Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[pandora-kernel.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/compatmac.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <asm/io.h>
50
51 #ifdef CONFIG_MTD_PARTITIONS
52 #include <linux/mtd/partitions.h>
53 #endif
54
55 /* Define default oob placement schemes for large and small page devices */
56 static struct nand_ecclayout nand_oob_8 = {
57         .eccbytes = 3,
58         .eccpos = {0, 1, 2},
59         .oobfree = {
60                 {.offset = 3,
61                  .length = 2},
62                 {.offset = 6,
63                  .length = 2}}
64 };
65
66 static struct nand_ecclayout nand_oob_16 = {
67         .eccbytes = 6,
68         .eccpos = {0, 1, 2, 3, 6, 7},
69         .oobfree = {
70                 {.offset = 8,
71                  . length = 8}}
72 };
73
74 static struct nand_ecclayout nand_oob_64 = {
75         .eccbytes = 24,
76         .eccpos = {
77                    40, 41, 42, 43, 44, 45, 46, 47,
78                    48, 49, 50, 51, 52, 53, 54, 55,
79                    56, 57, 58, 59, 60, 61, 62, 63},
80         .oobfree = {
81                 {.offset = 2,
82                  .length = 38}}
83 };
84
85 static struct nand_ecclayout nand_oob_128 = {
86         .eccbytes = 48,
87         .eccpos = {
88                    80, 81, 82, 83, 84, 85, 86, 87,
89                    88, 89, 90, 91, 92, 93, 94, 95,
90                    96, 97, 98, 99, 100, 101, 102, 103,
91                    104, 105, 106, 107, 108, 109, 110, 111,
92                    112, 113, 114, 115, 116, 117, 118, 119,
93                    120, 121, 122, 123, 124, 125, 126, 127},
94         .oobfree = {
95                 {.offset = 2,
96                  .length = 78}}
97 };
98
99 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
100                            int new_state);
101
102 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
103                              struct mtd_oob_ops *ops);
104
105 /*
106  * For devices which display every fart in the system on a separate LED. Is
107  * compiled away when LED support is disabled.
108  */
109 DEFINE_LED_TRIGGER(nand_led_trigger);
110
111 /**
112  * nand_release_device - [GENERIC] release chip
113  * @mtd:        MTD device structure
114  *
115  * Deselect, release chip lock and wake up anyone waiting on the device
116  */
117 static void nand_release_device(struct mtd_info *mtd)
118 {
119         struct nand_chip *chip = mtd->priv;
120
121         /* De-select the NAND device */
122         chip->select_chip(mtd, -1);
123
124         /* Release the controller and the chip */
125         spin_lock(&chip->controller->lock);
126         chip->controller->active = NULL;
127         chip->state = FL_READY;
128         wake_up(&chip->controller->wq);
129         spin_unlock(&chip->controller->lock);
130 }
131
132 /**
133  * nand_read_byte - [DEFAULT] read one byte from the chip
134  * @mtd:        MTD device structure
135  *
136  * Default read function for 8bit buswith
137  */
138 static uint8_t nand_read_byte(struct mtd_info *mtd)
139 {
140         struct nand_chip *chip = mtd->priv;
141         return readb(chip->IO_ADDR_R);
142 }
143
144 /**
145  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
146  * @mtd:        MTD device structure
147  *
148  * Default read function for 16bit buswith with
149  * endianess conversion
150  */
151 static uint8_t nand_read_byte16(struct mtd_info *mtd)
152 {
153         struct nand_chip *chip = mtd->priv;
154         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
155 }
156
157 /**
158  * nand_read_word - [DEFAULT] read one word from the chip
159  * @mtd:        MTD device structure
160  *
161  * Default read function for 16bit buswith without
162  * endianess conversion
163  */
164 static u16 nand_read_word(struct mtd_info *mtd)
165 {
166         struct nand_chip *chip = mtd->priv;
167         return readw(chip->IO_ADDR_R);
168 }
169
170 /**
171  * nand_select_chip - [DEFAULT] control CE line
172  * @mtd:        MTD device structure
173  * @chipnr:     chipnumber to select, -1 for deselect
174  *
175  * Default select function for 1 chip devices.
176  */
177 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
178 {
179         struct nand_chip *chip = mtd->priv;
180
181         switch (chipnr) {
182         case -1:
183                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
184                 break;
185         case 0:
186                 break;
187
188         default:
189                 BUG();
190         }
191 }
192
193 /**
194  * nand_write_buf - [DEFAULT] write buffer to chip
195  * @mtd:        MTD device structure
196  * @buf:        data buffer
197  * @len:        number of bytes to write
198  *
199  * Default write function for 8bit buswith
200  */
201 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
202 {
203         int i;
204         struct nand_chip *chip = mtd->priv;
205
206         for (i = 0; i < len; i++)
207                 writeb(buf[i], chip->IO_ADDR_W);
208 }
209
210 /**
211  * nand_read_buf - [DEFAULT] read chip data into buffer
212  * @mtd:        MTD device structure
213  * @buf:        buffer to store date
214  * @len:        number of bytes to read
215  *
216  * Default read function for 8bit buswith
217  */
218 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
219 {
220         int i;
221         struct nand_chip *chip = mtd->priv;
222
223         for (i = 0; i < len; i++)
224                 buf[i] = readb(chip->IO_ADDR_R);
225 }
226
227 /**
228  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
229  * @mtd:        MTD device structure
230  * @buf:        buffer containing the data to compare
231  * @len:        number of bytes to compare
232  *
233  * Default verify function for 8bit buswith
234  */
235 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
236 {
237         int i;
238         struct nand_chip *chip = mtd->priv;
239
240         for (i = 0; i < len; i++)
241                 if (buf[i] != readb(chip->IO_ADDR_R))
242                         return -EFAULT;
243         return 0;
244 }
245
246 /**
247  * nand_write_buf16 - [DEFAULT] write buffer to chip
248  * @mtd:        MTD device structure
249  * @buf:        data buffer
250  * @len:        number of bytes to write
251  *
252  * Default write function for 16bit buswith
253  */
254 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
255 {
256         int i;
257         struct nand_chip *chip = mtd->priv;
258         u16 *p = (u16 *) buf;
259         len >>= 1;
260
261         for (i = 0; i < len; i++)
262                 writew(p[i], chip->IO_ADDR_W);
263
264 }
265
266 /**
267  * nand_read_buf16 - [DEFAULT] read chip data into buffer
268  * @mtd:        MTD device structure
269  * @buf:        buffer to store date
270  * @len:        number of bytes to read
271  *
272  * Default read function for 16bit buswith
273  */
274 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
275 {
276         int i;
277         struct nand_chip *chip = mtd->priv;
278         u16 *p = (u16 *) buf;
279         len >>= 1;
280
281         for (i = 0; i < len; i++)
282                 p[i] = readw(chip->IO_ADDR_R);
283 }
284
285 /**
286  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
287  * @mtd:        MTD device structure
288  * @buf:        buffer containing the data to compare
289  * @len:        number of bytes to compare
290  *
291  * Default verify function for 16bit buswith
292  */
293 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
294 {
295         int i;
296         struct nand_chip *chip = mtd->priv;
297         u16 *p = (u16 *) buf;
298         len >>= 1;
299
300         for (i = 0; i < len; i++)
301                 if (p[i] != readw(chip->IO_ADDR_R))
302                         return -EFAULT;
303
304         return 0;
305 }
306
307 /**
308  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
309  * @mtd:        MTD device structure
310  * @ofs:        offset from device start
311  * @getchip:    0, if the chip is already selected
312  *
313  * Check, if the block is bad.
314  */
315 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
316 {
317         int page, chipnr, res = 0;
318         struct nand_chip *chip = mtd->priv;
319         u16 bad;
320
321         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
322
323         if (getchip) {
324                 chipnr = (int)(ofs >> chip->chip_shift);
325
326                 nand_get_device(chip, mtd, FL_READING);
327
328                 /* Select the NAND device */
329                 chip->select_chip(mtd, chipnr);
330         }
331
332         if (chip->options & NAND_BUSWIDTH_16) {
333                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
334                               page);
335                 bad = cpu_to_le16(chip->read_word(mtd));
336                 if (chip->badblockpos & 0x1)
337                         bad >>= 8;
338                 if ((bad & 0xFF) != 0xff)
339                         res = 1;
340         } else {
341                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
342                 if (chip->read_byte(mtd) != 0xff)
343                         res = 1;
344         }
345
346         if (getchip)
347                 nand_release_device(mtd);
348
349         return res;
350 }
351
352 /**
353  * nand_default_block_markbad - [DEFAULT] mark a block bad
354  * @mtd:        MTD device structure
355  * @ofs:        offset from device start
356  *
357  * This is the default implementation, which can be overridden by
358  * a hardware specific driver.
359 */
360 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
361 {
362         struct nand_chip *chip = mtd->priv;
363         uint8_t buf[2] = { 0, 0 };
364         int block, ret;
365
366         /* Get block number */
367         block = (int)(ofs >> chip->bbt_erase_shift);
368         if (chip->bbt)
369                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
370
371         /* Do we have a flash based bad block table ? */
372         if (chip->options & NAND_USE_FLASH_BBT)
373                 ret = nand_update_bbt(mtd, ofs);
374         else {
375                 /* We write two bytes, so we dont have to mess with 16 bit
376                  * access
377                  */
378                 nand_get_device(chip, mtd, FL_WRITING);
379                 ofs += mtd->oobsize;
380                 chip->ops.len = chip->ops.ooblen = 2;
381                 chip->ops.datbuf = NULL;
382                 chip->ops.oobbuf = buf;
383                 chip->ops.ooboffs = chip->badblockpos & ~0x01;
384
385                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
386                 nand_release_device(mtd);
387         }
388         if (!ret)
389                 mtd->ecc_stats.badblocks++;
390
391         return ret;
392 }
393
394 /**
395  * nand_check_wp - [GENERIC] check if the chip is write protected
396  * @mtd:        MTD device structure
397  * Check, if the device is write protected
398  *
399  * The function expects, that the device is already selected
400  */
401 static int nand_check_wp(struct mtd_info *mtd)
402 {
403         struct nand_chip *chip = mtd->priv;
404         /* Check the WP bit */
405         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
406         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
407 }
408
409 /**
410  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
411  * @mtd:        MTD device structure
412  * @ofs:        offset from device start
413  * @getchip:    0, if the chip is already selected
414  * @allowbbt:   1, if its allowed to access the bbt area
415  *
416  * Check, if the block is bad. Either by reading the bad block table or
417  * calling of the scan function.
418  */
419 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
420                                int allowbbt)
421 {
422         struct nand_chip *chip = mtd->priv;
423
424         if (!chip->bbt)
425                 return chip->block_bad(mtd, ofs, getchip);
426
427         /* Return info from the table */
428         return nand_isbad_bbt(mtd, ofs, allowbbt);
429 }
430
431 /**
432  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
433  * @mtd:        MTD device structure
434  * @timeo:      Timeout
435  *
436  * Helper function for nand_wait_ready used when needing to wait in interrupt
437  * context.
438  */
439 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
440 {
441         struct nand_chip *chip = mtd->priv;
442         int i;
443
444         /* Wait for the device to get ready */
445         for (i = 0; i < timeo; i++) {
446                 if (chip->dev_ready(mtd))
447                         break;
448                 touch_softlockup_watchdog();
449                 mdelay(1);
450         }
451 }
452
453 /*
454  * Wait for the ready pin, after a command
455  * The timeout is catched later.
456  */
457 void nand_wait_ready(struct mtd_info *mtd)
458 {
459         struct nand_chip *chip = mtd->priv;
460         unsigned long timeo = jiffies + 2;
461
462         /* 400ms timeout */
463         if (in_interrupt() || oops_in_progress)
464                 return panic_nand_wait_ready(mtd, 400);
465
466         led_trigger_event(nand_led_trigger, LED_FULL);
467         /* wait until command is processed or timeout occures */
468         do {
469                 if (chip->dev_ready(mtd))
470                         break;
471                 touch_softlockup_watchdog();
472         } while (time_before(jiffies, timeo));
473         led_trigger_event(nand_led_trigger, LED_OFF);
474 }
475 EXPORT_SYMBOL_GPL(nand_wait_ready);
476
477 /**
478  * nand_command - [DEFAULT] Send command to NAND device
479  * @mtd:        MTD device structure
480  * @command:    the command to be sent
481  * @column:     the column address for this command, -1 if none
482  * @page_addr:  the page address for this command, -1 if none
483  *
484  * Send command to NAND device. This function is used for small page
485  * devices (256/512 Bytes per page)
486  */
487 static void nand_command(struct mtd_info *mtd, unsigned int command,
488                          int column, int page_addr)
489 {
490         register struct nand_chip *chip = mtd->priv;
491         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
492
493         /*
494          * Write out the command to the device.
495          */
496         if (command == NAND_CMD_SEQIN) {
497                 int readcmd;
498
499                 if (column >= mtd->writesize) {
500                         /* OOB area */
501                         column -= mtd->writesize;
502                         readcmd = NAND_CMD_READOOB;
503                 } else if (column < 256) {
504                         /* First 256 bytes --> READ0 */
505                         readcmd = NAND_CMD_READ0;
506                 } else {
507                         column -= 256;
508                         readcmd = NAND_CMD_READ1;
509                 }
510                 chip->cmd_ctrl(mtd, readcmd, ctrl);
511                 ctrl &= ~NAND_CTRL_CHANGE;
512         }
513         chip->cmd_ctrl(mtd, command, ctrl);
514
515         /*
516          * Address cycle, when necessary
517          */
518         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
519         /* Serially input address */
520         if (column != -1) {
521                 /* Adjust columns for 16 bit buswidth */
522                 if (chip->options & NAND_BUSWIDTH_16)
523                         column >>= 1;
524                 chip->cmd_ctrl(mtd, column, ctrl);
525                 ctrl &= ~NAND_CTRL_CHANGE;
526         }
527         if (page_addr != -1) {
528                 chip->cmd_ctrl(mtd, page_addr, ctrl);
529                 ctrl &= ~NAND_CTRL_CHANGE;
530                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
531                 /* One more address cycle for devices > 32MiB */
532                 if (chip->chipsize > (32 << 20))
533                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
534         }
535         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
536
537         /*
538          * program and erase have their own busy handlers
539          * status and sequential in needs no delay
540          */
541         switch (command) {
542
543         case NAND_CMD_PAGEPROG:
544         case NAND_CMD_ERASE1:
545         case NAND_CMD_ERASE2:
546         case NAND_CMD_SEQIN:
547         case NAND_CMD_STATUS:
548                 return;
549
550         case NAND_CMD_RESET:
551                 if (chip->dev_ready)
552                         break;
553                 udelay(chip->chip_delay);
554                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
555                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
556                 chip->cmd_ctrl(mtd,
557                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
558                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
559                 return;
560
561                 /* This applies to read commands */
562         default:
563                 /*
564                  * If we don't have access to the busy pin, we apply the given
565                  * command delay
566                  */
567                 if (!chip->dev_ready) {
568                         udelay(chip->chip_delay);
569                         return;
570                 }
571         }
572         /* Apply this short delay always to ensure that we do wait tWB in
573          * any case on any machine. */
574         ndelay(100);
575
576         nand_wait_ready(mtd);
577 }
578
579 /**
580  * nand_command_lp - [DEFAULT] Send command to NAND large page device
581  * @mtd:        MTD device structure
582  * @command:    the command to be sent
583  * @column:     the column address for this command, -1 if none
584  * @page_addr:  the page address for this command, -1 if none
585  *
586  * Send command to NAND device. This is the version for the new large page
587  * devices We dont have the separate regions as we have in the small page
588  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
589  */
590 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
591                             int column, int page_addr)
592 {
593         register struct nand_chip *chip = mtd->priv;
594
595         /* Emulate NAND_CMD_READOOB */
596         if (command == NAND_CMD_READOOB) {
597                 column += mtd->writesize;
598                 command = NAND_CMD_READ0;
599         }
600
601         /* Command latch cycle */
602         chip->cmd_ctrl(mtd, command & 0xff,
603                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
604
605         if (column != -1 || page_addr != -1) {
606                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
607
608                 /* Serially input address */
609                 if (column != -1) {
610                         /* Adjust columns for 16 bit buswidth */
611                         if (chip->options & NAND_BUSWIDTH_16)
612                                 column >>= 1;
613                         chip->cmd_ctrl(mtd, column, ctrl);
614                         ctrl &= ~NAND_CTRL_CHANGE;
615                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
616                 }
617                 if (page_addr != -1) {
618                         chip->cmd_ctrl(mtd, page_addr, ctrl);
619                         chip->cmd_ctrl(mtd, page_addr >> 8,
620                                        NAND_NCE | NAND_ALE);
621                         /* One more address cycle for devices > 128MiB */
622                         if (chip->chipsize > (128 << 20))
623                                 chip->cmd_ctrl(mtd, page_addr >> 16,
624                                                NAND_NCE | NAND_ALE);
625                 }
626         }
627         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
628
629         /*
630          * program and erase have their own busy handlers
631          * status, sequential in, and deplete1 need no delay
632          */
633         switch (command) {
634
635         case NAND_CMD_CACHEDPROG:
636         case NAND_CMD_PAGEPROG:
637         case NAND_CMD_ERASE1:
638         case NAND_CMD_ERASE2:
639         case NAND_CMD_SEQIN:
640         case NAND_CMD_RNDIN:
641         case NAND_CMD_STATUS:
642         case NAND_CMD_DEPLETE1:
643                 return;
644
645                 /*
646                  * read error status commands require only a short delay
647                  */
648         case NAND_CMD_STATUS_ERROR:
649         case NAND_CMD_STATUS_ERROR0:
650         case NAND_CMD_STATUS_ERROR1:
651         case NAND_CMD_STATUS_ERROR2:
652         case NAND_CMD_STATUS_ERROR3:
653                 udelay(chip->chip_delay);
654                 return;
655
656         case NAND_CMD_RESET:
657                 if (chip->dev_ready)
658                         break;
659                 udelay(chip->chip_delay);
660                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
661                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
662                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
663                                NAND_NCE | NAND_CTRL_CHANGE);
664                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
665                 return;
666
667         case NAND_CMD_RNDOUT:
668                 /* No ready / busy check necessary */
669                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
670                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
671                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
672                                NAND_NCE | NAND_CTRL_CHANGE);
673                 return;
674
675         case NAND_CMD_READ0:
676                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
677                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
678                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
679                                NAND_NCE | NAND_CTRL_CHANGE);
680
681                 /* This applies to read commands */
682         default:
683                 /*
684                  * If we don't have access to the busy pin, we apply the given
685                  * command delay
686                  */
687                 if (!chip->dev_ready) {
688                         udelay(chip->chip_delay);
689                         return;
690                 }
691         }
692
693         /* Apply this short delay always to ensure that we do wait tWB in
694          * any case on any machine. */
695         ndelay(100);
696
697         nand_wait_ready(mtd);
698 }
699
700 /**
701  * panic_nand_get_device - [GENERIC] Get chip for selected access
702  * @chip:       the nand chip descriptor
703  * @mtd:        MTD device structure
704  * @new_state:  the state which is requested
705  *
706  * Used when in panic, no locks are taken.
707  */
708 static void panic_nand_get_device(struct nand_chip *chip,
709                       struct mtd_info *mtd, int new_state)
710 {
711         /* Hardware controller shared among independend devices */
712         chip->controller->active = chip;
713         chip->state = new_state;
714 }
715
716 /**
717  * nand_get_device - [GENERIC] Get chip for selected access
718  * @chip:       the nand chip descriptor
719  * @mtd:        MTD device structure
720  * @new_state:  the state which is requested
721  *
722  * Get the device and lock it for exclusive access
723  */
724 static int
725 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
726 {
727         spinlock_t *lock = &chip->controller->lock;
728         wait_queue_head_t *wq = &chip->controller->wq;
729         DECLARE_WAITQUEUE(wait, current);
730  retry:
731         spin_lock(lock);
732
733         /* Hardware controller shared among independent devices */
734         if (!chip->controller->active)
735                 chip->controller->active = chip;
736
737         if (chip->controller->active == chip && chip->state == FL_READY) {
738                 chip->state = new_state;
739                 spin_unlock(lock);
740                 return 0;
741         }
742         if (new_state == FL_PM_SUSPENDED) {
743                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
744                         chip->state = FL_PM_SUSPENDED;
745                         spin_unlock(lock);
746                         return 0;
747                 } else {
748                         spin_unlock(lock);
749                         return -EAGAIN;
750                 }
751         }
752         set_current_state(TASK_UNINTERRUPTIBLE);
753         add_wait_queue(wq, &wait);
754         spin_unlock(lock);
755         schedule();
756         remove_wait_queue(wq, &wait);
757         goto retry;
758 }
759
760 /**
761  * panic_nand_wait - [GENERIC]  wait until the command is done
762  * @mtd:        MTD device structure
763  * @chip:       NAND chip structure
764  * @timeo:      Timeout
765  *
766  * Wait for command done. This is a helper function for nand_wait used when
767  * we are in interrupt context. May happen when in panic and trying to write
768  * an oops trough mtdoops.
769  */
770 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
771                             unsigned long timeo)
772 {
773         int i;
774         for (i = 0; i < timeo; i++) {
775                 if (chip->dev_ready) {
776                         if (chip->dev_ready(mtd))
777                                 break;
778                 } else {
779                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
780                                 break;
781                 }
782                 mdelay(1);
783         }
784 }
785
786 /**
787  * nand_wait - [DEFAULT]  wait until the command is done
788  * @mtd:        MTD device structure
789  * @chip:       NAND chip structure
790  *
791  * Wait for command done. This applies to erase and program only
792  * Erase can take up to 400ms and program up to 20ms according to
793  * general NAND and SmartMedia specs
794  */
795 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
796 {
797
798         unsigned long timeo = jiffies;
799         int status, state = chip->state;
800
801         if (state == FL_ERASING)
802                 timeo += (HZ * 400) / 1000;
803         else
804                 timeo += (HZ * 20) / 1000;
805
806         led_trigger_event(nand_led_trigger, LED_FULL);
807
808         /* Apply this short delay always to ensure that we do wait tWB in
809          * any case on any machine. */
810         ndelay(100);
811
812         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
813                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
814         else
815                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
816
817         if (in_interrupt() || oops_in_progress)
818                 panic_nand_wait(mtd, chip, timeo);
819         else {
820                 while (time_before(jiffies, timeo)) {
821                         if (chip->dev_ready) {
822                                 if (chip->dev_ready(mtd))
823                                         break;
824                         } else {
825                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
826                                         break;
827                         }
828                         cond_resched();
829                 }
830         }
831         led_trigger_event(nand_led_trigger, LED_OFF);
832
833         status = (int)chip->read_byte(mtd);
834         return status;
835 }
836
837 /**
838  * nand_read_page_raw - [Intern] read raw page data without ecc
839  * @mtd:        mtd info structure
840  * @chip:       nand chip info structure
841  * @buf:        buffer to store read data
842  * @page:       page number to read
843  *
844  * Not for syndrome calculating ecc controllers, which use a special oob layout
845  */
846 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
847                               uint8_t *buf, int page)
848 {
849         chip->read_buf(mtd, buf, mtd->writesize);
850         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
851         return 0;
852 }
853
854 /**
855  * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
856  * @mtd:        mtd info structure
857  * @chip:       nand chip info structure
858  * @buf:        buffer to store read data
859  * @page:       page number to read
860  *
861  * We need a special oob layout and handling even when OOB isn't used.
862  */
863 static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
864                               uint8_t *buf, int page)
865 {
866         int eccsize = chip->ecc.size;
867         int eccbytes = chip->ecc.bytes;
868         uint8_t *oob = chip->oob_poi;
869         int steps, size;
870
871         for (steps = chip->ecc.steps; steps > 0; steps--) {
872                 chip->read_buf(mtd, buf, eccsize);
873                 buf += eccsize;
874
875                 if (chip->ecc.prepad) {
876                         chip->read_buf(mtd, oob, chip->ecc.prepad);
877                         oob += chip->ecc.prepad;
878                 }
879
880                 chip->read_buf(mtd, oob, eccbytes);
881                 oob += eccbytes;
882
883                 if (chip->ecc.postpad) {
884                         chip->read_buf(mtd, oob, chip->ecc.postpad);
885                         oob += chip->ecc.postpad;
886                 }
887         }
888
889         size = mtd->oobsize - (oob - chip->oob_poi);
890         if (size)
891                 chip->read_buf(mtd, oob, size);
892
893         return 0;
894 }
895
896 /**
897  * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
898  * @mtd:        mtd info structure
899  * @chip:       nand chip info structure
900  * @buf:        buffer to store read data
901  * @page:       page number to read
902  */
903 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
904                                 uint8_t *buf, int page)
905 {
906         int i, eccsize = chip->ecc.size;
907         int eccbytes = chip->ecc.bytes;
908         int eccsteps = chip->ecc.steps;
909         uint8_t *p = buf;
910         uint8_t *ecc_calc = chip->buffers->ecccalc;
911         uint8_t *ecc_code = chip->buffers->ecccode;
912         uint32_t *eccpos = chip->ecc.layout->eccpos;
913
914         chip->ecc.read_page_raw(mtd, chip, buf, page);
915
916         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
917                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
918
919         for (i = 0; i < chip->ecc.total; i++)
920                 ecc_code[i] = chip->oob_poi[eccpos[i]];
921
922         eccsteps = chip->ecc.steps;
923         p = buf;
924
925         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
926                 int stat;
927
928                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
929                 if (stat < 0)
930                         mtd->ecc_stats.failed++;
931                 else
932                         mtd->ecc_stats.corrected += stat;
933         }
934         return 0;
935 }
936
937 /**
938  * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
939  * @mtd:        mtd info structure
940  * @chip:       nand chip info structure
941  * @data_offs:  offset of requested data within the page
942  * @readlen:    data length
943  * @bufpoi:     buffer to store read data
944  */
945 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
946 {
947         int start_step, end_step, num_steps;
948         uint32_t *eccpos = chip->ecc.layout->eccpos;
949         uint8_t *p;
950         int data_col_addr, i, gaps = 0;
951         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
952         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
953
954         /* Column address wihin the page aligned to ECC size (256bytes). */
955         start_step = data_offs / chip->ecc.size;
956         end_step = (data_offs + readlen - 1) / chip->ecc.size;
957         num_steps = end_step - start_step + 1;
958
959         /* Data size aligned to ECC ecc.size*/
960         datafrag_len = num_steps * chip->ecc.size;
961         eccfrag_len = num_steps * chip->ecc.bytes;
962
963         data_col_addr = start_step * chip->ecc.size;
964         /* If we read not a page aligned data */
965         if (data_col_addr != 0)
966                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
967
968         p = bufpoi + data_col_addr;
969         chip->read_buf(mtd, p, datafrag_len);
970
971         /* Calculate  ECC */
972         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
973                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
974
975         /* The performance is faster if to position offsets
976            according to ecc.pos. Let make sure here that
977            there are no gaps in ecc positions */
978         for (i = 0; i < eccfrag_len - 1; i++) {
979                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
980                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
981                         gaps = 1;
982                         break;
983                 }
984         }
985         if (gaps) {
986                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
987                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
988         } else {
989                 /* send the command to read the particular ecc bytes */
990                 /* take care about buswidth alignment in read_buf */
991                 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
992                 aligned_len = eccfrag_len;
993                 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
994                         aligned_len++;
995                 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
996                         aligned_len++;
997
998                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
999                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1000         }
1001
1002         for (i = 0; i < eccfrag_len; i++)
1003                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1004
1005         p = bufpoi + data_col_addr;
1006         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1007                 int stat;
1008
1009                 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1010                 if (stat == -1)
1011                         mtd->ecc_stats.failed++;
1012                 else
1013                         mtd->ecc_stats.corrected += stat;
1014         }
1015         return 0;
1016 }
1017
1018 /**
1019  * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1020  * @mtd:        mtd info structure
1021  * @chip:       nand chip info structure
1022  * @buf:        buffer to store read data
1023  * @page:       page number to read
1024  *
1025  * Not for syndrome calculating ecc controllers which need a special oob layout
1026  */
1027 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1028                                 uint8_t *buf, int page)
1029 {
1030         int i, eccsize = chip->ecc.size;
1031         int eccbytes = chip->ecc.bytes;
1032         int eccsteps = chip->ecc.steps;
1033         uint8_t *p = buf;
1034         uint8_t *ecc_calc = chip->buffers->ecccalc;
1035         uint8_t *ecc_code = chip->buffers->ecccode;
1036         uint32_t *eccpos = chip->ecc.layout->eccpos;
1037
1038         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1039                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1040                 chip->read_buf(mtd, p, eccsize);
1041                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1042         }
1043         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1044
1045         for (i = 0; i < chip->ecc.total; i++)
1046                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1047
1048         eccsteps = chip->ecc.steps;
1049         p = buf;
1050
1051         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1052                 int stat;
1053
1054                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1055                 if (stat < 0)
1056                         mtd->ecc_stats.failed++;
1057                 else
1058                         mtd->ecc_stats.corrected += stat;
1059         }
1060         return 0;
1061 }
1062
1063 /**
1064  * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1065  * @mtd:        mtd info structure
1066  * @chip:       nand chip info structure
1067  * @buf:        buffer to store read data
1068  * @page:       page number to read
1069  *
1070  * Hardware ECC for large page chips, require OOB to be read first.
1071  * For this ECC mode, the write_page method is re-used from ECC_HW.
1072  * These methods read/write ECC from the OOB area, unlike the
1073  * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1074  * "infix ECC" scheme and reads/writes ECC from the data area, by
1075  * overwriting the NAND manufacturer bad block markings.
1076  */
1077 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1078         struct nand_chip *chip, uint8_t *buf, int page)
1079 {
1080         int i, eccsize = chip->ecc.size;
1081         int eccbytes = chip->ecc.bytes;
1082         int eccsteps = chip->ecc.steps;
1083         uint8_t *p = buf;
1084         uint8_t *ecc_code = chip->buffers->ecccode;
1085         uint32_t *eccpos = chip->ecc.layout->eccpos;
1086         uint8_t *ecc_calc = chip->buffers->ecccalc;
1087
1088         /* Read the OOB area first */
1089         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1090         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1091         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1092
1093         for (i = 0; i < chip->ecc.total; i++)
1094                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1095
1096         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1097                 int stat;
1098
1099                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1100                 chip->read_buf(mtd, p, eccsize);
1101                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1102
1103                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1104                 if (stat < 0)
1105                         mtd->ecc_stats.failed++;
1106                 else
1107                         mtd->ecc_stats.corrected += stat;
1108         }
1109         return 0;
1110 }
1111
1112 /**
1113  * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1114  * @mtd:        mtd info structure
1115  * @chip:       nand chip info structure
1116  * @buf:        buffer to store read data
1117  * @page:       page number to read
1118  *
1119  * The hw generator calculates the error syndrome automatically. Therefor
1120  * we need a special oob layout and handling.
1121  */
1122 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1123                                    uint8_t *buf, int page)
1124 {
1125         int i, eccsize = chip->ecc.size;
1126         int eccbytes = chip->ecc.bytes;
1127         int eccsteps = chip->ecc.steps;
1128         uint8_t *p = buf;
1129         uint8_t *oob = chip->oob_poi;
1130
1131         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1132                 int stat;
1133
1134                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1135                 chip->read_buf(mtd, p, eccsize);
1136
1137                 if (chip->ecc.prepad) {
1138                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1139                         oob += chip->ecc.prepad;
1140                 }
1141
1142                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1143                 chip->read_buf(mtd, oob, eccbytes);
1144                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1145
1146                 if (stat < 0)
1147                         mtd->ecc_stats.failed++;
1148                 else
1149                         mtd->ecc_stats.corrected += stat;
1150
1151                 oob += eccbytes;
1152
1153                 if (chip->ecc.postpad) {
1154                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1155                         oob += chip->ecc.postpad;
1156                 }
1157         }
1158
1159         /* Calculate remaining oob bytes */
1160         i = mtd->oobsize - (oob - chip->oob_poi);
1161         if (i)
1162                 chip->read_buf(mtd, oob, i);
1163
1164         return 0;
1165 }
1166
1167 /**
1168  * nand_transfer_oob - [Internal] Transfer oob to client buffer
1169  * @chip:       nand chip structure
1170  * @oob:        oob destination address
1171  * @ops:        oob ops structure
1172  * @len:        size of oob to transfer
1173  */
1174 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1175                                   struct mtd_oob_ops *ops, size_t len)
1176 {
1177         switch(ops->mode) {
1178
1179         case MTD_OOB_PLACE:
1180         case MTD_OOB_RAW:
1181                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1182                 return oob + len;
1183
1184         case MTD_OOB_AUTO: {
1185                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1186                 uint32_t boffs = 0, roffs = ops->ooboffs;
1187                 size_t bytes = 0;
1188
1189                 for(; free->length && len; free++, len -= bytes) {
1190                         /* Read request not from offset 0 ? */
1191                         if (unlikely(roffs)) {
1192                                 if (roffs >= free->length) {
1193                                         roffs -= free->length;
1194                                         continue;
1195                                 }
1196                                 boffs = free->offset + roffs;
1197                                 bytes = min_t(size_t, len,
1198                                               (free->length - roffs));
1199                                 roffs = 0;
1200                         } else {
1201                                 bytes = min_t(size_t, len, free->length);
1202                                 boffs = free->offset;
1203                         }
1204                         memcpy(oob, chip->oob_poi + boffs, bytes);
1205                         oob += bytes;
1206                 }
1207                 return oob;
1208         }
1209         default:
1210                 BUG();
1211         }
1212         return NULL;
1213 }
1214
1215 /**
1216  * nand_do_read_ops - [Internal] Read data with ECC
1217  *
1218  * @mtd:        MTD device structure
1219  * @from:       offset to read from
1220  * @ops:        oob ops structure
1221  *
1222  * Internal function. Called with chip held.
1223  */
1224 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1225                             struct mtd_oob_ops *ops)
1226 {
1227         int chipnr, page, realpage, col, bytes, aligned;
1228         struct nand_chip *chip = mtd->priv;
1229         struct mtd_ecc_stats stats;
1230         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1231         int sndcmd = 1;
1232         int ret = 0;
1233         uint32_t readlen = ops->len;
1234         uint32_t oobreadlen = ops->ooblen;
1235         uint8_t *bufpoi, *oob, *buf;
1236
1237         stats = mtd->ecc_stats;
1238
1239         chipnr = (int)(from >> chip->chip_shift);
1240         chip->select_chip(mtd, chipnr);
1241
1242         realpage = (int)(from >> chip->page_shift);
1243         page = realpage & chip->pagemask;
1244
1245         col = (int)(from & (mtd->writesize - 1));
1246
1247         buf = ops->datbuf;
1248         oob = ops->oobbuf;
1249
1250         while(1) {
1251                 bytes = min(mtd->writesize - col, readlen);
1252                 aligned = (bytes == mtd->writesize);
1253
1254                 /* Is the current page in the buffer ? */
1255                 if (realpage != chip->pagebuf || oob) {
1256                         bufpoi = aligned ? buf : chip->buffers->databuf;
1257
1258                         if (likely(sndcmd)) {
1259                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1260                                 sndcmd = 0;
1261                         }
1262
1263                         /* Now read the page into the buffer */
1264                         if (unlikely(ops->mode == MTD_OOB_RAW))
1265                                 ret = chip->ecc.read_page_raw(mtd, chip,
1266                                                               bufpoi, page);
1267                         else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1268                                 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1269                         else
1270                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1271                                                           page);
1272                         if (ret < 0)
1273                                 break;
1274
1275                         /* Transfer not aligned data */
1276                         if (!aligned) {
1277                                 if (!NAND_SUBPAGE_READ(chip) && !oob)
1278                                         chip->pagebuf = realpage;
1279                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1280                         }
1281
1282                         buf += bytes;
1283
1284                         if (unlikely(oob)) {
1285                                 /* Raw mode does data:oob:data:oob */
1286                                 if (ops->mode != MTD_OOB_RAW) {
1287                                         int toread = min(oobreadlen,
1288                                                 chip->ecc.layout->oobavail);
1289                                         if (toread) {
1290                                                 oob = nand_transfer_oob(chip,
1291                                                         oob, ops, toread);
1292                                                 oobreadlen -= toread;
1293                                         }
1294                                 } else
1295                                         buf = nand_transfer_oob(chip,
1296                                                 buf, ops, mtd->oobsize);
1297                         }
1298
1299                         if (!(chip->options & NAND_NO_READRDY)) {
1300                                 /*
1301                                  * Apply delay or wait for ready/busy pin. Do
1302                                  * this before the AUTOINCR check, so no
1303                                  * problems arise if a chip which does auto
1304                                  * increment is marked as NOAUTOINCR by the
1305                                  * board driver.
1306                                  */
1307                                 if (!chip->dev_ready)
1308                                         udelay(chip->chip_delay);
1309                                 else
1310                                         nand_wait_ready(mtd);
1311                         }
1312                 } else {
1313                         memcpy(buf, chip->buffers->databuf + col, bytes);
1314                         buf += bytes;
1315                 }
1316
1317                 readlen -= bytes;
1318
1319                 if (!readlen)
1320                         break;
1321
1322                 /* For subsequent reads align to page boundary. */
1323                 col = 0;
1324                 /* Increment page address */
1325                 realpage++;
1326
1327                 page = realpage & chip->pagemask;
1328                 /* Check, if we cross a chip boundary */
1329                 if (!page) {
1330                         chipnr++;
1331                         chip->select_chip(mtd, -1);
1332                         chip->select_chip(mtd, chipnr);
1333                 }
1334
1335                 /* Check, if the chip supports auto page increment
1336                  * or if we have hit a block boundary.
1337                  */
1338                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1339                         sndcmd = 1;
1340         }
1341
1342         ops->retlen = ops->len - (size_t) readlen;
1343         if (oob)
1344                 ops->oobretlen = ops->ooblen - oobreadlen;
1345
1346         if (ret)
1347                 return ret;
1348
1349         if (mtd->ecc_stats.failed - stats.failed)
1350                 return -EBADMSG;
1351
1352         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1353 }
1354
1355 /**
1356  * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1357  * @mtd:        MTD device structure
1358  * @from:       offset to read from
1359  * @len:        number of bytes to read
1360  * @retlen:     pointer to variable to store the number of read bytes
1361  * @buf:        the databuffer to put data
1362  *
1363  * Get hold of the chip and call nand_do_read
1364  */
1365 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1366                      size_t *retlen, uint8_t *buf)
1367 {
1368         struct nand_chip *chip = mtd->priv;
1369         int ret;
1370
1371         /* Do not allow reads past end of device */
1372         if ((from + len) > mtd->size)
1373                 return -EINVAL;
1374         if (!len)
1375                 return 0;
1376
1377         nand_get_device(chip, mtd, FL_READING);
1378
1379         chip->ops.len = len;
1380         chip->ops.datbuf = buf;
1381         chip->ops.oobbuf = NULL;
1382
1383         ret = nand_do_read_ops(mtd, from, &chip->ops);
1384
1385         *retlen = chip->ops.retlen;
1386
1387         nand_release_device(mtd);
1388
1389         return ret;
1390 }
1391
1392 /**
1393  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1394  * @mtd:        mtd info structure
1395  * @chip:       nand chip info structure
1396  * @page:       page number to read
1397  * @sndcmd:     flag whether to issue read command or not
1398  */
1399 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1400                              int page, int sndcmd)
1401 {
1402         if (sndcmd) {
1403                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1404                 sndcmd = 0;
1405         }
1406         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1407         return sndcmd;
1408 }
1409
1410 /**
1411  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1412  *                          with syndromes
1413  * @mtd:        mtd info structure
1414  * @chip:       nand chip info structure
1415  * @page:       page number to read
1416  * @sndcmd:     flag whether to issue read command or not
1417  */
1418 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1419                                   int page, int sndcmd)
1420 {
1421         uint8_t *buf = chip->oob_poi;
1422         int length = mtd->oobsize;
1423         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1424         int eccsize = chip->ecc.size;
1425         uint8_t *bufpoi = buf;
1426         int i, toread, sndrnd = 0, pos;
1427
1428         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1429         for (i = 0; i < chip->ecc.steps; i++) {
1430                 if (sndrnd) {
1431                         pos = eccsize + i * (eccsize + chunk);
1432                         if (mtd->writesize > 512)
1433                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1434                         else
1435                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1436                 } else
1437                         sndrnd = 1;
1438                 toread = min_t(int, length, chunk);
1439                 chip->read_buf(mtd, bufpoi, toread);
1440                 bufpoi += toread;
1441                 length -= toread;
1442         }
1443         if (length > 0)
1444                 chip->read_buf(mtd, bufpoi, length);
1445
1446         return 1;
1447 }
1448
1449 /**
1450  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1451  * @mtd:        mtd info structure
1452  * @chip:       nand chip info structure
1453  * @page:       page number to write
1454  */
1455 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1456                               int page)
1457 {
1458         int status = 0;
1459         const uint8_t *buf = chip->oob_poi;
1460         int length = mtd->oobsize;
1461
1462         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1463         chip->write_buf(mtd, buf, length);
1464         /* Send command to program the OOB data */
1465         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1466
1467         status = chip->waitfunc(mtd, chip);
1468
1469         return status & NAND_STATUS_FAIL ? -EIO : 0;
1470 }
1471
1472 /**
1473  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1474  *                           with syndrome - only for large page flash !
1475  * @mtd:        mtd info structure
1476  * @chip:       nand chip info structure
1477  * @page:       page number to write
1478  */
1479 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1480                                    struct nand_chip *chip, int page)
1481 {
1482         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1483         int eccsize = chip->ecc.size, length = mtd->oobsize;
1484         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1485         const uint8_t *bufpoi = chip->oob_poi;
1486
1487         /*
1488          * data-ecc-data-ecc ... ecc-oob
1489          * or
1490          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1491          */
1492         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1493                 pos = steps * (eccsize + chunk);
1494                 steps = 0;
1495         } else
1496                 pos = eccsize;
1497
1498         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1499         for (i = 0; i < steps; i++) {
1500                 if (sndcmd) {
1501                         if (mtd->writesize <= 512) {
1502                                 uint32_t fill = 0xFFFFFFFF;
1503
1504                                 len = eccsize;
1505                                 while (len > 0) {
1506                                         int num = min_t(int, len, 4);
1507                                         chip->write_buf(mtd, (uint8_t *)&fill,
1508                                                         num);
1509                                         len -= num;
1510                                 }
1511                         } else {
1512                                 pos = eccsize + i * (eccsize + chunk);
1513                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1514                         }
1515                 } else
1516                         sndcmd = 1;
1517                 len = min_t(int, length, chunk);
1518                 chip->write_buf(mtd, bufpoi, len);
1519                 bufpoi += len;
1520                 length -= len;
1521         }
1522         if (length > 0)
1523                 chip->write_buf(mtd, bufpoi, length);
1524
1525         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1526         status = chip->waitfunc(mtd, chip);
1527
1528         return status & NAND_STATUS_FAIL ? -EIO : 0;
1529 }
1530
1531 /**
1532  * nand_do_read_oob - [Intern] NAND read out-of-band
1533  * @mtd:        MTD device structure
1534  * @from:       offset to read from
1535  * @ops:        oob operations description structure
1536  *
1537  * NAND read out-of-band data from the spare area
1538  */
1539 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1540                             struct mtd_oob_ops *ops)
1541 {
1542         int page, realpage, chipnr, sndcmd = 1;
1543         struct nand_chip *chip = mtd->priv;
1544         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1545         int readlen = ops->ooblen;
1546         int len;
1547         uint8_t *buf = ops->oobbuf;
1548
1549         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1550                         __func__, (unsigned long long)from, readlen);
1551
1552         if (ops->mode == MTD_OOB_AUTO)
1553                 len = chip->ecc.layout->oobavail;
1554         else
1555                 len = mtd->oobsize;
1556
1557         if (unlikely(ops->ooboffs >= len)) {
1558                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1559                                         "outside oob\n", __func__);
1560                 return -EINVAL;
1561         }
1562
1563         /* Do not allow reads past end of device */
1564         if (unlikely(from >= mtd->size ||
1565                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1566                                         (from >> chip->page_shift)) * len)) {
1567                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1568                                         "of device\n", __func__);
1569                 return -EINVAL;
1570         }
1571
1572         chipnr = (int)(from >> chip->chip_shift);
1573         chip->select_chip(mtd, chipnr);
1574
1575         /* Shift to get page */
1576         realpage = (int)(from >> chip->page_shift);
1577         page = realpage & chip->pagemask;
1578
1579         while(1) {
1580                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1581
1582                 len = min(len, readlen);
1583                 buf = nand_transfer_oob(chip, buf, ops, len);
1584
1585                 if (!(chip->options & NAND_NO_READRDY)) {
1586                         /*
1587                          * Apply delay or wait for ready/busy pin. Do this
1588                          * before the AUTOINCR check, so no problems arise if a
1589                          * chip which does auto increment is marked as
1590                          * NOAUTOINCR by the board driver.
1591                          */
1592                         if (!chip->dev_ready)
1593                                 udelay(chip->chip_delay);
1594                         else
1595                                 nand_wait_ready(mtd);
1596                 }
1597
1598                 readlen -= len;
1599                 if (!readlen)
1600                         break;
1601
1602                 /* Increment page address */
1603                 realpage++;
1604
1605                 page = realpage & chip->pagemask;
1606                 /* Check, if we cross a chip boundary */
1607                 if (!page) {
1608                         chipnr++;
1609                         chip->select_chip(mtd, -1);
1610                         chip->select_chip(mtd, chipnr);
1611                 }
1612
1613                 /* Check, if the chip supports auto page increment
1614                  * or if we have hit a block boundary.
1615                  */
1616                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1617                         sndcmd = 1;
1618         }
1619
1620         ops->oobretlen = ops->ooblen;
1621         return 0;
1622 }
1623
1624 /**
1625  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1626  * @mtd:        MTD device structure
1627  * @from:       offset to read from
1628  * @ops:        oob operation description structure
1629  *
1630  * NAND read data and/or out-of-band data
1631  */
1632 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1633                          struct mtd_oob_ops *ops)
1634 {
1635         struct nand_chip *chip = mtd->priv;
1636         int ret = -ENOTSUPP;
1637
1638         ops->retlen = 0;
1639
1640         /* Do not allow reads past end of device */
1641         if (ops->datbuf && (from + ops->len) > mtd->size) {
1642                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1643                                 "beyond end of device\n", __func__);
1644                 return -EINVAL;
1645         }
1646
1647         nand_get_device(chip, mtd, FL_READING);
1648
1649         switch(ops->mode) {
1650         case MTD_OOB_PLACE:
1651         case MTD_OOB_AUTO:
1652         case MTD_OOB_RAW:
1653                 break;
1654
1655         default:
1656                 goto out;
1657         }
1658
1659         if (!ops->datbuf)
1660                 ret = nand_do_read_oob(mtd, from, ops);
1661         else
1662                 ret = nand_do_read_ops(mtd, from, ops);
1663
1664  out:
1665         nand_release_device(mtd);
1666         return ret;
1667 }
1668
1669
1670 /**
1671  * nand_write_page_raw - [Intern] raw page write function
1672  * @mtd:        mtd info structure
1673  * @chip:       nand chip info structure
1674  * @buf:        data buffer
1675  *
1676  * Not for syndrome calculating ecc controllers, which use a special oob layout
1677  */
1678 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1679                                 const uint8_t *buf)
1680 {
1681         chip->write_buf(mtd, buf, mtd->writesize);
1682         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1683 }
1684
1685 /**
1686  * nand_write_page_raw_syndrome - [Intern] raw page write function
1687  * @mtd:        mtd info structure
1688  * @chip:       nand chip info structure
1689  * @buf:        data buffer
1690  *
1691  * We need a special oob layout and handling even when ECC isn't checked.
1692  */
1693 static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1694                                 const uint8_t *buf)
1695 {
1696         int eccsize = chip->ecc.size;
1697         int eccbytes = chip->ecc.bytes;
1698         uint8_t *oob = chip->oob_poi;
1699         int steps, size;
1700
1701         for (steps = chip->ecc.steps; steps > 0; steps--) {
1702                 chip->write_buf(mtd, buf, eccsize);
1703                 buf += eccsize;
1704
1705                 if (chip->ecc.prepad) {
1706                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1707                         oob += chip->ecc.prepad;
1708                 }
1709
1710                 chip->read_buf(mtd, oob, eccbytes);
1711                 oob += eccbytes;
1712
1713                 if (chip->ecc.postpad) {
1714                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1715                         oob += chip->ecc.postpad;
1716                 }
1717         }
1718
1719         size = mtd->oobsize - (oob - chip->oob_poi);
1720         if (size)
1721                 chip->write_buf(mtd, oob, size);
1722 }
1723 /**
1724  * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1725  * @mtd:        mtd info structure
1726  * @chip:       nand chip info structure
1727  * @buf:        data buffer
1728  */
1729 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1730                                   const uint8_t *buf)
1731 {
1732         int i, eccsize = chip->ecc.size;
1733         int eccbytes = chip->ecc.bytes;
1734         int eccsteps = chip->ecc.steps;
1735         uint8_t *ecc_calc = chip->buffers->ecccalc;
1736         const uint8_t *p = buf;
1737         uint32_t *eccpos = chip->ecc.layout->eccpos;
1738
1739         /* Software ecc calculation */
1740         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1741                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1742
1743         for (i = 0; i < chip->ecc.total; i++)
1744                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1745
1746         chip->ecc.write_page_raw(mtd, chip, buf);
1747 }
1748
1749 /**
1750  * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1751  * @mtd:        mtd info structure
1752  * @chip:       nand chip info structure
1753  * @buf:        data buffer
1754  */
1755 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1756                                   const uint8_t *buf)
1757 {
1758         int i, eccsize = chip->ecc.size;
1759         int eccbytes = chip->ecc.bytes;
1760         int eccsteps = chip->ecc.steps;
1761         uint8_t *ecc_calc = chip->buffers->ecccalc;
1762         const uint8_t *p = buf;
1763         uint32_t *eccpos = chip->ecc.layout->eccpos;
1764
1765         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1766                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1767                 chip->write_buf(mtd, p, eccsize);
1768                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1769         }
1770
1771         for (i = 0; i < chip->ecc.total; i++)
1772                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1773
1774         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1775 }
1776
1777 /**
1778  * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1779  * @mtd:        mtd info structure
1780  * @chip:       nand chip info structure
1781  * @buf:        data buffer
1782  *
1783  * The hw generator calculates the error syndrome automatically. Therefor
1784  * we need a special oob layout and handling.
1785  */
1786 static void nand_write_page_syndrome(struct mtd_info *mtd,
1787                                     struct nand_chip *chip, const uint8_t *buf)
1788 {
1789         int i, eccsize = chip->ecc.size;
1790         int eccbytes = chip->ecc.bytes;
1791         int eccsteps = chip->ecc.steps;
1792         const uint8_t *p = buf;
1793         uint8_t *oob = chip->oob_poi;
1794
1795         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1796
1797                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1798                 chip->write_buf(mtd, p, eccsize);
1799
1800                 if (chip->ecc.prepad) {
1801                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1802                         oob += chip->ecc.prepad;
1803                 }
1804
1805                 chip->ecc.calculate(mtd, p, oob);
1806                 chip->write_buf(mtd, oob, eccbytes);
1807                 oob += eccbytes;
1808
1809                 if (chip->ecc.postpad) {
1810                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1811                         oob += chip->ecc.postpad;
1812                 }
1813         }
1814
1815         /* Calculate remaining oob bytes */
1816         i = mtd->oobsize - (oob - chip->oob_poi);
1817         if (i)
1818                 chip->write_buf(mtd, oob, i);
1819 }
1820
1821 /**
1822  * nand_write_page - [REPLACEABLE] write one page
1823  * @mtd:        MTD device structure
1824  * @chip:       NAND chip descriptor
1825  * @buf:        the data to write
1826  * @page:       page number to write
1827  * @cached:     cached programming
1828  * @raw:        use _raw version of write_page
1829  */
1830 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1831                            const uint8_t *buf, int page, int cached, int raw)
1832 {
1833         int status;
1834
1835         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1836
1837         if (unlikely(raw))
1838                 chip->ecc.write_page_raw(mtd, chip, buf);
1839         else
1840                 chip->ecc.write_page(mtd, chip, buf);
1841
1842         /*
1843          * Cached progamming disabled for now, Not sure if its worth the
1844          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1845          */
1846         cached = 0;
1847
1848         if (!cached || !(chip->options & NAND_CACHEPRG)) {
1849
1850                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1851                 status = chip->waitfunc(mtd, chip);
1852                 /*
1853                  * See if operation failed and additional status checks are
1854                  * available
1855                  */
1856                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1857                         status = chip->errstat(mtd, chip, FL_WRITING, status,
1858                                                page);
1859
1860                 if (status & NAND_STATUS_FAIL)
1861                         return -EIO;
1862         } else {
1863                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1864                 status = chip->waitfunc(mtd, chip);
1865         }
1866
1867 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1868         /* Send command to read back the data */
1869         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1870
1871         if (chip->verify_buf(mtd, buf, mtd->writesize))
1872                 return -EIO;
1873 #endif
1874         return 0;
1875 }
1876
1877 /**
1878  * nand_fill_oob - [Internal] Transfer client buffer to oob
1879  * @chip:       nand chip structure
1880  * @oob:        oob data buffer
1881  * @ops:        oob ops structure
1882  */
1883 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1884                                   struct mtd_oob_ops *ops)
1885 {
1886         size_t len = ops->ooblen;
1887
1888         switch(ops->mode) {
1889
1890         case MTD_OOB_PLACE:
1891         case MTD_OOB_RAW:
1892                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1893                 return oob + len;
1894
1895         case MTD_OOB_AUTO: {
1896                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1897                 uint32_t boffs = 0, woffs = ops->ooboffs;
1898                 size_t bytes = 0;
1899
1900                 for(; free->length && len; free++, len -= bytes) {
1901                         /* Write request not from offset 0 ? */
1902                         if (unlikely(woffs)) {
1903                                 if (woffs >= free->length) {
1904                                         woffs -= free->length;
1905                                         continue;
1906                                 }
1907                                 boffs = free->offset + woffs;
1908                                 bytes = min_t(size_t, len,
1909                                               (free->length - woffs));
1910                                 woffs = 0;
1911                         } else {
1912                                 bytes = min_t(size_t, len, free->length);
1913                                 boffs = free->offset;
1914                         }
1915                         memcpy(chip->oob_poi + boffs, oob, bytes);
1916                         oob += bytes;
1917                 }
1918                 return oob;
1919         }
1920         default:
1921                 BUG();
1922         }
1923         return NULL;
1924 }
1925
1926 #define NOTALIGNED(x)   (x & (chip->subpagesize - 1)) != 0
1927
1928 /**
1929  * nand_do_write_ops - [Internal] NAND write with ECC
1930  * @mtd:        MTD device structure
1931  * @to:         offset to write to
1932  * @ops:        oob operations description structure
1933  *
1934  * NAND write with ECC
1935  */
1936 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1937                              struct mtd_oob_ops *ops)
1938 {
1939         int chipnr, realpage, page, blockmask, column;
1940         struct nand_chip *chip = mtd->priv;
1941         uint32_t writelen = ops->len;
1942         uint8_t *oob = ops->oobbuf;
1943         uint8_t *buf = ops->datbuf;
1944         int ret, subpage;
1945
1946         ops->retlen = 0;
1947         if (!writelen)
1948                 return 0;
1949
1950         /* reject writes, which are not page aligned */
1951         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1952                 printk(KERN_NOTICE "%s: Attempt to write not "
1953                                 "page aligned data\n", __func__);
1954                 return -EINVAL;
1955         }
1956
1957         column = to & (mtd->writesize - 1);
1958         subpage = column || (writelen & (mtd->writesize - 1));
1959
1960         if (subpage && oob)
1961                 return -EINVAL;
1962
1963         chipnr = (int)(to >> chip->chip_shift);
1964         chip->select_chip(mtd, chipnr);
1965
1966         /* Check, if it is write protected */
1967         if (nand_check_wp(mtd))
1968                 return -EIO;
1969
1970         realpage = (int)(to >> chip->page_shift);
1971         page = realpage & chip->pagemask;
1972         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1973
1974         /* Invalidate the page cache, when we write to the cached page */
1975         if (to <= (chip->pagebuf << chip->page_shift) &&
1976             (chip->pagebuf << chip->page_shift) < (to + ops->len))
1977                 chip->pagebuf = -1;
1978
1979         /* If we're not given explicit OOB data, let it be 0xFF */
1980         if (likely(!oob))
1981                 memset(chip->oob_poi, 0xff, mtd->oobsize);
1982
1983         while(1) {
1984                 int bytes = mtd->writesize;
1985                 int cached = writelen > bytes && page != blockmask;
1986                 uint8_t *wbuf = buf;
1987
1988                 /* Partial page write ? */
1989                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1990                         cached = 0;
1991                         bytes = min_t(int, bytes - column, (int) writelen);
1992                         chip->pagebuf = -1;
1993                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
1994                         memcpy(&chip->buffers->databuf[column], buf, bytes);
1995                         wbuf = chip->buffers->databuf;
1996                 }
1997
1998                 if (unlikely(oob))
1999                         oob = nand_fill_oob(chip, oob, ops);
2000
2001                 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2002                                        (ops->mode == MTD_OOB_RAW));
2003                 if (ret)
2004                         break;
2005
2006                 writelen -= bytes;
2007                 if (!writelen)
2008                         break;
2009
2010                 column = 0;
2011                 buf += bytes;
2012                 realpage++;
2013
2014                 page = realpage & chip->pagemask;
2015                 /* Check, if we cross a chip boundary */
2016                 if (!page) {
2017                         chipnr++;
2018                         chip->select_chip(mtd, -1);
2019                         chip->select_chip(mtd, chipnr);
2020                 }
2021         }
2022
2023         ops->retlen = ops->len - writelen;
2024         if (unlikely(oob))
2025                 ops->oobretlen = ops->ooblen;
2026         return ret;
2027 }
2028
2029 /**
2030  * panic_nand_write - [MTD Interface] NAND write with ECC
2031  * @mtd:        MTD device structure
2032  * @to:         offset to write to
2033  * @len:        number of bytes to write
2034  * @retlen:     pointer to variable to store the number of written bytes
2035  * @buf:        the data to write
2036  *
2037  * NAND write with ECC. Used when performing writes in interrupt context, this
2038  * may for example be called by mtdoops when writing an oops while in panic.
2039  */
2040 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2041                             size_t *retlen, const uint8_t *buf)
2042 {
2043         struct nand_chip *chip = mtd->priv;
2044         int ret;
2045
2046         /* Do not allow reads past end of device */
2047         if ((to + len) > mtd->size)
2048                 return -EINVAL;
2049         if (!len)
2050                 return 0;
2051
2052         /* Wait for the device to get ready.  */
2053         panic_nand_wait(mtd, chip, 400);
2054
2055         /* Grab the device.  */
2056         panic_nand_get_device(chip, mtd, FL_WRITING);
2057
2058         chip->ops.len = len;
2059         chip->ops.datbuf = (uint8_t *)buf;
2060         chip->ops.oobbuf = NULL;
2061
2062         ret = nand_do_write_ops(mtd, to, &chip->ops);
2063
2064         *retlen = chip->ops.retlen;
2065         return ret;
2066 }
2067
2068 /**
2069  * nand_write - [MTD Interface] NAND write with ECC
2070  * @mtd:        MTD device structure
2071  * @to:         offset to write to
2072  * @len:        number of bytes to write
2073  * @retlen:     pointer to variable to store the number of written bytes
2074  * @buf:        the data to write
2075  *
2076  * NAND write with ECC
2077  */
2078 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2079                           size_t *retlen, const uint8_t *buf)
2080 {
2081         struct nand_chip *chip = mtd->priv;
2082         int ret;
2083
2084         /* Do not allow reads past end of device */
2085         if ((to + len) > mtd->size)
2086                 return -EINVAL;
2087         if (!len)
2088                 return 0;
2089
2090         nand_get_device(chip, mtd, FL_WRITING);
2091
2092         chip->ops.len = len;
2093         chip->ops.datbuf = (uint8_t *)buf;
2094         chip->ops.oobbuf = NULL;
2095
2096         ret = nand_do_write_ops(mtd, to, &chip->ops);
2097
2098         *retlen = chip->ops.retlen;
2099
2100         nand_release_device(mtd);
2101
2102         return ret;
2103 }
2104
2105 /**
2106  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2107  * @mtd:        MTD device structure
2108  * @to:         offset to write to
2109  * @ops:        oob operation description structure
2110  *
2111  * NAND write out-of-band
2112  */
2113 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2114                              struct mtd_oob_ops *ops)
2115 {
2116         int chipnr, page, status, len;
2117         struct nand_chip *chip = mtd->priv;
2118
2119         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2120                          __func__, (unsigned int)to, (int)ops->ooblen);
2121
2122         if (ops->mode == MTD_OOB_AUTO)
2123                 len = chip->ecc.layout->oobavail;
2124         else
2125                 len = mtd->oobsize;
2126
2127         /* Do not allow write past end of page */
2128         if ((ops->ooboffs + ops->ooblen) > len) {
2129                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2130                                 "past end of page\n", __func__);
2131                 return -EINVAL;
2132         }
2133
2134         if (unlikely(ops->ooboffs >= len)) {
2135                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2136                                 "write outside oob\n", __func__);
2137                 return -EINVAL;
2138         }
2139
2140         /* Do not allow reads past end of device */
2141         if (unlikely(to >= mtd->size ||
2142                      ops->ooboffs + ops->ooblen >
2143                         ((mtd->size >> chip->page_shift) -
2144                          (to >> chip->page_shift)) * len)) {
2145                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2146                                 "end of device\n", __func__);
2147                 return -EINVAL;
2148         }
2149
2150         chipnr = (int)(to >> chip->chip_shift);
2151         chip->select_chip(mtd, chipnr);
2152
2153         /* Shift to get page */
2154         page = (int)(to >> chip->page_shift);
2155
2156         /*
2157          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2158          * of my DiskOnChip 2000 test units) will clear the whole data page too
2159          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2160          * it in the doc2000 driver in August 1999.  dwmw2.
2161          */
2162         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2163
2164         /* Check, if it is write protected */
2165         if (nand_check_wp(mtd))
2166                 return -EROFS;
2167
2168         /* Invalidate the page cache, if we write to the cached page */
2169         if (page == chip->pagebuf)
2170                 chip->pagebuf = -1;
2171
2172         memset(chip->oob_poi, 0xff, mtd->oobsize);
2173         nand_fill_oob(chip, ops->oobbuf, ops);
2174         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2175         memset(chip->oob_poi, 0xff, mtd->oobsize);
2176
2177         if (status)
2178                 return status;
2179
2180         ops->oobretlen = ops->ooblen;
2181
2182         return 0;
2183 }
2184
2185 /**
2186  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2187  * @mtd:        MTD device structure
2188  * @to:         offset to write to
2189  * @ops:        oob operation description structure
2190  */
2191 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2192                           struct mtd_oob_ops *ops)
2193 {
2194         struct nand_chip *chip = mtd->priv;
2195         int ret = -ENOTSUPP;
2196
2197         ops->retlen = 0;
2198
2199         /* Do not allow writes past end of device */
2200         if (ops->datbuf && (to + ops->len) > mtd->size) {
2201                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2202                                 "end of device\n", __func__);
2203                 return -EINVAL;
2204         }
2205
2206         nand_get_device(chip, mtd, FL_WRITING);
2207
2208         switch(ops->mode) {
2209         case MTD_OOB_PLACE:
2210         case MTD_OOB_AUTO:
2211         case MTD_OOB_RAW:
2212                 break;
2213
2214         default:
2215                 goto out;
2216         }
2217
2218         if (!ops->datbuf)
2219                 ret = nand_do_write_oob(mtd, to, ops);
2220         else
2221                 ret = nand_do_write_ops(mtd, to, ops);
2222
2223  out:
2224         nand_release_device(mtd);
2225         return ret;
2226 }
2227
2228 /**
2229  * single_erease_cmd - [GENERIC] NAND standard block erase command function
2230  * @mtd:        MTD device structure
2231  * @page:       the page address of the block which will be erased
2232  *
2233  * Standard erase command for NAND chips
2234  */
2235 static void single_erase_cmd(struct mtd_info *mtd, int page)
2236 {
2237         struct nand_chip *chip = mtd->priv;
2238         /* Send commands to erase a block */
2239         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2240         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2241 }
2242
2243 /**
2244  * multi_erease_cmd - [GENERIC] AND specific block erase command function
2245  * @mtd:        MTD device structure
2246  * @page:       the page address of the block which will be erased
2247  *
2248  * AND multi block erase command function
2249  * Erase 4 consecutive blocks
2250  */
2251 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2252 {
2253         struct nand_chip *chip = mtd->priv;
2254         /* Send commands to erase a block */
2255         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2256         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2257         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2258         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2259         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2260 }
2261
2262 /**
2263  * nand_erase - [MTD Interface] erase block(s)
2264  * @mtd:        MTD device structure
2265  * @instr:      erase instruction
2266  *
2267  * Erase one ore more blocks
2268  */
2269 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2270 {
2271         return nand_erase_nand(mtd, instr, 0);
2272 }
2273
2274 #define BBT_PAGE_MASK   0xffffff3f
2275 /**
2276  * nand_erase_nand - [Internal] erase block(s)
2277  * @mtd:        MTD device structure
2278  * @instr:      erase instruction
2279  * @allowbbt:   allow erasing the bbt area
2280  *
2281  * Erase one ore more blocks
2282  */
2283 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2284                     int allowbbt)
2285 {
2286         int page, status, pages_per_block, ret, chipnr;
2287         struct nand_chip *chip = mtd->priv;
2288         loff_t rewrite_bbt[NAND_MAX_CHIPS]={0};
2289         unsigned int bbt_masked_page = 0xffffffff;
2290         loff_t len;
2291
2292         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2293                                 __func__, (unsigned long long)instr->addr,
2294                                 (unsigned long long)instr->len);
2295
2296         /* Start address must align on block boundary */
2297         if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
2298                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
2299                 return -EINVAL;
2300         }
2301
2302         /* Length must align on block boundary */
2303         if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
2304                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
2305                                         __func__);
2306                 return -EINVAL;
2307         }
2308
2309         /* Do not allow erase past end of device */
2310         if ((instr->len + instr->addr) > mtd->size) {
2311                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Erase past end of device\n",
2312                                         __func__);
2313                 return -EINVAL;
2314         }
2315
2316         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2317
2318         /* Grab the lock and see if the device is available */
2319         nand_get_device(chip, mtd, FL_ERASING);
2320
2321         /* Shift to get first page */
2322         page = (int)(instr->addr >> chip->page_shift);
2323         chipnr = (int)(instr->addr >> chip->chip_shift);
2324
2325         /* Calculate pages in each block */
2326         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2327
2328         /* Select the NAND device */
2329         chip->select_chip(mtd, chipnr);
2330
2331         /* Check, if it is write protected */
2332         if (nand_check_wp(mtd)) {
2333                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2334                                         __func__);
2335                 instr->state = MTD_ERASE_FAILED;
2336                 goto erase_exit;
2337         }
2338
2339         /*
2340          * If BBT requires refresh, set the BBT page mask to see if the BBT
2341          * should be rewritten. Otherwise the mask is set to 0xffffffff which
2342          * can not be matched. This is also done when the bbt is actually
2343          * erased to avoid recusrsive updates
2344          */
2345         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2346                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2347
2348         /* Loop through the pages */
2349         len = instr->len;
2350
2351         instr->state = MTD_ERASING;
2352
2353         while (len) {
2354                 /*
2355                  * heck if we have a bad block, we do not erase bad blocks !
2356                  */
2357                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2358                                         chip->page_shift, 0, allowbbt)) {
2359                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2360                                         "at page 0x%08x\n", __func__, page);
2361                         instr->state = MTD_ERASE_FAILED;
2362                         goto erase_exit;
2363                 }
2364
2365                 /*
2366                  * Invalidate the page cache, if we erase the block which
2367                  * contains the current cached page
2368                  */
2369                 if (page <= chip->pagebuf && chip->pagebuf <
2370                     (page + pages_per_block))
2371                         chip->pagebuf = -1;
2372
2373                 chip->erase_cmd(mtd, page & chip->pagemask);
2374
2375                 status = chip->waitfunc(mtd, chip);
2376
2377                 /*
2378                  * See if operation failed and additional status checks are
2379                  * available
2380                  */
2381                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2382                         status = chip->errstat(mtd, chip, FL_ERASING,
2383                                                status, page);
2384
2385                 /* See if block erase succeeded */
2386                 if (status & NAND_STATUS_FAIL) {
2387                         DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2388                                         "page 0x%08x\n", __func__, page);
2389                         instr->state = MTD_ERASE_FAILED;
2390                         instr->fail_addr =
2391                                 ((loff_t)page << chip->page_shift);
2392                         goto erase_exit;
2393                 }
2394
2395                 /*
2396                  * If BBT requires refresh, set the BBT rewrite flag to the
2397                  * page being erased
2398                  */
2399                 if (bbt_masked_page != 0xffffffff &&
2400                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2401                             rewrite_bbt[chipnr] =
2402                                         ((loff_t)page << chip->page_shift);
2403
2404                 /* Increment page address and decrement length */
2405                 len -= (1 << chip->phys_erase_shift);
2406                 page += pages_per_block;
2407
2408                 /* Check, if we cross a chip boundary */
2409                 if (len && !(page & chip->pagemask)) {
2410                         chipnr++;
2411                         chip->select_chip(mtd, -1);
2412                         chip->select_chip(mtd, chipnr);
2413
2414                         /*
2415                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2416                          * page mask to see if this BBT should be rewritten
2417                          */
2418                         if (bbt_masked_page != 0xffffffff &&
2419                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2420                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2421                                         BBT_PAGE_MASK;
2422                 }
2423         }
2424         instr->state = MTD_ERASE_DONE;
2425
2426  erase_exit:
2427
2428         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2429
2430         /* Deselect and wake up anyone waiting on the device */
2431         nand_release_device(mtd);
2432
2433         /* Do call back function */
2434         if (!ret)
2435                 mtd_erase_callback(instr);
2436
2437         /*
2438          * If BBT requires refresh and erase was successful, rewrite any
2439          * selected bad block tables
2440          */
2441         if (bbt_masked_page == 0xffffffff || ret)
2442                 return ret;
2443
2444         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2445                 if (!rewrite_bbt[chipnr])
2446                         continue;
2447                 /* update the BBT for chip */
2448                 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2449                         "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2450                         rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2451                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2452         }
2453
2454         /* Return more or less happy */
2455         return ret;
2456 }
2457
2458 /**
2459  * nand_sync - [MTD Interface] sync
2460  * @mtd:        MTD device structure
2461  *
2462  * Sync is actually a wait for chip ready function
2463  */
2464 static void nand_sync(struct mtd_info *mtd)
2465 {
2466         struct nand_chip *chip = mtd->priv;
2467
2468         DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2469
2470         /* Grab the lock and see if the device is available */
2471         nand_get_device(chip, mtd, FL_SYNCING);
2472         /* Release it and go back */
2473         nand_release_device(mtd);
2474 }
2475
2476 /**
2477  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2478  * @mtd:        MTD device structure
2479  * @offs:       offset relative to mtd start
2480  */
2481 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2482 {
2483         /* Check for invalid offset */
2484         if (offs > mtd->size)
2485                 return -EINVAL;
2486
2487         return nand_block_checkbad(mtd, offs, 1, 0);
2488 }
2489
2490 /**
2491  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2492  * @mtd:        MTD device structure
2493  * @ofs:        offset relative to mtd start
2494  */
2495 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2496 {
2497         struct nand_chip *chip = mtd->priv;
2498         int ret;
2499
2500         if ((ret = nand_block_isbad(mtd, ofs))) {
2501                 /* If it was bad already, return success and do nothing. */
2502                 if (ret > 0)
2503                         return 0;
2504                 return ret;
2505         }
2506
2507         return chip->block_markbad(mtd, ofs);
2508 }
2509
2510 /**
2511  * nand_suspend - [MTD Interface] Suspend the NAND flash
2512  * @mtd:        MTD device structure
2513  */
2514 static int nand_suspend(struct mtd_info *mtd)
2515 {
2516         struct nand_chip *chip = mtd->priv;
2517
2518         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2519 }
2520
2521 /**
2522  * nand_resume - [MTD Interface] Resume the NAND flash
2523  * @mtd:        MTD device structure
2524  */
2525 static void nand_resume(struct mtd_info *mtd)
2526 {
2527         struct nand_chip *chip = mtd->priv;
2528
2529         if (chip->state == FL_PM_SUSPENDED)
2530                 nand_release_device(mtd);
2531         else
2532                 printk(KERN_ERR "%s called for a chip which is not "
2533                        "in suspended state\n", __func__);
2534 }
2535
2536 /*
2537  * Set default functions
2538  */
2539 static void nand_set_defaults(struct nand_chip *chip, int busw)
2540 {
2541         /* check for proper chip_delay setup, set 20us if not */
2542         if (!chip->chip_delay)
2543                 chip->chip_delay = 20;
2544
2545         /* check, if a user supplied command function given */
2546         if (chip->cmdfunc == NULL)
2547                 chip->cmdfunc = nand_command;
2548
2549         /* check, if a user supplied wait function given */
2550         if (chip->waitfunc == NULL)
2551                 chip->waitfunc = nand_wait;
2552
2553         if (!chip->select_chip)
2554                 chip->select_chip = nand_select_chip;
2555         if (!chip->read_byte)
2556                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2557         if (!chip->read_word)
2558                 chip->read_word = nand_read_word;
2559         if (!chip->block_bad)
2560                 chip->block_bad = nand_block_bad;
2561         if (!chip->block_markbad)
2562                 chip->block_markbad = nand_default_block_markbad;
2563         if (!chip->write_buf)
2564                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2565         if (!chip->read_buf)
2566                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2567         if (!chip->verify_buf)
2568                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2569         if (!chip->scan_bbt)
2570                 chip->scan_bbt = nand_default_bbt;
2571
2572         if (!chip->controller) {
2573                 chip->controller = &chip->hwcontrol;
2574                 spin_lock_init(&chip->controller->lock);
2575                 init_waitqueue_head(&chip->controller->wq);
2576         }
2577
2578 }
2579
2580 /*
2581  * Get the flash and manufacturer id and lookup if the type is supported
2582  */
2583 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2584                                                   struct nand_chip *chip,
2585                                                   int busw, int *maf_id)
2586 {
2587         struct nand_flash_dev *type = NULL;
2588         int i, dev_id, maf_idx;
2589         int tmp_id, tmp_manf;
2590
2591         /* Select the device */
2592         chip->select_chip(mtd, 0);
2593
2594         /*
2595          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2596          * after power-up
2597          */
2598         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2599
2600         /* Send the command for reading device ID */
2601         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2602
2603         /* Read manufacturer and device IDs */
2604         *maf_id = chip->read_byte(mtd);
2605         dev_id = chip->read_byte(mtd);
2606
2607         /* Try again to make sure, as some systems the bus-hold or other
2608          * interface concerns can cause random data which looks like a
2609          * possibly credible NAND flash to appear. If the two results do
2610          * not match, ignore the device completely.
2611          */
2612
2613         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2614
2615         /* Read manufacturer and device IDs */
2616
2617         tmp_manf = chip->read_byte(mtd);
2618         tmp_id = chip->read_byte(mtd);
2619
2620         if (tmp_manf != *maf_id || tmp_id != dev_id) {
2621                 printk(KERN_INFO "%s: second ID read did not match "
2622                        "%02x,%02x against %02x,%02x\n", __func__,
2623                        *maf_id, dev_id, tmp_manf, tmp_id);
2624                 return ERR_PTR(-ENODEV);
2625         }
2626
2627         /* Lookup the flash id */
2628         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2629                 if (dev_id == nand_flash_ids[i].id) {
2630                         type =  &nand_flash_ids[i];
2631                         break;
2632                 }
2633         }
2634
2635         if (!type)
2636                 return ERR_PTR(-ENODEV);
2637
2638         if (!mtd->name)
2639                 mtd->name = type->name;
2640
2641         chip->chipsize = (uint64_t)type->chipsize << 20;
2642
2643         /* Newer devices have all the information in additional id bytes */
2644         if (!type->pagesize) {
2645                 int extid;
2646                 /* The 3rd id byte holds MLC / multichip data */
2647                 chip->cellinfo = chip->read_byte(mtd);
2648                 /* The 4th id byte is the important one */
2649                 extid = chip->read_byte(mtd);
2650                 /* Calc pagesize */
2651                 mtd->writesize = 1024 << (extid & 0x3);
2652                 extid >>= 2;
2653                 /* Calc oobsize */
2654                 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2655                 extid >>= 2;
2656                 /* Calc blocksize. Blocksize is multiples of 64KiB */
2657                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2658                 extid >>= 2;
2659                 /* Get buswidth information */
2660                 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2661
2662         } else {
2663                 /*
2664                  * Old devices have chip data hardcoded in the device id table
2665                  */
2666                 mtd->erasesize = type->erasesize;
2667                 mtd->writesize = type->pagesize;
2668                 mtd->oobsize = mtd->writesize / 32;
2669                 busw = type->options & NAND_BUSWIDTH_16;
2670         }
2671
2672         /* Try to identify manufacturer */
2673         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2674                 if (nand_manuf_ids[maf_idx].id == *maf_id)
2675                         break;
2676         }
2677
2678         /*
2679          * Check, if buswidth is correct. Hardware drivers should set
2680          * chip correct !
2681          */
2682         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2683                 printk(KERN_INFO "NAND device: Manufacturer ID:"
2684                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2685                        dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2686                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2687                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2688                        busw ? 16 : 8);
2689                 return ERR_PTR(-EINVAL);
2690         }
2691
2692         /* Calculate the address shift from the page size */
2693         chip->page_shift = ffs(mtd->writesize) - 1;
2694         /* Convert chipsize to number of pages per chip -1. */
2695         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2696
2697         chip->bbt_erase_shift = chip->phys_erase_shift =
2698                 ffs(mtd->erasesize) - 1;
2699         if (chip->chipsize & 0xffffffff)
2700                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2701         else
2702                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1;
2703
2704         /* Set the bad block position */
2705         chip->badblockpos = mtd->writesize > 512 ?
2706                 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2707
2708         /* Get chip options, preserve non chip based options */
2709         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2710         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2711
2712         /*
2713          * Set chip as a default. Board drivers can override it, if necessary
2714          */
2715         chip->options |= NAND_NO_AUTOINCR;
2716
2717         /* Check if chip is a not a samsung device. Do not clear the
2718          * options for chips which are not having an extended id.
2719          */
2720         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2721                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2722
2723         /* Check for AND chips with 4 page planes */
2724         if (chip->options & NAND_4PAGE_ARRAY)
2725                 chip->erase_cmd = multi_erase_cmd;
2726         else
2727                 chip->erase_cmd = single_erase_cmd;
2728
2729         /* Do not replace user supplied command function ! */
2730         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2731                 chip->cmdfunc = nand_command_lp;
2732
2733         printk(KERN_INFO "NAND device: Manufacturer ID:"
2734                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2735                nand_manuf_ids[maf_idx].name, type->name);
2736
2737         return type;
2738 }
2739
2740 /**
2741  * nand_scan_ident - [NAND Interface] Scan for the NAND device
2742  * @mtd:             MTD device structure
2743  * @maxchips:        Number of chips to scan for
2744  *
2745  * This is the first phase of the normal nand_scan() function. It
2746  * reads the flash ID and sets up MTD fields accordingly.
2747  *
2748  * The mtd->owner field must be set to the module of the caller.
2749  */
2750 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2751 {
2752         int i, busw, nand_maf_id;
2753         struct nand_chip *chip = mtd->priv;
2754         struct nand_flash_dev *type;
2755
2756         /* Get buswidth to select the correct functions */
2757         busw = chip->options & NAND_BUSWIDTH_16;
2758         /* Set the default functions */
2759         nand_set_defaults(chip, busw);
2760
2761         /* Read the flash type */
2762         type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2763
2764         if (IS_ERR(type)) {
2765                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
2766                         printk(KERN_WARNING "No NAND device found.\n");
2767                 chip->select_chip(mtd, -1);
2768                 return PTR_ERR(type);
2769         }
2770
2771         /* Check for a chip array */
2772         for (i = 1; i < maxchips; i++) {
2773                 chip->select_chip(mtd, i);
2774                 /* See comment in nand_get_flash_type for reset */
2775                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2776                 /* Send the command for reading device ID */
2777                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2778                 /* Read manufacturer and device IDs */
2779                 if (nand_maf_id != chip->read_byte(mtd) ||
2780                     type->id != chip->read_byte(mtd))
2781                         break;
2782         }
2783         if (i > 1)
2784                 printk(KERN_INFO "%d NAND chips detected\n", i);
2785
2786         /* Store the number of chips and calc total size for mtd */
2787         chip->numchips = i;
2788         mtd->size = i * chip->chipsize;
2789
2790         return 0;
2791 }
2792
2793
2794 /**
2795  * nand_scan_tail - [NAND Interface] Scan for the NAND device
2796  * @mtd:            MTD device structure
2797  *
2798  * This is the second phase of the normal nand_scan() function. It
2799  * fills out all the uninitialized function pointers with the defaults
2800  * and scans for a bad block table if appropriate.
2801  */
2802 int nand_scan_tail(struct mtd_info *mtd)
2803 {
2804         int i;
2805         struct nand_chip *chip = mtd->priv;
2806
2807         if (!(chip->options & NAND_OWN_BUFFERS))
2808                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2809         if (!chip->buffers)
2810                 return -ENOMEM;
2811
2812         /* Set the internal oob buffer location, just after the page data */
2813         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2814
2815         /*
2816          * If no default placement scheme is given, select an appropriate one
2817          */
2818         if (!chip->ecc.layout) {
2819                 switch (mtd->oobsize) {
2820                 case 8:
2821                         chip->ecc.layout = &nand_oob_8;
2822                         break;
2823                 case 16:
2824                         chip->ecc.layout = &nand_oob_16;
2825                         break;
2826                 case 64:
2827                         chip->ecc.layout = &nand_oob_64;
2828                         break;
2829                 case 128:
2830                         chip->ecc.layout = &nand_oob_128;
2831                         break;
2832                 default:
2833                         printk(KERN_WARNING "No oob scheme defined for "
2834                                "oobsize %d\n", mtd->oobsize);
2835                         BUG();
2836                 }
2837         }
2838
2839         if (!chip->write_page)
2840                 chip->write_page = nand_write_page;
2841
2842         /*
2843          * check ECC mode, default to software if 3byte/512byte hardware ECC is
2844          * selected and we have 256 byte pagesize fallback to software ECC
2845          */
2846
2847         switch (chip->ecc.mode) {
2848         case NAND_ECC_HW_OOB_FIRST:
2849                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
2850                 if (!chip->ecc.calculate || !chip->ecc.correct ||
2851                      !chip->ecc.hwctl) {
2852                         printk(KERN_WARNING "No ECC functions supplied; "
2853                                "Hardware ECC not possible\n");
2854                         BUG();
2855                 }
2856                 if (!chip->ecc.read_page)
2857                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
2858
2859         case NAND_ECC_HW:
2860                 /* Use standard hwecc read page function ? */
2861                 if (!chip->ecc.read_page)
2862                         chip->ecc.read_page = nand_read_page_hwecc;
2863                 if (!chip->ecc.write_page)
2864                         chip->ecc.write_page = nand_write_page_hwecc;
2865                 if (!chip->ecc.read_page_raw)
2866                         chip->ecc.read_page_raw = nand_read_page_raw;
2867                 if (!chip->ecc.write_page_raw)
2868                         chip->ecc.write_page_raw = nand_write_page_raw;
2869                 if (!chip->ecc.read_oob)
2870                         chip->ecc.read_oob = nand_read_oob_std;
2871                 if (!chip->ecc.write_oob)
2872                         chip->ecc.write_oob = nand_write_oob_std;
2873
2874         case NAND_ECC_HW_SYNDROME:
2875                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
2876                      !chip->ecc.hwctl) &&
2877                     (!chip->ecc.read_page ||
2878                      chip->ecc.read_page == nand_read_page_hwecc ||
2879                      !chip->ecc.write_page ||
2880                      chip->ecc.write_page == nand_write_page_hwecc)) {
2881                         printk(KERN_WARNING "No ECC functions supplied; "
2882                                "Hardware ECC not possible\n");
2883                         BUG();
2884                 }
2885                 /* Use standard syndrome read/write page function ? */
2886                 if (!chip->ecc.read_page)
2887                         chip->ecc.read_page = nand_read_page_syndrome;
2888                 if (!chip->ecc.write_page)
2889                         chip->ecc.write_page = nand_write_page_syndrome;
2890                 if (!chip->ecc.read_page_raw)
2891                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
2892                 if (!chip->ecc.write_page_raw)
2893                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
2894                 if (!chip->ecc.read_oob)
2895                         chip->ecc.read_oob = nand_read_oob_syndrome;
2896                 if (!chip->ecc.write_oob)
2897                         chip->ecc.write_oob = nand_write_oob_syndrome;
2898
2899                 if (mtd->writesize >= chip->ecc.size)
2900                         break;
2901                 printk(KERN_WARNING "%d byte HW ECC not possible on "
2902                        "%d byte page size, fallback to SW ECC\n",
2903                        chip->ecc.size, mtd->writesize);
2904                 chip->ecc.mode = NAND_ECC_SOFT;
2905
2906         case NAND_ECC_SOFT:
2907                 chip->ecc.calculate = nand_calculate_ecc;
2908                 chip->ecc.correct = nand_correct_data;
2909                 chip->ecc.read_page = nand_read_page_swecc;
2910                 chip->ecc.read_subpage = nand_read_subpage;
2911                 chip->ecc.write_page = nand_write_page_swecc;
2912                 chip->ecc.read_page_raw = nand_read_page_raw;
2913                 chip->ecc.write_page_raw = nand_write_page_raw;
2914                 chip->ecc.read_oob = nand_read_oob_std;
2915                 chip->ecc.write_oob = nand_write_oob_std;
2916                 if (!chip->ecc.size)
2917                         chip->ecc.size = 256;
2918                 chip->ecc.bytes = 3;
2919                 break;
2920
2921         case NAND_ECC_NONE:
2922                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2923                        "This is not recommended !!\n");
2924                 chip->ecc.read_page = nand_read_page_raw;
2925                 chip->ecc.write_page = nand_write_page_raw;
2926                 chip->ecc.read_oob = nand_read_oob_std;
2927                 chip->ecc.read_page_raw = nand_read_page_raw;
2928                 chip->ecc.write_page_raw = nand_write_page_raw;
2929                 chip->ecc.write_oob = nand_write_oob_std;
2930                 chip->ecc.size = mtd->writesize;
2931                 chip->ecc.bytes = 0;
2932                 break;
2933
2934         default:
2935                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2936                        chip->ecc.mode);
2937                 BUG();
2938         }
2939
2940         /*
2941          * The number of bytes available for a client to place data into
2942          * the out of band area
2943          */
2944         chip->ecc.layout->oobavail = 0;
2945         for (i = 0; chip->ecc.layout->oobfree[i].length
2946                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
2947                 chip->ecc.layout->oobavail +=
2948                         chip->ecc.layout->oobfree[i].length;
2949         mtd->oobavail = chip->ecc.layout->oobavail;
2950
2951         /*
2952          * Set the number of read / write steps for one page depending on ECC
2953          * mode
2954          */
2955         chip->ecc.steps = mtd->writesize / chip->ecc.size;
2956         if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2957                 printk(KERN_WARNING "Invalid ecc parameters\n");
2958                 BUG();
2959         }
2960         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2961
2962         /*
2963          * Allow subpage writes up to ecc.steps. Not possible for MLC
2964          * FLASH.
2965          */
2966         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2967             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2968                 switch(chip->ecc.steps) {
2969                 case 2:
2970                         mtd->subpage_sft = 1;
2971                         break;
2972                 case 4:
2973                 case 8:
2974                 case 16:
2975                         mtd->subpage_sft = 2;
2976                         break;
2977                 }
2978         }
2979         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2980
2981         /* Initialize state */
2982         chip->state = FL_READY;
2983
2984         /* De-select the device */
2985         chip->select_chip(mtd, -1);
2986
2987         /* Invalidate the pagebuffer reference */
2988         chip->pagebuf = -1;
2989
2990         /* Fill in remaining MTD driver data */
2991         mtd->type = MTD_NANDFLASH;
2992         mtd->flags = MTD_CAP_NANDFLASH;
2993         mtd->erase = nand_erase;
2994         mtd->point = NULL;
2995         mtd->unpoint = NULL;
2996         mtd->read = nand_read;
2997         mtd->write = nand_write;
2998         mtd->panic_write = panic_nand_write;
2999         mtd->read_oob = nand_read_oob;
3000         mtd->write_oob = nand_write_oob;
3001         mtd->sync = nand_sync;
3002         mtd->lock = NULL;
3003         mtd->unlock = NULL;
3004         mtd->suspend = nand_suspend;
3005         mtd->resume = nand_resume;
3006         mtd->block_isbad = nand_block_isbad;
3007         mtd->block_markbad = nand_block_markbad;
3008
3009         /* propagate ecc.layout to mtd_info */
3010         mtd->ecclayout = chip->ecc.layout;
3011
3012         /* Check, if we should skip the bad block table scan */
3013         if (chip->options & NAND_SKIP_BBTSCAN)
3014                 return 0;
3015
3016         /* Build bad block table */
3017         return chip->scan_bbt(mtd);
3018 }
3019
3020 /* is_module_text_address() isn't exported, and it's mostly a pointless
3021    test if this is a module _anyway_ -- they'd have to try _really_ hard
3022    to call us from in-kernel code if the core NAND support is modular. */
3023 #ifdef MODULE
3024 #define caller_is_module() (1)
3025 #else
3026 #define caller_is_module() \
3027         is_module_text_address((unsigned long)__builtin_return_address(0))
3028 #endif
3029
3030 /**
3031  * nand_scan - [NAND Interface] Scan for the NAND device
3032  * @mtd:        MTD device structure
3033  * @maxchips:   Number of chips to scan for
3034  *
3035  * This fills out all the uninitialized function pointers
3036  * with the defaults.
3037  * The flash ID is read and the mtd/chip structures are
3038  * filled with the appropriate values.
3039  * The mtd->owner field must be set to the module of the caller
3040  *
3041  */
3042 int nand_scan(struct mtd_info *mtd, int maxchips)
3043 {
3044         int ret;
3045
3046         /* Many callers got this wrong, so check for it for a while... */
3047         if (!mtd->owner && caller_is_module()) {
3048                 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3049                                 __func__);
3050                 BUG();
3051         }
3052
3053         ret = nand_scan_ident(mtd, maxchips);
3054         if (!ret)
3055                 ret = nand_scan_tail(mtd);
3056         return ret;
3057 }
3058
3059 /**
3060  * nand_release - [NAND Interface] Free resources held by the NAND device
3061  * @mtd:        MTD device structure
3062 */
3063 void nand_release(struct mtd_info *mtd)
3064 {
3065         struct nand_chip *chip = mtd->priv;
3066
3067 #ifdef CONFIG_MTD_PARTITIONS
3068         /* Deregister partitions */
3069         del_mtd_partitions(mtd);
3070 #endif
3071         /* Deregister the device */
3072         del_mtd_device(mtd);
3073
3074         /* Free bad block table memory */
3075         kfree(chip->bbt);
3076         if (!(chip->options & NAND_OWN_BUFFERS))
3077                 kfree(chip->buffers);
3078 }
3079
3080 EXPORT_SYMBOL_GPL(nand_scan);
3081 EXPORT_SYMBOL_GPL(nand_scan_ident);
3082 EXPORT_SYMBOL_GPL(nand_scan_tail);
3083 EXPORT_SYMBOL_GPL(nand_release);
3084
3085 static int __init nand_base_init(void)
3086 {
3087         led_trigger_register_simple("nand-disk", &nand_led_trigger);
3088         return 0;
3089 }
3090
3091 static void __exit nand_base_exit(void)
3092 {
3093         led_trigger_unregister_simple(nand_led_trigger);
3094 }
3095
3096 module_init(nand_base_init);
3097 module_exit(nand_base_exit);
3098
3099 MODULE_LICENSE("GPL");
3100 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3101 MODULE_DESCRIPTION("Generic NAND flash driver code");