);
425
426 struct grave_page {
427         struct list_head list;
428         unsigned int page_no;
429         unsigned int max_reads;
430         unsigned int reads_done;
431 };
432
433 static LIST_HEAD(grave_pages);
434
435 static unsigned long *erase_block_wear = NULL;
436 static unsigned int wear_eb_count = 0;
437 static unsigned long total_wear = 0;
438 static unsigned int rptwear_cnt = 0;
439
440 /* MTD structure for NAND controller */
441 static struct mtd_info *nsmtd;
442
443 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
444
445 /*
446  * Allocate array of page pointers, create slab allocation for an array
447  * and initialize the array by NULL pointers.
448  *
449  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
450  */
451 static int alloc_device(struct nandsim *ns)
452 {
453         struct file *cfile;
454         int i, err;
455
456         if (cache_file) {
457                 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
458                 if (IS_ERR(cfile))
459                         return PTR_ERR(cfile);
460                 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
461                         NS_ERR("alloc_device: cache file not readable\n");
462                         err = -EINVAL;
463                         goto err_close;
464                 }
465                 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
466                         NS_ERR("alloc_device: cache file not writeable\n");
467                         err = -EINVAL;
468                         goto err_close;
469                 }
470                 ns->pages_written = vmalloc(ns->geom.pgnum);
471                 if (!ns->pages_written) {
472                         NS_ERR("alloc_device: unable to allocate pages written array\n");
473                         err = -ENOMEM;
474                         goto err_close;
475                 }
476                 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
477                 if (!ns->file_buf) {
478                         NS_ERR("alloc_device: unable to allocate file buf\n");
479                         err = -ENOMEM;
480                         goto err_free;
481                 }
482                 ns->cfile = cfile;
483                 memset(ns->pages_written, 0, ns->geom.pgnum);
484                 return 0;
485         }
486
487         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
488         if (!ns->pages) {
489                 NS_ERR("alloc_device: unable to allocate page array\n");
490                 return -ENOMEM;
491         }
492         for (i = 0; i < ns->geom.pgnum; i++) {
493                 ns->pages[i].byte = NULL;
494         }
495         ns->nand_pages_slab = kmem_cache_create("nandsim",
496                                                 ns->geom.pgszoob, 0, 0, NULL);
497         if (!ns->nand_pages_slab) {
498                 NS_ERR("cache_create: unable to create kmem_cache\n");
499                 return -ENOMEM;
500         }
501
502         return 0;
503
504 err_free:
505         vfree(ns->pages_written);
506 err_close:
507         filp_close(cfile, NULL);
508         return err;
509 }
510
511 /*
512  * Free any allocated pages, and free the array of page pointers.
513  */
514 static void free_device(struct nandsim *ns)
515 {
516         int i;
517
518         if (ns->cfile) {
519                 kfree(ns->file_buf);
520                 vfree(ns->pages_written);
521                 filp_close(ns->cfile, NULL);
522                 return;
523         }
524
525         if (ns->pages) {
526                 for (i = 0; i < ns->geom.pgnum; i++) {
527                         if (ns->pages[i].byte)
528                                 kmem_cache_free(ns->nand_pages_slab,
529                                                 ns->pages[i].byte);
530                 }
531                 kmem_cache_destroy(ns->nand_pages_slab);
532                 vfree(ns->pages);
533         }
534 }
535
536 static char *get_partition_name(int i)
537 {
538         char buf[64];
539         sprintf(buf, "NAND simulator partition %d", i);
540         return kstrdup(buf, GFP_KERNEL);
541 }
542
543 static uint64_t divide(uint64_t n, uint32_t d)
544 {
545         do_div(n, d);
546         return n;
547 }
548
549 /*
550  * Initialize the nandsim structure.
551  *
552  * RETURNS: 0 if success, -ERRNO if failure.
553  */
554 static int init_nandsim(struct mtd_info *mtd)
555 {
556         struct nand_chip *chip = mtd->priv;
557         struct nandsim   *ns   = chip->priv;
558         int i, ret = 0;
559         uint64_t remains;
560         uint64_t next_offset;
561
562         if (NS_IS_INITIALIZED(ns)) {
563                 NS_ERR("init_nandsim: nandsim is already initialized\n");
564                 return -EIO;
565         }
566
567         /* Force mtd to not do delays */
568         chip->chip_delay = 0;
569
570         /* Initialize the NAND flash parameters */
571         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
572         ns->geom.totsz    = mtd->size;
573         ns->geom.pgsz     = mtd->writesize;
574         ns->geom.oobsz    = mtd->oobsize;
575         ns->geom.secsz    = mtd->erasesize;
576         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
577         ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
578         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
579         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
580         ns->geom.pgshift  = chip->page_shift;
581         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
582         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
583         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
584         ns->options = 0;
585
586         if (ns->geom.pgsz == 256) {
587                 ns->options |= OPT_PAGE256;
588         }
589         else if (ns->geom.pgsz == 512) {
590                 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
591                 if (ns->busw == 8)
592                         ns->options |= OPT_PAGE512_8BIT;
593         } else if (ns->geom.pgsz == 2048) {
594                 ns->options |= OPT_PAGE2048;
595         } else if (ns->geom.pgsz == 4096) {
596                 ns->options |= OPT_PAGE4096;
597         } else {
598                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
599                 return -EIO;
600         }
601
602         if (ns->options & OPT_SMALLPAGE) {
603                 if (ns->geom.totsz <= (32 << 20)) {
604                         ns->geom.pgaddrbytes  = 3;
605                         ns->geom.secaddrbytes = 2;
606                 } else {
607                         ns->geom.pgaddrbytes  = 4;
608                         ns->geom.secaddrbytes = 3;
609                 }
610         } else {
611                 if (ns->geom.totsz <= (128 << 20)) {
612                         ns->geom.pgaddrbytes  = 4;
613                         ns->geom.secaddrbytes = 2;
614                 } else {
615                         ns->geom.pgaddrbytes  = 5;
616                         ns->geom.secaddrbytes = 3;
617                 }
618         }
619
620         /* Fill the partition_info structure */
621         if (parts_num > ARRAY_SIZE(ns->partitions)) {
622                 NS_ERR("too many partitions.\n");
623                 ret = -EINVAL;
624                 goto error;
625         }
626         remains = ns->geom.totsz;
627         next_offset = 0;
628         for (i = 0; i < parts_num; ++i) {
629                 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
630
631                 if (!part_sz || part_sz > remains) {
632                         NS_ERR("bad partition size.\n");
633                         ret = -EINVAL;
634                         goto error;
635                 }
636                 ns->partitions[i].name   = get_partition_name(i);
637                 ns->partitions[i].offset = next_offset;
638                 ns->partitions[i].size   = part_sz;
639                 next_offset += ns->partitions[i].size;
640                 remains -= ns->partitions[i].size;
641         }
642         ns->nbparts = parts_num;
643         if (remains) {
644                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
645                         NS_ERR("too many partitions.\n");
646                         ret = -EINVAL;
647                         goto error;
648                 }
649                 ns->partitions[i].name   = get_partition_name(i);
650                 ns->partitions[i].offset = next_offset;
651                 ns->partitions[i].size   = remains;
652                 ns->nbparts += 1;
653         }
654
655         /* Detect how many ID bytes the NAND chip outputs */
656         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
657                 if (second_id_byte != nand_flash_ids[i].id)
658                         continue;
659                 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
660                         ns->options |= OPT_AUTOINCR;
661         }
662
663         if (ns->busw == 16)
664                 NS_WARN("16-bit flashes support wasn't tested\n");
665
666         printk("flash size: %llu MiB\n",
667                         (unsigned long long)ns->geom.totsz >> 20);
668         printk("page size: %u bytes\n",         ns->geom.pgsz);
669         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
670         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
671         printk("pages number: %u\n",            ns->geom.pgnum);
672         printk("pages per sector: %u\n",        ns->geom.pgsec);
673         printk("bus width: %u\n",               ns->busw);
674         printk("bits in sector size: %u\n",     ns->geom.secshift);
675         printk("bits in page size: %u\n",       ns->geom.pgshift);
676         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
677         printk("flash size with OOB: %llu KiB\n",
678                         (unsigned long long)ns->geom.totszoob >> 10);
679         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
680         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
681         printk("options: %#x\n",                ns->options);
682
683         if ((ret = alloc_device(ns)) != 0)
684                 goto error;
685
686         /* Allocate / initialize the internal buffer */
687         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
688         if (!ns->buf.byte) {
689                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
690                         ns->geom.pgszoob);
691                 ret = -ENOMEM;
692                 goto error;
693         }
694         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
695
696         return 0;
697
698 error:
699         free_device(ns);
700
701         return ret;
702 }
703
704 /*
705  * Free the nandsim structure.
706  */
707 static void free_nandsim(struct nandsim *ns)
708 {
709         kfree(ns->buf.byte);
710         free_device(ns);
711
712         return;
713 }
714
715 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
716 {
717         char *w;
718         int zero_ok;
719         unsigned int erase_block_no;
720         loff_t offset;
721
722         if (!badblocks)
723                 return 0;
724         w = badblocks;
725         do {
726                 zero_ok = (*w == '0' ? 1 : 0);
727                 erase_block_no = simple_strtoul(w, &w, 0);
728                 if (!zero_ok && !erase_block_no) {
729                         NS_ERR("invalid badblocks.\n");
730                         return -EINVAL;
731                 }
732                 offset = erase_block_no * ns->geom.secsz;
733                 if (mtd->block_markbad(mtd, offset)) {
734                         NS_ERR("invalid badblocks.\n");
735                         return -EINVAL;
736                 }
737                 if (*w == ',')
738                         w += 1;
739         } while (*w);
740         return 0;
741 }
742
743 static int parse_weakblocks(void)
744 {
745         char *w;
746         int zero_ok;
747         unsigned int erase_block_no;
748         unsigned int max_erases;
749         struct weak_block *wb;
750
751         if (!weakblocks)
752                 return 0;
753         w = weakblocks;
754         do {
755                 zero_ok = (*w == '0' ? 1 : 0);
756                 erase_block_no = simple_strtoul(w, &w, 0);
757                 if (!zero_ok && !erase_block_no) {
758                         NS_ERR("invalid weakblocks.\n");
759                         return -EINVAL;
760                 }
761                 max_erases = 3;
762                 if (*w == ':') {
763                         w += 1;
764                         max_erases = simple_strtoul(w, &w, 0);
765                 }
766                 if (*w == ',')
767                         w += 1;
768                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
769                 if (!wb) {
770                         NS_ERR("unable to allocate memory.\n");
771                         return -ENOMEM;
772                 }
773                 wb->erase_block_no = erase_block_no;
774                 wb->max_erases = max_erases;
775                 list_add(&wb->list, &weak_blocks);
776         } while (*w);
777         return 0;
778 }
779
780 static int erase_error(unsigned int erase_block_no)
781 {
782         struct weak_block *wb;
783
784         list_for_each_entry(wb, &weak_blocks, list)
785                 if (wb->erase_block_no == erase_block_no) {
786                         if (wb->erases_done >= wb->max_erases)
787                                 return 1;
788                         wb->erases_done += 1;
789                         return 0;
790                 }
791         return 0;
792 }
793
794 static int parse_weakpages(void)
795 {
796         char *w;
797         int zero_ok;
798         unsigned int page_no;
799         unsigned int max_writes;
800         struct weak_page *wp;
801
802         if (!weakpages)
803                 return 0;
804         w = weakpages;
805         do {
806                 zero_ok = (*w == '0' ? 1 : 0);
807                 page_no = simple_strtoul(w, &w, 0);
808                 if (!zero_ok && !page_no) {
809                         NS_ERR("invalid weakpagess.\n");
810                         return -EINVAL;
811                 }
812                 max_writes = 3;
813                 if (*w == ':') {
814                         w += 1;
815                         max_writes = simple_strtoul(w, &w, 0);
816                 }
817                 if (*w == ',')
818                         w += 1;
819                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
820                 if (!wp) {
821                         NS_ERR("unable to allocate memory.\n");
822                         return -ENOMEM;
823                 }
824                 wp->page_no = page_no;
825                 wp->max_writes = max_writes;
826                 list_add(&wp->list, &weak_pages);
827         } while (*w);
828         return 0;
829 }
830
831 static int write_error(unsigned int page_no)
832 {
833         struct weak_page *wp;
834
835         list_for_each_entry(wp, &weak_pages, list)
836                 if (wp->page_no == page_no) {
837                         if (wp->writes_done >= wp->max_writes)
838                                 return 1;
839                         wp->writes_done += 1;
840                         return 0;
841                 }
842         return 0;
843 }
844
845 static int parse_gravepages(void)
846 {
847         char *g;
848         int zero_ok;
849         unsigned int page_no;
850         unsigned int max_reads;
851         struct grave_page *gp;
852
853         if (!gravepages)
854                 return 0;
855         g = gravepages;
856         do {
857                 zero_ok = (*g == '0' ? 1 : 0);
858                 page_no = simple_strtoul(g, &g, 0);
859                 if (!zero_ok && !page_no) {
860                         NS_ERR("invalid gravepagess.\n");
861                         return -EINVAL;
862                 }
863                 max_reads = 3;
864                 if (*g == ':') {
865                         g += 1;
866                         max_reads = simple_strtoul(g, &g, 0);
867                 }
868                 if (*g == ',')
869                         g += 1;
870                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
871                 if (!gp) {
872                         NS_ERR("unable to allocate memory.\n");
873                         return -ENOMEM;
874                 }
875                 gp->page_no = page_no;
876                 gp->max_reads = max_reads;
877                 list_add(&gp->list, &grave_pages);
878         } while (*g);
879         return 0;
880 }
881
882 static int read_error(unsigned int page_no)
883 {
884         struct grave_page *gp;
885
886         list_for_each_entry(gp, &grave_pages, list)
887                 if (gp->page_no == page_no) {
888                         if (gp->reads_done >= gp->max_reads)
889                                 return 1;
890                         gp->reads_done += 1;
891                         return 0;
892                 }
893         return 0;
894 }
895
896 static void free_lists(void)
897 {
898         struct list_head *pos, *n;
899         list_for_each_safe(pos, n, &weak_blocks) {
900                 list_del(pos);
901                 kfree(list_entry(pos, struct weak_block, list));
902         }
903         list_for_each_safe(pos, n, &weak_pages) {
904                 list_del(pos);
905                 kfree(list_entry(pos, struct weak_page, list));
906         }
907         list_for_each_safe(pos, n, &grave_pages) {
908                 list_del(pos);
909                 kfree(list_entry(pos, struct grave_page, list));
910         }
911         kfree(erase_block_wear);
912 }
913
914 static int setup_wear_reporting(struct mtd_info *mtd)
915 {
916         size_t mem;
917
918         if (!rptwear)
919                 return 0;
920         wear_eb_count = divide(mtd->size, mtd->erasesize);
921         mem = wear_eb_count * sizeof(unsigned long);
922         if (mem / sizeof(unsigned long) != wear_eb_count) {
923                 NS_ERR("Too many erase blocks for wear reporting\n");
924                 return -ENOMEM;
925         }
926         erase_block_wear = kzalloc(mem, GFP_KERNEL);
927         if (!erase_block_wear) {
928                 NS_ERR("Too many erase blocks for wear reporting\n");
929                 return -ENOMEM;
930         }
931         return 0;
932 }
933
934 static void update_wear(unsigned int erase_block_no)
935 {
936         unsigned long wmin = -1, wmax = 0, avg;
937         unsigned long deciles[10], decile_max[10], tot = 0;
938         unsigned int i;
939
940         if (!erase_block_wear)
941                 return;
942         total_wear += 1;
943         if (total_wear == 0)
944                 NS_ERR("Erase counter total overflow\n");
945         erase_block_wear[erase_block_no] += 1;
946         if (erase_block_wear[erase_block_no] == 0)
947                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
948         rptwear_cnt += 1;
949         if (rptwear_cnt < rptwear)
950                 return;
951         rptwear_cnt = 0;
952         /* Calc wear stats */
953         for (i = 0; i < wear_eb_count; ++i) {
954                 unsigned long wear = erase_block_wear[i];
955                 if (wear < wmin)
956                         wmin = wear;
957                 if (wear > wmax)
958                         wmax = wear;
959                 tot += wear;
960         }
961         for (i = 0; i < 9; ++i) {
962                 deciles[i] = 0;
963                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
964         }
965         deciles[9] = 0;
966         decile_max[9] = wmax;
967         for (i = 0; i < wear_eb_count; ++i) {
968                 int d;
969                 unsigned long wear = erase_block_wear[i];
970                 for (d = 0; d < 10; ++d)
971                         if (wear <= decile_max[d]) {
972                                 deciles[d] += 1;
973                                 break;
974                         }
975         }
976         avg = tot / wear_eb_count;
977         /* Output wear report */
978         NS_INFO("*** Wear Report ***\n");
979         NS_INFO("Total numbers of erases:  %lu\n", tot);
980         NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
981         NS_INFO("Average number of erases: %lu\n", avg);
982         NS_INFO("Maximum number of erases: %lu\n", wmax);
983         NS_INFO("Minimum number of erases: %lu\n", wmin);
984         for (i = 0; i < 10; ++i) {
985                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
986                 if (from > decile_max[i])
987                         continue;
988                 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
989                         from,
990                         decile_max[i],
991                         deciles[i]);
992         }
993         NS_INFO("*** End of Wear Report ***\n");
994 }
995
996 /*
997  * Returns the string representation of 'state' state.
998  */
999 static char *get_state_name(uint32_t state)
1000 {
1001         switch (NS_STATE(state)) {
1002                 case STATE_CMD_READ0:
1003                         return "STATE_CMD_READ0";
1004                 case STATE_CMD_READ1:
1005                         return "STATE_CMD_READ1";
1006                 case STATE_CMD_PAGEPROG:
1007                         return "STATE_CMD_PAGEPROG";
1008                 case STATE_CMD_READOOB:
1009                         return "STATE_CMD_READOOB";
1010                 case STATE_CMD_READSTART:
1011                         return "STATE_CMD_READSTART";
1012                 case STATE_CMD_ERASE1:
1013                         return "STATE_CMD_ERASE1";
1014                 case STATE_CMD_STATUS:
1015                         return "STATE_CMD_STATUS";
1016                 case STATE_CMD_STATUS_M:
1017                         return "STATE_CMD_STATUS_M";
1018                 case STATE_CMD_SEQIN:
1019                         return "STATE_CMD_SEQIN";
1020                 case STATE_CMD_READID:
1021                         return "STATE_CMD_READID";
1022                 case STATE_CMD_ERASE2:
1023                         return "STATE_CMD_ERASE2";
1024                 case STATE_CMD_RESET:
1025                         return "STATE_CMD_RESET";
1026                 case STATE_CMD_RNDOUT:
1027                         return "STATE_CMD_RNDOUT";
1028                 case STATE_CMD_RNDOUTSTART:
1029                         return "STATE_CMD_RNDOUTSTART";
1030                 case STATE_ADDR_PAGE:
1031                         return "STATE_ADDR_PAGE";
1032                 case STATE_ADDR_SEC:
1033                         return "STATE_ADDR_SEC";
1034                 case STATE_ADDR_ZERO:
1035                         return "STATE_ADDR_ZERO";
1036                 case STATE_ADDR_COLUMN:
1037                         return "STATE_ADDR_COLUMN";
1038                 case STATE_DATAIN:
1039                         return "STATE_DATAIN";
1040                 case STATE_DATAOUT:
1041                         return "STATE_DATAOUT";
1042                 case STATE_DATAOUT_ID:
1043                         return "STATE_DATAOUT_ID";
1044                 case STATE_DATAOUT_STATUS:
1045                         return "STATE_DATAOUT_STATUS";
1046                 case STATE_DATAOUT_STATUS_M:
1047                         return "STATE_DATAOUT_STATUS_M";
1048                 case STATE_READY:
1049                         return "STATE_READY";
1050                 case STATE_UNKNOWN:
1051                         return "STATE_UNKNOWN";
1052         }
1053
1054         NS_ERR("get_state_name: unknown state, BUG\n");
1055         return NULL;
1056 }
1057
1058 /*
1059  * Check if command is valid.
1060  *
1061  * RETURNS: 1 if wrong command, 0 if right.
1062  */
1063 static int check_command(int cmd)
1064 {
1065         switch (cmd) {
1066
1067         case NAND_CMD_READ0:
1068         case NAND_CMD_READ1:
1069         case NAND_CMD_READSTART:
1070         case NAND_CMD_PAGEPROG:
1071         case NAND_CMD_READOOB:
1072         case NAND_CMD_ERASE1:
1073         case NAND_CMD_STATUS:
1074         case NAND_CMD_SEQIN:
1075         case NAND_CMD_READID:
1076         case NAND_CMD_ERASE2:
1077         case NAND_CMD_RESET:
1078         case NAND_CMD_RNDOUT:
1079         case NAND_CMD_RNDOUTSTART:
1080                 return 0;
1081
1082         case NAND_CMD_STATUS_MULTI:
1083         default:
1084                 return 1;
1085         }
1086 }
1087
1088 /*
1089  * Returns state after command is accepted by command number.
1090  */
1091 static uint32_t get_state_by_command(unsigned command)
1092 {
1093         switch (command) {
1094                 case NAND_CMD_READ0:
1095                         return STATE_CMD_READ0;
1096                 case NAND_CMD_READ1:
1097                         return STATE_CMD_READ1;
1098                 case NAND_CMD_PAGEPROG:
1099                         return STATE_CMD_PAGEPROG;
1100                 case NAND_CMD_READSTART:
1101                         return STATE_CMD_READSTART;
1102                 case NAND_CMD_READOOB:
1103                         return STATE_CMD_READOOB;
1104                 case NAND_CMD_ERASE1:
1105                         return STATE_CMD_ERASE1;
1106                 case NAND_CMD_STATUS:
1107                         return STATE_CMD_STATUS;
1108                 case NAND_CMD_STATUS_MULTI:
1109                         return STATE_CMD_STATUS_M;
1110                 case NAND_CMD_SEQIN:
1111                         return STATE_CMD_SEQIN;
1112                 case NAND_CMD_READID:
1113                         return STATE_CMD_READID;
1114                 case NAND_CMD_ERASE2:
1115                         return STATE_CMD_ERASE2;
1116                 case NAND_CMD_RESET:
1117                         return STATE_CMD_RESET;
1118                 case NAND_CMD_RNDOUT:
1119                         return STATE_CMD_RNDOUT;
1120                 case NAND_CMD_RNDOUTSTART:
1121                         return STATE_CMD_RNDOUTSTART;
1122         }
1123
1124         NS_ERR("get_state_by_command: unknown command, BUG\n");
1125         return 0;
1126 }
1127
1128 /*
1129  * Move an address byte to the correspondent internal register.
1130  */
1131 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1132 {
1133         uint byte = (uint)bt;
1134
1135         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1136                 ns->regs.column |= (byte << 8 * ns->regs.count);
1137         else {
1138                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1139                                                 ns->geom.pgaddrbytes +
1140                                                 ns->geom.secaddrbytes));
1141         }
1142
1143         return;
1144 }
1145
1146 /*
1147  * Switch to STATE_READY state.
1148  */
1149 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1150 {
1151         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1152
1153         ns->state       = STATE_READY;
1154         ns->nxstate     = STATE_UNKNOWN;
1155         ns->op          = NULL;
1156         ns->npstates    = 0;
1157         ns->stateidx    = 0;
1158         ns->regs.num    = 0;
1159         ns->regs.count  = 0;
1160         ns->regs.off    = 0;
1161         ns->regs.row    = 0;
1162         ns->regs.column = 0;
1163         ns->regs.status = status;
1164 }
1165
1166 /*
1167  * If the operation isn't known yet, try to find it in the global array
1168  * of supported operations.
1169  *
1170  * Operation can be unknown because of the following.
1171  *   1. New command was accepted and this is the firs call to find the
1172  *      correspondent states chain. In this case ns->npstates = 0;
1173  *   2. There is several operations which begin with the same command(s)
1174  *      (for example program from the second half and read from the
1175  *      second half operations both begin with the READ1 command). In this
1176  *      case the ns->pstates[] array contains previous states.
1177  *
1178  * Thus, the function tries to find operation containing the following
1179  * states (if the 'flag' parameter is 0):
1180  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1181  *
1182  * If (one and only one) matching operation is found, it is accepted (
1183  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1184  * zeroed).
1185  *
1186  * If there are several maches, the current state is pushed to the
1187  * ns->pstates.
1188  *
1189  * The operation can be unknown only while commands are input to the chip.
1190  * As soon as address command is accepted, the operation must be known.
1191  * In such situation the function is called with 'flag' != 0, and the
1192  * operation is searched using the following pattern:
1193  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1194  *
1195  * It is supposed that this pattern must either match one operation on
1196  * none. There can't be ambiguity in that case.
1197  *
1198  * If no matches found, the functions does the following:
1199  *   1. if there are saved states present, try to ignore them and search
1200  *      again only using the last command. If nothing was found, switch
1201  *      to the STATE_READY state.
1202  *   2. if there are no saved states, switch to the STATE_READY state.
1203  *
1204  * RETURNS: -2 - no matched operations found.
1205  *          -1 - several matches.
1206  *           0 - operation is found.
1207  */
1208 static int find_operation(struct nandsim *ns, uint32_t flag)
1209 {
1210         int opsfound = 0;
1211         int i, j, idx = 0;
1212
1213         for (i = 0; i < NS_OPER_NUM; i++) {
1214
1215                 int found = 1;
1216
1217                 if (!(ns->options & ops[i].reqopts))
1218                         /* Ignore operations we can't perform */
1219                         continue;
1220
1221                 if (flag) {
1222                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1223                                 continue;
1224                 } else {
1225                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1226                                 continue;
1227                 }
1228
1229                 for (j = 0; j < ns->npstates; j++)
1230                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1231                                 && (ns->options & ops[idx].reqopts)) {
1232                                 found = 0;
1233                                 break;
1234                         }
1235
1236                 if (found) {
1237                         idx = i;
1238                         opsfound += 1;
1239                 }
1240         }
1241
1242         if (opsfound == 1) {
1243                 /* Exact match */
1244                 ns->op = &ops[idx].states[0];
1245                 if (flag) {
1246                         /*
1247                          * In this case the find_operation function was
1248                          * called when address has just began input. But it isn't
1249                          * yet fully input and the current state must
1250                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1251                          * state must be the next state (ns->nxstate).
1252                          */
1253                         ns->stateidx = ns->npstates - 1;
1254                 } else {
1255                         ns->stateidx = ns->npstates;
1256                 }
1257                 ns->npstates = 0;
1258                 ns->state = ns->op[ns->stateidx];
1259                 ns->nxstate = ns->op[ns->stateidx + 1];
1260                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1261                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1262                 return 0;
1263         }
1264
1265         if (opsfound == 0) {
1266                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1267                 if (ns->npstates != 0) {
1268                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1269                                         get_state_name(ns->state));
1270                         ns->npstates = 0;
1271                         return find_operation(ns, 0);
1272
1273                 }
1274                 NS_DBG("find_operation: no operations found\n");
1275                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1276                 return -2;
1277         }
1278
1279         if (flag) {
1280                 /* This shouldn't happen */
1281                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1282                 return -2;
1283         }
1284
1285         NS_DBG("find_operation: there is still ambiguity\n");
1286
1287         ns->pstates[ns->npstates++] = ns->state;
1288
1289         return -1;
1290 }
1291
1292 static void put_pages(struct nandsim *ns)
1293 {
1294         int i;
1295
1296         for (i = 0; i < ns->held_cnt; i++)
1297                 page_cache_release(ns->held_pages[i]);
1298 }
1299
1300 /* Get page cache pages in advance to provide NOFS memory allocation */
1301 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1302 {
1303         pgoff_t index, start_index, end_index;
1304         struct page *page;
1305         struct address_space *mapping = file->f_mapping;
1306
1307         start_index = pos >> PAGE_CACHE_SHIFT;
1308         end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1309         if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1310                 return -EINVAL;
1311         ns->held_cnt = 0;
1312         for (index = start_index; index <= end_index; index++) {
1313                 page = find_get_page(mapping, index);
1314                 if (page == NULL) {
1315                         page = find_or_create_page(mapping, index, GFP_NOFS);
1316                         if (page == NULL) {
1317                                 write_inode_now(mapping->host, 1);
1318                                 page = find_or_create_page(mapping, index, GFP_NOFS);
1319                         }
1320                         if (page == NULL) {
1321                                 put_pages(ns);
1322                                 return -ENOMEM;
1323                         }
1324                         unlock_page(page);
1325                 }
1326                 ns->held_pages[ns->held_cnt++] = page;
1327         }
1328         return 0;
1329 }
1330
1331 static int set_memalloc(void)
1332 {
1333         if (current->flags & PF_MEMALLOC)
1334                 return 0;
1335         current->flags |= PF_MEMALLOC;
1336         return 1;
1337 }
1338
1339 static void clear_memalloc(int memalloc)
1340 {
1341         if (memalloc)
1342                 current->flags &= ~PF_MEMALLOC;
1343 }
1344
1345 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1346 {
1347         mm_segment_t old_fs;
1348         ssize_t tx;
1349         int err, memalloc;
1350
1351         err = get_pages(ns, file, count, *pos);
1352         if (err)
1353                 return err;
1354         old_fs = get_fs();
1355         set_fs(get_ds());
1356         memalloc = set_memalloc();
1357         tx = vfs_read(file, (char __user *)buf, count, pos);
1358         clear_memalloc(memalloc);
1359         set_fs(old_fs);
1360         put_pages(ns);
1361         return tx;
1362 }
1363
1364 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1365 {
1366         mm_segment_t old_fs;
1367         ssize_t tx;
1368         int err, memalloc;
1369
1370         err = get_pages(ns, file, count, *pos);
1371         if (err)
1372                 return err;
1373         old_fs = get_fs();
1374         set_fs(get_ds());
1375         memalloc = set_memalloc();
1376         tx = vfs_write(file, (char __user *)buf, count, pos);
1377         clear_memalloc(memalloc);
1378         set_fs(old_fs);
1379         put_pages(ns);
1380         return tx;
1381 }
1382
1383 /*
1384  * Returns a pointer to the current page.
1385  */
1386 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1387 {
1388         return &(ns->pages[ns->regs.row]);
1389 }
1390
1391 /*
1392  * Retuns a pointer to the current byte, within the current page.
1393  */
1394 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1395 {
1396         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1397 }
1398
1399 int do_read_error(struct nandsim *ns, int num)
1400 {
1401         unsigned int page_no = ns->regs.row;
1402
1403         if (read_error(page_no)) {
1404                 int i;
1405                 memset(ns->buf.byte, 0xFF, num);
1406                 for (i = 0; i < num; ++i)
1407                         ns->buf.byte[i] = random32();
1408                 NS_WARN("simulating read error in page %u\n", page_no);
1409                 return 1;
1410         }
1411         return 0;
1412 }
1413
1414 void do_bit_flips(struct nandsim *ns, int num)
1415 {
1416         if (bitflips && random32() < (1 << 22)) {
1417                 int flips = 1;
1418                 if (bitflips > 1)
1419                         flips = (random32() % (int) bitflips) + 1;
1420                 while (flips--) {
1421                         int pos = random32() % (num * 8);
1422                         ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1423                         NS_WARN("read_page: flipping bit %d in page %d "
1424                                 "reading from %d ecc: corrected=%u failed=%u\n",
1425                                 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1426                                 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1427                 }
1428         }
1429 }
1430
1431 /*
1432  * Fill the NAND buffer with data read from the specified page.
1433  */
1434 static void read_page(struct nandsim *ns, int num)
1435 {
1436         union ns_mem *mypage;
1437
1438         if (ns->cfile) {
1439                 if (!ns->pages_written[ns->regs.row]) {
1440                         NS_DBG("read_page: page %d not written\n", ns->regs.row);
1441                         memset(ns->buf.byte, 0xFF, num);
1442                 } else {
1443                         loff_t pos;
1444                         ssize_t tx;
1445
1446                         NS_DBG("read_page: page %d written, reading from %d\n",
1447                                 ns->regs.row, ns->regs.column + ns->regs.off);
1448                         if (do_read_error(ns, num))
1449                                 return;
1450                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1451                         tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1452                         if (tx != num) {
1453                                 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1454                                 return;
1455                         }
1456                         do_bit_flips(ns, num);
1457                 }
1458                 return;
1459         }
1460
1461         mypage = NS_GET_PAGE(ns);
1462         if (mypage->byte == NULL) {
1463                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1464                 memset(ns->buf.byte, 0xFF, num);
1465         } else {
1466                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1467                         ns->regs.row, ns->regs.column + ns->regs.off);
1468                 if (do_read_error(ns, num))
1469                         return;
1470                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1471                 do_bit_flips(ns, num);
1472         }
1473 }
1474
1475 /*
1476  * Erase all pages in the specified sector.
1477  */
1478 static void erase_sector(struct nandsim *ns)
1479 {
1480         union ns_mem *mypage;
1481         int i;
1482
1483         if (ns->cfile) {
1484                 for (i = 0; i < ns->geom.pgsec; i++)
1485                         if (ns->pages_written[ns->regs.row + i]) {
1486                                 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1487                                 ns->pages_written[ns->regs.row + i] = 0;
1488                         }
1489                 return;
1490         }
1491
1492         mypage = NS_GET_PAGE(ns);
1493         for (i = 0; i < ns->geom.pgsec; i++) {
1494                 if (mypage->byte != NULL) {
1495                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1496                         kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1497                         mypage->byte = NULL;
1498                 }
1499                 mypage++;
1500         }
1501 }
1502
1503 /*
1504  * Program the specified page with the contents from the NAND buffer.
1505  */
1506 static int prog_page(struct nandsim *ns, int num)
1507 {
1508         int i;
1509         union ns_mem *mypage;
1510         u_char *pg_off;
1511
1512         if (ns->cfile) {
1513                 loff_t off, pos;
1514                 ssize_t tx;
1515                 int all;
1516
1517                 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1518                 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1519                 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1520                 if (!ns->pages_written[ns->regs.row]) {
1521                         all = 1;
1522                         memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1523                 } else {
1524                         all = 0;
1525                         pos = off;
1526                         tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1527                         if (tx != num) {
1528                                 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1529                                 return -1;
1530                         }
1531                 }
1532                 for (i = 0; i < num; i++)
1533                         pg_off[i] &= ns->buf.byte[i];
1534                 if (all) {
1535                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1536                         tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1537                         if (tx != ns->geom.pgszoob) {
1538                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1539                                 return -1;
1540                         }
1541                         ns->pages_written[ns->regs.row] = 1;
1542                 } else {
1543                         pos = off;
1544                         tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1545                         if (tx != num) {
1546                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1547                                 return -1;
1548                         }
1549                 }
1550                 return 0;
1551         }
1552
1553         mypage = NS_GET_PAGE(ns);
1554         if (mypage->byte == NULL) {
1555                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1556                 /*
1557                  * We allocate memory with GFP_NOFS because a flash FS may
1558                  * utilize this. If it is holding an FS lock, then gets here,
1559                  * then kernel memory alloc runs writeback which goes to the FS
1560                  * again and deadlocks. This was seen in practice.
1561                  */
1562                 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1563                 if (mypage->byte == NULL) {
1564                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1565                         return -1;
1566                 }
1567                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1568         }
1569
1570         pg_off = NS_PAGE_BYTE_OFF(ns);
1571         for (i = 0; i < num; i++)
1572                 pg_off[i] &= ns->buf.byte[i];
1573
1574         return 0;
1575 }
1576
1577 /*
1578  * If state has any action bit, perform this action.
1579  *
1580  * RETURNS: 0 if success, -1 if error.
1581  */
1582 static int do_state_action(struct nandsim *ns, uint32_t action)
1583 {
1584         int num;
1585         int busdiv = ns->busw == 8 ? 1 : 2;
1586         unsigned int erase_block_no, page_no;
1587
1588         action &= ACTION_MASK;
1589
1590         /* Check that page address input is correct */
1591         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1592                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1593                 return -1;
1594         }
1595
1596         switch (action) {
1597
1598         case ACTION_CPY:
1599                 /*
1600                  * Copy page data to the internal buffer.
1601                  */
1602
1603                 /* Column shouldn't be very large */
1604                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1605                         NS_ERR("do_state_action: column number is too large\n");
1606                         break;
1607                 }
1608                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1609                 read_page(ns, num);
1610
1611                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1612                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1613
1614                 if (ns->regs.off == 0)
1615                         NS_LOG("read page %d\n", ns->regs.row);
1616                 else if (ns->regs.off < ns->geom.pgsz)
1617                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1618                 else
1619                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1620
1621                 NS_UDELAY(access_delay);
1622                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1623
1624                 break;
1625
1626         case ACTION_SECERASE:
1627                 /*
1628                  * Erase sector.
1629                  */
1630
1631                 if (ns->lines.wp) {
1632                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1633                         return -1;
1634                 }
1635
1636                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1637                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1638                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1639                         return -1;
1640                 }
1641
1642                 ns->regs.row = (ns->regs.row <<
1643                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1644                 ns->regs.column = 0;
1645
1646                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1647
1648                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1649                                 ns->regs.row, NS_RAW_OFFSET(ns));
1650                 NS_LOG("erase sector %u\n", erase_block_no);
1651
1652                 erase_sector(ns);
1653
1654                 NS_MDELAY(erase_delay);
1655
1656                 if (erase_block_wear)
1657                         update_wear(erase_block_no);
1658
1659                 if (erase_error(erase_block_no)) {
1660                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1661                         return -1;
1662                 }
1663
1664                 break;
1665
1666         case ACTION_PRGPAGE:
1667                 /*
1668                  * Programm page - move internal buffer data to the page.
1669                  */
1670
1671                 if (ns->lines.wp) {
1672                         NS_WARN("do_state_action: device is write-protected, programm\n");
1673                         return -1;
1674                 }
1675
1676                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1677                 if (num != ns->regs.count) {
1678                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1679                                         ns->regs.count, num);
1680                         return -1;
1681                 }
1682
1683                 if (prog_page(ns, num) == -1)
1684                         return -1;
1685
1686                 page_no = ns->regs.row;
1687
1688                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1689                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1690                 NS_LOG("programm page %d\n", ns->regs.row);
1691
1692                 NS_UDELAY(programm_delay);
1693                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1694
1695                 if (write_error(page_no)) {
1696                         NS_WARN("simulating write failure in page %u\n", page_no);
1697                         return -1;
1698                 }
1699
1700                 break;
1701
1702         case ACTION_ZEROOFF:
1703                 NS_DBG("do_state_action: set internal offset to 0\n");
1704                 ns->regs.off = 0;
1705                 break;
1706
1707         case ACTION_HALFOFF:
1708                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1709                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1710                                 "byte page size 8x chips\n");
1711                         return -1;
1712                 }
1713                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1714                 ns->regs.off = ns->geom.pgsz/2;
1715                 break;
1716
1717         case ACTION_OOBOFF:
1718                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1719                 ns->regs.off = ns->geom.pgsz;
1720                 break;
1721
1722         default:
1723                 NS_DBG("do_state_action: BUG! unknown action\n");
1724         }
1725
1726         return 0;
1727 }
1728
1729 /*
1730  * Switch simulator's state.
1731  */
1732 static void switch_state(struct nandsim *ns)
1733 {
1734         if (ns->op) {
1735                 /*
1736                  * The current operation have already been identified.
1737                  * Just follow the states chain.
1738                  */
1739
1740                 ns->stateidx += 1;
1741                 ns->state = ns->nxstate;
1742                 ns->nxstate = ns->op[ns->stateidx + 1];
1743
1744                 NS_DBG("switch_state: operation is known, switch to the next state, "
1745                         "state: %s, nxstate: %s\n",
1746                         get_state_name(ns->state), get_state_name(ns->nxstate));
1747
1748                 /* See, whether we need to do some action */
1749                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1750                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1751                         return;
1752                 }
1753
1754         } else {
1755                 /*
1756                  * We don't yet know which operation we perform.
1757                  * Try to identify it.
1758                  */
1759
1760                 /*
1761                  *  The only event causing the switch_state function to
1762                  *  be called with yet unknown operation is new command.
1763                  */
1764                 ns->state = get_state_by_command(ns->regs.command);
1765
1766                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1767
1768                 if (find_operation(ns, 0) != 0)
1769                         return;
1770
1771                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1772                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1773                         return;
1774                 }
1775         }
1776
1777         /* For 16x devices column means the page offset in words */
1778         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1779                 NS_DBG("switch_state: double the column number for 16x device\n");
1780                 ns->regs.column <<= 1;
1781         }
1782
1783         if (NS_STATE(ns->nxstate) == STATE_READY) {
1784                 /*
1785                  * The current state is the last. Return to STATE_READY
1786                  */
1787
1788                 u_char status = NS_STATUS_OK(ns);
1789
1790                 /* In case of data states, see if all bytes were input/output */
1791                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1792                         && ns->regs.count != ns->regs.num) {
1793                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1794                                         ns->regs.num - ns->regs.count);
1795                         status = NS_STATUS_FAILED(ns);
1796                 }
1797
1798                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1799
1800                 switch_to_ready_state(ns, status);
1801
1802                 return;
1803         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1804                 /*
1805                  * If the next state is data input/output, switch to it now
1806                  */
1807
1808                 ns->state      = ns->nxstate;
1809                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1810                 ns->regs.num   = ns->regs.count = 0;
1811
1812                 NS_DBG("switch_state: the next state is data I/O, switch, "
1813                         "state: %s, nxstate: %s\n",
1814                         get_state_name(ns->state), get_state_name(ns->nxstate));
1815
1816                 /*
1817                  * Set the internal register to the count of bytes which
1818                  * are expected to be input or output
1819                  */
1820                 switch (NS_STATE(ns->state)) {
1821                         case STATE_DATAIN:
1822                         case STATE_DATAOUT:
1823                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1824                                 break;
1825
1826                         case STATE_DATAOUT_ID:
1827                                 ns->regs.num = ns->geom.idbytes;
1828                                 break;
1829
1830                         case STATE_DATAOUT_STATUS:
1831                         case STATE_DATAOUT_STATUS_M:
1832                                 ns->regs.count = ns->regs.num = 0;
1833                                 break;
1834
1835                         default:
1836                                 NS_ERR("switch_state: BUG! unknown data state\n");
1837                 }
1838
1839         } else if (ns->nxstate & STATE_ADDR_MASK) {
1840                 /*
1841                  * If the next state is address input, set the internal
1842                  * register to the number of expected address bytes
1843                  */
1844
1845                 ns->regs.count = 0;
1846
1847                 switch (NS_STATE(ns->nxstate)) {
1848                         case STATE_ADDR_PAGE:
1849                                 ns->regs.num = ns->geom.pgaddrbytes;
1850
1851                                 break;
1852                         case STATE_ADDR_SEC:
1853                                 ns->regs.num = ns->geom.secaddrbytes;
1854                                 break;
1855
1856                         case STATE_ADDR_ZERO:
1857                                 ns->regs.num = 1;
1858                                 break;
1859
1860                         case STATE_ADDR_COLUMN:
1861                                 /* Column address is always 2 bytes */
1862                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1863                                 break;
1864
1865                         default:
1866                                 NS_ERR("switch_state: BUG! unknown address state\n");
1867                 }
1868         } else {
1869                 /*
1870                  * Just reset internal counters.
1871                  */
1872
1873                 ns->regs.num = 0;
1874                 ns->regs.count = 0;
1875         }
1876 }
1877
1878 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1879 {
1880         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1881         u_char outb = 0x00;
1882
1883         /* Sanity and correctness checks */
1884         if (!ns->lines.ce) {
1885                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1886                 return outb;
1887         }
1888         if (ns->lines.ale || ns->lines.cle) {
1889                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1890                 return outb;
1891         }
1892         if (!(ns->state & STATE_DATAOUT_MASK)) {
1893                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1894                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1895                 return outb;
1896         }
1897
1898         /* Status register may be read as many times as it is wanted */
1899         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1900                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1901                 return ns->regs.status;
1902         }
1903
1904         /* Check if there is any data in the internal buffer which may be read */
1905         if (ns->regs.count == ns->regs.num) {
1906                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1907                 return outb;
1908         }
1909
1910         switch (NS_STATE(ns->state)) {
1911                 case STATE_DATAOUT:
1912                         if (ns->busw == 8) {
1913                                 outb = ns->buf.byte[ns->regs.count];
1914                                 ns->regs.count += 1;
1915                         } else {
1916                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1917                                 ns->regs.count += 2;
1918                         }
1919                         break;
1920                 case STATE_DATAOUT_ID:
1921                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1922                         outb = ns->ids[ns->regs.count];
1923                         ns->regs.count += 1;
1924                         break;
1925                 default:
1926                         BUG();
1927         }
1928
1929         if (ns->regs.count == ns->regs.num) {
1930                 NS_DBG("read_byte: all bytes were read\n");
1931
1932                 /*
1933                  * The OPT_AUTOINCR allows to read next conseqitive pages without
1934                  * new read operation cycle.
1935                  */
1936                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1937                         ns->regs.count = 0;
1938                         if (ns->regs.row + 1 < ns->geom.pgnum)
1939                                 ns->regs.row += 1;
1940                         NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1941                         do_state_action(ns, ACTION_CPY);
1942                 }
1943                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1944                         switch_state(ns);
1945
1946         }
1947
1948         return outb;
1949 }
1950
1951 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1952 {
1953         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1954
1955         /* Sanity and correctness checks */
1956         if (!ns->lines.ce) {
1957                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1958                 return;
1959         }
1960         if (ns->lines.ale && ns->lines.cle) {
1961                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1962                 return;
1963         }
1964
1965         if (ns->lines.cle == 1) {
1966                 /*
1967                  * The byte written is a command.
1968                  */
1969
1970                 if (byte == NAND_CMD_RESET) {
1971                         NS_LOG("reset chip\n");
1972                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1973                         return;
1974                 }
1975
1976                 /* Check that the command byte is correct */
1977                 if (check_command(byte)) {
1978                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1979                         return;
1980                 }
1981
1982                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1983                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1984                         || NS_STATE(ns->state) == STATE_DATAOUT) {
1985                         int row = ns->regs.row;
1986
1987                         switch_state(ns);
1988                         if (byte == NAND_CMD_RNDOUT)
1989                                 ns->regs.row = row;
1990                 }
1991
1992                 /* Check if chip is expecting command */
1993                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1994                         /* Do not warn if only 2 id bytes are read */
1995                         if (!(ns->regs.command == NAND_CMD_READID &&
1996                             NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1997                                 /*
1998                                  * We are in situation when something else (not command)
1999                                  * was expected but command was input. In this case ignore
2000                                  * previous command(s)/state(s) and accept the last one.
2001                                  */
2002                                 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2003                                         "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2004                         }
2005                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2006                 }
2007
2008                 NS_DBG("command byte corresponding to %s state accepted\n",
2009                         get_state_name(get_state_by_command(byte)));
2010                 ns->regs.command = byte;
2011                 switch_state(ns);
2012
2013         } else if (ns->lines.ale == 1) {
2014                 /*
2015                  * The byte written is an address.
2016                  */
2017
2018                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2019
2020                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
2021
2022                         if (find_operation(ns, 1) < 0)
2023                                 return;
2024
2025                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2026                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2027                                 return;
2028                         }
2029
2030                         ns->regs.count = 0;
2031                         switch (NS_STATE(ns->nxstate)) {
2032                                 case STATE_ADDR_PAGE:
2033                                         ns->regs.num = ns->geom.pgaddrbytes;
2034                                         break;
2035                                 case STATE_ADDR_SEC:
2036                                         ns->regs.num = ns->geom.secaddrbytes;
2037                                         break;
2038                                 case STATE_ADDR_ZERO:
2039                                         ns->regs.num = 1;
2040                                         break;
2041                                 default:
2042                                         BUG();
2043                         }
2044                 }
2045
2046                 /* Check that chip is expecting address */
2047                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2048                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2049                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2050                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2051                         return;
2052                 }
2053
2054                 /* Check if this is expected byte */
2055                 if (ns->regs.count == ns->regs.num) {
2056                         NS_ERR("write_byte: no more address bytes expected\n");
2057                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2058                         return;
2059                 }
2060
2061                 accept_addr_byte(ns, byte);
2062
2063                 ns->regs.count += 1;
2064
2065                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2066                                 (uint)byte, ns->regs.count, ns->regs.num);
2067
2068                 if (ns->regs.count == ns->regs.num) {
2069                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2070                         switch_state(ns);
2071                 }
2072
2073         } else {
2074                 /*
2075                  * The byte written is an input data.
2076                  */
2077
2078                 /* Check that chip is expecting data input */
2079                 if (!(ns->state & STATE_DATAIN_MASK)) {
2080                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2081                                 "switch to %s\n", (uint)byte,
2082                                 get_state_name(ns->state), get_state_name(STATE_READY));
2083                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2084                         return;
2085                 }
2086
2087                 /* Check if this is expected byte */
2088                 if (ns->regs.count == ns->regs.num) {
2089                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2090                                         ns->regs.num);
2091                         return;
2092                 }
2093
2094                 if (ns->busw == 8) {
2095                         ns->buf.byte[ns->regs.count] = byte;
2096                         ns->regs.count += 1;
2097                 } else {
2098                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2099                         ns->regs.count += 2;
2100                 }
2101         }
2102
2103         return;
2104 }
2105
2106 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2107 {
2108         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2109
2110         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2111         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2112         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2113
2114         if (cmd != NAND_CMD_NONE)
2115                 ns_nand_write_byte(mtd, cmd);
2116 }
2117
2118 static int ns_device_ready(struct mtd_info *mtd)
2119 {
2120         NS_DBG("device_ready\n");
2121         return 1;
2122 }
2123
2124 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2125 {
2126         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2127
2128         NS_DBG("read_word\n");
2129
2130         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2131 }
2132
2133 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2134 {
2135         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2136
2137         /* Check that chip is expecting data input */
2138         if (!(ns->state & STATE_DATAIN_MASK)) {
2139                 NS_ERR("write_buf: data input isn't expected, state is %s, "
2140                         "switch to STATE_READY\n", get_state_name(ns->state));
2141                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2142                 return;
2143         }
2144
2145         /* Check if these are expected bytes */
2146         if (ns->regs.count + len > ns->regs.num) {
2147                 NS_ERR("write_buf: too many input bytes\n");
2148                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2149                 return;
2150         }
2151
2152         memcpy(ns->buf.byte + ns->regs.count, buf, len);
2153         ns->regs.count += len;
2154
2155         if (ns->regs.count == ns->regs.num) {
2156                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2157         }
2158 }
2159
2160 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2161 {
2162         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2163
2164         /* Sanity and correctness checks */
2165         if (!ns->lines.ce) {
2166                 NS_ERR("read_buf: chip is disabled\n");
2167                 return;
2168         }
2169         if (ns->lines.ale || ns->lines.cle) {
2170                 NS_ERR("read_buf: ALE or CLE pin is high\n");
2171                 return;
2172         }
2173         if (!(ns->state & STATE_DATAOUT_MASK)) {
2174                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2175                         get_state_name(ns->state));
2176                 return;
2177         }
2178
2179         if (NS_STATE(ns->state) != STATE_DATAOUT) {
2180                 int i;
2181
2182                 for (i = 0; i < len; i++)
2183                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2184
2185                 return;
2186         }
2187
2188         /* Check if these are expected bytes */
2189         if (ns->regs.count + len > ns->regs.num) {
2190                 NS_ERR("read_buf: too many bytes to read\n");
2191                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2192                 return;
2193         }
2194
2195         memcpy(buf, ns->buf.byte + ns->regs.count, len);
2196         ns->regs.count += len;
2197
2198         if (ns->regs.count == ns->regs.num) {
2199                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2200                         ns->regs.count = 0;
2201                         if (ns->regs.row + 1 < ns->geom.pgnum)
2202                                 ns->regs.row += 1;
2203                         NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2204                         do_state_action(ns, ACTION_CPY);
2205                 }
2206                 else if (NS_STATE(ns->nxstate) == STATE_READY)
2207                         switch_state(ns);
2208         }
2209
2210         return;
2211 }
2212
2213 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2214 {
2215         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2216
2217         if (!memcmp(buf, &ns_verify_buf[0], len)) {
2218                 NS_DBG("verify_buf: the buffer is OK\n");
2219                 return 0;
2220         } else {
2221                 NS_DBG("verify_buf: the buffer is wrong\n");
2222                 return -EFAULT;
2223         }
2224 }
2225
2226 /*
2227  * Module initialization function
2228  */
2229 static int __init ns_init_module(void)
2230 {
2231         struct nand_chip *chip;
2232         struct nandsim *nand;
2233         int retval = -ENOMEM, i;
2234
2235         if (bus_width != 8 && bus_width != 16) {
2236                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2237                 return -EINVAL;
2238         }
2239
2240         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2241         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2242                                 + sizeof(struct nandsim), GFP_KERNEL);
2243         if (!nsmtd) {
2244                 NS_ERR("unable to allocate core structures.\n");
2245                 return -ENOMEM;
2246         }
2247         chip        = (struct nand_chip *)(nsmtd + 1);
2248         nsmtd->priv = (void *)chip;
2249         nand        = (struct nandsim *)(chip + 1);
2250         chip->priv  = (void *)nand;
2251
2252         /*
2253          * Register simulator's callbacks.
2254          */
2255         chip->cmd_ctrl   = ns_hwcontrol;
2256         chip->read_byte  = ns_nand_read_byte;
2257         chip->dev_ready  = ns_device_ready;
2258         chip->write_buf  = ns_nand_write_buf;
2259         chip->read_buf   = ns_nand_read_buf;
2260         chip->verify_buf = ns_nand_verify_buf;
2261         chip->read_word  = ns_nand_read_word;
2262         chip->ecc.mode   = NAND_ECC_SOFT;
2263         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2264         /* and 'badblocks' parameters to work */
2265         chip->options   |= NAND_SKIP_BBTSCAN;
2266
2267         /*
2268          * Perform minimum nandsim structure initialization to handle
2269          * the initial ID read command correctly
2270          */
2271         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2272                 nand->geom.idbytes = 4;
2273         else
2274                 nand->geom.idbytes = 2;
2275         nand->regs.status = NS_STATUS_OK(nand);
2276         nand->nxstate = STATE_UNKNOWN;
2277         nand->options |= OPT_PAGE256; /* temporary value */
2278         nand->ids[0] = first_id_byte;
2279         nand->ids[1] = second_id_byte;
2280         nand->ids[2] = third_id_byte;
2281         nand->ids[3] = fourth_id_byte;
2282         if (bus_width == 16) {
2283                 nand->busw = 16;
2284                 chip->options |= NAND_BUSWIDTH_16;
2285         }
2286
2287         nsmtd->owner = THIS_MODULE;
2288
2289         if ((retval = parse_weakblocks()) != 0)
2290                 goto error;
2291
2292         if ((retval = parse_weakpages()) != 0)
2293                 goto error;
2294
2295         if ((retval = parse_gravepages()) != 0)
2296                 goto error;
2297
2298         if ((retval = nand_scan(nsmtd, 1)) != 0) {
2299                 NS_ERR("can't register NAND Simulator\n");
2300                 if (retval > 0)
2301                         retval = -ENXIO;
2302                 goto error;
2303         }
2304
2305         if (overridesize) {
2306                 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2307                 if (new_size >> overridesize != nsmtd->erasesize) {
2308                         NS_ERR("overridesize is too big\n");
2309                         goto err_exit;
2310                 }
2311                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2312                 nsmtd->size = new_size;
2313                 chip->chipsize = new_size;
2314                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2315                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2316         }
2317
2318         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2319                 goto err_exit;
2320
2321         if ((retval = init_nandsim(nsmtd)) != 0)
2322                 goto err_exit;
2323
2324         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2325                 goto err_exit;
2326
2327         if ((retval = nand_default_bbt(nsmtd)) != 0)
2328                 goto err_exit;
2329
2330         /* Register NAND partitions */
2331         if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2332                 goto err_exit;
2333
2334         return 0;
2335
2336 err_exit:
2337         free_nandsim(nand);
2338         nand_release(nsmtd);
2339         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2340                 kfree(nand->partitions[i].name);
2341 error:
2342         kfree(nsmtd);
2343         free_lists();
2344
2345         return retval;
2346 }
2347
2348 module_init(ns_init_module);
2349
2350 /*
2351  * Module clean-up function
2352  */
2353 static void __exit ns_cleanup_module(void)
2354 {
2355         struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2356         int i;
2357
2358         free_nandsim(ns);    /* Free nandsim private resources */
2359         nand_release(nsmtd); /* Unregister driver */
2360         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2361                 kfree(ns->partitions[i].name);
2362         kfree(nsmtd);        /* Free other structures */
2363         free_lists();
2364 }
2365
2366 module_exit(ns_cleanup_module);
2367
2368 MODULE_LICENSE ("GPL");
2369 MODULE_AUTHOR ("Artem B. Bityuckiy");
2370 MODULE_DESCRIPTION ("The NAND flash simulator");