Merge branches 'msm-fixes' and 'msm-video' of git://codeaurora.org/quic/kernel/dwalke...
[pandora-kernel.git] / drivers / media / video / cx88 / cx88-core.c
1 /*
2  *
3  * device driver for Conexant 2388x based TV cards
4  * driver core
5  *
6  * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
7  *
8  * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
9  *     - Multituner support
10  *     - video_ioctl2 conversion
11  *     - PAL/M fixes
12  *
13  *  This program is free software; you can redistribute it and/or modify
14  *  it under the terms of the GNU General Public License as published by
15  *  the Free Software Foundation; either version 2 of the License, or
16  *  (at your option) any later version.
17  *
18  *  This program is distributed in the hope that it will be useful,
19  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
20  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  *  GNU General Public License for more details.
22  *
23  *  You should have received a copy of the GNU General Public License
24  *  along with this program; if not, write to the Free Software
25  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/kmod.h>
34 #include <linux/sound.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/delay.h>
38 #include <linux/videodev2.h>
39 #include <linux/mutex.h>
40
41 #include "cx88.h"
42 #include <media/v4l2-common.h>
43 #include <media/v4l2-ioctl.h>
44
45 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
46 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
47 MODULE_LICENSE("GPL");
48
49 /* ------------------------------------------------------------------ */
50
51 static unsigned int core_debug;
52 module_param(core_debug,int,0644);
53 MODULE_PARM_DESC(core_debug,"enable debug messages [core]");
54
55 static unsigned int nicam;
56 module_param(nicam,int,0644);
57 MODULE_PARM_DESC(nicam,"tv audio is nicam");
58
59 static unsigned int nocomb;
60 module_param(nocomb,int,0644);
61 MODULE_PARM_DESC(nocomb,"disable comb filter");
62
63 #define dprintk(level,fmt, arg...)      if (core_debug >= level)        \
64         printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
65
66 static unsigned int cx88_devcount;
67 static LIST_HEAD(cx88_devlist);
68 static DEFINE_MUTEX(devlist);
69
70 #define NO_SYNC_LINE (-1U)
71
72 /* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
73          generated _after_ lpi lines are transferred. */
74 static __le32* cx88_risc_field(__le32 *rp, struct scatterlist *sglist,
75                             unsigned int offset, u32 sync_line,
76                             unsigned int bpl, unsigned int padding,
77                             unsigned int lines, unsigned int lpi)
78 {
79         struct scatterlist *sg;
80         unsigned int line,todo,sol;
81
82         /* sync instruction */
83         if (sync_line != NO_SYNC_LINE)
84                 *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
85
86         /* scan lines */
87         sg = sglist;
88         for (line = 0; line < lines; line++) {
89                 while (offset && offset >= sg_dma_len(sg)) {
90                         offset -= sg_dma_len(sg);
91                         sg++;
92                 }
93                 if (lpi && line>0 && !(line % lpi))
94                         sol = RISC_SOL | RISC_IRQ1 | RISC_CNT_INC;
95                 else
96                         sol = RISC_SOL;
97                 if (bpl <= sg_dma_len(sg)-offset) {
98                         /* fits into current chunk */
99                         *(rp++)=cpu_to_le32(RISC_WRITE|sol|RISC_EOL|bpl);
100                         *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
101                         offset+=bpl;
102                 } else {
103                         /* scanline needs to be split */
104                         todo = bpl;
105                         *(rp++)=cpu_to_le32(RISC_WRITE|sol|
106                                             (sg_dma_len(sg)-offset));
107                         *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
108                         todo -= (sg_dma_len(sg)-offset);
109                         offset = 0;
110                         sg++;
111                         while (todo > sg_dma_len(sg)) {
112                                 *(rp++)=cpu_to_le32(RISC_WRITE|
113                                                     sg_dma_len(sg));
114                                 *(rp++)=cpu_to_le32(sg_dma_address(sg));
115                                 todo -= sg_dma_len(sg);
116                                 sg++;
117                         }
118                         *(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
119                         *(rp++)=cpu_to_le32(sg_dma_address(sg));
120                         offset += todo;
121                 }
122                 offset += padding;
123         }
124
125         return rp;
126 }
127
128 int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
129                      struct scatterlist *sglist,
130                      unsigned int top_offset, unsigned int bottom_offset,
131                      unsigned int bpl, unsigned int padding, unsigned int lines)
132 {
133         u32 instructions,fields;
134         __le32 *rp;
135         int rc;
136
137         fields = 0;
138         if (UNSET != top_offset)
139                 fields++;
140         if (UNSET != bottom_offset)
141                 fields++;
142
143         /* estimate risc mem: worst case is one write per page border +
144            one write per scan line + syncs + jump (all 2 dwords).  Padding
145            can cause next bpl to start close to a page border.  First DMA
146            region may be smaller than PAGE_SIZE */
147         instructions  = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
148         instructions += 2;
149         if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
150                 return rc;
151
152         /* write risc instructions */
153         rp = risc->cpu;
154         if (UNSET != top_offset)
155                 rp = cx88_risc_field(rp, sglist, top_offset, 0,
156                                      bpl, padding, lines, 0);
157         if (UNSET != bottom_offset)
158                 rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
159                                      bpl, padding, lines, 0);
160
161         /* save pointer to jmp instruction address */
162         risc->jmp = rp;
163         BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
164         return 0;
165 }
166
167 int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
168                          struct scatterlist *sglist, unsigned int bpl,
169                          unsigned int lines, unsigned int lpi)
170 {
171         u32 instructions;
172         __le32 *rp;
173         int rc;
174
175         /* estimate risc mem: worst case is one write per page border +
176            one write per scan line + syncs + jump (all 2 dwords).  Here
177            there is no padding and no sync.  First DMA region may be smaller
178            than PAGE_SIZE */
179         instructions  = 1 + (bpl * lines) / PAGE_SIZE + lines;
180         instructions += 1;
181         if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
182                 return rc;
183
184         /* write risc instructions */
185         rp = risc->cpu;
186         rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines, lpi);
187
188         /* save pointer to jmp instruction address */
189         risc->jmp = rp;
190         BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
191         return 0;
192 }
193
194 int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
195                       u32 reg, u32 mask, u32 value)
196 {
197         __le32 *rp;
198         int rc;
199
200         if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
201                 return rc;
202
203         /* write risc instructions */
204         rp = risc->cpu;
205         *(rp++) = cpu_to_le32(RISC_WRITECR  | RISC_IRQ2 | RISC_IMM);
206         *(rp++) = cpu_to_le32(reg);
207         *(rp++) = cpu_to_le32(value);
208         *(rp++) = cpu_to_le32(mask);
209         *(rp++) = cpu_to_le32(RISC_JUMP);
210         *(rp++) = cpu_to_le32(risc->dma);
211         return 0;
212 }
213
214 void
215 cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
216 {
217         struct videobuf_dmabuf *dma=videobuf_to_dma(&buf->vb);
218
219         BUG_ON(in_interrupt());
220         videobuf_waiton(q, &buf->vb, 0, 0);
221         videobuf_dma_unmap(q->dev, dma);
222         videobuf_dma_free(dma);
223         btcx_riscmem_free(to_pci_dev(q->dev), &buf->risc);
224         buf->vb.state = VIDEOBUF_NEEDS_INIT;
225 }
226
227 /* ------------------------------------------------------------------ */
228 /* our SRAM memory layout                                             */
229
230 /* we are going to put all thr risc programs into host memory, so we
231  * can use the whole SDRAM for the DMA fifos.  To simplify things, we
232  * use a static memory layout.  That surely will waste memory in case
233  * we don't use all DMA channels at the same time (which will be the
234  * case most of the time).  But that still gives us enough FIFO space
235  * to be able to deal with insane long pci latencies ...
236  *
237  * FIFO space allocations:
238  *    channel  21    (y video)  - 10.0k
239  *    channel  22    (u video)  -  2.0k
240  *    channel  23    (v video)  -  2.0k
241  *    channel  24    (vbi)      -  4.0k
242  *    channels 25+26 (audio)    -  4.0k
243  *    channel  28    (mpeg)     -  4.0k
244  *    channel  27    (audio rds)-  3.0k
245  *    TOTAL                     = 29.0k
246  *
247  * Every channel has 160 bytes control data (64 bytes instruction
248  * queue and 6 CDT entries), which is close to 2k total.
249  *
250  * Address layout:
251  *    0x0000 - 0x03ff    CMDs / reserved
252  *    0x0400 - 0x0bff    instruction queues + CDs
253  *    0x0c00 -           FIFOs
254  */
255
256 const struct sram_channel const cx88_sram_channels[] = {
257         [SRAM_CH21] = {
258                 .name       = "video y / packed",
259                 .cmds_start = 0x180040,
260                 .ctrl_start = 0x180400,
261                 .cdt        = 0x180400 + 64,
262                 .fifo_start = 0x180c00,
263                 .fifo_size  = 0x002800,
264                 .ptr1_reg   = MO_DMA21_PTR1,
265                 .ptr2_reg   = MO_DMA21_PTR2,
266                 .cnt1_reg   = MO_DMA21_CNT1,
267                 .cnt2_reg   = MO_DMA21_CNT2,
268         },
269         [SRAM_CH22] = {
270                 .name       = "video u",
271                 .cmds_start = 0x180080,
272                 .ctrl_start = 0x1804a0,
273                 .cdt        = 0x1804a0 + 64,
274                 .fifo_start = 0x183400,
275                 .fifo_size  = 0x000800,
276                 .ptr1_reg   = MO_DMA22_PTR1,
277                 .ptr2_reg   = MO_DMA22_PTR2,
278                 .cnt1_reg   = MO_DMA22_CNT1,
279                 .cnt2_reg   = MO_DMA22_CNT2,
280         },
281         [SRAM_CH23] = {
282                 .name       = "video v",
283                 .cmds_start = 0x1800c0,
284                 .ctrl_start = 0x180540,
285                 .cdt        = 0x180540 + 64,
286                 .fifo_start = 0x183c00,
287                 .fifo_size  = 0x000800,
288                 .ptr1_reg   = MO_DMA23_PTR1,
289                 .ptr2_reg   = MO_DMA23_PTR2,
290                 .cnt1_reg   = MO_DMA23_CNT1,
291                 .cnt2_reg   = MO_DMA23_CNT2,
292         },
293         [SRAM_CH24] = {
294                 .name       = "vbi",
295                 .cmds_start = 0x180100,
296                 .ctrl_start = 0x1805e0,
297                 .cdt        = 0x1805e0 + 64,
298                 .fifo_start = 0x184400,
299                 .fifo_size  = 0x001000,
300                 .ptr1_reg   = MO_DMA24_PTR1,
301                 .ptr2_reg   = MO_DMA24_PTR2,
302                 .cnt1_reg   = MO_DMA24_CNT1,
303                 .cnt2_reg   = MO_DMA24_CNT2,
304         },
305         [SRAM_CH25] = {
306                 .name       = "audio from",
307                 .cmds_start = 0x180140,
308                 .ctrl_start = 0x180680,
309                 .cdt        = 0x180680 + 64,
310                 .fifo_start = 0x185400,
311                 .fifo_size  = 0x001000,
312                 .ptr1_reg   = MO_DMA25_PTR1,
313                 .ptr2_reg   = MO_DMA25_PTR2,
314                 .cnt1_reg   = MO_DMA25_CNT1,
315                 .cnt2_reg   = MO_DMA25_CNT2,
316         },
317         [SRAM_CH26] = {
318                 .name       = "audio to",
319                 .cmds_start = 0x180180,
320                 .ctrl_start = 0x180720,
321                 .cdt        = 0x180680 + 64,  /* same as audio IN */
322                 .fifo_start = 0x185400,       /* same as audio IN */
323                 .fifo_size  = 0x001000,       /* same as audio IN */
324                 .ptr1_reg   = MO_DMA26_PTR1,
325                 .ptr2_reg   = MO_DMA26_PTR2,
326                 .cnt1_reg   = MO_DMA26_CNT1,
327                 .cnt2_reg   = MO_DMA26_CNT2,
328         },
329         [SRAM_CH28] = {
330                 .name       = "mpeg",
331                 .cmds_start = 0x180200,
332                 .ctrl_start = 0x1807C0,
333                 .cdt        = 0x1807C0 + 64,
334                 .fifo_start = 0x186400,
335                 .fifo_size  = 0x001000,
336                 .ptr1_reg   = MO_DMA28_PTR1,
337                 .ptr2_reg   = MO_DMA28_PTR2,
338                 .cnt1_reg   = MO_DMA28_CNT1,
339                 .cnt2_reg   = MO_DMA28_CNT2,
340         },
341         [SRAM_CH27] = {
342                 .name       = "audio rds",
343                 .cmds_start = 0x1801C0,
344                 .ctrl_start = 0x180860,
345                 .cdt        = 0x180860 + 64,
346                 .fifo_start = 0x187400,
347                 .fifo_size  = 0x000C00,
348                 .ptr1_reg   = MO_DMA27_PTR1,
349                 .ptr2_reg   = MO_DMA27_PTR2,
350                 .cnt1_reg   = MO_DMA27_CNT1,
351                 .cnt2_reg   = MO_DMA27_CNT2,
352         },
353 };
354
355 int cx88_sram_channel_setup(struct cx88_core *core,
356                             const struct sram_channel *ch,
357                             unsigned int bpl, u32 risc)
358 {
359         unsigned int i,lines;
360         u32 cdt;
361
362         bpl   = (bpl + 7) & ~7; /* alignment */
363         cdt   = ch->cdt;
364         lines = ch->fifo_size / bpl;
365         if (lines > 6)
366                 lines = 6;
367         BUG_ON(lines < 2);
368
369         /* write CDT */
370         for (i = 0; i < lines; i++)
371                 cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
372
373         /* write CMDS */
374         cx_write(ch->cmds_start +  0, risc);
375         cx_write(ch->cmds_start +  4, cdt);
376         cx_write(ch->cmds_start +  8, (lines*16) >> 3);
377         cx_write(ch->cmds_start + 12, ch->ctrl_start);
378         cx_write(ch->cmds_start + 16, 64 >> 2);
379         for (i = 20; i < 64; i += 4)
380                 cx_write(ch->cmds_start + i, 0);
381
382         /* fill registers */
383         cx_write(ch->ptr1_reg, ch->fifo_start);
384         cx_write(ch->ptr2_reg, cdt);
385         cx_write(ch->cnt1_reg, (bpl >> 3) -1);
386         cx_write(ch->cnt2_reg, (lines*16) >> 3);
387
388         dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
389         return 0;
390 }
391
392 /* ------------------------------------------------------------------ */
393 /* debug helper code                                                  */
394
395 static int cx88_risc_decode(u32 risc)
396 {
397         static const char * const instr[16] = {
398                 [ RISC_SYNC    >> 28 ] = "sync",
399                 [ RISC_WRITE   >> 28 ] = "write",
400                 [ RISC_WRITEC  >> 28 ] = "writec",
401                 [ RISC_READ    >> 28 ] = "read",
402                 [ RISC_READC   >> 28 ] = "readc",
403                 [ RISC_JUMP    >> 28 ] = "jump",
404                 [ RISC_SKIP    >> 28 ] = "skip",
405                 [ RISC_WRITERM >> 28 ] = "writerm",
406                 [ RISC_WRITECM >> 28 ] = "writecm",
407                 [ RISC_WRITECR >> 28 ] = "writecr",
408         };
409         static int const incr[16] = {
410                 [ RISC_WRITE   >> 28 ] = 2,
411                 [ RISC_JUMP    >> 28 ] = 2,
412                 [ RISC_WRITERM >> 28 ] = 3,
413                 [ RISC_WRITECM >> 28 ] = 3,
414                 [ RISC_WRITECR >> 28 ] = 4,
415         };
416         static const char * const bits[] = {
417                 "12",   "13",   "14",   "resync",
418                 "cnt0", "cnt1", "18",   "19",
419                 "20",   "21",   "22",   "23",
420                 "irq1", "irq2", "eol",  "sol",
421         };
422         int i;
423
424         printk("0x%08x [ %s", risc,
425                instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
426         for (i = ARRAY_SIZE(bits)-1; i >= 0; i--)
427                 if (risc & (1 << (i + 12)))
428                         printk(" %s",bits[i]);
429         printk(" count=%d ]\n", risc & 0xfff);
430         return incr[risc >> 28] ? incr[risc >> 28] : 1;
431 }
432
433
434 void cx88_sram_channel_dump(struct cx88_core *core,
435                             const struct sram_channel *ch)
436 {
437         static const char * const name[] = {
438                 "initial risc",
439                 "cdt base",
440                 "cdt size",
441                 "iq base",
442                 "iq size",
443                 "risc pc",
444                 "iq wr ptr",
445                 "iq rd ptr",
446                 "cdt current",
447                 "pci target",
448                 "line / byte",
449         };
450         u32 risc;
451         unsigned int i,j,n;
452
453         printk("%s: %s - dma channel status dump\n",
454                core->name,ch->name);
455         for (i = 0; i < ARRAY_SIZE(name); i++)
456                 printk("%s:   cmds: %-12s: 0x%08x\n",
457                        core->name,name[i],
458                        cx_read(ch->cmds_start + 4*i));
459         for (n = 1, i = 0; i < 4; i++) {
460                 risc = cx_read(ch->cmds_start + 4 * (i+11));
461                 printk("%s:   risc%d: ", core->name, i);
462                 if (--n)
463                         printk("0x%08x [ arg #%d ]\n", risc, n);
464                 else
465                         n = cx88_risc_decode(risc);
466         }
467         for (i = 0; i < 16; i += n) {
468                 risc = cx_read(ch->ctrl_start + 4 * i);
469                 printk("%s:   iq %x: ", core->name, i);
470                 n = cx88_risc_decode(risc);
471                 for (j = 1; j < n; j++) {
472                         risc = cx_read(ch->ctrl_start + 4 * (i+j));
473                         printk("%s:   iq %x: 0x%08x [ arg #%d ]\n",
474                                core->name, i+j, risc, j);
475                 }
476         }
477
478         printk("%s: fifo: 0x%08x -> 0x%x\n",
479                core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
480         printk("%s: ctrl: 0x%08x -> 0x%x\n",
481                core->name, ch->ctrl_start, ch->ctrl_start+6*16);
482         printk("%s:   ptr1_reg: 0x%08x\n",
483                core->name,cx_read(ch->ptr1_reg));
484         printk("%s:   ptr2_reg: 0x%08x\n",
485                core->name,cx_read(ch->ptr2_reg));
486         printk("%s:   cnt1_reg: 0x%08x\n",
487                core->name,cx_read(ch->cnt1_reg));
488         printk("%s:   cnt2_reg: 0x%08x\n",
489                core->name,cx_read(ch->cnt2_reg));
490 }
491
492 static const char *cx88_pci_irqs[32] = {
493         "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
494         "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
495         "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
496         "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
497 };
498
499 void cx88_print_irqbits(const char *name, const char *tag, const char *strings[],
500                         int len, u32 bits, u32 mask)
501 {
502         unsigned int i;
503
504         printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits);
505         for (i = 0; i < len; i++) {
506                 if (!(bits & (1 << i)))
507                         continue;
508                 if (strings[i])
509                         printk(" %s", strings[i]);
510                 else
511                         printk(" %d", i);
512                 if (!(mask & (1 << i)))
513                         continue;
514                 printk("*");
515         }
516         printk("\n");
517 }
518
519 /* ------------------------------------------------------------------ */
520
521 int cx88_core_irq(struct cx88_core *core, u32 status)
522 {
523         int handled = 0;
524
525         if (status & PCI_INT_IR_SMPINT) {
526                 cx88_ir_irq(core);
527                 handled++;
528         }
529         if (!handled)
530                 cx88_print_irqbits(core->name, "irq pci",
531                                    cx88_pci_irqs, ARRAY_SIZE(cx88_pci_irqs),
532                                    status, core->pci_irqmask);
533         return handled;
534 }
535
536 void cx88_wakeup(struct cx88_core *core,
537                  struct cx88_dmaqueue *q, u32 count)
538 {
539         struct cx88_buffer *buf;
540         int bc;
541
542         for (bc = 0;; bc++) {
543                 if (list_empty(&q->active))
544                         break;
545                 buf = list_entry(q->active.next,
546                                  struct cx88_buffer, vb.queue);
547                 /* count comes from the hw and is is 16bit wide --
548                  * this trick handles wrap-arounds correctly for
549                  * up to 32767 buffers in flight... */
550                 if ((s16) (count - buf->count) < 0)
551                         break;
552                 do_gettimeofday(&buf->vb.ts);
553                 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
554                         count, buf->count);
555                 buf->vb.state = VIDEOBUF_DONE;
556                 list_del(&buf->vb.queue);
557                 wake_up(&buf->vb.done);
558         }
559         if (list_empty(&q->active)) {
560                 del_timer(&q->timeout);
561         } else {
562                 mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
563         }
564         if (bc != 1)
565                 dprintk(2, "%s: %d buffers handled (should be 1)\n",
566                         __func__, bc);
567 }
568
569 void cx88_shutdown(struct cx88_core *core)
570 {
571         /* disable RISC controller + IRQs */
572         cx_write(MO_DEV_CNTRL2, 0);
573
574         /* stop dma transfers */
575         cx_write(MO_VID_DMACNTRL, 0x0);
576         cx_write(MO_AUD_DMACNTRL, 0x0);
577         cx_write(MO_TS_DMACNTRL, 0x0);
578         cx_write(MO_VIP_DMACNTRL, 0x0);
579         cx_write(MO_GPHST_DMACNTRL, 0x0);
580
581         /* stop interrupts */
582         cx_write(MO_PCI_INTMSK, 0x0);
583         cx_write(MO_VID_INTMSK, 0x0);
584         cx_write(MO_AUD_INTMSK, 0x0);
585         cx_write(MO_TS_INTMSK, 0x0);
586         cx_write(MO_VIP_INTMSK, 0x0);
587         cx_write(MO_GPHST_INTMSK, 0x0);
588
589         /* stop capturing */
590         cx_write(VID_CAPTURE_CONTROL, 0);
591 }
592
593 int cx88_reset(struct cx88_core *core)
594 {
595         dprintk(1,"%s\n",__func__);
596         cx88_shutdown(core);
597
598         /* clear irq status */
599         cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
600         cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
601         cx_write(MO_INT1_STAT,   0xFFFFFFFF); // Clear RISC int
602
603         /* wait a bit */
604         msleep(100);
605
606         /* init sram */
607         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
608         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
609         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
610         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
611         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
612         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
613         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
614         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27], 128, 0);
615
616         /* misc init ... */
617         cx_write(MO_INPUT_FORMAT, ((1 << 13) |   // agc enable
618                                    (1 << 12) |   // agc gain
619                                    (1 << 11) |   // adaptibe agc
620                                    (0 << 10) |   // chroma agc
621                                    (0 <<  9) |   // ckillen
622                                    (7)));
623
624         /* setup image format */
625         cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
626
627         /* setup FIFO Thresholds */
628         cx_write(MO_PDMA_STHRSH,   0x0807);
629         cx_write(MO_PDMA_DTHRSH,   0x0807);
630
631         /* fixes flashing of image */
632         cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
633         cx_write(MO_AGC_BACK_VBI,  0x00E00555);
634
635         cx_write(MO_VID_INTSTAT,   0xFFFFFFFF); // Clear PIV int
636         cx_write(MO_PCI_INTSTAT,   0xFFFFFFFF); // Clear PCI int
637         cx_write(MO_INT1_STAT,     0xFFFFFFFF); // Clear RISC int
638
639         /* Reset on-board parts */
640         cx_write(MO_SRST_IO, 0);
641         msleep(10);
642         cx_write(MO_SRST_IO, 1);
643
644         return 0;
645 }
646
647 /* ------------------------------------------------------------------ */
648
649 static unsigned int inline norm_swidth(v4l2_std_id norm)
650 {
651         return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 754 : 922;
652 }
653
654 static unsigned int inline norm_hdelay(v4l2_std_id norm)
655 {
656         return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 135 : 186;
657 }
658
659 static unsigned int inline norm_vdelay(v4l2_std_id norm)
660 {
661         return (norm & V4L2_STD_625_50) ? 0x24 : 0x18;
662 }
663
664 static unsigned int inline norm_fsc8(v4l2_std_id norm)
665 {
666         if (norm & V4L2_STD_PAL_M)
667                 return 28604892;      // 3.575611 MHz
668
669         if (norm & (V4L2_STD_PAL_Nc))
670                 return 28656448;      // 3.582056 MHz
671
672         if (norm & V4L2_STD_NTSC) // All NTSC/M and variants
673                 return 28636360;      // 3.57954545 MHz +/- 10 Hz
674
675         /* SECAM have also different sub carrier for chroma,
676            but step_db and step_dr, at cx88_set_tvnorm already handles that.
677
678            The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
679          */
680
681         return 35468950;      // 4.43361875 MHz +/- 5 Hz
682 }
683
684 static unsigned int inline norm_htotal(v4l2_std_id norm)
685 {
686
687         unsigned int fsc4=norm_fsc8(norm)/2;
688
689         /* returns 4*FSC / vtotal / frames per seconds */
690         return (norm & V4L2_STD_625_50) ?
691                                 ((fsc4+312)/625+12)/25 :
692                                 ((fsc4+262)/525*1001+15000)/30000;
693 }
694
695 static unsigned int inline norm_vbipack(v4l2_std_id norm)
696 {
697         return (norm & V4L2_STD_625_50) ? 511 : 400;
698 }
699
700 int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height,
701                    enum v4l2_field field)
702 {
703         unsigned int swidth  = norm_swidth(core->tvnorm);
704         unsigned int sheight = norm_maxh(core->tvnorm);
705         u32 value;
706
707         dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height,
708                 V4L2_FIELD_HAS_TOP(field)    ? "T" : "",
709                 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
710                 v4l2_norm_to_name(core->tvnorm));
711         if (!V4L2_FIELD_HAS_BOTH(field))
712                 height *= 2;
713
714         // recalc H delay and scale registers
715         value = (width * norm_hdelay(core->tvnorm)) / swidth;
716         value &= 0x3fe;
717         cx_write(MO_HDELAY_EVEN,  value);
718         cx_write(MO_HDELAY_ODD,   value);
719         dprintk(1,"set_scale: hdelay  0x%04x (width %d)\n", value,swidth);
720
721         value = (swidth * 4096 / width) - 4096;
722         cx_write(MO_HSCALE_EVEN,  value);
723         cx_write(MO_HSCALE_ODD,   value);
724         dprintk(1,"set_scale: hscale  0x%04x\n", value);
725
726         cx_write(MO_HACTIVE_EVEN, width);
727         cx_write(MO_HACTIVE_ODD,  width);
728         dprintk(1,"set_scale: hactive 0x%04x\n", width);
729
730         // recalc V scale Register (delay is constant)
731         cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
732         cx_write(MO_VDELAY_ODD,  norm_vdelay(core->tvnorm));
733         dprintk(1,"set_scale: vdelay  0x%04x\n", norm_vdelay(core->tvnorm));
734
735         value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
736         cx_write(MO_VSCALE_EVEN,  value);
737         cx_write(MO_VSCALE_ODD,   value);
738         dprintk(1,"set_scale: vscale  0x%04x\n", value);
739
740         cx_write(MO_VACTIVE_EVEN, sheight);
741         cx_write(MO_VACTIVE_ODD,  sheight);
742         dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
743
744         // setup filters
745         value = 0;
746         value |= (1 << 19);        // CFILT (default)
747         if (core->tvnorm & V4L2_STD_SECAM) {
748                 value |= (1 << 15);
749                 value |= (1 << 16);
750         }
751         if (INPUT(core->input).type == CX88_VMUX_SVIDEO)
752                 value |= (1 << 13) | (1 << 5);
753         if (V4L2_FIELD_INTERLACED == field)
754                 value |= (1 << 3); // VINT (interlaced vertical scaling)
755         if (width < 385)
756                 value |= (1 << 0); // 3-tap interpolation
757         if (width < 193)
758                 value |= (1 << 1); // 5-tap interpolation
759         if (nocomb)
760                 value |= (3 << 5); // disable comb filter
761
762         cx_write(MO_FILTER_EVEN,  value);
763         cx_write(MO_FILTER_ODD,   value);
764         dprintk(1,"set_scale: filter  0x%04x\n", value);
765
766         return 0;
767 }
768
769 static const u32 xtal = 28636363;
770
771 static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
772 {
773         static const u32 pre[] = { 0, 0, 0, 3, 2, 1 };
774         u64 pll;
775         u32 reg;
776         int i;
777
778         if (prescale < 2)
779                 prescale = 2;
780         if (prescale > 5)
781                 prescale = 5;
782
783         pll = ofreq * 8 * prescale * (u64)(1 << 20);
784         do_div(pll,xtal);
785         reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
786         if (((reg >> 20) & 0x3f) < 14) {
787                 printk("%s/0: pll out of range\n",core->name);
788                 return -1;
789         }
790
791         dprintk(1,"set_pll:    MO_PLL_REG       0x%08x [old=0x%08x,freq=%d]\n",
792                 reg, cx_read(MO_PLL_REG), ofreq);
793         cx_write(MO_PLL_REG, reg);
794         for (i = 0; i < 100; i++) {
795                 reg = cx_read(MO_DEVICE_STATUS);
796                 if (reg & (1<<2)) {
797                         dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
798                                 prescale,ofreq);
799                         return 0;
800                 }
801                 dprintk(1,"pll not locked yet, waiting ...\n");
802                 msleep(10);
803         }
804         dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
805         return -1;
806 }
807
808 int cx88_start_audio_dma(struct cx88_core *core)
809 {
810         /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
811         int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
812
813         int rds_bpl = cx88_sram_channels[SRAM_CH27].fifo_size/AUD_RDS_LINES;
814
815         /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
816         if (cx_read(MO_AUD_DMACNTRL) & 0x10)
817                 return 0;
818
819         /* setup fifo + format */
820         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
821         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
822         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27],
823                                 rds_bpl, 0);
824
825         cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
826         cx_write(MO_AUDR_LNGTH, rds_bpl); /* fifo bpl size */
827
828         /* enable Up, Down and Audio RDS fifo */
829         cx_write(MO_AUD_DMACNTRL, 0x0007);
830
831         return 0;
832 }
833
834 int cx88_stop_audio_dma(struct cx88_core *core)
835 {
836         /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
837         if (cx_read(MO_AUD_DMACNTRL) & 0x10)
838                 return 0;
839
840         /* stop dma */
841         cx_write(MO_AUD_DMACNTRL, 0x0000);
842
843         return 0;
844 }
845
846 static int set_tvaudio(struct cx88_core *core)
847 {
848         v4l2_std_id norm = core->tvnorm;
849
850         if (CX88_VMUX_TELEVISION != INPUT(core->input).type &&
851             CX88_VMUX_CABLE != INPUT(core->input).type)
852                 return 0;
853
854         if (V4L2_STD_PAL_BG & norm) {
855                 core->tvaudio = WW_BG;
856
857         } else if (V4L2_STD_PAL_DK & norm) {
858                 core->tvaudio = WW_DK;
859
860         } else if (V4L2_STD_PAL_I & norm) {
861                 core->tvaudio = WW_I;
862
863         } else if (V4L2_STD_SECAM_L & norm) {
864                 core->tvaudio = WW_L;
865
866         } else if ((V4L2_STD_SECAM_B | V4L2_STD_SECAM_G | V4L2_STD_SECAM_H) & norm) {
867                 core->tvaudio = WW_BG;
868
869         } else if (V4L2_STD_SECAM_DK & norm) {
870                 core->tvaudio = WW_DK;
871
872         } else if ((V4L2_STD_NTSC_M & norm) ||
873                    (V4L2_STD_PAL_M  & norm)) {
874                 core->tvaudio = WW_BTSC;
875
876         } else if (V4L2_STD_NTSC_M_JP & norm) {
877                 core->tvaudio = WW_EIAJ;
878
879         } else {
880                 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
881                        core->name, v4l2_norm_to_name(core->tvnorm));
882                 core->tvaudio = WW_NONE;
883                 return 0;
884         }
885
886         cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
887         cx88_set_tvaudio(core);
888         /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
889
890 /*
891    This should be needed only on cx88-alsa. It seems that some cx88 chips have
892    bugs and does require DMA enabled for it to work.
893  */
894         cx88_start_audio_dma(core);
895         return 0;
896 }
897
898
899
900 int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm)
901 {
902         u32 fsc8;
903         u32 adc_clock;
904         u32 vdec_clock;
905         u32 step_db,step_dr;
906         u64 tmp64;
907         u32 bdelay,agcdelay,htotal;
908         u32 cxiformat, cxoformat;
909
910         core->tvnorm = norm;
911         fsc8       = norm_fsc8(norm);
912         adc_clock  = xtal;
913         vdec_clock = fsc8;
914         step_db    = fsc8;
915         step_dr    = fsc8;
916
917         if (norm & V4L2_STD_NTSC_M_JP) {
918                 cxiformat = VideoFormatNTSCJapan;
919                 cxoformat = 0x181f0008;
920         } else if (norm & V4L2_STD_NTSC_443) {
921                 cxiformat = VideoFormatNTSC443;
922                 cxoformat = 0x181f0008;
923         } else if (norm & V4L2_STD_PAL_M) {
924                 cxiformat = VideoFormatPALM;
925                 cxoformat = 0x1c1f0008;
926         } else if (norm & V4L2_STD_PAL_N) {
927                 cxiformat = VideoFormatPALN;
928                 cxoformat = 0x1c1f0008;
929         } else if (norm & V4L2_STD_PAL_Nc) {
930                 cxiformat = VideoFormatPALNC;
931                 cxoformat = 0x1c1f0008;
932         } else if (norm & V4L2_STD_PAL_60) {
933                 cxiformat = VideoFormatPAL60;
934                 cxoformat = 0x181f0008;
935         } else if (norm & V4L2_STD_NTSC) {
936                 cxiformat = VideoFormatNTSC;
937                 cxoformat = 0x181f0008;
938         } else if (norm & V4L2_STD_SECAM) {
939                 step_db = 4250000 * 8;
940                 step_dr = 4406250 * 8;
941
942                 cxiformat = VideoFormatSECAM;
943                 cxoformat = 0x181f0008;
944         } else { /* PAL */
945                 cxiformat = VideoFormatPAL;
946                 cxoformat = 0x181f0008;
947         }
948
949         dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
950                 v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock,
951                 step_db, step_dr);
952         set_pll(core,2,vdec_clock);
953
954         dprintk(1,"set_tvnorm: MO_INPUT_FORMAT  0x%08x [old=0x%08x]\n",
955                 cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
956         /* Chroma AGC must be disabled if SECAM is used, we enable it
957            by default on PAL and NTSC */
958         cx_andor(MO_INPUT_FORMAT, 0x40f,
959                  norm & V4L2_STD_SECAM ? cxiformat : cxiformat | 0x400);
960
961         // FIXME: as-is from DScaler
962         dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
963                 cxoformat, cx_read(MO_OUTPUT_FORMAT));
964         cx_write(MO_OUTPUT_FORMAT, cxoformat);
965
966         // MO_SCONV_REG = adc clock / video dec clock * 2^17
967         tmp64  = adc_clock * (u64)(1 << 17);
968         do_div(tmp64, vdec_clock);
969         dprintk(1,"set_tvnorm: MO_SCONV_REG     0x%08x [old=0x%08x]\n",
970                 (u32)tmp64, cx_read(MO_SCONV_REG));
971         cx_write(MO_SCONV_REG, (u32)tmp64);
972
973         // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
974         tmp64  = step_db * (u64)(1 << 22);
975         do_div(tmp64, vdec_clock);
976         dprintk(1,"set_tvnorm: MO_SUB_STEP      0x%08x [old=0x%08x]\n",
977                 (u32)tmp64, cx_read(MO_SUB_STEP));
978         cx_write(MO_SUB_STEP, (u32)tmp64);
979
980         // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
981         tmp64  = step_dr * (u64)(1 << 22);
982         do_div(tmp64, vdec_clock);
983         dprintk(1,"set_tvnorm: MO_SUB_STEP_DR   0x%08x [old=0x%08x]\n",
984                 (u32)tmp64, cx_read(MO_SUB_STEP_DR));
985         cx_write(MO_SUB_STEP_DR, (u32)tmp64);
986
987         // bdelay + agcdelay
988         bdelay   = vdec_clock * 65 / 20000000 + 21;
989         agcdelay = vdec_clock * 68 / 20000000 + 15;
990         dprintk(1,"set_tvnorm: MO_AGC_BURST     0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
991                 (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
992         cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
993
994         // htotal
995         tmp64 = norm_htotal(norm) * (u64)vdec_clock;
996         do_div(tmp64, fsc8);
997         htotal = (u32)tmp64 | (HLNotchFilter4xFsc << 11);
998         dprintk(1,"set_tvnorm: MO_HTOTAL        0x%08x [old=0x%08x,htotal=%d]\n",
999                 htotal, cx_read(MO_HTOTAL), (u32)tmp64);
1000         cx_write(MO_HTOTAL, htotal);
1001
1002         // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
1003         // the effective vbi offset ~244 samples, the same as the Bt8x8
1004         cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm));
1005
1006         // this is needed as well to set all tvnorm parameter
1007         cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
1008
1009         // audio
1010         set_tvaudio(core);
1011
1012         // tell i2c chips
1013         call_all(core, core, s_std, norm);
1014
1015         // done
1016         return 0;
1017 }
1018
1019 /* ------------------------------------------------------------------ */
1020
1021 struct video_device *cx88_vdev_init(struct cx88_core *core,
1022                                     struct pci_dev *pci,
1023                                     const struct video_device *template_,
1024                                     const char *type)
1025 {
1026         struct video_device *vfd;
1027
1028         vfd = video_device_alloc();
1029         if (NULL == vfd)
1030                 return NULL;
1031         *vfd = *template_;
1032         vfd->v4l2_dev = &core->v4l2_dev;
1033         vfd->parent = &pci->dev;
1034         vfd->release = video_device_release;
1035         snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
1036                  core->name, type, core->board.name);
1037         return vfd;
1038 }
1039
1040 struct cx88_core* cx88_core_get(struct pci_dev *pci)
1041 {
1042         struct cx88_core *core;
1043
1044         mutex_lock(&devlist);
1045         list_for_each_entry(core, &cx88_devlist, devlist) {
1046                 if (pci->bus->number != core->pci_bus)
1047                         continue;
1048                 if (PCI_SLOT(pci->devfn) != core->pci_slot)
1049                         continue;
1050
1051                 if (0 != cx88_get_resources(core, pci)) {
1052                         mutex_unlock(&devlist);
1053                         return NULL;
1054                 }
1055                 atomic_inc(&core->refcount);
1056                 mutex_unlock(&devlist);
1057                 return core;
1058         }
1059
1060         core = cx88_core_create(pci, cx88_devcount);
1061         if (NULL != core) {
1062                 cx88_devcount++;
1063                 list_add_tail(&core->devlist, &cx88_devlist);
1064         }
1065
1066         mutex_unlock(&devlist);
1067         return core;
1068 }
1069
1070 void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
1071 {
1072         release_mem_region(pci_resource_start(pci,0),
1073                            pci_resource_len(pci,0));
1074
1075         if (!atomic_dec_and_test(&core->refcount))
1076                 return;
1077
1078         mutex_lock(&devlist);
1079         cx88_ir_fini(core);
1080         if (0 == core->i2c_rc) {
1081                 if (core->i2c_rtc)
1082                         i2c_unregister_device(core->i2c_rtc);
1083                 i2c_del_adapter(&core->i2c_adap);
1084         }
1085         list_del(&core->devlist);
1086         iounmap(core->lmmio);
1087         cx88_devcount--;
1088         mutex_unlock(&devlist);
1089         v4l2_device_unregister(&core->v4l2_dev);
1090         kfree(core);
1091 }
1092
1093 /* ------------------------------------------------------------------ */
1094
1095 EXPORT_SYMBOL(cx88_print_irqbits);
1096
1097 EXPORT_SYMBOL(cx88_core_irq);
1098 EXPORT_SYMBOL(cx88_wakeup);
1099 EXPORT_SYMBOL(cx88_reset);
1100 EXPORT_SYMBOL(cx88_shutdown);
1101
1102 EXPORT_SYMBOL(cx88_risc_buffer);
1103 EXPORT_SYMBOL(cx88_risc_databuffer);
1104 EXPORT_SYMBOL(cx88_risc_stopper);
1105 EXPORT_SYMBOL(cx88_free_buffer);
1106
1107 EXPORT_SYMBOL(cx88_sram_channels);
1108 EXPORT_SYMBOL(cx88_sram_channel_setup);
1109 EXPORT_SYMBOL(cx88_sram_channel_dump);
1110
1111 EXPORT_SYMBOL(cx88_set_tvnorm);
1112 EXPORT_SYMBOL(cx88_set_scale);
1113
1114 EXPORT_SYMBOL(cx88_vdev_init);
1115 EXPORT_SYMBOL(cx88_core_get);
1116 EXPORT_SYMBOL(cx88_core_put);
1117
1118 EXPORT_SYMBOL(cx88_ir_start);
1119 EXPORT_SYMBOL(cx88_ir_stop);
1120
1121 /*
1122  * Local variables:
1123  * c-basic-offset: 8
1124  * End:
1125  * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off
1126  */