[MTD] NAND Replace oobinfo by ecclayout
[pandora-kernel.git] / drivers / mtd / mtdpart.c
1 /*
2  * Simple MTD partitioning layer
3  *
4  * (C) 2000 Nicolas Pitre <nico@cam.org>
5  *
6  * This code is GPL
7  *
8  * $Id: mtdpart.c,v 1.55 2005/11/07 11:14:20 gleixner Exp $
9  *
10  *      02-21-2002      Thomas Gleixner <gleixner@autronix.de>
11  *                      added support for read_oob, write_oob
12  */
13
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/list.h>
19 #include <linux/config.h>
20 #include <linux/kmod.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/mtd/compatmac.h>
24
25 /* Our partition linked list */
26 static LIST_HEAD(mtd_partitions);
27
28 /* Our partition node structure */
29 struct mtd_part {
30         struct mtd_info mtd;
31         struct mtd_info *master;
32         u_int32_t offset;
33         int index;
34         struct list_head list;
35         int registered;
36 };
37
38 /*
39  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
40  * the pointer to that structure with this macro.
41  */
42 #define PART(x)  ((struct mtd_part *)(x))
43
44
45 /*
46  * MTD methods which simply translate the effective address and pass through
47  * to the _real_ device.
48  */
49
50 static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
51                         size_t *retlen, u_char *buf)
52 {
53         struct mtd_part *part = PART(mtd);
54         if (from >= mtd->size)
55                 len = 0;
56         else if (from + len > mtd->size)
57                 len = mtd->size - from;
58         return part->master->read (part->master, from + part->offset,
59                                    len, retlen, buf);
60 }
61
62 static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
63                         size_t *retlen, u_char **buf)
64 {
65         struct mtd_part *part = PART(mtd);
66         if (from >= mtd->size)
67                 len = 0;
68         else if (from + len > mtd->size)
69                 len = mtd->size - from;
70         return part->master->point (part->master, from + part->offset,
71                                     len, retlen, buf);
72 }
73
74 static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
75 {
76         struct mtd_part *part = PART(mtd);
77
78         part->master->unpoint (part->master, addr, from + part->offset, len);
79 }
80
81 static int part_read_oob (struct mtd_info *mtd, loff_t from, size_t len,
82                         size_t *retlen, u_char *buf)
83 {
84         struct mtd_part *part = PART(mtd);
85         if (from >= mtd->size)
86                 len = 0;
87         else if (from + len > mtd->size)
88                 len = mtd->size - from;
89         return part->master->read_oob (part->master, from + part->offset,
90                                         len, retlen, buf);
91 }
92
93 static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
94                         size_t *retlen, u_char *buf)
95 {
96         struct mtd_part *part = PART(mtd);
97         return part->master->read_user_prot_reg (part->master, from,
98                                         len, retlen, buf);
99 }
100
101 static int part_get_user_prot_info (struct mtd_info *mtd,
102                                     struct otp_info *buf, size_t len)
103 {
104         struct mtd_part *part = PART(mtd);
105         return part->master->get_user_prot_info (part->master, buf, len);
106 }
107
108 static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
109                         size_t *retlen, u_char *buf)
110 {
111         struct mtd_part *part = PART(mtd);
112         return part->master->read_fact_prot_reg (part->master, from,
113                                         len, retlen, buf);
114 }
115
116 static int part_get_fact_prot_info (struct mtd_info *mtd,
117                                     struct otp_info *buf, size_t len)
118 {
119         struct mtd_part *part = PART(mtd);
120         return part->master->get_fact_prot_info (part->master, buf, len);
121 }
122
123 static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
124                         size_t *retlen, const u_char *buf)
125 {
126         struct mtd_part *part = PART(mtd);
127         if (!(mtd->flags & MTD_WRITEABLE))
128                 return -EROFS;
129         if (to >= mtd->size)
130                 len = 0;
131         else if (to + len > mtd->size)
132                 len = mtd->size - to;
133         return part->master->write (part->master, to + part->offset,
134                                     len, retlen, buf);
135 }
136
137 static int part_write_oob (struct mtd_info *mtd, loff_t to, size_t len,
138                         size_t *retlen, const u_char *buf)
139 {
140         struct mtd_part *part = PART(mtd);
141         if (!(mtd->flags & MTD_WRITEABLE))
142                 return -EROFS;
143         if (to >= mtd->size)
144                 len = 0;
145         else if (to + len > mtd->size)
146                 len = mtd->size - to;
147         return part->master->write_oob (part->master, to + part->offset,
148                                         len, retlen, buf);
149 }
150
151 static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
152                         size_t *retlen, u_char *buf)
153 {
154         struct mtd_part *part = PART(mtd);
155         return part->master->write_user_prot_reg (part->master, from,
156                                         len, retlen, buf);
157 }
158
159 static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len)
160 {
161         struct mtd_part *part = PART(mtd);
162         return part->master->lock_user_prot_reg (part->master, from, len);
163 }
164
165 static int part_writev (struct mtd_info *mtd,  const struct kvec *vecs,
166                          unsigned long count, loff_t to, size_t *retlen)
167 {
168         struct mtd_part *part = PART(mtd);
169         if (!(mtd->flags & MTD_WRITEABLE))
170                 return -EROFS;
171         return part->master->writev (part->master, vecs, count,
172                                         to + part->offset, retlen);
173 }
174
175 static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
176 {
177         struct mtd_part *part = PART(mtd);
178         int ret;
179         if (!(mtd->flags & MTD_WRITEABLE))
180                 return -EROFS;
181         if (instr->addr >= mtd->size)
182                 return -EINVAL;
183         instr->addr += part->offset;
184         ret = part->master->erase(part->master, instr);
185         return ret;
186 }
187
188 void mtd_erase_callback(struct erase_info *instr)
189 {
190         if (instr->mtd->erase == part_erase) {
191                 struct mtd_part *part = PART(instr->mtd);
192
193                 if (instr->fail_addr != 0xffffffff)
194                         instr->fail_addr -= part->offset;
195                 instr->addr -= part->offset;
196         }
197         if (instr->callback)
198                 instr->callback(instr);
199 }
200 EXPORT_SYMBOL_GPL(mtd_erase_callback);
201
202 static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
203 {
204         struct mtd_part *part = PART(mtd);
205         if ((len + ofs) > mtd->size)
206                 return -EINVAL;
207         return part->master->lock(part->master, ofs + part->offset, len);
208 }
209
210 static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
211 {
212         struct mtd_part *part = PART(mtd);
213         if ((len + ofs) > mtd->size)
214                 return -EINVAL;
215         return part->master->unlock(part->master, ofs + part->offset, len);
216 }
217
218 static void part_sync(struct mtd_info *mtd)
219 {
220         struct mtd_part *part = PART(mtd);
221         part->master->sync(part->master);
222 }
223
224 static int part_suspend(struct mtd_info *mtd)
225 {
226         struct mtd_part *part = PART(mtd);
227         return part->master->suspend(part->master);
228 }
229
230 static void part_resume(struct mtd_info *mtd)
231 {
232         struct mtd_part *part = PART(mtd);
233         part->master->resume(part->master);
234 }
235
236 static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
237 {
238         struct mtd_part *part = PART(mtd);
239         if (ofs >= mtd->size)
240                 return -EINVAL;
241         ofs += part->offset;
242         return part->master->block_isbad(part->master, ofs);
243 }
244
245 static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
246 {
247         struct mtd_part *part = PART(mtd);
248         if (!(mtd->flags & MTD_WRITEABLE))
249                 return -EROFS;
250         if (ofs >= mtd->size)
251                 return -EINVAL;
252         ofs += part->offset;
253         return part->master->block_markbad(part->master, ofs);
254 }
255
256 /*
257  * This function unregisters and destroy all slave MTD objects which are
258  * attached to the given master MTD object.
259  */
260
261 int del_mtd_partitions(struct mtd_info *master)
262 {
263         struct list_head *node;
264         struct mtd_part *slave;
265
266         for (node = mtd_partitions.next;
267              node != &mtd_partitions;
268              node = node->next) {
269                 slave = list_entry(node, struct mtd_part, list);
270                 if (slave->master == master) {
271                         struct list_head *prev = node->prev;
272                         __list_del(prev, node->next);
273                         if(slave->registered)
274                                 del_mtd_device(&slave->mtd);
275                         kfree(slave);
276                         node = prev;
277                 }
278         }
279
280         return 0;
281 }
282
283 /*
284  * This function, given a master MTD object and a partition table, creates
285  * and registers slave MTD objects which are bound to the master according to
286  * the partition definitions.
287  * (Q: should we register the master MTD object as well?)
288  */
289
290 int add_mtd_partitions(struct mtd_info *master,
291                        const struct mtd_partition *parts,
292                        int nbparts)
293 {
294         struct mtd_part *slave;
295         u_int32_t cur_offset = 0;
296         int i;
297
298         printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
299
300         for (i = 0; i < nbparts; i++) {
301
302                 /* allocate the partition structure */
303                 slave = kmalloc (sizeof(*slave), GFP_KERNEL);
304                 if (!slave) {
305                         printk ("memory allocation error while creating partitions for \"%s\"\n",
306                                 master->name);
307                         del_mtd_partitions(master);
308                         return -ENOMEM;
309                 }
310                 memset(slave, 0, sizeof(*slave));
311                 list_add(&slave->list, &mtd_partitions);
312
313                 /* set up the MTD object for this partition */
314                 slave->mtd.type = master->type;
315                 slave->mtd.flags = master->flags & ~parts[i].mask_flags;
316                 slave->mtd.size = parts[i].size;
317                 slave->mtd.writesize = master->writesize;
318                 slave->mtd.oobsize = master->oobsize;
319                 slave->mtd.ecctype = master->ecctype;
320                 slave->mtd.eccsize = master->eccsize;
321
322                 slave->mtd.name = parts[i].name;
323                 slave->mtd.bank_size = master->bank_size;
324                 slave->mtd.owner = master->owner;
325
326                 slave->mtd.read = part_read;
327                 slave->mtd.write = part_write;
328
329                 if(master->point && master->unpoint){
330                         slave->mtd.point = part_point;
331                         slave->mtd.unpoint = part_unpoint;
332                 }
333
334                 if (master->read_oob)
335                         slave->mtd.read_oob = part_read_oob;
336                 if (master->write_oob)
337                         slave->mtd.write_oob = part_write_oob;
338                 if(master->read_user_prot_reg)
339                         slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
340                 if(master->read_fact_prot_reg)
341                         slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
342                 if(master->write_user_prot_reg)
343                         slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
344                 if(master->lock_user_prot_reg)
345                         slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
346                 if(master->get_user_prot_info)
347                         slave->mtd.get_user_prot_info = part_get_user_prot_info;
348                 if(master->get_fact_prot_info)
349                         slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
350                 if (master->sync)
351                         slave->mtd.sync = part_sync;
352                 if (!i && master->suspend && master->resume) {
353                                 slave->mtd.suspend = part_suspend;
354                                 slave->mtd.resume = part_resume;
355                 }
356                 if (master->writev)
357                         slave->mtd.writev = part_writev;
358                 if (master->lock)
359                         slave->mtd.lock = part_lock;
360                 if (master->unlock)
361                         slave->mtd.unlock = part_unlock;
362                 if (master->block_isbad)
363                         slave->mtd.block_isbad = part_block_isbad;
364                 if (master->block_markbad)
365                         slave->mtd.block_markbad = part_block_markbad;
366                 slave->mtd.erase = part_erase;
367                 slave->master = master;
368                 slave->offset = parts[i].offset;
369                 slave->index = i;
370
371                 if (slave->offset == MTDPART_OFS_APPEND)
372                         slave->offset = cur_offset;
373                 if (slave->offset == MTDPART_OFS_NXTBLK) {
374                         slave->offset = cur_offset;
375                         if ((cur_offset % master->erasesize) != 0) {
376                                 /* Round up to next erasesize */
377                                 slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize;
378                                 printk(KERN_NOTICE "Moving partition %d: "
379                                        "0x%08x -> 0x%08x\n", i,
380                                        cur_offset, slave->offset);
381                         }
382                 }
383                 if (slave->mtd.size == MTDPART_SIZ_FULL)
384                         slave->mtd.size = master->size - slave->offset;
385                 cur_offset = slave->offset + slave->mtd.size;
386
387                 printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
388                         slave->offset + slave->mtd.size, slave->mtd.name);
389
390                 /* let's do some sanity checks */
391                 if (slave->offset >= master->size) {
392                                 /* let's register it anyway to preserve ordering */
393                         slave->offset = 0;
394                         slave->mtd.size = 0;
395                         printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
396                                 parts[i].name);
397                 }
398                 if (slave->offset + slave->mtd.size > master->size) {
399                         slave->mtd.size = master->size - slave->offset;
400                         printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
401                                 parts[i].name, master->name, slave->mtd.size);
402                 }
403                 if (master->numeraseregions>1) {
404                         /* Deal with variable erase size stuff */
405                         int i;
406                         struct mtd_erase_region_info *regions = master->eraseregions;
407
408                         /* Find the first erase regions which is part of this partition. */
409                         for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
410                                 ;
411
412                         for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
413                                 if (slave->mtd.erasesize < regions[i].erasesize) {
414                                         slave->mtd.erasesize = regions[i].erasesize;
415                                 }
416                         }
417                 } else {
418                         /* Single erase size */
419                         slave->mtd.erasesize = master->erasesize;
420                 }
421
422                 if ((slave->mtd.flags & MTD_WRITEABLE) &&
423                     (slave->offset % slave->mtd.erasesize)) {
424                         /* Doesn't start on a boundary of major erase size */
425                         /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
426                         slave->mtd.flags &= ~MTD_WRITEABLE;
427                         printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
428                                 parts[i].name);
429                 }
430                 if ((slave->mtd.flags & MTD_WRITEABLE) &&
431                     (slave->mtd.size % slave->mtd.erasesize)) {
432                         slave->mtd.flags &= ~MTD_WRITEABLE;
433                         printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
434                                 parts[i].name);
435                 }
436
437                 slave->mtd.ecclayout = master->ecclayout;
438
439                 if(parts[i].mtdp)
440                 {       /* store the object pointer (caller may or may not register it */
441                         *parts[i].mtdp = &slave->mtd;
442                         slave->registered = 0;
443                 }
444                 else
445                 {
446                         /* register our partition */
447                         add_mtd_device(&slave->mtd);
448                         slave->registered = 1;
449                 }
450         }
451
452         return 0;
453 }
454
455 EXPORT_SYMBOL(add_mtd_partitions);
456 EXPORT_SYMBOL(del_mtd_partitions);
457
458 static DEFINE_SPINLOCK(part_parser_lock);
459 static LIST_HEAD(part_parsers);
460
461 static struct mtd_part_parser *get_partition_parser(const char *name)
462 {
463         struct list_head *this;
464         void *ret = NULL;
465         spin_lock(&part_parser_lock);
466
467         list_for_each(this, &part_parsers) {
468                 struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list);
469
470                 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
471                         ret = p;
472                         break;
473                 }
474         }
475         spin_unlock(&part_parser_lock);
476
477         return ret;
478 }
479
480 int register_mtd_parser(struct mtd_part_parser *p)
481 {
482         spin_lock(&part_parser_lock);
483         list_add(&p->list, &part_parsers);
484         spin_unlock(&part_parser_lock);
485
486         return 0;
487 }
488
489 int deregister_mtd_parser(struct mtd_part_parser *p)
490 {
491         spin_lock(&part_parser_lock);
492         list_del(&p->list);
493         spin_unlock(&part_parser_lock);
494         return 0;
495 }
496
497 int parse_mtd_partitions(struct mtd_info *master, const char **types,
498                          struct mtd_partition **pparts, unsigned long origin)
499 {
500         struct mtd_part_parser *parser;
501         int ret = 0;
502
503         for ( ; ret <= 0 && *types; types++) {
504                 parser = get_partition_parser(*types);
505 #ifdef CONFIG_KMOD
506                 if (!parser && !request_module("%s", *types))
507                                 parser = get_partition_parser(*types);
508 #endif
509                 if (!parser) {
510                         printk(KERN_NOTICE "%s partition parsing not available\n",
511                                *types);
512                         continue;
513                 }
514                 ret = (*parser->parse_fn)(master, pparts, origin);
515                 if (ret > 0) {
516                         printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
517                                ret, parser->name, master->name);
518                 }
519                 put_partition_parser(parser);
520         }
521         return ret;
522 }
523
524 EXPORT_SYMBOL_GPL(parse_mtd_partitions);
525 EXPORT_SYMBOL_GPL(register_mtd_parser);
526 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
527
528 MODULE_LICENSE("GPL");
529 MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>");
530 MODULE_DESCRIPTION("Generic support for partitioning of MTD devices");
531