Merge branch 'ec-cleanup' into release
[pandora-kernel.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/core.h>
26 #include <linux/mmc/host.h>
27 #include <linux/mmc/mmc.h>
28 #include <linux/mmc/sdio.h>
29 #include <linux/mmc/sh_mmcif.h>
30 #include <linux/pagemap.h>
31 #include <linux/platform_device.h>
32
33 #define DRIVER_NAME     "sh_mmcif"
34 #define DRIVER_VERSION  "2010-04-28"
35
36 /* CE_CMD_SET */
37 #define CMD_MASK                0x3f000000
38 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
39 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
40 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
41 #define CMD_SET_RBSY            (1 << 21) /* R1b */
42 #define CMD_SET_CCSEN           (1 << 20)
43 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
44 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
45 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
46 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
47 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
48 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
49 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
50 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
51 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
52 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
53 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
54 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
55 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
56 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
57 #define CMD_SET_CCSH            (1 << 5)
58 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
59 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
60 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
61
62 /* CE_CMD_CTRL */
63 #define CMD_CTRL_BREAK          (1 << 0)
64
65 /* CE_BLOCK_SET */
66 #define BLOCK_SIZE_MASK         0x0000ffff
67
68 /* CE_INT */
69 #define INT_CCSDE               (1 << 29)
70 #define INT_CMD12DRE            (1 << 26)
71 #define INT_CMD12RBE            (1 << 25)
72 #define INT_CMD12CRE            (1 << 24)
73 #define INT_DTRANE              (1 << 23)
74 #define INT_BUFRE               (1 << 22)
75 #define INT_BUFWEN              (1 << 21)
76 #define INT_BUFREN              (1 << 20)
77 #define INT_CCSRCV              (1 << 19)
78 #define INT_RBSYE               (1 << 17)
79 #define INT_CRSPE               (1 << 16)
80 #define INT_CMDVIO              (1 << 15)
81 #define INT_BUFVIO              (1 << 14)
82 #define INT_WDATERR             (1 << 11)
83 #define INT_RDATERR             (1 << 10)
84 #define INT_RIDXERR             (1 << 9)
85 #define INT_RSPERR              (1 << 8)
86 #define INT_CCSTO               (1 << 5)
87 #define INT_CRCSTO              (1 << 4)
88 #define INT_WDATTO              (1 << 3)
89 #define INT_RDATTO              (1 << 2)
90 #define INT_RBSYTO              (1 << 1)
91 #define INT_RSPTO               (1 << 0)
92 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
93                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
94                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
95                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
96
97 /* CE_INT_MASK */
98 #define MASK_ALL                0x00000000
99 #define MASK_MCCSDE             (1 << 29)
100 #define MASK_MCMD12DRE          (1 << 26)
101 #define MASK_MCMD12RBE          (1 << 25)
102 #define MASK_MCMD12CRE          (1 << 24)
103 #define MASK_MDTRANE            (1 << 23)
104 #define MASK_MBUFRE             (1 << 22)
105 #define MASK_MBUFWEN            (1 << 21)
106 #define MASK_MBUFREN            (1 << 20)
107 #define MASK_MCCSRCV            (1 << 19)
108 #define MASK_MRBSYE             (1 << 17)
109 #define MASK_MCRSPE             (1 << 16)
110 #define MASK_MCMDVIO            (1 << 15)
111 #define MASK_MBUFVIO            (1 << 14)
112 #define MASK_MWDATERR           (1 << 11)
113 #define MASK_MRDATERR           (1 << 10)
114 #define MASK_MRIDXERR           (1 << 9)
115 #define MASK_MRSPERR            (1 << 8)
116 #define MASK_MCCSTO             (1 << 5)
117 #define MASK_MCRCSTO            (1 << 4)
118 #define MASK_MWDATTO            (1 << 3)
119 #define MASK_MRDATTO            (1 << 2)
120 #define MASK_MRBSYTO            (1 << 1)
121 #define MASK_MRSPTO             (1 << 0)
122
123 /* CE_HOST_STS1 */
124 #define STS1_CMDSEQ             (1 << 31)
125
126 /* CE_HOST_STS2 */
127 #define STS2_CRCSTE             (1 << 31)
128 #define STS2_CRC16E             (1 << 30)
129 #define STS2_AC12CRCE           (1 << 29)
130 #define STS2_RSPCRC7E           (1 << 28)
131 #define STS2_CRCSTEBE           (1 << 27)
132 #define STS2_RDATEBE            (1 << 26)
133 #define STS2_AC12REBE           (1 << 25)
134 #define STS2_RSPEBE             (1 << 24)
135 #define STS2_AC12IDXE           (1 << 23)
136 #define STS2_RSPIDXE            (1 << 22)
137 #define STS2_CCSTO              (1 << 15)
138 #define STS2_RDATTO             (1 << 14)
139 #define STS2_DATBSYTO           (1 << 13)
140 #define STS2_CRCSTTO            (1 << 12)
141 #define STS2_AC12BSYTO          (1 << 11)
142 #define STS2_RSPBSYTO           (1 << 10)
143 #define STS2_AC12RSPTO          (1 << 9)
144 #define STS2_RSPTO              (1 << 8)
145 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
146                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
147 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
148                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
149                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
150                                  STS2_AC12RSPTO | STS2_RSPTO)
151
152 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
153 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
154 #define CLKDEV_INIT             400000   /* 400 KHz */
155
156 struct sh_mmcif_host {
157         struct mmc_host *mmc;
158         struct mmc_data *data;
159         struct platform_device *pd;
160         struct clk *hclk;
161         unsigned int clk;
162         int bus_width;
163         bool sd_error;
164         long timeout;
165         void __iomem *addr;
166         struct completion intr_wait;
167
168         /* DMA support */
169         struct dma_chan         *chan_rx;
170         struct dma_chan         *chan_tx;
171         struct completion       dma_complete;
172         bool                    dma_active;
173 };
174
175 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
176                                         unsigned int reg, u32 val)
177 {
178         writel(val | readl(host->addr + reg), host->addr + reg);
179 }
180
181 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
182                                         unsigned int reg, u32 val)
183 {
184         writel(~val & readl(host->addr + reg), host->addr + reg);
185 }
186
187 static void mmcif_dma_complete(void *arg)
188 {
189         struct sh_mmcif_host *host = arg;
190         dev_dbg(&host->pd->dev, "Command completed\n");
191
192         if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
193                  dev_name(&host->pd->dev)))
194                 return;
195
196         if (host->data->flags & MMC_DATA_READ)
197                 dma_unmap_sg(host->chan_rx->device->dev,
198                              host->data->sg, host->data->sg_len,
199                              DMA_FROM_DEVICE);
200         else
201                 dma_unmap_sg(host->chan_tx->device->dev,
202                              host->data->sg, host->data->sg_len,
203                              DMA_TO_DEVICE);
204
205         complete(&host->dma_complete);
206 }
207
208 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
209 {
210         struct scatterlist *sg = host->data->sg;
211         struct dma_async_tx_descriptor *desc = NULL;
212         struct dma_chan *chan = host->chan_rx;
213         dma_cookie_t cookie = -EINVAL;
214         int ret;
215
216         ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
217                          DMA_FROM_DEVICE);
218         if (ret > 0) {
219                 host->dma_active = true;
220                 desc = chan->device->device_prep_slave_sg(chan, sg, ret,
221                         DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
222         }
223
224         if (desc) {
225                 desc->callback = mmcif_dma_complete;
226                 desc->callback_param = host;
227                 cookie = dmaengine_submit(desc);
228                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
229                 dma_async_issue_pending(chan);
230         }
231         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
232                 __func__, host->data->sg_len, ret, cookie);
233
234         if (!desc) {
235                 /* DMA failed, fall back to PIO */
236                 if (ret >= 0)
237                         ret = -EIO;
238                 host->chan_rx = NULL;
239                 host->dma_active = false;
240                 dma_release_channel(chan);
241                 /* Free the Tx channel too */
242                 chan = host->chan_tx;
243                 if (chan) {
244                         host->chan_tx = NULL;
245                         dma_release_channel(chan);
246                 }
247                 dev_warn(&host->pd->dev,
248                          "DMA failed: %d, falling back to PIO\n", ret);
249                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
250         }
251
252         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
253                 desc, cookie, host->data->sg_len);
254 }
255
256 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
257 {
258         struct scatterlist *sg = host->data->sg;
259         struct dma_async_tx_descriptor *desc = NULL;
260         struct dma_chan *chan = host->chan_tx;
261         dma_cookie_t cookie = -EINVAL;
262         int ret;
263
264         ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
265                          DMA_TO_DEVICE);
266         if (ret > 0) {
267                 host->dma_active = true;
268                 desc = chan->device->device_prep_slave_sg(chan, sg, ret,
269                         DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
270         }
271
272         if (desc) {
273                 desc->callback = mmcif_dma_complete;
274                 desc->callback_param = host;
275                 cookie = dmaengine_submit(desc);
276                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
277                 dma_async_issue_pending(chan);
278         }
279         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
280                 __func__, host->data->sg_len, ret, cookie);
281
282         if (!desc) {
283                 /* DMA failed, fall back to PIO */
284                 if (ret >= 0)
285                         ret = -EIO;
286                 host->chan_tx = NULL;
287                 host->dma_active = false;
288                 dma_release_channel(chan);
289                 /* Free the Rx channel too */
290                 chan = host->chan_rx;
291                 if (chan) {
292                         host->chan_rx = NULL;
293                         dma_release_channel(chan);
294                 }
295                 dev_warn(&host->pd->dev,
296                          "DMA failed: %d, falling back to PIO\n", ret);
297                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
298         }
299
300         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
301                 desc, cookie);
302 }
303
304 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
305 {
306         dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
307         chan->private = arg;
308         return true;
309 }
310
311 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
312                                  struct sh_mmcif_plat_data *pdata)
313 {
314         host->dma_active = false;
315
316         /* We can only either use DMA for both Tx and Rx or not use it at all */
317         if (pdata->dma) {
318                 dma_cap_mask_t mask;
319
320                 dma_cap_zero(mask);
321                 dma_cap_set(DMA_SLAVE, mask);
322
323                 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter,
324                                                     &pdata->dma->chan_priv_tx);
325                 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
326                         host->chan_tx);
327
328                 if (!host->chan_tx)
329                         return;
330
331                 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter,
332                                                     &pdata->dma->chan_priv_rx);
333                 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
334                         host->chan_rx);
335
336                 if (!host->chan_rx) {
337                         dma_release_channel(host->chan_tx);
338                         host->chan_tx = NULL;
339                         return;
340                 }
341
342                 init_completion(&host->dma_complete);
343         }
344 }
345
346 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
347 {
348         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
349         /* Descriptors are freed automatically */
350         if (host->chan_tx) {
351                 struct dma_chan *chan = host->chan_tx;
352                 host->chan_tx = NULL;
353                 dma_release_channel(chan);
354         }
355         if (host->chan_rx) {
356                 struct dma_chan *chan = host->chan_rx;
357                 host->chan_rx = NULL;
358                 dma_release_channel(chan);
359         }
360
361         host->dma_active = false;
362 }
363
364 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
365 {
366         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
367
368         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
369         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
370
371         if (!clk)
372                 return;
373         if (p->sup_pclk && clk == host->clk)
374                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
375         else
376                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
377                         (ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
378
379         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
380 }
381
382 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
383 {
384         u32 tmp;
385
386         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
387
388         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
389         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
390         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
391                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
392         /* byte swap on */
393         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
394 }
395
396 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
397 {
398         u32 state1, state2;
399         int ret, timeout = 10000000;
400
401         host->sd_error = false;
402
403         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
404         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
405         dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
406         dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
407
408         if (state1 & STS1_CMDSEQ) {
409                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
410                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
411                 while (1) {
412                         timeout--;
413                         if (timeout < 0) {
414                                 dev_err(&host->pd->dev,
415                                         "Forceed end of command sequence timeout err\n");
416                                 return -EIO;
417                         }
418                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
419                                                                 & STS1_CMDSEQ))
420                                 break;
421                         mdelay(1);
422                 }
423                 sh_mmcif_sync_reset(host);
424                 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
425                 return -EIO;
426         }
427
428         if (state2 & STS2_CRC_ERR) {
429                 dev_dbg(&host->pd->dev, ": Happened CRC error\n");
430                 ret = -EIO;
431         } else if (state2 & STS2_TIMEOUT_ERR) {
432                 dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
433                 ret = -ETIMEDOUT;
434         } else {
435                 dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
436                 ret = -EIO;
437         }
438         return ret;
439 }
440
441 static int sh_mmcif_single_read(struct sh_mmcif_host *host,
442                                         struct mmc_request *mrq)
443 {
444         struct mmc_data *data = mrq->data;
445         long time;
446         u32 blocksize, i, *p = sg_virt(data->sg);
447
448         /* buf read enable */
449         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
450         time = wait_for_completion_interruptible_timeout(&host->intr_wait,
451                         host->timeout);
452         if (time <= 0 || host->sd_error)
453                 return sh_mmcif_error_manage(host);
454
455         blocksize = (BLOCK_SIZE_MASK &
456                         sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
457         for (i = 0; i < blocksize / 4; i++)
458                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
459
460         /* buffer read end */
461         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
462         time = wait_for_completion_interruptible_timeout(&host->intr_wait,
463                         host->timeout);
464         if (time <= 0 || host->sd_error)
465                 return sh_mmcif_error_manage(host);
466
467         return 0;
468 }
469
470 static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
471                                         struct mmc_request *mrq)
472 {
473         struct mmc_data *data = mrq->data;
474         long time;
475         u32 blocksize, i, j, sec, *p;
476
477         blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
478                                                      MMCIF_CE_BLOCK_SET);
479         for (j = 0; j < data->sg_len; j++) {
480                 p = sg_virt(data->sg);
481                 for (sec = 0; sec < data->sg->length / blocksize; sec++) {
482                         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
483                         /* buf read enable */
484                         time = wait_for_completion_interruptible_timeout(&host->intr_wait,
485                                 host->timeout);
486
487                         if (time <= 0 || host->sd_error)
488                                 return sh_mmcif_error_manage(host);
489
490                         for (i = 0; i < blocksize / 4; i++)
491                                 *p++ = sh_mmcif_readl(host->addr,
492                                                       MMCIF_CE_DATA);
493                 }
494                 if (j < data->sg_len - 1)
495                         data->sg++;
496         }
497         return 0;
498 }
499
500 static int sh_mmcif_single_write(struct sh_mmcif_host *host,
501                                         struct mmc_request *mrq)
502 {
503         struct mmc_data *data = mrq->data;
504         long time;
505         u32 blocksize, i, *p = sg_virt(data->sg);
506
507         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
508
509         /* buf write enable */
510         time = wait_for_completion_interruptible_timeout(&host->intr_wait,
511                         host->timeout);
512         if (time <= 0 || host->sd_error)
513                 return sh_mmcif_error_manage(host);
514
515         blocksize = (BLOCK_SIZE_MASK &
516                         sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
517         for (i = 0; i < blocksize / 4; i++)
518                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
519
520         /* buffer write end */
521         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
522
523         time = wait_for_completion_interruptible_timeout(&host->intr_wait,
524                         host->timeout);
525         if (time <= 0 || host->sd_error)
526                 return sh_mmcif_error_manage(host);
527
528         return 0;
529 }
530
531 static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
532                                                 struct mmc_request *mrq)
533 {
534         struct mmc_data *data = mrq->data;
535         long time;
536         u32 i, sec, j, blocksize, *p;
537
538         blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
539                                                      MMCIF_CE_BLOCK_SET);
540
541         for (j = 0; j < data->sg_len; j++) {
542                 p = sg_virt(data->sg);
543                 for (sec = 0; sec < data->sg->length / blocksize; sec++) {
544                         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
545                         /* buf write enable*/
546                         time = wait_for_completion_interruptible_timeout(&host->intr_wait,
547                                 host->timeout);
548
549                         if (time <= 0 || host->sd_error)
550                                 return sh_mmcif_error_manage(host);
551
552                         for (i = 0; i < blocksize / 4; i++)
553                                 sh_mmcif_writel(host->addr,
554                                                 MMCIF_CE_DATA, *p++);
555                 }
556                 if (j < data->sg_len - 1)
557                         data->sg++;
558         }
559         return 0;
560 }
561
562 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
563                                                 struct mmc_command *cmd)
564 {
565         if (cmd->flags & MMC_RSP_136) {
566                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
567                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
568                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
569                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
570         } else
571                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
572 }
573
574 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
575                                                 struct mmc_command *cmd)
576 {
577         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
578 }
579
580 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
581                 struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
582 {
583         u32 tmp = 0;
584
585         /* Response Type check */
586         switch (mmc_resp_type(cmd)) {
587         case MMC_RSP_NONE:
588                 tmp |= CMD_SET_RTYP_NO;
589                 break;
590         case MMC_RSP_R1:
591         case MMC_RSP_R1B:
592         case MMC_RSP_R3:
593                 tmp |= CMD_SET_RTYP_6B;
594                 break;
595         case MMC_RSP_R2:
596                 tmp |= CMD_SET_RTYP_17B;
597                 break;
598         default:
599                 dev_err(&host->pd->dev, "Unsupported response type.\n");
600                 break;
601         }
602         switch (opc) {
603         /* RBSY */
604         case MMC_SWITCH:
605         case MMC_STOP_TRANSMISSION:
606         case MMC_SET_WRITE_PROT:
607         case MMC_CLR_WRITE_PROT:
608         case MMC_ERASE:
609         case MMC_GEN_CMD:
610                 tmp |= CMD_SET_RBSY;
611                 break;
612         }
613         /* WDAT / DATW */
614         if (host->data) {
615                 tmp |= CMD_SET_WDAT;
616                 switch (host->bus_width) {
617                 case MMC_BUS_WIDTH_1:
618                         tmp |= CMD_SET_DATW_1;
619                         break;
620                 case MMC_BUS_WIDTH_4:
621                         tmp |= CMD_SET_DATW_4;
622                         break;
623                 case MMC_BUS_WIDTH_8:
624                         tmp |= CMD_SET_DATW_8;
625                         break;
626                 default:
627                         dev_err(&host->pd->dev, "Unsupported bus width.\n");
628                         break;
629                 }
630         }
631         /* DWEN */
632         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
633                 tmp |= CMD_SET_DWEN;
634         /* CMLTE/CMD12EN */
635         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
636                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
637                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
638                                         mrq->data->blocks << 16);
639         }
640         /* RIDXC[1:0] check bits */
641         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
642             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
643                 tmp |= CMD_SET_RIDXC_BITS;
644         /* RCRC7C[1:0] check bits */
645         if (opc == MMC_SEND_OP_COND)
646                 tmp |= CMD_SET_CRC7C_BITS;
647         /* RCRC7C[1:0] internal CRC7 */
648         if (opc == MMC_ALL_SEND_CID ||
649                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
650                 tmp |= CMD_SET_CRC7C_INTERNAL;
651
652         return opc = ((opc << 24) | tmp);
653 }
654
655 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
656                                 struct mmc_request *mrq, u32 opc)
657 {
658         int ret;
659
660         switch (opc) {
661         case MMC_READ_MULTIPLE_BLOCK:
662                 ret = sh_mmcif_multi_read(host, mrq);
663                 break;
664         case MMC_WRITE_MULTIPLE_BLOCK:
665                 ret = sh_mmcif_multi_write(host, mrq);
666                 break;
667         case MMC_WRITE_BLOCK:
668                 ret = sh_mmcif_single_write(host, mrq);
669                 break;
670         case MMC_READ_SINGLE_BLOCK:
671         case MMC_SEND_EXT_CSD:
672                 ret = sh_mmcif_single_read(host, mrq);
673                 break;
674         default:
675                 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
676                 ret = -EINVAL;
677                 break;
678         }
679         return ret;
680 }
681
682 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
683                         struct mmc_request *mrq, struct mmc_command *cmd)
684 {
685         long time;
686         int ret = 0, mask = 0;
687         u32 opc = cmd->opcode;
688
689         switch (opc) {
690         /* respons busy check */
691         case MMC_SWITCH:
692         case MMC_STOP_TRANSMISSION:
693         case MMC_SET_WRITE_PROT:
694         case MMC_CLR_WRITE_PROT:
695         case MMC_ERASE:
696         case MMC_GEN_CMD:
697                 mask = MASK_MRBSYE;
698                 break;
699         default:
700                 mask = MASK_MCRSPE;
701                 break;
702         }
703         mask |= MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
704                 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
705                 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
706                 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
707
708         if (host->data) {
709                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
710                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
711                                 mrq->data->blksz);
712         }
713         opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
714
715         sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
716         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
717         /* set arg */
718         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
719         /* set cmd */
720         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
721
722         time = wait_for_completion_interruptible_timeout(&host->intr_wait,
723                 host->timeout);
724         if (time <= 0) {
725                 cmd->error = sh_mmcif_error_manage(host);
726                 return;
727         }
728         if (host->sd_error) {
729                 switch (cmd->opcode) {
730                 case MMC_ALL_SEND_CID:
731                 case MMC_SELECT_CARD:
732                 case MMC_APP_CMD:
733                         cmd->error = -ETIMEDOUT;
734                         break;
735                 default:
736                         dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
737                                         cmd->opcode);
738                         cmd->error = sh_mmcif_error_manage(host);
739                         break;
740                 }
741                 host->sd_error = false;
742                 return;
743         }
744         if (!(cmd->flags & MMC_RSP_PRESENT)) {
745                 cmd->error = 0;
746                 return;
747         }
748         sh_mmcif_get_response(host, cmd);
749         if (host->data) {
750                 if (!host->dma_active) {
751                         ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
752                 } else {
753                         long time =
754                                 wait_for_completion_interruptible_timeout(&host->dma_complete,
755                                                                           host->timeout);
756                         if (!time)
757                                 ret = -ETIMEDOUT;
758                         else if (time < 0)
759                                 ret = time;
760                         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
761                                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
762                         host->dma_active = false;
763                 }
764                 if (ret < 0)
765                         mrq->data->bytes_xfered = 0;
766                 else
767                         mrq->data->bytes_xfered =
768                                 mrq->data->blocks * mrq->data->blksz;
769         }
770         cmd->error = ret;
771 }
772
773 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
774                 struct mmc_request *mrq, struct mmc_command *cmd)
775 {
776         long time;
777
778         if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
779                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
780         else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
781                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
782         else {
783                 dev_err(&host->pd->dev, "unsupported stop cmd\n");
784                 cmd->error = sh_mmcif_error_manage(host);
785                 return;
786         }
787
788         time = wait_for_completion_interruptible_timeout(&host->intr_wait,
789                         host->timeout);
790         if (time <= 0 || host->sd_error) {
791                 cmd->error = sh_mmcif_error_manage(host);
792                 return;
793         }
794         sh_mmcif_get_cmd12response(host, cmd);
795         cmd->error = 0;
796 }
797
798 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
799 {
800         struct sh_mmcif_host *host = mmc_priv(mmc);
801
802         switch (mrq->cmd->opcode) {
803         /* MMCIF does not support SD/SDIO command */
804         case SD_IO_SEND_OP_COND:
805         case MMC_APP_CMD:
806                 mrq->cmd->error = -ETIMEDOUT;
807                 mmc_request_done(mmc, mrq);
808                 return;
809         case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
810                 if (!mrq->data) {
811                         /* send_if_cond cmd (not support) */
812                         mrq->cmd->error = -ETIMEDOUT;
813                         mmc_request_done(mmc, mrq);
814                         return;
815                 }
816                 break;
817         default:
818                 break;
819         }
820         host->data = mrq->data;
821         if (mrq->data) {
822                 if (mrq->data->flags & MMC_DATA_READ) {
823                         if (host->chan_rx)
824                                 sh_mmcif_start_dma_rx(host);
825                 } else {
826                         if (host->chan_tx)
827                                 sh_mmcif_start_dma_tx(host);
828                 }
829         }
830         sh_mmcif_start_cmd(host, mrq, mrq->cmd);
831         host->data = NULL;
832
833         if (mrq->cmd->error != 0) {
834                 mmc_request_done(mmc, mrq);
835                 return;
836         }
837         if (mrq->stop)
838                 sh_mmcif_stop_cmd(host, mrq, mrq->stop);
839         mmc_request_done(mmc, mrq);
840 }
841
842 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
843 {
844         struct sh_mmcif_host *host = mmc_priv(mmc);
845         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
846
847         if (ios->power_mode == MMC_POWER_UP) {
848                 if (p->set_pwr)
849                         p->set_pwr(host->pd, ios->power_mode);
850         } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
851                 /* clock stop */
852                 sh_mmcif_clock_control(host, 0);
853                 if (ios->power_mode == MMC_POWER_OFF && p->down_pwr)
854                         p->down_pwr(host->pd);
855                 return;
856         }
857
858         if (ios->clock)
859                 sh_mmcif_clock_control(host, ios->clock);
860
861         host->bus_width = ios->bus_width;
862 }
863
864 static int sh_mmcif_get_cd(struct mmc_host *mmc)
865 {
866         struct sh_mmcif_host *host = mmc_priv(mmc);
867         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
868
869         if (!p->get_cd)
870                 return -ENOSYS;
871         else
872                 return p->get_cd(host->pd);
873 }
874
875 static struct mmc_host_ops sh_mmcif_ops = {
876         .request        = sh_mmcif_request,
877         .set_ios        = sh_mmcif_set_ios,
878         .get_cd         = sh_mmcif_get_cd,
879 };
880
881 static void sh_mmcif_detect(struct mmc_host *mmc)
882 {
883         mmc_detect_change(mmc, 0);
884 }
885
886 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
887 {
888         struct sh_mmcif_host *host = dev_id;
889         u32 state;
890         int err = 0;
891
892         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
893
894         if (state & INT_RBSYE) {
895                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
896                                 ~(INT_RBSYE | INT_CRSPE));
897                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
898         } else if (state & INT_CRSPE) {
899                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
900                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
901         } else if (state & INT_BUFREN) {
902                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
903                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
904         } else if (state & INT_BUFWEN) {
905                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
906                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
907         } else if (state & INT_CMD12DRE) {
908                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
909                         ~(INT_CMD12DRE | INT_CMD12RBE |
910                           INT_CMD12CRE | INT_BUFRE));
911                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
912         } else if (state & INT_BUFRE) {
913                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
914                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
915         } else if (state & INT_DTRANE) {
916                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
917                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
918         } else if (state & INT_CMD12RBE) {
919                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
920                                 ~(INT_CMD12RBE | INT_CMD12CRE));
921                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
922         } else if (state & INT_ERR_STS) {
923                 /* err interrupts */
924                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
925                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
926                 err = 1;
927         } else {
928                 dev_dbg(&host->pd->dev, "Not support int\n");
929                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
930                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
931                 err = 1;
932         }
933         if (err) {
934                 host->sd_error = true;
935                 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
936         }
937         if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
938                 complete(&host->intr_wait);
939         else
940                 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
941
942         return IRQ_HANDLED;
943 }
944
945 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
946 {
947         int ret = 0, irq[2];
948         struct mmc_host *mmc;
949         struct sh_mmcif_host *host;
950         struct sh_mmcif_plat_data *pd;
951         struct resource *res;
952         void __iomem *reg;
953         char clk_name[8];
954
955         irq[0] = platform_get_irq(pdev, 0);
956         irq[1] = platform_get_irq(pdev, 1);
957         if (irq[0] < 0 || irq[1] < 0) {
958                 dev_err(&pdev->dev, "Get irq error\n");
959                 return -ENXIO;
960         }
961         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
962         if (!res) {
963                 dev_err(&pdev->dev, "platform_get_resource error.\n");
964                 return -ENXIO;
965         }
966         reg = ioremap(res->start, resource_size(res));
967         if (!reg) {
968                 dev_err(&pdev->dev, "ioremap error.\n");
969                 return -ENOMEM;
970         }
971         pd = pdev->dev.platform_data;
972         if (!pd) {
973                 dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
974                 ret = -ENXIO;
975                 goto clean_up;
976         }
977         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
978         if (!mmc) {
979                 ret = -ENOMEM;
980                 goto clean_up;
981         }
982         host            = mmc_priv(mmc);
983         host->mmc       = mmc;
984         host->addr      = reg;
985         host->timeout   = 1000;
986
987         snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
988         host->hclk = clk_get(&pdev->dev, clk_name);
989         if (IS_ERR(host->hclk)) {
990                 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
991                 ret = PTR_ERR(host->hclk);
992                 goto clean_up1;
993         }
994         clk_enable(host->hclk);
995         host->clk = clk_get_rate(host->hclk);
996         host->pd = pdev;
997
998         init_completion(&host->intr_wait);
999
1000         mmc->ops = &sh_mmcif_ops;
1001         mmc->f_max = host->clk;
1002         /* close to 400KHz */
1003         if (mmc->f_max < 51200000)
1004                 mmc->f_min = mmc->f_max / 128;
1005         else if (mmc->f_max < 102400000)
1006                 mmc->f_min = mmc->f_max / 256;
1007         else
1008                 mmc->f_min = mmc->f_max / 512;
1009         if (pd->ocr)
1010                 mmc->ocr_avail = pd->ocr;
1011         mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1012         if (pd->caps)
1013                 mmc->caps |= pd->caps;
1014         mmc->max_segs = 32;
1015         mmc->max_blk_size = 512;
1016         mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1017         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1018         mmc->max_seg_size = mmc->max_req_size;
1019
1020         sh_mmcif_sync_reset(host);
1021         platform_set_drvdata(pdev, host);
1022
1023         /* See if we also get DMA */
1024         sh_mmcif_request_dma(host, pd);
1025
1026         mmc_add_host(mmc);
1027
1028         ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
1029         if (ret) {
1030                 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1031                 goto clean_up2;
1032         }
1033         ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
1034         if (ret) {
1035                 free_irq(irq[0], host);
1036                 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1037                 goto clean_up2;
1038         }
1039
1040         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1041         sh_mmcif_detect(host->mmc);
1042
1043         dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1044         dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1045                 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1046         return ret;
1047
1048 clean_up2:
1049         clk_disable(host->hclk);
1050 clean_up1:
1051         mmc_free_host(mmc);
1052 clean_up:
1053         if (reg)
1054                 iounmap(reg);
1055         return ret;
1056 }
1057
1058 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1059 {
1060         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1061         int irq[2];
1062
1063         mmc_remove_host(host->mmc);
1064         sh_mmcif_release_dma(host);
1065
1066         if (host->addr)
1067                 iounmap(host->addr);
1068
1069         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1070
1071         irq[0] = platform_get_irq(pdev, 0);
1072         irq[1] = platform_get_irq(pdev, 1);
1073
1074         free_irq(irq[0], host);
1075         free_irq(irq[1], host);
1076
1077         platform_set_drvdata(pdev, NULL);
1078
1079         clk_disable(host->hclk);
1080         mmc_free_host(host->mmc);
1081
1082         return 0;
1083 }
1084
1085 static struct platform_driver sh_mmcif_driver = {
1086         .probe          = sh_mmcif_probe,
1087         .remove         = sh_mmcif_remove,
1088         .driver         = {
1089                 .name   = DRIVER_NAME,
1090         },
1091 };
1092
1093 static int __init sh_mmcif_init(void)
1094 {
1095         return platform_driver_register(&sh_mmcif_driver);
1096 }
1097
1098 static void __exit sh_mmcif_exit(void)
1099 {
1100         platform_driver_unregister(&sh_mmcif_driver);
1101 }
1102
1103 module_init(sh_mmcif_init);
1104 module_exit(sh_mmcif_exit);
1105
1106
1107 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1108 MODULE_LICENSE("GPL");
1109 MODULE_ALIAS("platform:" DRIVER_NAME);
1110 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");