RAID5: batch adjacent full stripe write
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228         struct bio *bi = return_bi;
229         while (bi) {
230
231                 return_bi = bi->bi_next;
232                 bi->bi_next = NULL;
233                 bi->bi_iter.bi_size = 0;
234                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235                                          bi, 0);
236                 bio_endio(bi, 0);
237                 bi = return_bi;
238         }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245         return sh->check_state || sh->reconstruct_state ||
246                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252         struct r5conf *conf = sh->raid_conf;
253         struct r5worker_group *group;
254         int thread_cnt;
255         int i, cpu = sh->cpu;
256
257         if (!cpu_online(cpu)) {
258                 cpu = cpumask_any(cpu_online_mask);
259                 sh->cpu = cpu;
260         }
261
262         if (list_empty(&sh->lru)) {
263                 struct r5worker_group *group;
264                 group = conf->worker_groups + cpu_to_group(cpu);
265                 list_add_tail(&sh->lru, &group->handle_list);
266                 group->stripes_cnt++;
267                 sh->group = group;
268         }
269
270         if (conf->worker_cnt_per_group == 0) {
271                 md_wakeup_thread(conf->mddev->thread);
272                 return;
273         }
274
275         group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277         group->workers[0].working = true;
278         /* at least one worker should run to avoid race */
279         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282         /* wakeup more workers */
283         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284                 if (group->workers[i].working == false) {
285                         group->workers[i].working = true;
286                         queue_work_on(sh->cpu, raid5_wq,
287                                       &group->workers[i].work);
288                         thread_cnt--;
289                 }
290         }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294                               struct list_head *temp_inactive_list)
295 {
296         BUG_ON(!list_empty(&sh->lru));
297         BUG_ON(atomic_read(&conf->active_stripes)==0);
298         if (test_bit(STRIPE_HANDLE, &sh->state)) {
299                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301                         list_add_tail(&sh->lru, &conf->delayed_list);
302                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303                            sh->bm_seq - conf->seq_write > 0)
304                         list_add_tail(&sh->lru, &conf->bitmap_list);
305                 else {
306                         clear_bit(STRIPE_DELAYED, &sh->state);
307                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
308                         if (conf->worker_cnt_per_group == 0) {
309                                 list_add_tail(&sh->lru, &conf->handle_list);
310                         } else {
311                                 raid5_wakeup_stripe_thread(sh);
312                                 return;
313                         }
314                 }
315                 md_wakeup_thread(conf->mddev->thread);
316         } else {
317                 BUG_ON(stripe_operations_active(sh));
318                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319                         if (atomic_dec_return(&conf->preread_active_stripes)
320                             < IO_THRESHOLD)
321                                 md_wakeup_thread(conf->mddev->thread);
322                 atomic_dec(&conf->active_stripes);
323                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324                         list_add_tail(&sh->lru, temp_inactive_list);
325         }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329                              struct list_head *temp_inactive_list)
330 {
331         if (atomic_dec_and_test(&sh->count))
332                 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343                                          struct list_head *temp_inactive_list,
344                                          int hash)
345 {
346         int size;
347         bool do_wakeup = false;
348         unsigned long flags;
349
350         if (hash == NR_STRIPE_HASH_LOCKS) {
351                 size = NR_STRIPE_HASH_LOCKS;
352                 hash = NR_STRIPE_HASH_LOCKS - 1;
353         } else
354                 size = 1;
355         while (size) {
356                 struct list_head *list = &temp_inactive_list[size - 1];
357
358                 /*
359                  * We don't hold any lock here yet, get_active_stripe() might
360                  * remove stripes from the list
361                  */
362                 if (!list_empty_careful(list)) {
363                         spin_lock_irqsave(conf->hash_locks + hash, flags);
364                         if (list_empty(conf->inactive_list + hash) &&
365                             !list_empty(list))
366                                 atomic_dec(&conf->empty_inactive_list_nr);
367                         list_splice_tail_init(list, conf->inactive_list + hash);
368                         do_wakeup = true;
369                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370                 }
371                 size--;
372                 hash--;
373         }
374
375         if (do_wakeup) {
376                 wake_up(&conf->wait_for_stripe);
377                 if (conf->retry_read_aligned)
378                         md_wakeup_thread(conf->mddev->thread);
379         }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384                                struct list_head *temp_inactive_list)
385 {
386         struct stripe_head *sh;
387         int count = 0;
388         struct llist_node *head;
389
390         head = llist_del_all(&conf->released_stripes);
391         head = llist_reverse_order(head);
392         while (head) {
393                 int hash;
394
395                 sh = llist_entry(head, struct stripe_head, release_list);
396                 head = llist_next(head);
397                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398                 smp_mb();
399                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400                 /*
401                  * Don't worry the bit is set here, because if the bit is set
402                  * again, the count is always > 1. This is true for
403                  * STRIPE_ON_UNPLUG_LIST bit too.
404                  */
405                 hash = sh->hash_lock_index;
406                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407                 count++;
408         }
409
410         return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415         struct r5conf *conf = sh->raid_conf;
416         unsigned long flags;
417         struct list_head list;
418         int hash;
419         bool wakeup;
420
421         /* Avoid release_list until the last reference.
422          */
423         if (atomic_add_unless(&sh->count, -1, 1))
424                 return;
425
426         if (unlikely(!conf->mddev->thread) ||
427                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428                 goto slow_path;
429         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430         if (wakeup)
431                 md_wakeup_thread(conf->mddev->thread);
432         return;
433 slow_path:
434         local_irq_save(flags);
435         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437                 INIT_LIST_HEAD(&list);
438                 hash = sh->hash_lock_index;
439                 do_release_stripe(conf, sh, &list);
440                 spin_unlock(&conf->device_lock);
441                 release_inactive_stripe_list(conf, &list, hash);
442         }
443         local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448         pr_debug("remove_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456         struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458         pr_debug("insert_hash(), stripe %llu\n",
459                 (unsigned long long)sh->sector);
460
461         hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467         struct stripe_head *sh = NULL;
468         struct list_head *first;
469
470         if (list_empty(conf->inactive_list + hash))
471                 goto out;
472         first = (conf->inactive_list + hash)->next;
473         sh = list_entry(first, struct stripe_head, lru);
474         list_del_init(first);
475         remove_hash(sh);
476         atomic_inc(&conf->active_stripes);
477         BUG_ON(hash != sh->hash_lock_index);
478         if (list_empty(conf->inactive_list + hash))
479                 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481         return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486         struct page *p;
487         int i;
488         int num = sh->raid_conf->pool_size;
489
490         for (i = 0; i < num ; i++) {
491                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492                 p = sh->dev[i].page;
493                 if (!p)
494                         continue;
495                 sh->dev[i].page = NULL;
496                 put_page(p);
497         }
498 }
499
500 static int grow_buffers(struct stripe_head *sh)
501 {
502         int i;
503         int num = sh->raid_conf->pool_size;
504
505         for (i = 0; i < num; i++) {
506                 struct page *page;
507
508                 if (!(page = alloc_page(GFP_KERNEL))) {
509                         return 1;
510                 }
511                 sh->dev[i].page = page;
512                 sh->dev[i].orig_page = page;
513         }
514         return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519                             struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523         struct r5conf *conf = sh->raid_conf;
524         int i, seq;
525
526         BUG_ON(atomic_read(&sh->count) != 0);
527         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528         BUG_ON(stripe_operations_active(sh));
529         BUG_ON(sh->batch_head);
530
531         pr_debug("init_stripe called, stripe %llu\n",
532                 (unsigned long long)sector);
533 retry:
534         seq = read_seqcount_begin(&conf->gen_lock);
535         sh->generation = conf->generation - previous;
536         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537         sh->sector = sector;
538         stripe_set_idx(sector, conf, previous, sh);
539         sh->state = 0;
540
541         for (i = sh->disks; i--; ) {
542                 struct r5dev *dev = &sh->dev[i];
543
544                 if (dev->toread || dev->read || dev->towrite || dev->written ||
545                     test_bit(R5_LOCKED, &dev->flags)) {
546                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547                                (unsigned long long)sh->sector, i, dev->toread,
548                                dev->read, dev->towrite, dev->written,
549                                test_bit(R5_LOCKED, &dev->flags));
550                         WARN_ON(1);
551                 }
552                 dev->flags = 0;
553                 raid5_build_block(sh, i, previous);
554         }
555         if (read_seqcount_retry(&conf->gen_lock, seq))
556                 goto retry;
557         sh->overwrite_disks = 0;
558         insert_hash(conf, sh);
559         sh->cpu = smp_processor_id();
560         set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564                                          short generation)
565 {
566         struct stripe_head *sh;
567
568         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570                 if (sh->sector == sector && sh->generation == generation)
571                         return sh;
572         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573         return NULL;
574 }
575
576 /*
577  * Need to check if array has failed when deciding whether to:
578  *  - start an array
579  *  - remove non-faulty devices
580  *  - add a spare
581  *  - allow a reshape
582  * This determination is simple when no reshape is happening.
583  * However if there is a reshape, we need to carefully check
584  * both the before and after sections.
585  * This is because some failed devices may only affect one
586  * of the two sections, and some non-in_sync devices may
587  * be insync in the section most affected by failed devices.
588  */
589 static int calc_degraded(struct r5conf *conf)
590 {
591         int degraded, degraded2;
592         int i;
593
594         rcu_read_lock();
595         degraded = 0;
596         for (i = 0; i < conf->previous_raid_disks; i++) {
597                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598                 if (rdev && test_bit(Faulty, &rdev->flags))
599                         rdev = rcu_dereference(conf->disks[i].replacement);
600                 if (!rdev || test_bit(Faulty, &rdev->flags))
601                         degraded++;
602                 else if (test_bit(In_sync, &rdev->flags))
603                         ;
604                 else
605                         /* not in-sync or faulty.
606                          * If the reshape increases the number of devices,
607                          * this is being recovered by the reshape, so
608                          * this 'previous' section is not in_sync.
609                          * If the number of devices is being reduced however,
610                          * the device can only be part of the array if
611                          * we are reverting a reshape, so this section will
612                          * be in-sync.
613                          */
614                         if (conf->raid_disks >= conf->previous_raid_disks)
615                                 degraded++;
616         }
617         rcu_read_unlock();
618         if (conf->raid_disks == conf->previous_raid_disks)
619                 return degraded;
620         rcu_read_lock();
621         degraded2 = 0;
622         for (i = 0; i < conf->raid_disks; i++) {
623                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624                 if (rdev && test_bit(Faulty, &rdev->flags))
625                         rdev = rcu_dereference(conf->disks[i].replacement);
626                 if (!rdev || test_bit(Faulty, &rdev->flags))
627                         degraded2++;
628                 else if (test_bit(In_sync, &rdev->flags))
629                         ;
630                 else
631                         /* not in-sync or faulty.
632                          * If reshape increases the number of devices, this
633                          * section has already been recovered, else it
634                          * almost certainly hasn't.
635                          */
636                         if (conf->raid_disks <= conf->previous_raid_disks)
637                                 degraded2++;
638         }
639         rcu_read_unlock();
640         if (degraded2 > degraded)
641                 return degraded2;
642         return degraded;
643 }
644
645 static int has_failed(struct r5conf *conf)
646 {
647         int degraded;
648
649         if (conf->mddev->reshape_position == MaxSector)
650                 return conf->mddev->degraded > conf->max_degraded;
651
652         degraded = calc_degraded(conf);
653         if (degraded > conf->max_degraded)
654                 return 1;
655         return 0;
656 }
657
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660                   int previous, int noblock, int noquiesce)
661 {
662         struct stripe_head *sh;
663         int hash = stripe_hash_locks_hash(sector);
664
665         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667         spin_lock_irq(conf->hash_locks + hash);
668
669         do {
670                 wait_event_lock_irq(conf->wait_for_stripe,
671                                     conf->quiesce == 0 || noquiesce,
672                                     *(conf->hash_locks + hash));
673                 sh = __find_stripe(conf, sector, conf->generation - previous);
674                 if (!sh) {
675                         if (!conf->inactive_blocked)
676                                 sh = get_free_stripe(conf, hash);
677                         if (noblock && sh == NULL)
678                                 break;
679                         if (!sh) {
680                                 conf->inactive_blocked = 1;
681                                 wait_event_lock_irq(
682                                         conf->wait_for_stripe,
683                                         !list_empty(conf->inactive_list + hash) &&
684                                         (atomic_read(&conf->active_stripes)
685                                          < (conf->max_nr_stripes * 3 / 4)
686                                          || !conf->inactive_blocked),
687                                         *(conf->hash_locks + hash));
688                                 conf->inactive_blocked = 0;
689                         } else {
690                                 init_stripe(sh, sector, previous);
691                                 atomic_inc(&sh->count);
692                         }
693                 } else if (!atomic_inc_not_zero(&sh->count)) {
694                         spin_lock(&conf->device_lock);
695                         if (!atomic_read(&sh->count)) {
696                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
697                                         atomic_inc(&conf->active_stripes);
698                                 BUG_ON(list_empty(&sh->lru) &&
699                                        !test_bit(STRIPE_EXPANDING, &sh->state));
700                                 list_del_init(&sh->lru);
701                                 if (sh->group) {
702                                         sh->group->stripes_cnt--;
703                                         sh->group = NULL;
704                                 }
705                         }
706                         atomic_inc(&sh->count);
707                         spin_unlock(&conf->device_lock);
708                 }
709         } while (sh == NULL);
710
711         spin_unlock_irq(conf->hash_locks + hash);
712         return sh;
713 }
714
715 static bool is_full_stripe_write(struct stripe_head *sh)
716 {
717         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
718         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
719 }
720
721 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
722 {
723         local_irq_disable();
724         if (sh1 > sh2) {
725                 spin_lock(&sh2->stripe_lock);
726                 spin_lock_nested(&sh1->stripe_lock, 1);
727         } else {
728                 spin_lock(&sh1->stripe_lock);
729                 spin_lock_nested(&sh2->stripe_lock, 1);
730         }
731 }
732
733 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734 {
735         spin_unlock(&sh1->stripe_lock);
736         spin_unlock(&sh2->stripe_lock);
737         local_irq_enable();
738 }
739
740 /* Only freshly new full stripe normal write stripe can be added to a batch list */
741 static bool stripe_can_batch(struct stripe_head *sh)
742 {
743         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
744                 is_full_stripe_write(sh);
745 }
746
747 /* we only do back search */
748 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749 {
750         struct stripe_head *head;
751         sector_t head_sector, tmp_sec;
752         int hash;
753         int dd_idx;
754
755         if (!stripe_can_batch(sh))
756                 return;
757         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
758         tmp_sec = sh->sector;
759         if (!sector_div(tmp_sec, conf->chunk_sectors))
760                 return;
761         head_sector = sh->sector - STRIPE_SECTORS;
762
763         hash = stripe_hash_locks_hash(head_sector);
764         spin_lock_irq(conf->hash_locks + hash);
765         head = __find_stripe(conf, head_sector, conf->generation);
766         if (head && !atomic_inc_not_zero(&head->count)) {
767                 spin_lock(&conf->device_lock);
768                 if (!atomic_read(&head->count)) {
769                         if (!test_bit(STRIPE_HANDLE, &head->state))
770                                 atomic_inc(&conf->active_stripes);
771                         BUG_ON(list_empty(&head->lru) &&
772                                !test_bit(STRIPE_EXPANDING, &head->state));
773                         list_del_init(&head->lru);
774                         if (head->group) {
775                                 head->group->stripes_cnt--;
776                                 head->group = NULL;
777                         }
778                 }
779                 atomic_inc(&head->count);
780                 spin_unlock(&conf->device_lock);
781         }
782         spin_unlock_irq(conf->hash_locks + hash);
783
784         if (!head)
785                 return;
786         if (!stripe_can_batch(head))
787                 goto out;
788
789         lock_two_stripes(head, sh);
790         /* clear_batch_ready clear the flag */
791         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
792                 goto unlock_out;
793
794         if (sh->batch_head)
795                 goto unlock_out;
796
797         dd_idx = 0;
798         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
799                 dd_idx++;
800         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
801                 goto unlock_out;
802
803         if (head->batch_head) {
804                 spin_lock(&head->batch_head->batch_lock);
805                 /* This batch list is already running */
806                 if (!stripe_can_batch(head)) {
807                         spin_unlock(&head->batch_head->batch_lock);
808                         goto unlock_out;
809                 }
810
811                 /*
812                  * at this point, head's BATCH_READY could be cleared, but we
813                  * can still add the stripe to batch list
814                  */
815                 list_add(&sh->batch_list, &head->batch_list);
816                 spin_unlock(&head->batch_head->batch_lock);
817
818                 sh->batch_head = head->batch_head;
819         } else {
820                 head->batch_head = head;
821                 sh->batch_head = head->batch_head;
822                 spin_lock(&head->batch_lock);
823                 list_add_tail(&sh->batch_list, &head->batch_list);
824                 spin_unlock(&head->batch_lock);
825         }
826
827         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
828                 if (atomic_dec_return(&conf->preread_active_stripes)
829                     < IO_THRESHOLD)
830                         md_wakeup_thread(conf->mddev->thread);
831
832         atomic_inc(&sh->count);
833 unlock_out:
834         unlock_two_stripes(head, sh);
835 out:
836         release_stripe(head);
837 }
838
839 /* Determine if 'data_offset' or 'new_data_offset' should be used
840  * in this stripe_head.
841  */
842 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
843 {
844         sector_t progress = conf->reshape_progress;
845         /* Need a memory barrier to make sure we see the value
846          * of conf->generation, or ->data_offset that was set before
847          * reshape_progress was updated.
848          */
849         smp_rmb();
850         if (progress == MaxSector)
851                 return 0;
852         if (sh->generation == conf->generation - 1)
853                 return 0;
854         /* We are in a reshape, and this is a new-generation stripe,
855          * so use new_data_offset.
856          */
857         return 1;
858 }
859
860 static void
861 raid5_end_read_request(struct bio *bi, int error);
862 static void
863 raid5_end_write_request(struct bio *bi, int error);
864
865 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
866 {
867         struct r5conf *conf = sh->raid_conf;
868         int i, disks = sh->disks;
869         struct stripe_head *head_sh = sh;
870
871         might_sleep();
872
873         for (i = disks; i--; ) {
874                 int rw;
875                 int replace_only = 0;
876                 struct bio *bi, *rbi;
877                 struct md_rdev *rdev, *rrdev = NULL;
878
879                 sh = head_sh;
880                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
881                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
882                                 rw = WRITE_FUA;
883                         else
884                                 rw = WRITE;
885                         if (test_bit(R5_Discard, &sh->dev[i].flags))
886                                 rw |= REQ_DISCARD;
887                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
888                         rw = READ;
889                 else if (test_and_clear_bit(R5_WantReplace,
890                                             &sh->dev[i].flags)) {
891                         rw = WRITE;
892                         replace_only = 1;
893                 } else
894                         continue;
895                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
896                         rw |= REQ_SYNC;
897
898 again:
899                 bi = &sh->dev[i].req;
900                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
901
902                 rcu_read_lock();
903                 rrdev = rcu_dereference(conf->disks[i].replacement);
904                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
905                 rdev = rcu_dereference(conf->disks[i].rdev);
906                 if (!rdev) {
907                         rdev = rrdev;
908                         rrdev = NULL;
909                 }
910                 if (rw & WRITE) {
911                         if (replace_only)
912                                 rdev = NULL;
913                         if (rdev == rrdev)
914                                 /* We raced and saw duplicates */
915                                 rrdev = NULL;
916                 } else {
917                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
918                                 rdev = rrdev;
919                         rrdev = NULL;
920                 }
921
922                 if (rdev && test_bit(Faulty, &rdev->flags))
923                         rdev = NULL;
924                 if (rdev)
925                         atomic_inc(&rdev->nr_pending);
926                 if (rrdev && test_bit(Faulty, &rrdev->flags))
927                         rrdev = NULL;
928                 if (rrdev)
929                         atomic_inc(&rrdev->nr_pending);
930                 rcu_read_unlock();
931
932                 /* We have already checked bad blocks for reads.  Now
933                  * need to check for writes.  We never accept write errors
934                  * on the replacement, so we don't to check rrdev.
935                  */
936                 while ((rw & WRITE) && rdev &&
937                        test_bit(WriteErrorSeen, &rdev->flags)) {
938                         sector_t first_bad;
939                         int bad_sectors;
940                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
941                                               &first_bad, &bad_sectors);
942                         if (!bad)
943                                 break;
944
945                         if (bad < 0) {
946                                 set_bit(BlockedBadBlocks, &rdev->flags);
947                                 if (!conf->mddev->external &&
948                                     conf->mddev->flags) {
949                                         /* It is very unlikely, but we might
950                                          * still need to write out the
951                                          * bad block log - better give it
952                                          * a chance*/
953                                         md_check_recovery(conf->mddev);
954                                 }
955                                 /*
956                                  * Because md_wait_for_blocked_rdev
957                                  * will dec nr_pending, we must
958                                  * increment it first.
959                                  */
960                                 atomic_inc(&rdev->nr_pending);
961                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
962                         } else {
963                                 /* Acknowledged bad block - skip the write */
964                                 rdev_dec_pending(rdev, conf->mddev);
965                                 rdev = NULL;
966                         }
967                 }
968
969                 if (rdev) {
970                         if (s->syncing || s->expanding || s->expanded
971                             || s->replacing)
972                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
973
974                         set_bit(STRIPE_IO_STARTED, &sh->state);
975
976                         bio_reset(bi);
977                         bi->bi_bdev = rdev->bdev;
978                         bi->bi_rw = rw;
979                         bi->bi_end_io = (rw & WRITE)
980                                 ? raid5_end_write_request
981                                 : raid5_end_read_request;
982                         bi->bi_private = sh;
983
984                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
985                                 __func__, (unsigned long long)sh->sector,
986                                 bi->bi_rw, i);
987                         atomic_inc(&sh->count);
988                         if (sh != head_sh)
989                                 atomic_inc(&head_sh->count);
990                         if (use_new_offset(conf, sh))
991                                 bi->bi_iter.bi_sector = (sh->sector
992                                                  + rdev->new_data_offset);
993                         else
994                                 bi->bi_iter.bi_sector = (sh->sector
995                                                  + rdev->data_offset);
996                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
997                                 bi->bi_rw |= REQ_NOMERGE;
998
999                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1000                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1001                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1002                         bi->bi_vcnt = 1;
1003                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1004                         bi->bi_io_vec[0].bv_offset = 0;
1005                         bi->bi_iter.bi_size = STRIPE_SIZE;
1006                         /*
1007                          * If this is discard request, set bi_vcnt 0. We don't
1008                          * want to confuse SCSI because SCSI will replace payload
1009                          */
1010                         if (rw & REQ_DISCARD)
1011                                 bi->bi_vcnt = 0;
1012                         if (rrdev)
1013                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1014
1015                         if (conf->mddev->gendisk)
1016                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1017                                                       bi, disk_devt(conf->mddev->gendisk),
1018                                                       sh->dev[i].sector);
1019                         generic_make_request(bi);
1020                 }
1021                 if (rrdev) {
1022                         if (s->syncing || s->expanding || s->expanded
1023                             || s->replacing)
1024                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1025
1026                         set_bit(STRIPE_IO_STARTED, &sh->state);
1027
1028                         bio_reset(rbi);
1029                         rbi->bi_bdev = rrdev->bdev;
1030                         rbi->bi_rw = rw;
1031                         BUG_ON(!(rw & WRITE));
1032                         rbi->bi_end_io = raid5_end_write_request;
1033                         rbi->bi_private = sh;
1034
1035                         pr_debug("%s: for %llu schedule op %ld on "
1036                                  "replacement disc %d\n",
1037                                 __func__, (unsigned long long)sh->sector,
1038                                 rbi->bi_rw, i);
1039                         atomic_inc(&sh->count);
1040                         if (sh != head_sh)
1041                                 atomic_inc(&head_sh->count);
1042                         if (use_new_offset(conf, sh))
1043                                 rbi->bi_iter.bi_sector = (sh->sector
1044                                                   + rrdev->new_data_offset);
1045                         else
1046                                 rbi->bi_iter.bi_sector = (sh->sector
1047                                                   + rrdev->data_offset);
1048                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1049                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1050                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1051                         rbi->bi_vcnt = 1;
1052                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1053                         rbi->bi_io_vec[0].bv_offset = 0;
1054                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1055                         /*
1056                          * If this is discard request, set bi_vcnt 0. We don't
1057                          * want to confuse SCSI because SCSI will replace payload
1058                          */
1059                         if (rw & REQ_DISCARD)
1060                                 rbi->bi_vcnt = 0;
1061                         if (conf->mddev->gendisk)
1062                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1063                                                       rbi, disk_devt(conf->mddev->gendisk),
1064                                                       sh->dev[i].sector);
1065                         generic_make_request(rbi);
1066                 }
1067                 if (!rdev && !rrdev) {
1068                         if (rw & WRITE)
1069                                 set_bit(STRIPE_DEGRADED, &sh->state);
1070                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1071                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1072                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1073                         set_bit(STRIPE_HANDLE, &sh->state);
1074                 }
1075
1076                 if (!head_sh->batch_head)
1077                         continue;
1078                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1079                                       batch_list);
1080                 if (sh != head_sh)
1081                         goto again;
1082         }
1083 }
1084
1085 static struct dma_async_tx_descriptor *
1086 async_copy_data(int frombio, struct bio *bio, struct page **page,
1087         sector_t sector, struct dma_async_tx_descriptor *tx,
1088         struct stripe_head *sh)
1089 {
1090         struct bio_vec bvl;
1091         struct bvec_iter iter;
1092         struct page *bio_page;
1093         int page_offset;
1094         struct async_submit_ctl submit;
1095         enum async_tx_flags flags = 0;
1096
1097         if (bio->bi_iter.bi_sector >= sector)
1098                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1099         else
1100                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1101
1102         if (frombio)
1103                 flags |= ASYNC_TX_FENCE;
1104         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1105
1106         bio_for_each_segment(bvl, bio, iter) {
1107                 int len = bvl.bv_len;
1108                 int clen;
1109                 int b_offset = 0;
1110
1111                 if (page_offset < 0) {
1112                         b_offset = -page_offset;
1113                         page_offset += b_offset;
1114                         len -= b_offset;
1115                 }
1116
1117                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1118                         clen = STRIPE_SIZE - page_offset;
1119                 else
1120                         clen = len;
1121
1122                 if (clen > 0) {
1123                         b_offset += bvl.bv_offset;
1124                         bio_page = bvl.bv_page;
1125                         if (frombio) {
1126                                 if (sh->raid_conf->skip_copy &&
1127                                     b_offset == 0 && page_offset == 0 &&
1128                                     clen == STRIPE_SIZE)
1129                                         *page = bio_page;
1130                                 else
1131                                         tx = async_memcpy(*page, bio_page, page_offset,
1132                                                   b_offset, clen, &submit);
1133                         } else
1134                                 tx = async_memcpy(bio_page, *page, b_offset,
1135                                                   page_offset, clen, &submit);
1136                 }
1137                 /* chain the operations */
1138                 submit.depend_tx = tx;
1139
1140                 if (clen < len) /* hit end of page */
1141                         break;
1142                 page_offset +=  len;
1143         }
1144
1145         return tx;
1146 }
1147
1148 static void ops_complete_biofill(void *stripe_head_ref)
1149 {
1150         struct stripe_head *sh = stripe_head_ref;
1151         struct bio *return_bi = NULL;
1152         int i;
1153
1154         pr_debug("%s: stripe %llu\n", __func__,
1155                 (unsigned long long)sh->sector);
1156
1157         /* clear completed biofills */
1158         for (i = sh->disks; i--; ) {
1159                 struct r5dev *dev = &sh->dev[i];
1160
1161                 /* acknowledge completion of a biofill operation */
1162                 /* and check if we need to reply to a read request,
1163                  * new R5_Wantfill requests are held off until
1164                  * !STRIPE_BIOFILL_RUN
1165                  */
1166                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1167                         struct bio *rbi, *rbi2;
1168
1169                         BUG_ON(!dev->read);
1170                         rbi = dev->read;
1171                         dev->read = NULL;
1172                         while (rbi && rbi->bi_iter.bi_sector <
1173                                 dev->sector + STRIPE_SECTORS) {
1174                                 rbi2 = r5_next_bio(rbi, dev->sector);
1175                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1176                                         rbi->bi_next = return_bi;
1177                                         return_bi = rbi;
1178                                 }
1179                                 rbi = rbi2;
1180                         }
1181                 }
1182         }
1183         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1184
1185         return_io(return_bi);
1186
1187         set_bit(STRIPE_HANDLE, &sh->state);
1188         release_stripe(sh);
1189 }
1190
1191 static void ops_run_biofill(struct stripe_head *sh)
1192 {
1193         struct dma_async_tx_descriptor *tx = NULL;
1194         struct async_submit_ctl submit;
1195         int i;
1196
1197         BUG_ON(sh->batch_head);
1198         pr_debug("%s: stripe %llu\n", __func__,
1199                 (unsigned long long)sh->sector);
1200
1201         for (i = sh->disks; i--; ) {
1202                 struct r5dev *dev = &sh->dev[i];
1203                 if (test_bit(R5_Wantfill, &dev->flags)) {
1204                         struct bio *rbi;
1205                         spin_lock_irq(&sh->stripe_lock);
1206                         dev->read = rbi = dev->toread;
1207                         dev->toread = NULL;
1208                         spin_unlock_irq(&sh->stripe_lock);
1209                         while (rbi && rbi->bi_iter.bi_sector <
1210                                 dev->sector + STRIPE_SECTORS) {
1211                                 tx = async_copy_data(0, rbi, &dev->page,
1212                                         dev->sector, tx, sh);
1213                                 rbi = r5_next_bio(rbi, dev->sector);
1214                         }
1215                 }
1216         }
1217
1218         atomic_inc(&sh->count);
1219         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1220         async_trigger_callback(&submit);
1221 }
1222
1223 static void mark_target_uptodate(struct stripe_head *sh, int target)
1224 {
1225         struct r5dev *tgt;
1226
1227         if (target < 0)
1228                 return;
1229
1230         tgt = &sh->dev[target];
1231         set_bit(R5_UPTODATE, &tgt->flags);
1232         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1233         clear_bit(R5_Wantcompute, &tgt->flags);
1234 }
1235
1236 static void ops_complete_compute(void *stripe_head_ref)
1237 {
1238         struct stripe_head *sh = stripe_head_ref;
1239
1240         pr_debug("%s: stripe %llu\n", __func__,
1241                 (unsigned long long)sh->sector);
1242
1243         /* mark the computed target(s) as uptodate */
1244         mark_target_uptodate(sh, sh->ops.target);
1245         mark_target_uptodate(sh, sh->ops.target2);
1246
1247         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1248         if (sh->check_state == check_state_compute_run)
1249                 sh->check_state = check_state_compute_result;
1250         set_bit(STRIPE_HANDLE, &sh->state);
1251         release_stripe(sh);
1252 }
1253
1254 /* return a pointer to the address conversion region of the scribble buffer */
1255 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1256                                  struct raid5_percpu *percpu, int i)
1257 {
1258         void *addr;
1259
1260         addr = flex_array_get(percpu->scribble, i);
1261         return addr + sizeof(struct page *) * (sh->disks + 2);
1262 }
1263
1264 /* return a pointer to the address conversion region of the scribble buffer */
1265 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1266 {
1267         void *addr;
1268
1269         addr = flex_array_get(percpu->scribble, i);
1270         return addr;
1271 }
1272
1273 static struct dma_async_tx_descriptor *
1274 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1275 {
1276         int disks = sh->disks;
1277         struct page **xor_srcs = to_addr_page(percpu, 0);
1278         int target = sh->ops.target;
1279         struct r5dev *tgt = &sh->dev[target];
1280         struct page *xor_dest = tgt->page;
1281         int count = 0;
1282         struct dma_async_tx_descriptor *tx;
1283         struct async_submit_ctl submit;
1284         int i;
1285
1286         BUG_ON(sh->batch_head);
1287
1288         pr_debug("%s: stripe %llu block: %d\n",
1289                 __func__, (unsigned long long)sh->sector, target);
1290         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1291
1292         for (i = disks; i--; )
1293                 if (i != target)
1294                         xor_srcs[count++] = sh->dev[i].page;
1295
1296         atomic_inc(&sh->count);
1297
1298         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1299                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1300         if (unlikely(count == 1))
1301                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1302         else
1303                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1304
1305         return tx;
1306 }
1307
1308 /* set_syndrome_sources - populate source buffers for gen_syndrome
1309  * @srcs - (struct page *) array of size sh->disks
1310  * @sh - stripe_head to parse
1311  *
1312  * Populates srcs in proper layout order for the stripe and returns the
1313  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1314  * destination buffer is recorded in srcs[count] and the Q destination
1315  * is recorded in srcs[count+1]].
1316  */
1317 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1318 {
1319         int disks = sh->disks;
1320         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1321         int d0_idx = raid6_d0(sh);
1322         int count;
1323         int i;
1324
1325         for (i = 0; i < disks; i++)
1326                 srcs[i] = NULL;
1327
1328         count = 0;
1329         i = d0_idx;
1330         do {
1331                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1332
1333                 srcs[slot] = sh->dev[i].page;
1334                 i = raid6_next_disk(i, disks);
1335         } while (i != d0_idx);
1336
1337         return syndrome_disks;
1338 }
1339
1340 static struct dma_async_tx_descriptor *
1341 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1342 {
1343         int disks = sh->disks;
1344         struct page **blocks = to_addr_page(percpu, 0);
1345         int target;
1346         int qd_idx = sh->qd_idx;
1347         struct dma_async_tx_descriptor *tx;
1348         struct async_submit_ctl submit;
1349         struct r5dev *tgt;
1350         struct page *dest;
1351         int i;
1352         int count;
1353
1354         BUG_ON(sh->batch_head);
1355         if (sh->ops.target < 0)
1356                 target = sh->ops.target2;
1357         else if (sh->ops.target2 < 0)
1358                 target = sh->ops.target;
1359         else
1360                 /* we should only have one valid target */
1361                 BUG();
1362         BUG_ON(target < 0);
1363         pr_debug("%s: stripe %llu block: %d\n",
1364                 __func__, (unsigned long long)sh->sector, target);
1365
1366         tgt = &sh->dev[target];
1367         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1368         dest = tgt->page;
1369
1370         atomic_inc(&sh->count);
1371
1372         if (target == qd_idx) {
1373                 count = set_syndrome_sources(blocks, sh);
1374                 blocks[count] = NULL; /* regenerating p is not necessary */
1375                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1376                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1377                                   ops_complete_compute, sh,
1378                                   to_addr_conv(sh, percpu, 0));
1379                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1380         } else {
1381                 /* Compute any data- or p-drive using XOR */
1382                 count = 0;
1383                 for (i = disks; i-- ; ) {
1384                         if (i == target || i == qd_idx)
1385                                 continue;
1386                         blocks[count++] = sh->dev[i].page;
1387                 }
1388
1389                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1390                                   NULL, ops_complete_compute, sh,
1391                                   to_addr_conv(sh, percpu, 0));
1392                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1393         }
1394
1395         return tx;
1396 }
1397
1398 static struct dma_async_tx_descriptor *
1399 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1400 {
1401         int i, count, disks = sh->disks;
1402         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1403         int d0_idx = raid6_d0(sh);
1404         int faila = -1, failb = -1;
1405         int target = sh->ops.target;
1406         int target2 = sh->ops.target2;
1407         struct r5dev *tgt = &sh->dev[target];
1408         struct r5dev *tgt2 = &sh->dev[target2];
1409         struct dma_async_tx_descriptor *tx;
1410         struct page **blocks = to_addr_page(percpu, 0);
1411         struct async_submit_ctl submit;
1412
1413         BUG_ON(sh->batch_head);
1414         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1415                  __func__, (unsigned long long)sh->sector, target, target2);
1416         BUG_ON(target < 0 || target2 < 0);
1417         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1418         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1419
1420         /* we need to open-code set_syndrome_sources to handle the
1421          * slot number conversion for 'faila' and 'failb'
1422          */
1423         for (i = 0; i < disks ; i++)
1424                 blocks[i] = NULL;
1425         count = 0;
1426         i = d0_idx;
1427         do {
1428                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1429
1430                 blocks[slot] = sh->dev[i].page;
1431
1432                 if (i == target)
1433                         faila = slot;
1434                 if (i == target2)
1435                         failb = slot;
1436                 i = raid6_next_disk(i, disks);
1437         } while (i != d0_idx);
1438
1439         BUG_ON(faila == failb);
1440         if (failb < faila)
1441                 swap(faila, failb);
1442         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1443                  __func__, (unsigned long long)sh->sector, faila, failb);
1444
1445         atomic_inc(&sh->count);
1446
1447         if (failb == syndrome_disks+1) {
1448                 /* Q disk is one of the missing disks */
1449                 if (faila == syndrome_disks) {
1450                         /* Missing P+Q, just recompute */
1451                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1452                                           ops_complete_compute, sh,
1453                                           to_addr_conv(sh, percpu, 0));
1454                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1455                                                   STRIPE_SIZE, &submit);
1456                 } else {
1457                         struct page *dest;
1458                         int data_target;
1459                         int qd_idx = sh->qd_idx;
1460
1461                         /* Missing D+Q: recompute D from P, then recompute Q */
1462                         if (target == qd_idx)
1463                                 data_target = target2;
1464                         else
1465                                 data_target = target;
1466
1467                         count = 0;
1468                         for (i = disks; i-- ; ) {
1469                                 if (i == data_target || i == qd_idx)
1470                                         continue;
1471                                 blocks[count++] = sh->dev[i].page;
1472                         }
1473                         dest = sh->dev[data_target].page;
1474                         init_async_submit(&submit,
1475                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1476                                           NULL, NULL, NULL,
1477                                           to_addr_conv(sh, percpu, 0));
1478                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1479                                        &submit);
1480
1481                         count = set_syndrome_sources(blocks, sh);
1482                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1483                                           ops_complete_compute, sh,
1484                                           to_addr_conv(sh, percpu, 0));
1485                         return async_gen_syndrome(blocks, 0, count+2,
1486                                                   STRIPE_SIZE, &submit);
1487                 }
1488         } else {
1489                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490                                   ops_complete_compute, sh,
1491                                   to_addr_conv(sh, percpu, 0));
1492                 if (failb == syndrome_disks) {
1493                         /* We're missing D+P. */
1494                         return async_raid6_datap_recov(syndrome_disks+2,
1495                                                        STRIPE_SIZE, faila,
1496                                                        blocks, &submit);
1497                 } else {
1498                         /* We're missing D+D. */
1499                         return async_raid6_2data_recov(syndrome_disks+2,
1500                                                        STRIPE_SIZE, faila, failb,
1501                                                        blocks, &submit);
1502                 }
1503         }
1504 }
1505
1506 static void ops_complete_prexor(void *stripe_head_ref)
1507 {
1508         struct stripe_head *sh = stripe_head_ref;
1509
1510         pr_debug("%s: stripe %llu\n", __func__,
1511                 (unsigned long long)sh->sector);
1512 }
1513
1514 static struct dma_async_tx_descriptor *
1515 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1516                struct dma_async_tx_descriptor *tx)
1517 {
1518         int disks = sh->disks;
1519         struct page **xor_srcs = to_addr_page(percpu, 0);
1520         int count = 0, pd_idx = sh->pd_idx, i;
1521         struct async_submit_ctl submit;
1522
1523         /* existing parity data subtracted */
1524         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1525
1526         BUG_ON(sh->batch_head);
1527         pr_debug("%s: stripe %llu\n", __func__,
1528                 (unsigned long long)sh->sector);
1529
1530         for (i = disks; i--; ) {
1531                 struct r5dev *dev = &sh->dev[i];
1532                 /* Only process blocks that are known to be uptodate */
1533                 if (test_bit(R5_Wantdrain, &dev->flags))
1534                         xor_srcs[count++] = dev->page;
1535         }
1536
1537         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1538                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1539         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1540
1541         return tx;
1542 }
1543
1544 static struct dma_async_tx_descriptor *
1545 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1546 {
1547         int disks = sh->disks;
1548         int i;
1549         struct stripe_head *head_sh = sh;
1550
1551         pr_debug("%s: stripe %llu\n", __func__,
1552                 (unsigned long long)sh->sector);
1553
1554         for (i = disks; i--; ) {
1555                 struct r5dev *dev;
1556                 struct bio *chosen;
1557
1558                 sh = head_sh;
1559                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1560                         struct bio *wbi;
1561
1562 again:
1563                         dev = &sh->dev[i];
1564                         spin_lock_irq(&sh->stripe_lock);
1565                         chosen = dev->towrite;
1566                         dev->towrite = NULL;
1567                         sh->overwrite_disks = 0;
1568                         BUG_ON(dev->written);
1569                         wbi = dev->written = chosen;
1570                         spin_unlock_irq(&sh->stripe_lock);
1571                         WARN_ON(dev->page != dev->orig_page);
1572
1573                         while (wbi && wbi->bi_iter.bi_sector <
1574                                 dev->sector + STRIPE_SECTORS) {
1575                                 if (wbi->bi_rw & REQ_FUA)
1576                                         set_bit(R5_WantFUA, &dev->flags);
1577                                 if (wbi->bi_rw & REQ_SYNC)
1578                                         set_bit(R5_SyncIO, &dev->flags);
1579                                 if (wbi->bi_rw & REQ_DISCARD)
1580                                         set_bit(R5_Discard, &dev->flags);
1581                                 else {
1582                                         tx = async_copy_data(1, wbi, &dev->page,
1583                                                 dev->sector, tx, sh);
1584                                         if (dev->page != dev->orig_page) {
1585                                                 set_bit(R5_SkipCopy, &dev->flags);
1586                                                 clear_bit(R5_UPTODATE, &dev->flags);
1587                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1588                                         }
1589                                 }
1590                                 wbi = r5_next_bio(wbi, dev->sector);
1591                         }
1592
1593                         if (head_sh->batch_head) {
1594                                 sh = list_first_entry(&sh->batch_list,
1595                                                       struct stripe_head,
1596                                                       batch_list);
1597                                 if (sh == head_sh)
1598                                         continue;
1599                                 goto again;
1600                         }
1601                 }
1602         }
1603
1604         return tx;
1605 }
1606
1607 static void ops_complete_reconstruct(void *stripe_head_ref)
1608 {
1609         struct stripe_head *sh = stripe_head_ref;
1610         int disks = sh->disks;
1611         int pd_idx = sh->pd_idx;
1612         int qd_idx = sh->qd_idx;
1613         int i;
1614         bool fua = false, sync = false, discard = false;
1615
1616         pr_debug("%s: stripe %llu\n", __func__,
1617                 (unsigned long long)sh->sector);
1618
1619         for (i = disks; i--; ) {
1620                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1621                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1622                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1623         }
1624
1625         for (i = disks; i--; ) {
1626                 struct r5dev *dev = &sh->dev[i];
1627
1628                 if (dev->written || i == pd_idx || i == qd_idx) {
1629                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1630                                 set_bit(R5_UPTODATE, &dev->flags);
1631                         if (fua)
1632                                 set_bit(R5_WantFUA, &dev->flags);
1633                         if (sync)
1634                                 set_bit(R5_SyncIO, &dev->flags);
1635                 }
1636         }
1637
1638         if (sh->reconstruct_state == reconstruct_state_drain_run)
1639                 sh->reconstruct_state = reconstruct_state_drain_result;
1640         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1641                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1642         else {
1643                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1644                 sh->reconstruct_state = reconstruct_state_result;
1645         }
1646
1647         set_bit(STRIPE_HANDLE, &sh->state);
1648         release_stripe(sh);
1649 }
1650
1651 static void
1652 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1653                      struct dma_async_tx_descriptor *tx)
1654 {
1655         int disks = sh->disks;
1656         struct page **xor_srcs;
1657         struct async_submit_ctl submit;
1658         int count, pd_idx = sh->pd_idx, i;
1659         struct page *xor_dest;
1660         int prexor = 0;
1661         unsigned long flags;
1662         int j = 0;
1663         struct stripe_head *head_sh = sh;
1664         int last_stripe;
1665
1666         pr_debug("%s: stripe %llu\n", __func__,
1667                 (unsigned long long)sh->sector);
1668
1669         for (i = 0; i < sh->disks; i++) {
1670                 if (pd_idx == i)
1671                         continue;
1672                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1673                         break;
1674         }
1675         if (i >= sh->disks) {
1676                 atomic_inc(&sh->count);
1677                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1678                 ops_complete_reconstruct(sh);
1679                 return;
1680         }
1681 again:
1682         count = 0;
1683         xor_srcs = to_addr_page(percpu, j);
1684         /* check if prexor is active which means only process blocks
1685          * that are part of a read-modify-write (written)
1686          */
1687         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1688                 prexor = 1;
1689                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1690                 for (i = disks; i--; ) {
1691                         struct r5dev *dev = &sh->dev[i];
1692                         if (head_sh->dev[i].written)
1693                                 xor_srcs[count++] = dev->page;
1694                 }
1695         } else {
1696                 xor_dest = sh->dev[pd_idx].page;
1697                 for (i = disks; i--; ) {
1698                         struct r5dev *dev = &sh->dev[i];
1699                         if (i != pd_idx)
1700                                 xor_srcs[count++] = dev->page;
1701                 }
1702         }
1703
1704         /* 1/ if we prexor'd then the dest is reused as a source
1705          * 2/ if we did not prexor then we are redoing the parity
1706          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1707          * for the synchronous xor case
1708          */
1709         last_stripe = !head_sh->batch_head ||
1710                 list_first_entry(&sh->batch_list,
1711                                  struct stripe_head, batch_list) == head_sh;
1712         if (last_stripe) {
1713                 flags = ASYNC_TX_ACK |
1714                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1715
1716                 atomic_inc(&head_sh->count);
1717                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1718                                   to_addr_conv(sh, percpu, j));
1719         } else {
1720                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1721                 init_async_submit(&submit, flags, tx, NULL, NULL,
1722                                   to_addr_conv(sh, percpu, j));
1723         }
1724
1725         if (unlikely(count == 1))
1726                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1727         else
1728                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1729         if (!last_stripe) {
1730                 j++;
1731                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1732                                       batch_list);
1733                 goto again;
1734         }
1735 }
1736
1737 static void
1738 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1739                      struct dma_async_tx_descriptor *tx)
1740 {
1741         struct async_submit_ctl submit;
1742         struct page **blocks;
1743         int count, i, j = 0;
1744         struct stripe_head *head_sh = sh;
1745         int last_stripe;
1746
1747         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1748
1749         for (i = 0; i < sh->disks; i++) {
1750                 if (sh->pd_idx == i || sh->qd_idx == i)
1751                         continue;
1752                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1753                         break;
1754         }
1755         if (i >= sh->disks) {
1756                 atomic_inc(&sh->count);
1757                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1758                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1759                 ops_complete_reconstruct(sh);
1760                 return;
1761         }
1762
1763 again:
1764         blocks = to_addr_page(percpu, j);
1765         count = set_syndrome_sources(blocks, sh);
1766         last_stripe = !head_sh->batch_head ||
1767                 list_first_entry(&sh->batch_list,
1768                                  struct stripe_head, batch_list) == head_sh;
1769
1770         if (last_stripe) {
1771                 atomic_inc(&head_sh->count);
1772                 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1773                                   head_sh, to_addr_conv(sh, percpu, j));
1774         } else
1775                 init_async_submit(&submit, 0, tx, NULL, NULL,
1776                                   to_addr_conv(sh, percpu, j));
1777         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1778         if (!last_stripe) {
1779                 j++;
1780                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1781                                       batch_list);
1782                 goto again;
1783         }
1784 }
1785
1786 static void ops_complete_check(void *stripe_head_ref)
1787 {
1788         struct stripe_head *sh = stripe_head_ref;
1789
1790         pr_debug("%s: stripe %llu\n", __func__,
1791                 (unsigned long long)sh->sector);
1792
1793         sh->check_state = check_state_check_result;
1794         set_bit(STRIPE_HANDLE, &sh->state);
1795         release_stripe(sh);
1796 }
1797
1798 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1799 {
1800         int disks = sh->disks;
1801         int pd_idx = sh->pd_idx;
1802         int qd_idx = sh->qd_idx;
1803         struct page *xor_dest;
1804         struct page **xor_srcs = to_addr_page(percpu, 0);
1805         struct dma_async_tx_descriptor *tx;
1806         struct async_submit_ctl submit;
1807         int count;
1808         int i;
1809
1810         pr_debug("%s: stripe %llu\n", __func__,
1811                 (unsigned long long)sh->sector);
1812
1813         BUG_ON(sh->batch_head);
1814         count = 0;
1815         xor_dest = sh->dev[pd_idx].page;
1816         xor_srcs[count++] = xor_dest;
1817         for (i = disks; i--; ) {
1818                 if (i == pd_idx || i == qd_idx)
1819                         continue;
1820                 xor_srcs[count++] = sh->dev[i].page;
1821         }
1822
1823         init_async_submit(&submit, 0, NULL, NULL, NULL,
1824                           to_addr_conv(sh, percpu, 0));
1825         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1826                            &sh->ops.zero_sum_result, &submit);
1827
1828         atomic_inc(&sh->count);
1829         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1830         tx = async_trigger_callback(&submit);
1831 }
1832
1833 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1834 {
1835         struct page **srcs = to_addr_page(percpu, 0);
1836         struct async_submit_ctl submit;
1837         int count;
1838
1839         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1840                 (unsigned long long)sh->sector, checkp);
1841
1842         BUG_ON(sh->batch_head);
1843         count = set_syndrome_sources(srcs, sh);
1844         if (!checkp)
1845                 srcs[count] = NULL;
1846
1847         atomic_inc(&sh->count);
1848         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1849                           sh, to_addr_conv(sh, percpu, 0));
1850         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1851                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1852 }
1853
1854 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1855 {
1856         int overlap_clear = 0, i, disks = sh->disks;
1857         struct dma_async_tx_descriptor *tx = NULL;
1858         struct r5conf *conf = sh->raid_conf;
1859         int level = conf->level;
1860         struct raid5_percpu *percpu;
1861         unsigned long cpu;
1862
1863         cpu = get_cpu();
1864         percpu = per_cpu_ptr(conf->percpu, cpu);
1865         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1866                 ops_run_biofill(sh);
1867                 overlap_clear++;
1868         }
1869
1870         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1871                 if (level < 6)
1872                         tx = ops_run_compute5(sh, percpu);
1873                 else {
1874                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1875                                 tx = ops_run_compute6_1(sh, percpu);
1876                         else
1877                                 tx = ops_run_compute6_2(sh, percpu);
1878                 }
1879                 /* terminate the chain if reconstruct is not set to be run */
1880                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1881                         async_tx_ack(tx);
1882         }
1883
1884         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1885                 tx = ops_run_prexor(sh, percpu, tx);
1886
1887         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1888                 tx = ops_run_biodrain(sh, tx);
1889                 overlap_clear++;
1890         }
1891
1892         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1893                 if (level < 6)
1894                         ops_run_reconstruct5(sh, percpu, tx);
1895                 else
1896                         ops_run_reconstruct6(sh, percpu, tx);
1897         }
1898
1899         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1900                 if (sh->check_state == check_state_run)
1901                         ops_run_check_p(sh, percpu);
1902                 else if (sh->check_state == check_state_run_q)
1903                         ops_run_check_pq(sh, percpu, 0);
1904                 else if (sh->check_state == check_state_run_pq)
1905                         ops_run_check_pq(sh, percpu, 1);
1906                 else
1907                         BUG();
1908         }
1909
1910         if (overlap_clear && !sh->batch_head)
1911                 for (i = disks; i--; ) {
1912                         struct r5dev *dev = &sh->dev[i];
1913                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1914                                 wake_up(&sh->raid_conf->wait_for_overlap);
1915                 }
1916         put_cpu();
1917 }
1918
1919 static int grow_one_stripe(struct r5conf *conf, int hash)
1920 {
1921         struct stripe_head *sh;
1922         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1923         if (!sh)
1924                 return 0;
1925
1926         sh->raid_conf = conf;
1927
1928         spin_lock_init(&sh->stripe_lock);
1929
1930         if (grow_buffers(sh)) {
1931                 shrink_buffers(sh);
1932                 kmem_cache_free(conf->slab_cache, sh);
1933                 return 0;
1934         }
1935         sh->hash_lock_index = hash;
1936         /* we just created an active stripe so... */
1937         atomic_set(&sh->count, 1);
1938         atomic_inc(&conf->active_stripes);
1939         INIT_LIST_HEAD(&sh->lru);
1940
1941         spin_lock_init(&sh->batch_lock);
1942         INIT_LIST_HEAD(&sh->batch_list);
1943         sh->batch_head = NULL;
1944         release_stripe(sh);
1945         return 1;
1946 }
1947
1948 static int grow_stripes(struct r5conf *conf, int num)
1949 {
1950         struct kmem_cache *sc;
1951         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1952         int hash;
1953
1954         if (conf->mddev->gendisk)
1955                 sprintf(conf->cache_name[0],
1956                         "raid%d-%s", conf->level, mdname(conf->mddev));
1957         else
1958                 sprintf(conf->cache_name[0],
1959                         "raid%d-%p", conf->level, conf->mddev);
1960         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1961
1962         conf->active_name = 0;
1963         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1964                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1965                                0, 0, NULL);
1966         if (!sc)
1967                 return 1;
1968         conf->slab_cache = sc;
1969         conf->pool_size = devs;
1970         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1971         while (num--) {
1972                 if (!grow_one_stripe(conf, hash))
1973                         return 1;
1974                 conf->max_nr_stripes++;
1975                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1976         }
1977         return 0;
1978 }
1979
1980 /**
1981  * scribble_len - return the required size of the scribble region
1982  * @num - total number of disks in the array
1983  *
1984  * The size must be enough to contain:
1985  * 1/ a struct page pointer for each device in the array +2
1986  * 2/ room to convert each entry in (1) to its corresponding dma
1987  *    (dma_map_page()) or page (page_address()) address.
1988  *
1989  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1990  * calculate over all devices (not just the data blocks), using zeros in place
1991  * of the P and Q blocks.
1992  */
1993 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
1994 {
1995         struct flex_array *ret;
1996         size_t len;
1997
1998         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1999         ret = flex_array_alloc(len, cnt, flags);
2000         if (!ret)
2001                 return NULL;
2002         /* always prealloc all elements, so no locking is required */
2003         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2004                 flex_array_free(ret);
2005                 return NULL;
2006         }
2007         return ret;
2008 }
2009
2010 static int resize_stripes(struct r5conf *conf, int newsize)
2011 {
2012         /* Make all the stripes able to hold 'newsize' devices.
2013          * New slots in each stripe get 'page' set to a new page.
2014          *
2015          * This happens in stages:
2016          * 1/ create a new kmem_cache and allocate the required number of
2017          *    stripe_heads.
2018          * 2/ gather all the old stripe_heads and transfer the pages across
2019          *    to the new stripe_heads.  This will have the side effect of
2020          *    freezing the array as once all stripe_heads have been collected,
2021          *    no IO will be possible.  Old stripe heads are freed once their
2022          *    pages have been transferred over, and the old kmem_cache is
2023          *    freed when all stripes are done.
2024          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2025          *    we simple return a failre status - no need to clean anything up.
2026          * 4/ allocate new pages for the new slots in the new stripe_heads.
2027          *    If this fails, we don't bother trying the shrink the
2028          *    stripe_heads down again, we just leave them as they are.
2029          *    As each stripe_head is processed the new one is released into
2030          *    active service.
2031          *
2032          * Once step2 is started, we cannot afford to wait for a write,
2033          * so we use GFP_NOIO allocations.
2034          */
2035         struct stripe_head *osh, *nsh;
2036         LIST_HEAD(newstripes);
2037         struct disk_info *ndisks;
2038         unsigned long cpu;
2039         int err;
2040         struct kmem_cache *sc;
2041         int i;
2042         int hash, cnt;
2043
2044         if (newsize <= conf->pool_size)
2045                 return 0; /* never bother to shrink */
2046
2047         err = md_allow_write(conf->mddev);
2048         if (err)
2049                 return err;
2050
2051         /* Step 1 */
2052         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2053                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2054                                0, 0, NULL);
2055         if (!sc)
2056                 return -ENOMEM;
2057
2058         for (i = conf->max_nr_stripes; i; i--) {
2059                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
2060                 if (!nsh)
2061                         break;
2062
2063                 nsh->raid_conf = conf;
2064                 spin_lock_init(&nsh->stripe_lock);
2065
2066                 list_add(&nsh->lru, &newstripes);
2067         }
2068         if (i) {
2069                 /* didn't get enough, give up */
2070                 while (!list_empty(&newstripes)) {
2071                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2072                         list_del(&nsh->lru);
2073                         kmem_cache_free(sc, nsh);
2074                 }
2075                 kmem_cache_destroy(sc);
2076                 return -ENOMEM;
2077         }
2078         /* Step 2 - Must use GFP_NOIO now.
2079          * OK, we have enough stripes, start collecting inactive
2080          * stripes and copying them over
2081          */
2082         hash = 0;
2083         cnt = 0;
2084         list_for_each_entry(nsh, &newstripes, lru) {
2085                 lock_device_hash_lock(conf, hash);
2086                 wait_event_cmd(conf->wait_for_stripe,
2087                                     !list_empty(conf->inactive_list + hash),
2088                                     unlock_device_hash_lock(conf, hash),
2089                                     lock_device_hash_lock(conf, hash));
2090                 osh = get_free_stripe(conf, hash);
2091                 unlock_device_hash_lock(conf, hash);
2092                 atomic_set(&nsh->count, 1);
2093                 for(i=0; i<conf->pool_size; i++) {
2094                         nsh->dev[i].page = osh->dev[i].page;
2095                         nsh->dev[i].orig_page = osh->dev[i].page;
2096                 }
2097                 for( ; i<newsize; i++)
2098                         nsh->dev[i].page = NULL;
2099                 nsh->hash_lock_index = hash;
2100                 kmem_cache_free(conf->slab_cache, osh);
2101                 cnt++;
2102                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2103                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2104                         hash++;
2105                         cnt = 0;
2106                 }
2107         }
2108         kmem_cache_destroy(conf->slab_cache);
2109
2110         /* Step 3.
2111          * At this point, we are holding all the stripes so the array
2112          * is completely stalled, so now is a good time to resize
2113          * conf->disks and the scribble region
2114          */
2115         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2116         if (ndisks) {
2117                 for (i=0; i<conf->raid_disks; i++)
2118                         ndisks[i] = conf->disks[i];
2119                 kfree(conf->disks);
2120                 conf->disks = ndisks;
2121         } else
2122                 err = -ENOMEM;
2123
2124         get_online_cpus();
2125         for_each_present_cpu(cpu) {
2126                 struct raid5_percpu *percpu;
2127                 struct flex_array *scribble;
2128
2129                 percpu = per_cpu_ptr(conf->percpu, cpu);
2130                 scribble = scribble_alloc(newsize, conf->chunk_sectors /
2131                         STRIPE_SECTORS, GFP_NOIO);
2132
2133                 if (scribble) {
2134                         flex_array_free(percpu->scribble);
2135                         percpu->scribble = scribble;
2136                 } else {
2137                         err = -ENOMEM;
2138                         break;
2139                 }
2140         }
2141         put_online_cpus();
2142
2143         /* Step 4, return new stripes to service */
2144         while(!list_empty(&newstripes)) {
2145                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2146                 list_del_init(&nsh->lru);
2147
2148                 for (i=conf->raid_disks; i < newsize; i++)
2149                         if (nsh->dev[i].page == NULL) {
2150                                 struct page *p = alloc_page(GFP_NOIO);
2151                                 nsh->dev[i].page = p;
2152                                 nsh->dev[i].orig_page = p;
2153                                 if (!p)
2154                                         err = -ENOMEM;
2155                         }
2156                 release_stripe(nsh);
2157         }
2158         /* critical section pass, GFP_NOIO no longer needed */
2159
2160         conf->slab_cache = sc;
2161         conf->active_name = 1-conf->active_name;
2162         conf->pool_size = newsize;
2163         return err;
2164 }
2165
2166 static int drop_one_stripe(struct r5conf *conf, int hash)
2167 {
2168         struct stripe_head *sh;
2169
2170         spin_lock_irq(conf->hash_locks + hash);
2171         sh = get_free_stripe(conf, hash);
2172         spin_unlock_irq(conf->hash_locks + hash);
2173         if (!sh)
2174                 return 0;
2175         BUG_ON(atomic_read(&sh->count));
2176         shrink_buffers(sh);
2177         kmem_cache_free(conf->slab_cache, sh);
2178         atomic_dec(&conf->active_stripes);
2179         return 1;
2180 }
2181
2182 static void shrink_stripes(struct r5conf *conf)
2183 {
2184         int hash;
2185         for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
2186                 while (drop_one_stripe(conf, hash))
2187                         ;
2188
2189         if (conf->slab_cache)
2190                 kmem_cache_destroy(conf->slab_cache);
2191         conf->slab_cache = NULL;
2192 }
2193
2194 static void raid5_end_read_request(struct bio * bi, int error)
2195 {
2196         struct stripe_head *sh = bi->bi_private;
2197         struct r5conf *conf = sh->raid_conf;
2198         int disks = sh->disks, i;
2199         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2200         char b[BDEVNAME_SIZE];
2201         struct md_rdev *rdev = NULL;
2202         sector_t s;
2203
2204         for (i=0 ; i<disks; i++)
2205                 if (bi == &sh->dev[i].req)
2206                         break;
2207
2208         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2209                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2210                 uptodate);
2211         if (i == disks) {
2212                 BUG();
2213                 return;
2214         }
2215         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2216                 /* If replacement finished while this request was outstanding,
2217                  * 'replacement' might be NULL already.
2218                  * In that case it moved down to 'rdev'.
2219                  * rdev is not removed until all requests are finished.
2220                  */
2221                 rdev = conf->disks[i].replacement;
2222         if (!rdev)
2223                 rdev = conf->disks[i].rdev;
2224
2225         if (use_new_offset(conf, sh))
2226                 s = sh->sector + rdev->new_data_offset;
2227         else
2228                 s = sh->sector + rdev->data_offset;
2229         if (uptodate) {
2230                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2231                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2232                         /* Note that this cannot happen on a
2233                          * replacement device.  We just fail those on
2234                          * any error
2235                          */
2236                         printk_ratelimited(
2237                                 KERN_INFO
2238                                 "md/raid:%s: read error corrected"
2239                                 " (%lu sectors at %llu on %s)\n",
2240                                 mdname(conf->mddev), STRIPE_SECTORS,
2241                                 (unsigned long long)s,
2242                                 bdevname(rdev->bdev, b));
2243                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2244                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2245                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2246                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2247                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2248
2249                 if (atomic_read(&rdev->read_errors))
2250                         atomic_set(&rdev->read_errors, 0);
2251         } else {
2252                 const char *bdn = bdevname(rdev->bdev, b);
2253                 int retry = 0;
2254                 int set_bad = 0;
2255
2256                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2257                 atomic_inc(&rdev->read_errors);
2258                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2259                         printk_ratelimited(
2260                                 KERN_WARNING
2261                                 "md/raid:%s: read error on replacement device "
2262                                 "(sector %llu on %s).\n",
2263                                 mdname(conf->mddev),
2264                                 (unsigned long long)s,
2265                                 bdn);
2266                 else if (conf->mddev->degraded >= conf->max_degraded) {
2267                         set_bad = 1;
2268                         printk_ratelimited(
2269                                 KERN_WARNING
2270                                 "md/raid:%s: read error not correctable "
2271                                 "(sector %llu on %s).\n",
2272                                 mdname(conf->mddev),
2273                                 (unsigned long long)s,
2274                                 bdn);
2275                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2276                         /* Oh, no!!! */
2277                         set_bad = 1;
2278                         printk_ratelimited(
2279                                 KERN_WARNING
2280                                 "md/raid:%s: read error NOT corrected!! "
2281                                 "(sector %llu on %s).\n",
2282                                 mdname(conf->mddev),
2283                                 (unsigned long long)s,
2284                                 bdn);
2285                 } else if (atomic_read(&rdev->read_errors)
2286                          > conf->max_nr_stripes)
2287                         printk(KERN_WARNING
2288                                "md/raid:%s: Too many read errors, failing device %s.\n",
2289                                mdname(conf->mddev), bdn);
2290                 else
2291                         retry = 1;
2292                 if (set_bad && test_bit(In_sync, &rdev->flags)
2293                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2294                         retry = 1;
2295                 if (retry)
2296                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2297                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2298                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2299                         } else
2300                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2301                 else {
2302                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2303                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2304                         if (!(set_bad
2305                               && test_bit(In_sync, &rdev->flags)
2306                               && rdev_set_badblocks(
2307                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2308                                 md_error(conf->mddev, rdev);
2309                 }
2310         }
2311         rdev_dec_pending(rdev, conf->mddev);
2312         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2313         set_bit(STRIPE_HANDLE, &sh->state);
2314         release_stripe(sh);
2315 }
2316
2317 static void raid5_end_write_request(struct bio *bi, int error)
2318 {
2319         struct stripe_head *sh = bi->bi_private;
2320         struct r5conf *conf = sh->raid_conf;
2321         int disks = sh->disks, i;
2322         struct md_rdev *uninitialized_var(rdev);
2323         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2324         sector_t first_bad;
2325         int bad_sectors;
2326         int replacement = 0;
2327
2328         for (i = 0 ; i < disks; i++) {
2329                 if (bi == &sh->dev[i].req) {
2330                         rdev = conf->disks[i].rdev;
2331                         break;
2332                 }
2333                 if (bi == &sh->dev[i].rreq) {
2334                         rdev = conf->disks[i].replacement;
2335                         if (rdev)
2336                                 replacement = 1;
2337                         else
2338                                 /* rdev was removed and 'replacement'
2339                                  * replaced it.  rdev is not removed
2340                                  * until all requests are finished.
2341                                  */
2342                                 rdev = conf->disks[i].rdev;
2343                         break;
2344                 }
2345         }
2346         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2347                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2348                 uptodate);
2349         if (i == disks) {
2350                 BUG();
2351                 return;
2352         }
2353
2354         if (replacement) {
2355                 if (!uptodate)
2356                         md_error(conf->mddev, rdev);
2357                 else if (is_badblock(rdev, sh->sector,
2358                                      STRIPE_SECTORS,
2359                                      &first_bad, &bad_sectors))
2360                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2361         } else {
2362                 if (!uptodate) {
2363                         set_bit(STRIPE_DEGRADED, &sh->state);
2364                         set_bit(WriteErrorSeen, &rdev->flags);
2365                         set_bit(R5_WriteError, &sh->dev[i].flags);
2366                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2367                                 set_bit(MD_RECOVERY_NEEDED,
2368                                         &rdev->mddev->recovery);
2369                 } else if (is_badblock(rdev, sh->sector,
2370                                        STRIPE_SECTORS,
2371                                        &first_bad, &bad_sectors)) {
2372                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2373                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2374                                 /* That was a successful write so make
2375                                  * sure it looks like we already did
2376                                  * a re-write.
2377                                  */
2378                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2379                 }
2380         }
2381         rdev_dec_pending(rdev, conf->mddev);
2382
2383         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2384                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2385         set_bit(STRIPE_HANDLE, &sh->state);
2386         release_stripe(sh);
2387
2388         if (sh->batch_head && sh != sh->batch_head)
2389                 release_stripe(sh->batch_head);
2390 }
2391
2392 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2393
2394 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2395 {
2396         struct r5dev *dev = &sh->dev[i];
2397
2398         bio_init(&dev->req);
2399         dev->req.bi_io_vec = &dev->vec;
2400         dev->req.bi_max_vecs = 1;
2401         dev->req.bi_private = sh;
2402
2403         bio_init(&dev->rreq);
2404         dev->rreq.bi_io_vec = &dev->rvec;
2405         dev->rreq.bi_max_vecs = 1;
2406         dev->rreq.bi_private = sh;
2407
2408         dev->flags = 0;
2409         dev->sector = compute_blocknr(sh, i, previous);
2410 }
2411
2412 static void error(struct mddev *mddev, struct md_rdev *rdev)
2413 {
2414         char b[BDEVNAME_SIZE];
2415         struct r5conf *conf = mddev->private;
2416         unsigned long flags;
2417         pr_debug("raid456: error called\n");
2418
2419         spin_lock_irqsave(&conf->device_lock, flags);
2420         clear_bit(In_sync, &rdev->flags);
2421         mddev->degraded = calc_degraded(conf);
2422         spin_unlock_irqrestore(&conf->device_lock, flags);
2423         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2424
2425         set_bit(Blocked, &rdev->flags);
2426         set_bit(Faulty, &rdev->flags);
2427         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2428         printk(KERN_ALERT
2429                "md/raid:%s: Disk failure on %s, disabling device.\n"
2430                "md/raid:%s: Operation continuing on %d devices.\n",
2431                mdname(mddev),
2432                bdevname(rdev->bdev, b),
2433                mdname(mddev),
2434                conf->raid_disks - mddev->degraded);
2435 }
2436
2437 /*
2438  * Input: a 'big' sector number,
2439  * Output: index of the data and parity disk, and the sector # in them.
2440  */
2441 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2442                                      int previous, int *dd_idx,
2443                                      struct stripe_head *sh)
2444 {
2445         sector_t stripe, stripe2;
2446         sector_t chunk_number;
2447         unsigned int chunk_offset;
2448         int pd_idx, qd_idx;
2449         int ddf_layout = 0;
2450         sector_t new_sector;
2451         int algorithm = previous ? conf->prev_algo
2452                                  : conf->algorithm;
2453         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2454                                          : conf->chunk_sectors;
2455         int raid_disks = previous ? conf->previous_raid_disks
2456                                   : conf->raid_disks;
2457         int data_disks = raid_disks - conf->max_degraded;
2458
2459         /* First compute the information on this sector */
2460
2461         /*
2462          * Compute the chunk number and the sector offset inside the chunk
2463          */
2464         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2465         chunk_number = r_sector;
2466
2467         /*
2468          * Compute the stripe number
2469          */
2470         stripe = chunk_number;
2471         *dd_idx = sector_div(stripe, data_disks);
2472         stripe2 = stripe;
2473         /*
2474          * Select the parity disk based on the user selected algorithm.
2475          */
2476         pd_idx = qd_idx = -1;
2477         switch(conf->level) {
2478         case 4:
2479                 pd_idx = data_disks;
2480                 break;
2481         case 5:
2482                 switch (algorithm) {
2483                 case ALGORITHM_LEFT_ASYMMETRIC:
2484                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2485                         if (*dd_idx >= pd_idx)
2486                                 (*dd_idx)++;
2487                         break;
2488                 case ALGORITHM_RIGHT_ASYMMETRIC:
2489                         pd_idx = sector_div(stripe2, raid_disks);
2490                         if (*dd_idx >= pd_idx)
2491                                 (*dd_idx)++;
2492                         break;
2493                 case ALGORITHM_LEFT_SYMMETRIC:
2494                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2495                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2496                         break;
2497                 case ALGORITHM_RIGHT_SYMMETRIC:
2498                         pd_idx = sector_div(stripe2, raid_disks);
2499                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2500                         break;
2501                 case ALGORITHM_PARITY_0:
2502                         pd_idx = 0;
2503                         (*dd_idx)++;
2504                         break;
2505                 case ALGORITHM_PARITY_N:
2506                         pd_idx = data_disks;
2507                         break;
2508                 default:
2509                         BUG();
2510                 }
2511                 break;
2512         case 6:
2513
2514                 switch (algorithm) {
2515                 case ALGORITHM_LEFT_ASYMMETRIC:
2516                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2517                         qd_idx = pd_idx + 1;
2518                         if (pd_idx == raid_disks-1) {
2519                                 (*dd_idx)++;    /* Q D D D P */
2520                                 qd_idx = 0;
2521                         } else if (*dd_idx >= pd_idx)
2522                                 (*dd_idx) += 2; /* D D P Q D */
2523                         break;
2524                 case ALGORITHM_RIGHT_ASYMMETRIC:
2525                         pd_idx = sector_div(stripe2, raid_disks);
2526                         qd_idx = pd_idx + 1;
2527                         if (pd_idx == raid_disks-1) {
2528                                 (*dd_idx)++;    /* Q D D D P */
2529                                 qd_idx = 0;
2530                         } else if (*dd_idx >= pd_idx)
2531                                 (*dd_idx) += 2; /* D D P Q D */
2532                         break;
2533                 case ALGORITHM_LEFT_SYMMETRIC:
2534                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2535                         qd_idx = (pd_idx + 1) % raid_disks;
2536                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2537                         break;
2538                 case ALGORITHM_RIGHT_SYMMETRIC:
2539                         pd_idx = sector_div(stripe2, raid_disks);
2540                         qd_idx = (pd_idx + 1) % raid_disks;
2541                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2542                         break;
2543
2544                 case ALGORITHM_PARITY_0:
2545                         pd_idx = 0;
2546                         qd_idx = 1;
2547                         (*dd_idx) += 2;
2548                         break;
2549                 case ALGORITHM_PARITY_N:
2550                         pd_idx = data_disks;
2551                         qd_idx = data_disks + 1;
2552                         break;
2553
2554                 case ALGORITHM_ROTATING_ZERO_RESTART:
2555                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2556                          * of blocks for computing Q is different.
2557                          */
2558                         pd_idx = sector_div(stripe2, raid_disks);
2559                         qd_idx = pd_idx + 1;
2560                         if (pd_idx == raid_disks-1) {
2561                                 (*dd_idx)++;    /* Q D D D P */
2562                                 qd_idx = 0;
2563                         } else if (*dd_idx >= pd_idx)
2564                                 (*dd_idx) += 2; /* D D P Q D */
2565                         ddf_layout = 1;
2566                         break;
2567
2568                 case ALGORITHM_ROTATING_N_RESTART:
2569                         /* Same a left_asymmetric, by first stripe is
2570                          * D D D P Q  rather than
2571                          * Q D D D P
2572                          */
2573                         stripe2 += 1;
2574                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2575                         qd_idx = pd_idx + 1;
2576                         if (pd_idx == raid_disks-1) {
2577                                 (*dd_idx)++;    /* Q D D D P */
2578                                 qd_idx = 0;
2579                         } else if (*dd_idx >= pd_idx)
2580                                 (*dd_idx) += 2; /* D D P Q D */
2581                         ddf_layout = 1;
2582                         break;
2583
2584                 case ALGORITHM_ROTATING_N_CONTINUE:
2585                         /* Same as left_symmetric but Q is before P */
2586                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2587                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2588                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2589                         ddf_layout = 1;
2590                         break;
2591
2592                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2593                         /* RAID5 left_asymmetric, with Q on last device */
2594                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2595                         if (*dd_idx >= pd_idx)
2596                                 (*dd_idx)++;
2597                         qd_idx = raid_disks - 1;
2598                         break;
2599
2600                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2601                         pd_idx = sector_div(stripe2, raid_disks-1);
2602                         if (*dd_idx >= pd_idx)
2603                                 (*dd_idx)++;
2604                         qd_idx = raid_disks - 1;
2605                         break;
2606
2607                 case ALGORITHM_LEFT_SYMMETRIC_6:
2608                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2609                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2610                         qd_idx = raid_disks - 1;
2611                         break;
2612
2613                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2614                         pd_idx = sector_div(stripe2, raid_disks-1);
2615                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2616                         qd_idx = raid_disks - 1;
2617                         break;
2618
2619                 case ALGORITHM_PARITY_0_6:
2620                         pd_idx = 0;
2621                         (*dd_idx)++;
2622                         qd_idx = raid_disks - 1;
2623                         break;
2624
2625                 default:
2626                         BUG();
2627                 }
2628                 break;
2629         }
2630
2631         if (sh) {
2632                 sh->pd_idx = pd_idx;
2633                 sh->qd_idx = qd_idx;
2634                 sh->ddf_layout = ddf_layout;
2635         }
2636         /*
2637          * Finally, compute the new sector number
2638          */
2639         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2640         return new_sector;
2641 }
2642
2643 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2644 {
2645         struct r5conf *conf = sh->raid_conf;
2646         int raid_disks = sh->disks;
2647         int data_disks = raid_disks - conf->max_degraded;
2648         sector_t new_sector = sh->sector, check;
2649         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2650                                          : conf->chunk_sectors;
2651         int algorithm = previous ? conf->prev_algo
2652                                  : conf->algorithm;
2653         sector_t stripe;
2654         int chunk_offset;
2655         sector_t chunk_number;
2656         int dummy1, dd_idx = i;
2657         sector_t r_sector;
2658         struct stripe_head sh2;
2659
2660         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2661         stripe = new_sector;
2662
2663         if (i == sh->pd_idx)
2664                 return 0;
2665         switch(conf->level) {
2666         case 4: break;
2667         case 5:
2668                 switch (algorithm) {
2669                 case ALGORITHM_LEFT_ASYMMETRIC:
2670                 case ALGORITHM_RIGHT_ASYMMETRIC:
2671                         if (i > sh->pd_idx)
2672                                 i--;
2673                         break;
2674                 case ALGORITHM_LEFT_SYMMETRIC:
2675                 case ALGORITHM_RIGHT_SYMMETRIC:
2676                         if (i < sh->pd_idx)
2677                                 i += raid_disks;
2678                         i -= (sh->pd_idx + 1);
2679                         break;
2680                 case ALGORITHM_PARITY_0:
2681                         i -= 1;
2682                         break;
2683                 case ALGORITHM_PARITY_N:
2684                         break;
2685                 default:
2686                         BUG();
2687                 }
2688                 break;
2689         case 6:
2690                 if (i == sh->qd_idx)
2691                         return 0; /* It is the Q disk */
2692                 switch (algorithm) {
2693                 case ALGORITHM_LEFT_ASYMMETRIC:
2694                 case ALGORITHM_RIGHT_ASYMMETRIC:
2695                 case ALGORITHM_ROTATING_ZERO_RESTART:
2696                 case ALGORITHM_ROTATING_N_RESTART:
2697                         if (sh->pd_idx == raid_disks-1)
2698                                 i--;    /* Q D D D P */
2699                         else if (i > sh->pd_idx)
2700                                 i -= 2; /* D D P Q D */
2701                         break;
2702                 case ALGORITHM_LEFT_SYMMETRIC:
2703                 case ALGORITHM_RIGHT_SYMMETRIC:
2704                         if (sh->pd_idx == raid_disks-1)
2705                                 i--; /* Q D D D P */
2706                         else {
2707                                 /* D D P Q D */
2708                                 if (i < sh->pd_idx)
2709                                         i += raid_disks;
2710                                 i -= (sh->pd_idx + 2);
2711                         }
2712                         break;
2713                 case ALGORITHM_PARITY_0:
2714                         i -= 2;
2715                         break;
2716                 case ALGORITHM_PARITY_N:
2717                         break;
2718                 case ALGORITHM_ROTATING_N_CONTINUE:
2719                         /* Like left_symmetric, but P is before Q */
2720                         if (sh->pd_idx == 0)
2721                                 i--;    /* P D D D Q */
2722                         else {
2723                                 /* D D Q P D */
2724                                 if (i < sh->pd_idx)
2725                                         i += raid_disks;
2726                                 i -= (sh->pd_idx + 1);
2727                         }
2728                         break;
2729                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2730                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2731                         if (i > sh->pd_idx)
2732                                 i--;
2733                         break;
2734                 case ALGORITHM_LEFT_SYMMETRIC_6:
2735                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2736                         if (i < sh->pd_idx)
2737                                 i += data_disks + 1;
2738                         i -= (sh->pd_idx + 1);
2739                         break;
2740                 case ALGORITHM_PARITY_0_6:
2741                         i -= 1;
2742                         break;
2743                 default:
2744                         BUG();
2745                 }
2746                 break;
2747         }
2748
2749         chunk_number = stripe * data_disks + i;
2750         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2751
2752         check = raid5_compute_sector(conf, r_sector,
2753                                      previous, &dummy1, &sh2);
2754         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2755                 || sh2.qd_idx != sh->qd_idx) {
2756                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2757                        mdname(conf->mddev));
2758                 return 0;
2759         }
2760         return r_sector;
2761 }
2762
2763 static void
2764 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2765                          int rcw, int expand)
2766 {
2767         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2768         struct r5conf *conf = sh->raid_conf;
2769         int level = conf->level;
2770
2771         if (rcw) {
2772
2773                 for (i = disks; i--; ) {
2774                         struct r5dev *dev = &sh->dev[i];
2775
2776                         if (dev->towrite) {
2777                                 set_bit(R5_LOCKED, &dev->flags);
2778                                 set_bit(R5_Wantdrain, &dev->flags);
2779                                 if (!expand)
2780                                         clear_bit(R5_UPTODATE, &dev->flags);
2781                                 s->locked++;
2782                         }
2783                 }
2784                 /* if we are not expanding this is a proper write request, and
2785                  * there will be bios with new data to be drained into the
2786                  * stripe cache
2787                  */
2788                 if (!expand) {
2789                         if (!s->locked)
2790                                 /* False alarm, nothing to do */
2791                                 return;
2792                         sh->reconstruct_state = reconstruct_state_drain_run;
2793                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2794                 } else
2795                         sh->reconstruct_state = reconstruct_state_run;
2796
2797                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2798
2799                 if (s->locked + conf->max_degraded == disks)
2800                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2801                                 atomic_inc(&conf->pending_full_writes);
2802         } else {
2803                 BUG_ON(level == 6);
2804                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2805                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2806
2807                 for (i = disks; i--; ) {
2808                         struct r5dev *dev = &sh->dev[i];
2809                         if (i == pd_idx)
2810                                 continue;
2811
2812                         if (dev->towrite &&
2813                             (test_bit(R5_UPTODATE, &dev->flags) ||
2814                              test_bit(R5_Wantcompute, &dev->flags))) {
2815                                 set_bit(R5_Wantdrain, &dev->flags);
2816                                 set_bit(R5_LOCKED, &dev->flags);
2817                                 clear_bit(R5_UPTODATE, &dev->flags);
2818                                 s->locked++;
2819                         }
2820                 }
2821                 if (!s->locked)
2822                         /* False alarm - nothing to do */
2823                         return;
2824                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2825                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2826                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2827                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2828         }
2829
2830         /* keep the parity disk(s) locked while asynchronous operations
2831          * are in flight
2832          */
2833         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2834         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2835         s->locked++;
2836
2837         if (level == 6) {
2838                 int qd_idx = sh->qd_idx;
2839                 struct r5dev *dev = &sh->dev[qd_idx];
2840
2841                 set_bit(R5_LOCKED, &dev->flags);
2842                 clear_bit(R5_UPTODATE, &dev->flags);
2843                 s->locked++;
2844         }
2845
2846         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2847                 __func__, (unsigned long long)sh->sector,
2848                 s->locked, s->ops_request);
2849 }
2850
2851 /*
2852  * Each stripe/dev can have one or more bion attached.
2853  * toread/towrite point to the first in a chain.
2854  * The bi_next chain must be in order.
2855  */
2856 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2857                           int forwrite, int previous)
2858 {
2859         struct bio **bip;
2860         struct r5conf *conf = sh->raid_conf;
2861         int firstwrite=0;
2862
2863         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2864                 (unsigned long long)bi->bi_iter.bi_sector,
2865                 (unsigned long long)sh->sector);
2866
2867         /*
2868          * If several bio share a stripe. The bio bi_phys_segments acts as a
2869          * reference count to avoid race. The reference count should already be
2870          * increased before this function is called (for example, in
2871          * make_request()), so other bio sharing this stripe will not free the
2872          * stripe. If a stripe is owned by one stripe, the stripe lock will
2873          * protect it.
2874          */
2875         spin_lock_irq(&sh->stripe_lock);
2876         /* Don't allow new IO added to stripes in batch list */
2877         if (sh->batch_head)
2878                 goto overlap;
2879         if (forwrite) {
2880                 bip = &sh->dev[dd_idx].towrite;
2881                 if (*bip == NULL)
2882                         firstwrite = 1;
2883         } else
2884                 bip = &sh->dev[dd_idx].toread;
2885         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2886                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2887                         goto overlap;
2888                 bip = & (*bip)->bi_next;
2889         }
2890         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2891                 goto overlap;
2892
2893         if (!forwrite || previous)
2894                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2895
2896         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2897         if (*bip)
2898                 bi->bi_next = *bip;
2899         *bip = bi;
2900         raid5_inc_bi_active_stripes(bi);
2901
2902         if (forwrite) {
2903                 /* check if page is covered */
2904                 sector_t sector = sh->dev[dd_idx].sector;
2905                 for (bi=sh->dev[dd_idx].towrite;
2906                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2907                              bi && bi->bi_iter.bi_sector <= sector;
2908                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2909                         if (bio_end_sector(bi) >= sector)
2910                                 sector = bio_end_sector(bi);
2911                 }
2912                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2913                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2914                                 sh->overwrite_disks++;
2915         }
2916
2917         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2918                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2919                 (unsigned long long)sh->sector, dd_idx);
2920         spin_unlock_irq(&sh->stripe_lock);
2921
2922         if (conf->mddev->bitmap && firstwrite) {
2923                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2924                                   STRIPE_SECTORS, 0);
2925                 sh->bm_seq = conf->seq_flush+1;
2926                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2927         }
2928
2929         if (stripe_can_batch(sh))
2930                 stripe_add_to_batch_list(conf, sh);
2931         return 1;
2932
2933  overlap:
2934         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2935         spin_unlock_irq(&sh->stripe_lock);
2936         return 0;
2937 }
2938
2939 static void end_reshape(struct r5conf *conf);
2940
2941 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2942                             struct stripe_head *sh)
2943 {
2944         int sectors_per_chunk =
2945                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2946         int dd_idx;
2947         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2948         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2949
2950         raid5_compute_sector(conf,
2951                              stripe * (disks - conf->max_degraded)
2952                              *sectors_per_chunk + chunk_offset,
2953                              previous,
2954                              &dd_idx, sh);
2955 }
2956
2957 static void
2958 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2959                                 struct stripe_head_state *s, int disks,
2960                                 struct bio **return_bi)
2961 {
2962         int i;
2963         BUG_ON(sh->batch_head);
2964         for (i = disks; i--; ) {
2965                 struct bio *bi;
2966                 int bitmap_end = 0;
2967
2968                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2969                         struct md_rdev *rdev;
2970                         rcu_read_lock();
2971                         rdev = rcu_dereference(conf->disks[i].rdev);
2972                         if (rdev && test_bit(In_sync, &rdev->flags))
2973                                 atomic_inc(&rdev->nr_pending);
2974                         else
2975                                 rdev = NULL;
2976                         rcu_read_unlock();
2977                         if (rdev) {
2978                                 if (!rdev_set_badblocks(
2979                                             rdev,
2980                                             sh->sector,
2981                                             STRIPE_SECTORS, 0))
2982                                         md_error(conf->mddev, rdev);
2983                                 rdev_dec_pending(rdev, conf->mddev);
2984                         }
2985                 }
2986                 spin_lock_irq(&sh->stripe_lock);
2987                 /* fail all writes first */
2988                 bi = sh->dev[i].towrite;
2989                 sh->dev[i].towrite = NULL;
2990                 sh->overwrite_disks = 0;
2991                 spin_unlock_irq(&sh->stripe_lock);
2992                 if (bi)
2993                         bitmap_end = 1;
2994
2995                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2996                         wake_up(&conf->wait_for_overlap);
2997
2998                 while (bi && bi->bi_iter.bi_sector <
2999                         sh->dev[i].sector + STRIPE_SECTORS) {
3000                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3001                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3002                         if (!raid5_dec_bi_active_stripes(bi)) {
3003                                 md_write_end(conf->mddev);
3004                                 bi->bi_next = *return_bi;
3005                                 *return_bi = bi;
3006                         }
3007                         bi = nextbi;
3008                 }
3009                 if (bitmap_end)
3010                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3011                                 STRIPE_SECTORS, 0, 0);
3012                 bitmap_end = 0;
3013                 /* and fail all 'written' */
3014                 bi = sh->dev[i].written;
3015                 sh->dev[i].written = NULL;
3016                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3017                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3018                         sh->dev[i].page = sh->dev[i].orig_page;
3019                 }
3020
3021                 if (bi) bitmap_end = 1;
3022                 while (bi && bi->bi_iter.bi_sector <
3023                        sh->dev[i].sector + STRIPE_SECTORS) {
3024                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3025                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3026                         if (!raid5_dec_bi_active_stripes(bi)) {
3027                                 md_write_end(conf->mddev);
3028                                 bi->bi_next = *return_bi;
3029                                 *return_bi = bi;
3030                         }
3031                         bi = bi2;
3032                 }
3033
3034                 /* fail any reads if this device is non-operational and
3035                  * the data has not reached the cache yet.
3036                  */
3037                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3038                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3039                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3040                         spin_lock_irq(&sh->stripe_lock);
3041                         bi = sh->dev[i].toread;
3042                         sh->dev[i].toread = NULL;
3043                         spin_unlock_irq(&sh->stripe_lock);
3044                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3045                                 wake_up(&conf->wait_for_overlap);
3046                         while (bi && bi->bi_iter.bi_sector <
3047                                sh->dev[i].sector + STRIPE_SECTORS) {
3048                                 struct bio *nextbi =
3049                                         r5_next_bio(bi, sh->dev[i].sector);
3050                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3051                                 if (!raid5_dec_bi_active_stripes(bi)) {
3052                                         bi->bi_next = *return_bi;
3053                                         *return_bi = bi;
3054                                 }
3055                                 bi = nextbi;
3056                         }
3057                 }
3058                 if (bitmap_end)
3059                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3060                                         STRIPE_SECTORS, 0, 0);
3061                 /* If we were in the middle of a write the parity block might
3062                  * still be locked - so just clear all R5_LOCKED flags
3063                  */
3064                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3065         }
3066
3067         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3068                 if (atomic_dec_and_test(&conf->pending_full_writes))
3069                         md_wakeup_thread(conf->mddev->thread);
3070 }
3071
3072 static void
3073 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3074                    struct stripe_head_state *s)
3075 {
3076         int abort = 0;
3077         int i;
3078
3079         BUG_ON(sh->batch_head);
3080         clear_bit(STRIPE_SYNCING, &sh->state);
3081         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3082                 wake_up(&conf->wait_for_overlap);
3083         s->syncing = 0;
3084         s->replacing = 0;
3085         /* There is nothing more to do for sync/check/repair.
3086          * Don't even need to abort as that is handled elsewhere
3087          * if needed, and not always wanted e.g. if there is a known
3088          * bad block here.
3089          * For recover/replace we need to record a bad block on all
3090          * non-sync devices, or abort the recovery
3091          */
3092         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3093                 /* During recovery devices cannot be removed, so
3094                  * locking and refcounting of rdevs is not needed
3095                  */
3096                 for (i = 0; i < conf->raid_disks; i++) {
3097                         struct md_rdev *rdev = conf->disks[i].rdev;
3098                         if (rdev
3099                             && !test_bit(Faulty, &rdev->flags)
3100                             && !test_bit(In_sync, &rdev->flags)
3101                             && !rdev_set_badblocks(rdev, sh->sector,
3102                                                    STRIPE_SECTORS, 0))
3103                                 abort = 1;
3104                         rdev = conf->disks[i].replacement;
3105                         if (rdev
3106                             && !test_bit(Faulty, &rdev->flags)
3107                             && !test_bit(In_sync, &rdev->flags)
3108                             && !rdev_set_badblocks(rdev, sh->sector,
3109                                                    STRIPE_SECTORS, 0))
3110                                 abort = 1;
3111                 }
3112                 if (abort)
3113                         conf->recovery_disabled =
3114                                 conf->mddev->recovery_disabled;
3115         }
3116         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3117 }
3118
3119 static int want_replace(struct stripe_head *sh, int disk_idx)
3120 {
3121         struct md_rdev *rdev;
3122         int rv = 0;
3123         /* Doing recovery so rcu locking not required */
3124         rdev = sh->raid_conf->disks[disk_idx].replacement;
3125         if (rdev
3126             && !test_bit(Faulty, &rdev->flags)
3127             && !test_bit(In_sync, &rdev->flags)
3128             && (rdev->recovery_offset <= sh->sector
3129                 || rdev->mddev->recovery_cp <= sh->sector))
3130                 rv = 1;
3131
3132         return rv;
3133 }
3134
3135 /* fetch_block - checks the given member device to see if its data needs
3136  * to be read or computed to satisfy a request.
3137  *
3138  * Returns 1 when no more member devices need to be checked, otherwise returns
3139  * 0 to tell the loop in handle_stripe_fill to continue
3140  */
3141
3142 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3143                            int disk_idx, int disks)
3144 {
3145         struct r5dev *dev = &sh->dev[disk_idx];
3146         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3147                                   &sh->dev[s->failed_num[1]] };
3148         int i;
3149
3150
3151         if (test_bit(R5_LOCKED, &dev->flags) ||
3152             test_bit(R5_UPTODATE, &dev->flags))
3153                 /* No point reading this as we already have it or have
3154                  * decided to get it.
3155                  */
3156                 return 0;
3157
3158         if (dev->toread ||
3159             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3160                 /* We need this block to directly satisfy a request */
3161                 return 1;
3162
3163         if (s->syncing || s->expanding ||
3164             (s->replacing && want_replace(sh, disk_idx)))
3165                 /* When syncing, or expanding we read everything.
3166                  * When replacing, we need the replaced block.
3167                  */
3168                 return 1;
3169
3170         if ((s->failed >= 1 && fdev[0]->toread) ||
3171             (s->failed >= 2 && fdev[1]->toread))
3172                 /* If we want to read from a failed device, then
3173                  * we need to actually read every other device.
3174                  */
3175                 return 1;
3176
3177         /* Sometimes neither read-modify-write nor reconstruct-write
3178          * cycles can work.  In those cases we read every block we
3179          * can.  Then the parity-update is certain to have enough to
3180          * work with.
3181          * This can only be a problem when we need to write something,
3182          * and some device has failed.  If either of those tests
3183          * fail we need look no further.
3184          */
3185         if (!s->failed || !s->to_write)
3186                 return 0;
3187
3188         if (test_bit(R5_Insync, &dev->flags) &&
3189             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3190                 /* Pre-reads at not permitted until after short delay
3191                  * to gather multiple requests.  However if this
3192                  * device is no Insync, the block could only be be computed
3193                  * and there is no need to delay that.
3194                  */
3195                 return 0;
3196
3197         for (i = 0; i < s->failed; i++) {
3198                 if (fdev[i]->towrite &&
3199                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3200                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3201                         /* If we have a partial write to a failed
3202                          * device, then we will need to reconstruct
3203                          * the content of that device, so all other
3204                          * devices must be read.
3205                          */
3206                         return 1;
3207         }
3208
3209         /* If we are forced to do a reconstruct-write, either because
3210          * the current RAID6 implementation only supports that, or
3211          * or because parity cannot be trusted and we are currently
3212          * recovering it, there is extra need to be careful.
3213          * If one of the devices that we would need to read, because
3214          * it is not being overwritten (and maybe not written at all)
3215          * is missing/faulty, then we need to read everything we can.
3216          */
3217         if (sh->raid_conf->level != 6 &&
3218             sh->sector < sh->raid_conf->mddev->recovery_cp)
3219                 /* reconstruct-write isn't being forced */
3220                 return 0;
3221         for (i = 0; i < s->failed; i++) {
3222                 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3223                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3224                         return 1;
3225         }
3226
3227         return 0;
3228 }
3229
3230 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3231                        int disk_idx, int disks)
3232 {
3233         struct r5dev *dev = &sh->dev[disk_idx];
3234
3235         /* is the data in this block needed, and can we get it? */
3236         if (need_this_block(sh, s, disk_idx, disks)) {
3237                 /* we would like to get this block, possibly by computing it,
3238                  * otherwise read it if the backing disk is insync
3239                  */
3240                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3241                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3242                 if ((s->uptodate == disks - 1) &&
3243                     (s->failed && (disk_idx == s->failed_num[0] ||
3244                                    disk_idx == s->failed_num[1]))) {
3245                         /* have disk failed, and we're requested to fetch it;
3246                          * do compute it
3247                          */
3248                         pr_debug("Computing stripe %llu block %d\n",
3249                                (unsigned long long)sh->sector, disk_idx);
3250                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3251                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3252                         set_bit(R5_Wantcompute, &dev->flags);
3253                         sh->ops.target = disk_idx;
3254                         sh->ops.target2 = -1; /* no 2nd target */
3255                         s->req_compute = 1;
3256                         /* Careful: from this point on 'uptodate' is in the eye
3257                          * of raid_run_ops which services 'compute' operations
3258                          * before writes. R5_Wantcompute flags a block that will
3259                          * be R5_UPTODATE by the time it is needed for a
3260                          * subsequent operation.
3261                          */
3262                         s->uptodate++;
3263                         return 1;
3264                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3265                         /* Computing 2-failure is *very* expensive; only
3266                          * do it if failed >= 2
3267                          */
3268                         int other;
3269                         for (other = disks; other--; ) {
3270                                 if (other == disk_idx)
3271                                         continue;
3272                                 if (!test_bit(R5_UPTODATE,
3273                                       &sh->dev[other].flags))
3274                                         break;
3275                         }
3276                         BUG_ON(other < 0);
3277                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3278                                (unsigned long long)sh->sector,
3279                                disk_idx, other);
3280                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3281                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3282                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3283                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3284                         sh->ops.target = disk_idx;
3285                         sh->ops.target2 = other;
3286                         s->uptodate += 2;
3287                         s->req_compute = 1;
3288                         return 1;
3289                 } else if (test_bit(R5_Insync, &dev->flags)) {
3290                         set_bit(R5_LOCKED, &dev->flags);
3291                         set_bit(R5_Wantread, &dev->flags);
3292                         s->locked++;
3293                         pr_debug("Reading block %d (sync=%d)\n",
3294                                 disk_idx, s->syncing);
3295                 }
3296         }
3297
3298         return 0;
3299 }
3300
3301 /**
3302  * handle_stripe_fill - read or compute data to satisfy pending requests.
3303  */
3304 static void handle_stripe_fill(struct stripe_head *sh,
3305                                struct stripe_head_state *s,
3306                                int disks)
3307 {
3308         int i;
3309
3310         BUG_ON(sh->batch_head);
3311         /* look for blocks to read/compute, skip this if a compute
3312          * is already in flight, or if the stripe contents are in the
3313          * midst of changing due to a write
3314          */
3315         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3316             !sh->reconstruct_state)
3317                 for (i = disks; i--; )
3318                         if (fetch_block(sh, s, i, disks))
3319                                 break;
3320         set_bit(STRIPE_HANDLE, &sh->state);
3321 }
3322
3323 /* handle_stripe_clean_event
3324  * any written block on an uptodate or failed drive can be returned.
3325  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3326  * never LOCKED, so we don't need to test 'failed' directly.
3327  */
3328 static void handle_stripe_clean_event(struct r5conf *conf,
3329         struct stripe_head *sh, int disks, struct bio **return_bi)
3330 {
3331         int i;
3332         struct r5dev *dev;
3333         int discard_pending = 0;
3334         struct stripe_head *head_sh = sh;
3335         bool do_endio = false;
3336         int wakeup_nr = 0;
3337
3338         for (i = disks; i--; )
3339                 if (sh->dev[i].written) {
3340                         dev = &sh->dev[i];
3341                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3342                             (test_bit(R5_UPTODATE, &dev->flags) ||
3343                              test_bit(R5_Discard, &dev->flags) ||
3344                              test_bit(R5_SkipCopy, &dev->flags))) {
3345                                 /* We can return any write requests */
3346                                 struct bio *wbi, *wbi2;
3347                                 pr_debug("Return write for disc %d\n", i);
3348                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3349                                         clear_bit(R5_UPTODATE, &dev->flags);
3350                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3351                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3352                                 }
3353                                 do_endio = true;
3354
3355 returnbi:
3356                                 dev->page = dev->orig_page;
3357                                 wbi = dev->written;
3358                                 dev->written = NULL;
3359                                 while (wbi && wbi->bi_iter.bi_sector <
3360                                         dev->sector + STRIPE_SECTORS) {
3361                                         wbi2 = r5_next_bio(wbi, dev->sector);
3362                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3363                                                 md_write_end(conf->mddev);
3364                                                 wbi->bi_next = *return_bi;
3365                                                 *return_bi = wbi;
3366                                         }
3367                                         wbi = wbi2;
3368                                 }
3369                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3370                                                 STRIPE_SECTORS,
3371                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3372                                                 0);
3373                                 if (head_sh->batch_head) {
3374                                         sh = list_first_entry(&sh->batch_list,
3375                                                               struct stripe_head,
3376                                                               batch_list);
3377                                         if (sh != head_sh) {
3378                                                 dev = &sh->dev[i];
3379                                                 goto returnbi;
3380                                         }
3381                                 }
3382                                 sh = head_sh;
3383                                 dev = &sh->dev[i];
3384                         } else if (test_bit(R5_Discard, &dev->flags))
3385                                 discard_pending = 1;
3386                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3387                         WARN_ON(dev->page != dev->orig_page);
3388                 }
3389         if (!discard_pending &&
3390             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3391                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3392                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3393                 if (sh->qd_idx >= 0) {
3394                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3395                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3396                 }
3397                 /* now that discard is done we can proceed with any sync */
3398                 clear_bit(STRIPE_DISCARD, &sh->state);
3399                 /*
3400                  * SCSI discard will change some bio fields and the stripe has
3401                  * no updated data, so remove it from hash list and the stripe
3402                  * will be reinitialized
3403                  */
3404                 spin_lock_irq(&conf->device_lock);
3405 unhash:
3406                 remove_hash(sh);
3407                 if (head_sh->batch_head) {
3408                         sh = list_first_entry(&sh->batch_list,
3409                                               struct stripe_head, batch_list);
3410                         if (sh != head_sh)
3411                                         goto unhash;
3412                 }
3413                 spin_unlock_irq(&conf->device_lock);
3414                 sh = head_sh;
3415
3416                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3417                         set_bit(STRIPE_HANDLE, &sh->state);
3418
3419         }
3420
3421         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3422                 if (atomic_dec_and_test(&conf->pending_full_writes))
3423                         md_wakeup_thread(conf->mddev->thread);
3424
3425         if (!head_sh->batch_head || !do_endio)
3426                 return;
3427         for (i = 0; i < head_sh->disks; i++) {
3428                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3429                         wakeup_nr++;
3430         }
3431         while (!list_empty(&head_sh->batch_list)) {
3432                 int i;
3433                 sh = list_first_entry(&head_sh->batch_list,
3434                                       struct stripe_head, batch_list);
3435                 list_del_init(&sh->batch_list);
3436
3437                 sh->state = head_sh->state & (~((1 << STRIPE_ACTIVE) |
3438                         (1 << STRIPE_PREREAD_ACTIVE)));
3439                 sh->check_state = head_sh->check_state;
3440                 sh->reconstruct_state = head_sh->reconstruct_state;
3441                 for (i = 0; i < sh->disks; i++) {
3442                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3443                                 wakeup_nr++;
3444                         sh->dev[i].flags = head_sh->dev[i].flags;
3445                 }
3446
3447                 spin_lock_irq(&sh->stripe_lock);
3448                 sh->batch_head = NULL;
3449                 spin_unlock_irq(&sh->stripe_lock);
3450                 release_stripe(sh);
3451         }
3452
3453         spin_lock_irq(&head_sh->stripe_lock);
3454         head_sh->batch_head = NULL;
3455         spin_unlock_irq(&head_sh->stripe_lock);
3456         wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3457 }
3458
3459 static void handle_stripe_dirtying(struct r5conf *conf,
3460                                    struct stripe_head *sh,
3461                                    struct stripe_head_state *s,
3462                                    int disks)
3463 {
3464         int rmw = 0, rcw = 0, i;
3465         sector_t recovery_cp = conf->mddev->recovery_cp;
3466
3467         /* RAID6 requires 'rcw' in current implementation.
3468          * Otherwise, check whether resync is now happening or should start.
3469          * If yes, then the array is dirty (after unclean shutdown or
3470          * initial creation), so parity in some stripes might be inconsistent.
3471          * In this case, we need to always do reconstruct-write, to ensure
3472          * that in case of drive failure or read-error correction, we
3473          * generate correct data from the parity.
3474          */
3475         if (conf->max_degraded == 2 ||
3476             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3477              s->failed == 0)) {
3478                 /* Calculate the real rcw later - for now make it
3479                  * look like rcw is cheaper
3480                  */
3481                 rcw = 1; rmw = 2;
3482                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3483                          conf->max_degraded, (unsigned long long)recovery_cp,
3484                          (unsigned long long)sh->sector);
3485         } else for (i = disks; i--; ) {
3486                 /* would I have to read this buffer for read_modify_write */
3487                 struct r5dev *dev = &sh->dev[i];
3488                 if ((dev->towrite || i == sh->pd_idx) &&
3489                     !test_bit(R5_LOCKED, &dev->flags) &&
3490                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3491                       test_bit(R5_Wantcompute, &dev->flags))) {
3492                         if (test_bit(R5_Insync, &dev->flags))
3493                                 rmw++;
3494                         else
3495                                 rmw += 2*disks;  /* cannot read it */
3496                 }
3497                 /* Would I have to read this buffer for reconstruct_write */
3498                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3499                     !test_bit(R5_LOCKED, &dev->flags) &&
3500                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3501                     test_bit(R5_Wantcompute, &dev->flags))) {
3502                         if (test_bit(R5_Insync, &dev->flags))
3503                                 rcw++;
3504                         else
3505                                 rcw += 2*disks;
3506                 }
3507         }
3508         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3509                 (unsigned long long)sh->sector, rmw, rcw);
3510         set_bit(STRIPE_HANDLE, &sh->state);
3511         if (rmw < rcw && rmw > 0) {
3512                 /* prefer read-modify-write, but need to get some data */
3513                 if (conf->mddev->queue)
3514                         blk_add_trace_msg(conf->mddev->queue,
3515                                           "raid5 rmw %llu %d",
3516                                           (unsigned long long)sh->sector, rmw);
3517                 for (i = disks; i--; ) {
3518                         struct r5dev *dev = &sh->dev[i];
3519                         if ((dev->towrite || i == sh->pd_idx) &&
3520                             !test_bit(R5_LOCKED, &dev->flags) &&
3521                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3522                             test_bit(R5_Wantcompute, &dev->flags)) &&
3523                             test_bit(R5_Insync, &dev->flags)) {
3524                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3525                                              &sh->state)) {
3526                                         pr_debug("Read_old block %d for r-m-w\n",
3527                                                  i);
3528                                         set_bit(R5_LOCKED, &dev->flags);
3529                                         set_bit(R5_Wantread, &dev->flags);
3530                                         s->locked++;
3531                                 } else {
3532                                         set_bit(STRIPE_DELAYED, &sh->state);
3533                                         set_bit(STRIPE_HANDLE, &sh->state);
3534                                 }
3535                         }
3536                 }
3537         }
3538         if (rcw <= rmw && rcw > 0) {
3539                 /* want reconstruct write, but need to get some data */
3540                 int qread =0;
3541                 rcw = 0;
3542                 for (i = disks; i--; ) {
3543                         struct r5dev *dev = &sh->dev[i];
3544                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3545                             i != sh->pd_idx && i != sh->qd_idx &&
3546                             !test_bit(R5_LOCKED, &dev->flags) &&
3547                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3548                               test_bit(R5_Wantcompute, &dev->flags))) {
3549                                 rcw++;
3550                                 if (test_bit(R5_Insync, &dev->flags) &&
3551                                     test_bit(STRIPE_PREREAD_ACTIVE,
3552                                              &sh->state)) {
3553                                         pr_debug("Read_old block "
3554                                                 "%d for Reconstruct\n", i);
3555                                         set_bit(R5_LOCKED, &dev->flags);
3556                                         set_bit(R5_Wantread, &dev->flags);
3557                                         s->locked++;
3558                                         qread++;
3559                                 } else {
3560                                         set_bit(STRIPE_DELAYED, &sh->state);
3561                                         set_bit(STRIPE_HANDLE, &sh->state);
3562                                 }
3563                         }
3564                 }
3565                 if (rcw && conf->mddev->queue)
3566                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3567                                           (unsigned long long)sh->sector,
3568                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3569         }
3570
3571         if (rcw > disks && rmw > disks &&
3572             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3573                 set_bit(STRIPE_DELAYED, &sh->state);
3574
3575         /* now if nothing is locked, and if we have enough data,
3576          * we can start a write request
3577          */
3578         /* since handle_stripe can be called at any time we need to handle the
3579          * case where a compute block operation has been submitted and then a
3580          * subsequent call wants to start a write request.  raid_run_ops only
3581          * handles the case where compute block and reconstruct are requested
3582          * simultaneously.  If this is not the case then new writes need to be
3583          * held off until the compute completes.
3584          */
3585         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3586             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3587             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3588                 schedule_reconstruction(sh, s, rcw == 0, 0);
3589 }
3590
3591 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3592                                 struct stripe_head_state *s, int disks)
3593 {
3594         struct r5dev *dev = NULL;
3595
3596         BUG_ON(sh->batch_head);
3597         set_bit(STRIPE_HANDLE, &sh->state);
3598
3599         switch (sh->check_state) {
3600         case check_state_idle:
3601                 /* start a new check operation if there are no failures */
3602                 if (s->failed == 0) {
3603                         BUG_ON(s->uptodate != disks);
3604                         sh->check_state = check_state_run;
3605                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3606                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3607                         s->uptodate--;
3608                         break;
3609                 }
3610                 dev = &sh->dev[s->failed_num[0]];
3611                 /* fall through */
3612         case check_state_compute_result:
3613                 sh->check_state = check_state_idle;
3614                 if (!dev)
3615                         dev = &sh->dev[sh->pd_idx];
3616
3617                 /* check that a write has not made the stripe insync */
3618                 if (test_bit(STRIPE_INSYNC, &sh->state))
3619                         break;
3620
3621                 /* either failed parity check, or recovery is happening */
3622                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3623                 BUG_ON(s->uptodate != disks);
3624
3625                 set_bit(R5_LOCKED, &dev->flags);
3626                 s->locked++;
3627                 set_bit(R5_Wantwrite, &dev->flags);
3628
3629                 clear_bit(STRIPE_DEGRADED, &sh->state);
3630                 set_bit(STRIPE_INSYNC, &sh->state);
3631                 break;
3632         case check_state_run:
3633                 break; /* we will be called again upon completion */
3634         case check_state_check_result:
3635                 sh->check_state = check_state_idle;
3636
3637                 /* if a failure occurred during the check operation, leave
3638                  * STRIPE_INSYNC not set and let the stripe be handled again
3639                  */
3640                 if (s->failed)
3641                         break;
3642
3643                 /* handle a successful check operation, if parity is correct
3644                  * we are done.  Otherwise update the mismatch count and repair
3645                  * parity if !MD_RECOVERY_CHECK
3646                  */
3647                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3648                         /* parity is correct (on disc,
3649                          * not in buffer any more)
3650                          */
3651                         set_bit(STRIPE_INSYNC, &sh->state);
3652                 else {
3653                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3654                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3655                                 /* don't try to repair!! */
3656                                 set_bit(STRIPE_INSYNC, &sh->state);
3657                         else {
3658                                 sh->check_state = check_state_compute_run;
3659                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3660                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3661                                 set_bit(R5_Wantcompute,
3662                                         &sh->dev[sh->pd_idx].flags);
3663                                 sh->ops.target = sh->pd_idx;
3664                                 sh->ops.target2 = -1;
3665                                 s->uptodate++;
3666                         }
3667                 }
3668                 break;
3669         case check_state_compute_run:
3670                 break;
3671         default:
3672                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3673                        __func__, sh->check_state,
3674                        (unsigned long long) sh->sector);
3675                 BUG();
3676         }
3677 }
3678
3679 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3680                                   struct stripe_head_state *s,
3681                                   int disks)
3682 {
3683         int pd_idx = sh->pd_idx;
3684         int qd_idx = sh->qd_idx;
3685         struct r5dev *dev;
3686
3687         BUG_ON(sh->batch_head);
3688         set_bit(STRIPE_HANDLE, &sh->state);
3689
3690         BUG_ON(s->failed > 2);
3691
3692         /* Want to check and possibly repair P and Q.
3693          * However there could be one 'failed' device, in which
3694          * case we can only check one of them, possibly using the
3695          * other to generate missing data
3696          */
3697
3698         switch (sh->check_state) {
3699         case check_state_idle:
3700                 /* start a new check operation if there are < 2 failures */
3701                 if (s->failed == s->q_failed) {
3702                         /* The only possible failed device holds Q, so it
3703                          * makes sense to check P (If anything else were failed,
3704                          * we would have used P to recreate it).
3705                          */
3706                         sh->check_state = check_state_run;
3707                 }
3708                 if (!s->q_failed && s->failed < 2) {
3709                         /* Q is not failed, and we didn't use it to generate
3710                          * anything, so it makes sense to check it
3711                          */
3712                         if (sh->check_state == check_state_run)
3713                                 sh->check_state = check_state_run_pq;
3714                         else
3715                                 sh->check_state = check_state_run_q;
3716                 }
3717
3718                 /* discard potentially stale zero_sum_result */
3719                 sh->ops.zero_sum_result = 0;
3720
3721                 if (sh->check_state == check_state_run) {
3722                         /* async_xor_zero_sum destroys the contents of P */
3723                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3724                         s->uptodate--;
3725                 }
3726                 if (sh->check_state >= check_state_run &&
3727                     sh->check_state <= check_state_run_pq) {
3728                         /* async_syndrome_zero_sum preserves P and Q, so
3729                          * no need to mark them !uptodate here
3730                          */
3731                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3732                         break;
3733                 }
3734
3735                 /* we have 2-disk failure */
3736                 BUG_ON(s->failed != 2);
3737                 /* fall through */
3738         case check_state_compute_result:
3739                 sh->check_state = check_state_idle;
3740
3741                 /* check that a write has not made the stripe insync */
3742                 if (test_bit(STRIPE_INSYNC, &sh->state))
3743                         break;
3744
3745                 /* now write out any block on a failed drive,
3746                  * or P or Q if they were recomputed
3747                  */
3748                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3749                 if (s->failed == 2) {
3750                         dev = &sh->dev[s->failed_num[1]];
3751                         s->locked++;
3752                         set_bit(R5_LOCKED, &dev->flags);
3753                         set_bit(R5_Wantwrite, &dev->flags);
3754                 }
3755                 if (s->failed >= 1) {
3756                         dev = &sh->dev[s->failed_num[0]];
3757                         s->locked++;
3758                         set_bit(R5_LOCKED, &dev->flags);
3759                         set_bit(R5_Wantwrite, &dev->flags);
3760                 }
3761                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3762                         dev = &sh->dev[pd_idx];
3763                         s->locked++;
3764                         set_bit(R5_LOCKED, &dev->flags);
3765                         set_bit(R5_Wantwrite, &dev->flags);
3766                 }
3767                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3768                         dev = &sh->dev[qd_idx];
3769                         s->locked++;
3770                         set_bit(R5_LOCKED, &dev->flags);
3771                         set_bit(R5_Wantwrite, &dev->flags);
3772                 }
3773                 clear_bit(STRIPE_DEGRADED, &sh->state);
3774
3775                 set_bit(STRIPE_INSYNC, &sh->state);
3776                 break;
3777         case check_state_run:
3778         case check_state_run_q:
3779         case check_state_run_pq:
3780                 break; /* we will be called again upon completion */
3781         case check_state_check_result:
3782                 sh->check_state = check_state_idle;
3783
3784                 /* handle a successful check operation, if parity is correct
3785                  * we are done.  Otherwise update the mismatch count and repair
3786                  * parity if !MD_RECOVERY_CHECK
3787                  */
3788                 if (sh->ops.zero_sum_result == 0) {
3789                         /* both parities are correct */
3790                         if (!s->failed)
3791                                 set_bit(STRIPE_INSYNC, &sh->state);
3792                         else {
3793                                 /* in contrast to the raid5 case we can validate
3794                                  * parity, but still have a failure to write
3795                                  * back
3796                                  */
3797                                 sh->check_state = check_state_compute_result;
3798                                 /* Returning at this point means that we may go
3799                                  * off and bring p and/or q uptodate again so
3800                                  * we make sure to check zero_sum_result again
3801                                  * to verify if p or q need writeback
3802                                  */
3803                         }
3804                 } else {
3805                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3806                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3807                                 /* don't try to repair!! */
3808                                 set_bit(STRIPE_INSYNC, &sh->state);
3809                         else {
3810                                 int *target = &sh->ops.target;
3811
3812                                 sh->ops.target = -1;
3813                                 sh->ops.target2 = -1;
3814                                 sh->check_state = check_state_compute_run;
3815                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3816                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3817                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3818                                         set_bit(R5_Wantcompute,
3819                                                 &sh->dev[pd_idx].flags);
3820                                         *target = pd_idx;
3821                                         target = &sh->ops.target2;
3822                                         s->uptodate++;
3823                                 }
3824                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3825                                         set_bit(R5_Wantcompute,
3826                                                 &sh->dev[qd_idx].flags);
3827                                         *target = qd_idx;
3828                                         s->uptodate++;
3829                                 }
3830                         }
3831                 }
3832                 break;
3833         case check_state_compute_run:
3834                 break;
3835         default:
3836                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3837                        __func__, sh->check_state,
3838                        (unsigned long long) sh->sector);
3839                 BUG();
3840         }
3841 }
3842
3843 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3844 {
3845         int i;
3846
3847         /* We have read all the blocks in this stripe and now we need to
3848          * copy some of them into a target stripe for expand.
3849          */
3850         struct dma_async_tx_descriptor *tx = NULL;
3851         BUG_ON(sh->batch_head);
3852         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3853         for (i = 0; i < sh->disks; i++)
3854                 if (i != sh->pd_idx && i != sh->qd_idx) {
3855                         int dd_idx, j;
3856                         struct stripe_head *sh2;
3857                         struct async_submit_ctl submit;
3858
3859                         sector_t bn = compute_blocknr(sh, i, 1);
3860                         sector_t s = raid5_compute_sector(conf, bn, 0,
3861                                                           &dd_idx, NULL);
3862                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3863                         if (sh2 == NULL)
3864                                 /* so far only the early blocks of this stripe
3865                                  * have been requested.  When later blocks
3866                                  * get requested, we will try again
3867                                  */
3868                                 continue;
3869                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3870                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3871                                 /* must have already done this block */
3872                                 release_stripe(sh2);
3873                                 continue;
3874                         }
3875
3876                         /* place all the copies on one channel */
3877                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3878                         tx = async_memcpy(sh2->dev[dd_idx].page,
3879                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3880                                           &submit);
3881
3882                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3883                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3884                         for (j = 0; j < conf->raid_disks; j++)
3885                                 if (j != sh2->pd_idx &&
3886                                     j != sh2->qd_idx &&
3887                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3888                                         break;
3889                         if (j == conf->raid_disks) {
3890                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3891                                 set_bit(STRIPE_HANDLE, &sh2->state);
3892                         }
3893                         release_stripe(sh2);
3894
3895                 }
3896         /* done submitting copies, wait for them to complete */
3897         async_tx_quiesce(&tx);
3898 }
3899
3900 /*
3901  * handle_stripe - do things to a stripe.
3902  *
3903  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3904  * state of various bits to see what needs to be done.
3905  * Possible results:
3906  *    return some read requests which now have data
3907  *    return some write requests which are safely on storage
3908  *    schedule a read on some buffers
3909  *    schedule a write of some buffers
3910  *    return confirmation of parity correctness
3911  *
3912  */
3913
3914 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3915 {
3916         struct r5conf *conf = sh->raid_conf;
3917         int disks = sh->disks;
3918         struct r5dev *dev;
3919         int i;
3920         int do_recovery = 0;
3921
3922         memset(s, 0, sizeof(*s));
3923
3924         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3925         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3926         s->failed_num[0] = -1;
3927         s->failed_num[1] = -1;
3928
3929         /* Now to look around and see what can be done */
3930         rcu_read_lock();
3931         for (i=disks; i--; ) {
3932                 struct md_rdev *rdev;
3933                 sector_t first_bad;
3934                 int bad_sectors;
3935                 int is_bad = 0;
3936
3937                 dev = &sh->dev[i];
3938
3939                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3940                          i, dev->flags,
3941                          dev->toread, dev->towrite, dev->written);
3942                 /* maybe we can reply to a read
3943                  *
3944                  * new wantfill requests are only permitted while
3945                  * ops_complete_biofill is guaranteed to be inactive
3946                  */
3947                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3948                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3949                         set_bit(R5_Wantfill, &dev->flags);
3950
3951                 /* now count some things */
3952                 if (test_bit(R5_LOCKED, &dev->flags))
3953                         s->locked++;
3954                 if (test_bit(R5_UPTODATE, &dev->flags))
3955                         s->uptodate++;
3956                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3957                         s->compute++;
3958                         BUG_ON(s->compute > 2);
3959                 }
3960
3961                 if (test_bit(R5_Wantfill, &dev->flags))
3962                         s->to_fill++;
3963                 else if (dev->toread)
3964                         s->to_read++;
3965                 if (dev->towrite) {
3966                         s->to_write++;
3967                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3968                                 s->non_overwrite++;
3969                 }
3970                 if (dev->written)
3971                         s->written++;
3972                 /* Prefer to use the replacement for reads, but only
3973                  * if it is recovered enough and has no bad blocks.
3974                  */
3975                 rdev = rcu_dereference(conf->disks[i].replacement);
3976                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3977                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3978                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3979                                  &first_bad, &bad_sectors))
3980                         set_bit(R5_ReadRepl, &dev->flags);
3981                 else {
3982                         if (rdev)
3983                                 set_bit(R5_NeedReplace, &dev->flags);
3984                         rdev = rcu_dereference(conf->disks[i].rdev);
3985                         clear_bit(R5_ReadRepl, &dev->flags);
3986                 }
3987                 if (rdev && test_bit(Faulty, &rdev->flags))
3988                         rdev = NULL;
3989                 if (rdev) {
3990                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3991                                              &first_bad, &bad_sectors);
3992                         if (s->blocked_rdev == NULL
3993                             && (test_bit(Blocked, &rdev->flags)
3994                                 || is_bad < 0)) {
3995                                 if (is_bad < 0)
3996                                         set_bit(BlockedBadBlocks,
3997                                                 &rdev->flags);
3998                                 s->blocked_rdev = rdev;
3999                                 atomic_inc(&rdev->nr_pending);
4000                         }
4001                 }
4002                 clear_bit(R5_Insync, &dev->flags);
4003                 if (!rdev)
4004                         /* Not in-sync */;
4005                 else if (is_bad) {
4006                         /* also not in-sync */
4007                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4008                             test_bit(R5_UPTODATE, &dev->flags)) {
4009                                 /* treat as in-sync, but with a read error
4010                                  * which we can now try to correct
4011                                  */
4012                                 set_bit(R5_Insync, &dev->flags);
4013                                 set_bit(R5_ReadError, &dev->flags);
4014                         }
4015                 } else if (test_bit(In_sync, &rdev->flags))
4016                         set_bit(R5_Insync, &dev->flags);
4017                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4018                         /* in sync if before recovery_offset */
4019                         set_bit(R5_Insync, &dev->flags);
4020                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4021                          test_bit(R5_Expanded, &dev->flags))
4022                         /* If we've reshaped into here, we assume it is Insync.
4023                          * We will shortly update recovery_offset to make
4024                          * it official.
4025                          */
4026                         set_bit(R5_Insync, &dev->flags);
4027
4028                 if (test_bit(R5_WriteError, &dev->flags)) {
4029                         /* This flag does not apply to '.replacement'
4030                          * only to .rdev, so make sure to check that*/
4031                         struct md_rdev *rdev2 = rcu_dereference(
4032                                 conf->disks[i].rdev);
4033                         if (rdev2 == rdev)
4034                                 clear_bit(R5_Insync, &dev->flags);
4035                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4036                                 s->handle_bad_blocks = 1;
4037                                 atomic_inc(&rdev2->nr_pending);
4038                         } else
4039                                 clear_bit(R5_WriteError, &dev->flags);
4040                 }
4041                 if (test_bit(R5_MadeGood, &dev->flags)) {
4042                         /* This flag does not apply to '.replacement'
4043                          * only to .rdev, so make sure to check that*/
4044                         struct md_rdev *rdev2 = rcu_dereference(
4045                                 conf->disks[i].rdev);
4046                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4047                                 s->handle_bad_blocks = 1;
4048                                 atomic_inc(&rdev2->nr_pending);
4049                         } else
4050                                 clear_bit(R5_MadeGood, &dev->flags);
4051                 }
4052                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4053                         struct md_rdev *rdev2 = rcu_dereference(
4054                                 conf->disks[i].replacement);
4055                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4056                                 s->handle_bad_blocks = 1;
4057                                 atomic_inc(&rdev2->nr_pending);
4058                         } else
4059                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4060                 }
4061                 if (!test_bit(R5_Insync, &dev->flags)) {
4062                         /* The ReadError flag will just be confusing now */
4063                         clear_bit(R5_ReadError, &dev->flags);
4064                         clear_bit(R5_ReWrite, &dev->flags);
4065                 }
4066                 if (test_bit(R5_ReadError, &dev->flags))
4067                         clear_bit(R5_Insync, &dev->flags);
4068                 if (!test_bit(R5_Insync, &dev->flags)) {
4069                         if (s->failed < 2)
4070                                 s->failed_num[s->failed] = i;
4071                         s->failed++;
4072                         if (rdev && !test_bit(Faulty, &rdev->flags))
4073                                 do_recovery = 1;
4074                 }
4075         }
4076         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4077                 /* If there is a failed device being replaced,
4078                  *     we must be recovering.
4079                  * else if we are after recovery_cp, we must be syncing
4080                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4081                  * else we can only be replacing
4082                  * sync and recovery both need to read all devices, and so
4083                  * use the same flag.
4084                  */
4085                 if (do_recovery ||
4086                     sh->sector >= conf->mddev->recovery_cp ||
4087                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4088                         s->syncing = 1;
4089                 else
4090                         s->replacing = 1;
4091         }
4092         rcu_read_unlock();
4093 }
4094
4095 static int clear_batch_ready(struct stripe_head *sh)
4096 {
4097         struct stripe_head *tmp;
4098         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4099                 return 0;
4100         spin_lock(&sh->stripe_lock);
4101         if (!sh->batch_head) {
4102                 spin_unlock(&sh->stripe_lock);
4103                 return 0;
4104         }
4105
4106         /*
4107          * this stripe could be added to a batch list before we check
4108          * BATCH_READY, skips it
4109          */
4110         if (sh->batch_head != sh) {
4111                 spin_unlock(&sh->stripe_lock);
4112                 return 1;
4113         }
4114         spin_lock(&sh->batch_lock);
4115         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4116                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4117         spin_unlock(&sh->batch_lock);
4118         spin_unlock(&sh->stripe_lock);
4119
4120         /*
4121          * BATCH_READY is cleared, no new stripes can be added.
4122          * batch_list can be accessed without lock
4123          */
4124         return 0;
4125 }
4126
4127 static void handle_stripe(struct stripe_head *sh)
4128 {
4129         struct stripe_head_state s;
4130         struct r5conf *conf = sh->raid_conf;
4131         int i;
4132         int prexor;
4133         int disks = sh->disks;
4134         struct r5dev *pdev, *qdev;
4135
4136         clear_bit(STRIPE_HANDLE, &sh->state);
4137         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4138                 /* already being handled, ensure it gets handled
4139                  * again when current action finishes */
4140                 set_bit(STRIPE_HANDLE, &sh->state);
4141                 return;
4142         }
4143
4144         if (clear_batch_ready(sh) ) {
4145                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4146                 return;
4147         }
4148
4149         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4150                 spin_lock(&sh->stripe_lock);
4151                 /* Cannot process 'sync' concurrently with 'discard' */
4152                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4153                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4154                         set_bit(STRIPE_SYNCING, &sh->state);
4155                         clear_bit(STRIPE_INSYNC, &sh->state);
4156                         clear_bit(STRIPE_REPLACED, &sh->state);
4157                 }
4158                 spin_unlock(&sh->stripe_lock);
4159         }
4160         clear_bit(STRIPE_DELAYED, &sh->state);
4161
4162         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4163                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4164                (unsigned long long)sh->sector, sh->state,
4165                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4166                sh->check_state, sh->reconstruct_state);
4167
4168         analyse_stripe(sh, &s);
4169
4170         if (s.handle_bad_blocks) {
4171                 set_bit(STRIPE_HANDLE, &sh->state);
4172                 goto finish;
4173         }
4174
4175         if (unlikely(s.blocked_rdev)) {
4176                 if (s.syncing || s.expanding || s.expanded ||
4177                     s.replacing || s.to_write || s.written) {
4178                         set_bit(STRIPE_HANDLE, &sh->state);
4179                         goto finish;
4180                 }
4181                 /* There is nothing for the blocked_rdev to block */
4182                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4183                 s.blocked_rdev = NULL;
4184         }
4185
4186         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4187                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4188                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4189         }
4190
4191         pr_debug("locked=%d uptodate=%d to_read=%d"
4192                " to_write=%d failed=%d failed_num=%d,%d\n",
4193                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4194                s.failed_num[0], s.failed_num[1]);
4195         /* check if the array has lost more than max_degraded devices and,
4196          * if so, some requests might need to be failed.
4197          */
4198         if (s.failed > conf->max_degraded) {
4199                 sh->check_state = 0;
4200                 sh->reconstruct_state = 0;
4201                 if (s.to_read+s.to_write+s.written)
4202                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4203                 if (s.syncing + s.replacing)
4204                         handle_failed_sync(conf, sh, &s);
4205         }
4206
4207         /* Now we check to see if any write operations have recently
4208          * completed
4209          */
4210         prexor = 0;
4211         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4212                 prexor = 1;
4213         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4214             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4215                 sh->reconstruct_state = reconstruct_state_idle;
4216
4217                 /* All the 'written' buffers and the parity block are ready to
4218                  * be written back to disk
4219                  */
4220                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4221                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4222                 BUG_ON(sh->qd_idx >= 0 &&
4223                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4224                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4225                 for (i = disks; i--; ) {
4226                         struct r5dev *dev = &sh->dev[i];
4227                         if (test_bit(R5_LOCKED, &dev->flags) &&
4228                                 (i == sh->pd_idx || i == sh->qd_idx ||
4229                                  dev->written)) {
4230                                 pr_debug("Writing block %d\n", i);
4231                                 set_bit(R5_Wantwrite, &dev->flags);
4232                                 if (prexor)
4233                                         continue;
4234                                 if (s.failed > 1)
4235                                         continue;
4236                                 if (!test_bit(R5_Insync, &dev->flags) ||
4237                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4238                                      s.failed == 0))
4239                                         set_bit(STRIPE_INSYNC, &sh->state);
4240                         }
4241                 }
4242                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4243                         s.dec_preread_active = 1;
4244         }
4245
4246         /*
4247          * might be able to return some write requests if the parity blocks
4248          * are safe, or on a failed drive
4249          */
4250         pdev = &sh->dev[sh->pd_idx];
4251         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4252                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4253         qdev = &sh->dev[sh->qd_idx];
4254         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4255                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4256                 || conf->level < 6;
4257
4258         if (s.written &&
4259             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4260                              && !test_bit(R5_LOCKED, &pdev->flags)
4261                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4262                                  test_bit(R5_Discard, &pdev->flags))))) &&
4263             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4264                              && !test_bit(R5_LOCKED, &qdev->flags)
4265                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4266                                  test_bit(R5_Discard, &qdev->flags))))))
4267                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4268
4269         /* Now we might consider reading some blocks, either to check/generate
4270          * parity, or to satisfy requests
4271          * or to load a block that is being partially written.
4272          */
4273         if (s.to_read || s.non_overwrite
4274             || (conf->level == 6 && s.to_write && s.failed)
4275             || (s.syncing && (s.uptodate + s.compute < disks))
4276             || s.replacing
4277             || s.expanding)
4278                 handle_stripe_fill(sh, &s, disks);
4279
4280         /* Now to consider new write requests and what else, if anything
4281          * should be read.  We do not handle new writes when:
4282          * 1/ A 'write' operation (copy+xor) is already in flight.
4283          * 2/ A 'check' operation is in flight, as it may clobber the parity
4284          *    block.
4285          */
4286         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4287                 handle_stripe_dirtying(conf, sh, &s, disks);
4288
4289         /* maybe we need to check and possibly fix the parity for this stripe
4290          * Any reads will already have been scheduled, so we just see if enough
4291          * data is available.  The parity check is held off while parity
4292          * dependent operations are in flight.
4293          */
4294         if (sh->check_state ||
4295             (s.syncing && s.locked == 0 &&
4296              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4297              !test_bit(STRIPE_INSYNC, &sh->state))) {
4298                 if (conf->level == 6)
4299                         handle_parity_checks6(conf, sh, &s, disks);
4300                 else
4301                         handle_parity_checks5(conf, sh, &s, disks);
4302         }
4303
4304         if ((s.replacing || s.syncing) && s.locked == 0
4305             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4306             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4307                 /* Write out to replacement devices where possible */
4308                 for (i = 0; i < conf->raid_disks; i++)
4309                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4310                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4311                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4312                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4313                                 s.locked++;
4314                         }
4315                 if (s.replacing)
4316                         set_bit(STRIPE_INSYNC, &sh->state);
4317                 set_bit(STRIPE_REPLACED, &sh->state);
4318         }
4319         if ((s.syncing || s.replacing) && s.locked == 0 &&
4320             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4321             test_bit(STRIPE_INSYNC, &sh->state)) {
4322                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4323                 clear_bit(STRIPE_SYNCING, &sh->state);
4324                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4325                         wake_up(&conf->wait_for_overlap);
4326         }
4327
4328         /* If the failed drives are just a ReadError, then we might need
4329          * to progress the repair/check process
4330          */
4331         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4332                 for (i = 0; i < s.failed; i++) {
4333                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4334                         if (test_bit(R5_ReadError, &dev->flags)
4335                             && !test_bit(R5_LOCKED, &dev->flags)
4336                             && test_bit(R5_UPTODATE, &dev->flags)
4337                                 ) {
4338                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4339                                         set_bit(R5_Wantwrite, &dev->flags);
4340                                         set_bit(R5_ReWrite, &dev->flags);
4341                                         set_bit(R5_LOCKED, &dev->flags);
4342                                         s.locked++;
4343                                 } else {
4344                                         /* let's read it back */
4345                                         set_bit(R5_Wantread, &dev->flags);
4346                                         set_bit(R5_LOCKED, &dev->flags);
4347                                         s.locked++;
4348                                 }
4349                         }
4350                 }
4351
4352         /* Finish reconstruct operations initiated by the expansion process */
4353         if (sh->reconstruct_state == reconstruct_state_result) {
4354                 struct stripe_head *sh_src
4355                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4356                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4357                         /* sh cannot be written until sh_src has been read.
4358                          * so arrange for sh to be delayed a little
4359                          */
4360                         set_bit(STRIPE_DELAYED, &sh->state);
4361                         set_bit(STRIPE_HANDLE, &sh->state);
4362                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4363                                               &sh_src->state))
4364                                 atomic_inc(&conf->preread_active_stripes);
4365                         release_stripe(sh_src);
4366                         goto finish;
4367                 }
4368                 if (sh_src)
4369                         release_stripe(sh_src);
4370
4371                 sh->reconstruct_state = reconstruct_state_idle;
4372                 clear_bit(STRIPE_EXPANDING, &sh->state);
4373                 for (i = conf->raid_disks; i--; ) {
4374                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4375                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4376                         s.locked++;
4377                 }
4378         }
4379
4380         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4381             !sh->reconstruct_state) {
4382                 /* Need to write out all blocks after computing parity */
4383                 sh->disks = conf->raid_disks;
4384                 stripe_set_idx(sh->sector, conf, 0, sh);
4385                 schedule_reconstruction(sh, &s, 1, 1);
4386         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4387                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4388                 atomic_dec(&conf->reshape_stripes);
4389                 wake_up(&conf->wait_for_overlap);
4390                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4391         }
4392
4393         if (s.expanding && s.locked == 0 &&
4394             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4395                 handle_stripe_expansion(conf, sh);
4396
4397 finish:
4398         /* wait for this device to become unblocked */
4399         if (unlikely(s.blocked_rdev)) {
4400                 if (conf->mddev->external)
4401                         md_wait_for_blocked_rdev(s.blocked_rdev,
4402                                                  conf->mddev);
4403                 else
4404                         /* Internal metadata will immediately
4405                          * be written by raid5d, so we don't
4406                          * need to wait here.
4407                          */
4408                         rdev_dec_pending(s.blocked_rdev,
4409                                          conf->mddev);
4410         }
4411
4412         if (s.handle_bad_blocks)
4413                 for (i = disks; i--; ) {
4414                         struct md_rdev *rdev;
4415                         struct r5dev *dev = &sh->dev[i];
4416                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4417                                 /* We own a safe reference to the rdev */
4418                                 rdev = conf->disks[i].rdev;
4419                                 if (!rdev_set_badblocks(rdev, sh->sector,
4420                                                         STRIPE_SECTORS, 0))
4421                                         md_error(conf->mddev, rdev);
4422                                 rdev_dec_pending(rdev, conf->mddev);
4423                         }
4424                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4425                                 rdev = conf->disks[i].rdev;
4426                                 rdev_clear_badblocks(rdev, sh->sector,
4427                                                      STRIPE_SECTORS, 0);
4428                                 rdev_dec_pending(rdev, conf->mddev);
4429                         }
4430                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4431                                 rdev = conf->disks[i].replacement;
4432                                 if (!rdev)
4433                                         /* rdev have been moved down */
4434                                         rdev = conf->disks[i].rdev;
4435                                 rdev_clear_badblocks(rdev, sh->sector,
4436                                                      STRIPE_SECTORS, 0);
4437                                 rdev_dec_pending(rdev, conf->mddev);
4438                         }
4439                 }
4440
4441         if (s.ops_request)
4442                 raid_run_ops(sh, s.ops_request);
4443
4444         ops_run_io(sh, &s);
4445
4446         if (s.dec_preread_active) {
4447                 /* We delay this until after ops_run_io so that if make_request
4448                  * is waiting on a flush, it won't continue until the writes
4449                  * have actually been submitted.
4450                  */
4451                 atomic_dec(&conf->preread_active_stripes);
4452                 if (atomic_read(&conf->preread_active_stripes) <
4453                     IO_THRESHOLD)
4454                         md_wakeup_thread(conf->mddev->thread);
4455         }
4456
4457         return_io(s.return_bi);
4458
4459         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4460 }
4461
4462 static void raid5_activate_delayed(struct r5conf *conf)
4463 {
4464         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4465                 while (!list_empty(&conf->delayed_list)) {
4466                         struct list_head *l = conf->delayed_list.next;
4467                         struct stripe_head *sh;
4468                         sh = list_entry(l, struct stripe_head, lru);
4469                         list_del_init(l);
4470                         clear_bit(STRIPE_DELAYED, &sh->state);
4471                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4472                                 atomic_inc(&conf->preread_active_stripes);
4473                         list_add_tail(&sh->lru, &conf->hold_list);
4474                         raid5_wakeup_stripe_thread(sh);
4475                 }
4476         }
4477 }
4478
4479 static void activate_bit_delay(struct r5conf *conf,
4480         struct list_head *temp_inactive_list)
4481 {
4482         /* device_lock is held */
4483         struct list_head head;
4484         list_add(&head, &conf->bitmap_list);
4485         list_del_init(&conf->bitmap_list);
4486         while (!list_empty(&head)) {
4487                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4488                 int hash;
4489                 list_del_init(&sh->lru);
4490                 atomic_inc(&sh->count);
4491                 hash = sh->hash_lock_index;
4492                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4493         }
4494 }
4495
4496 static int raid5_congested(struct mddev *mddev, int bits)
4497 {
4498         struct r5conf *conf = mddev->private;
4499
4500         /* No difference between reads and writes.  Just check
4501          * how busy the stripe_cache is
4502          */
4503
4504         if (conf->inactive_blocked)
4505                 return 1;
4506         if (conf->quiesce)
4507                 return 1;
4508         if (atomic_read(&conf->empty_inactive_list_nr))
4509                 return 1;
4510
4511         return 0;
4512 }
4513
4514 /* We want read requests to align with chunks where possible,
4515  * but write requests don't need to.
4516  */
4517 static int raid5_mergeable_bvec(struct mddev *mddev,
4518                                 struct bvec_merge_data *bvm,
4519                                 struct bio_vec *biovec)
4520 {
4521         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4522         int max;
4523         unsigned int chunk_sectors = mddev->chunk_sectors;
4524         unsigned int bio_sectors = bvm->bi_size >> 9;
4525
4526         if ((bvm->bi_rw & 1) == WRITE)
4527                 return biovec->bv_len; /* always allow writes to be mergeable */
4528
4529         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4530                 chunk_sectors = mddev->new_chunk_sectors;
4531         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4532         if (max < 0) max = 0;
4533         if (max <= biovec->bv_len && bio_sectors == 0)
4534                 return biovec->bv_len;
4535         else
4536                 return max;
4537 }
4538
4539 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4540 {
4541         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4542         unsigned int chunk_sectors = mddev->chunk_sectors;
4543         unsigned int bio_sectors = bio_sectors(bio);
4544
4545         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4546                 chunk_sectors = mddev->new_chunk_sectors;
4547         return  chunk_sectors >=
4548                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4549 }
4550
4551 /*
4552  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4553  *  later sampled by raid5d.
4554  */
4555 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4556 {
4557         unsigned long flags;
4558
4559         spin_lock_irqsave(&conf->device_lock, flags);
4560
4561         bi->bi_next = conf->retry_read_aligned_list;
4562         conf->retry_read_aligned_list = bi;
4563
4564         spin_unlock_irqrestore(&conf->device_lock, flags);
4565         md_wakeup_thread(conf->mddev->thread);
4566 }
4567
4568 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4569 {
4570         struct bio *bi;
4571
4572         bi = conf->retry_read_aligned;
4573         if (bi) {
4574                 conf->retry_read_aligned = NULL;
4575                 return bi;
4576         }
4577         bi = conf->retry_read_aligned_list;
4578         if(bi) {
4579                 conf->retry_read_aligned_list = bi->bi_next;
4580                 bi->bi_next = NULL;
4581                 /*
4582                  * this sets the active strip count to 1 and the processed
4583                  * strip count to zero (upper 8 bits)
4584                  */
4585                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4586         }
4587
4588         return bi;
4589 }
4590
4591 /*
4592  *  The "raid5_align_endio" should check if the read succeeded and if it
4593  *  did, call bio_endio on the original bio (having bio_put the new bio
4594  *  first).
4595  *  If the read failed..
4596  */
4597 static void raid5_align_endio(struct bio *bi, int error)
4598 {
4599         struct bio* raid_bi  = bi->bi_private;
4600         struct mddev *mddev;
4601         struct r5conf *conf;
4602         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4603         struct md_rdev *rdev;
4604
4605         bio_put(bi);
4606
4607         rdev = (void*)raid_bi->bi_next;
4608         raid_bi->bi_next = NULL;
4609         mddev = rdev->mddev;
4610         conf = mddev->private;
4611
4612         rdev_dec_pending(rdev, conf->mddev);
4613
4614         if (!error && uptodate) {
4615                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4616                                          raid_bi, 0);
4617                 bio_endio(raid_bi, 0);
4618                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4619                         wake_up(&conf->wait_for_stripe);
4620                 return;
4621         }
4622
4623         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4624
4625         add_bio_to_retry(raid_bi, conf);
4626 }
4627
4628 static int bio_fits_rdev(struct bio *bi)
4629 {
4630         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4631
4632         if (bio_sectors(bi) > queue_max_sectors(q))
4633                 return 0;
4634         blk_recount_segments(q, bi);
4635         if (bi->bi_phys_segments > queue_max_segments(q))
4636                 return 0;
4637
4638         if (q->merge_bvec_fn)
4639                 /* it's too hard to apply the merge_bvec_fn at this stage,
4640                  * just just give up
4641                  */
4642                 return 0;
4643
4644         return 1;
4645 }
4646
4647 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4648 {
4649         struct r5conf *conf = mddev->private;
4650         int dd_idx;
4651         struct bio* align_bi;
4652         struct md_rdev *rdev;
4653         sector_t end_sector;
4654
4655         if (!in_chunk_boundary(mddev, raid_bio)) {
4656                 pr_debug("chunk_aligned_read : non aligned\n");
4657                 return 0;
4658         }
4659         /*
4660          * use bio_clone_mddev to make a copy of the bio
4661          */
4662         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4663         if (!align_bi)
4664                 return 0;
4665         /*
4666          *   set bi_end_io to a new function, and set bi_private to the
4667          *     original bio.
4668          */
4669         align_bi->bi_end_io  = raid5_align_endio;
4670         align_bi->bi_private = raid_bio;
4671         /*
4672          *      compute position
4673          */
4674         align_bi->bi_iter.bi_sector =
4675                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4676                                      0, &dd_idx, NULL);
4677
4678         end_sector = bio_end_sector(align_bi);
4679         rcu_read_lock();
4680         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4681         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4682             rdev->recovery_offset < end_sector) {
4683                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4684                 if (rdev &&
4685                     (test_bit(Faulty, &rdev->flags) ||
4686                     !(test_bit(In_sync, &rdev->flags) ||
4687                       rdev->recovery_offset >= end_sector)))
4688                         rdev = NULL;
4689         }
4690         if (rdev) {
4691                 sector_t first_bad;
4692                 int bad_sectors;
4693
4694                 atomic_inc(&rdev->nr_pending);
4695                 rcu_read_unlock();
4696                 raid_bio->bi_next = (void*)rdev;
4697                 align_bi->bi_bdev =  rdev->bdev;
4698                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4699
4700                 if (!bio_fits_rdev(align_bi) ||
4701                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4702                                 bio_sectors(align_bi),
4703                                 &first_bad, &bad_sectors)) {
4704                         /* too big in some way, or has a known bad block */
4705                         bio_put(align_bi);
4706                         rdev_dec_pending(rdev, mddev);
4707                         return 0;
4708                 }
4709
4710                 /* No reshape active, so we can trust rdev->data_offset */
4711                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4712
4713                 spin_lock_irq(&conf->device_lock);
4714                 wait_event_lock_irq(conf->wait_for_stripe,
4715                                     conf->quiesce == 0,
4716                                     conf->device_lock);
4717                 atomic_inc(&conf->active_aligned_reads);
4718                 spin_unlock_irq(&conf->device_lock);
4719
4720                 if (mddev->gendisk)
4721                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4722                                               align_bi, disk_devt(mddev->gendisk),
4723                                               raid_bio->bi_iter.bi_sector);
4724                 generic_make_request(align_bi);
4725                 return 1;
4726         } else {
4727                 rcu_read_unlock();
4728                 bio_put(align_bi);
4729                 return 0;
4730         }
4731 }
4732
4733 /* __get_priority_stripe - get the next stripe to process
4734  *
4735  * Full stripe writes are allowed to pass preread active stripes up until
4736  * the bypass_threshold is exceeded.  In general the bypass_count
4737  * increments when the handle_list is handled before the hold_list; however, it
4738  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4739  * stripe with in flight i/o.  The bypass_count will be reset when the
4740  * head of the hold_list has changed, i.e. the head was promoted to the
4741  * handle_list.
4742  */
4743 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4744 {
4745         struct stripe_head *sh = NULL, *tmp;
4746         struct list_head *handle_list = NULL;
4747         struct r5worker_group *wg = NULL;
4748
4749         if (conf->worker_cnt_per_group == 0) {
4750                 handle_list = &conf->handle_list;
4751         } else if (group != ANY_GROUP) {
4752                 handle_list = &conf->worker_groups[group].handle_list;
4753                 wg = &conf->worker_groups[group];
4754         } else {
4755                 int i;
4756                 for (i = 0; i < conf->group_cnt; i++) {
4757                         handle_list = &conf->worker_groups[i].handle_list;
4758                         wg = &conf->worker_groups[i];
4759                         if (!list_empty(handle_list))
4760                                 break;
4761                 }
4762         }
4763
4764         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4765                   __func__,
4766                   list_empty(handle_list) ? "empty" : "busy",
4767                   list_empty(&conf->hold_list) ? "empty" : "busy",
4768                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4769
4770         if (!list_empty(handle_list)) {
4771                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4772
4773                 if (list_empty(&conf->hold_list))
4774                         conf->bypass_count = 0;
4775                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4776                         if (conf->hold_list.next == conf->last_hold)
4777                                 conf->bypass_count++;
4778                         else {
4779                                 conf->last_hold = conf->hold_list.next;
4780                                 conf->bypass_count -= conf->bypass_threshold;
4781                                 if (conf->bypass_count < 0)
4782                                         conf->bypass_count = 0;
4783                         }
4784                 }
4785         } else if (!list_empty(&conf->hold_list) &&
4786                    ((conf->bypass_threshold &&
4787                      conf->bypass_count > conf->bypass_threshold) ||
4788                     atomic_read(&conf->pending_full_writes) == 0)) {
4789
4790                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4791                         if (conf->worker_cnt_per_group == 0 ||
4792                             group == ANY_GROUP ||
4793                             !cpu_online(tmp->cpu) ||
4794                             cpu_to_group(tmp->cpu) == group) {
4795                                 sh = tmp;
4796                                 break;
4797                         }
4798                 }
4799
4800                 if (sh) {
4801                         conf->bypass_count -= conf->bypass_threshold;
4802                         if (conf->bypass_count < 0)
4803                                 conf->bypass_count = 0;
4804                 }
4805                 wg = NULL;
4806         }
4807
4808         if (!sh)
4809                 return NULL;
4810
4811         if (wg) {
4812                 wg->stripes_cnt--;
4813                 sh->group = NULL;
4814         }
4815         list_del_init(&sh->lru);
4816         BUG_ON(atomic_inc_return(&sh->count) != 1);
4817         return sh;
4818 }
4819
4820 struct raid5_plug_cb {
4821         struct blk_plug_cb      cb;
4822         struct list_head        list;
4823         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4824 };
4825
4826 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4827 {
4828         struct raid5_plug_cb *cb = container_of(
4829                 blk_cb, struct raid5_plug_cb, cb);
4830         struct stripe_head *sh;
4831         struct mddev *mddev = cb->cb.data;
4832         struct r5conf *conf = mddev->private;
4833         int cnt = 0;
4834         int hash;
4835
4836         if (cb->list.next && !list_empty(&cb->list)) {
4837                 spin_lock_irq(&conf->device_lock);
4838                 while (!list_empty(&cb->list)) {
4839                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4840                         list_del_init(&sh->lru);
4841                         /*
4842                          * avoid race release_stripe_plug() sees
4843                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4844                          * is still in our list
4845                          */
4846                         smp_mb__before_atomic();
4847                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4848                         /*
4849                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4850                          * case, the count is always > 1 here
4851                          */
4852                         hash = sh->hash_lock_index;
4853                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4854                         cnt++;
4855                 }
4856                 spin_unlock_irq(&conf->device_lock);
4857         }
4858         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4859                                      NR_STRIPE_HASH_LOCKS);
4860         if (mddev->queue)
4861                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4862         kfree(cb);
4863 }
4864
4865 static void release_stripe_plug(struct mddev *mddev,
4866                                 struct stripe_head *sh)
4867 {
4868         struct blk_plug_cb *blk_cb = blk_check_plugged(
4869                 raid5_unplug, mddev,
4870                 sizeof(struct raid5_plug_cb));
4871         struct raid5_plug_cb *cb;
4872
4873         if (!blk_cb) {
4874                 release_stripe(sh);
4875                 return;
4876         }
4877
4878         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4879
4880         if (cb->list.next == NULL) {
4881                 int i;
4882                 INIT_LIST_HEAD(&cb->list);
4883                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4884                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4885         }
4886
4887         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4888                 list_add_tail(&sh->lru, &cb->list);
4889         else
4890                 release_stripe(sh);
4891 }
4892
4893 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4894 {
4895         struct r5conf *conf = mddev->private;
4896         sector_t logical_sector, last_sector;
4897         struct stripe_head *sh;
4898         int remaining;
4899         int stripe_sectors;
4900
4901         if (mddev->reshape_position != MaxSector)
4902                 /* Skip discard while reshape is happening */
4903                 return;
4904
4905         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4906         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4907
4908         bi->bi_next = NULL;
4909         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4910
4911         stripe_sectors = conf->chunk_sectors *
4912                 (conf->raid_disks - conf->max_degraded);
4913         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4914                                                stripe_sectors);
4915         sector_div(last_sector, stripe_sectors);
4916
4917         logical_sector *= conf->chunk_sectors;
4918         last_sector *= conf->chunk_sectors;
4919
4920         for (; logical_sector < last_sector;
4921              logical_sector += STRIPE_SECTORS) {
4922                 DEFINE_WAIT(w);
4923                 int d;
4924         again:
4925                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4926                 prepare_to_wait(&conf->wait_for_overlap, &w,
4927                                 TASK_UNINTERRUPTIBLE);
4928                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4929                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4930                         release_stripe(sh);
4931                         schedule();
4932                         goto again;
4933                 }
4934                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4935                 spin_lock_irq(&sh->stripe_lock);
4936                 for (d = 0; d < conf->raid_disks; d++) {
4937                         if (d == sh->pd_idx || d == sh->qd_idx)
4938                                 continue;
4939                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4940                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4941                                 spin_unlock_irq(&sh->stripe_lock);
4942                                 release_stripe(sh);
4943                                 schedule();
4944                                 goto again;
4945                         }
4946                 }
4947                 set_bit(STRIPE_DISCARD, &sh->state);
4948                 finish_wait(&conf->wait_for_overlap, &w);
4949                 sh->overwrite_disks = 0;
4950                 for (d = 0; d < conf->raid_disks; d++) {
4951                         if (d == sh->pd_idx || d == sh->qd_idx)
4952                                 continue;
4953                         sh->dev[d].towrite = bi;
4954                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4955                         raid5_inc_bi_active_stripes(bi);
4956                         sh->overwrite_disks++;
4957                 }
4958                 spin_unlock_irq(&sh->stripe_lock);
4959                 if (conf->mddev->bitmap) {
4960                         for (d = 0;
4961                              d < conf->raid_disks - conf->max_degraded;
4962                              d++)
4963                                 bitmap_startwrite(mddev->bitmap,
4964                                                   sh->sector,
4965                                                   STRIPE_SECTORS,
4966                                                   0);
4967                         sh->bm_seq = conf->seq_flush + 1;
4968                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4969                 }
4970
4971                 set_bit(STRIPE_HANDLE, &sh->state);
4972                 clear_bit(STRIPE_DELAYED, &sh->state);
4973                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4974                         atomic_inc(&conf->preread_active_stripes);
4975                 release_stripe_plug(mddev, sh);
4976         }
4977
4978         remaining = raid5_dec_bi_active_stripes(bi);
4979         if (remaining == 0) {
4980                 md_write_end(mddev);
4981                 bio_endio(bi, 0);
4982         }
4983 }
4984
4985 static void make_request(struct mddev *mddev, struct bio * bi)
4986 {
4987         struct r5conf *conf = mddev->private;
4988         int dd_idx;
4989         sector_t new_sector;
4990         sector_t logical_sector, last_sector;
4991         struct stripe_head *sh;
4992         const int rw = bio_data_dir(bi);
4993         int remaining;
4994         DEFINE_WAIT(w);
4995         bool do_prepare;
4996
4997         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4998                 md_flush_request(mddev, bi);
4999                 return;
5000         }
5001
5002         md_write_start(mddev, bi);
5003
5004         if (rw == READ &&
5005              mddev->reshape_position == MaxSector &&
5006              chunk_aligned_read(mddev,bi))
5007                 return;
5008
5009         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5010                 make_discard_request(mddev, bi);
5011                 return;
5012         }
5013
5014         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5015         last_sector = bio_end_sector(bi);
5016         bi->bi_next = NULL;
5017         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5018
5019         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5020         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5021                 int previous;
5022                 int seq;
5023
5024                 do_prepare = false;
5025         retry:
5026                 seq = read_seqcount_begin(&conf->gen_lock);
5027                 previous = 0;
5028                 if (do_prepare)
5029                         prepare_to_wait(&conf->wait_for_overlap, &w,
5030                                 TASK_UNINTERRUPTIBLE);
5031                 if (unlikely(conf->reshape_progress != MaxSector)) {
5032                         /* spinlock is needed as reshape_progress may be
5033                          * 64bit on a 32bit platform, and so it might be
5034                          * possible to see a half-updated value
5035                          * Of course reshape_progress could change after
5036                          * the lock is dropped, so once we get a reference
5037                          * to the stripe that we think it is, we will have
5038                          * to check again.
5039                          */
5040                         spin_lock_irq(&conf->device_lock);
5041                         if (mddev->reshape_backwards
5042                             ? logical_sector < conf->reshape_progress
5043                             : logical_sector >= conf->reshape_progress) {
5044                                 previous = 1;
5045                         } else {
5046                                 if (mddev->reshape_backwards
5047                                     ? logical_sector < conf->reshape_safe
5048                                     : logical_sector >= conf->reshape_safe) {
5049                                         spin_unlock_irq(&conf->device_lock);
5050                                         schedule();
5051                                         do_prepare = true;
5052                                         goto retry;
5053                                 }
5054                         }
5055                         spin_unlock_irq(&conf->device_lock);
5056                 }
5057
5058                 new_sector = raid5_compute_sector(conf, logical_sector,
5059                                                   previous,
5060                                                   &dd_idx, NULL);
5061                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5062                         (unsigned long long)new_sector,
5063                         (unsigned long long)logical_sector);
5064
5065                 sh = get_active_stripe(conf, new_sector, previous,
5066                                        (bi->bi_rw&RWA_MASK), 0);
5067                 if (sh) {
5068                         if (unlikely(previous)) {
5069                                 /* expansion might have moved on while waiting for a
5070                                  * stripe, so we must do the range check again.
5071                                  * Expansion could still move past after this
5072                                  * test, but as we are holding a reference to
5073                                  * 'sh', we know that if that happens,
5074                                  *  STRIPE_EXPANDING will get set and the expansion
5075                                  * won't proceed until we finish with the stripe.
5076                                  */
5077                                 int must_retry = 0;
5078                                 spin_lock_irq(&conf->device_lock);
5079                                 if (mddev->reshape_backwards
5080                                     ? logical_sector >= conf->reshape_progress
5081                                     : logical_sector < conf->reshape_progress)
5082                                         /* mismatch, need to try again */
5083                                         must_retry = 1;
5084                                 spin_unlock_irq(&conf->device_lock);
5085                                 if (must_retry) {
5086                                         release_stripe(sh);
5087                                         schedule();
5088                                         do_prepare = true;
5089                                         goto retry;
5090                                 }
5091                         }
5092                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5093                                 /* Might have got the wrong stripe_head
5094                                  * by accident
5095                                  */
5096                                 release_stripe(sh);
5097                                 goto retry;
5098                         }
5099
5100                         if (rw == WRITE &&
5101                             logical_sector >= mddev->suspend_lo &&
5102                             logical_sector < mddev->suspend_hi) {
5103                                 release_stripe(sh);
5104                                 /* As the suspend_* range is controlled by
5105                                  * userspace, we want an interruptible
5106                                  * wait.
5107                                  */
5108                                 flush_signals(current);
5109                                 prepare_to_wait(&conf->wait_for_overlap,
5110                                                 &w, TASK_INTERRUPTIBLE);
5111                                 if (logical_sector >= mddev->suspend_lo &&
5112                                     logical_sector < mddev->suspend_hi) {
5113                                         schedule();
5114                                         do_prepare = true;
5115                                 }
5116                                 goto retry;
5117                         }
5118
5119                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5120                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5121                                 /* Stripe is busy expanding or
5122                                  * add failed due to overlap.  Flush everything
5123                                  * and wait a while
5124                                  */
5125                                 md_wakeup_thread(mddev->thread);
5126                                 release_stripe(sh);
5127                                 schedule();
5128                                 do_prepare = true;
5129                                 goto retry;
5130                         }
5131                         set_bit(STRIPE_HANDLE, &sh->state);
5132                         clear_bit(STRIPE_DELAYED, &sh->state);
5133                         if ((!sh->batch_head || sh == sh->batch_head) &&
5134                             (bi->bi_rw & REQ_SYNC) &&
5135                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5136                                 atomic_inc(&conf->preread_active_stripes);
5137                         release_stripe_plug(mddev, sh);
5138                 } else {
5139                         /* cannot get stripe for read-ahead, just give-up */
5140                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
5141                         break;
5142                 }
5143         }
5144         finish_wait(&conf->wait_for_overlap, &w);
5145
5146         remaining = raid5_dec_bi_active_stripes(bi);
5147         if (remaining == 0) {
5148
5149                 if ( rw == WRITE )
5150                         md_write_end(mddev);
5151
5152                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5153                                          bi, 0);
5154                 bio_endio(bi, 0);
5155         }
5156 }
5157
5158 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5159
5160 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5161 {
5162         /* reshaping is quite different to recovery/resync so it is
5163          * handled quite separately ... here.
5164          *
5165          * On each call to sync_request, we gather one chunk worth of
5166          * destination stripes and flag them as expanding.
5167          * Then we find all the source stripes and request reads.
5168          * As the reads complete, handle_stripe will copy the data
5169          * into the destination stripe and release that stripe.
5170          */
5171         struct r5conf *conf = mddev->private;
5172         struct stripe_head *sh;
5173         sector_t first_sector, last_sector;
5174         int raid_disks = conf->previous_raid_disks;
5175         int data_disks = raid_disks - conf->max_degraded;
5176         int new_data_disks = conf->raid_disks - conf->max_degraded;
5177         int i;
5178         int dd_idx;
5179         sector_t writepos, readpos, safepos;
5180         sector_t stripe_addr;
5181         int reshape_sectors;
5182         struct list_head stripes;
5183
5184         if (sector_nr == 0) {
5185                 /* If restarting in the middle, skip the initial sectors */
5186                 if (mddev->reshape_backwards &&
5187                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5188                         sector_nr = raid5_size(mddev, 0, 0)
5189                                 - conf->reshape_progress;
5190                 } else if (!mddev->reshape_backwards &&
5191                            conf->reshape_progress > 0)
5192                         sector_nr = conf->reshape_progress;
5193                 sector_div(sector_nr, new_data_disks);
5194                 if (sector_nr) {
5195                         mddev->curr_resync_completed = sector_nr;
5196                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5197                         *skipped = 1;
5198                         return sector_nr;
5199                 }
5200         }
5201
5202         /* We need to process a full chunk at a time.
5203          * If old and new chunk sizes differ, we need to process the
5204          * largest of these
5205          */
5206         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5207                 reshape_sectors = mddev->new_chunk_sectors;
5208         else
5209                 reshape_sectors = mddev->chunk_sectors;
5210
5211         /* We update the metadata at least every 10 seconds, or when
5212          * the data about to be copied would over-write the source of
5213          * the data at the front of the range.  i.e. one new_stripe
5214          * along from reshape_progress new_maps to after where
5215          * reshape_safe old_maps to
5216          */
5217         writepos = conf->reshape_progress;
5218         sector_div(writepos, new_data_disks);
5219         readpos = conf->reshape_progress;
5220         sector_div(readpos, data_disks);
5221         safepos = conf->reshape_safe;
5222         sector_div(safepos, data_disks);
5223         if (mddev->reshape_backwards) {
5224                 writepos -= min_t(sector_t, reshape_sectors, writepos);
5225                 readpos += reshape_sectors;
5226                 safepos += reshape_sectors;
5227         } else {
5228                 writepos += reshape_sectors;
5229                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5230                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5231         }
5232
5233         /* Having calculated the 'writepos' possibly use it
5234          * to set 'stripe_addr' which is where we will write to.
5235          */
5236         if (mddev->reshape_backwards) {
5237                 BUG_ON(conf->reshape_progress == 0);
5238                 stripe_addr = writepos;
5239                 BUG_ON((mddev->dev_sectors &
5240                         ~((sector_t)reshape_sectors - 1))
5241                        - reshape_sectors - stripe_addr
5242                        != sector_nr);
5243         } else {
5244                 BUG_ON(writepos != sector_nr + reshape_sectors);
5245                 stripe_addr = sector_nr;
5246         }
5247
5248         /* 'writepos' is the most advanced device address we might write.
5249          * 'readpos' is the least advanced device address we might read.
5250          * 'safepos' is the least address recorded in the metadata as having
5251          *     been reshaped.
5252          * If there is a min_offset_diff, these are adjusted either by
5253          * increasing the safepos/readpos if diff is negative, or
5254          * increasing writepos if diff is positive.
5255          * If 'readpos' is then behind 'writepos', there is no way that we can
5256          * ensure safety in the face of a crash - that must be done by userspace
5257          * making a backup of the data.  So in that case there is no particular
5258          * rush to update metadata.
5259          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5260          * update the metadata to advance 'safepos' to match 'readpos' so that
5261          * we can be safe in the event of a crash.
5262          * So we insist on updating metadata if safepos is behind writepos and
5263          * readpos is beyond writepos.
5264          * In any case, update the metadata every 10 seconds.
5265          * Maybe that number should be configurable, but I'm not sure it is
5266          * worth it.... maybe it could be a multiple of safemode_delay???
5267          */
5268         if (conf->min_offset_diff < 0) {
5269                 safepos += -conf->min_offset_diff;
5270                 readpos += -conf->min_offset_diff;
5271         } else
5272                 writepos += conf->min_offset_diff;
5273
5274         if ((mddev->reshape_backwards
5275              ? (safepos > writepos && readpos < writepos)
5276              : (safepos < writepos && readpos > writepos)) ||
5277             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5278                 /* Cannot proceed until we've updated the superblock... */
5279                 wait_event(conf->wait_for_overlap,
5280                            atomic_read(&conf->reshape_stripes)==0
5281                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5282                 if (atomic_read(&conf->reshape_stripes) != 0)
5283                         return 0;
5284                 mddev->reshape_position = conf->reshape_progress;
5285                 mddev->curr_resync_completed = sector_nr;
5286                 conf->reshape_checkpoint = jiffies;
5287                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5288                 md_wakeup_thread(mddev->thread);
5289                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5290                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5291                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5292                         return 0;
5293                 spin_lock_irq(&conf->device_lock);
5294                 conf->reshape_safe = mddev->reshape_position;
5295                 spin_unlock_irq(&conf->device_lock);
5296                 wake_up(&conf->wait_for_overlap);
5297                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5298         }
5299
5300         INIT_LIST_HEAD(&stripes);
5301         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5302                 int j;
5303                 int skipped_disk = 0;
5304                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5305                 set_bit(STRIPE_EXPANDING, &sh->state);
5306                 atomic_inc(&conf->reshape_stripes);
5307                 /* If any of this stripe is beyond the end of the old
5308                  * array, then we need to zero those blocks
5309                  */
5310                 for (j=sh->disks; j--;) {
5311                         sector_t s;
5312                         if (j == sh->pd_idx)
5313                                 continue;
5314                         if (conf->level == 6 &&
5315                             j == sh->qd_idx)
5316                                 continue;
5317                         s = compute_blocknr(sh, j, 0);
5318                         if (s < raid5_size(mddev, 0, 0)) {
5319                                 skipped_disk = 1;
5320                                 continue;
5321                         }
5322                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5323                         set_bit(R5_Expanded, &sh->dev[j].flags);
5324                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5325                 }
5326                 if (!skipped_disk) {
5327                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5328                         set_bit(STRIPE_HANDLE, &sh->state);
5329                 }
5330                 list_add(&sh->lru, &stripes);
5331         }
5332         spin_lock_irq(&conf->device_lock);
5333         if (mddev->reshape_backwards)
5334                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5335         else
5336                 conf->reshape_progress += reshape_sectors * new_data_disks;
5337         spin_unlock_irq(&conf->device_lock);
5338         /* Ok, those stripe are ready. We can start scheduling
5339          * reads on the source stripes.
5340          * The source stripes are determined by mapping the first and last
5341          * block on the destination stripes.
5342          */
5343         first_sector =
5344                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5345                                      1, &dd_idx, NULL);
5346         last_sector =
5347                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5348                                             * new_data_disks - 1),
5349                                      1, &dd_idx, NULL);
5350         if (last_sector >= mddev->dev_sectors)
5351                 last_sector = mddev->dev_sectors - 1;
5352         while (first_sector <= last_sector) {
5353                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5354                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5355                 set_bit(STRIPE_HANDLE, &sh->state);
5356                 release_stripe(sh);
5357                 first_sector += STRIPE_SECTORS;
5358         }
5359         /* Now that the sources are clearly marked, we can release
5360          * the destination stripes
5361          */
5362         while (!list_empty(&stripes)) {
5363                 sh = list_entry(stripes.next, struct stripe_head, lru);
5364                 list_del_init(&sh->lru);
5365                 release_stripe(sh);
5366         }
5367         /* If this takes us to the resync_max point where we have to pause,
5368          * then we need to write out the superblock.
5369          */
5370         sector_nr += reshape_sectors;
5371         if ((sector_nr - mddev->curr_resync_completed) * 2
5372             >= mddev->resync_max - mddev->curr_resync_completed) {
5373                 /* Cannot proceed until we've updated the superblock... */
5374                 wait_event(conf->wait_for_overlap,
5375                            atomic_read(&conf->reshape_stripes) == 0
5376                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5377                 if (atomic_read(&conf->reshape_stripes) != 0)
5378                         goto ret;
5379                 mddev->reshape_position = conf->reshape_progress;
5380                 mddev->curr_resync_completed = sector_nr;
5381                 conf->reshape_checkpoint = jiffies;
5382                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5383                 md_wakeup_thread(mddev->thread);
5384                 wait_event(mddev->sb_wait,
5385                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5386                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5387                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5388                         goto ret;
5389                 spin_lock_irq(&conf->device_lock);
5390                 conf->reshape_safe = mddev->reshape_position;
5391                 spin_unlock_irq(&conf->device_lock);
5392                 wake_up(&conf->wait_for_overlap);
5393                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5394         }
5395 ret:
5396         return reshape_sectors;
5397 }
5398
5399 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5400 {
5401         struct r5conf *conf = mddev->private;
5402         struct stripe_head *sh;
5403         sector_t max_sector = mddev->dev_sectors;
5404         sector_t sync_blocks;
5405         int still_degraded = 0;
5406         int i;
5407
5408         if (sector_nr >= max_sector) {
5409                 /* just being told to finish up .. nothing much to do */
5410
5411                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5412                         end_reshape(conf);
5413                         return 0;
5414                 }
5415
5416                 if (mddev->curr_resync < max_sector) /* aborted */
5417                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5418                                         &sync_blocks, 1);
5419                 else /* completed sync */
5420                         conf->fullsync = 0;
5421                 bitmap_close_sync(mddev->bitmap);
5422
5423                 return 0;
5424         }
5425
5426         /* Allow raid5_quiesce to complete */
5427         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5428
5429         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5430                 return reshape_request(mddev, sector_nr, skipped);
5431
5432         /* No need to check resync_max as we never do more than one
5433          * stripe, and as resync_max will always be on a chunk boundary,
5434          * if the check in md_do_sync didn't fire, there is no chance
5435          * of overstepping resync_max here
5436          */
5437
5438         /* if there is too many failed drives and we are trying
5439          * to resync, then assert that we are finished, because there is
5440          * nothing we can do.
5441          */
5442         if (mddev->degraded >= conf->max_degraded &&
5443             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5444                 sector_t rv = mddev->dev_sectors - sector_nr;
5445                 *skipped = 1;
5446                 return rv;
5447         }
5448         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5449             !conf->fullsync &&
5450             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5451             sync_blocks >= STRIPE_SECTORS) {
5452                 /* we can skip this block, and probably more */
5453                 sync_blocks /= STRIPE_SECTORS;
5454                 *skipped = 1;
5455                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5456         }
5457
5458         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5459
5460         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5461         if (sh == NULL) {
5462                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5463                 /* make sure we don't swamp the stripe cache if someone else
5464                  * is trying to get access
5465                  */
5466                 schedule_timeout_uninterruptible(1);
5467         }
5468         /* Need to check if array will still be degraded after recovery/resync
5469          * Note in case of > 1 drive failures it's possible we're rebuilding
5470          * one drive while leaving another faulty drive in array.
5471          */
5472         rcu_read_lock();
5473         for (i = 0; i < conf->raid_disks; i++) {
5474                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5475
5476                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5477                         still_degraded = 1;
5478         }
5479         rcu_read_unlock();
5480
5481         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5482
5483         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5484         set_bit(STRIPE_HANDLE, &sh->state);
5485
5486         release_stripe(sh);
5487
5488         return STRIPE_SECTORS;
5489 }
5490
5491 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5492 {
5493         /* We may not be able to submit a whole bio at once as there
5494          * may not be enough stripe_heads available.
5495          * We cannot pre-allocate enough stripe_heads as we may need
5496          * more than exist in the cache (if we allow ever large chunks).
5497          * So we do one stripe head at a time and record in
5498          * ->bi_hw_segments how many have been done.
5499          *
5500          * We *know* that this entire raid_bio is in one chunk, so
5501          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5502          */
5503         struct stripe_head *sh;
5504         int dd_idx;
5505         sector_t sector, logical_sector, last_sector;
5506         int scnt = 0;
5507         int remaining;
5508         int handled = 0;
5509
5510         logical_sector = raid_bio->bi_iter.bi_sector &
5511                 ~((sector_t)STRIPE_SECTORS-1);
5512         sector = raid5_compute_sector(conf, logical_sector,
5513                                       0, &dd_idx, NULL);
5514         last_sector = bio_end_sector(raid_bio);
5515
5516         for (; logical_sector < last_sector;
5517              logical_sector += STRIPE_SECTORS,
5518                      sector += STRIPE_SECTORS,
5519                      scnt++) {
5520
5521                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5522                         /* already done this stripe */
5523                         continue;
5524
5525                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5526
5527                 if (!sh) {
5528                         /* failed to get a stripe - must wait */
5529                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5530                         conf->retry_read_aligned = raid_bio;
5531                         return handled;
5532                 }
5533
5534                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5535                         release_stripe(sh);
5536                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5537                         conf->retry_read_aligned = raid_bio;
5538                         return handled;
5539                 }
5540
5541                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5542                 handle_stripe(sh);
5543                 release_stripe(sh);
5544                 handled++;
5545         }
5546         remaining = raid5_dec_bi_active_stripes(raid_bio);
5547         if (remaining == 0) {
5548                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5549                                          raid_bio, 0);
5550                 bio_endio(raid_bio, 0);
5551         }
5552         if (atomic_dec_and_test(&conf->active_aligned_reads))
5553                 wake_up(&conf->wait_for_stripe);
5554         return handled;
5555 }
5556
5557 static int handle_active_stripes(struct r5conf *conf, int group,
5558                                  struct r5worker *worker,
5559                                  struct list_head *temp_inactive_list)
5560 {
5561         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5562         int i, batch_size = 0, hash;
5563         bool release_inactive = false;
5564
5565         while (batch_size < MAX_STRIPE_BATCH &&
5566                         (sh = __get_priority_stripe(conf, group)) != NULL)
5567                 batch[batch_size++] = sh;
5568
5569         if (batch_size == 0) {
5570                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5571                         if (!list_empty(temp_inactive_list + i))
5572                                 break;
5573                 if (i == NR_STRIPE_HASH_LOCKS)
5574                         return batch_size;
5575                 release_inactive = true;
5576         }
5577         spin_unlock_irq(&conf->device_lock);
5578
5579         release_inactive_stripe_list(conf, temp_inactive_list,
5580                                      NR_STRIPE_HASH_LOCKS);
5581
5582         if (release_inactive) {
5583                 spin_lock_irq(&conf->device_lock);
5584                 return 0;
5585         }
5586
5587         for (i = 0; i < batch_size; i++)
5588                 handle_stripe(batch[i]);
5589
5590         cond_resched();
5591
5592         spin_lock_irq(&conf->device_lock);
5593         for (i = 0; i < batch_size; i++) {
5594                 hash = batch[i]->hash_lock_index;
5595                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5596         }
5597         return batch_size;
5598 }
5599
5600 static void raid5_do_work(struct work_struct *work)
5601 {
5602         struct r5worker *worker = container_of(work, struct r5worker, work);
5603         struct r5worker_group *group = worker->group;
5604         struct r5conf *conf = group->conf;
5605         int group_id = group - conf->worker_groups;
5606         int handled;
5607         struct blk_plug plug;
5608
5609         pr_debug("+++ raid5worker active\n");
5610
5611         blk_start_plug(&plug);
5612         handled = 0;
5613         spin_lock_irq(&conf->device_lock);
5614         while (1) {
5615                 int batch_size, released;
5616
5617                 released = release_stripe_list(conf, worker->temp_inactive_list);
5618
5619                 batch_size = handle_active_stripes(conf, group_id, worker,
5620                                                    worker->temp_inactive_list);
5621                 worker->working = false;
5622                 if (!batch_size && !released)
5623                         break;
5624                 handled += batch_size;
5625         }
5626         pr_debug("%d stripes handled\n", handled);
5627
5628         spin_unlock_irq(&conf->device_lock);
5629         blk_finish_plug(&plug);
5630
5631         pr_debug("--- raid5worker inactive\n");
5632 }
5633
5634 /*
5635  * This is our raid5 kernel thread.
5636  *
5637  * We scan the hash table for stripes which can be handled now.
5638  * During the scan, completed stripes are saved for us by the interrupt
5639  * handler, so that they will not have to wait for our next wakeup.
5640  */
5641 static void raid5d(struct md_thread *thread)
5642 {
5643         struct mddev *mddev = thread->mddev;
5644         struct r5conf *conf = mddev->private;
5645         int handled;
5646         struct blk_plug plug;
5647
5648         pr_debug("+++ raid5d active\n");
5649
5650         md_check_recovery(mddev);
5651
5652         blk_start_plug(&plug);
5653         handled = 0;
5654         spin_lock_irq(&conf->device_lock);
5655         while (1) {
5656                 struct bio *bio;
5657                 int batch_size, released;
5658
5659                 released = release_stripe_list(conf, conf->temp_inactive_list);
5660
5661                 if (
5662                     !list_empty(&conf->bitmap_list)) {
5663                         /* Now is a good time to flush some bitmap updates */
5664                         conf->seq_flush++;
5665                         spin_unlock_irq(&conf->device_lock);
5666                         bitmap_unplug(mddev->bitmap);
5667                         spin_lock_irq(&conf->device_lock);
5668                         conf->seq_write = conf->seq_flush;
5669                         activate_bit_delay(conf, conf->temp_inactive_list);
5670                 }
5671                 raid5_activate_delayed(conf);
5672
5673                 while ((bio = remove_bio_from_retry(conf))) {
5674                         int ok;
5675                         spin_unlock_irq(&conf->device_lock);
5676                         ok = retry_aligned_read(conf, bio);
5677                         spin_lock_irq(&conf->device_lock);
5678                         if (!ok)
5679                                 break;
5680                         handled++;
5681                 }
5682
5683                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5684                                                    conf->temp_inactive_list);
5685                 if (!batch_size && !released)
5686                         break;
5687                 handled += batch_size;
5688
5689                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5690                         spin_unlock_irq(&conf->device_lock);
5691                         md_check_recovery(mddev);
5692                         spin_lock_irq(&conf->device_lock);
5693                 }
5694         }
5695         pr_debug("%d stripes handled\n", handled);
5696
5697         spin_unlock_irq(&conf->device_lock);
5698
5699         async_tx_issue_pending_all();
5700         blk_finish_plug(&plug);
5701
5702         pr_debug("--- raid5d inactive\n");
5703 }
5704
5705 static ssize_t
5706 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5707 {
5708         struct r5conf *conf;
5709         int ret = 0;
5710         spin_lock(&mddev->lock);
5711         conf = mddev->private;
5712         if (conf)
5713                 ret = sprintf(page, "%d\n", conf->max_nr_stripes);
5714         spin_unlock(&mddev->lock);
5715         return ret;
5716 }
5717
5718 int
5719 raid5_set_cache_size(struct mddev *mddev, int size)
5720 {
5721         struct r5conf *conf = mddev->private;
5722         int err;
5723         int hash;
5724
5725         if (size <= 16 || size > 32768)
5726                 return -EINVAL;
5727         hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5728         while (size < conf->max_nr_stripes) {
5729                 if (drop_one_stripe(conf, hash))
5730                         conf->max_nr_stripes--;
5731                 else
5732                         break;
5733                 hash--;
5734                 if (hash < 0)
5735                         hash = NR_STRIPE_HASH_LOCKS - 1;
5736         }
5737         err = md_allow_write(mddev);
5738         if (err)
5739                 return err;
5740         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5741         while (size > conf->max_nr_stripes) {
5742                 if (grow_one_stripe(conf, hash))
5743                         conf->max_nr_stripes++;
5744                 else break;
5745                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5746         }
5747         return 0;
5748 }
5749 EXPORT_SYMBOL(raid5_set_cache_size);
5750
5751 static ssize_t
5752 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5753 {
5754         struct r5conf *conf;
5755         unsigned long new;
5756         int err;
5757
5758         if (len >= PAGE_SIZE)
5759                 return -EINVAL;
5760         if (kstrtoul(page, 10, &new))
5761                 return -EINVAL;
5762         err = mddev_lock(mddev);
5763         if (err)
5764                 return err;
5765         conf = mddev->private;
5766         if (!conf)
5767                 err = -ENODEV;
5768         else
5769                 err = raid5_set_cache_size(mddev, new);
5770         mddev_unlock(mddev);
5771
5772         return err ?: len;
5773 }
5774
5775 static struct md_sysfs_entry
5776 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5777                                 raid5_show_stripe_cache_size,
5778                                 raid5_store_stripe_cache_size);
5779
5780 static ssize_t
5781 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5782 {
5783         struct r5conf *conf;
5784         int ret = 0;
5785         spin_lock(&mddev->lock);
5786         conf = mddev->private;
5787         if (conf)
5788                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5789         spin_unlock(&mddev->lock);
5790         return ret;
5791 }
5792
5793 static ssize_t
5794 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5795 {
5796         struct r5conf *conf;
5797         unsigned long new;
5798         int err;
5799
5800         if (len >= PAGE_SIZE)
5801                 return -EINVAL;
5802         if (kstrtoul(page, 10, &new))
5803                 return -EINVAL;
5804
5805         err = mddev_lock(mddev);
5806         if (err)
5807                 return err;
5808         conf = mddev->private;
5809         if (!conf)
5810                 err = -ENODEV;
5811         else if (new > conf->max_nr_stripes)
5812                 err = -EINVAL;
5813         else
5814                 conf->bypass_threshold = new;
5815         mddev_unlock(mddev);
5816         return err ?: len;
5817 }
5818
5819 static struct md_sysfs_entry
5820 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5821                                         S_IRUGO | S_IWUSR,
5822                                         raid5_show_preread_threshold,
5823                                         raid5_store_preread_threshold);
5824
5825 static ssize_t
5826 raid5_show_skip_copy(struct mddev *mddev, char *page)
5827 {
5828         struct r5conf *conf;
5829         int ret = 0;
5830         spin_lock(&mddev->lock);
5831         conf = mddev->private;
5832         if (conf)
5833                 ret = sprintf(page, "%d\n", conf->skip_copy);
5834         spin_unlock(&mddev->lock);
5835         return ret;
5836 }
5837
5838 static ssize_t
5839 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5840 {
5841         struct r5conf *conf;
5842         unsigned long new;
5843         int err;
5844
5845         if (len >= PAGE_SIZE)
5846                 return -EINVAL;
5847         if (kstrtoul(page, 10, &new))
5848                 return -EINVAL;
5849         new = !!new;
5850
5851         err = mddev_lock(mddev);
5852         if (err)
5853                 return err;
5854         conf = mddev->private;
5855         if (!conf)
5856                 err = -ENODEV;
5857         else if (new != conf->skip_copy) {
5858                 mddev_suspend(mddev);
5859                 conf->skip_copy = new;
5860                 if (new)
5861                         mddev->queue->backing_dev_info.capabilities |=
5862                                 BDI_CAP_STABLE_WRITES;
5863                 else
5864                         mddev->queue->backing_dev_info.capabilities &=
5865                                 ~BDI_CAP_STABLE_WRITES;
5866                 mddev_resume(mddev);
5867         }
5868         mddev_unlock(mddev);
5869         return err ?: len;
5870 }
5871
5872 static struct md_sysfs_entry
5873 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5874                                         raid5_show_skip_copy,
5875                                         raid5_store_skip_copy);
5876
5877 static ssize_t
5878 stripe_cache_active_show(struct mddev *mddev, char *page)
5879 {
5880         struct r5conf *conf = mddev->private;
5881         if (conf)
5882                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5883         else
5884                 return 0;
5885 }
5886
5887 static struct md_sysfs_entry
5888 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5889
5890 static ssize_t
5891 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5892 {
5893         struct r5conf *conf;
5894         int ret = 0;
5895         spin_lock(&mddev->lock);
5896         conf = mddev->private;
5897         if (conf)
5898                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
5899         spin_unlock(&mddev->lock);
5900         return ret;
5901 }
5902
5903 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5904                                int *group_cnt,
5905                                int *worker_cnt_per_group,
5906                                struct r5worker_group **worker_groups);
5907 static ssize_t
5908 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5909 {
5910         struct r5conf *conf;
5911         unsigned long new;
5912         int err;
5913         struct r5worker_group *new_groups, *old_groups;
5914         int group_cnt, worker_cnt_per_group;
5915
5916         if (len >= PAGE_SIZE)
5917                 return -EINVAL;
5918         if (kstrtoul(page, 10, &new))
5919                 return -EINVAL;
5920
5921         err = mddev_lock(mddev);
5922         if (err)
5923                 return err;
5924         conf = mddev->private;
5925         if (!conf)
5926                 err = -ENODEV;
5927         else if (new != conf->worker_cnt_per_group) {
5928                 mddev_suspend(mddev);
5929
5930                 old_groups = conf->worker_groups;
5931                 if (old_groups)
5932                         flush_workqueue(raid5_wq);
5933
5934                 err = alloc_thread_groups(conf, new,
5935                                           &group_cnt, &worker_cnt_per_group,
5936                                           &new_groups);
5937                 if (!err) {
5938                         spin_lock_irq(&conf->device_lock);
5939                         conf->group_cnt = group_cnt;
5940                         conf->worker_cnt_per_group = worker_cnt_per_group;
5941                         conf->worker_groups = new_groups;
5942                         spin_unlock_irq(&conf->device_lock);
5943
5944                         if (old_groups)
5945                                 kfree(old_groups[0].workers);
5946                         kfree(old_groups);
5947                 }
5948                 mddev_resume(mddev);
5949         }
5950         mddev_unlock(mddev);
5951
5952         return err ?: len;
5953 }
5954
5955 static struct md_sysfs_entry
5956 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5957                                 raid5_show_group_thread_cnt,
5958                                 raid5_store_group_thread_cnt);
5959
5960 static struct attribute *raid5_attrs[] =  {
5961         &raid5_stripecache_size.attr,
5962         &raid5_stripecache_active.attr,
5963         &raid5_preread_bypass_threshold.attr,
5964         &raid5_group_thread_cnt.attr,
5965         &raid5_skip_copy.attr,
5966         NULL,
5967 };
5968 static struct attribute_group raid5_attrs_group = {
5969         .name = NULL,
5970         .attrs = raid5_attrs,
5971 };
5972
5973 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5974                                int *group_cnt,
5975                                int *worker_cnt_per_group,
5976                                struct r5worker_group **worker_groups)
5977 {
5978         int i, j, k;
5979         ssize_t size;
5980         struct r5worker *workers;
5981
5982         *worker_cnt_per_group = cnt;
5983         if (cnt == 0) {
5984                 *group_cnt = 0;
5985                 *worker_groups = NULL;
5986                 return 0;
5987         }
5988         *group_cnt = num_possible_nodes();
5989         size = sizeof(struct r5worker) * cnt;
5990         workers = kzalloc(size * *group_cnt, GFP_NOIO);
5991         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5992                                 *group_cnt, GFP_NOIO);
5993         if (!*worker_groups || !workers) {
5994                 kfree(workers);
5995                 kfree(*worker_groups);
5996                 return -ENOMEM;
5997         }
5998
5999         for (i = 0; i < *group_cnt; i++) {
6000                 struct r5worker_group *group;
6001
6002                 group = &(*worker_groups)[i];
6003                 INIT_LIST_HEAD(&group->handle_list);
6004                 group->conf = conf;
6005                 group->workers = workers + i * cnt;
6006
6007                 for (j = 0; j < cnt; j++) {
6008                         struct r5worker *worker = group->workers + j;
6009                         worker->group = group;
6010                         INIT_WORK(&worker->work, raid5_do_work);
6011
6012                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6013                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6014                 }
6015         }
6016
6017         return 0;
6018 }
6019
6020 static void free_thread_groups(struct r5conf *conf)
6021 {
6022         if (conf->worker_groups)
6023                 kfree(conf->worker_groups[0].workers);
6024         kfree(conf->worker_groups);
6025         conf->worker_groups = NULL;
6026 }
6027
6028 static sector_t
6029 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6030 {
6031         struct r5conf *conf = mddev->private;
6032
6033         if (!sectors)
6034                 sectors = mddev->dev_sectors;
6035         if (!raid_disks)
6036                 /* size is defined by the smallest of previous and new size */
6037                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6038
6039         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6040         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6041         return sectors * (raid_disks - conf->max_degraded);
6042 }
6043
6044 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6045 {
6046         safe_put_page(percpu->spare_page);
6047         if (percpu->scribble)
6048                 flex_array_free(percpu->scribble);
6049         percpu->spare_page = NULL;
6050         percpu->scribble = NULL;
6051 }
6052
6053 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6054 {
6055         if (conf->level == 6 && !percpu->spare_page)
6056                 percpu->spare_page = alloc_page(GFP_KERNEL);
6057         if (!percpu->scribble)
6058                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6059                         conf->previous_raid_disks), conf->chunk_sectors /
6060                         STRIPE_SECTORS, GFP_KERNEL);
6061
6062         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6063                 free_scratch_buffer(conf, percpu);
6064                 return -ENOMEM;
6065         }
6066
6067         return 0;
6068 }
6069
6070 static void raid5_free_percpu(struct r5conf *conf)
6071 {
6072         unsigned long cpu;
6073
6074         if (!conf->percpu)
6075                 return;
6076
6077 #ifdef CONFIG_HOTPLUG_CPU
6078         unregister_cpu_notifier(&conf->cpu_notify);
6079 #endif
6080
6081         get_online_cpus();
6082         for_each_possible_cpu(cpu)
6083                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6084         put_online_cpus();
6085
6086         free_percpu(conf->percpu);
6087 }
6088
6089 static void free_conf(struct r5conf *conf)
6090 {
6091         free_thread_groups(conf);
6092         shrink_stripes(conf);
6093         raid5_free_percpu(conf);
6094         kfree(conf->disks);
6095         kfree(conf->stripe_hashtbl);
6096         kfree(conf);
6097 }
6098
6099 #ifdef CONFIG_HOTPLUG_CPU
6100 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6101                               void *hcpu)
6102 {
6103         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6104         long cpu = (long)hcpu;
6105         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6106
6107         switch (action) {
6108         case CPU_UP_PREPARE:
6109         case CPU_UP_PREPARE_FROZEN:
6110                 if (alloc_scratch_buffer(conf, percpu)) {
6111                         pr_err("%s: failed memory allocation for cpu%ld\n",
6112                                __func__, cpu);
6113                         return notifier_from_errno(-ENOMEM);
6114                 }
6115                 break;
6116         case CPU_DEAD:
6117         case CPU_DEAD_FROZEN:
6118                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6119                 break;
6120         default:
6121                 break;
6122         }
6123         return NOTIFY_OK;
6124 }
6125 #endif
6126
6127 static int raid5_alloc_percpu(struct r5conf *conf)
6128 {
6129         unsigned long cpu;
6130         int err = 0;
6131
6132         conf->percpu = alloc_percpu(struct raid5_percpu);
6133         if (!conf->percpu)
6134                 return -ENOMEM;
6135
6136 #ifdef CONFIG_HOTPLUG_CPU
6137         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6138         conf->cpu_notify.priority = 0;
6139         err = register_cpu_notifier(&conf->cpu_notify);
6140         if (err)
6141                 return err;
6142 #endif
6143
6144         get_online_cpus();
6145         for_each_present_cpu(cpu) {
6146                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6147                 if (err) {
6148                         pr_err("%s: failed memory allocation for cpu%ld\n",
6149                                __func__, cpu);
6150                         break;
6151                 }
6152         }
6153         put_online_cpus();
6154
6155         return err;
6156 }
6157
6158 static struct r5conf *setup_conf(struct mddev *mddev)
6159 {
6160         struct r5conf *conf;
6161         int raid_disk, memory, max_disks;
6162         struct md_rdev *rdev;
6163         struct disk_info *disk;
6164         char pers_name[6];
6165         int i;
6166         int group_cnt, worker_cnt_per_group;
6167         struct r5worker_group *new_group;
6168
6169         if (mddev->new_level != 5
6170             && mddev->new_level != 4
6171             && mddev->new_level != 6) {
6172                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6173                        mdname(mddev), mddev->new_level);
6174                 return ERR_PTR(-EIO);
6175         }
6176         if ((mddev->new_level == 5
6177              && !algorithm_valid_raid5(mddev->new_layout)) ||
6178             (mddev->new_level == 6
6179              && !algorithm_valid_raid6(mddev->new_layout))) {
6180                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6181                        mdname(mddev), mddev->new_layout);
6182                 return ERR_PTR(-EIO);
6183         }
6184         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6185                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6186                        mdname(mddev), mddev->raid_disks);
6187                 return ERR_PTR(-EINVAL);
6188         }
6189
6190         if (!mddev->new_chunk_sectors ||
6191             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6192             !is_power_of_2(mddev->new_chunk_sectors)) {
6193                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6194                        mdname(mddev), mddev->new_chunk_sectors << 9);
6195                 return ERR_PTR(-EINVAL);
6196         }
6197
6198         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6199         if (conf == NULL)
6200                 goto abort;
6201         /* Don't enable multi-threading by default*/
6202         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6203                                  &new_group)) {
6204                 conf->group_cnt = group_cnt;
6205                 conf->worker_cnt_per_group = worker_cnt_per_group;
6206                 conf->worker_groups = new_group;
6207         } else
6208                 goto abort;
6209         spin_lock_init(&conf->device_lock);
6210         seqcount_init(&conf->gen_lock);
6211         init_waitqueue_head(&conf->wait_for_stripe);
6212         init_waitqueue_head(&conf->wait_for_overlap);
6213         INIT_LIST_HEAD(&conf->handle_list);
6214         INIT_LIST_HEAD(&conf->hold_list);
6215         INIT_LIST_HEAD(&conf->delayed_list);
6216         INIT_LIST_HEAD(&conf->bitmap_list);
6217         init_llist_head(&conf->released_stripes);
6218         atomic_set(&conf->active_stripes, 0);
6219         atomic_set(&conf->preread_active_stripes, 0);
6220         atomic_set(&conf->active_aligned_reads, 0);
6221         conf->bypass_threshold = BYPASS_THRESHOLD;
6222         conf->recovery_disabled = mddev->recovery_disabled - 1;
6223
6224         conf->raid_disks = mddev->raid_disks;
6225         if (mddev->reshape_position == MaxSector)
6226                 conf->previous_raid_disks = mddev->raid_disks;
6227         else
6228                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6229         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6230
6231         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6232                               GFP_KERNEL);
6233         if (!conf->disks)
6234                 goto abort;
6235
6236         conf->mddev = mddev;
6237
6238         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6239                 goto abort;
6240
6241         /* We init hash_locks[0] separately to that it can be used
6242          * as the reference lock in the spin_lock_nest_lock() call
6243          * in lock_all_device_hash_locks_irq in order to convince
6244          * lockdep that we know what we are doing.
6245          */
6246         spin_lock_init(conf->hash_locks);
6247         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6248                 spin_lock_init(conf->hash_locks + i);
6249
6250         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6251                 INIT_LIST_HEAD(conf->inactive_list + i);
6252
6253         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6254                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6255
6256         conf->level = mddev->new_level;
6257         conf->chunk_sectors = mddev->new_chunk_sectors;
6258         if (raid5_alloc_percpu(conf) != 0)
6259                 goto abort;
6260
6261         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6262
6263         rdev_for_each(rdev, mddev) {
6264                 raid_disk = rdev->raid_disk;
6265                 if (raid_disk >= max_disks
6266                     || raid_disk < 0)
6267                         continue;
6268                 disk = conf->disks + raid_disk;
6269
6270                 if (test_bit(Replacement, &rdev->flags)) {
6271                         if (disk->replacement)
6272                                 goto abort;
6273                         disk->replacement = rdev;
6274                 } else {
6275                         if (disk->rdev)
6276                                 goto abort;
6277                         disk->rdev = rdev;
6278                 }
6279
6280                 if (test_bit(In_sync, &rdev->flags)) {
6281                         char b[BDEVNAME_SIZE];
6282                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6283                                " disk %d\n",
6284                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6285                 } else if (rdev->saved_raid_disk != raid_disk)
6286                         /* Cannot rely on bitmap to complete recovery */
6287                         conf->fullsync = 1;
6288         }
6289
6290         conf->level = mddev->new_level;
6291         if (conf->level == 6)
6292                 conf->max_degraded = 2;
6293         else
6294                 conf->max_degraded = 1;
6295         conf->algorithm = mddev->new_layout;
6296         conf->reshape_progress = mddev->reshape_position;
6297         if (conf->reshape_progress != MaxSector) {
6298                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6299                 conf->prev_algo = mddev->layout;
6300         }
6301
6302         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
6303                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6304         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6305         if (grow_stripes(conf, NR_STRIPES)) {
6306                 printk(KERN_ERR
6307                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6308                        mdname(mddev), memory);
6309                 goto abort;
6310         } else
6311                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6312                        mdname(mddev), memory);
6313
6314         sprintf(pers_name, "raid%d", mddev->new_level);
6315         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6316         if (!conf->thread) {
6317                 printk(KERN_ERR
6318                        "md/raid:%s: couldn't allocate thread.\n",
6319                        mdname(mddev));
6320                 goto abort;
6321         }
6322
6323         return conf;
6324
6325  abort:
6326         if (conf) {
6327                 free_conf(conf);
6328                 return ERR_PTR(-EIO);
6329         } else
6330                 return ERR_PTR(-ENOMEM);
6331 }
6332
6333 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6334 {
6335         switch (algo) {
6336         case ALGORITHM_PARITY_0:
6337                 if (raid_disk < max_degraded)
6338                         return 1;
6339                 break;
6340         case ALGORITHM_PARITY_N:
6341                 if (raid_disk >= raid_disks - max_degraded)
6342                         return 1;
6343                 break;
6344         case ALGORITHM_PARITY_0_6:
6345                 if (raid_disk == 0 ||
6346                     raid_disk == raid_disks - 1)
6347                         return 1;
6348                 break;
6349         case ALGORITHM_LEFT_ASYMMETRIC_6:
6350         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6351         case ALGORITHM_LEFT_SYMMETRIC_6:
6352         case ALGORITHM_RIGHT_SYMMETRIC_6:
6353                 if (raid_disk == raid_disks - 1)
6354                         return 1;
6355         }
6356         return 0;
6357 }
6358
6359 static int run(struct mddev *mddev)
6360 {
6361         struct r5conf *conf;
6362         int working_disks = 0;
6363         int dirty_parity_disks = 0;
6364         struct md_rdev *rdev;
6365         sector_t reshape_offset = 0;
6366         int i;
6367         long long min_offset_diff = 0;
6368         int first = 1;
6369
6370         if (mddev->recovery_cp != MaxSector)
6371                 printk(KERN_NOTICE "md/raid:%s: not clean"
6372                        " -- starting background reconstruction\n",
6373                        mdname(mddev));
6374
6375         rdev_for_each(rdev, mddev) {
6376                 long long diff;
6377                 if (rdev->raid_disk < 0)
6378                         continue;
6379                 diff = (rdev->new_data_offset - rdev->data_offset);
6380                 if (first) {
6381                         min_offset_diff = diff;
6382                         first = 0;
6383                 } else if (mddev->reshape_backwards &&
6384                          diff < min_offset_diff)
6385                         min_offset_diff = diff;
6386                 else if (!mddev->reshape_backwards &&
6387                          diff > min_offset_diff)
6388                         min_offset_diff = diff;
6389         }
6390
6391         if (mddev->reshape_position != MaxSector) {
6392                 /* Check that we can continue the reshape.
6393                  * Difficulties arise if the stripe we would write to
6394                  * next is at or after the stripe we would read from next.
6395                  * For a reshape that changes the number of devices, this
6396                  * is only possible for a very short time, and mdadm makes
6397                  * sure that time appears to have past before assembling
6398                  * the array.  So we fail if that time hasn't passed.
6399                  * For a reshape that keeps the number of devices the same
6400                  * mdadm must be monitoring the reshape can keeping the
6401                  * critical areas read-only and backed up.  It will start
6402                  * the array in read-only mode, so we check for that.
6403                  */
6404                 sector_t here_new, here_old;
6405                 int old_disks;
6406                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6407
6408                 if (mddev->new_level != mddev->level) {
6409                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6410                                "required - aborting.\n",
6411                                mdname(mddev));
6412                         return -EINVAL;
6413                 }
6414                 old_disks = mddev->raid_disks - mddev->delta_disks;
6415                 /* reshape_position must be on a new-stripe boundary, and one
6416                  * further up in new geometry must map after here in old
6417                  * geometry.
6418                  */
6419                 here_new = mddev->reshape_position;
6420                 if (sector_div(here_new, mddev->new_chunk_sectors *
6421                                (mddev->raid_disks - max_degraded))) {
6422                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6423                                "on a stripe boundary\n", mdname(mddev));
6424                         return -EINVAL;
6425                 }
6426                 reshape_offset = here_new * mddev->new_chunk_sectors;
6427                 /* here_new is the stripe we will write to */
6428                 here_old = mddev->reshape_position;
6429                 sector_div(here_old, mddev->chunk_sectors *
6430                            (old_disks-max_degraded));
6431                 /* here_old is the first stripe that we might need to read
6432                  * from */
6433                 if (mddev->delta_disks == 0) {
6434                         if ((here_new * mddev->new_chunk_sectors !=
6435                              here_old * mddev->chunk_sectors)) {
6436                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6437                                        " confused - aborting\n", mdname(mddev));
6438                                 return -EINVAL;
6439                         }
6440                         /* We cannot be sure it is safe to start an in-place
6441                          * reshape.  It is only safe if user-space is monitoring
6442                          * and taking constant backups.
6443                          * mdadm always starts a situation like this in
6444                          * readonly mode so it can take control before
6445                          * allowing any writes.  So just check for that.
6446                          */
6447                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6448                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6449                                 /* not really in-place - so OK */;
6450                         else if (mddev->ro == 0) {
6451                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6452                                        "must be started in read-only mode "
6453                                        "- aborting\n",
6454                                        mdname(mddev));
6455                                 return -EINVAL;
6456                         }
6457                 } else if (mddev->reshape_backwards
6458                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6459                        here_old * mddev->chunk_sectors)
6460                     : (here_new * mddev->new_chunk_sectors >=
6461                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6462                         /* Reading from the same stripe as writing to - bad */
6463                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6464                                "auto-recovery - aborting.\n",
6465                                mdname(mddev));
6466                         return -EINVAL;
6467                 }
6468                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6469                        mdname(mddev));
6470                 /* OK, we should be able to continue; */
6471         } else {
6472                 BUG_ON(mddev->level != mddev->new_level);
6473                 BUG_ON(mddev->layout != mddev->new_layout);
6474                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6475                 BUG_ON(mddev->delta_disks != 0);
6476         }
6477
6478         if (mddev->private == NULL)
6479                 conf = setup_conf(mddev);
6480         else
6481                 conf = mddev->private;
6482
6483         if (IS_ERR(conf))
6484                 return PTR_ERR(conf);
6485
6486         conf->min_offset_diff = min_offset_diff;
6487         mddev->thread = conf->thread;
6488         conf->thread = NULL;
6489         mddev->private = conf;
6490
6491         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6492              i++) {
6493                 rdev = conf->disks[i].rdev;
6494                 if (!rdev && conf->disks[i].replacement) {
6495                         /* The replacement is all we have yet */
6496                         rdev = conf->disks[i].replacement;
6497                         conf->disks[i].replacement = NULL;
6498                         clear_bit(Replacement, &rdev->flags);
6499                         conf->disks[i].rdev = rdev;
6500                 }
6501                 if (!rdev)
6502                         continue;
6503                 if (conf->disks[i].replacement &&
6504                     conf->reshape_progress != MaxSector) {
6505                         /* replacements and reshape simply do not mix. */
6506                         printk(KERN_ERR "md: cannot handle concurrent "
6507                                "replacement and reshape.\n");
6508                         goto abort;
6509                 }
6510                 if (test_bit(In_sync, &rdev->flags)) {
6511                         working_disks++;
6512                         continue;
6513                 }
6514                 /* This disc is not fully in-sync.  However if it
6515                  * just stored parity (beyond the recovery_offset),
6516                  * when we don't need to be concerned about the
6517                  * array being dirty.
6518                  * When reshape goes 'backwards', we never have
6519                  * partially completed devices, so we only need
6520                  * to worry about reshape going forwards.
6521                  */
6522                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6523                 if (mddev->major_version == 0 &&
6524                     mddev->minor_version > 90)
6525                         rdev->recovery_offset = reshape_offset;
6526
6527                 if (rdev->recovery_offset < reshape_offset) {
6528                         /* We need to check old and new layout */
6529                         if (!only_parity(rdev->raid_disk,
6530                                          conf->algorithm,
6531                                          conf->raid_disks,
6532                                          conf->max_degraded))
6533                                 continue;
6534                 }
6535                 if (!only_parity(rdev->raid_disk,
6536                                  conf->prev_algo,
6537                                  conf->previous_raid_disks,
6538                                  conf->max_degraded))
6539                         continue;
6540                 dirty_parity_disks++;
6541         }
6542
6543         /*
6544          * 0 for a fully functional array, 1 or 2 for a degraded array.
6545          */
6546         mddev->degraded = calc_degraded(conf);
6547
6548         if (has_failed(conf)) {
6549                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6550                         " (%d/%d failed)\n",
6551                         mdname(mddev), mddev->degraded, conf->raid_disks);
6552                 goto abort;
6553         }
6554
6555         /* device size must be a multiple of chunk size */
6556         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6557         mddev->resync_max_sectors = mddev->dev_sectors;
6558
6559         if (mddev->degraded > dirty_parity_disks &&
6560             mddev->recovery_cp != MaxSector) {
6561                 if (mddev->ok_start_degraded)
6562                         printk(KERN_WARNING
6563                                "md/raid:%s: starting dirty degraded array"
6564                                " - data corruption possible.\n",
6565                                mdname(mddev));
6566                 else {
6567                         printk(KERN_ERR
6568                                "md/raid:%s: cannot start dirty degraded array.\n",
6569                                mdname(mddev));
6570                         goto abort;
6571                 }
6572         }
6573
6574         if (mddev->degraded == 0)
6575                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6576                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6577                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6578                        mddev->new_layout);
6579         else
6580                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6581                        " out of %d devices, algorithm %d\n",
6582                        mdname(mddev), conf->level,
6583                        mddev->raid_disks - mddev->degraded,
6584                        mddev->raid_disks, mddev->new_layout);
6585
6586         print_raid5_conf(conf);
6587
6588         if (conf->reshape_progress != MaxSector) {
6589                 conf->reshape_safe = conf->reshape_progress;
6590                 atomic_set(&conf->reshape_stripes, 0);
6591                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6592                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6593                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6594                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6595                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6596                                                         "reshape");
6597         }
6598
6599         /* Ok, everything is just fine now */
6600         if (mddev->to_remove == &raid5_attrs_group)
6601                 mddev->to_remove = NULL;
6602         else if (mddev->kobj.sd &&
6603             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6604                 printk(KERN_WARNING
6605                        "raid5: failed to create sysfs attributes for %s\n",
6606                        mdname(mddev));
6607         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6608
6609         if (mddev->queue) {
6610                 int chunk_size;
6611                 bool discard_supported = true;
6612                 /* read-ahead size must cover two whole stripes, which
6613                  * is 2 * (datadisks) * chunksize where 'n' is the
6614                  * number of raid devices
6615                  */
6616                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6617                 int stripe = data_disks *
6618                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6619                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6620                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6621
6622                 chunk_size = mddev->chunk_sectors << 9;
6623                 blk_queue_io_min(mddev->queue, chunk_size);
6624                 blk_queue_io_opt(mddev->queue, chunk_size *
6625                                  (conf->raid_disks - conf->max_degraded));
6626                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6627                 /*
6628                  * We can only discard a whole stripe. It doesn't make sense to
6629                  * discard data disk but write parity disk
6630                  */
6631                 stripe = stripe * PAGE_SIZE;
6632                 /* Round up to power of 2, as discard handling
6633                  * currently assumes that */
6634                 while ((stripe-1) & stripe)
6635                         stripe = (stripe | (stripe-1)) + 1;
6636                 mddev->queue->limits.discard_alignment = stripe;
6637                 mddev->queue->limits.discard_granularity = stripe;
6638                 /*
6639                  * unaligned part of discard request will be ignored, so can't
6640                  * guarantee discard_zeroes_data
6641                  */
6642                 mddev->queue->limits.discard_zeroes_data = 0;
6643
6644                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6645
6646                 rdev_for_each(rdev, mddev) {
6647                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6648                                           rdev->data_offset << 9);
6649                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6650                                           rdev->new_data_offset << 9);
6651                         /*
6652                          * discard_zeroes_data is required, otherwise data
6653                          * could be lost. Consider a scenario: discard a stripe
6654                          * (the stripe could be inconsistent if
6655                          * discard_zeroes_data is 0); write one disk of the
6656                          * stripe (the stripe could be inconsistent again
6657                          * depending on which disks are used to calculate
6658                          * parity); the disk is broken; The stripe data of this
6659                          * disk is lost.
6660                          */
6661                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6662                             !bdev_get_queue(rdev->bdev)->
6663                                                 limits.discard_zeroes_data)
6664                                 discard_supported = false;
6665                         /* Unfortunately, discard_zeroes_data is not currently
6666                          * a guarantee - just a hint.  So we only allow DISCARD
6667                          * if the sysadmin has confirmed that only safe devices
6668                          * are in use by setting a module parameter.
6669                          */
6670                         if (!devices_handle_discard_safely) {
6671                                 if (discard_supported) {
6672                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6673                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6674                                 }
6675                                 discard_supported = false;
6676                         }
6677                 }
6678
6679                 if (discard_supported &&
6680                    mddev->queue->limits.max_discard_sectors >= stripe &&
6681                    mddev->queue->limits.discard_granularity >= stripe)
6682                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6683                                                 mddev->queue);
6684                 else
6685                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6686                                                 mddev->queue);
6687         }
6688
6689         return 0;
6690 abort:
6691         md_unregister_thread(&mddev->thread);
6692         print_raid5_conf(conf);
6693         free_conf(conf);
6694         mddev->private = NULL;
6695         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6696         return -EIO;
6697 }
6698
6699 static void raid5_free(struct mddev *mddev, void *priv)
6700 {
6701         struct r5conf *conf = priv;
6702
6703         free_conf(conf);
6704         mddev->to_remove = &raid5_attrs_group;
6705 }
6706
6707 static void status(struct seq_file *seq, struct mddev *mddev)
6708 {
6709         struct r5conf *conf = mddev->private;
6710         int i;
6711
6712         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6713                 mddev->chunk_sectors / 2, mddev->layout);
6714         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6715         for (i = 0; i < conf->raid_disks; i++)
6716                 seq_printf (seq, "%s",
6717                                conf->disks[i].rdev &&
6718                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6719         seq_printf (seq, "]");
6720 }
6721
6722 static void print_raid5_conf (struct r5conf *conf)
6723 {
6724         int i;
6725         struct disk_info *tmp;
6726
6727         printk(KERN_DEBUG "RAID conf printout:\n");
6728         if (!conf) {
6729                 printk("(conf==NULL)\n");
6730                 return;
6731         }
6732         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6733                conf->raid_disks,
6734                conf->raid_disks - conf->mddev->degraded);
6735
6736         for (i = 0; i < conf->raid_disks; i++) {
6737                 char b[BDEVNAME_SIZE];
6738                 tmp = conf->disks + i;
6739                 if (tmp->rdev)
6740                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6741                                i, !test_bit(Faulty, &tmp->rdev->flags),
6742                                bdevname(tmp->rdev->bdev, b));
6743         }
6744 }
6745
6746 static int raid5_spare_active(struct mddev *mddev)
6747 {
6748         int i;
6749         struct r5conf *conf = mddev->private;
6750         struct disk_info *tmp;
6751         int count = 0;
6752         unsigned long flags;
6753
6754         for (i = 0; i < conf->raid_disks; i++) {
6755                 tmp = conf->disks + i;
6756                 if (tmp->replacement
6757                     && tmp->replacement->recovery_offset == MaxSector
6758                     && !test_bit(Faulty, &tmp->replacement->flags)
6759                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6760                         /* Replacement has just become active. */
6761                         if (!tmp->rdev
6762                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6763                                 count++;
6764                         if (tmp->rdev) {
6765                                 /* Replaced device not technically faulty,
6766                                  * but we need to be sure it gets removed
6767                                  * and never re-added.
6768                                  */
6769                                 set_bit(Faulty, &tmp->rdev->flags);
6770                                 sysfs_notify_dirent_safe(
6771                                         tmp->rdev->sysfs_state);
6772                         }
6773                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6774                 } else if (tmp->rdev
6775                     && tmp->rdev->recovery_offset == MaxSector
6776                     && !test_bit(Faulty, &tmp->rdev->flags)
6777                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6778                         count++;
6779                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6780                 }
6781         }
6782         spin_lock_irqsave(&conf->device_lock, flags);
6783         mddev->degraded = calc_degraded(conf);
6784         spin_unlock_irqrestore(&conf->device_lock, flags);
6785         print_raid5_conf(conf);
6786         return count;
6787 }
6788
6789 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6790 {
6791         struct r5conf *conf = mddev->private;
6792         int err = 0;
6793         int number = rdev->raid_disk;
6794         struct md_rdev **rdevp;
6795         struct disk_info *p = conf->disks + number;
6796
6797         print_raid5_conf(conf);
6798         if (rdev == p->rdev)
6799                 rdevp = &p->rdev;
6800         else if (rdev == p->replacement)
6801                 rdevp = &p->replacement;
6802         else
6803                 return 0;
6804
6805         if (number >= conf->raid_disks &&
6806             conf->reshape_progress == MaxSector)
6807                 clear_bit(In_sync, &rdev->flags);
6808
6809         if (test_bit(In_sync, &rdev->flags) ||
6810             atomic_read(&rdev->nr_pending)) {
6811                 err = -EBUSY;
6812                 goto abort;
6813         }
6814         /* Only remove non-faulty devices if recovery
6815          * isn't possible.
6816          */
6817         if (!test_bit(Faulty, &rdev->flags) &&
6818             mddev->recovery_disabled != conf->recovery_disabled &&
6819             !has_failed(conf) &&
6820             (!p->replacement || p->replacement == rdev) &&
6821             number < conf->raid_disks) {
6822                 err = -EBUSY;
6823                 goto abort;
6824         }
6825         *rdevp = NULL;
6826         synchronize_rcu();
6827         if (atomic_read(&rdev->nr_pending)) {
6828                 /* lost the race, try later */
6829                 err = -EBUSY;
6830                 *rdevp = rdev;
6831         } else if (p->replacement) {
6832                 /* We must have just cleared 'rdev' */
6833                 p->rdev = p->replacement;
6834                 clear_bit(Replacement, &p->replacement->flags);
6835                 smp_mb(); /* Make sure other CPUs may see both as identical
6836                            * but will never see neither - if they are careful
6837                            */
6838                 p->replacement = NULL;
6839                 clear_bit(WantReplacement, &rdev->flags);
6840         } else
6841                 /* We might have just removed the Replacement as faulty-
6842                  * clear the bit just in case
6843                  */
6844                 clear_bit(WantReplacement, &rdev->flags);
6845 abort:
6846
6847         print_raid5_conf(conf);
6848         return err;
6849 }
6850
6851 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6852 {
6853         struct r5conf *conf = mddev->private;
6854         int err = -EEXIST;
6855         int disk;
6856         struct disk_info *p;
6857         int first = 0;
6858         int last = conf->raid_disks - 1;
6859
6860         if (mddev->recovery_disabled == conf->recovery_disabled)
6861                 return -EBUSY;
6862
6863         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6864                 /* no point adding a device */
6865                 return -EINVAL;
6866
6867         if (rdev->raid_disk >= 0)
6868                 first = last = rdev->raid_disk;
6869
6870         /*
6871          * find the disk ... but prefer rdev->saved_raid_disk
6872          * if possible.
6873          */
6874         if (rdev->saved_raid_disk >= 0 &&
6875             rdev->saved_raid_disk >= first &&
6876             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6877                 first = rdev->saved_raid_disk;
6878
6879         for (disk = first; disk <= last; disk++) {
6880                 p = conf->disks + disk;
6881                 if (p->rdev == NULL) {
6882                         clear_bit(In_sync, &rdev->flags);
6883                         rdev->raid_disk = disk;
6884                         err = 0;
6885                         if (rdev->saved_raid_disk != disk)
6886                                 conf->fullsync = 1;
6887                         rcu_assign_pointer(p->rdev, rdev);
6888                         goto out;
6889                 }
6890         }
6891         for (disk = first; disk <= last; disk++) {
6892                 p = conf->disks + disk;
6893                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6894                     p->replacement == NULL) {
6895                         clear_bit(In_sync, &rdev->flags);
6896                         set_bit(Replacement, &rdev->flags);
6897                         rdev->raid_disk = disk;
6898                         err = 0;
6899                         conf->fullsync = 1;
6900                         rcu_assign_pointer(p->replacement, rdev);
6901                         break;
6902                 }
6903         }
6904 out:
6905         print_raid5_conf(conf);
6906         return err;
6907 }
6908
6909 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6910 {
6911         /* no resync is happening, and there is enough space
6912          * on all devices, so we can resize.
6913          * We need to make sure resync covers any new space.
6914          * If the array is shrinking we should possibly wait until
6915          * any io in the removed space completes, but it hardly seems
6916          * worth it.
6917          */
6918         sector_t newsize;
6919         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6920         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6921         if (mddev->external_size &&
6922             mddev->array_sectors > newsize)
6923                 return -EINVAL;
6924         if (mddev->bitmap) {
6925                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6926                 if (ret)
6927                         return ret;
6928         }
6929         md_set_array_sectors(mddev, newsize);
6930         set_capacity(mddev->gendisk, mddev->array_sectors);
6931         revalidate_disk(mddev->gendisk);
6932         if (sectors > mddev->dev_sectors &&
6933             mddev->recovery_cp > mddev->dev_sectors) {
6934                 mddev->recovery_cp = mddev->dev_sectors;
6935                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6936         }
6937         mddev->dev_sectors = sectors;
6938         mddev->resync_max_sectors = sectors;
6939         return 0;
6940 }
6941
6942 static int check_stripe_cache(struct mddev *mddev)
6943 {
6944         /* Can only proceed if there are plenty of stripe_heads.
6945          * We need a minimum of one full stripe,, and for sensible progress
6946          * it is best to have about 4 times that.
6947          * If we require 4 times, then the default 256 4K stripe_heads will
6948          * allow for chunk sizes up to 256K, which is probably OK.
6949          * If the chunk size is greater, user-space should request more
6950          * stripe_heads first.
6951          */
6952         struct r5conf *conf = mddev->private;
6953         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6954             > conf->max_nr_stripes ||
6955             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6956             > conf->max_nr_stripes) {
6957                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6958                        mdname(mddev),
6959                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6960                         / STRIPE_SIZE)*4);
6961                 return 0;
6962         }
6963         return 1;
6964 }
6965
6966 static int check_reshape(struct mddev *mddev)
6967 {
6968         struct r5conf *conf = mddev->private;
6969
6970         if (mddev->delta_disks == 0 &&
6971             mddev->new_layout == mddev->layout &&
6972             mddev->new_chunk_sectors == mddev->chunk_sectors)
6973                 return 0; /* nothing to do */
6974         if (has_failed(conf))
6975                 return -EINVAL;
6976         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6977                 /* We might be able to shrink, but the devices must
6978                  * be made bigger first.
6979                  * For raid6, 4 is the minimum size.
6980                  * Otherwise 2 is the minimum
6981                  */
6982                 int min = 2;
6983                 if (mddev->level == 6)
6984                         min = 4;
6985                 if (mddev->raid_disks + mddev->delta_disks < min)
6986                         return -EINVAL;
6987         }
6988
6989         if (!check_stripe_cache(mddev))
6990                 return -ENOSPC;
6991
6992         return resize_stripes(conf, (conf->previous_raid_disks
6993                                      + mddev->delta_disks));
6994 }
6995
6996 static int raid5_start_reshape(struct mddev *mddev)
6997 {
6998         struct r5conf *conf = mddev->private;
6999         struct md_rdev *rdev;
7000         int spares = 0;
7001         unsigned long flags;
7002
7003         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7004                 return -EBUSY;
7005
7006         if (!check_stripe_cache(mddev))
7007                 return -ENOSPC;
7008
7009         if (has_failed(conf))
7010                 return -EINVAL;
7011
7012         rdev_for_each(rdev, mddev) {
7013                 if (!test_bit(In_sync, &rdev->flags)
7014                     && !test_bit(Faulty, &rdev->flags))
7015                         spares++;
7016         }
7017
7018         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7019                 /* Not enough devices even to make a degraded array
7020                  * of that size
7021                  */
7022                 return -EINVAL;
7023
7024         /* Refuse to reduce size of the array.  Any reductions in
7025          * array size must be through explicit setting of array_size
7026          * attribute.
7027          */
7028         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7029             < mddev->array_sectors) {
7030                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7031                        "before number of disks\n", mdname(mddev));
7032                 return -EINVAL;
7033         }
7034
7035         atomic_set(&conf->reshape_stripes, 0);
7036         spin_lock_irq(&conf->device_lock);
7037         write_seqcount_begin(&conf->gen_lock);
7038         conf->previous_raid_disks = conf->raid_disks;
7039         conf->raid_disks += mddev->delta_disks;
7040         conf->prev_chunk_sectors = conf->chunk_sectors;
7041         conf->chunk_sectors = mddev->new_chunk_sectors;
7042         conf->prev_algo = conf->algorithm;
7043         conf->algorithm = mddev->new_layout;
7044         conf->generation++;
7045         /* Code that selects data_offset needs to see the generation update
7046          * if reshape_progress has been set - so a memory barrier needed.
7047          */
7048         smp_mb();
7049         if (mddev->reshape_backwards)
7050                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7051         else
7052                 conf->reshape_progress = 0;
7053         conf->reshape_safe = conf->reshape_progress;
7054         write_seqcount_end(&conf->gen_lock);
7055         spin_unlock_irq(&conf->device_lock);
7056
7057         /* Now make sure any requests that proceeded on the assumption
7058          * the reshape wasn't running - like Discard or Read - have
7059          * completed.
7060          */
7061         mddev_suspend(mddev);
7062         mddev_resume(mddev);
7063
7064         /* Add some new drives, as many as will fit.
7065          * We know there are enough to make the newly sized array work.
7066          * Don't add devices if we are reducing the number of
7067          * devices in the array.  This is because it is not possible
7068          * to correctly record the "partially reconstructed" state of
7069          * such devices during the reshape and confusion could result.
7070          */
7071         if (mddev->delta_disks >= 0) {
7072                 rdev_for_each(rdev, mddev)
7073                         if (rdev->raid_disk < 0 &&
7074                             !test_bit(Faulty, &rdev->flags)) {
7075                                 if (raid5_add_disk(mddev, rdev) == 0) {
7076                                         if (rdev->raid_disk
7077                                             >= conf->previous_raid_disks)
7078                                                 set_bit(In_sync, &rdev->flags);
7079                                         else
7080                                                 rdev->recovery_offset = 0;
7081
7082                                         if (sysfs_link_rdev(mddev, rdev))
7083                                                 /* Failure here is OK */;
7084                                 }
7085                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7086                                    && !test_bit(Faulty, &rdev->flags)) {
7087                                 /* This is a spare that was manually added */
7088                                 set_bit(In_sync, &rdev->flags);
7089                         }
7090
7091                 /* When a reshape changes the number of devices,
7092                  * ->degraded is measured against the larger of the
7093                  * pre and post number of devices.
7094                  */
7095                 spin_lock_irqsave(&conf->device_lock, flags);
7096                 mddev->degraded = calc_degraded(conf);
7097                 spin_unlock_irqrestore(&conf->device_lock, flags);
7098         }
7099         mddev->raid_disks = conf->raid_disks;
7100         mddev->reshape_position = conf->reshape_progress;
7101         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7102
7103         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7104         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7105         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7106         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7107         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7108                                                 "reshape");
7109         if (!mddev->sync_thread) {
7110                 mddev->recovery = 0;
7111                 spin_lock_irq(&conf->device_lock);
7112                 write_seqcount_begin(&conf->gen_lock);
7113                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7114                 mddev->new_chunk_sectors =
7115                         conf->chunk_sectors = conf->prev_chunk_sectors;
7116                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7117                 rdev_for_each(rdev, mddev)
7118                         rdev->new_data_offset = rdev->data_offset;
7119                 smp_wmb();
7120                 conf->generation --;
7121                 conf->reshape_progress = MaxSector;
7122                 mddev->reshape_position = MaxSector;
7123                 write_seqcount_end(&conf->gen_lock);
7124                 spin_unlock_irq(&conf->device_lock);
7125                 return -EAGAIN;
7126         }
7127         conf->reshape_checkpoint = jiffies;
7128         md_wakeup_thread(mddev->sync_thread);
7129         md_new_event(mddev);
7130         return 0;
7131 }
7132
7133 /* This is called from the reshape thread and should make any
7134  * changes needed in 'conf'
7135  */
7136 static void end_reshape(struct r5conf *conf)
7137 {
7138
7139         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7140                 struct md_rdev *rdev;
7141
7142                 spin_lock_irq(&conf->device_lock);
7143                 conf->previous_raid_disks = conf->raid_disks;
7144                 rdev_for_each(rdev, conf->mddev)
7145                         rdev->data_offset = rdev->new_data_offset;
7146                 smp_wmb();
7147                 conf->reshape_progress = MaxSector;
7148                 spin_unlock_irq(&conf->device_lock);
7149                 wake_up(&conf->wait_for_overlap);
7150
7151                 /* read-ahead size must cover two whole stripes, which is
7152                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7153                  */
7154                 if (conf->mddev->queue) {
7155                         int data_disks = conf->raid_disks - conf->max_degraded;
7156                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7157                                                    / PAGE_SIZE);
7158                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7159                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7160                 }
7161         }
7162 }
7163
7164 /* This is called from the raid5d thread with mddev_lock held.
7165  * It makes config changes to the device.
7166  */
7167 static void raid5_finish_reshape(struct mddev *mddev)
7168 {
7169         struct r5conf *conf = mddev->private;
7170
7171         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7172
7173                 if (mddev->delta_disks > 0) {
7174                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7175                         set_capacity(mddev->gendisk, mddev->array_sectors);
7176                         revalidate_disk(mddev->gendisk);
7177                 } else {
7178                         int d;
7179                         spin_lock_irq(&conf->device_lock);
7180                         mddev->degraded = calc_degraded(conf);
7181                         spin_unlock_irq(&conf->device_lock);
7182                         for (d = conf->raid_disks ;
7183                              d < conf->raid_disks - mddev->delta_disks;
7184                              d++) {
7185                                 struct md_rdev *rdev = conf->disks[d].rdev;
7186                                 if (rdev)
7187                                         clear_bit(In_sync, &rdev->flags);
7188                                 rdev = conf->disks[d].replacement;
7189                                 if (rdev)
7190                                         clear_bit(In_sync, &rdev->flags);
7191                         }
7192                 }
7193                 mddev->layout = conf->algorithm;
7194                 mddev->chunk_sectors = conf->chunk_sectors;
7195                 mddev->reshape_position = MaxSector;
7196                 mddev->delta_disks = 0;
7197                 mddev->reshape_backwards = 0;
7198         }
7199 }
7200
7201 static void raid5_quiesce(struct mddev *mddev, int state)
7202 {
7203         struct r5conf *conf = mddev->private;
7204
7205         switch(state) {
7206         case 2: /* resume for a suspend */
7207                 wake_up(&conf->wait_for_overlap);
7208                 break;
7209
7210         case 1: /* stop all writes */
7211                 lock_all_device_hash_locks_irq(conf);
7212                 /* '2' tells resync/reshape to pause so that all
7213                  * active stripes can drain
7214                  */
7215                 conf->quiesce = 2;
7216                 wait_event_cmd(conf->wait_for_stripe,
7217                                     atomic_read(&conf->active_stripes) == 0 &&
7218                                     atomic_read(&conf->active_aligned_reads) == 0,
7219                                     unlock_all_device_hash_locks_irq(conf),
7220                                     lock_all_device_hash_locks_irq(conf));
7221                 conf->quiesce = 1;
7222                 unlock_all_device_hash_locks_irq(conf);
7223                 /* allow reshape to continue */
7224                 wake_up(&conf->wait_for_overlap);
7225                 break;
7226
7227         case 0: /* re-enable writes */
7228                 lock_all_device_hash_locks_irq(conf);
7229                 conf->quiesce = 0;
7230                 wake_up(&conf->wait_for_stripe);
7231                 wake_up(&conf->wait_for_overlap);
7232                 unlock_all_device_hash_locks_irq(conf);
7233                 break;
7234         }
7235 }
7236
7237 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7238 {
7239         struct r0conf *raid0_conf = mddev->private;
7240         sector_t sectors;
7241
7242         /* for raid0 takeover only one zone is supported */
7243         if (raid0_conf->nr_strip_zones > 1) {
7244                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7245                        mdname(mddev));
7246                 return ERR_PTR(-EINVAL);
7247         }
7248
7249         sectors = raid0_conf->strip_zone[0].zone_end;
7250         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7251         mddev->dev_sectors = sectors;
7252         mddev->new_level = level;
7253         mddev->new_layout = ALGORITHM_PARITY_N;
7254         mddev->new_chunk_sectors = mddev->chunk_sectors;
7255         mddev->raid_disks += 1;
7256         mddev->delta_disks = 1;
7257         /* make sure it will be not marked as dirty */
7258         mddev->recovery_cp = MaxSector;
7259
7260         return setup_conf(mddev);
7261 }
7262
7263 static void *raid5_takeover_raid1(struct mddev *mddev)
7264 {
7265         int chunksect;
7266
7267         if (mddev->raid_disks != 2 ||
7268             mddev->degraded > 1)
7269                 return ERR_PTR(-EINVAL);
7270
7271         /* Should check if there are write-behind devices? */
7272
7273         chunksect = 64*2; /* 64K by default */
7274
7275         /* The array must be an exact multiple of chunksize */
7276         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7277                 chunksect >>= 1;
7278
7279         if ((chunksect<<9) < STRIPE_SIZE)
7280                 /* array size does not allow a suitable chunk size */
7281                 return ERR_PTR(-EINVAL);
7282
7283         mddev->new_level = 5;
7284         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7285         mddev->new_chunk_sectors = chunksect;
7286
7287         return setup_conf(mddev);
7288 }
7289
7290 static void *raid5_takeover_raid6(struct mddev *mddev)
7291 {
7292         int new_layout;
7293
7294         switch (mddev->layout) {
7295         case ALGORITHM_LEFT_ASYMMETRIC_6:
7296                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7297                 break;
7298         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7299                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7300                 break;
7301         case ALGORITHM_LEFT_SYMMETRIC_6:
7302                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7303                 break;
7304         case ALGORITHM_RIGHT_SYMMETRIC_6:
7305                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7306                 break;
7307         case ALGORITHM_PARITY_0_6:
7308                 new_layout = ALGORITHM_PARITY_0;
7309                 break;
7310         case ALGORITHM_PARITY_N:
7311                 new_layout = ALGORITHM_PARITY_N;
7312                 break;
7313         default:
7314                 return ERR_PTR(-EINVAL);
7315         }
7316         mddev->new_level = 5;
7317         mddev->new_layout = new_layout;
7318         mddev->delta_disks = -1;
7319         mddev->raid_disks -= 1;
7320         return setup_conf(mddev);
7321 }
7322
7323 static int raid5_check_reshape(struct mddev *mddev)
7324 {
7325         /* For a 2-drive array, the layout and chunk size can be changed
7326          * immediately as not restriping is needed.
7327          * For larger arrays we record the new value - after validation
7328          * to be used by a reshape pass.
7329          */
7330         struct r5conf *conf = mddev->private;
7331         int new_chunk = mddev->new_chunk_sectors;
7332
7333         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7334                 return -EINVAL;
7335         if (new_chunk > 0) {
7336                 if (!is_power_of_2(new_chunk))
7337                         return -EINVAL;
7338                 if (new_chunk < (PAGE_SIZE>>9))
7339                         return -EINVAL;
7340                 if (mddev->array_sectors & (new_chunk-1))
7341                         /* not factor of array size */
7342                         return -EINVAL;
7343         }
7344
7345         /* They look valid */
7346
7347         if (mddev->raid_disks == 2) {
7348                 /* can make the change immediately */
7349                 if (mddev->new_layout >= 0) {
7350                         conf->algorithm = mddev->new_layout;
7351                         mddev->layout = mddev->new_layout;
7352                 }
7353                 if (new_chunk > 0) {
7354                         conf->chunk_sectors = new_chunk ;
7355                         mddev->chunk_sectors = new_chunk;
7356                 }
7357                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7358                 md_wakeup_thread(mddev->thread);
7359         }
7360         return check_reshape(mddev);
7361 }
7362
7363 static int raid6_check_reshape(struct mddev *mddev)
7364 {
7365         int new_chunk = mddev->new_chunk_sectors;
7366
7367         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7368                 return -EINVAL;
7369         if (new_chunk > 0) {
7370                 if (!is_power_of_2(new_chunk))
7371                         return -EINVAL;
7372                 if (new_chunk < (PAGE_SIZE >> 9))
7373                         return -EINVAL;
7374                 if (mddev->array_sectors & (new_chunk-1))
7375                         /* not factor of array size */
7376                         return -EINVAL;
7377         }
7378
7379         /* They look valid */
7380         return check_reshape(mddev);
7381 }
7382
7383 static void *raid5_takeover(struct mddev *mddev)
7384 {
7385         /* raid5 can take over:
7386          *  raid0 - if there is only one strip zone - make it a raid4 layout
7387          *  raid1 - if there are two drives.  We need to know the chunk size
7388          *  raid4 - trivial - just use a raid4 layout.
7389          *  raid6 - Providing it is a *_6 layout
7390          */
7391         if (mddev->level == 0)
7392                 return raid45_takeover_raid0(mddev, 5);
7393         if (mddev->level == 1)
7394                 return raid5_takeover_raid1(mddev);
7395         if (mddev->level == 4) {
7396                 mddev->new_layout = ALGORITHM_PARITY_N;
7397                 mddev->new_level = 5;
7398                 return setup_conf(mddev);
7399         }
7400         if (mddev->level == 6)
7401                 return raid5_takeover_raid6(mddev);
7402
7403         return ERR_PTR(-EINVAL);
7404 }
7405
7406 static void *raid4_takeover(struct mddev *mddev)
7407 {
7408         /* raid4 can take over:
7409          *  raid0 - if there is only one strip zone
7410          *  raid5 - if layout is right
7411          */
7412         if (mddev->level == 0)
7413                 return raid45_takeover_raid0(mddev, 4);
7414         if (mddev->level == 5 &&
7415             mddev->layout == ALGORITHM_PARITY_N) {
7416                 mddev->new_layout = 0;
7417                 mddev->new_level = 4;
7418                 return setup_conf(mddev);
7419         }
7420         return ERR_PTR(-EINVAL);
7421 }
7422
7423 static struct md_personality raid5_personality;
7424
7425 static void *raid6_takeover(struct mddev *mddev)
7426 {
7427         /* Currently can only take over a raid5.  We map the
7428          * personality to an equivalent raid6 personality
7429          * with the Q block at the end.
7430          */
7431         int new_layout;
7432
7433         if (mddev->pers != &raid5_personality)
7434                 return ERR_PTR(-EINVAL);
7435         if (mddev->degraded > 1)
7436                 return ERR_PTR(-EINVAL);
7437         if (mddev->raid_disks > 253)
7438                 return ERR_PTR(-EINVAL);
7439         if (mddev->raid_disks < 3)
7440                 return ERR_PTR(-EINVAL);
7441
7442         switch (mddev->layout) {
7443         case ALGORITHM_LEFT_ASYMMETRIC:
7444                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7445                 break;
7446         case ALGORITHM_RIGHT_ASYMMETRIC:
7447                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7448                 break;
7449         case ALGORITHM_LEFT_SYMMETRIC:
7450                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7451                 break;
7452         case ALGORITHM_RIGHT_SYMMETRIC:
7453                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7454                 break;
7455         case ALGORITHM_PARITY_0:
7456                 new_layout = ALGORITHM_PARITY_0_6;
7457                 break;
7458         case ALGORITHM_PARITY_N:
7459                 new_layout = ALGORITHM_PARITY_N;
7460                 break;
7461         default:
7462                 return ERR_PTR(-EINVAL);
7463         }
7464         mddev->new_level = 6;
7465         mddev->new_layout = new_layout;
7466         mddev->delta_disks = 1;
7467         mddev->raid_disks += 1;
7468         return setup_conf(mddev);
7469 }
7470
7471 static struct md_personality raid6_personality =
7472 {
7473         .name           = "raid6",
7474         .level          = 6,
7475         .owner          = THIS_MODULE,
7476         .make_request   = make_request,
7477         .run            = run,
7478         .free           = raid5_free,
7479         .status         = status,
7480         .error_handler  = error,
7481         .hot_add_disk   = raid5_add_disk,
7482         .hot_remove_disk= raid5_remove_disk,
7483         .spare_active   = raid5_spare_active,
7484         .sync_request   = sync_request,
7485         .resize         = raid5_resize,
7486         .size           = raid5_size,
7487         .check_reshape  = raid6_check_reshape,
7488         .start_reshape  = raid5_start_reshape,
7489         .finish_reshape = raid5_finish_reshape,
7490         .quiesce        = raid5_quiesce,
7491         .takeover       = raid6_takeover,
7492         .congested      = raid5_congested,
7493         .mergeable_bvec = raid5_mergeable_bvec,
7494 };
7495 static struct md_personality raid5_personality =
7496 {
7497         .name           = "raid5",
7498         .level          = 5,
7499         .owner          = THIS_MODULE,
7500         .make_request   = make_request,
7501         .run            = run,
7502         .free           = raid5_free,
7503         .status         = status,
7504         .error_handler  = error,
7505         .hot_add_disk   = raid5_add_disk,
7506         .hot_remove_disk= raid5_remove_disk,
7507         .spare_active   = raid5_spare_active,
7508         .sync_request   = sync_request,
7509         .resize         = raid5_resize,
7510         .size           = raid5_size,
7511         .check_reshape  = raid5_check_reshape,
7512         .start_reshape  = raid5_start_reshape,
7513         .finish_reshape = raid5_finish_reshape,
7514         .quiesce        = raid5_quiesce,
7515         .takeover       = raid5_takeover,
7516         .congested      = raid5_congested,
7517         .mergeable_bvec = raid5_mergeable_bvec,
7518 };
7519
7520 static struct md_personality raid4_personality =
7521 {
7522         .name           = "raid4",
7523         .level          = 4,
7524         .owner          = THIS_MODULE,
7525         .make_request   = make_request,
7526         .run            = run,
7527         .free           = raid5_free,
7528         .status         = status,
7529         .error_handler  = error,
7530         .hot_add_disk   = raid5_add_disk,
7531         .hot_remove_disk= raid5_remove_disk,
7532         .spare_active   = raid5_spare_active,
7533         .sync_request   = sync_request,
7534         .resize         = raid5_resize,
7535         .size           = raid5_size,
7536         .check_reshape  = raid5_check_reshape,
7537         .start_reshape  = raid5_start_reshape,
7538         .finish_reshape = raid5_finish_reshape,
7539         .quiesce        = raid5_quiesce,
7540         .takeover       = raid4_takeover,
7541         .congested      = raid5_congested,
7542         .mergeable_bvec = raid5_mergeable_bvec,
7543 };
7544
7545 static int __init raid5_init(void)
7546 {
7547         raid5_wq = alloc_workqueue("raid5wq",
7548                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7549         if (!raid5_wq)
7550                 return -ENOMEM;
7551         register_md_personality(&raid6_personality);
7552         register_md_personality(&raid5_personality);
7553         register_md_personality(&raid4_personality);
7554         return 0;
7555 }
7556
7557 static void raid5_exit(void)
7558 {
7559         unregister_md_personality(&raid6_personality);
7560         unregister_md_personality(&raid5_personality);
7561         unregister_md_personality(&raid4_personality);
7562         destroy_workqueue(raid5_wq);
7563 }
7564
7565 module_init(raid5_init);
7566 module_exit(raid5_exit);
7567 MODULE_LICENSE("GPL");
7568 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7569 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7570 MODULE_ALIAS("md-raid5");
7571 MODULE_ALIAS("md-raid4");
7572 MODULE_ALIAS("md-level-5");
7573 MODULE_ALIAS("md-level-4");
7574 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7575 MODULE_ALIAS("md-raid6");
7576 MODULE_ALIAS("md-level-6");
7577
7578 /* This used to be two separate modules, they were: */
7579 MODULE_ALIAS("raid5");
7580 MODULE_ALIAS("raid6");