Merge git://git.infradead.org/mtd-2.6
[pandora-kernel.git] / drivers / mtd / nand / cafe_nand.c
1 /*
2  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3  *
4  * The data sheet for this device can be found at:
5  *    http://www.marvell.com/products/pcconn/88ALP01.jsp
6  *
7  * Copyright © 2006 Red Hat, Inc.
8  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9  */
10
11 #define DEBUG
12
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <asm/io.h>
25
26 #define CAFE_NAND_CTRL1         0x00
27 #define CAFE_NAND_CTRL2         0x04
28 #define CAFE_NAND_CTRL3         0x08
29 #define CAFE_NAND_STATUS        0x0c
30 #define CAFE_NAND_IRQ           0x10
31 #define CAFE_NAND_IRQ_MASK      0x14
32 #define CAFE_NAND_DATA_LEN      0x18
33 #define CAFE_NAND_ADDR1         0x1c
34 #define CAFE_NAND_ADDR2         0x20
35 #define CAFE_NAND_TIMING1       0x24
36 #define CAFE_NAND_TIMING2       0x28
37 #define CAFE_NAND_TIMING3       0x2c
38 #define CAFE_NAND_NONMEM        0x30
39 #define CAFE_NAND_ECC_RESULT    0x3C
40 #define CAFE_NAND_DMA_CTRL      0x40
41 #define CAFE_NAND_DMA_ADDR0     0x44
42 #define CAFE_NAND_DMA_ADDR1     0x48
43 #define CAFE_NAND_ECC_SYN01     0x50
44 #define CAFE_NAND_ECC_SYN23     0x54
45 #define CAFE_NAND_ECC_SYN45     0x58
46 #define CAFE_NAND_ECC_SYN67     0x5c
47 #define CAFE_NAND_READ_DATA     0x1000
48 #define CAFE_NAND_WRITE_DATA    0x2000
49
50 #define CAFE_GLOBAL_CTRL        0x3004
51 #define CAFE_GLOBAL_IRQ         0x3008
52 #define CAFE_GLOBAL_IRQ_MASK    0x300c
53 #define CAFE_NAND_RESET         0x3034
54
55 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
56 #define CTRL1_CHIPSELECT        (1<<19)
57
58 struct cafe_priv {
59         struct nand_chip nand;
60         struct mtd_partition *parts;
61         struct pci_dev *pdev;
62         void __iomem *mmio;
63         struct rs_control *rs;
64         uint32_t ctl1;
65         uint32_t ctl2;
66         int datalen;
67         int nr_data;
68         int data_pos;
69         int page_addr;
70         dma_addr_t dmaaddr;
71         unsigned char *dmabuf;
72 };
73
74 static int usedma = 1;
75 module_param(usedma, int, 0644);
76
77 static int skipbbt = 0;
78 module_param(skipbbt, int, 0644);
79
80 static int debug = 0;
81 module_param(debug, int, 0644);
82
83 static int regdebug = 0;
84 module_param(regdebug, int, 0644);
85
86 static int checkecc = 1;
87 module_param(checkecc, int, 0644);
88
89 static unsigned int numtimings;
90 static int timing[3];
91 module_param_array(timing, int, &numtimings, 0644);
92
93 #ifdef CONFIG_MTD_PARTITIONS
94 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
95 #endif
96
97 /* Hrm. Why isn't this already conditional on something in the struct device? */
98 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
99
100 /* Make it easier to switch to PIO if we need to */
101 #define cafe_readl(cafe, addr)                  readl((cafe)->mmio + CAFE_##addr)
102 #define cafe_writel(cafe, datum, addr)          writel(datum, (cafe)->mmio + CAFE_##addr)
103
104 static int cafe_device_ready(struct mtd_info *mtd)
105 {
106         struct cafe_priv *cafe = mtd->priv;
107         int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
108         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
109
110         cafe_writel(cafe, irqs, NAND_IRQ);
111
112         cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
113                 result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
114                 cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
115
116         return result;
117 }
118
119
120 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
121 {
122         struct cafe_priv *cafe = mtd->priv;
123
124         if (usedma)
125                 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
126         else
127                 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
128
129         cafe->datalen += len;
130
131         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
132                 len, cafe->datalen);
133 }
134
135 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
136 {
137         struct cafe_priv *cafe = mtd->priv;
138
139         if (usedma)
140                 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
141         else
142                 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
143
144         cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
145                   len, cafe->datalen);
146         cafe->datalen += len;
147 }
148
149 static uint8_t cafe_read_byte(struct mtd_info *mtd)
150 {
151         struct cafe_priv *cafe = mtd->priv;
152         uint8_t d;
153
154         cafe_read_buf(mtd, &d, 1);
155         cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
156
157         return d;
158 }
159
160 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
161                               int column, int page_addr)
162 {
163         struct cafe_priv *cafe = mtd->priv;
164         int adrbytes = 0;
165         uint32_t ctl1;
166         uint32_t doneint = 0x80000000;
167
168         cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
169                 command, column, page_addr);
170
171         if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
172                 /* Second half of a command we already calculated */
173                 cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
174                 ctl1 = cafe->ctl1;
175                 cafe->ctl2 &= ~(1<<30);
176                 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
177                           cafe->ctl1, cafe->nr_data);
178                 goto do_command;
179         }
180         /* Reset ECC engine */
181         cafe_writel(cafe, 0, NAND_CTRL2);
182
183         /* Emulate NAND_CMD_READOOB on large-page chips */
184         if (mtd->writesize > 512 &&
185             command == NAND_CMD_READOOB) {
186                 column += mtd->writesize;
187                 command = NAND_CMD_READ0;
188         }
189
190         /* FIXME: Do we need to send read command before sending data
191            for small-page chips, to position the buffer correctly? */
192
193         if (column != -1) {
194                 cafe_writel(cafe, column, NAND_ADDR1);
195                 adrbytes = 2;
196                 if (page_addr != -1)
197                         goto write_adr2;
198         } else if (page_addr != -1) {
199                 cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
200                 page_addr >>= 16;
201         write_adr2:
202                 cafe_writel(cafe, page_addr, NAND_ADDR2);
203                 adrbytes += 2;
204                 if (mtd->size > mtd->writesize << 16)
205                         adrbytes++;
206         }
207
208         cafe->data_pos = cafe->datalen = 0;
209
210         /* Set command valid bit, mask in the chip select bit  */
211         ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
212
213         /* Set RD or WR bits as appropriate */
214         if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
215                 ctl1 |= (1<<26); /* rd */
216                 /* Always 5 bytes, for now */
217                 cafe->datalen = 4;
218                 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
219                 adrbytes = 1;
220         } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
221                    command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
222                 ctl1 |= 1<<26; /* rd */
223                 /* For now, assume just read to end of page */
224                 cafe->datalen = mtd->writesize + mtd->oobsize - column;
225         } else if (command == NAND_CMD_SEQIN)
226                 ctl1 |= 1<<25; /* wr */
227
228         /* Set number of address bytes */
229         if (adrbytes)
230                 ctl1 |= ((adrbytes-1)|8) << 27;
231
232         if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
233                 /* Ignore the first command of a pair; the hardware
234                    deals with them both at once, later */
235                 cafe->ctl1 = ctl1;
236                 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
237                           cafe->ctl1, cafe->datalen);
238                 return;
239         }
240         /* RNDOUT and READ0 commands need a following byte */
241         if (command == NAND_CMD_RNDOUT)
242                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
243         else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
244                 cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
245
246  do_command:
247         cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
248                 cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
249
250         /* NB: The datasheet lies -- we really should be subtracting 1 here */
251         cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
252         cafe_writel(cafe, 0x90000000, NAND_IRQ);
253         if (usedma && (ctl1 & (3<<25))) {
254                 uint32_t dmactl = 0xc0000000 + cafe->datalen;
255                 /* If WR or RD bits set, set up DMA */
256                 if (ctl1 & (1<<26)) {
257                         /* It's a read */
258                         dmactl |= (1<<29);
259                         /* ... so it's done when the DMA is done, not just
260                            the command. */
261                         doneint = 0x10000000;
262                 }
263                 cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
264         }
265         cafe->datalen = 0;
266
267         if (unlikely(regdebug)) {
268                 int i;
269                 printk("About to write command %08x to register 0\n", ctl1);
270                 for (i=4; i< 0x5c; i+=4)
271                         printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
272         }
273
274         cafe_writel(cafe, ctl1, NAND_CTRL1);
275         /* Apply this short delay always to ensure that we do wait tWB in
276          * any case on any machine. */
277         ndelay(100);
278
279         if (1) {
280                 int c;
281                 uint32_t irqs;
282
283                 for (c = 500000; c != 0; c--) {
284                         irqs = cafe_readl(cafe, NAND_IRQ);
285                         if (irqs & doneint)
286                                 break;
287                         udelay(1);
288                         if (!(c % 100000))
289                                 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
290                         cpu_relax();
291                 }
292                 cafe_writel(cafe, doneint, NAND_IRQ);
293                 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
294                              command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
295         }
296
297         WARN_ON(cafe->ctl2 & (1<<30));
298
299         switch (command) {
300
301         case NAND_CMD_CACHEDPROG:
302         case NAND_CMD_PAGEPROG:
303         case NAND_CMD_ERASE1:
304         case NAND_CMD_ERASE2:
305         case NAND_CMD_SEQIN:
306         case NAND_CMD_RNDIN:
307         case NAND_CMD_STATUS:
308         case NAND_CMD_DEPLETE1:
309         case NAND_CMD_RNDOUT:
310         case NAND_CMD_STATUS_ERROR:
311         case NAND_CMD_STATUS_ERROR0:
312         case NAND_CMD_STATUS_ERROR1:
313         case NAND_CMD_STATUS_ERROR2:
314         case NAND_CMD_STATUS_ERROR3:
315                 cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
316                 return;
317         }
318         nand_wait_ready(mtd);
319         cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
320 }
321
322 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
323 {
324         struct cafe_priv *cafe = mtd->priv;
325
326         cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
327
328         /* Mask the appropriate bit into the stored value of ctl1
329            which will be used by cafe_nand_cmdfunc() */
330         if (chipnr)
331                 cafe->ctl1 |= CTRL1_CHIPSELECT;
332         else
333                 cafe->ctl1 &= ~CTRL1_CHIPSELECT;
334 }
335
336 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
337 {
338         struct mtd_info *mtd = id;
339         struct cafe_priv *cafe = mtd->priv;
340         uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
341         cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
342         if (!irqs)
343                 return IRQ_NONE;
344
345         cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
346         return IRQ_HANDLED;
347 }
348
349 static void cafe_nand_bug(struct mtd_info *mtd)
350 {
351         BUG();
352 }
353
354 static int cafe_nand_write_oob(struct mtd_info *mtd,
355                                struct nand_chip *chip, int page)
356 {
357         int status = 0;
358
359         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
360         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
361         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
362         status = chip->waitfunc(mtd, chip);
363
364         return status & NAND_STATUS_FAIL ? -EIO : 0;
365 }
366
367 /* Don't use -- use nand_read_oob_std for now */
368 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
369                               int page, int sndcmd)
370 {
371         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
372         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
373         return 1;
374 }
375 /**
376  * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
377  * @mtd:        mtd info structure
378  * @chip:       nand chip info structure
379  * @buf:        buffer to store read data
380  *
381  * The hw generator calculates the error syndrome automatically. Therefor
382  * we need a special oob layout and handling.
383  */
384 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
385                                uint8_t *buf, int page)
386 {
387         struct cafe_priv *cafe = mtd->priv;
388
389         cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
390                      cafe_readl(cafe, NAND_ECC_RESULT),
391                      cafe_readl(cafe, NAND_ECC_SYN01));
392
393         chip->read_buf(mtd, buf, mtd->writesize);
394         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
395
396         if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
397                 unsigned short syn[8], pat[4];
398                 int pos[4];
399                 u8 *oob = chip->oob_poi;
400                 int i, n;
401
402                 for (i=0; i<8; i+=2) {
403                         uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
404                         syn[i] = cafe->rs->index_of[tmp & 0xfff];
405                         syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
406                 }
407
408                 n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
409                                 pat);
410
411                 for (i = 0; i < n; i++) {
412                         int p = pos[i];
413
414                         /* The 12-bit symbols are mapped to bytes here */
415
416                         if (p > 1374) {
417                                 /* out of range */
418                                 n = -1374;
419                         } else if (p == 0) {
420                                 /* high four bits do not correspond to data */
421                                 if (pat[i] > 0xff)
422                                         n = -2048;
423                                 else
424                                         buf[0] ^= pat[i];
425                         } else if (p == 1365) {
426                                 buf[2047] ^= pat[i] >> 4;
427                                 oob[0] ^= pat[i] << 4;
428                         } else if (p > 1365) {
429                                 if ((p & 1) == 1) {
430                                         oob[3*p/2 - 2048] ^= pat[i] >> 4;
431                                         oob[3*p/2 - 2047] ^= pat[i] << 4;
432                                 } else {
433                                         oob[3*p/2 - 2049] ^= pat[i] >> 8;
434                                         oob[3*p/2 - 2048] ^= pat[i];
435                                 }
436                         } else if ((p & 1) == 1) {
437                                 buf[3*p/2] ^= pat[i] >> 4;
438                                 buf[3*p/2 + 1] ^= pat[i] << 4;
439                         } else {
440                                 buf[3*p/2 - 1] ^= pat[i] >> 8;
441                                 buf[3*p/2] ^= pat[i];
442                         }
443                 }
444
445                 if (n < 0) {
446                         dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
447                                 cafe_readl(cafe, NAND_ADDR2) * 2048);
448                         for (i = 0; i < 0x5c; i += 4)
449                                 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
450                         mtd->ecc_stats.failed++;
451                 } else {
452                         dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
453                         mtd->ecc_stats.corrected += n;
454                 }
455         }
456
457         return 0;
458 }
459
460 static struct nand_ecclayout cafe_oobinfo_2048 = {
461         .eccbytes = 14,
462         .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
463         .oobfree = {{14, 50}}
464 };
465
466 /* Ick. The BBT code really ought to be able to work this bit out
467    for itself from the above, at least for the 2KiB case */
468 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
469 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
470
471 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
472 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
473
474
475 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
476         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
477                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
478         .offs = 14,
479         .len = 4,
480         .veroffs = 18,
481         .maxblocks = 4,
482         .pattern = cafe_bbt_pattern_2048
483 };
484
485 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
486         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
487                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
488         .offs = 14,
489         .len = 4,
490         .veroffs = 18,
491         .maxblocks = 4,
492         .pattern = cafe_mirror_pattern_2048
493 };
494
495 static struct nand_ecclayout cafe_oobinfo_512 = {
496         .eccbytes = 14,
497         .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
498         .oobfree = {{14, 2}}
499 };
500
501 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
502         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
503                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
504         .offs = 14,
505         .len = 1,
506         .veroffs = 15,
507         .maxblocks = 4,
508         .pattern = cafe_bbt_pattern_512
509 };
510
511 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
512         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
513                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
514         .offs = 14,
515         .len = 1,
516         .veroffs = 15,
517         .maxblocks = 4,
518         .pattern = cafe_mirror_pattern_512
519 };
520
521
522 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
523                                           struct nand_chip *chip, const uint8_t *buf)
524 {
525         struct cafe_priv *cafe = mtd->priv;
526
527         chip->write_buf(mtd, buf, mtd->writesize);
528         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
529
530         /* Set up ECC autogeneration */
531         cafe->ctl2 |= (1<<30);
532 }
533
534 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
535                                 const uint8_t *buf, int page, int cached, int raw)
536 {
537         int status;
538
539         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
540
541         if (unlikely(raw))
542                 chip->ecc.write_page_raw(mtd, chip, buf);
543         else
544                 chip->ecc.write_page(mtd, chip, buf);
545
546         /*
547          * Cached progamming disabled for now, Not sure if its worth the
548          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
549          */
550         cached = 0;
551
552         if (!cached || !(chip->options & NAND_CACHEPRG)) {
553
554                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
555                 status = chip->waitfunc(mtd, chip);
556                 /*
557                  * See if operation failed and additional status checks are
558                  * available
559                  */
560                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
561                         status = chip->errstat(mtd, chip, FL_WRITING, status,
562                                                page);
563
564                 if (status & NAND_STATUS_FAIL)
565                         return -EIO;
566         } else {
567                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
568                 status = chip->waitfunc(mtd, chip);
569         }
570
571 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
572         /* Send command to read back the data */
573         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
574
575         if (chip->verify_buf(mtd, buf, mtd->writesize))
576                 return -EIO;
577 #endif
578         return 0;
579 }
580
581 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
582 {
583         return 0;
584 }
585
586 /* F_2[X]/(X**6+X+1)  */
587 static unsigned short __devinit gf64_mul(u8 a, u8 b)
588 {
589         u8 c;
590         unsigned int i;
591
592         c = 0;
593         for (i = 0; i < 6; i++) {
594                 if (a & 1)
595                         c ^= b;
596                 a >>= 1;
597                 b <<= 1;
598                 if ((b & 0x40) != 0)
599                         b ^= 0x43;
600         }
601
602         return c;
603 }
604
605 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
606 static u16 __devinit gf4096_mul(u16 a, u16 b)
607 {
608         u8 ah, al, bh, bl, ch, cl;
609
610         ah = a >> 6;
611         al = a & 0x3f;
612         bh = b >> 6;
613         bl = b & 0x3f;
614
615         ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
616         cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
617
618         return (ch << 6) ^ cl;
619 }
620
621 static int __devinit cafe_mul(int x)
622 {
623         if (x == 0)
624                 return 1;
625         return gf4096_mul(x, 0xe01);
626 }
627
628 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
629                                      const struct pci_device_id *ent)
630 {
631         struct mtd_info *mtd;
632         struct cafe_priv *cafe;
633         uint32_t ctrl;
634         int err = 0;
635 #ifdef CONFIG_MTD_PARTITIONS
636         struct mtd_partition *parts;
637         int nr_parts;
638 #endif
639
640         /* Very old versions shared the same PCI ident for all three
641            functions on the chip. Verify the class too... */
642         if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
643                 return -ENODEV;
644
645         err = pci_enable_device(pdev);
646         if (err)
647                 return err;
648
649         pci_set_master(pdev);
650
651         mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
652         if (!mtd) {
653                 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
654                 return  -ENOMEM;
655         }
656         cafe = (void *)(&mtd[1]);
657
658         mtd->dev.parent = &pdev->dev;
659         mtd->priv = cafe;
660         mtd->owner = THIS_MODULE;
661
662         cafe->pdev = pdev;
663         cafe->mmio = pci_iomap(pdev, 0, 0);
664         if (!cafe->mmio) {
665                 dev_warn(&pdev->dev, "failed to iomap\n");
666                 err = -ENOMEM;
667                 goto out_free_mtd;
668         }
669         cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
670                                           &cafe->dmaaddr, GFP_KERNEL);
671         if (!cafe->dmabuf) {
672                 err = -ENOMEM;
673                 goto out_ior;
674         }
675         cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
676
677         cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
678         if (!cafe->rs) {
679                 err = -ENOMEM;
680                 goto out_ior;
681         }
682
683         cafe->nand.cmdfunc = cafe_nand_cmdfunc;
684         cafe->nand.dev_ready = cafe_device_ready;
685         cafe->nand.read_byte = cafe_read_byte;
686         cafe->nand.read_buf = cafe_read_buf;
687         cafe->nand.write_buf = cafe_write_buf;
688         cafe->nand.select_chip = cafe_select_chip;
689
690         cafe->nand.chip_delay = 0;
691
692         /* Enable the following for a flash based bad block table */
693         cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
694
695         if (skipbbt) {
696                 cafe->nand.options |= NAND_SKIP_BBTSCAN;
697                 cafe->nand.block_bad = cafe_nand_block_bad;
698         }
699
700         if (numtimings && numtimings != 3) {
701                 dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
702         }
703
704         if (numtimings == 3) {
705                 cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
706                              timing[0], timing[1], timing[2]);
707         } else {
708                 timing[0] = cafe_readl(cafe, NAND_TIMING1);
709                 timing[1] = cafe_readl(cafe, NAND_TIMING2);
710                 timing[2] = cafe_readl(cafe, NAND_TIMING3);
711
712                 if (timing[0] | timing[1] | timing[2]) {
713                         cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
714                                      timing[0], timing[1], timing[2]);
715                 } else {
716                         dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
717                         timing[0] = timing[1] = timing[2] = 0xffffffff;
718                 }
719         }
720
721         /* Start off by resetting the NAND controller completely */
722         cafe_writel(cafe, 1, NAND_RESET);
723         cafe_writel(cafe, 0, NAND_RESET);
724
725         cafe_writel(cafe, timing[0], NAND_TIMING1);
726         cafe_writel(cafe, timing[1], NAND_TIMING2);
727         cafe_writel(cafe, timing[2], NAND_TIMING3);
728
729         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
730         err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
731                           "CAFE NAND", mtd);
732         if (err) {
733                 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
734                 goto out_free_dma;
735         }
736
737         /* Disable master reset, enable NAND clock */
738         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
739         ctrl &= 0xffffeff0;
740         ctrl |= 0x00007000;
741         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
742         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
743         cafe_writel(cafe, 0, NAND_DMA_CTRL);
744
745         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
746         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
747
748         /* Set up DMA address */
749         cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
750         if (sizeof(cafe->dmaaddr) > 4)
751                 /* Shift in two parts to shut the compiler up */
752                 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
753         else
754                 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
755
756         cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
757                 cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
758
759         /* Enable NAND IRQ in global IRQ mask register */
760         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
761         cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
762                 cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
763
764         /* Scan to find existence of the device */
765         if (nand_scan_ident(mtd, 2, NULL)) {
766                 err = -ENXIO;
767                 goto out_irq;
768         }
769
770         cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
771         if (mtd->writesize == 2048)
772                 cafe->ctl2 |= 1<<29; /* 2KiB page size */
773
774         /* Set up ECC according to the type of chip we found */
775         if (mtd->writesize == 2048) {
776                 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
777                 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
778                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
779         } else if (mtd->writesize == 512) {
780                 cafe->nand.ecc.layout = &cafe_oobinfo_512;
781                 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
782                 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
783         } else {
784                 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
785                        mtd->writesize);
786                 goto out_irq;
787         }
788         cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
789         cafe->nand.ecc.size = mtd->writesize;
790         cafe->nand.ecc.bytes = 14;
791         cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
792         cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
793         cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
794         cafe->nand.write_page = cafe_nand_write_page;
795         cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
796         cafe->nand.ecc.write_oob = cafe_nand_write_oob;
797         cafe->nand.ecc.read_page = cafe_nand_read_page;
798         cafe->nand.ecc.read_oob = cafe_nand_read_oob;
799
800         err = nand_scan_tail(mtd);
801         if (err)
802                 goto out_irq;
803
804         pci_set_drvdata(pdev, mtd);
805
806         /* We register the whole device first, separate from the partitions */
807         add_mtd_device(mtd);
808
809 #ifdef CONFIG_MTD_PARTITIONS
810 #ifdef CONFIG_MTD_CMDLINE_PARTS
811         mtd->name = "cafe_nand";
812 #endif
813         nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
814         if (nr_parts > 0) {
815                 cafe->parts = parts;
816                 dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts);
817                 add_mtd_partitions(mtd, parts, nr_parts);
818         }
819 #endif
820         goto out;
821
822  out_irq:
823         /* Disable NAND IRQ in global IRQ mask register */
824         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
825         free_irq(pdev->irq, mtd);
826  out_free_dma:
827         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
828  out_ior:
829         pci_iounmap(pdev, cafe->mmio);
830  out_free_mtd:
831         kfree(mtd);
832  out:
833         return err;
834 }
835
836 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
837 {
838         struct mtd_info *mtd = pci_get_drvdata(pdev);
839         struct cafe_priv *cafe = mtd->priv;
840
841         del_mtd_device(mtd);
842         /* Disable NAND IRQ in global IRQ mask register */
843         cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
844         free_irq(pdev->irq, mtd);
845         nand_release(mtd);
846         free_rs(cafe->rs);
847         pci_iounmap(pdev, cafe->mmio);
848         dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
849         kfree(mtd);
850 }
851
852 static const struct pci_device_id cafe_nand_tbl[] = {
853         { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
854           PCI_ANY_ID, PCI_ANY_ID },
855         { }
856 };
857
858 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
859
860 static int cafe_nand_resume(struct pci_dev *pdev)
861 {
862         uint32_t ctrl;
863         struct mtd_info *mtd = pci_get_drvdata(pdev);
864         struct cafe_priv *cafe = mtd->priv;
865
866        /* Start off by resetting the NAND controller completely */
867         cafe_writel(cafe, 1, NAND_RESET);
868         cafe_writel(cafe, 0, NAND_RESET);
869         cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
870
871         /* Restore timing configuration */
872         cafe_writel(cafe, timing[0], NAND_TIMING1);
873         cafe_writel(cafe, timing[1], NAND_TIMING2);
874         cafe_writel(cafe, timing[2], NAND_TIMING3);
875
876         /* Disable master reset, enable NAND clock */
877         ctrl = cafe_readl(cafe, GLOBAL_CTRL);
878         ctrl &= 0xffffeff0;
879         ctrl |= 0x00007000;
880         cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
881         cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
882         cafe_writel(cafe, 0, NAND_DMA_CTRL);
883         cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
884         cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
885
886         /* Set up DMA address */
887         cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
888         if (sizeof(cafe->dmaaddr) > 4)
889         /* Shift in two parts to shut the compiler up */
890                 cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
891         else
892                 cafe_writel(cafe, 0, NAND_DMA_ADDR1);
893
894         /* Enable NAND IRQ in global IRQ mask register */
895         cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
896         return 0;
897 }
898
899 static struct pci_driver cafe_nand_pci_driver = {
900         .name = "CAFÉ NAND",
901         .id_table = cafe_nand_tbl,
902         .probe = cafe_nand_probe,
903         .remove = __devexit_p(cafe_nand_remove),
904         .resume = cafe_nand_resume,
905 };
906
907 static int __init cafe_nand_init(void)
908 {
909         return pci_register_driver(&cafe_nand_pci_driver);
910 }
911
912 static void __exit cafe_nand_exit(void)
913 {
914         pci_unregister_driver(&cafe_nand_pci_driver);
915 }
916 module_init(cafe_nand_init);
917 module_exit(cafe_nand_exit);
918
919 MODULE_LICENSE("GPL");
920 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
921 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");