Merge branch 'fixes' of http://ftp.arm.linux.org.uk/pub/linux/arm/kernel/git-cur...
[pandora-kernel.git] / drivers / mtd / nand / gpmi-nand / gpmi-lib.c
1 /*
2  * Freescale GPMI NAND Flash Driver
3  *
4  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 #include <linux/mtd/gpmi-nand.h>
22 #include <linux/delay.h>
23 #include <linux/clk.h>
24 #include <mach/mxs.h>
25
26 #include "gpmi-nand.h"
27 #include "gpmi-regs.h"
28 #include "bch-regs.h"
29
30 struct timing_threshod timing_default_threshold = {
31         .max_data_setup_cycles       = (BM_GPMI_TIMING0_DATA_SETUP >>
32                                                 BP_GPMI_TIMING0_DATA_SETUP),
33         .internal_data_setup_in_ns   = 0,
34         .max_sample_delay_factor     = (BM_GPMI_CTRL1_RDN_DELAY >>
35                                                 BP_GPMI_CTRL1_RDN_DELAY),
36         .max_dll_clock_period_in_ns  = 32,
37         .max_dll_delay_in_ns         = 16,
38 };
39
40 /*
41  * Clear the bit and poll it cleared.  This is usually called with
42  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
43  * (bit 30).
44  */
45 static int clear_poll_bit(void __iomem *addr, u32 mask)
46 {
47         int timeout = 0x400;
48
49         /* clear the bit */
50         __mxs_clrl(mask, addr);
51
52         /*
53          * SFTRST needs 3 GPMI clocks to settle, the reference manual
54          * recommends to wait 1us.
55          */
56         udelay(1);
57
58         /* poll the bit becoming clear */
59         while ((readl(addr) & mask) && --timeout)
60                 /* nothing */;
61
62         return !timeout;
63 }
64
65 #define MODULE_CLKGATE          (1 << 30)
66 #define MODULE_SFTRST           (1 << 31)
67 /*
68  * The current mxs_reset_block() will do two things:
69  *  [1] enable the module.
70  *  [2] reset the module.
71  *
72  * In most of the cases, it's ok. But there is a hardware bug in the BCH block.
73  * If you try to soft reset the BCH block, it becomes unusable until
74  * the next hard reset. This case occurs in the NAND boot mode. When the board
75  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
76  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
77  * You will see a DMA timeout in this case.
78  *
79  * To avoid this bug, just add a new parameter `just_enable` for
80  * the mxs_reset_block(), and rewrite it here.
81  */
82 int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
83 {
84         int ret;
85         int timeout = 0x400;
86
87         /* clear and poll SFTRST */
88         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
89         if (unlikely(ret))
90                 goto error;
91
92         /* clear CLKGATE */
93         __mxs_clrl(MODULE_CLKGATE, reset_addr);
94
95         if (!just_enable) {
96                 /* set SFTRST to reset the block */
97                 __mxs_setl(MODULE_SFTRST, reset_addr);
98                 udelay(1);
99
100                 /* poll CLKGATE becoming set */
101                 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
102                         /* nothing */;
103                 if (unlikely(!timeout))
104                         goto error;
105         }
106
107         /* clear and poll SFTRST */
108         ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
109         if (unlikely(ret))
110                 goto error;
111
112         /* clear and poll CLKGATE */
113         ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
114         if (unlikely(ret))
115                 goto error;
116
117         return 0;
118
119 error:
120         pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
121         return -ETIMEDOUT;
122 }
123
124 int gpmi_init(struct gpmi_nand_data *this)
125 {
126         struct resources *r = &this->resources;
127         int ret;
128
129         ret = clk_enable(r->clock);
130         if (ret)
131                 goto err_out;
132         ret = gpmi_reset_block(r->gpmi_regs, false);
133         if (ret)
134                 goto err_out;
135
136         /* Choose NAND mode. */
137         writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
138
139         /* Set the IRQ polarity. */
140         writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
141                                 r->gpmi_regs + HW_GPMI_CTRL1_SET);
142
143         /* Disable Write-Protection. */
144         writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
145
146         /* Select BCH ECC. */
147         writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
148
149         clk_disable(r->clock);
150         return 0;
151 err_out:
152         return ret;
153 }
154
155 /* This function is very useful. It is called only when the bug occur. */
156 void gpmi_dump_info(struct gpmi_nand_data *this)
157 {
158         struct resources *r = &this->resources;
159         struct bch_geometry *geo = &this->bch_geometry;
160         u32 reg;
161         int i;
162
163         pr_err("Show GPMI registers :\n");
164         for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
165                 reg = readl(r->gpmi_regs + i * 0x10);
166                 pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
167         }
168
169         /* start to print out the BCH info */
170         pr_err("BCH Geometry :\n");
171         pr_err("GF length              : %u\n", geo->gf_len);
172         pr_err("ECC Strength           : %u\n", geo->ecc_strength);
173         pr_err("Page Size in Bytes     : %u\n", geo->page_size);
174         pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size);
175         pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size);
176         pr_err("ECC Chunk Count        : %u\n", geo->ecc_chunk_count);
177         pr_err("Payload Size in Bytes  : %u\n", geo->payload_size);
178         pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size);
179         pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
180         pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
181         pr_err("Block Mark Bit Offset  : %u\n", geo->block_mark_bit_offset);
182 }
183
184 /* Configures the geometry for BCH.  */
185 int bch_set_geometry(struct gpmi_nand_data *this)
186 {
187         struct resources *r = &this->resources;
188         struct bch_geometry *bch_geo = &this->bch_geometry;
189         unsigned int block_count;
190         unsigned int block_size;
191         unsigned int metadata_size;
192         unsigned int ecc_strength;
193         unsigned int page_size;
194         int ret;
195
196         if (common_nfc_set_geometry(this))
197                 return !0;
198
199         block_count   = bch_geo->ecc_chunk_count - 1;
200         block_size    = bch_geo->ecc_chunk_size;
201         metadata_size = bch_geo->metadata_size;
202         ecc_strength  = bch_geo->ecc_strength >> 1;
203         page_size     = bch_geo->page_size;
204
205         ret = clk_enable(r->clock);
206         if (ret)
207                 goto err_out;
208
209         ret = gpmi_reset_block(r->bch_regs, true);
210         if (ret)
211                 goto err_out;
212
213         /* Configure layout 0. */
214         writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
215                         | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
216                         | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength)
217                         | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size),
218                         r->bch_regs + HW_BCH_FLASH0LAYOUT0);
219
220         writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
221                         | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength)
222                         | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size),
223                         r->bch_regs + HW_BCH_FLASH0LAYOUT1);
224
225         /* Set *all* chip selects to use layout 0. */
226         writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
227
228         /* Enable interrupts. */
229         writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
230                                 r->bch_regs + HW_BCH_CTRL_SET);
231
232         clk_disable(r->clock);
233         return 0;
234 err_out:
235         return ret;
236 }
237
238 /* Converts time in nanoseconds to cycles. */
239 static unsigned int ns_to_cycles(unsigned int time,
240                         unsigned int period, unsigned int min)
241 {
242         unsigned int k;
243
244         k = (time + period - 1) / period;
245         return max(k, min);
246 }
247
248 /* Apply timing to current hardware conditions. */
249 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
250                                         struct gpmi_nfc_hardware_timing *hw)
251 {
252         struct gpmi_nand_platform_data *pdata = this->pdata;
253         struct timing_threshod *nfc = &timing_default_threshold;
254         struct nand_chip *nand = &this->nand;
255         struct nand_timing target = this->timing;
256         bool improved_timing_is_available;
257         unsigned long clock_frequency_in_hz;
258         unsigned int clock_period_in_ns;
259         bool dll_use_half_periods;
260         unsigned int dll_delay_shift;
261         unsigned int max_sample_delay_in_ns;
262         unsigned int address_setup_in_cycles;
263         unsigned int data_setup_in_ns;
264         unsigned int data_setup_in_cycles;
265         unsigned int data_hold_in_cycles;
266         int ideal_sample_delay_in_ns;
267         unsigned int sample_delay_factor;
268         int tEYE;
269         unsigned int min_prop_delay_in_ns = pdata->min_prop_delay_in_ns;
270         unsigned int max_prop_delay_in_ns = pdata->max_prop_delay_in_ns;
271
272         /*
273          * If there are multiple chips, we need to relax the timings to allow
274          * for signal distortion due to higher capacitance.
275          */
276         if (nand->numchips > 2) {
277                 target.data_setup_in_ns    += 10;
278                 target.data_hold_in_ns     += 10;
279                 target.address_setup_in_ns += 10;
280         } else if (nand->numchips > 1) {
281                 target.data_setup_in_ns    += 5;
282                 target.data_hold_in_ns     += 5;
283                 target.address_setup_in_ns += 5;
284         }
285
286         /* Check if improved timing information is available. */
287         improved_timing_is_available =
288                 (target.tREA_in_ns  >= 0) &&
289                 (target.tRLOH_in_ns >= 0) &&
290                 (target.tRHOH_in_ns >= 0) ;
291
292         /* Inspect the clock. */
293         clock_frequency_in_hz = nfc->clock_frequency_in_hz;
294         clock_period_in_ns    = 1000000000 / clock_frequency_in_hz;
295
296         /*
297          * The NFC quantizes setup and hold parameters in terms of clock cycles.
298          * Here, we quantize the setup and hold timing parameters to the
299          * next-highest clock period to make sure we apply at least the
300          * specified times.
301          *
302          * For data setup and data hold, the hardware interprets a value of zero
303          * as the largest possible delay. This is not what's intended by a zero
304          * in the input parameter, so we impose a minimum of one cycle.
305          */
306         data_setup_in_cycles    = ns_to_cycles(target.data_setup_in_ns,
307                                                         clock_period_in_ns, 1);
308         data_hold_in_cycles     = ns_to_cycles(target.data_hold_in_ns,
309                                                         clock_period_in_ns, 1);
310         address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
311                                                         clock_period_in_ns, 0);
312
313         /*
314          * The clock's period affects the sample delay in a number of ways:
315          *
316          * (1) The NFC HAL tells us the maximum clock period the sample delay
317          *     DLL can tolerate. If the clock period is greater than half that
318          *     maximum, we must configure the DLL to be driven by half periods.
319          *
320          * (2) We need to convert from an ideal sample delay, in ns, to a
321          *     "sample delay factor," which the NFC uses. This factor depends on
322          *     whether we're driving the DLL with full or half periods.
323          *     Paraphrasing the reference manual:
324          *
325          *         AD = SDF x 0.125 x RP
326          *
327          * where:
328          *
329          *     AD   is the applied delay, in ns.
330          *     SDF  is the sample delay factor, which is dimensionless.
331          *     RP   is the reference period, in ns, which is a full clock period
332          *          if the DLL is being driven by full periods, or half that if
333          *          the DLL is being driven by half periods.
334          *
335          * Let's re-arrange this in a way that's more useful to us:
336          *
337          *                        8
338          *         SDF  =  AD x ----
339          *                       RP
340          *
341          * The reference period is either the clock period or half that, so this
342          * is:
343          *
344          *                        8       AD x DDF
345          *         SDF  =  AD x -----  =  --------
346          *                      f x P        P
347          *
348          * where:
349          *
350          *       f  is 1 or 1/2, depending on how we're driving the DLL.
351          *       P  is the clock period.
352          *     DDF  is the DLL Delay Factor, a dimensionless value that
353          *          incorporates all the constants in the conversion.
354          *
355          * DDF will be either 8 or 16, both of which are powers of two. We can
356          * reduce the cost of this conversion by using bit shifts instead of
357          * multiplication or division. Thus:
358          *
359          *                 AD << DDS
360          *         SDF  =  ---------
361          *                     P
362          *
363          *     or
364          *
365          *         AD  =  (SDF >> DDS) x P
366          *
367          * where:
368          *
369          *     DDS  is the DLL Delay Shift, the logarithm to base 2 of the DDF.
370          */
371         if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
372                 dll_use_half_periods = true;
373                 dll_delay_shift      = 3 + 1;
374         } else {
375                 dll_use_half_periods = false;
376                 dll_delay_shift      = 3;
377         }
378
379         /*
380          * Compute the maximum sample delay the NFC allows, under current
381          * conditions. If the clock is running too slowly, no sample delay is
382          * possible.
383          */
384         if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
385                 max_sample_delay_in_ns = 0;
386         else {
387                 /*
388                  * Compute the delay implied by the largest sample delay factor
389                  * the NFC allows.
390                  */
391                 max_sample_delay_in_ns =
392                         (nfc->max_sample_delay_factor * clock_period_in_ns) >>
393                                                                 dll_delay_shift;
394
395                 /*
396                  * Check if the implied sample delay larger than the NFC
397                  * actually allows.
398                  */
399                 if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
400                         max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
401         }
402
403         /*
404          * Check if improved timing information is available. If not, we have to
405          * use a less-sophisticated algorithm.
406          */
407         if (!improved_timing_is_available) {
408                 /*
409                  * Fold the read setup time required by the NFC into the ideal
410                  * sample delay.
411                  */
412                 ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
413                                                 nfc->internal_data_setup_in_ns;
414
415                 /*
416                  * The ideal sample delay may be greater than the maximum
417                  * allowed by the NFC. If so, we can trade off sample delay time
418                  * for more data setup time.
419                  *
420                  * In each iteration of the following loop, we add a cycle to
421                  * the data setup time and subtract a corresponding amount from
422                  * the sample delay until we've satisified the constraints or
423                  * can't do any better.
424                  */
425                 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
426                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
427
428                         data_setup_in_cycles++;
429                         ideal_sample_delay_in_ns -= clock_period_in_ns;
430
431                         if (ideal_sample_delay_in_ns < 0)
432                                 ideal_sample_delay_in_ns = 0;
433
434                 }
435
436                 /*
437                  * Compute the sample delay factor that corresponds most closely
438                  * to the ideal sample delay. If the result is too large for the
439                  * NFC, use the maximum value.
440                  *
441                  * Notice that we use the ns_to_cycles function to compute the
442                  * sample delay factor. We do this because the form of the
443                  * computation is the same as that for calculating cycles.
444                  */
445                 sample_delay_factor =
446                         ns_to_cycles(
447                                 ideal_sample_delay_in_ns << dll_delay_shift,
448                                                         clock_period_in_ns, 0);
449
450                 if (sample_delay_factor > nfc->max_sample_delay_factor)
451                         sample_delay_factor = nfc->max_sample_delay_factor;
452
453                 /* Skip to the part where we return our results. */
454                 goto return_results;
455         }
456
457         /*
458          * If control arrives here, we have more detailed timing information,
459          * so we can use a better algorithm.
460          */
461
462         /*
463          * Fold the read setup time required by the NFC into the maximum
464          * propagation delay.
465          */
466         max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
467
468         /*
469          * Earlier, we computed the number of clock cycles required to satisfy
470          * the data setup time. Now, we need to know the actual nanoseconds.
471          */
472         data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
473
474         /*
475          * Compute tEYE, the width of the data eye when reading from the NAND
476          * Flash. The eye width is fundamentally determined by the data setup
477          * time, perturbed by propagation delays and some characteristics of the
478          * NAND Flash device.
479          *
480          * start of the eye = max_prop_delay + tREA
481          * end of the eye   = min_prop_delay + tRHOH + data_setup
482          */
483         tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
484                                                         (int)data_setup_in_ns;
485
486         tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
487
488         /*
489          * The eye must be open. If it's not, we can try to open it by
490          * increasing its main forcer, the data setup time.
491          *
492          * In each iteration of the following loop, we increase the data setup
493          * time by a single clock cycle. We do this until either the eye is
494          * open or we run into NFC limits.
495          */
496         while ((tEYE <= 0) &&
497                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
498                 /* Give a cycle to data setup. */
499                 data_setup_in_cycles++;
500                 /* Synchronize the data setup time with the cycles. */
501                 data_setup_in_ns += clock_period_in_ns;
502                 /* Adjust tEYE accordingly. */
503                 tEYE += clock_period_in_ns;
504         }
505
506         /*
507          * When control arrives here, the eye is open. The ideal time to sample
508          * the data is in the center of the eye:
509          *
510          *     end of the eye + start of the eye
511          *     ---------------------------------  -  data_setup
512          *                    2
513          *
514          * After some algebra, this simplifies to the code immediately below.
515          */
516         ideal_sample_delay_in_ns =
517                 ((int)max_prop_delay_in_ns +
518                         (int)target.tREA_in_ns +
519                                 (int)min_prop_delay_in_ns +
520                                         (int)target.tRHOH_in_ns -
521                                                 (int)data_setup_in_ns) >> 1;
522
523         /*
524          * The following figure illustrates some aspects of a NAND Flash read:
525          *
526          *
527          *           __                   _____________________________________
528          * RDN         \_________________/
529          *
530          *                                         <---- tEYE ----->
531          *                                        /-----------------\
532          * Read Data ----------------------------<                   >---------
533          *                                        \-----------------/
534          *             ^                 ^                 ^              ^
535          *             |                 |                 |              |
536          *             |<--Data Setup -->|<--Delay Time -->|              |
537          *             |                 |                 |              |
538          *             |                 |                                |
539          *             |                 |<--   Quantized Delay Time   -->|
540          *             |                 |                                |
541          *
542          *
543          * We have some issues we must now address:
544          *
545          * (1) The *ideal* sample delay time must not be negative. If it is, we
546          *     jam it to zero.
547          *
548          * (2) The *ideal* sample delay time must not be greater than that
549          *     allowed by the NFC. If it is, we can increase the data setup
550          *     time, which will reduce the delay between the end of the data
551          *     setup and the center of the eye. It will also make the eye
552          *     larger, which might help with the next issue...
553          *
554          * (3) The *quantized* sample delay time must not fall either before the
555          *     eye opens or after it closes (the latter is the problem
556          *     illustrated in the above figure).
557          */
558
559         /* Jam a negative ideal sample delay to zero. */
560         if (ideal_sample_delay_in_ns < 0)
561                 ideal_sample_delay_in_ns = 0;
562
563         /*
564          * Extend the data setup as needed to reduce the ideal sample delay
565          * below the maximum permitted by the NFC.
566          */
567         while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
568                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
569
570                 /* Give a cycle to data setup. */
571                 data_setup_in_cycles++;
572                 /* Synchronize the data setup time with the cycles. */
573                 data_setup_in_ns += clock_period_in_ns;
574                 /* Adjust tEYE accordingly. */
575                 tEYE += clock_period_in_ns;
576
577                 /*
578                  * Decrease the ideal sample delay by one half cycle, to keep it
579                  * in the middle of the eye.
580                  */
581                 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
582
583                 /* Jam a negative ideal sample delay to zero. */
584                 if (ideal_sample_delay_in_ns < 0)
585                         ideal_sample_delay_in_ns = 0;
586         }
587
588         /*
589          * Compute the sample delay factor that corresponds to the ideal sample
590          * delay. If the result is too large, then use the maximum allowed
591          * value.
592          *
593          * Notice that we use the ns_to_cycles function to compute the sample
594          * delay factor. We do this because the form of the computation is the
595          * same as that for calculating cycles.
596          */
597         sample_delay_factor =
598                 ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
599                                                         clock_period_in_ns, 0);
600
601         if (sample_delay_factor > nfc->max_sample_delay_factor)
602                 sample_delay_factor = nfc->max_sample_delay_factor;
603
604         /*
605          * These macros conveniently encapsulate a computation we'll use to
606          * continuously evaluate whether or not the data sample delay is inside
607          * the eye.
608          */
609         #define IDEAL_DELAY  ((int) ideal_sample_delay_in_ns)
610
611         #define QUANTIZED_DELAY  \
612                 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
613                                                         dll_delay_shift))
614
615         #define DELAY_ERROR  (abs(QUANTIZED_DELAY - IDEAL_DELAY))
616
617         #define SAMPLE_IS_NOT_WITHIN_THE_EYE  (DELAY_ERROR > (tEYE >> 1))
618
619         /*
620          * While the quantized sample time falls outside the eye, reduce the
621          * sample delay or extend the data setup to move the sampling point back
622          * toward the eye. Do not allow the number of data setup cycles to
623          * exceed the maximum allowed by the NFC.
624          */
625         while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
626                         (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
627                 /*
628                  * If control arrives here, the quantized sample delay falls
629                  * outside the eye. Check if it's before the eye opens, or after
630                  * the eye closes.
631                  */
632                 if (QUANTIZED_DELAY > IDEAL_DELAY) {
633                         /*
634                          * If control arrives here, the quantized sample delay
635                          * falls after the eye closes. Decrease the quantized
636                          * delay time and then go back to re-evaluate.
637                          */
638                         if (sample_delay_factor != 0)
639                                 sample_delay_factor--;
640                         continue;
641                 }
642
643                 /*
644                  * If control arrives here, the quantized sample delay falls
645                  * before the eye opens. Shift the sample point by increasing
646                  * data setup time. This will also make the eye larger.
647                  */
648
649                 /* Give a cycle to data setup. */
650                 data_setup_in_cycles++;
651                 /* Synchronize the data setup time with the cycles. */
652                 data_setup_in_ns += clock_period_in_ns;
653                 /* Adjust tEYE accordingly. */
654                 tEYE += clock_period_in_ns;
655
656                 /*
657                  * Decrease the ideal sample delay by one half cycle, to keep it
658                  * in the middle of the eye.
659                  */
660                 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
661
662                 /* ...and one less period for the delay time. */
663                 ideal_sample_delay_in_ns -= clock_period_in_ns;
664
665                 /* Jam a negative ideal sample delay to zero. */
666                 if (ideal_sample_delay_in_ns < 0)
667                         ideal_sample_delay_in_ns = 0;
668
669                 /*
670                  * We have a new ideal sample delay, so re-compute the quantized
671                  * delay.
672                  */
673                 sample_delay_factor =
674                         ns_to_cycles(
675                                 ideal_sample_delay_in_ns << dll_delay_shift,
676                                                         clock_period_in_ns, 0);
677
678                 if (sample_delay_factor > nfc->max_sample_delay_factor)
679                         sample_delay_factor = nfc->max_sample_delay_factor;
680         }
681
682         /* Control arrives here when we're ready to return our results. */
683 return_results:
684         hw->data_setup_in_cycles    = data_setup_in_cycles;
685         hw->data_hold_in_cycles     = data_hold_in_cycles;
686         hw->address_setup_in_cycles = address_setup_in_cycles;
687         hw->use_half_periods        = dll_use_half_periods;
688         hw->sample_delay_factor     = sample_delay_factor;
689
690         /* Return success. */
691         return 0;
692 }
693
694 /* Begin the I/O */
695 void gpmi_begin(struct gpmi_nand_data *this)
696 {
697         struct resources *r = &this->resources;
698         struct timing_threshod *nfc = &timing_default_threshold;
699         unsigned char  *gpmi_regs = r->gpmi_regs;
700         unsigned int   clock_period_in_ns;
701         uint32_t       reg;
702         unsigned int   dll_wait_time_in_us;
703         struct gpmi_nfc_hardware_timing  hw;
704         int ret;
705
706         /* Enable the clock. */
707         ret = clk_enable(r->clock);
708         if (ret) {
709                 pr_err("We failed in enable the clk\n");
710                 goto err_out;
711         }
712
713         /* set ready/busy timeout */
714         writel(0x500 << BP_GPMI_TIMING1_BUSY_TIMEOUT,
715                 gpmi_regs + HW_GPMI_TIMING1);
716
717         /* Get the timing information we need. */
718         nfc->clock_frequency_in_hz = clk_get_rate(r->clock);
719         clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz;
720
721         gpmi_nfc_compute_hardware_timing(this, &hw);
722
723         /* Set up all the simple timing parameters. */
724         reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
725                 BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles)         |
726                 BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles)       ;
727
728         writel(reg, gpmi_regs + HW_GPMI_TIMING0);
729
730         /*
731          * DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD.
732          */
733         writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
734
735         /* Clear out the DLL control fields. */
736         writel(BM_GPMI_CTRL1_RDN_DELAY,   gpmi_regs + HW_GPMI_CTRL1_CLR);
737         writel(BM_GPMI_CTRL1_HALF_PERIOD, gpmi_regs + HW_GPMI_CTRL1_CLR);
738
739         /* If no sample delay is called for, return immediately. */
740         if (!hw.sample_delay_factor)
741                 return;
742
743         /* Configure the HALF_PERIOD flag. */
744         if (hw.use_half_periods)
745                 writel(BM_GPMI_CTRL1_HALF_PERIOD,
746                                                 gpmi_regs + HW_GPMI_CTRL1_SET);
747
748         /* Set the delay factor. */
749         writel(BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor),
750                                                 gpmi_regs + HW_GPMI_CTRL1_SET);
751
752         /* Enable the DLL. */
753         writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
754
755         /*
756          * After we enable the GPMI DLL, we have to wait 64 clock cycles before
757          * we can use the GPMI.
758          *
759          * Calculate the amount of time we need to wait, in microseconds.
760          */
761         dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
762
763         if (!dll_wait_time_in_us)
764                 dll_wait_time_in_us = 1;
765
766         /* Wait for the DLL to settle. */
767         udelay(dll_wait_time_in_us);
768
769 err_out:
770         return;
771 }
772
773 void gpmi_end(struct gpmi_nand_data *this)
774 {
775         struct resources *r = &this->resources;
776         clk_disable(r->clock);
777 }
778
779 /* Clears a BCH interrupt. */
780 void gpmi_clear_bch(struct gpmi_nand_data *this)
781 {
782         struct resources *r = &this->resources;
783         writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
784 }
785
786 /* Returns the Ready/Busy status of the given chip. */
787 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
788 {
789         struct resources *r = &this->resources;
790         uint32_t mask = 0;
791         uint32_t reg = 0;
792
793         if (GPMI_IS_MX23(this)) {
794                 mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
795                 reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
796         } else if (GPMI_IS_MX28(this)) {
797                 mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
798                 reg = readl(r->gpmi_regs + HW_GPMI_STAT);
799         } else
800                 pr_err("unknow arch.\n");
801         return reg & mask;
802 }
803
804 static inline void set_dma_type(struct gpmi_nand_data *this,
805                                         enum dma_ops_type type)
806 {
807         this->last_dma_type = this->dma_type;
808         this->dma_type = type;
809 }
810
811 int gpmi_send_command(struct gpmi_nand_data *this)
812 {
813         struct dma_chan *channel = get_dma_chan(this);
814         struct dma_async_tx_descriptor *desc;
815         struct scatterlist *sgl;
816         int chip = this->current_chip;
817         u32 pio[3];
818
819         /* [1] send out the PIO words */
820         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
821                 | BM_GPMI_CTRL0_WORD_LENGTH
822                 | BF_GPMI_CTRL0_CS(chip, this)
823                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
824                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
825                 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
826                 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
827         pio[1] = pio[2] = 0;
828         desc = channel->device->device_prep_slave_sg(channel,
829                                         (struct scatterlist *)pio,
830                                         ARRAY_SIZE(pio), DMA_NONE, 0);
831         if (!desc) {
832                 pr_err("step 1 error\n");
833                 return -1;
834         }
835
836         /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
837         sgl = &this->cmd_sgl;
838
839         sg_init_one(sgl, this->cmd_buffer, this->command_length);
840         dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
841         desc = channel->device->device_prep_slave_sg(channel,
842                                         sgl, 1, DMA_TO_DEVICE, 1);
843         if (!desc) {
844                 pr_err("step 2 error\n");
845                 return -1;
846         }
847
848         /* [3] submit the DMA */
849         set_dma_type(this, DMA_FOR_COMMAND);
850         return start_dma_without_bch_irq(this, desc);
851 }
852
853 int gpmi_send_data(struct gpmi_nand_data *this)
854 {
855         struct dma_async_tx_descriptor *desc;
856         struct dma_chan *channel = get_dma_chan(this);
857         int chip = this->current_chip;
858         uint32_t command_mode;
859         uint32_t address;
860         u32 pio[2];
861
862         /* [1] PIO */
863         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
864         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
865
866         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
867                 | BM_GPMI_CTRL0_WORD_LENGTH
868                 | BF_GPMI_CTRL0_CS(chip, this)
869                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
870                 | BF_GPMI_CTRL0_ADDRESS(address)
871                 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
872         pio[1] = 0;
873         desc = channel->device->device_prep_slave_sg(channel,
874                                         (struct scatterlist *)pio,
875                                         ARRAY_SIZE(pio), DMA_NONE, 0);
876         if (!desc) {
877                 pr_err("step 1 error\n");
878                 return -1;
879         }
880
881         /* [2] send DMA request */
882         prepare_data_dma(this, DMA_TO_DEVICE);
883         desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl,
884                                                 1, DMA_TO_DEVICE, 1);
885         if (!desc) {
886                 pr_err("step 2 error\n");
887                 return -1;
888         }
889         /* [3] submit the DMA */
890         set_dma_type(this, DMA_FOR_WRITE_DATA);
891         return start_dma_without_bch_irq(this, desc);
892 }
893
894 int gpmi_read_data(struct gpmi_nand_data *this)
895 {
896         struct dma_async_tx_descriptor *desc;
897         struct dma_chan *channel = get_dma_chan(this);
898         int chip = this->current_chip;
899         u32 pio[2];
900
901         /* [1] : send PIO */
902         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
903                 | BM_GPMI_CTRL0_WORD_LENGTH
904                 | BF_GPMI_CTRL0_CS(chip, this)
905                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
906                 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
907                 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
908         pio[1] = 0;
909         desc = channel->device->device_prep_slave_sg(channel,
910                                         (struct scatterlist *)pio,
911                                         ARRAY_SIZE(pio), DMA_NONE, 0);
912         if (!desc) {
913                 pr_err("step 1 error\n");
914                 return -1;
915         }
916
917         /* [2] : send DMA request */
918         prepare_data_dma(this, DMA_FROM_DEVICE);
919         desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl,
920                                                 1, DMA_FROM_DEVICE, 1);
921         if (!desc) {
922                 pr_err("step 2 error\n");
923                 return -1;
924         }
925
926         /* [3] : submit the DMA */
927         set_dma_type(this, DMA_FOR_READ_DATA);
928         return start_dma_without_bch_irq(this, desc);
929 }
930
931 int gpmi_send_page(struct gpmi_nand_data *this,
932                         dma_addr_t payload, dma_addr_t auxiliary)
933 {
934         struct bch_geometry *geo = &this->bch_geometry;
935         uint32_t command_mode;
936         uint32_t address;
937         uint32_t ecc_command;
938         uint32_t buffer_mask;
939         struct dma_async_tx_descriptor *desc;
940         struct dma_chan *channel = get_dma_chan(this);
941         int chip = this->current_chip;
942         u32 pio[6];
943
944         /* A DMA descriptor that does an ECC page read. */
945         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
946         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
947         ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
948         buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
949                                 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
950
951         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
952                 | BM_GPMI_CTRL0_WORD_LENGTH
953                 | BF_GPMI_CTRL0_CS(chip, this)
954                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
955                 | BF_GPMI_CTRL0_ADDRESS(address)
956                 | BF_GPMI_CTRL0_XFER_COUNT(0);
957         pio[1] = 0;
958         pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
959                 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
960                 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
961         pio[3] = geo->page_size;
962         pio[4] = payload;
963         pio[5] = auxiliary;
964
965         desc = channel->device->device_prep_slave_sg(channel,
966                                         (struct scatterlist *)pio,
967                                         ARRAY_SIZE(pio), DMA_NONE, 0);
968         if (!desc) {
969                 pr_err("step 2 error\n");
970                 return -1;
971         }
972         set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
973         return start_dma_with_bch_irq(this, desc);
974 }
975
976 int gpmi_read_page(struct gpmi_nand_data *this,
977                                 dma_addr_t payload, dma_addr_t auxiliary)
978 {
979         struct bch_geometry *geo = &this->bch_geometry;
980         uint32_t command_mode;
981         uint32_t address;
982         uint32_t ecc_command;
983         uint32_t buffer_mask;
984         struct dma_async_tx_descriptor *desc;
985         struct dma_chan *channel = get_dma_chan(this);
986         int chip = this->current_chip;
987         u32 pio[6];
988
989         /* [1] Wait for the chip to report ready. */
990         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
991         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
992
993         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
994                 | BM_GPMI_CTRL0_WORD_LENGTH
995                 | BF_GPMI_CTRL0_CS(chip, this)
996                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
997                 | BF_GPMI_CTRL0_ADDRESS(address)
998                 | BF_GPMI_CTRL0_XFER_COUNT(0);
999         pio[1] = 0;
1000         desc = channel->device->device_prep_slave_sg(channel,
1001                                 (struct scatterlist *)pio, 2, DMA_NONE, 0);
1002         if (!desc) {
1003                 pr_err("step 1 error\n");
1004                 return -1;
1005         }
1006
1007         /* [2] Enable the BCH block and read. */
1008         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1009         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1010         ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1011         buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1012                         | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1013
1014         pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1015                 | BM_GPMI_CTRL0_WORD_LENGTH
1016                 | BF_GPMI_CTRL0_CS(chip, this)
1017                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1018                 | BF_GPMI_CTRL0_ADDRESS(address)
1019                 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1020
1021         pio[1] = 0;
1022         pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
1023                 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1024                 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1025         pio[3] = geo->page_size;
1026         pio[4] = payload;
1027         pio[5] = auxiliary;
1028         desc = channel->device->device_prep_slave_sg(channel,
1029                                         (struct scatterlist *)pio,
1030                                         ARRAY_SIZE(pio), DMA_NONE, 1);
1031         if (!desc) {
1032                 pr_err("step 2 error\n");
1033                 return -1;
1034         }
1035
1036         /* [3] Disable the BCH block */
1037         command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1038         address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1039
1040         pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1041                 | BM_GPMI_CTRL0_WORD_LENGTH
1042                 | BF_GPMI_CTRL0_CS(chip, this)
1043                 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1044                 | BF_GPMI_CTRL0_ADDRESS(address)
1045                 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1046         pio[1] = 0;
1047         desc = channel->device->device_prep_slave_sg(channel,
1048                                 (struct scatterlist *)pio, 2, DMA_NONE, 1);
1049         if (!desc) {
1050                 pr_err("step 3 error\n");
1051                 return -1;
1052         }
1053
1054         /* [4] submit the DMA */
1055         set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1056         return start_dma_with_bch_irq(this, desc);
1057 }