Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[pandora-kernel.git] / drivers / mtd / nand / bcm_umi_nand.c
1 /*****************************************************************************
2 * Copyright 2004 - 2009 Broadcom Corporation.  All rights reserved.
3 *
4 * Unless you and Broadcom execute a separate written software license
5 * agreement governing use of this software, this software is licensed to you
6 * under the terms of the GNU General Public License version 2, available at
7 * http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
8 *
9 * Notwithstanding the above, under no circumstances may you combine this
10 * software in any way with any other Broadcom software provided under a
11 * license other than the GPL, without Broadcom's express prior written
12 * consent.
13 *****************************************************************************/
14
15 /* ---- Include Files ---------------------------------------------------- */
16 #include <linux/version.h>
17 #include <linux/module.h>
18 #include <linux/types.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/ioport.h>
23 #include <linux/device.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/io.h>
27 #include <linux/platform_device.h>
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/nand.h>
30 #include <linux/mtd/nand_ecc.h>
31 #include <linux/mtd/partitions.h>
32
33 #include <asm/mach-types.h>
34 #include <asm/system.h>
35
36 #include <mach/reg_nand.h>
37 #include <mach/reg_umi.h>
38
39 #include "nand_bcm_umi.h"
40
41 #include <mach/memory_settings.h>
42
43 #define USE_DMA 1
44 #include <mach/dma.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/completion.h>
47
48 /* ---- External Variable Declarations ----------------------------------- */
49 /* ---- External Function Prototypes ------------------------------------- */
50 /* ---- Public Variables ------------------------------------------------- */
51 /* ---- Private Constants and Types -------------------------------------- */
52 static const __devinitconst char gBanner[] = KERN_INFO \
53         "BCM UMI MTD NAND Driver: 1.00\n";
54
55 #ifdef CONFIG_MTD_PARTITIONS
56 const char *part_probes[] = { "cmdlinepart", NULL };
57 #endif
58
59 #if NAND_ECC_BCH
60 static uint8_t scan_ff_pattern[] = { 0xff };
61
62 static struct nand_bbt_descr largepage_bbt = {
63         .options = 0,
64         .offs = 0,
65         .len = 1,
66         .pattern = scan_ff_pattern
67 };
68 #endif
69
70 /*
71 ** Preallocate a buffer to avoid having to do this every dma operation.
72 ** This is the size of the preallocated coherent DMA buffer.
73 */
74 #if USE_DMA
75 #define DMA_MIN_BUFLEN  512
76 #define DMA_MAX_BUFLEN  PAGE_SIZE
77 #define USE_DIRECT_IO(len)      (((len) < DMA_MIN_BUFLEN) || \
78         ((len) > DMA_MAX_BUFLEN))
79
80 /*
81  * The current NAND data space goes from 0x80001900 to 0x80001FFF,
82  * which is only 0x700 = 1792 bytes long. This is too small for 2K, 4K page
83  * size NAND flash. Need to break the DMA down to multiple 1Ks.
84  *
85  * Need to make sure REG_NAND_DATA_PADDR + DMA_MAX_LEN < 0x80002000
86  */
87 #define DMA_MAX_LEN             1024
88
89 #else /* !USE_DMA */
90 #define DMA_MIN_BUFLEN          0
91 #define DMA_MAX_BUFLEN          0
92 #define USE_DIRECT_IO(len)      1
93 #endif
94 /* ---- Private Function Prototypes -------------------------------------- */
95 static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len);
96 static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
97                                    int len);
98
99 /* ---- Private Variables ------------------------------------------------ */
100 static struct mtd_info *board_mtd;
101 static void __iomem *bcm_umi_io_base;
102 static void *virtPtr;
103 static dma_addr_t physPtr;
104 static struct completion nand_comp;
105
106 /* ---- Private Functions ------------------------------------------------ */
107 #if NAND_ECC_BCH
108 #include "bcm_umi_bch.c"
109 #else
110 #include "bcm_umi_hamming.c"
111 #endif
112
113 #if USE_DMA
114
115 /* Handler called when the DMA finishes. */
116 static void nand_dma_handler(DMA_Device_t dev, int reason, void *userData)
117 {
118         complete(&nand_comp);
119 }
120
121 static int nand_dma_init(void)
122 {
123         int rc;
124
125         rc = dma_set_device_handler(DMA_DEVICE_NAND_MEM_TO_MEM,
126                 nand_dma_handler, NULL);
127         if (rc != 0) {
128                 printk(KERN_ERR "dma_set_device_handler failed: %d\n", rc);
129                 return rc;
130         }
131
132         virtPtr =
133             dma_alloc_coherent(NULL, DMA_MAX_BUFLEN, &physPtr, GFP_KERNEL);
134         if (virtPtr == NULL) {
135                 printk(KERN_ERR "NAND - Failed to allocate memory for DMA buffer\n");
136                 return -ENOMEM;
137         }
138
139         return 0;
140 }
141
142 static void nand_dma_term(void)
143 {
144         if (virtPtr != NULL)
145                 dma_free_coherent(NULL, DMA_MAX_BUFLEN, virtPtr, physPtr);
146 }
147
148 static void nand_dma_read(void *buf, int len)
149 {
150         int offset = 0;
151         int tmp_len = 0;
152         int len_left = len;
153         DMA_Handle_t hndl;
154
155         if (virtPtr == NULL)
156                 panic("nand_dma_read: virtPtr == NULL\n");
157
158         if ((void *)physPtr == NULL)
159                 panic("nand_dma_read: physPtr == NULL\n");
160
161         hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
162         if (hndl < 0) {
163                 printk(KERN_ERR
164                        "nand_dma_read: unable to allocate dma channel: %d\n",
165                        (int)hndl);
166                 panic("\n");
167         }
168
169         while (len_left > 0) {
170                 if (len_left > DMA_MAX_LEN) {
171                         tmp_len = DMA_MAX_LEN;
172                         len_left -= DMA_MAX_LEN;
173                 } else {
174                         tmp_len = len_left;
175                         len_left = 0;
176                 }
177
178                 init_completion(&nand_comp);
179                 dma_transfer_mem_to_mem(hndl, REG_NAND_DATA_PADDR,
180                                         physPtr + offset, tmp_len);
181                 wait_for_completion(&nand_comp);
182
183                 offset += tmp_len;
184         }
185
186         dma_free_channel(hndl);
187
188         if (buf != NULL)
189                 memcpy(buf, virtPtr, len);
190 }
191
192 static void nand_dma_write(const void *buf, int len)
193 {
194         int offset = 0;
195         int tmp_len = 0;
196         int len_left = len;
197         DMA_Handle_t hndl;
198
199         if (buf == NULL)
200                 panic("nand_dma_write: buf == NULL\n");
201
202         if (virtPtr == NULL)
203                 panic("nand_dma_write: virtPtr == NULL\n");
204
205         if ((void *)physPtr == NULL)
206                 panic("nand_dma_write: physPtr == NULL\n");
207
208         memcpy(virtPtr, buf, len);
209
210
211         hndl = dma_request_channel(DMA_DEVICE_NAND_MEM_TO_MEM);
212         if (hndl < 0) {
213                 printk(KERN_ERR
214                        "nand_dma_write: unable to allocate dma channel: %d\n",
215                        (int)hndl);
216                 panic("\n");
217         }
218
219         while (len_left > 0) {
220                 if (len_left > DMA_MAX_LEN) {
221                         tmp_len = DMA_MAX_LEN;
222                         len_left -= DMA_MAX_LEN;
223                 } else {
224                         tmp_len = len_left;
225                         len_left = 0;
226                 }
227
228                 init_completion(&nand_comp);
229                 dma_transfer_mem_to_mem(hndl, physPtr + offset,
230                                         REG_NAND_DATA_PADDR, tmp_len);
231                 wait_for_completion(&nand_comp);
232
233                 offset += tmp_len;
234         }
235
236         dma_free_channel(hndl);
237 }
238
239 #endif
240
241 static int nand_dev_ready(struct mtd_info *mtd)
242 {
243         return nand_bcm_umi_dev_ready();
244 }
245
246 /****************************************************************************
247 *
248 *  bcm_umi_nand_inithw
249 *
250 *   This routine does the necessary hardware (board-specific)
251 *   initializations.  This includes setting up the timings, etc.
252 *
253 ***************************************************************************/
254 int bcm_umi_nand_inithw(void)
255 {
256         /* Configure nand timing parameters */
257         REG_UMI_NAND_TCR &= ~0x7ffff;
258         REG_UMI_NAND_TCR |= HW_CFG_NAND_TCR;
259
260 #if !defined(CONFIG_MTD_NAND_BCM_UMI_HWCS)
261         /* enable software control of CS */
262         REG_UMI_NAND_TCR |= REG_UMI_NAND_TCR_CS_SWCTRL;
263 #endif
264
265         /* keep NAND chip select asserted */
266         REG_UMI_NAND_RCSR |= REG_UMI_NAND_RCSR_CS_ASSERTED;
267
268         REG_UMI_NAND_TCR &= ~REG_UMI_NAND_TCR_WORD16;
269         /* enable writes to flash */
270         REG_UMI_MMD_ICR |= REG_UMI_MMD_ICR_FLASH_WP;
271
272         writel(NAND_CMD_RESET, bcm_umi_io_base + REG_NAND_CMD_OFFSET);
273         nand_bcm_umi_wait_till_ready();
274
275 #if NAND_ECC_BCH
276         nand_bcm_umi_bch_config_ecc(NAND_ECC_NUM_BYTES);
277 #endif
278
279         return 0;
280 }
281
282 /* Used to turn latch the proper register for access. */
283 static void bcm_umi_nand_hwcontrol(struct mtd_info *mtd, int cmd,
284                                    unsigned int ctrl)
285 {
286         /* send command to hardware */
287         struct nand_chip *chip = mtd->priv;
288         if (ctrl & NAND_CTRL_CHANGE) {
289                 if (ctrl & NAND_CLE) {
290                         chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_CMD_OFFSET;
291                         goto CMD;
292                 }
293                 if (ctrl & NAND_ALE) {
294                         chip->IO_ADDR_W =
295                             bcm_umi_io_base + REG_NAND_ADDR_OFFSET;
296                         goto CMD;
297                 }
298                 chip->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
299         }
300
301 CMD:
302         /* Send command to chip directly */
303         if (cmd != NAND_CMD_NONE)
304                 writeb(cmd, chip->IO_ADDR_W);
305 }
306
307 static void bcm_umi_nand_write_buf(struct mtd_info *mtd, const u_char * buf,
308                                    int len)
309 {
310         if (USE_DIRECT_IO(len)) {
311                 /* Do it the old way if the buffer is small or too large.
312                  * Probably quicker than starting and checking dma. */
313                 int i;
314                 struct nand_chip *this = mtd->priv;
315
316                 for (i = 0; i < len; i++)
317                         writeb(buf[i], this->IO_ADDR_W);
318         }
319 #if USE_DMA
320         else
321                 nand_dma_write(buf, len);
322 #endif
323 }
324
325 static void bcm_umi_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
326 {
327         if (USE_DIRECT_IO(len)) {
328                 int i;
329                 struct nand_chip *this = mtd->priv;
330
331                 for (i = 0; i < len; i++)
332                         buf[i] = readb(this->IO_ADDR_R);
333         }
334 #if USE_DMA
335         else
336                 nand_dma_read(buf, len);
337 #endif
338 }
339
340 static uint8_t readbackbuf[NAND_MAX_PAGESIZE];
341 static int bcm_umi_nand_verify_buf(struct mtd_info *mtd, const u_char * buf,
342                                    int len)
343 {
344         /*
345          * Try to readback page with ECC correction. This is necessary
346          * for MLC parts which may have permanently stuck bits.
347          */
348         struct nand_chip *chip = mtd->priv;
349         int ret = chip->ecc.read_page(mtd, chip, readbackbuf, 0);
350         if (ret < 0)
351                 return -EFAULT;
352         else {
353                 if (memcmp(readbackbuf, buf, len) == 0)
354                         return 0;
355
356                 return -EFAULT;
357         }
358         return 0;
359 }
360
361 static int __devinit bcm_umi_nand_probe(struct platform_device *pdev)
362 {
363         struct nand_chip *this;
364         struct resource *r;
365         int err = 0;
366
367         printk(gBanner);
368
369         /* Allocate memory for MTD device structure and private data */
370         board_mtd =
371             kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
372                     GFP_KERNEL);
373         if (!board_mtd) {
374                 printk(KERN_WARNING
375                        "Unable to allocate NAND MTD device structure.\n");
376                 return -ENOMEM;
377         }
378
379         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
380
381         if (!r)
382                 return -ENXIO;
383
384         /* map physical address */
385         bcm_umi_io_base = ioremap(r->start, r->end - r->start + 1);
386
387         if (!bcm_umi_io_base) {
388                 printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n");
389                 kfree(board_mtd);
390                 return -EIO;
391         }
392
393         /* Get pointer to private data */
394         this = (struct nand_chip *)(&board_mtd[1]);
395
396         /* Initialize structures */
397         memset((char *)board_mtd, 0, sizeof(struct mtd_info));
398         memset((char *)this, 0, sizeof(struct nand_chip));
399
400         /* Link the private data with the MTD structure */
401         board_mtd->priv = this;
402
403         /* Initialize the NAND hardware.  */
404         if (bcm_umi_nand_inithw() < 0) {
405                 printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n");
406                 iounmap(bcm_umi_io_base);
407                 kfree(board_mtd);
408                 return -EIO;
409         }
410
411         /* Set address of NAND IO lines */
412         this->IO_ADDR_W = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
413         this->IO_ADDR_R = bcm_umi_io_base + REG_NAND_DATA8_OFFSET;
414
415         /* Set command delay time, see datasheet for correct value */
416         this->chip_delay = 0;
417         /* Assign the device ready function, if available */
418         this->dev_ready = nand_dev_ready;
419         this->options = 0;
420
421         this->write_buf = bcm_umi_nand_write_buf;
422         this->read_buf = bcm_umi_nand_read_buf;
423         this->verify_buf = bcm_umi_nand_verify_buf;
424
425         this->cmd_ctrl = bcm_umi_nand_hwcontrol;
426         this->ecc.mode = NAND_ECC_HW;
427         this->ecc.size = 512;
428         this->ecc.bytes = NAND_ECC_NUM_BYTES;
429 #if NAND_ECC_BCH
430         this->ecc.read_page = bcm_umi_bch_read_page_hwecc;
431         this->ecc.write_page = bcm_umi_bch_write_page_hwecc;
432 #else
433         this->ecc.correct = nand_correct_data512;
434         this->ecc.calculate = bcm_umi_hamming_get_hw_ecc;
435         this->ecc.hwctl = bcm_umi_hamming_enable_hwecc;
436 #endif
437
438 #if USE_DMA
439         err = nand_dma_init();
440         if (err != 0)
441                 return err;
442 #endif
443
444         /* Figure out the size of the device that we have.
445          * We need to do this to figure out which ECC
446          * layout we'll be using.
447          */
448
449         err = nand_scan_ident(board_mtd, 1, NULL);
450         if (err) {
451                 printk(KERN_ERR "nand_scan failed: %d\n", err);
452                 iounmap(bcm_umi_io_base);
453                 kfree(board_mtd);
454                 return err;
455         }
456
457         /* Now that we know the nand size, we can setup the ECC layout */
458
459         switch (board_mtd->writesize) { /* writesize is the pagesize */
460         case 4096:
461                 this->ecc.layout = &nand_hw_eccoob_4096;
462                 break;
463         case 2048:
464                 this->ecc.layout = &nand_hw_eccoob_2048;
465                 break;
466         case 512:
467                 this->ecc.layout = &nand_hw_eccoob_512;
468                 break;
469         default:
470                 {
471                         printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n",
472                                          board_mtd->writesize);
473                         return -EINVAL;
474                 }
475         }
476
477 #if NAND_ECC_BCH
478         if (board_mtd->writesize > 512) {
479                 if (this->options & NAND_USE_FLASH_BBT)
480                         largepage_bbt.options = NAND_BBT_SCAN2NDPAGE;
481                 this->badblock_pattern = &largepage_bbt;
482         }
483 #endif
484
485         /* Now finish off the scan, now that ecc.layout has been initialized. */
486
487         err = nand_scan_tail(board_mtd);
488         if (err) {
489                 printk(KERN_ERR "nand_scan failed: %d\n", err);
490                 iounmap(bcm_umi_io_base);
491                 kfree(board_mtd);
492                 return err;
493         }
494
495         /* Register the partitions */
496         {
497                 int nr_partitions;
498                 struct mtd_partition *partition_info;
499
500                 board_mtd->name = "bcm_umi-nand";
501                 nr_partitions =
502                     parse_mtd_partitions(board_mtd, part_probes,
503                                          &partition_info, 0);
504
505                 if (nr_partitions <= 0) {
506                         printk(KERN_ERR "BCM UMI NAND: Too few partitions - %d\n",
507                                nr_partitions);
508                         iounmap(bcm_umi_io_base);
509                         kfree(board_mtd);
510                         return -EIO;
511                 }
512                 add_mtd_partitions(board_mtd, partition_info, nr_partitions);
513         }
514
515         /* Return happy */
516         return 0;
517 }
518
519 static int bcm_umi_nand_remove(struct platform_device *pdev)
520 {
521 #if USE_DMA
522         nand_dma_term();
523 #endif
524
525         /* Release resources, unregister device */
526         nand_release(board_mtd);
527
528         /* unmap physical address */
529         iounmap(bcm_umi_io_base);
530
531         /* Free the MTD device structure */
532         kfree(board_mtd);
533
534         return 0;
535 }
536
537 #ifdef CONFIG_PM
538 static int bcm_umi_nand_suspend(struct platform_device *pdev,
539                                 pm_message_t state)
540 {
541         printk(KERN_ERR "MTD NAND suspend is being called\n");
542         return 0;
543 }
544
545 static int bcm_umi_nand_resume(struct platform_device *pdev)
546 {
547         printk(KERN_ERR "MTD NAND resume is being called\n");
548         return 0;
549 }
550 #else
551 #define bcm_umi_nand_suspend   NULL
552 #define bcm_umi_nand_resume    NULL
553 #endif
554
555 static struct platform_driver nand_driver = {
556         .driver = {
557                    .name = "bcm-nand",
558                    .owner = THIS_MODULE,
559                    },
560         .probe = bcm_umi_nand_probe,
561         .remove = bcm_umi_nand_remove,
562         .suspend = bcm_umi_nand_suspend,
563         .resume = bcm_umi_nand_resume,
564 };
565
566 static int __init nand_init(void)
567 {
568         return platform_driver_register(&nand_driver);
569 }
570
571 static void __exit nand_exit(void)
572 {
573         platform_driver_unregister(&nand_driver);
574 }
575
576 module_init(nand_init);
577 module_exit(nand_exit);
578
579 MODULE_LICENSE("GPL");
580 MODULE_AUTHOR("Broadcom");
581 MODULE_DESCRIPTION("BCM UMI MTD NAND driver");