Merge branch 'for-linus' of git://git.infradead.org/users/eparis/notify
[pandora-kernel.git] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
41 #include <linux/sched.h>
42 #include <linux/fs.h>
43 #include <linux/pagemap.h>
44
45 /* Default simulator parameters values */
46 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
47     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
48     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
49     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
50 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
51 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
52 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
53 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
54 #endif
55
56 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
57 #define CONFIG_NANDSIM_ACCESS_DELAY 25
58 #endif
59 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
60 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
61 #endif
62 #ifndef CONFIG_NANDSIM_ERASE_DELAY
63 #define CONFIG_NANDSIM_ERASE_DELAY 2
64 #endif
65 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
66 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
67 #endif
68 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
69 #define CONFIG_NANDSIM_INPUT_CYCLE  50
70 #endif
71 #ifndef CONFIG_NANDSIM_BUS_WIDTH
72 #define CONFIG_NANDSIM_BUS_WIDTH  8
73 #endif
74 #ifndef CONFIG_NANDSIM_DO_DELAYS
75 #define CONFIG_NANDSIM_DO_DELAYS  0
76 #endif
77 #ifndef CONFIG_NANDSIM_LOG
78 #define CONFIG_NANDSIM_LOG        0
79 #endif
80 #ifndef CONFIG_NANDSIM_DBG
81 #define CONFIG_NANDSIM_DBG        0
82 #endif
83 #ifndef CONFIG_NANDSIM_MAX_PARTS
84 #define CONFIG_NANDSIM_MAX_PARTS  32
85 #endif
86
87 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
88 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
89 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
90 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
91 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
92 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
93 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
94 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
95 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
96 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
97 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
98 static uint log            = CONFIG_NANDSIM_LOG;
99 static uint dbg            = CONFIG_NANDSIM_DBG;
100 static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
101 static unsigned int parts_num;
102 static char *badblocks = NULL;
103 static char *weakblocks = NULL;
104 static char *weakpages = NULL;
105 static unsigned int bitflips = 0;
106 static char *gravepages = NULL;
107 static unsigned int rptwear = 0;
108 static unsigned int overridesize = 0;
109 static char *cache_file = NULL;
110 static unsigned int bbt;
111
112 module_param(first_id_byte,  uint, 0400);
113 module_param(second_id_byte, uint, 0400);
114 module_param(third_id_byte,  uint, 0400);
115 module_param(fourth_id_byte, uint, 0400);
116 module_param(access_delay,   uint, 0400);
117 module_param(programm_delay, uint, 0400);
118 module_param(erase_delay,    uint, 0400);
119 module_param(output_cycle,   uint, 0400);
120 module_param(input_cycle,    uint, 0400);
121 module_param(bus_width,      uint, 0400);
122 module_param(do_delays,      uint, 0400);
123 module_param(log,            uint, 0400);
124 module_param(dbg,            uint, 0400);
125 module_param_array(parts, ulong, &parts_num, 0400);
126 module_param(badblocks,      charp, 0400);
127 module_param(weakblocks,     charp, 0400);
128 module_param(weakpages,      charp, 0400);
129 module_param(bitflips,       uint, 0400);
130 module_param(gravepages,     charp, 0400);
131 module_param(rptwear,        uint, 0400);
132 module_param(overridesize,   uint, 0400);
133 module_param(cache_file,     charp, 0400);
134 module_param(bbt,            uint, 0400);
135
136 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
137 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
138 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
139 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
140 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
141 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
142 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
143 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
144 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
145 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
146 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
147 MODULE_PARM_DESC(log,            "Perform logging if not zero");
148 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
149 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
150 /* Page and erase block positions for the following parameters are independent of any partitions */
151 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
152 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
153                                  " separated by commas e.g. 113:2 means eb 113"
154                                  " can be erased only twice before failing");
155 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
156                                  " separated by commas e.g. 1401:2 means page 1401"
157                                  " can be written only twice before failing");
158 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
159 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
160                                  " separated by commas e.g. 1401:2 means page 1401"
161                                  " can be read only twice before failing");
162 MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
163 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
164                                  "The size is specified in erase blocks and as the exponent of a power of two"
165                                  " e.g. 5 means a size of 32 erase blocks");
166 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
167 MODULE_PARM_DESC(bbt,            "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
168
169 /* The largest possible page size */
170 #define NS_LARGEST_PAGE_SIZE    4096
171
172 /* The prefix for simulator output */
173 #define NS_OUTPUT_PREFIX "[nandsim]"
174
175 /* Simulator's output macros (logging, debugging, warning, error) */
176 #define NS_LOG(args...) \
177         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
178 #define NS_DBG(args...) \
179         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
180 #define NS_WARN(args...) \
181         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
182 #define NS_ERR(args...) \
183         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
184 #define NS_INFO(args...) \
185         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
186
187 /* Busy-wait delay macros (microseconds, milliseconds) */
188 #define NS_UDELAY(us) \
189         do { if (do_delays) udelay(us); } while(0)
190 #define NS_MDELAY(us) \
191         do { if (do_delays) mdelay(us); } while(0)
192
193 /* Is the nandsim structure initialized ? */
194 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
195
196 /* Good operation completion status */
197 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
198
199 /* Operation failed completion status */
200 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
201
202 /* Calculate the page offset in flash RAM image by (row, column) address */
203 #define NS_RAW_OFFSET(ns) \
204         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
205
206 /* Calculate the OOB offset in flash RAM image by (row, column) address */
207 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
208
209 /* After a command is input, the simulator goes to one of the following states */
210 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
211 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
212 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
213 #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
214 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
215 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
216 #define STATE_CMD_STATUS       0x00000007 /* read status */
217 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
218 #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
219 #define STATE_CMD_READID       0x0000000A /* read ID */
220 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
221 #define STATE_CMD_RESET        0x0000000C /* reset */
222 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
223 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
224 #define STATE_CMD_MASK         0x0000000F /* command states mask */
225
226 /* After an address is input, the simulator goes to one of these states */
227 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
228 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
229 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
230 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
231 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
232
233 /* Durind data input/output the simulator is in these states */
234 #define STATE_DATAIN           0x00000100 /* waiting for data input */
235 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
236
237 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
238 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
239 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
240 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
241 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
242
243 /* Previous operation is done, ready to accept new requests */
244 #define STATE_READY            0x00000000
245
246 /* This state is used to mark that the next state isn't known yet */
247 #define STATE_UNKNOWN          0x10000000
248
249 /* Simulator's actions bit masks */
250 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
251 #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
252 #define ACTION_SECERASE  0x00300000 /* erase sector */
253 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
254 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
255 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
256 #define ACTION_MASK      0x00700000 /* action mask */
257
258 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
259 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
260
261 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
262 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
263 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
264 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
265 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
266 #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
267 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
268 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
269 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
270 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
271
272 /* Remove action bits ftom state */
273 #define NS_STATE(x) ((x) & ~ACTION_MASK)
274
275 /*
276  * Maximum previous states which need to be saved. Currently saving is
277  * only needed for page programm operation with preceeded read command
278  * (which is only valid for 512-byte pages).
279  */
280 #define NS_MAX_PREVSTATES 1
281
282 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
283 #define NS_MAX_HELD_PAGES 16
284
285 /*
286  * A union to represent flash memory contents and flash buffer.
287  */
288 union ns_mem {
289         u_char *byte;    /* for byte access */
290         uint16_t *word;  /* for 16-bit word access */
291 };
292
293 /*
294  * The structure which describes all the internal simulator data.
295  */
296 struct nandsim {
297         struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
298         unsigned int nbparts;
299
300         uint busw;              /* flash chip bus width (8 or 16) */
301         u_char ids[4];          /* chip's ID bytes */
302         uint32_t options;       /* chip's characteristic bits */
303         uint32_t state;         /* current chip state */
304         uint32_t nxstate;       /* next expected state */
305
306         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
307         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
308         uint16_t npstates;      /* number of previous states saved */
309         uint16_t stateidx;      /* current state index */
310
311         /* The simulated NAND flash pages array */
312         union ns_mem *pages;
313
314         /* Slab allocator for nand pages */
315         struct kmem_cache *nand_pages_slab;
316
317         /* Internal buffer of page + OOB size bytes */
318         union ns_mem buf;
319
320         /* NAND flash "geometry" */
321         struct {
322                 uint64_t totsz;     /* total flash size, bytes */
323                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
324                 uint pgsz;          /* NAND flash page size, bytes */
325                 uint oobsz;         /* page OOB area size, bytes */
326                 uint64_t totszoob;  /* total flash size including OOB, bytes */
327                 uint pgszoob;       /* page size including OOB , bytes*/
328                 uint secszoob;      /* sector size including OOB, bytes */
329                 uint pgnum;         /* total number of pages */
330                 uint pgsec;         /* number of pages per sector */
331                 uint secshift;      /* bits number in sector size */
332                 uint pgshift;       /* bits number in page size */
333                 uint oobshift;      /* bits number in OOB size */
334                 uint pgaddrbytes;   /* bytes per page address */
335                 uint secaddrbytes;  /* bytes per sector address */
336                 uint idbytes;       /* the number ID bytes that this chip outputs */
337         } geom;
338
339         /* NAND flash internal registers */
340         struct {
341                 unsigned command; /* the command register */
342                 u_char   status;  /* the status register */
343                 uint     row;     /* the page number */
344                 uint     column;  /* the offset within page */
345                 uint     count;   /* internal counter */
346                 uint     num;     /* number of bytes which must be processed */
347                 uint     off;     /* fixed page offset */
348         } regs;
349
350         /* NAND flash lines state */
351         struct {
352                 int ce;  /* chip Enable */
353                 int cle; /* command Latch Enable */
354                 int ale; /* address Latch Enable */
355                 int wp;  /* write Protect */
356         } lines;
357
358         /* Fields needed when using a cache file */
359         struct file *cfile; /* Open file */
360         unsigned char *pages_written; /* Which pages have been written */
361         void *file_buf;
362         struct page *held_pages[NS_MAX_HELD_PAGES];
363         int held_cnt;
364 };
365
366 /*
367  * Operations array. To perform any operation the simulator must pass
368  * through the correspondent states chain.
369  */
370 static struct nandsim_operations {
371         uint32_t reqopts;  /* options which are required to perform the operation */
372         uint32_t states[NS_OPER_STATES]; /* operation's states */
373 } ops[NS_OPER_NUM] = {
374         /* Read page + OOB from the beginning */
375         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
376                         STATE_DATAOUT, STATE_READY}},
377         /* Read page + OOB from the second half */
378         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
379                         STATE_DATAOUT, STATE_READY}},
380         /* Read OOB */
381         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
382                         STATE_DATAOUT, STATE_READY}},
383         /* Programm page starting from the beginning */
384         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
385                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
386         /* Programm page starting from the beginning */
387         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
388                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
389         /* Programm page starting from the second half */
390         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
391                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
392         /* Programm OOB */
393         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
394                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
395         /* Erase sector */
396         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
397         /* Read status */
398         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
399         /* Read multi-plane status */
400         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
401         /* Read ID */
402         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
403         /* Large page devices read page */
404         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
405                                STATE_DATAOUT, STATE_READY}},
406         /* Large page devices random page read */
407         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
408                                STATE_DATAOUT, STATE_READY}},
409 };
410
411 struct weak_block {
412         struct list_head list;
413         unsigned int erase_block_no;
414         unsigned int max_erases;
415         unsigned int erases_done;
416 };
417
418 static LIST_HEAD(weak_blocks);
419
420 struct weak_page {
421         struct list_head list;
422         unsigned int page_no;
423         unsigned int max_writes;
424         unsigned int writes_done;
425 };
426
427 static LIST_HEAD(weak_pages);
428
429 struct grave_page {
430         struct list_head list;
431         unsigned int page_no;
432         unsigned int max_reads;
433         unsigned int reads_done;
434 };
435
436 static LIST_HEAD(grave_pages);
437
438 static unsigned long *erase_block_wear = NULL;
439 static unsigned int wear_eb_count = 0;
440 static unsigned long total_wear = 0;
441 static unsigned int rptwear_cnt = 0;
442
443 /* MTD structure for NAND controller */
444 static struct mtd_info *nsmtd;
445
446 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
447
448 /*
449  * Allocate array of page pointers, create slab allocation for an array
450  * and initialize the array by NULL pointers.
451  *
452  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
453  */
454 static int alloc_device(struct nandsim *ns)
455 {
456         struct file *cfile;
457         int i, err;
458
459         if (cache_file) {
460                 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
461                 if (IS_ERR(cfile))
462                         return PTR_ERR(cfile);
463                 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
464                         NS_ERR("alloc_device: cache file not readable\n");
465                         err = -EINVAL;
466                         goto err_close;
467                 }
468                 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
469                         NS_ERR("alloc_device: cache file not writeable\n");
470                         err = -EINVAL;
471                         goto err_close;
472                 }
473                 ns->pages_written = vmalloc(ns->geom.pgnum);
474                 if (!ns->pages_written) {
475                         NS_ERR("alloc_device: unable to allocate pages written array\n");
476                         err = -ENOMEM;
477                         goto err_close;
478                 }
479                 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
480                 if (!ns->file_buf) {
481                         NS_ERR("alloc_device: unable to allocate file buf\n");
482                         err = -ENOMEM;
483                         goto err_free;
484                 }
485                 ns->cfile = cfile;
486                 memset(ns->pages_written, 0, ns->geom.pgnum);
487                 return 0;
488         }
489
490         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
491         if (!ns->pages) {
492                 NS_ERR("alloc_device: unable to allocate page array\n");
493                 return -ENOMEM;
494         }
495         for (i = 0; i < ns->geom.pgnum; i++) {
496                 ns->pages[i].byte = NULL;
497         }
498         ns->nand_pages_slab = kmem_cache_create("nandsim",
499                                                 ns->geom.pgszoob, 0, 0, NULL);
500         if (!ns->nand_pages_slab) {
501                 NS_ERR("cache_create: unable to create kmem_cache\n");
502                 return -ENOMEM;
503         }
504
505         return 0;
506
507 err_free:
508         vfree(ns->pages_written);
509 err_close:
510         filp_close(cfile, NULL);
511         return err;
512 }
513
514 /*
515  * Free any allocated pages, and free the array of page pointers.
516  */
517 static void free_device(struct nandsim *ns)
518 {
519         int i;
520
521         if (ns->cfile) {
522                 kfree(ns->file_buf);
523                 vfree(ns->pages_written);
524                 filp_close(ns->cfile, NULL);
525                 return;
526         }
527
528         if (ns->pages) {
529                 for (i = 0; i < ns->geom.pgnum; i++) {
530                         if (ns->pages[i].byte)
531                                 kmem_cache_free(ns->nand_pages_slab,
532                                                 ns->pages[i].byte);
533                 }
534                 kmem_cache_destroy(ns->nand_pages_slab);
535                 vfree(ns->pages);
536         }
537 }
538
539 static char *get_partition_name(int i)
540 {
541         char buf[64];
542         sprintf(buf, "NAND simulator partition %d", i);
543         return kstrdup(buf, GFP_KERNEL);
544 }
545
546 static uint64_t divide(uint64_t n, uint32_t d)
547 {
548         do_div(n, d);
549         return n;
550 }
551
552 /*
553  * Initialize the nandsim structure.
554  *
555  * RETURNS: 0 if success, -ERRNO if failure.
556  */
557 static int init_nandsim(struct mtd_info *mtd)
558 {
559         struct nand_chip *chip = mtd->priv;
560         struct nandsim   *ns   = chip->priv;
561         int i, ret = 0;
562         uint64_t remains;
563         uint64_t next_offset;
564
565         if (NS_IS_INITIALIZED(ns)) {
566                 NS_ERR("init_nandsim: nandsim is already initialized\n");
567                 return -EIO;
568         }
569
570         /* Force mtd to not do delays */
571         chip->chip_delay = 0;
572
573         /* Initialize the NAND flash parameters */
574         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
575         ns->geom.totsz    = mtd->size;
576         ns->geom.pgsz     = mtd->writesize;
577         ns->geom.oobsz    = mtd->oobsize;
578         ns->geom.secsz    = mtd->erasesize;
579         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
580         ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
581         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
582         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
583         ns->geom.pgshift  = chip->page_shift;
584         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
585         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
586         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
587         ns->options = 0;
588
589         if (ns->geom.pgsz == 256) {
590                 ns->options |= OPT_PAGE256;
591         }
592         else if (ns->geom.pgsz == 512) {
593                 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
594                 if (ns->busw == 8)
595                         ns->options |= OPT_PAGE512_8BIT;
596         } else if (ns->geom.pgsz == 2048) {
597                 ns->options |= OPT_PAGE2048;
598         } else if (ns->geom.pgsz == 4096) {
599                 ns->options |= OPT_PAGE4096;
600         } else {
601                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
602                 return -EIO;
603         }
604
605         if (ns->options & OPT_SMALLPAGE) {
606                 if (ns->geom.totsz <= (32 << 20)) {
607                         ns->geom.pgaddrbytes  = 3;
608                         ns->geom.secaddrbytes = 2;
609                 } else {
610                         ns->geom.pgaddrbytes  = 4;
611                         ns->geom.secaddrbytes = 3;
612                 }
613         } else {
614                 if (ns->geom.totsz <= (128 << 20)) {
615                         ns->geom.pgaddrbytes  = 4;
616                         ns->geom.secaddrbytes = 2;
617                 } else {
618                         ns->geom.pgaddrbytes  = 5;
619                         ns->geom.secaddrbytes = 3;
620                 }
621         }
622
623         /* Fill the partition_info structure */
624         if (parts_num > ARRAY_SIZE(ns->partitions)) {
625                 NS_ERR("too many partitions.\n");
626                 ret = -EINVAL;
627                 goto error;
628         }
629         remains = ns->geom.totsz;
630         next_offset = 0;
631         for (i = 0; i < parts_num; ++i) {
632                 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
633
634                 if (!part_sz || part_sz > remains) {
635                         NS_ERR("bad partition size.\n");
636                         ret = -EINVAL;
637                         goto error;
638                 }
639                 ns->partitions[i].name   = get_partition_name(i);
640                 ns->partitions[i].offset = next_offset;
641                 ns->partitions[i].size   = part_sz;
642                 next_offset += ns->partitions[i].size;
643                 remains -= ns->partitions[i].size;
644         }
645         ns->nbparts = parts_num;
646         if (remains) {
647                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
648                         NS_ERR("too many partitions.\n");
649                         ret = -EINVAL;
650                         goto error;
651                 }
652                 ns->partitions[i].name   = get_partition_name(i);
653                 ns->partitions[i].offset = next_offset;
654                 ns->partitions[i].size   = remains;
655                 ns->nbparts += 1;
656         }
657
658         /* Detect how many ID bytes the NAND chip outputs */
659         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
660                 if (second_id_byte != nand_flash_ids[i].id)
661                         continue;
662                 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
663                         ns->options |= OPT_AUTOINCR;
664         }
665
666         if (ns->busw == 16)
667                 NS_WARN("16-bit flashes support wasn't tested\n");
668
669         printk("flash size: %llu MiB\n",
670                         (unsigned long long)ns->geom.totsz >> 20);
671         printk("page size: %u bytes\n",         ns->geom.pgsz);
672         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
673         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
674         printk("pages number: %u\n",            ns->geom.pgnum);
675         printk("pages per sector: %u\n",        ns->geom.pgsec);
676         printk("bus width: %u\n",               ns->busw);
677         printk("bits in sector size: %u\n",     ns->geom.secshift);
678         printk("bits in page size: %u\n",       ns->geom.pgshift);
679         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
680         printk("flash size with OOB: %llu KiB\n",
681                         (unsigned long long)ns->geom.totszoob >> 10);
682         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
683         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
684         printk("options: %#x\n",                ns->options);
685
686         if ((ret = alloc_device(ns)) != 0)
687                 goto error;
688
689         /* Allocate / initialize the internal buffer */
690         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
691         if (!ns->buf.byte) {
692                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
693                         ns->geom.pgszoob);
694                 ret = -ENOMEM;
695                 goto error;
696         }
697         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
698
699         return 0;
700
701 error:
702         free_device(ns);
703
704         return ret;
705 }
706
707 /*
708  * Free the nandsim structure.
709  */
710 static void free_nandsim(struct nandsim *ns)
711 {
712         kfree(ns->buf.byte);
713         free_device(ns);
714
715         return;
716 }
717
718 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
719 {
720         char *w;
721         int zero_ok;
722         unsigned int erase_block_no;
723         loff_t offset;
724
725         if (!badblocks)
726                 return 0;
727         w = badblocks;
728         do {
729                 zero_ok = (*w == '0' ? 1 : 0);
730                 erase_block_no = simple_strtoul(w, &w, 0);
731                 if (!zero_ok && !erase_block_no) {
732                         NS_ERR("invalid badblocks.\n");
733                         return -EINVAL;
734                 }
735                 offset = erase_block_no * ns->geom.secsz;
736                 if (mtd->block_markbad(mtd, offset)) {
737                         NS_ERR("invalid badblocks.\n");
738                         return -EINVAL;
739                 }
740                 if (*w == ',')
741                         w += 1;
742         } while (*w);
743         return 0;
744 }
745
746 static int parse_weakblocks(void)
747 {
748         char *w;
749         int zero_ok;
750         unsigned int erase_block_no;
751         unsigned int max_erases;
752         struct weak_block *wb;
753
754         if (!weakblocks)
755                 return 0;
756         w = weakblocks;
757         do {
758                 zero_ok = (*w == '0' ? 1 : 0);
759                 erase_block_no = simple_strtoul(w, &w, 0);
760                 if (!zero_ok && !erase_block_no) {
761                         NS_ERR("invalid weakblocks.\n");
762                         return -EINVAL;
763                 }
764                 max_erases = 3;
765                 if (*w == ':') {
766                         w += 1;
767                         max_erases = simple_strtoul(w, &w, 0);
768                 }
769                 if (*w == ',')
770                         w += 1;
771                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
772                 if (!wb) {
773                         NS_ERR("unable to allocate memory.\n");
774                         return -ENOMEM;
775                 }
776                 wb->erase_block_no = erase_block_no;
777                 wb->max_erases = max_erases;
778                 list_add(&wb->list, &weak_blocks);
779         } while (*w);
780         return 0;
781 }
782
783 static int erase_error(unsigned int erase_block_no)
784 {
785         struct weak_block *wb;
786
787         list_for_each_entry(wb, &weak_blocks, list)
788                 if (wb->erase_block_no == erase_block_no) {
789                         if (wb->erases_done >= wb->max_erases)
790                                 return 1;
791                         wb->erases_done += 1;
792                         return 0;
793                 }
794         return 0;
795 }
796
797 static int parse_weakpages(void)
798 {
799         char *w;
800         int zero_ok;
801         unsigned int page_no;
802         unsigned int max_writes;
803         struct weak_page *wp;
804
805         if (!weakpages)
806                 return 0;
807         w = weakpages;
808         do {
809                 zero_ok = (*w == '0' ? 1 : 0);
810                 page_no = simple_strtoul(w, &w, 0);
811                 if (!zero_ok && !page_no) {
812                         NS_ERR("invalid weakpagess.\n");
813                         return -EINVAL;
814                 }
815                 max_writes = 3;
816                 if (*w == ':') {
817                         w += 1;
818                         max_writes = simple_strtoul(w, &w, 0);
819                 }
820                 if (*w == ',')
821                         w += 1;
822                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
823                 if (!wp) {
824                         NS_ERR("unable to allocate memory.\n");
825                         return -ENOMEM;
826                 }
827                 wp->page_no = page_no;
828                 wp->max_writes = max_writes;
829                 list_add(&wp->list, &weak_pages);
830         } while (*w);
831         return 0;
832 }
833
834 static int write_error(unsigned int page_no)
835 {
836         struct weak_page *wp;
837
838         list_for_each_entry(wp, &weak_pages, list)
839                 if (wp->page_no == page_no) {
840                         if (wp->writes_done >= wp->max_writes)
841                                 return 1;
842                         wp->writes_done += 1;
843                         return 0;
844                 }
845         return 0;
846 }
847
848 static int parse_gravepages(void)
849 {
850         char *g;
851         int zero_ok;
852         unsigned int page_no;
853         unsigned int max_reads;
854         struct grave_page *gp;
855
856         if (!gravepages)
857                 return 0;
858         g = gravepages;
859         do {
860                 zero_ok = (*g == '0' ? 1 : 0);
861                 page_no = simple_strtoul(g, &g, 0);
862                 if (!zero_ok && !page_no) {
863                         NS_ERR("invalid gravepagess.\n");
864                         return -EINVAL;
865                 }
866                 max_reads = 3;
867                 if (*g == ':') {
868                         g += 1;
869                         max_reads = simple_strtoul(g, &g, 0);
870                 }
871                 if (*g == ',')
872                         g += 1;
873                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
874                 if (!gp) {
875                         NS_ERR("unable to allocate memory.\n");
876                         return -ENOMEM;
877                 }
878                 gp->page_no = page_no;
879                 gp->max_reads = max_reads;
880                 list_add(&gp->list, &grave_pages);
881         } while (*g);
882         return 0;
883 }
884
885 static int read_error(unsigned int page_no)
886 {
887         struct grave_page *gp;
888
889         list_for_each_entry(gp, &grave_pages, list)
890                 if (gp->page_no == page_no) {
891                         if (gp->reads_done >= gp->max_reads)
892                                 return 1;
893                         gp->reads_done += 1;
894                         return 0;
895                 }
896         return 0;
897 }
898
899 static void free_lists(void)
900 {
901         struct list_head *pos, *n;
902         list_for_each_safe(pos, n, &weak_blocks) {
903                 list_del(pos);
904                 kfree(list_entry(pos, struct weak_block, list));
905         }
906         list_for_each_safe(pos, n, &weak_pages) {
907                 list_del(pos);
908                 kfree(list_entry(pos, struct weak_page, list));
909         }
910         list_for_each_safe(pos, n, &grave_pages) {
911                 list_del(pos);
912                 kfree(list_entry(pos, struct grave_page, list));
913         }
914         kfree(erase_block_wear);
915 }
916
917 static int setup_wear_reporting(struct mtd_info *mtd)
918 {
919         size_t mem;
920
921         if (!rptwear)
922                 return 0;
923         wear_eb_count = divide(mtd->size, mtd->erasesize);
924         mem = wear_eb_count * sizeof(unsigned long);
925         if (mem / sizeof(unsigned long) != wear_eb_count) {
926                 NS_ERR("Too many erase blocks for wear reporting\n");
927                 return -ENOMEM;
928         }
929         erase_block_wear = kzalloc(mem, GFP_KERNEL);
930         if (!erase_block_wear) {
931                 NS_ERR("Too many erase blocks for wear reporting\n");
932                 return -ENOMEM;
933         }
934         return 0;
935 }
936
937 static void update_wear(unsigned int erase_block_no)
938 {
939         unsigned long wmin = -1, wmax = 0, avg;
940         unsigned long deciles[10], decile_max[10], tot = 0;
941         unsigned int i;
942
943         if (!erase_block_wear)
944                 return;
945         total_wear += 1;
946         if (total_wear == 0)
947                 NS_ERR("Erase counter total overflow\n");
948         erase_block_wear[erase_block_no] += 1;
949         if (erase_block_wear[erase_block_no] == 0)
950                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
951         rptwear_cnt += 1;
952         if (rptwear_cnt < rptwear)
953                 return;
954         rptwear_cnt = 0;
955         /* Calc wear stats */
956         for (i = 0; i < wear_eb_count; ++i) {
957                 unsigned long wear = erase_block_wear[i];
958                 if (wear < wmin)
959                         wmin = wear;
960                 if (wear > wmax)
961                         wmax = wear;
962                 tot += wear;
963         }
964         for (i = 0; i < 9; ++i) {
965                 deciles[i] = 0;
966                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
967         }
968         deciles[9] = 0;
969         decile_max[9] = wmax;
970         for (i = 0; i < wear_eb_count; ++i) {
971                 int d;
972                 unsigned long wear = erase_block_wear[i];
973                 for (d = 0; d < 10; ++d)
974                         if (wear <= decile_max[d]) {
975                                 deciles[d] += 1;
976                                 break;
977                         }
978         }
979         avg = tot / wear_eb_count;
980         /* Output wear report */
981         NS_INFO("*** Wear Report ***\n");
982         NS_INFO("Total numbers of erases:  %lu\n", tot);
983         NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
984         NS_INFO("Average number of erases: %lu\n", avg);
985         NS_INFO("Maximum number of erases: %lu\n", wmax);
986         NS_INFO("Minimum number of erases: %lu\n", wmin);
987         for (i = 0; i < 10; ++i) {
988                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
989                 if (from > decile_max[i])
990                         continue;
991                 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
992                         from,
993                         decile_max[i],
994                         deciles[i]);
995         }
996         NS_INFO("*** End of Wear Report ***\n");
997 }
998
999 /*
1000  * Returns the string representation of 'state' state.
1001  */
1002 static char *get_state_name(uint32_t state)
1003 {
1004         switch (NS_STATE(state)) {
1005                 case STATE_CMD_READ0:
1006                         return "STATE_CMD_READ0";
1007                 case STATE_CMD_READ1:
1008                         return "STATE_CMD_READ1";
1009                 case STATE_CMD_PAGEPROG:
1010                         return "STATE_CMD_PAGEPROG";
1011                 case STATE_CMD_READOOB:
1012                         return "STATE_CMD_READOOB";
1013                 case STATE_CMD_READSTART:
1014                         return "STATE_CMD_READSTART";
1015                 case STATE_CMD_ERASE1:
1016                         return "STATE_CMD_ERASE1";
1017                 case STATE_CMD_STATUS:
1018                         return "STATE_CMD_STATUS";
1019                 case STATE_CMD_STATUS_M:
1020                         return "STATE_CMD_STATUS_M";
1021                 case STATE_CMD_SEQIN:
1022                         return "STATE_CMD_SEQIN";
1023                 case STATE_CMD_READID:
1024                         return "STATE_CMD_READID";
1025                 case STATE_CMD_ERASE2:
1026                         return "STATE_CMD_ERASE2";
1027                 case STATE_CMD_RESET:
1028                         return "STATE_CMD_RESET";
1029                 case STATE_CMD_RNDOUT:
1030                         return "STATE_CMD_RNDOUT";
1031                 case STATE_CMD_RNDOUTSTART:
1032                         return "STATE_CMD_RNDOUTSTART";
1033                 case STATE_ADDR_PAGE:
1034                         return "STATE_ADDR_PAGE";
1035                 case STATE_ADDR_SEC:
1036                         return "STATE_ADDR_SEC";
1037                 case STATE_ADDR_ZERO:
1038                         return "STATE_ADDR_ZERO";
1039                 case STATE_ADDR_COLUMN:
1040                         return "STATE_ADDR_COLUMN";
1041                 case STATE_DATAIN:
1042                         return "STATE_DATAIN";
1043                 case STATE_DATAOUT:
1044                         return "STATE_DATAOUT";
1045                 case STATE_DATAOUT_ID:
1046                         return "STATE_DATAOUT_ID";
1047                 case STATE_DATAOUT_STATUS:
1048                         return "STATE_DATAOUT_STATUS";
1049                 case STATE_DATAOUT_STATUS_M:
1050                         return "STATE_DATAOUT_STATUS_M";
1051                 case STATE_READY:
1052                         return "STATE_READY";
1053                 case STATE_UNKNOWN:
1054                         return "STATE_UNKNOWN";
1055         }
1056
1057         NS_ERR("get_state_name: unknown state, BUG\n");
1058         return NULL;
1059 }
1060
1061 /*
1062  * Check if command is valid.
1063  *
1064  * RETURNS: 1 if wrong command, 0 if right.
1065  */
1066 static int check_command(int cmd)
1067 {
1068         switch (cmd) {
1069
1070         case NAND_CMD_READ0:
1071         case NAND_CMD_READ1:
1072         case NAND_CMD_READSTART:
1073         case NAND_CMD_PAGEPROG:
1074         case NAND_CMD_READOOB:
1075         case NAND_CMD_ERASE1:
1076         case NAND_CMD_STATUS:
1077         case NAND_CMD_SEQIN:
1078         case NAND_CMD_READID:
1079         case NAND_CMD_ERASE2:
1080         case NAND_CMD_RESET:
1081         case NAND_CMD_RNDOUT:
1082         case NAND_CMD_RNDOUTSTART:
1083                 return 0;
1084
1085         case NAND_CMD_STATUS_MULTI:
1086         default:
1087                 return 1;
1088         }
1089 }
1090
1091 /*
1092  * Returns state after command is accepted by command number.
1093  */
1094 static uint32_t get_state_by_command(unsigned command)
1095 {
1096         switch (command) {
1097                 case NAND_CMD_READ0:
1098                         return STATE_CMD_READ0;
1099                 case NAND_CMD_READ1:
1100                         return STATE_CMD_READ1;
1101                 case NAND_CMD_PAGEPROG:
1102                         return STATE_CMD_PAGEPROG;
1103                 case NAND_CMD_READSTART:
1104                         return STATE_CMD_READSTART;
1105                 case NAND_CMD_READOOB:
1106                         return STATE_CMD_READOOB;
1107                 case NAND_CMD_ERASE1:
1108                         return STATE_CMD_ERASE1;
1109                 case NAND_CMD_STATUS:
1110                         return STATE_CMD_STATUS;
1111                 case NAND_CMD_STATUS_MULTI:
1112                         return STATE_CMD_STATUS_M;
1113                 case NAND_CMD_SEQIN:
1114                         return STATE_CMD_SEQIN;
1115                 case NAND_CMD_READID:
1116                         return STATE_CMD_READID;
1117                 case NAND_CMD_ERASE2:
1118                         return STATE_CMD_ERASE2;
1119                 case NAND_CMD_RESET:
1120                         return STATE_CMD_RESET;
1121                 case NAND_CMD_RNDOUT:
1122                         return STATE_CMD_RNDOUT;
1123                 case NAND_CMD_RNDOUTSTART:
1124                         return STATE_CMD_RNDOUTSTART;
1125         }
1126
1127         NS_ERR("get_state_by_command: unknown command, BUG\n");
1128         return 0;
1129 }
1130
1131 /*
1132  * Move an address byte to the correspondent internal register.
1133  */
1134 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1135 {
1136         uint byte = (uint)bt;
1137
1138         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1139                 ns->regs.column |= (byte << 8 * ns->regs.count);
1140         else {
1141                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1142                                                 ns->geom.pgaddrbytes +
1143                                                 ns->geom.secaddrbytes));
1144         }
1145
1146         return;
1147 }
1148
1149 /*
1150  * Switch to STATE_READY state.
1151  */
1152 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1153 {
1154         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1155
1156         ns->state       = STATE_READY;
1157         ns->nxstate     = STATE_UNKNOWN;
1158         ns->op          = NULL;
1159         ns->npstates    = 0;
1160         ns->stateidx    = 0;
1161         ns->regs.num    = 0;
1162         ns->regs.count  = 0;
1163         ns->regs.off    = 0;
1164         ns->regs.row    = 0;
1165         ns->regs.column = 0;
1166         ns->regs.status = status;
1167 }
1168
1169 /*
1170  * If the operation isn't known yet, try to find it in the global array
1171  * of supported operations.
1172  *
1173  * Operation can be unknown because of the following.
1174  *   1. New command was accepted and this is the firs call to find the
1175  *      correspondent states chain. In this case ns->npstates = 0;
1176  *   2. There is several operations which begin with the same command(s)
1177  *      (for example program from the second half and read from the
1178  *      second half operations both begin with the READ1 command). In this
1179  *      case the ns->pstates[] array contains previous states.
1180  *
1181  * Thus, the function tries to find operation containing the following
1182  * states (if the 'flag' parameter is 0):
1183  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1184  *
1185  * If (one and only one) matching operation is found, it is accepted (
1186  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1187  * zeroed).
1188  *
1189  * If there are several maches, the current state is pushed to the
1190  * ns->pstates.
1191  *
1192  * The operation can be unknown only while commands are input to the chip.
1193  * As soon as address command is accepted, the operation must be known.
1194  * In such situation the function is called with 'flag' != 0, and the
1195  * operation is searched using the following pattern:
1196  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1197  *
1198  * It is supposed that this pattern must either match one operation on
1199  * none. There can't be ambiguity in that case.
1200  *
1201  * If no matches found, the functions does the following:
1202  *   1. if there are saved states present, try to ignore them and search
1203  *      again only using the last command. If nothing was found, switch
1204  *      to the STATE_READY state.
1205  *   2. if there are no saved states, switch to the STATE_READY state.
1206  *
1207  * RETURNS: -2 - no matched operations found.
1208  *          -1 - several matches.
1209  *           0 - operation is found.
1210  */
1211 static int find_operation(struct nandsim *ns, uint32_t flag)
1212 {
1213         int opsfound = 0;
1214         int i, j, idx = 0;
1215
1216         for (i = 0; i < NS_OPER_NUM; i++) {
1217
1218                 int found = 1;
1219
1220                 if (!(ns->options & ops[i].reqopts))
1221                         /* Ignore operations we can't perform */
1222                         continue;
1223
1224                 if (flag) {
1225                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1226                                 continue;
1227                 } else {
1228                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1229                                 continue;
1230                 }
1231
1232                 for (j = 0; j < ns->npstates; j++)
1233                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1234                                 && (ns->options & ops[idx].reqopts)) {
1235                                 found = 0;
1236                                 break;
1237                         }
1238
1239                 if (found) {
1240                         idx = i;
1241                         opsfound += 1;
1242                 }
1243         }
1244
1245         if (opsfound == 1) {
1246                 /* Exact match */
1247                 ns->op = &ops[idx].states[0];
1248                 if (flag) {
1249                         /*
1250                          * In this case the find_operation function was
1251                          * called when address has just began input. But it isn't
1252                          * yet fully input and the current state must
1253                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1254                          * state must be the next state (ns->nxstate).
1255                          */
1256                         ns->stateidx = ns->npstates - 1;
1257                 } else {
1258                         ns->stateidx = ns->npstates;
1259                 }
1260                 ns->npstates = 0;
1261                 ns->state = ns->op[ns->stateidx];
1262                 ns->nxstate = ns->op[ns->stateidx + 1];
1263                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1264                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1265                 return 0;
1266         }
1267
1268         if (opsfound == 0) {
1269                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1270                 if (ns->npstates != 0) {
1271                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1272                                         get_state_name(ns->state));
1273                         ns->npstates = 0;
1274                         return find_operation(ns, 0);
1275
1276                 }
1277                 NS_DBG("find_operation: no operations found\n");
1278                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1279                 return -2;
1280         }
1281
1282         if (flag) {
1283                 /* This shouldn't happen */
1284                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1285                 return -2;
1286         }
1287
1288         NS_DBG("find_operation: there is still ambiguity\n");
1289
1290         ns->pstates[ns->npstates++] = ns->state;
1291
1292         return -1;
1293 }
1294
1295 static void put_pages(struct nandsim *ns)
1296 {
1297         int i;
1298
1299         for (i = 0; i < ns->held_cnt; i++)
1300                 page_cache_release(ns->held_pages[i]);
1301 }
1302
1303 /* Get page cache pages in advance to provide NOFS memory allocation */
1304 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1305 {
1306         pgoff_t index, start_index, end_index;
1307         struct page *page;
1308         struct address_space *mapping = file->f_mapping;
1309
1310         start_index = pos >> PAGE_CACHE_SHIFT;
1311         end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1312         if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1313                 return -EINVAL;
1314         ns->held_cnt = 0;
1315         for (index = start_index; index <= end_index; index++) {
1316                 page = find_get_page(mapping, index);
1317                 if (page == NULL) {
1318                         page = find_or_create_page(mapping, index, GFP_NOFS);
1319                         if (page == NULL) {
1320                                 write_inode_now(mapping->host, 1);
1321                                 page = find_or_create_page(mapping, index, GFP_NOFS);
1322                         }
1323                         if (page == NULL) {
1324                                 put_pages(ns);
1325                                 return -ENOMEM;
1326                         }
1327                         unlock_page(page);
1328                 }
1329                 ns->held_pages[ns->held_cnt++] = page;
1330         }
1331         return 0;
1332 }
1333
1334 static int set_memalloc(void)
1335 {
1336         if (current->flags & PF_MEMALLOC)
1337                 return 0;
1338         current->flags |= PF_MEMALLOC;
1339         return 1;
1340 }
1341
1342 static void clear_memalloc(int memalloc)
1343 {
1344         if (memalloc)
1345                 current->flags &= ~PF_MEMALLOC;
1346 }
1347
1348 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1349 {
1350         mm_segment_t old_fs;
1351         ssize_t tx;
1352         int err, memalloc;
1353
1354         err = get_pages(ns, file, count, *pos);
1355         if (err)
1356                 return err;
1357         old_fs = get_fs();
1358         set_fs(get_ds());
1359         memalloc = set_memalloc();
1360         tx = vfs_read(file, (char __user *)buf, count, pos);
1361         clear_memalloc(memalloc);
1362         set_fs(old_fs);
1363         put_pages(ns);
1364         return tx;
1365 }
1366
1367 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1368 {
1369         mm_segment_t old_fs;
1370         ssize_t tx;
1371         int err, memalloc;
1372
1373         err = get_pages(ns, file, count, *pos);
1374         if (err)
1375                 return err;
1376         old_fs = get_fs();
1377         set_fs(get_ds());
1378         memalloc = set_memalloc();
1379         tx = vfs_write(file, (char __user *)buf, count, pos);
1380         clear_memalloc(memalloc);
1381         set_fs(old_fs);
1382         put_pages(ns);
1383         return tx;
1384 }
1385
1386 /*
1387  * Returns a pointer to the current page.
1388  */
1389 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1390 {
1391         return &(ns->pages[ns->regs.row]);
1392 }
1393
1394 /*
1395  * Retuns a pointer to the current byte, within the current page.
1396  */
1397 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1398 {
1399         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1400 }
1401
1402 int do_read_error(struct nandsim *ns, int num)
1403 {
1404         unsigned int page_no = ns->regs.row;
1405
1406         if (read_error(page_no)) {
1407                 int i;
1408                 memset(ns->buf.byte, 0xFF, num);
1409                 for (i = 0; i < num; ++i)
1410                         ns->buf.byte[i] = random32();
1411                 NS_WARN("simulating read error in page %u\n", page_no);
1412                 return 1;
1413         }
1414         return 0;
1415 }
1416
1417 void do_bit_flips(struct nandsim *ns, int num)
1418 {
1419         if (bitflips && random32() < (1 << 22)) {
1420                 int flips = 1;
1421                 if (bitflips > 1)
1422                         flips = (random32() % (int) bitflips) + 1;
1423                 while (flips--) {
1424                         int pos = random32() % (num * 8);
1425                         ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1426                         NS_WARN("read_page: flipping bit %d in page %d "
1427                                 "reading from %d ecc: corrected=%u failed=%u\n",
1428                                 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1429                                 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1430                 }
1431         }
1432 }
1433
1434 /*
1435  * Fill the NAND buffer with data read from the specified page.
1436  */
1437 static void read_page(struct nandsim *ns, int num)
1438 {
1439         union ns_mem *mypage;
1440
1441         if (ns->cfile) {
1442                 if (!ns->pages_written[ns->regs.row]) {
1443                         NS_DBG("read_page: page %d not written\n", ns->regs.row);
1444                         memset(ns->buf.byte, 0xFF, num);
1445                 } else {
1446                         loff_t pos;
1447                         ssize_t tx;
1448
1449                         NS_DBG("read_page: page %d written, reading from %d\n",
1450                                 ns->regs.row, ns->regs.column + ns->regs.off);
1451                         if (do_read_error(ns, num))
1452                                 return;
1453                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1454                         tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1455                         if (tx != num) {
1456                                 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1457                                 return;
1458                         }
1459                         do_bit_flips(ns, num);
1460                 }
1461                 return;
1462         }
1463
1464         mypage = NS_GET_PAGE(ns);
1465         if (mypage->byte == NULL) {
1466                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1467                 memset(ns->buf.byte, 0xFF, num);
1468         } else {
1469                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1470                         ns->regs.row, ns->regs.column + ns->regs.off);
1471                 if (do_read_error(ns, num))
1472                         return;
1473                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1474                 do_bit_flips(ns, num);
1475         }
1476 }
1477
1478 /*
1479  * Erase all pages in the specified sector.
1480  */
1481 static void erase_sector(struct nandsim *ns)
1482 {
1483         union ns_mem *mypage;
1484         int i;
1485
1486         if (ns->cfile) {
1487                 for (i = 0; i < ns->geom.pgsec; i++)
1488                         if (ns->pages_written[ns->regs.row + i]) {
1489                                 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1490                                 ns->pages_written[ns->regs.row + i] = 0;
1491                         }
1492                 return;
1493         }
1494
1495         mypage = NS_GET_PAGE(ns);
1496         for (i = 0; i < ns->geom.pgsec; i++) {
1497                 if (mypage->byte != NULL) {
1498                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1499                         kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1500                         mypage->byte = NULL;
1501                 }
1502                 mypage++;
1503         }
1504 }
1505
1506 /*
1507  * Program the specified page with the contents from the NAND buffer.
1508  */
1509 static int prog_page(struct nandsim *ns, int num)
1510 {
1511         int i;
1512         union ns_mem *mypage;
1513         u_char *pg_off;
1514
1515         if (ns->cfile) {
1516                 loff_t off, pos;
1517                 ssize_t tx;
1518                 int all;
1519
1520                 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1521                 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1522                 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1523                 if (!ns->pages_written[ns->regs.row]) {
1524                         all = 1;
1525                         memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1526                 } else {
1527                         all = 0;
1528                         pos = off;
1529                         tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1530                         if (tx != num) {
1531                                 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1532                                 return -1;
1533                         }
1534                 }
1535                 for (i = 0; i < num; i++)
1536                         pg_off[i] &= ns->buf.byte[i];
1537                 if (all) {
1538                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1539                         tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1540                         if (tx != ns->geom.pgszoob) {
1541                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1542                                 return -1;
1543                         }
1544                         ns->pages_written[ns->regs.row] = 1;
1545                 } else {
1546                         pos = off;
1547                         tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1548                         if (tx != num) {
1549                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1550                                 return -1;
1551                         }
1552                 }
1553                 return 0;
1554         }
1555
1556         mypage = NS_GET_PAGE(ns);
1557         if (mypage->byte == NULL) {
1558                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1559                 /*
1560                  * We allocate memory with GFP_NOFS because a flash FS may
1561                  * utilize this. If it is holding an FS lock, then gets here,
1562                  * then kernel memory alloc runs writeback which goes to the FS
1563                  * again and deadlocks. This was seen in practice.
1564                  */
1565                 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1566                 if (mypage->byte == NULL) {
1567                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1568                         return -1;
1569                 }
1570                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1571         }
1572
1573         pg_off = NS_PAGE_BYTE_OFF(ns);
1574         for (i = 0; i < num; i++)
1575                 pg_off[i] &= ns->buf.byte[i];
1576
1577         return 0;
1578 }
1579
1580 /*
1581  * If state has any action bit, perform this action.
1582  *
1583  * RETURNS: 0 if success, -1 if error.
1584  */
1585 static int do_state_action(struct nandsim *ns, uint32_t action)
1586 {
1587         int num;
1588         int busdiv = ns->busw == 8 ? 1 : 2;
1589         unsigned int erase_block_no, page_no;
1590
1591         action &= ACTION_MASK;
1592
1593         /* Check that page address input is correct */
1594         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1595                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1596                 return -1;
1597         }
1598
1599         switch (action) {
1600
1601         case ACTION_CPY:
1602                 /*
1603                  * Copy page data to the internal buffer.
1604                  */
1605
1606                 /* Column shouldn't be very large */
1607                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1608                         NS_ERR("do_state_action: column number is too large\n");
1609                         break;
1610                 }
1611                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1612                 read_page(ns, num);
1613
1614                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1615                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1616
1617                 if (ns->regs.off == 0)
1618                         NS_LOG("read page %d\n", ns->regs.row);
1619                 else if (ns->regs.off < ns->geom.pgsz)
1620                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1621                 else
1622                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1623
1624                 NS_UDELAY(access_delay);
1625                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1626
1627                 break;
1628
1629         case ACTION_SECERASE:
1630                 /*
1631                  * Erase sector.
1632                  */
1633
1634                 if (ns->lines.wp) {
1635                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1636                         return -1;
1637                 }
1638
1639                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1640                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1641                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1642                         return -1;
1643                 }
1644
1645                 ns->regs.row = (ns->regs.row <<
1646                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1647                 ns->regs.column = 0;
1648
1649                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1650
1651                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1652                                 ns->regs.row, NS_RAW_OFFSET(ns));
1653                 NS_LOG("erase sector %u\n", erase_block_no);
1654
1655                 erase_sector(ns);
1656
1657                 NS_MDELAY(erase_delay);
1658
1659                 if (erase_block_wear)
1660                         update_wear(erase_block_no);
1661
1662                 if (erase_error(erase_block_no)) {
1663                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1664                         return -1;
1665                 }
1666
1667                 break;
1668
1669         case ACTION_PRGPAGE:
1670                 /*
1671                  * Programm page - move internal buffer data to the page.
1672                  */
1673
1674                 if (ns->lines.wp) {
1675                         NS_WARN("do_state_action: device is write-protected, programm\n");
1676                         return -1;
1677                 }
1678
1679                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1680                 if (num != ns->regs.count) {
1681                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1682                                         ns->regs.count, num);
1683                         return -1;
1684                 }
1685
1686                 if (prog_page(ns, num) == -1)
1687                         return -1;
1688
1689                 page_no = ns->regs.row;
1690
1691                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1692                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1693                 NS_LOG("programm page %d\n", ns->regs.row);
1694
1695                 NS_UDELAY(programm_delay);
1696                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1697
1698                 if (write_error(page_no)) {
1699                         NS_WARN("simulating write failure in page %u\n", page_no);
1700                         return -1;
1701                 }
1702
1703                 break;
1704
1705         case ACTION_ZEROOFF:
1706                 NS_DBG("do_state_action: set internal offset to 0\n");
1707                 ns->regs.off = 0;
1708                 break;
1709
1710         case ACTION_HALFOFF:
1711                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1712                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1713                                 "byte page size 8x chips\n");
1714                         return -1;
1715                 }
1716                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1717                 ns->regs.off = ns->geom.pgsz/2;
1718                 break;
1719
1720         case ACTION_OOBOFF:
1721                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1722                 ns->regs.off = ns->geom.pgsz;
1723                 break;
1724
1725         default:
1726                 NS_DBG("do_state_action: BUG! unknown action\n");
1727         }
1728
1729         return 0;
1730 }
1731
1732 /*
1733  * Switch simulator's state.
1734  */
1735 static void switch_state(struct nandsim *ns)
1736 {
1737         if (ns->op) {
1738                 /*
1739                  * The current operation have already been identified.
1740                  * Just follow the states chain.
1741                  */
1742
1743                 ns->stateidx += 1;
1744                 ns->state = ns->nxstate;
1745                 ns->nxstate = ns->op[ns->stateidx + 1];
1746
1747                 NS_DBG("switch_state: operation is known, switch to the next state, "
1748                         "state: %s, nxstate: %s\n",
1749                         get_state_name(ns->state), get_state_name(ns->nxstate));
1750
1751                 /* See, whether we need to do some action */
1752                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1753                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1754                         return;
1755                 }
1756
1757         } else {
1758                 /*
1759                  * We don't yet know which operation we perform.
1760                  * Try to identify it.
1761                  */
1762
1763                 /*
1764                  *  The only event causing the switch_state function to
1765                  *  be called with yet unknown operation is new command.
1766                  */
1767                 ns->state = get_state_by_command(ns->regs.command);
1768
1769                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1770
1771                 if (find_operation(ns, 0) != 0)
1772                         return;
1773
1774                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1775                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1776                         return;
1777                 }
1778         }
1779
1780         /* For 16x devices column means the page offset in words */
1781         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1782                 NS_DBG("switch_state: double the column number for 16x device\n");
1783                 ns->regs.column <<= 1;
1784         }
1785
1786         if (NS_STATE(ns->nxstate) == STATE_READY) {
1787                 /*
1788                  * The current state is the last. Return to STATE_READY
1789                  */
1790
1791                 u_char status = NS_STATUS_OK(ns);
1792
1793                 /* In case of data states, see if all bytes were input/output */
1794                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1795                         && ns->regs.count != ns->regs.num) {
1796                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1797                                         ns->regs.num - ns->regs.count);
1798                         status = NS_STATUS_FAILED(ns);
1799                 }
1800
1801                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1802
1803                 switch_to_ready_state(ns, status);
1804
1805                 return;
1806         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1807                 /*
1808                  * If the next state is data input/output, switch to it now
1809                  */
1810
1811                 ns->state      = ns->nxstate;
1812                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1813                 ns->regs.num   = ns->regs.count = 0;
1814
1815                 NS_DBG("switch_state: the next state is data I/O, switch, "
1816                         "state: %s, nxstate: %s\n",
1817                         get_state_name(ns->state), get_state_name(ns->nxstate));
1818
1819                 /*
1820                  * Set the internal register to the count of bytes which
1821                  * are expected to be input or output
1822                  */
1823                 switch (NS_STATE(ns->state)) {
1824                         case STATE_DATAIN:
1825                         case STATE_DATAOUT:
1826                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1827                                 break;
1828
1829                         case STATE_DATAOUT_ID:
1830                                 ns->regs.num = ns->geom.idbytes;
1831                                 break;
1832
1833                         case STATE_DATAOUT_STATUS:
1834                         case STATE_DATAOUT_STATUS_M:
1835                                 ns->regs.count = ns->regs.num = 0;
1836                                 break;
1837
1838                         default:
1839                                 NS_ERR("switch_state: BUG! unknown data state\n");
1840                 }
1841
1842         } else if (ns->nxstate & STATE_ADDR_MASK) {
1843                 /*
1844                  * If the next state is address input, set the internal
1845                  * register to the number of expected address bytes
1846                  */
1847
1848                 ns->regs.count = 0;
1849
1850                 switch (NS_STATE(ns->nxstate)) {
1851                         case STATE_ADDR_PAGE:
1852                                 ns->regs.num = ns->geom.pgaddrbytes;
1853
1854                                 break;
1855                         case STATE_ADDR_SEC:
1856                                 ns->regs.num = ns->geom.secaddrbytes;
1857                                 break;
1858
1859                         case STATE_ADDR_ZERO:
1860                                 ns->regs.num = 1;
1861                                 break;
1862
1863                         case STATE_ADDR_COLUMN:
1864                                 /* Column address is always 2 bytes */
1865                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1866                                 break;
1867
1868                         default:
1869                                 NS_ERR("switch_state: BUG! unknown address state\n");
1870                 }
1871         } else {
1872                 /*
1873                  * Just reset internal counters.
1874                  */
1875
1876                 ns->regs.num = 0;
1877                 ns->regs.count = 0;
1878         }
1879 }
1880
1881 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1882 {
1883         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1884         u_char outb = 0x00;
1885
1886         /* Sanity and correctness checks */
1887         if (!ns->lines.ce) {
1888                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1889                 return outb;
1890         }
1891         if (ns->lines.ale || ns->lines.cle) {
1892                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1893                 return outb;
1894         }
1895         if (!(ns->state & STATE_DATAOUT_MASK)) {
1896                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1897                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1898                 return outb;
1899         }
1900
1901         /* Status register may be read as many times as it is wanted */
1902         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1903                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1904                 return ns->regs.status;
1905         }
1906
1907         /* Check if there is any data in the internal buffer which may be read */
1908         if (ns->regs.count == ns->regs.num) {
1909                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1910                 return outb;
1911         }
1912
1913         switch (NS_STATE(ns->state)) {
1914                 case STATE_DATAOUT:
1915                         if (ns->busw == 8) {
1916                                 outb = ns->buf.byte[ns->regs.count];
1917                                 ns->regs.count += 1;
1918                         } else {
1919                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1920                                 ns->regs.count += 2;
1921                         }
1922                         break;
1923                 case STATE_DATAOUT_ID:
1924                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1925                         outb = ns->ids[ns->regs.count];
1926                         ns->regs.count += 1;
1927                         break;
1928                 default:
1929                         BUG();
1930         }
1931
1932         if (ns->regs.count == ns->regs.num) {
1933                 NS_DBG("read_byte: all bytes were read\n");
1934
1935                 /*
1936                  * The OPT_AUTOINCR allows to read next conseqitive pages without
1937                  * new read operation cycle.
1938                  */
1939                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1940                         ns->regs.count = 0;
1941                         if (ns->regs.row + 1 < ns->geom.pgnum)
1942                                 ns->regs.row += 1;
1943                         NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1944                         do_state_action(ns, ACTION_CPY);
1945                 }
1946                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1947                         switch_state(ns);
1948
1949         }
1950
1951         return outb;
1952 }
1953
1954 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1955 {
1956         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1957
1958         /* Sanity and correctness checks */
1959         if (!ns->lines.ce) {
1960                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1961                 return;
1962         }
1963         if (ns->lines.ale && ns->lines.cle) {
1964                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1965                 return;
1966         }
1967
1968         if (ns->lines.cle == 1) {
1969                 /*
1970                  * The byte written is a command.
1971                  */
1972
1973                 if (byte == NAND_CMD_RESET) {
1974                         NS_LOG("reset chip\n");
1975                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1976                         return;
1977                 }
1978
1979                 /* Check that the command byte is correct */
1980                 if (check_command(byte)) {
1981                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1982                         return;
1983                 }
1984
1985                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1986                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1987                         || NS_STATE(ns->state) == STATE_DATAOUT) {
1988                         int row = ns->regs.row;
1989
1990                         switch_state(ns);
1991                         if (byte == NAND_CMD_RNDOUT)
1992                                 ns->regs.row = row;
1993                 }
1994
1995                 /* Check if chip is expecting command */
1996                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1997                         /* Do not warn if only 2 id bytes are read */
1998                         if (!(ns->regs.command == NAND_CMD_READID &&
1999                             NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2000                                 /*
2001                                  * We are in situation when something else (not command)
2002                                  * was expected but command was input. In this case ignore
2003                                  * previous command(s)/state(s) and accept the last one.
2004                                  */
2005                                 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2006                                         "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2007                         }
2008                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2009                 }
2010
2011                 NS_DBG("command byte corresponding to %s state accepted\n",
2012                         get_state_name(get_state_by_command(byte)));
2013                 ns->regs.command = byte;
2014                 switch_state(ns);
2015
2016         } else if (ns->lines.ale == 1) {
2017                 /*
2018                  * The byte written is an address.
2019                  */
2020
2021                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2022
2023                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
2024
2025                         if (find_operation(ns, 1) < 0)
2026                                 return;
2027
2028                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2029                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2030                                 return;
2031                         }
2032
2033                         ns->regs.count = 0;
2034                         switch (NS_STATE(ns->nxstate)) {
2035                                 case STATE_ADDR_PAGE:
2036                                         ns->regs.num = ns->geom.pgaddrbytes;
2037                                         break;
2038                                 case STATE_ADDR_SEC:
2039                                         ns->regs.num = ns->geom.secaddrbytes;
2040                                         break;
2041                                 case STATE_ADDR_ZERO:
2042                                         ns->regs.num = 1;
2043                                         break;
2044                                 default:
2045                                         BUG();
2046                         }
2047                 }
2048
2049                 /* Check that chip is expecting address */
2050                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2051                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2052                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2053                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2054                         return;
2055                 }
2056
2057                 /* Check if this is expected byte */
2058                 if (ns->regs.count == ns->regs.num) {
2059                         NS_ERR("write_byte: no more address bytes expected\n");
2060                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2061                         return;
2062                 }
2063
2064                 accept_addr_byte(ns, byte);
2065
2066                 ns->regs.count += 1;
2067
2068                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2069                                 (uint)byte, ns->regs.count, ns->regs.num);
2070
2071                 if (ns->regs.count == ns->regs.num) {
2072                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2073                         switch_state(ns);
2074                 }
2075
2076         } else {
2077                 /*
2078                  * The byte written is an input data.
2079                  */
2080
2081                 /* Check that chip is expecting data input */
2082                 if (!(ns->state & STATE_DATAIN_MASK)) {
2083                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2084                                 "switch to %s\n", (uint)byte,
2085                                 get_state_name(ns->state), get_state_name(STATE_READY));
2086                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2087                         return;
2088                 }
2089
2090                 /* Check if this is expected byte */
2091                 if (ns->regs.count == ns->regs.num) {
2092                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2093                                         ns->regs.num);
2094                         return;
2095                 }
2096
2097                 if (ns->busw == 8) {
2098                         ns->buf.byte[ns->regs.count] = byte;
2099                         ns->regs.count += 1;
2100                 } else {
2101                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2102                         ns->regs.count += 2;
2103                 }
2104         }
2105
2106         return;
2107 }
2108
2109 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2110 {
2111         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2112
2113         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2114         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2115         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2116
2117         if (cmd != NAND_CMD_NONE)
2118                 ns_nand_write_byte(mtd, cmd);
2119 }
2120
2121 static int ns_device_ready(struct mtd_info *mtd)
2122 {
2123         NS_DBG("device_ready\n");
2124         return 1;
2125 }
2126
2127 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2128 {
2129         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2130
2131         NS_DBG("read_word\n");
2132
2133         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2134 }
2135
2136 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2137 {
2138         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2139
2140         /* Check that chip is expecting data input */
2141         if (!(ns->state & STATE_DATAIN_MASK)) {
2142                 NS_ERR("write_buf: data input isn't expected, state is %s, "
2143                         "switch to STATE_READY\n", get_state_name(ns->state));
2144                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2145                 return;
2146         }
2147
2148         /* Check if these are expected bytes */
2149         if (ns->regs.count + len > ns->regs.num) {
2150                 NS_ERR("write_buf: too many input bytes\n");
2151                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2152                 return;
2153         }
2154
2155         memcpy(ns->buf.byte + ns->regs.count, buf, len);
2156         ns->regs.count += len;
2157
2158         if (ns->regs.count == ns->regs.num) {
2159                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2160         }
2161 }
2162
2163 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2164 {
2165         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2166
2167         /* Sanity and correctness checks */
2168         if (!ns->lines.ce) {
2169                 NS_ERR("read_buf: chip is disabled\n");
2170                 return;
2171         }
2172         if (ns->lines.ale || ns->lines.cle) {
2173                 NS_ERR("read_buf: ALE or CLE pin is high\n");
2174                 return;
2175         }
2176         if (!(ns->state & STATE_DATAOUT_MASK)) {
2177                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2178                         get_state_name(ns->state));
2179                 return;
2180         }
2181
2182         if (NS_STATE(ns->state) != STATE_DATAOUT) {
2183                 int i;
2184
2185                 for (i = 0; i < len; i++)
2186                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2187
2188                 return;
2189         }
2190
2191         /* Check if these are expected bytes */
2192         if (ns->regs.count + len > ns->regs.num) {
2193                 NS_ERR("read_buf: too many bytes to read\n");
2194                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2195                 return;
2196         }
2197
2198         memcpy(buf, ns->buf.byte + ns->regs.count, len);
2199         ns->regs.count += len;
2200
2201         if (ns->regs.count == ns->regs.num) {
2202                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2203                         ns->regs.count = 0;
2204                         if (ns->regs.row + 1 < ns->geom.pgnum)
2205                                 ns->regs.row += 1;
2206                         NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2207                         do_state_action(ns, ACTION_CPY);
2208                 }
2209                 else if (NS_STATE(ns->nxstate) == STATE_READY)
2210                         switch_state(ns);
2211         }
2212
2213         return;
2214 }
2215
2216 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2217 {
2218         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2219
2220         if (!memcmp(buf, &ns_verify_buf[0], len)) {
2221                 NS_DBG("verify_buf: the buffer is OK\n");
2222                 return 0;
2223         } else {
2224                 NS_DBG("verify_buf: the buffer is wrong\n");
2225                 return -EFAULT;
2226         }
2227 }
2228
2229 /*
2230  * Module initialization function
2231  */
2232 static int __init ns_init_module(void)
2233 {
2234         struct nand_chip *chip;
2235         struct nandsim *nand;
2236         int retval = -ENOMEM, i;
2237
2238         if (bus_width != 8 && bus_width != 16) {
2239                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2240                 return -EINVAL;
2241         }
2242
2243         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2244         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2245                                 + sizeof(struct nandsim), GFP_KERNEL);
2246         if (!nsmtd) {
2247                 NS_ERR("unable to allocate core structures.\n");
2248                 return -ENOMEM;
2249         }
2250         chip        = (struct nand_chip *)(nsmtd + 1);
2251         nsmtd->priv = (void *)chip;
2252         nand        = (struct nandsim *)(chip + 1);
2253         chip->priv  = (void *)nand;
2254
2255         /*
2256          * Register simulator's callbacks.
2257          */
2258         chip->cmd_ctrl   = ns_hwcontrol;
2259         chip->read_byte  = ns_nand_read_byte;
2260         chip->dev_ready  = ns_device_ready;
2261         chip->write_buf  = ns_nand_write_buf;
2262         chip->read_buf   = ns_nand_read_buf;
2263         chip->verify_buf = ns_nand_verify_buf;
2264         chip->read_word  = ns_nand_read_word;
2265         chip->ecc.mode   = NAND_ECC_SOFT;
2266         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2267         /* and 'badblocks' parameters to work */
2268         chip->options   |= NAND_SKIP_BBTSCAN;
2269
2270         switch (bbt) {
2271         case 2:
2272                  chip->options |= NAND_USE_FLASH_BBT_NO_OOB;
2273         case 1:
2274                  chip->options |= NAND_USE_FLASH_BBT;
2275         case 0:
2276                 break;
2277         default:
2278                 NS_ERR("bbt has to be 0..2\n");
2279                 retval = -EINVAL;
2280                 goto error;
2281         }
2282         /*
2283          * Perform minimum nandsim structure initialization to handle
2284          * the initial ID read command correctly
2285          */
2286         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2287                 nand->geom.idbytes = 4;
2288         else
2289                 nand->geom.idbytes = 2;
2290         nand->regs.status = NS_STATUS_OK(nand);
2291         nand->nxstate = STATE_UNKNOWN;
2292         nand->options |= OPT_PAGE256; /* temporary value */
2293         nand->ids[0] = first_id_byte;
2294         nand->ids[1] = second_id_byte;
2295         nand->ids[2] = third_id_byte;
2296         nand->ids[3] = fourth_id_byte;
2297         if (bus_width == 16) {
2298                 nand->busw = 16;
2299                 chip->options |= NAND_BUSWIDTH_16;
2300         }
2301
2302         nsmtd->owner = THIS_MODULE;
2303
2304         if ((retval = parse_weakblocks()) != 0)
2305                 goto error;
2306
2307         if ((retval = parse_weakpages()) != 0)
2308                 goto error;
2309
2310         if ((retval = parse_gravepages()) != 0)
2311                 goto error;
2312
2313         if ((retval = nand_scan(nsmtd, 1)) != 0) {
2314                 NS_ERR("can't register NAND Simulator\n");
2315                 if (retval > 0)
2316                         retval = -ENXIO;
2317                 goto error;
2318         }
2319
2320         if (overridesize) {
2321                 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2322                 if (new_size >> overridesize != nsmtd->erasesize) {
2323                         NS_ERR("overridesize is too big\n");
2324                         goto err_exit;
2325                 }
2326                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2327                 nsmtd->size = new_size;
2328                 chip->chipsize = new_size;
2329                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2330                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2331         }
2332
2333         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2334                 goto err_exit;
2335
2336         if ((retval = init_nandsim(nsmtd)) != 0)
2337                 goto err_exit;
2338
2339         if ((retval = nand_default_bbt(nsmtd)) != 0)
2340                 goto err_exit;
2341
2342         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2343                 goto err_exit;
2344
2345         /* Register NAND partitions */
2346         if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2347                 goto err_exit;
2348
2349         return 0;
2350
2351 err_exit:
2352         free_nandsim(nand);
2353         nand_release(nsmtd);
2354         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2355                 kfree(nand->partitions[i].name);
2356 error:
2357         kfree(nsmtd);
2358         free_lists();
2359
2360         return retval;
2361 }
2362
2363 module_init(ns_init_module);
2364
2365 /*
2366  * Module clean-up function
2367  */
2368 static void __exit ns_cleanup_module(void)
2369 {
2370         struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2371         int i;
2372
2373         free_nandsim(ns);    /* Free nandsim private resources */
2374         nand_release(nsmtd); /* Unregister driver */
2375         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2376                 kfree(ns->partitions[i].name);
2377         kfree(nsmtd);        /* Free other structures */
2378         free_lists();
2379 }
2380
2381 module_exit(ns_cleanup_module);
2382
2383 MODULE_LICENSE ("GPL");
2384 MODULE_AUTHOR ("Artem B. Bityuckiy");
2385 MODULE_DESCRIPTION ("The NAND flash simulator");