async_tx: kill ASYNC_TX_DEP_ACK flag
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
51 #include "md.h"
52 #include "raid5.h"
53 #include "bitmap.h"
54
55 /*
56  * Stripe cache
57  */
58
59 #define NR_STRIPES              256
60 #define STRIPE_SIZE             PAGE_SIZE
61 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD            1
64 #define BYPASS_THRESHOLD        1
65 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK               (NR_HASH - 1)
67
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_PARANOIA  1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86 #else
87 # define CHECK_DEVLOCK()
88 #endif
89
90 #ifdef DEBUG
91 #define inline
92 #define __inline__
93 #endif
94
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97 /*
98  * We maintain a biased count of active stripes in the bottom 16 bits of
99  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100  */
101 static inline int raid5_bi_phys_segments(struct bio *bio)
102 {
103         return bio->bi_phys_segments & 0xffff;
104 }
105
106 static inline int raid5_bi_hw_segments(struct bio *bio)
107 {
108         return (bio->bi_phys_segments >> 16) & 0xffff;
109 }
110
111 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112 {
113         --bio->bi_phys_segments;
114         return raid5_bi_phys_segments(bio);
115 }
116
117 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118 {
119         unsigned short val = raid5_bi_hw_segments(bio);
120
121         --val;
122         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123         return val;
124 }
125
126 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127 {
128         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
129 }
130
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head *sh)
133 {
134         if (sh->ddf_layout)
135                 /* ddf always start from first device */
136                 return 0;
137         /* md starts just after Q block */
138         if (sh->qd_idx == sh->disks - 1)
139                 return 0;
140         else
141                 return sh->qd_idx + 1;
142 }
143 static inline int raid6_next_disk(int disk, int raid_disks)
144 {
145         disk++;
146         return (disk < raid_disks) ? disk : 0;
147 }
148
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150  * We need to map each disk to a 'slot', where the data disks are slot
151  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152  * is raid_disks-1.  This help does that mapping.
153  */
154 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155                              int *count, int syndrome_disks)
156 {
157         int slot;
158
159         if (idx == sh->pd_idx)
160                 return syndrome_disks;
161         if (idx == sh->qd_idx)
162                 return syndrome_disks + 1;
163         slot = (*count)++;
164         return slot;
165 }
166
167 static void return_io(struct bio *return_bi)
168 {
169         struct bio *bi = return_bi;
170         while (bi) {
171
172                 return_bi = bi->bi_next;
173                 bi->bi_next = NULL;
174                 bi->bi_size = 0;
175                 bio_endio(bi, 0);
176                 bi = return_bi;
177         }
178 }
179
180 static void print_raid5_conf (raid5_conf_t *conf);
181
182 static int stripe_operations_active(struct stripe_head *sh)
183 {
184         return sh->check_state || sh->reconstruct_state ||
185                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187 }
188
189 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
190 {
191         if (atomic_dec_and_test(&sh->count)) {
192                 BUG_ON(!list_empty(&sh->lru));
193                 BUG_ON(atomic_read(&conf->active_stripes)==0);
194                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
195                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
196                                 list_add_tail(&sh->lru, &conf->delayed_list);
197                                 blk_plug_device(conf->mddev->queue);
198                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199                                    sh->bm_seq - conf->seq_write > 0) {
200                                 list_add_tail(&sh->lru, &conf->bitmap_list);
201                                 blk_plug_device(conf->mddev->queue);
202                         } else {
203                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
204                                 list_add_tail(&sh->lru, &conf->handle_list);
205                         }
206                         md_wakeup_thread(conf->mddev->thread);
207                 } else {
208                         BUG_ON(stripe_operations_active(sh));
209                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210                                 atomic_dec(&conf->preread_active_stripes);
211                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212                                         md_wakeup_thread(conf->mddev->thread);
213                         }
214                         atomic_dec(&conf->active_stripes);
215                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216                                 list_add_tail(&sh->lru, &conf->inactive_list);
217                                 wake_up(&conf->wait_for_stripe);
218                                 if (conf->retry_read_aligned)
219                                         md_wakeup_thread(conf->mddev->thread);
220                         }
221                 }
222         }
223 }
224
225 static void release_stripe(struct stripe_head *sh)
226 {
227         raid5_conf_t *conf = sh->raid_conf;
228         unsigned long flags;
229
230         spin_lock_irqsave(&conf->device_lock, flags);
231         __release_stripe(conf, sh);
232         spin_unlock_irqrestore(&conf->device_lock, flags);
233 }
234
235 static inline void remove_hash(struct stripe_head *sh)
236 {
237         pr_debug("remove_hash(), stripe %llu\n",
238                 (unsigned long long)sh->sector);
239
240         hlist_del_init(&sh->hash);
241 }
242
243 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
244 {
245         struct hlist_head *hp = stripe_hash(conf, sh->sector);
246
247         pr_debug("insert_hash(), stripe %llu\n",
248                 (unsigned long long)sh->sector);
249
250         CHECK_DEVLOCK();
251         hlist_add_head(&sh->hash, hp);
252 }
253
254
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257 {
258         struct stripe_head *sh = NULL;
259         struct list_head *first;
260
261         CHECK_DEVLOCK();
262         if (list_empty(&conf->inactive_list))
263                 goto out;
264         first = conf->inactive_list.next;
265         sh = list_entry(first, struct stripe_head, lru);
266         list_del_init(first);
267         remove_hash(sh);
268         atomic_inc(&conf->active_stripes);
269 out:
270         return sh;
271 }
272
273 static void shrink_buffers(struct stripe_head *sh, int num)
274 {
275         struct page *p;
276         int i;
277
278         for (i=0; i<num ; i++) {
279                 p = sh->dev[i].page;
280                 if (!p)
281                         continue;
282                 sh->dev[i].page = NULL;
283                 put_page(p);
284         }
285 }
286
287 static int grow_buffers(struct stripe_head *sh, int num)
288 {
289         int i;
290
291         for (i=0; i<num; i++) {
292                 struct page *page;
293
294                 if (!(page = alloc_page(GFP_KERNEL))) {
295                         return 1;
296                 }
297                 sh->dev[i].page = page;
298         }
299         return 0;
300 }
301
302 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
303 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304                             struct stripe_head *sh);
305
306 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
307 {
308         raid5_conf_t *conf = sh->raid_conf;
309         int i;
310
311         BUG_ON(atomic_read(&sh->count) != 0);
312         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313         BUG_ON(stripe_operations_active(sh));
314
315         CHECK_DEVLOCK();
316         pr_debug("init_stripe called, stripe %llu\n",
317                 (unsigned long long)sh->sector);
318
319         remove_hash(sh);
320
321         sh->generation = conf->generation - previous;
322         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323         sh->sector = sector;
324         stripe_set_idx(sector, conf, previous, sh);
325         sh->state = 0;
326
327
328         for (i = sh->disks; i--; ) {
329                 struct r5dev *dev = &sh->dev[i];
330
331                 if (dev->toread || dev->read || dev->towrite || dev->written ||
332                     test_bit(R5_LOCKED, &dev->flags)) {
333                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334                                (unsigned long long)sh->sector, i, dev->toread,
335                                dev->read, dev->towrite, dev->written,
336                                test_bit(R5_LOCKED, &dev->flags));
337                         BUG();
338                 }
339                 dev->flags = 0;
340                 raid5_build_block(sh, i, previous);
341         }
342         insert_hash(conf, sh);
343 }
344
345 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
346                                          short generation)
347 {
348         struct stripe_head *sh;
349         struct hlist_node *hn;
350
351         CHECK_DEVLOCK();
352         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354                 if (sh->sector == sector && sh->generation == generation)
355                         return sh;
356         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357         return NULL;
358 }
359
360 static void unplug_slaves(mddev_t *mddev);
361 static void raid5_unplug_device(struct request_queue *q);
362
363 static struct stripe_head *
364 get_active_stripe(raid5_conf_t *conf, sector_t sector,
365                   int previous, int noblock)
366 {
367         struct stripe_head *sh;
368
369         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
370
371         spin_lock_irq(&conf->device_lock);
372
373         do {
374                 wait_event_lock_irq(conf->wait_for_stripe,
375                                     conf->quiesce == 0,
376                                     conf->device_lock, /* nothing */);
377                 sh = __find_stripe(conf, sector, conf->generation - previous);
378                 if (!sh) {
379                         if (!conf->inactive_blocked)
380                                 sh = get_free_stripe(conf);
381                         if (noblock && sh == NULL)
382                                 break;
383                         if (!sh) {
384                                 conf->inactive_blocked = 1;
385                                 wait_event_lock_irq(conf->wait_for_stripe,
386                                                     !list_empty(&conf->inactive_list) &&
387                                                     (atomic_read(&conf->active_stripes)
388                                                      < (conf->max_nr_stripes *3/4)
389                                                      || !conf->inactive_blocked),
390                                                     conf->device_lock,
391                                                     raid5_unplug_device(conf->mddev->queue)
392                                         );
393                                 conf->inactive_blocked = 0;
394                         } else
395                                 init_stripe(sh, sector, previous);
396                 } else {
397                         if (atomic_read(&sh->count)) {
398                                 BUG_ON(!list_empty(&sh->lru)
399                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
400                         } else {
401                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
402                                         atomic_inc(&conf->active_stripes);
403                                 if (list_empty(&sh->lru) &&
404                                     !test_bit(STRIPE_EXPANDING, &sh->state))
405                                         BUG();
406                                 list_del_init(&sh->lru);
407                         }
408                 }
409         } while (sh == NULL);
410
411         if (sh)
412                 atomic_inc(&sh->count);
413
414         spin_unlock_irq(&conf->device_lock);
415         return sh;
416 }
417
418 static void
419 raid5_end_read_request(struct bio *bi, int error);
420 static void
421 raid5_end_write_request(struct bio *bi, int error);
422
423 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
424 {
425         raid5_conf_t *conf = sh->raid_conf;
426         int i, disks = sh->disks;
427
428         might_sleep();
429
430         for (i = disks; i--; ) {
431                 int rw;
432                 struct bio *bi;
433                 mdk_rdev_t *rdev;
434                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
435                         rw = WRITE;
436                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
437                         rw = READ;
438                 else
439                         continue;
440
441                 bi = &sh->dev[i].req;
442
443                 bi->bi_rw = rw;
444                 if (rw == WRITE)
445                         bi->bi_end_io = raid5_end_write_request;
446                 else
447                         bi->bi_end_io = raid5_end_read_request;
448
449                 rcu_read_lock();
450                 rdev = rcu_dereference(conf->disks[i].rdev);
451                 if (rdev && test_bit(Faulty, &rdev->flags))
452                         rdev = NULL;
453                 if (rdev)
454                         atomic_inc(&rdev->nr_pending);
455                 rcu_read_unlock();
456
457                 if (rdev) {
458                         if (s->syncing || s->expanding || s->expanded)
459                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
460
461                         set_bit(STRIPE_IO_STARTED, &sh->state);
462
463                         bi->bi_bdev = rdev->bdev;
464                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
465                                 __func__, (unsigned long long)sh->sector,
466                                 bi->bi_rw, i);
467                         atomic_inc(&sh->count);
468                         bi->bi_sector = sh->sector + rdev->data_offset;
469                         bi->bi_flags = 1 << BIO_UPTODATE;
470                         bi->bi_vcnt = 1;
471                         bi->bi_max_vecs = 1;
472                         bi->bi_idx = 0;
473                         bi->bi_io_vec = &sh->dev[i].vec;
474                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
475                         bi->bi_io_vec[0].bv_offset = 0;
476                         bi->bi_size = STRIPE_SIZE;
477                         bi->bi_next = NULL;
478                         if (rw == WRITE &&
479                             test_bit(R5_ReWrite, &sh->dev[i].flags))
480                                 atomic_add(STRIPE_SECTORS,
481                                         &rdev->corrected_errors);
482                         generic_make_request(bi);
483                 } else {
484                         if (rw == WRITE)
485                                 set_bit(STRIPE_DEGRADED, &sh->state);
486                         pr_debug("skip op %ld on disc %d for sector %llu\n",
487                                 bi->bi_rw, i, (unsigned long long)sh->sector);
488                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
489                         set_bit(STRIPE_HANDLE, &sh->state);
490                 }
491         }
492 }
493
494 static struct dma_async_tx_descriptor *
495 async_copy_data(int frombio, struct bio *bio, struct page *page,
496         sector_t sector, struct dma_async_tx_descriptor *tx)
497 {
498         struct bio_vec *bvl;
499         struct page *bio_page;
500         int i;
501         int page_offset;
502
503         if (bio->bi_sector >= sector)
504                 page_offset = (signed)(bio->bi_sector - sector) * 512;
505         else
506                 page_offset = (signed)(sector - bio->bi_sector) * -512;
507         bio_for_each_segment(bvl, bio, i) {
508                 int len = bio_iovec_idx(bio, i)->bv_len;
509                 int clen;
510                 int b_offset = 0;
511
512                 if (page_offset < 0) {
513                         b_offset = -page_offset;
514                         page_offset += b_offset;
515                         len -= b_offset;
516                 }
517
518                 if (len > 0 && page_offset + len > STRIPE_SIZE)
519                         clen = STRIPE_SIZE - page_offset;
520                 else
521                         clen = len;
522
523                 if (clen > 0) {
524                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
525                         bio_page = bio_iovec_idx(bio, i)->bv_page;
526                         if (frombio)
527                                 tx = async_memcpy(page, bio_page, page_offset,
528                                                   b_offset, clen, 0,
529                                                   tx, NULL, NULL);
530                         else
531                                 tx = async_memcpy(bio_page, page, b_offset,
532                                                   page_offset, clen, 0,
533                                                   tx, NULL, NULL);
534                 }
535                 if (clen < len) /* hit end of page */
536                         break;
537                 page_offset +=  len;
538         }
539
540         return tx;
541 }
542
543 static void ops_complete_biofill(void *stripe_head_ref)
544 {
545         struct stripe_head *sh = stripe_head_ref;
546         struct bio *return_bi = NULL;
547         raid5_conf_t *conf = sh->raid_conf;
548         int i;
549
550         pr_debug("%s: stripe %llu\n", __func__,
551                 (unsigned long long)sh->sector);
552
553         /* clear completed biofills */
554         spin_lock_irq(&conf->device_lock);
555         for (i = sh->disks; i--; ) {
556                 struct r5dev *dev = &sh->dev[i];
557
558                 /* acknowledge completion of a biofill operation */
559                 /* and check if we need to reply to a read request,
560                  * new R5_Wantfill requests are held off until
561                  * !STRIPE_BIOFILL_RUN
562                  */
563                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
564                         struct bio *rbi, *rbi2;
565
566                         BUG_ON(!dev->read);
567                         rbi = dev->read;
568                         dev->read = NULL;
569                         while (rbi && rbi->bi_sector <
570                                 dev->sector + STRIPE_SECTORS) {
571                                 rbi2 = r5_next_bio(rbi, dev->sector);
572                                 if (!raid5_dec_bi_phys_segments(rbi)) {
573                                         rbi->bi_next = return_bi;
574                                         return_bi = rbi;
575                                 }
576                                 rbi = rbi2;
577                         }
578                 }
579         }
580         spin_unlock_irq(&conf->device_lock);
581         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
582
583         return_io(return_bi);
584
585         set_bit(STRIPE_HANDLE, &sh->state);
586         release_stripe(sh);
587 }
588
589 static void ops_run_biofill(struct stripe_head *sh)
590 {
591         struct dma_async_tx_descriptor *tx = NULL;
592         raid5_conf_t *conf = sh->raid_conf;
593         int i;
594
595         pr_debug("%s: stripe %llu\n", __func__,
596                 (unsigned long long)sh->sector);
597
598         for (i = sh->disks; i--; ) {
599                 struct r5dev *dev = &sh->dev[i];
600                 if (test_bit(R5_Wantfill, &dev->flags)) {
601                         struct bio *rbi;
602                         spin_lock_irq(&conf->device_lock);
603                         dev->read = rbi = dev->toread;
604                         dev->toread = NULL;
605                         spin_unlock_irq(&conf->device_lock);
606                         while (rbi && rbi->bi_sector <
607                                 dev->sector + STRIPE_SECTORS) {
608                                 tx = async_copy_data(0, rbi, dev->page,
609                                         dev->sector, tx);
610                                 rbi = r5_next_bio(rbi, dev->sector);
611                         }
612                 }
613         }
614
615         atomic_inc(&sh->count);
616         async_trigger_callback(ASYNC_TX_ACK, tx, ops_complete_biofill, sh);
617 }
618
619 static void ops_complete_compute5(void *stripe_head_ref)
620 {
621         struct stripe_head *sh = stripe_head_ref;
622         int target = sh->ops.target;
623         struct r5dev *tgt = &sh->dev[target];
624
625         pr_debug("%s: stripe %llu\n", __func__,
626                 (unsigned long long)sh->sector);
627
628         set_bit(R5_UPTODATE, &tgt->flags);
629         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
630         clear_bit(R5_Wantcompute, &tgt->flags);
631         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
632         if (sh->check_state == check_state_compute_run)
633                 sh->check_state = check_state_compute_result;
634         set_bit(STRIPE_HANDLE, &sh->state);
635         release_stripe(sh);
636 }
637
638 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
639 {
640         /* kernel stack size limits the total number of disks */
641         int disks = sh->disks;
642         struct page *xor_srcs[disks];
643         int target = sh->ops.target;
644         struct r5dev *tgt = &sh->dev[target];
645         struct page *xor_dest = tgt->page;
646         int count = 0;
647         struct dma_async_tx_descriptor *tx;
648         int i;
649
650         pr_debug("%s: stripe %llu block: %d\n",
651                 __func__, (unsigned long long)sh->sector, target);
652         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
653
654         for (i = disks; i--; )
655                 if (i != target)
656                         xor_srcs[count++] = sh->dev[i].page;
657
658         atomic_inc(&sh->count);
659
660         if (unlikely(count == 1))
661                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
662                         0, NULL, ops_complete_compute5, sh);
663         else
664                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
665                         ASYNC_TX_XOR_ZERO_DST, NULL,
666                         ops_complete_compute5, sh);
667
668         return tx;
669 }
670
671 static void ops_complete_prexor(void *stripe_head_ref)
672 {
673         struct stripe_head *sh = stripe_head_ref;
674
675         pr_debug("%s: stripe %llu\n", __func__,
676                 (unsigned long long)sh->sector);
677 }
678
679 static struct dma_async_tx_descriptor *
680 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
681 {
682         /* kernel stack size limits the total number of disks */
683         int disks = sh->disks;
684         struct page *xor_srcs[disks];
685         int count = 0, pd_idx = sh->pd_idx, i;
686
687         /* existing parity data subtracted */
688         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
689
690         pr_debug("%s: stripe %llu\n", __func__,
691                 (unsigned long long)sh->sector);
692
693         for (i = disks; i--; ) {
694                 struct r5dev *dev = &sh->dev[i];
695                 /* Only process blocks that are known to be uptodate */
696                 if (test_bit(R5_Wantdrain, &dev->flags))
697                         xor_srcs[count++] = dev->page;
698         }
699
700         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
701                        ASYNC_TX_XOR_DROP_DST, tx,
702                        ops_complete_prexor, sh);
703
704         return tx;
705 }
706
707 static struct dma_async_tx_descriptor *
708 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
709 {
710         int disks = sh->disks;
711         int i;
712
713         pr_debug("%s: stripe %llu\n", __func__,
714                 (unsigned long long)sh->sector);
715
716         for (i = disks; i--; ) {
717                 struct r5dev *dev = &sh->dev[i];
718                 struct bio *chosen;
719
720                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
721                         struct bio *wbi;
722
723                         spin_lock(&sh->lock);
724                         chosen = dev->towrite;
725                         dev->towrite = NULL;
726                         BUG_ON(dev->written);
727                         wbi = dev->written = chosen;
728                         spin_unlock(&sh->lock);
729
730                         while (wbi && wbi->bi_sector <
731                                 dev->sector + STRIPE_SECTORS) {
732                                 tx = async_copy_data(1, wbi, dev->page,
733                                         dev->sector, tx);
734                                 wbi = r5_next_bio(wbi, dev->sector);
735                         }
736                 }
737         }
738
739         return tx;
740 }
741
742 static void ops_complete_postxor(void *stripe_head_ref)
743 {
744         struct stripe_head *sh = stripe_head_ref;
745         int disks = sh->disks, i, pd_idx = sh->pd_idx;
746
747         pr_debug("%s: stripe %llu\n", __func__,
748                 (unsigned long long)sh->sector);
749
750         for (i = disks; i--; ) {
751                 struct r5dev *dev = &sh->dev[i];
752                 if (dev->written || i == pd_idx)
753                         set_bit(R5_UPTODATE, &dev->flags);
754         }
755
756         if (sh->reconstruct_state == reconstruct_state_drain_run)
757                 sh->reconstruct_state = reconstruct_state_drain_result;
758         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
759                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
760         else {
761                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
762                 sh->reconstruct_state = reconstruct_state_result;
763         }
764
765         set_bit(STRIPE_HANDLE, &sh->state);
766         release_stripe(sh);
767 }
768
769 static void
770 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
771 {
772         /* kernel stack size limits the total number of disks */
773         int disks = sh->disks;
774         struct page *xor_srcs[disks];
775
776         int count = 0, pd_idx = sh->pd_idx, i;
777         struct page *xor_dest;
778         int prexor = 0;
779         unsigned long flags;
780
781         pr_debug("%s: stripe %llu\n", __func__,
782                 (unsigned long long)sh->sector);
783
784         /* check if prexor is active which means only process blocks
785          * that are part of a read-modify-write (written)
786          */
787         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
788                 prexor = 1;
789                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
790                 for (i = disks; i--; ) {
791                         struct r5dev *dev = &sh->dev[i];
792                         if (dev->written)
793                                 xor_srcs[count++] = dev->page;
794                 }
795         } else {
796                 xor_dest = sh->dev[pd_idx].page;
797                 for (i = disks; i--; ) {
798                         struct r5dev *dev = &sh->dev[i];
799                         if (i != pd_idx)
800                                 xor_srcs[count++] = dev->page;
801                 }
802         }
803
804         /* 1/ if we prexor'd then the dest is reused as a source
805          * 2/ if we did not prexor then we are redoing the parity
806          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
807          * for the synchronous xor case
808          */
809         flags = ASYNC_TX_ACK |
810                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
811
812         atomic_inc(&sh->count);
813
814         if (unlikely(count == 1)) {
815                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
816                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
817                         flags, tx, ops_complete_postxor, sh);
818         } else
819                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
820                         flags, tx, ops_complete_postxor, sh);
821 }
822
823 static void ops_complete_check(void *stripe_head_ref)
824 {
825         struct stripe_head *sh = stripe_head_ref;
826
827         pr_debug("%s: stripe %llu\n", __func__,
828                 (unsigned long long)sh->sector);
829
830         sh->check_state = check_state_check_result;
831         set_bit(STRIPE_HANDLE, &sh->state);
832         release_stripe(sh);
833 }
834
835 static void ops_run_check(struct stripe_head *sh)
836 {
837         /* kernel stack size limits the total number of disks */
838         int disks = sh->disks;
839         struct page *xor_srcs[disks];
840         struct dma_async_tx_descriptor *tx;
841
842         int count = 0, pd_idx = sh->pd_idx, i;
843         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
844
845         pr_debug("%s: stripe %llu\n", __func__,
846                 (unsigned long long)sh->sector);
847
848         for (i = disks; i--; ) {
849                 struct r5dev *dev = &sh->dev[i];
850                 if (i != pd_idx)
851                         xor_srcs[count++] = dev->page;
852         }
853
854         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
855                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
856
857         atomic_inc(&sh->count);
858         tx = async_trigger_callback(ASYNC_TX_ACK, tx,
859                 ops_complete_check, sh);
860 }
861
862 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
863 {
864         int overlap_clear = 0, i, disks = sh->disks;
865         struct dma_async_tx_descriptor *tx = NULL;
866
867         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
868                 ops_run_biofill(sh);
869                 overlap_clear++;
870         }
871
872         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
873                 tx = ops_run_compute5(sh);
874                 /* terminate the chain if postxor is not set to be run */
875                 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
876                         async_tx_ack(tx);
877         }
878
879         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
880                 tx = ops_run_prexor(sh, tx);
881
882         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
883                 tx = ops_run_biodrain(sh, tx);
884                 overlap_clear++;
885         }
886
887         if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
888                 ops_run_postxor(sh, tx);
889
890         if (test_bit(STRIPE_OP_CHECK, &ops_request))
891                 ops_run_check(sh);
892
893         if (overlap_clear)
894                 for (i = disks; i--; ) {
895                         struct r5dev *dev = &sh->dev[i];
896                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
897                                 wake_up(&sh->raid_conf->wait_for_overlap);
898                 }
899 }
900
901 static int grow_one_stripe(raid5_conf_t *conf)
902 {
903         struct stripe_head *sh;
904         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
905         if (!sh)
906                 return 0;
907         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
908         sh->raid_conf = conf;
909         spin_lock_init(&sh->lock);
910
911         if (grow_buffers(sh, conf->raid_disks)) {
912                 shrink_buffers(sh, conf->raid_disks);
913                 kmem_cache_free(conf->slab_cache, sh);
914                 return 0;
915         }
916         sh->disks = conf->raid_disks;
917         /* we just created an active stripe so... */
918         atomic_set(&sh->count, 1);
919         atomic_inc(&conf->active_stripes);
920         INIT_LIST_HEAD(&sh->lru);
921         release_stripe(sh);
922         return 1;
923 }
924
925 static int grow_stripes(raid5_conf_t *conf, int num)
926 {
927         struct kmem_cache *sc;
928         int devs = conf->raid_disks;
929
930         sprintf(conf->cache_name[0],
931                 "raid%d-%s", conf->level, mdname(conf->mddev));
932         sprintf(conf->cache_name[1],
933                 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
934         conf->active_name = 0;
935         sc = kmem_cache_create(conf->cache_name[conf->active_name],
936                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
937                                0, 0, NULL);
938         if (!sc)
939                 return 1;
940         conf->slab_cache = sc;
941         conf->pool_size = devs;
942         while (num--)
943                 if (!grow_one_stripe(conf))
944                         return 1;
945         return 0;
946 }
947
948 static int resize_stripes(raid5_conf_t *conf, int newsize)
949 {
950         /* Make all the stripes able to hold 'newsize' devices.
951          * New slots in each stripe get 'page' set to a new page.
952          *
953          * This happens in stages:
954          * 1/ create a new kmem_cache and allocate the required number of
955          *    stripe_heads.
956          * 2/ gather all the old stripe_heads and tranfer the pages across
957          *    to the new stripe_heads.  This will have the side effect of
958          *    freezing the array as once all stripe_heads have been collected,
959          *    no IO will be possible.  Old stripe heads are freed once their
960          *    pages have been transferred over, and the old kmem_cache is
961          *    freed when all stripes are done.
962          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
963          *    we simple return a failre status - no need to clean anything up.
964          * 4/ allocate new pages for the new slots in the new stripe_heads.
965          *    If this fails, we don't bother trying the shrink the
966          *    stripe_heads down again, we just leave them as they are.
967          *    As each stripe_head is processed the new one is released into
968          *    active service.
969          *
970          * Once step2 is started, we cannot afford to wait for a write,
971          * so we use GFP_NOIO allocations.
972          */
973         struct stripe_head *osh, *nsh;
974         LIST_HEAD(newstripes);
975         struct disk_info *ndisks;
976         int err;
977         struct kmem_cache *sc;
978         int i;
979
980         if (newsize <= conf->pool_size)
981                 return 0; /* never bother to shrink */
982
983         err = md_allow_write(conf->mddev);
984         if (err)
985                 return err;
986
987         /* Step 1 */
988         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
989                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
990                                0, 0, NULL);
991         if (!sc)
992                 return -ENOMEM;
993
994         for (i = conf->max_nr_stripes; i; i--) {
995                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
996                 if (!nsh)
997                         break;
998
999                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1000
1001                 nsh->raid_conf = conf;
1002                 spin_lock_init(&nsh->lock);
1003
1004                 list_add(&nsh->lru, &newstripes);
1005         }
1006         if (i) {
1007                 /* didn't get enough, give up */
1008                 while (!list_empty(&newstripes)) {
1009                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1010                         list_del(&nsh->lru);
1011                         kmem_cache_free(sc, nsh);
1012                 }
1013                 kmem_cache_destroy(sc);
1014                 return -ENOMEM;
1015         }
1016         /* Step 2 - Must use GFP_NOIO now.
1017          * OK, we have enough stripes, start collecting inactive
1018          * stripes and copying them over
1019          */
1020         list_for_each_entry(nsh, &newstripes, lru) {
1021                 spin_lock_irq(&conf->device_lock);
1022                 wait_event_lock_irq(conf->wait_for_stripe,
1023                                     !list_empty(&conf->inactive_list),
1024                                     conf->device_lock,
1025                                     unplug_slaves(conf->mddev)
1026                         );
1027                 osh = get_free_stripe(conf);
1028                 spin_unlock_irq(&conf->device_lock);
1029                 atomic_set(&nsh->count, 1);
1030                 for(i=0; i<conf->pool_size; i++)
1031                         nsh->dev[i].page = osh->dev[i].page;
1032                 for( ; i<newsize; i++)
1033                         nsh->dev[i].page = NULL;
1034                 kmem_cache_free(conf->slab_cache, osh);
1035         }
1036         kmem_cache_destroy(conf->slab_cache);
1037
1038         /* Step 3.
1039          * At this point, we are holding all the stripes so the array
1040          * is completely stalled, so now is a good time to resize
1041          * conf->disks.
1042          */
1043         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1044         if (ndisks) {
1045                 for (i=0; i<conf->raid_disks; i++)
1046                         ndisks[i] = conf->disks[i];
1047                 kfree(conf->disks);
1048                 conf->disks = ndisks;
1049         } else
1050                 err = -ENOMEM;
1051
1052         /* Step 4, return new stripes to service */
1053         while(!list_empty(&newstripes)) {
1054                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1055                 list_del_init(&nsh->lru);
1056                 for (i=conf->raid_disks; i < newsize; i++)
1057                         if (nsh->dev[i].page == NULL) {
1058                                 struct page *p = alloc_page(GFP_NOIO);
1059                                 nsh->dev[i].page = p;
1060                                 if (!p)
1061                                         err = -ENOMEM;
1062                         }
1063                 release_stripe(nsh);
1064         }
1065         /* critical section pass, GFP_NOIO no longer needed */
1066
1067         conf->slab_cache = sc;
1068         conf->active_name = 1-conf->active_name;
1069         conf->pool_size = newsize;
1070         return err;
1071 }
1072
1073 static int drop_one_stripe(raid5_conf_t *conf)
1074 {
1075         struct stripe_head *sh;
1076
1077         spin_lock_irq(&conf->device_lock);
1078         sh = get_free_stripe(conf);
1079         spin_unlock_irq(&conf->device_lock);
1080         if (!sh)
1081                 return 0;
1082         BUG_ON(atomic_read(&sh->count));
1083         shrink_buffers(sh, conf->pool_size);
1084         kmem_cache_free(conf->slab_cache, sh);
1085         atomic_dec(&conf->active_stripes);
1086         return 1;
1087 }
1088
1089 static void shrink_stripes(raid5_conf_t *conf)
1090 {
1091         while (drop_one_stripe(conf))
1092                 ;
1093
1094         if (conf->slab_cache)
1095                 kmem_cache_destroy(conf->slab_cache);
1096         conf->slab_cache = NULL;
1097 }
1098
1099 static void raid5_end_read_request(struct bio * bi, int error)
1100 {
1101         struct stripe_head *sh = bi->bi_private;
1102         raid5_conf_t *conf = sh->raid_conf;
1103         int disks = sh->disks, i;
1104         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1105         char b[BDEVNAME_SIZE];
1106         mdk_rdev_t *rdev;
1107
1108
1109         for (i=0 ; i<disks; i++)
1110                 if (bi == &sh->dev[i].req)
1111                         break;
1112
1113         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1114                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1115                 uptodate);
1116         if (i == disks) {
1117                 BUG();
1118                 return;
1119         }
1120
1121         if (uptodate) {
1122                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1123                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1124                         rdev = conf->disks[i].rdev;
1125                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1126                                   " (%lu sectors at %llu on %s)\n",
1127                                   mdname(conf->mddev), STRIPE_SECTORS,
1128                                   (unsigned long long)(sh->sector
1129                                                        + rdev->data_offset),
1130                                   bdevname(rdev->bdev, b));
1131                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1132                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1133                 }
1134                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1135                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1136         } else {
1137                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1138                 int retry = 0;
1139                 rdev = conf->disks[i].rdev;
1140
1141                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1142                 atomic_inc(&rdev->read_errors);
1143                 if (conf->mddev->degraded)
1144                         printk_rl(KERN_WARNING
1145                                   "raid5:%s: read error not correctable "
1146                                   "(sector %llu on %s).\n",
1147                                   mdname(conf->mddev),
1148                                   (unsigned long long)(sh->sector
1149                                                        + rdev->data_offset),
1150                                   bdn);
1151                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1152                         /* Oh, no!!! */
1153                         printk_rl(KERN_WARNING
1154                                   "raid5:%s: read error NOT corrected!! "
1155                                   "(sector %llu on %s).\n",
1156                                   mdname(conf->mddev),
1157                                   (unsigned long long)(sh->sector
1158                                                        + rdev->data_offset),
1159                                   bdn);
1160                 else if (atomic_read(&rdev->read_errors)
1161                          > conf->max_nr_stripes)
1162                         printk(KERN_WARNING
1163                                "raid5:%s: Too many read errors, failing device %s.\n",
1164                                mdname(conf->mddev), bdn);
1165                 else
1166                         retry = 1;
1167                 if (retry)
1168                         set_bit(R5_ReadError, &sh->dev[i].flags);
1169                 else {
1170                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1171                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1172                         md_error(conf->mddev, rdev);
1173                 }
1174         }
1175         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1176         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1177         set_bit(STRIPE_HANDLE, &sh->state);
1178         release_stripe(sh);
1179 }
1180
1181 static void raid5_end_write_request(struct bio *bi, int error)
1182 {
1183         struct stripe_head *sh = bi->bi_private;
1184         raid5_conf_t *conf = sh->raid_conf;
1185         int disks = sh->disks, i;
1186         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1187
1188         for (i=0 ; i<disks; i++)
1189                 if (bi == &sh->dev[i].req)
1190                         break;
1191
1192         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1193                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1194                 uptodate);
1195         if (i == disks) {
1196                 BUG();
1197                 return;
1198         }
1199
1200         if (!uptodate)
1201                 md_error(conf->mddev, conf->disks[i].rdev);
1202
1203         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1204         
1205         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1206         set_bit(STRIPE_HANDLE, &sh->state);
1207         release_stripe(sh);
1208 }
1209
1210
1211 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1212         
1213 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1214 {
1215         struct r5dev *dev = &sh->dev[i];
1216
1217         bio_init(&dev->req);
1218         dev->req.bi_io_vec = &dev->vec;
1219         dev->req.bi_vcnt++;
1220         dev->req.bi_max_vecs++;
1221         dev->vec.bv_page = dev->page;
1222         dev->vec.bv_len = STRIPE_SIZE;
1223         dev->vec.bv_offset = 0;
1224
1225         dev->req.bi_sector = sh->sector;
1226         dev->req.bi_private = sh;
1227
1228         dev->flags = 0;
1229         dev->sector = compute_blocknr(sh, i, previous);
1230 }
1231
1232 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1233 {
1234         char b[BDEVNAME_SIZE];
1235         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1236         pr_debug("raid5: error called\n");
1237
1238         if (!test_bit(Faulty, &rdev->flags)) {
1239                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1240                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1241                         unsigned long flags;
1242                         spin_lock_irqsave(&conf->device_lock, flags);
1243                         mddev->degraded++;
1244                         spin_unlock_irqrestore(&conf->device_lock, flags);
1245                         /*
1246                          * if recovery was running, make sure it aborts.
1247                          */
1248                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1249                 }
1250                 set_bit(Faulty, &rdev->flags);
1251                 printk(KERN_ALERT
1252                        "raid5: Disk failure on %s, disabling device.\n"
1253                        "raid5: Operation continuing on %d devices.\n",
1254                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1255         }
1256 }
1257
1258 /*
1259  * Input: a 'big' sector number,
1260  * Output: index of the data and parity disk, and the sector # in them.
1261  */
1262 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1263                                      int previous, int *dd_idx,
1264                                      struct stripe_head *sh)
1265 {
1266         long stripe;
1267         unsigned long chunk_number;
1268         unsigned int chunk_offset;
1269         int pd_idx, qd_idx;
1270         int ddf_layout = 0;
1271         sector_t new_sector;
1272         int algorithm = previous ? conf->prev_algo
1273                                  : conf->algorithm;
1274         int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1275                                          : (conf->chunk_size >> 9);
1276         int raid_disks = previous ? conf->previous_raid_disks
1277                                   : conf->raid_disks;
1278         int data_disks = raid_disks - conf->max_degraded;
1279
1280         /* First compute the information on this sector */
1281
1282         /*
1283          * Compute the chunk number and the sector offset inside the chunk
1284          */
1285         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1286         chunk_number = r_sector;
1287         BUG_ON(r_sector != chunk_number);
1288
1289         /*
1290          * Compute the stripe number
1291          */
1292         stripe = chunk_number / data_disks;
1293
1294         /*
1295          * Compute the data disk and parity disk indexes inside the stripe
1296          */
1297         *dd_idx = chunk_number % data_disks;
1298
1299         /*
1300          * Select the parity disk based on the user selected algorithm.
1301          */
1302         pd_idx = qd_idx = ~0;
1303         switch(conf->level) {
1304         case 4:
1305                 pd_idx = data_disks;
1306                 break;
1307         case 5:
1308                 switch (algorithm) {
1309                 case ALGORITHM_LEFT_ASYMMETRIC:
1310                         pd_idx = data_disks - stripe % raid_disks;
1311                         if (*dd_idx >= pd_idx)
1312                                 (*dd_idx)++;
1313                         break;
1314                 case ALGORITHM_RIGHT_ASYMMETRIC:
1315                         pd_idx = stripe % raid_disks;
1316                         if (*dd_idx >= pd_idx)
1317                                 (*dd_idx)++;
1318                         break;
1319                 case ALGORITHM_LEFT_SYMMETRIC:
1320                         pd_idx = data_disks - stripe % raid_disks;
1321                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1322                         break;
1323                 case ALGORITHM_RIGHT_SYMMETRIC:
1324                         pd_idx = stripe % raid_disks;
1325                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1326                         break;
1327                 case ALGORITHM_PARITY_0:
1328                         pd_idx = 0;
1329                         (*dd_idx)++;
1330                         break;
1331                 case ALGORITHM_PARITY_N:
1332                         pd_idx = data_disks;
1333                         break;
1334                 default:
1335                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1336                                 algorithm);
1337                         BUG();
1338                 }
1339                 break;
1340         case 6:
1341
1342                 switch (algorithm) {
1343                 case ALGORITHM_LEFT_ASYMMETRIC:
1344                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1345                         qd_idx = pd_idx + 1;
1346                         if (pd_idx == raid_disks-1) {
1347                                 (*dd_idx)++;    /* Q D D D P */
1348                                 qd_idx = 0;
1349                         } else if (*dd_idx >= pd_idx)
1350                                 (*dd_idx) += 2; /* D D P Q D */
1351                         break;
1352                 case ALGORITHM_RIGHT_ASYMMETRIC:
1353                         pd_idx = stripe % raid_disks;
1354                         qd_idx = pd_idx + 1;
1355                         if (pd_idx == raid_disks-1) {
1356                                 (*dd_idx)++;    /* Q D D D P */
1357                                 qd_idx = 0;
1358                         } else if (*dd_idx >= pd_idx)
1359                                 (*dd_idx) += 2; /* D D P Q D */
1360                         break;
1361                 case ALGORITHM_LEFT_SYMMETRIC:
1362                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1363                         qd_idx = (pd_idx + 1) % raid_disks;
1364                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1365                         break;
1366                 case ALGORITHM_RIGHT_SYMMETRIC:
1367                         pd_idx = stripe % raid_disks;
1368                         qd_idx = (pd_idx + 1) % raid_disks;
1369                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1370                         break;
1371
1372                 case ALGORITHM_PARITY_0:
1373                         pd_idx = 0;
1374                         qd_idx = 1;
1375                         (*dd_idx) += 2;
1376                         break;
1377                 case ALGORITHM_PARITY_N:
1378                         pd_idx = data_disks;
1379                         qd_idx = data_disks + 1;
1380                         break;
1381
1382                 case ALGORITHM_ROTATING_ZERO_RESTART:
1383                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1384                          * of blocks for computing Q is different.
1385                          */
1386                         pd_idx = stripe % raid_disks;
1387                         qd_idx = pd_idx + 1;
1388                         if (pd_idx == raid_disks-1) {
1389                                 (*dd_idx)++;    /* Q D D D P */
1390                                 qd_idx = 0;
1391                         } else if (*dd_idx >= pd_idx)
1392                                 (*dd_idx) += 2; /* D D P Q D */
1393                         ddf_layout = 1;
1394                         break;
1395
1396                 case ALGORITHM_ROTATING_N_RESTART:
1397                         /* Same a left_asymmetric, by first stripe is
1398                          * D D D P Q  rather than
1399                          * Q D D D P
1400                          */
1401                         pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1402                         qd_idx = pd_idx + 1;
1403                         if (pd_idx == raid_disks-1) {
1404                                 (*dd_idx)++;    /* Q D D D P */
1405                                 qd_idx = 0;
1406                         } else if (*dd_idx >= pd_idx)
1407                                 (*dd_idx) += 2; /* D D P Q D */
1408                         ddf_layout = 1;
1409                         break;
1410
1411                 case ALGORITHM_ROTATING_N_CONTINUE:
1412                         /* Same as left_symmetric but Q is before P */
1413                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1414                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1415                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1416                         ddf_layout = 1;
1417                         break;
1418
1419                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1420                         /* RAID5 left_asymmetric, with Q on last device */
1421                         pd_idx = data_disks - stripe % (raid_disks-1);
1422                         if (*dd_idx >= pd_idx)
1423                                 (*dd_idx)++;
1424                         qd_idx = raid_disks - 1;
1425                         break;
1426
1427                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1428                         pd_idx = stripe % (raid_disks-1);
1429                         if (*dd_idx >= pd_idx)
1430                                 (*dd_idx)++;
1431                         qd_idx = raid_disks - 1;
1432                         break;
1433
1434                 case ALGORITHM_LEFT_SYMMETRIC_6:
1435                         pd_idx = data_disks - stripe % (raid_disks-1);
1436                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1437                         qd_idx = raid_disks - 1;
1438                         break;
1439
1440                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1441                         pd_idx = stripe % (raid_disks-1);
1442                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1443                         qd_idx = raid_disks - 1;
1444                         break;
1445
1446                 case ALGORITHM_PARITY_0_6:
1447                         pd_idx = 0;
1448                         (*dd_idx)++;
1449                         qd_idx = raid_disks - 1;
1450                         break;
1451
1452
1453                 default:
1454                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1455                                algorithm);
1456                         BUG();
1457                 }
1458                 break;
1459         }
1460
1461         if (sh) {
1462                 sh->pd_idx = pd_idx;
1463                 sh->qd_idx = qd_idx;
1464                 sh->ddf_layout = ddf_layout;
1465         }
1466         /*
1467          * Finally, compute the new sector number
1468          */
1469         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1470         return new_sector;
1471 }
1472
1473
1474 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1475 {
1476         raid5_conf_t *conf = sh->raid_conf;
1477         int raid_disks = sh->disks;
1478         int data_disks = raid_disks - conf->max_degraded;
1479         sector_t new_sector = sh->sector, check;
1480         int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1481                                          : (conf->chunk_size >> 9);
1482         int algorithm = previous ? conf->prev_algo
1483                                  : conf->algorithm;
1484         sector_t stripe;
1485         int chunk_offset;
1486         int chunk_number, dummy1, dd_idx = i;
1487         sector_t r_sector;
1488         struct stripe_head sh2;
1489
1490
1491         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1492         stripe = new_sector;
1493         BUG_ON(new_sector != stripe);
1494
1495         if (i == sh->pd_idx)
1496                 return 0;
1497         switch(conf->level) {
1498         case 4: break;
1499         case 5:
1500                 switch (algorithm) {
1501                 case ALGORITHM_LEFT_ASYMMETRIC:
1502                 case ALGORITHM_RIGHT_ASYMMETRIC:
1503                         if (i > sh->pd_idx)
1504                                 i--;
1505                         break;
1506                 case ALGORITHM_LEFT_SYMMETRIC:
1507                 case ALGORITHM_RIGHT_SYMMETRIC:
1508                         if (i < sh->pd_idx)
1509                                 i += raid_disks;
1510                         i -= (sh->pd_idx + 1);
1511                         break;
1512                 case ALGORITHM_PARITY_0:
1513                         i -= 1;
1514                         break;
1515                 case ALGORITHM_PARITY_N:
1516                         break;
1517                 default:
1518                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1519                                algorithm);
1520                         BUG();
1521                 }
1522                 break;
1523         case 6:
1524                 if (i == sh->qd_idx)
1525                         return 0; /* It is the Q disk */
1526                 switch (algorithm) {
1527                 case ALGORITHM_LEFT_ASYMMETRIC:
1528                 case ALGORITHM_RIGHT_ASYMMETRIC:
1529                 case ALGORITHM_ROTATING_ZERO_RESTART:
1530                 case ALGORITHM_ROTATING_N_RESTART:
1531                         if (sh->pd_idx == raid_disks-1)
1532                                 i--;    /* Q D D D P */
1533                         else if (i > sh->pd_idx)
1534                                 i -= 2; /* D D P Q D */
1535                         break;
1536                 case ALGORITHM_LEFT_SYMMETRIC:
1537                 case ALGORITHM_RIGHT_SYMMETRIC:
1538                         if (sh->pd_idx == raid_disks-1)
1539                                 i--; /* Q D D D P */
1540                         else {
1541                                 /* D D P Q D */
1542                                 if (i < sh->pd_idx)
1543                                         i += raid_disks;
1544                                 i -= (sh->pd_idx + 2);
1545                         }
1546                         break;
1547                 case ALGORITHM_PARITY_0:
1548                         i -= 2;
1549                         break;
1550                 case ALGORITHM_PARITY_N:
1551                         break;
1552                 case ALGORITHM_ROTATING_N_CONTINUE:
1553                         if (sh->pd_idx == 0)
1554                                 i--;    /* P D D D Q */
1555                         else if (i > sh->pd_idx)
1556                                 i -= 2; /* D D Q P D */
1557                         break;
1558                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1559                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1560                         if (i > sh->pd_idx)
1561                                 i--;
1562                         break;
1563                 case ALGORITHM_LEFT_SYMMETRIC_6:
1564                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1565                         if (i < sh->pd_idx)
1566                                 i += data_disks + 1;
1567                         i -= (sh->pd_idx + 1);
1568                         break;
1569                 case ALGORITHM_PARITY_0_6:
1570                         i -= 1;
1571                         break;
1572                 default:
1573                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1574                                algorithm);
1575                         BUG();
1576                 }
1577                 break;
1578         }
1579
1580         chunk_number = stripe * data_disks + i;
1581         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1582
1583         check = raid5_compute_sector(conf, r_sector,
1584                                      previous, &dummy1, &sh2);
1585         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1586                 || sh2.qd_idx != sh->qd_idx) {
1587                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1588                 return 0;
1589         }
1590         return r_sector;
1591 }
1592
1593
1594
1595 /*
1596  * Copy data between a page in the stripe cache, and one or more bion
1597  * The page could align with the middle of the bio, or there could be
1598  * several bion, each with several bio_vecs, which cover part of the page
1599  * Multiple bion are linked together on bi_next.  There may be extras
1600  * at the end of this list.  We ignore them.
1601  */
1602 static void copy_data(int frombio, struct bio *bio,
1603                      struct page *page,
1604                      sector_t sector)
1605 {
1606         char *pa = page_address(page);
1607         struct bio_vec *bvl;
1608         int i;
1609         int page_offset;
1610
1611         if (bio->bi_sector >= sector)
1612                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1613         else
1614                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1615         bio_for_each_segment(bvl, bio, i) {
1616                 int len = bio_iovec_idx(bio,i)->bv_len;
1617                 int clen;
1618                 int b_offset = 0;
1619
1620                 if (page_offset < 0) {
1621                         b_offset = -page_offset;
1622                         page_offset += b_offset;
1623                         len -= b_offset;
1624                 }
1625
1626                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1627                         clen = STRIPE_SIZE - page_offset;
1628                 else clen = len;
1629
1630                 if (clen > 0) {
1631                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1632                         if (frombio)
1633                                 memcpy(pa+page_offset, ba+b_offset, clen);
1634                         else
1635                                 memcpy(ba+b_offset, pa+page_offset, clen);
1636                         __bio_kunmap_atomic(ba, KM_USER0);
1637                 }
1638                 if (clen < len) /* hit end of page */
1639                         break;
1640                 page_offset +=  len;
1641         }
1642 }
1643
1644 #define check_xor()     do {                                              \
1645                                 if (count == MAX_XOR_BLOCKS) {            \
1646                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1647                                 count = 0;                                \
1648                            }                                              \
1649                         } while(0)
1650
1651 static void compute_parity6(struct stripe_head *sh, int method)
1652 {
1653         raid5_conf_t *conf = sh->raid_conf;
1654         int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1655         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1656         struct bio *chosen;
1657         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1658         void *ptrs[syndrome_disks+2];
1659
1660         pd_idx = sh->pd_idx;
1661         qd_idx = sh->qd_idx;
1662         d0_idx = raid6_d0(sh);
1663
1664         pr_debug("compute_parity, stripe %llu, method %d\n",
1665                 (unsigned long long)sh->sector, method);
1666
1667         switch(method) {
1668         case READ_MODIFY_WRITE:
1669                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1670         case RECONSTRUCT_WRITE:
1671                 for (i= disks; i-- ;)
1672                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1673                                 chosen = sh->dev[i].towrite;
1674                                 sh->dev[i].towrite = NULL;
1675
1676                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1677                                         wake_up(&conf->wait_for_overlap);
1678
1679                                 BUG_ON(sh->dev[i].written);
1680                                 sh->dev[i].written = chosen;
1681                         }
1682                 break;
1683         case CHECK_PARITY:
1684                 BUG();          /* Not implemented yet */
1685         }
1686
1687         for (i = disks; i--;)
1688                 if (sh->dev[i].written) {
1689                         sector_t sector = sh->dev[i].sector;
1690                         struct bio *wbi = sh->dev[i].written;
1691                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1692                                 copy_data(1, wbi, sh->dev[i].page, sector);
1693                                 wbi = r5_next_bio(wbi, sector);
1694                         }
1695
1696                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1697                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1698                 }
1699
1700         /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1701
1702         for (i = 0; i < disks; i++)
1703                 ptrs[i] = (void *)raid6_empty_zero_page;
1704
1705         count = 0;
1706         i = d0_idx;
1707         do {
1708                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1709
1710                 ptrs[slot] = page_address(sh->dev[i].page);
1711                 if (slot < syndrome_disks &&
1712                     !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1713                         printk(KERN_ERR "block %d/%d not uptodate "
1714                                "on parity calc\n", i, count);
1715                         BUG();
1716                 }
1717
1718                 i = raid6_next_disk(i, disks);
1719         } while (i != d0_idx);
1720         BUG_ON(count != syndrome_disks);
1721
1722         raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1723
1724         switch(method) {
1725         case RECONSTRUCT_WRITE:
1726                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1727                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1728                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1729                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1730                 break;
1731         case UPDATE_PARITY:
1732                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1733                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1734                 break;
1735         }
1736 }
1737
1738
1739 /* Compute one missing block */
1740 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1741 {
1742         int i, count, disks = sh->disks;
1743         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1744         int qd_idx = sh->qd_idx;
1745
1746         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1747                 (unsigned long long)sh->sector, dd_idx);
1748
1749         if ( dd_idx == qd_idx ) {
1750                 /* We're actually computing the Q drive */
1751                 compute_parity6(sh, UPDATE_PARITY);
1752         } else {
1753                 dest = page_address(sh->dev[dd_idx].page);
1754                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1755                 count = 0;
1756                 for (i = disks ; i--; ) {
1757                         if (i == dd_idx || i == qd_idx)
1758                                 continue;
1759                         p = page_address(sh->dev[i].page);
1760                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1761                                 ptr[count++] = p;
1762                         else
1763                                 printk("compute_block() %d, stripe %llu, %d"
1764                                        " not present\n", dd_idx,
1765                                        (unsigned long long)sh->sector, i);
1766
1767                         check_xor();
1768                 }
1769                 if (count)
1770                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1771                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1772                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1773         }
1774 }
1775
1776 /* Compute two missing blocks */
1777 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1778 {
1779         int i, count, disks = sh->disks;
1780         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1781         int d0_idx = raid6_d0(sh);
1782         int faila = -1, failb = -1;
1783         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1784         void *ptrs[syndrome_disks+2];
1785
1786         for (i = 0; i < disks ; i++)
1787                 ptrs[i] = (void *)raid6_empty_zero_page;
1788         count = 0;
1789         i = d0_idx;
1790         do {
1791                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1792
1793                 ptrs[slot] = page_address(sh->dev[i].page);
1794
1795                 if (i == dd_idx1)
1796                         faila = slot;
1797                 if (i == dd_idx2)
1798                         failb = slot;
1799                 i = raid6_next_disk(i, disks);
1800         } while (i != d0_idx);
1801         BUG_ON(count != syndrome_disks);
1802
1803         BUG_ON(faila == failb);
1804         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1805
1806         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1807                  (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1808                  faila, failb);
1809
1810         if (failb == syndrome_disks+1) {
1811                 /* Q disk is one of the missing disks */
1812                 if (faila == syndrome_disks) {
1813                         /* Missing P+Q, just recompute */
1814                         compute_parity6(sh, UPDATE_PARITY);
1815                         return;
1816                 } else {
1817                         /* We're missing D+Q; recompute D from P */
1818                         compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1819                                              dd_idx2 : dd_idx1),
1820                                         0);
1821                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1822                         return;
1823                 }
1824         }
1825
1826         /* We're missing D+P or D+D; */
1827         if (failb == syndrome_disks) {
1828                 /* We're missing D+P. */
1829                 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1830         } else {
1831                 /* We're missing D+D. */
1832                 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1833                                   ptrs);
1834         }
1835
1836         /* Both the above update both missing blocks */
1837         set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1838         set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1839 }
1840
1841 static void
1842 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1843                          int rcw, int expand)
1844 {
1845         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1846
1847         if (rcw) {
1848                 /* if we are not expanding this is a proper write request, and
1849                  * there will be bios with new data to be drained into the
1850                  * stripe cache
1851                  */
1852                 if (!expand) {
1853                         sh->reconstruct_state = reconstruct_state_drain_run;
1854                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1855                 } else
1856                         sh->reconstruct_state = reconstruct_state_run;
1857
1858                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1859
1860                 for (i = disks; i--; ) {
1861                         struct r5dev *dev = &sh->dev[i];
1862
1863                         if (dev->towrite) {
1864                                 set_bit(R5_LOCKED, &dev->flags);
1865                                 set_bit(R5_Wantdrain, &dev->flags);
1866                                 if (!expand)
1867                                         clear_bit(R5_UPTODATE, &dev->flags);
1868                                 s->locked++;
1869                         }
1870                 }
1871                 if (s->locked + 1 == disks)
1872                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1873                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1874         } else {
1875                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1876                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1877
1878                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1879                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1880                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1881                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1882
1883                 for (i = disks; i--; ) {
1884                         struct r5dev *dev = &sh->dev[i];
1885                         if (i == pd_idx)
1886                                 continue;
1887
1888                         if (dev->towrite &&
1889                             (test_bit(R5_UPTODATE, &dev->flags) ||
1890                              test_bit(R5_Wantcompute, &dev->flags))) {
1891                                 set_bit(R5_Wantdrain, &dev->flags);
1892                                 set_bit(R5_LOCKED, &dev->flags);
1893                                 clear_bit(R5_UPTODATE, &dev->flags);
1894                                 s->locked++;
1895                         }
1896                 }
1897         }
1898
1899         /* keep the parity disk locked while asynchronous operations
1900          * are in flight
1901          */
1902         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1903         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1904         s->locked++;
1905
1906         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1907                 __func__, (unsigned long long)sh->sector,
1908                 s->locked, s->ops_request);
1909 }
1910
1911 /*
1912  * Each stripe/dev can have one or more bion attached.
1913  * toread/towrite point to the first in a chain.
1914  * The bi_next chain must be in order.
1915  */
1916 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1917 {
1918         struct bio **bip;
1919         raid5_conf_t *conf = sh->raid_conf;
1920         int firstwrite=0;
1921
1922         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1923                 (unsigned long long)bi->bi_sector,
1924                 (unsigned long long)sh->sector);
1925
1926
1927         spin_lock(&sh->lock);
1928         spin_lock_irq(&conf->device_lock);
1929         if (forwrite) {
1930                 bip = &sh->dev[dd_idx].towrite;
1931                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1932                         firstwrite = 1;
1933         } else
1934                 bip = &sh->dev[dd_idx].toread;
1935         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1936                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1937                         goto overlap;
1938                 bip = & (*bip)->bi_next;
1939         }
1940         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1941                 goto overlap;
1942
1943         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1944         if (*bip)
1945                 bi->bi_next = *bip;
1946         *bip = bi;
1947         bi->bi_phys_segments++;
1948         spin_unlock_irq(&conf->device_lock);
1949         spin_unlock(&sh->lock);
1950
1951         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1952                 (unsigned long long)bi->bi_sector,
1953                 (unsigned long long)sh->sector, dd_idx);
1954
1955         if (conf->mddev->bitmap && firstwrite) {
1956                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1957                                   STRIPE_SECTORS, 0);
1958                 sh->bm_seq = conf->seq_flush+1;
1959                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1960         }
1961
1962         if (forwrite) {
1963                 /* check if page is covered */
1964                 sector_t sector = sh->dev[dd_idx].sector;
1965                 for (bi=sh->dev[dd_idx].towrite;
1966                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1967                              bi && bi->bi_sector <= sector;
1968                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1969                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1970                                 sector = bi->bi_sector + (bi->bi_size>>9);
1971                 }
1972                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1973                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1974         }
1975         return 1;
1976
1977  overlap:
1978         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1979         spin_unlock_irq(&conf->device_lock);
1980         spin_unlock(&sh->lock);
1981         return 0;
1982 }
1983
1984 static void end_reshape(raid5_conf_t *conf);
1985
1986 static int page_is_zero(struct page *p)
1987 {
1988         char *a = page_address(p);
1989         return ((*(u32*)a) == 0 &&
1990                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1991 }
1992
1993 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1994                             struct stripe_head *sh)
1995 {
1996         int sectors_per_chunk =
1997                 previous ? (conf->prev_chunk >> 9)
1998                          : (conf->chunk_size >> 9);
1999         int dd_idx;
2000         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2001         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2002
2003         raid5_compute_sector(conf,
2004                              stripe * (disks - conf->max_degraded)
2005                              *sectors_per_chunk + chunk_offset,
2006                              previous,
2007                              &dd_idx, sh);
2008 }
2009
2010 static void
2011 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2012                                 struct stripe_head_state *s, int disks,
2013                                 struct bio **return_bi)
2014 {
2015         int i;
2016         for (i = disks; i--; ) {
2017                 struct bio *bi;
2018                 int bitmap_end = 0;
2019
2020                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2021                         mdk_rdev_t *rdev;
2022                         rcu_read_lock();
2023                         rdev = rcu_dereference(conf->disks[i].rdev);
2024                         if (rdev && test_bit(In_sync, &rdev->flags))
2025                                 /* multiple read failures in one stripe */
2026                                 md_error(conf->mddev, rdev);
2027                         rcu_read_unlock();
2028                 }
2029                 spin_lock_irq(&conf->device_lock);
2030                 /* fail all writes first */
2031                 bi = sh->dev[i].towrite;
2032                 sh->dev[i].towrite = NULL;
2033                 if (bi) {
2034                         s->to_write--;
2035                         bitmap_end = 1;
2036                 }
2037
2038                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2039                         wake_up(&conf->wait_for_overlap);
2040
2041                 while (bi && bi->bi_sector <
2042                         sh->dev[i].sector + STRIPE_SECTORS) {
2043                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2044                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2045                         if (!raid5_dec_bi_phys_segments(bi)) {
2046                                 md_write_end(conf->mddev);
2047                                 bi->bi_next = *return_bi;
2048                                 *return_bi = bi;
2049                         }
2050                         bi = nextbi;
2051                 }
2052                 /* and fail all 'written' */
2053                 bi = sh->dev[i].written;
2054                 sh->dev[i].written = NULL;
2055                 if (bi) bitmap_end = 1;
2056                 while (bi && bi->bi_sector <
2057                        sh->dev[i].sector + STRIPE_SECTORS) {
2058                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2059                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2060                         if (!raid5_dec_bi_phys_segments(bi)) {
2061                                 md_write_end(conf->mddev);
2062                                 bi->bi_next = *return_bi;
2063                                 *return_bi = bi;
2064                         }
2065                         bi = bi2;
2066                 }
2067
2068                 /* fail any reads if this device is non-operational and
2069                  * the data has not reached the cache yet.
2070                  */
2071                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2072                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2073                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2074                         bi = sh->dev[i].toread;
2075                         sh->dev[i].toread = NULL;
2076                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2077                                 wake_up(&conf->wait_for_overlap);
2078                         if (bi) s->to_read--;
2079                         while (bi && bi->bi_sector <
2080                                sh->dev[i].sector + STRIPE_SECTORS) {
2081                                 struct bio *nextbi =
2082                                         r5_next_bio(bi, sh->dev[i].sector);
2083                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2084                                 if (!raid5_dec_bi_phys_segments(bi)) {
2085                                         bi->bi_next = *return_bi;
2086                                         *return_bi = bi;
2087                                 }
2088                                 bi = nextbi;
2089                         }
2090                 }
2091                 spin_unlock_irq(&conf->device_lock);
2092                 if (bitmap_end)
2093                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2094                                         STRIPE_SECTORS, 0, 0);
2095         }
2096
2097         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2098                 if (atomic_dec_and_test(&conf->pending_full_writes))
2099                         md_wakeup_thread(conf->mddev->thread);
2100 }
2101
2102 /* fetch_block5 - checks the given member device to see if its data needs
2103  * to be read or computed to satisfy a request.
2104  *
2105  * Returns 1 when no more member devices need to be checked, otherwise returns
2106  * 0 to tell the loop in handle_stripe_fill5 to continue
2107  */
2108 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2109                         int disk_idx, int disks)
2110 {
2111         struct r5dev *dev = &sh->dev[disk_idx];
2112         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2113
2114         /* is the data in this block needed, and can we get it? */
2115         if (!test_bit(R5_LOCKED, &dev->flags) &&
2116             !test_bit(R5_UPTODATE, &dev->flags) &&
2117             (dev->toread ||
2118              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2119              s->syncing || s->expanding ||
2120              (s->failed &&
2121               (failed_dev->toread ||
2122                (failed_dev->towrite &&
2123                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2124                 /* We would like to get this block, possibly by computing it,
2125                  * otherwise read it if the backing disk is insync
2126                  */
2127                 if ((s->uptodate == disks - 1) &&
2128                     (s->failed && disk_idx == s->failed_num)) {
2129                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2130                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2131                         set_bit(R5_Wantcompute, &dev->flags);
2132                         sh->ops.target = disk_idx;
2133                         s->req_compute = 1;
2134                         /* Careful: from this point on 'uptodate' is in the eye
2135                          * of raid5_run_ops which services 'compute' operations
2136                          * before writes. R5_Wantcompute flags a block that will
2137                          * be R5_UPTODATE by the time it is needed for a
2138                          * subsequent operation.
2139                          */
2140                         s->uptodate++;
2141                         return 1; /* uptodate + compute == disks */
2142                 } else if (test_bit(R5_Insync, &dev->flags)) {
2143                         set_bit(R5_LOCKED, &dev->flags);
2144                         set_bit(R5_Wantread, &dev->flags);
2145                         s->locked++;
2146                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2147                                 s->syncing);
2148                 }
2149         }
2150
2151         return 0;
2152 }
2153
2154 /**
2155  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2156  */
2157 static void handle_stripe_fill5(struct stripe_head *sh,
2158                         struct stripe_head_state *s, int disks)
2159 {
2160         int i;
2161
2162         /* look for blocks to read/compute, skip this if a compute
2163          * is already in flight, or if the stripe contents are in the
2164          * midst of changing due to a write
2165          */
2166         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2167             !sh->reconstruct_state)
2168                 for (i = disks; i--; )
2169                         if (fetch_block5(sh, s, i, disks))
2170                                 break;
2171         set_bit(STRIPE_HANDLE, &sh->state);
2172 }
2173
2174 static void handle_stripe_fill6(struct stripe_head *sh,
2175                         struct stripe_head_state *s, struct r6_state *r6s,
2176                         int disks)
2177 {
2178         int i;
2179         for (i = disks; i--; ) {
2180                 struct r5dev *dev = &sh->dev[i];
2181                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2182                     !test_bit(R5_UPTODATE, &dev->flags) &&
2183                     (dev->toread || (dev->towrite &&
2184                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2185                      s->syncing || s->expanding ||
2186                      (s->failed >= 1 &&
2187                       (sh->dev[r6s->failed_num[0]].toread ||
2188                        s->to_write)) ||
2189                      (s->failed >= 2 &&
2190                       (sh->dev[r6s->failed_num[1]].toread ||
2191                        s->to_write)))) {
2192                         /* we would like to get this block, possibly
2193                          * by computing it, but we might not be able to
2194                          */
2195                         if ((s->uptodate == disks - 1) &&
2196                             (s->failed && (i == r6s->failed_num[0] ||
2197                                            i == r6s->failed_num[1]))) {
2198                                 pr_debug("Computing stripe %llu block %d\n",
2199                                        (unsigned long long)sh->sector, i);
2200                                 compute_block_1(sh, i, 0);
2201                                 s->uptodate++;
2202                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2203                                 /* Computing 2-failure is *very* expensive; only
2204                                  * do it if failed >= 2
2205                                  */
2206                                 int other;
2207                                 for (other = disks; other--; ) {
2208                                         if (other == i)
2209                                                 continue;
2210                                         if (!test_bit(R5_UPTODATE,
2211                                               &sh->dev[other].flags))
2212                                                 break;
2213                                 }
2214                                 BUG_ON(other < 0);
2215                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2216                                        (unsigned long long)sh->sector,
2217                                        i, other);
2218                                 compute_block_2(sh, i, other);
2219                                 s->uptodate += 2;
2220                         } else if (test_bit(R5_Insync, &dev->flags)) {
2221                                 set_bit(R5_LOCKED, &dev->flags);
2222                                 set_bit(R5_Wantread, &dev->flags);
2223                                 s->locked++;
2224                                 pr_debug("Reading block %d (sync=%d)\n",
2225                                         i, s->syncing);
2226                         }
2227                 }
2228         }
2229         set_bit(STRIPE_HANDLE, &sh->state);
2230 }
2231
2232
2233 /* handle_stripe_clean_event
2234  * any written block on an uptodate or failed drive can be returned.
2235  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2236  * never LOCKED, so we don't need to test 'failed' directly.
2237  */
2238 static void handle_stripe_clean_event(raid5_conf_t *conf,
2239         struct stripe_head *sh, int disks, struct bio **return_bi)
2240 {
2241         int i;
2242         struct r5dev *dev;
2243
2244         for (i = disks; i--; )
2245                 if (sh->dev[i].written) {
2246                         dev = &sh->dev[i];
2247                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2248                                 test_bit(R5_UPTODATE, &dev->flags)) {
2249                                 /* We can return any write requests */
2250                                 struct bio *wbi, *wbi2;
2251                                 int bitmap_end = 0;
2252                                 pr_debug("Return write for disc %d\n", i);
2253                                 spin_lock_irq(&conf->device_lock);
2254                                 wbi = dev->written;
2255                                 dev->written = NULL;
2256                                 while (wbi && wbi->bi_sector <
2257                                         dev->sector + STRIPE_SECTORS) {
2258                                         wbi2 = r5_next_bio(wbi, dev->sector);
2259                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2260                                                 md_write_end(conf->mddev);
2261                                                 wbi->bi_next = *return_bi;
2262                                                 *return_bi = wbi;
2263                                         }
2264                                         wbi = wbi2;
2265                                 }
2266                                 if (dev->towrite == NULL)
2267                                         bitmap_end = 1;
2268                                 spin_unlock_irq(&conf->device_lock);
2269                                 if (bitmap_end)
2270                                         bitmap_endwrite(conf->mddev->bitmap,
2271                                                         sh->sector,
2272                                                         STRIPE_SECTORS,
2273                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2274                                                         0);
2275                         }
2276                 }
2277
2278         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2279                 if (atomic_dec_and_test(&conf->pending_full_writes))
2280                         md_wakeup_thread(conf->mddev->thread);
2281 }
2282
2283 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2284                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2285 {
2286         int rmw = 0, rcw = 0, i;
2287         for (i = disks; i--; ) {
2288                 /* would I have to read this buffer for read_modify_write */
2289                 struct r5dev *dev = &sh->dev[i];
2290                 if ((dev->towrite || i == sh->pd_idx) &&
2291                     !test_bit(R5_LOCKED, &dev->flags) &&
2292                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2293                       test_bit(R5_Wantcompute, &dev->flags))) {
2294                         if (test_bit(R5_Insync, &dev->flags))
2295                                 rmw++;
2296                         else
2297                                 rmw += 2*disks;  /* cannot read it */
2298                 }
2299                 /* Would I have to read this buffer for reconstruct_write */
2300                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2301                     !test_bit(R5_LOCKED, &dev->flags) &&
2302                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2303                     test_bit(R5_Wantcompute, &dev->flags))) {
2304                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2305                         else
2306                                 rcw += 2*disks;
2307                 }
2308         }
2309         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2310                 (unsigned long long)sh->sector, rmw, rcw);
2311         set_bit(STRIPE_HANDLE, &sh->state);
2312         if (rmw < rcw && rmw > 0)
2313                 /* prefer read-modify-write, but need to get some data */
2314                 for (i = disks; i--; ) {
2315                         struct r5dev *dev = &sh->dev[i];
2316                         if ((dev->towrite || i == sh->pd_idx) &&
2317                             !test_bit(R5_LOCKED, &dev->flags) &&
2318                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2319                             test_bit(R5_Wantcompute, &dev->flags)) &&
2320                             test_bit(R5_Insync, &dev->flags)) {
2321                                 if (
2322                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2323                                         pr_debug("Read_old block "
2324                                                 "%d for r-m-w\n", i);
2325                                         set_bit(R5_LOCKED, &dev->flags);
2326                                         set_bit(R5_Wantread, &dev->flags);
2327                                         s->locked++;
2328                                 } else {
2329                                         set_bit(STRIPE_DELAYED, &sh->state);
2330                                         set_bit(STRIPE_HANDLE, &sh->state);
2331                                 }
2332                         }
2333                 }
2334         if (rcw <= rmw && rcw > 0)
2335                 /* want reconstruct write, but need to get some data */
2336                 for (i = disks; i--; ) {
2337                         struct r5dev *dev = &sh->dev[i];
2338                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2339                             i != sh->pd_idx &&
2340                             !test_bit(R5_LOCKED, &dev->flags) &&
2341                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2342                             test_bit(R5_Wantcompute, &dev->flags)) &&
2343                             test_bit(R5_Insync, &dev->flags)) {
2344                                 if (
2345                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2346                                         pr_debug("Read_old block "
2347                                                 "%d for Reconstruct\n", i);
2348                                         set_bit(R5_LOCKED, &dev->flags);
2349                                         set_bit(R5_Wantread, &dev->flags);
2350                                         s->locked++;
2351                                 } else {
2352                                         set_bit(STRIPE_DELAYED, &sh->state);
2353                                         set_bit(STRIPE_HANDLE, &sh->state);
2354                                 }
2355                         }
2356                 }
2357         /* now if nothing is locked, and if we have enough data,
2358          * we can start a write request
2359          */
2360         /* since handle_stripe can be called at any time we need to handle the
2361          * case where a compute block operation has been submitted and then a
2362          * subsequent call wants to start a write request.  raid5_run_ops only
2363          * handles the case where compute block and postxor are requested
2364          * simultaneously.  If this is not the case then new writes need to be
2365          * held off until the compute completes.
2366          */
2367         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2368             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2369             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2370                 schedule_reconstruction5(sh, s, rcw == 0, 0);
2371 }
2372
2373 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2374                 struct stripe_head *sh, struct stripe_head_state *s,
2375                 struct r6_state *r6s, int disks)
2376 {
2377         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2378         int qd_idx = sh->qd_idx;
2379         for (i = disks; i--; ) {
2380                 struct r5dev *dev = &sh->dev[i];
2381                 /* Would I have to read this buffer for reconstruct_write */
2382                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2383                     && i != pd_idx && i != qd_idx
2384                     && (!test_bit(R5_LOCKED, &dev->flags)
2385                             ) &&
2386                     !test_bit(R5_UPTODATE, &dev->flags)) {
2387                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2388                         else {
2389                                 pr_debug("raid6: must_compute: "
2390                                         "disk %d flags=%#lx\n", i, dev->flags);
2391                                 must_compute++;
2392                         }
2393                 }
2394         }
2395         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2396                (unsigned long long)sh->sector, rcw, must_compute);
2397         set_bit(STRIPE_HANDLE, &sh->state);
2398
2399         if (rcw > 0)
2400                 /* want reconstruct write, but need to get some data */
2401                 for (i = disks; i--; ) {
2402                         struct r5dev *dev = &sh->dev[i];
2403                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2404                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2405                             && !test_bit(R5_LOCKED, &dev->flags) &&
2406                             !test_bit(R5_UPTODATE, &dev->flags) &&
2407                             test_bit(R5_Insync, &dev->flags)) {
2408                                 if (
2409                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2410                                         pr_debug("Read_old stripe %llu "
2411                                                 "block %d for Reconstruct\n",
2412                                              (unsigned long long)sh->sector, i);
2413                                         set_bit(R5_LOCKED, &dev->flags);
2414                                         set_bit(R5_Wantread, &dev->flags);
2415                                         s->locked++;
2416                                 } else {
2417                                         pr_debug("Request delayed stripe %llu "
2418                                                 "block %d for Reconstruct\n",
2419                                              (unsigned long long)sh->sector, i);
2420                                         set_bit(STRIPE_DELAYED, &sh->state);
2421                                         set_bit(STRIPE_HANDLE, &sh->state);
2422                                 }
2423                         }
2424                 }
2425         /* now if nothing is locked, and if we have enough data, we can start a
2426          * write request
2427          */
2428         if (s->locked == 0 && rcw == 0 &&
2429             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2430                 if (must_compute > 0) {
2431                         /* We have failed blocks and need to compute them */
2432                         switch (s->failed) {
2433                         case 0:
2434                                 BUG();
2435                         case 1:
2436                                 compute_block_1(sh, r6s->failed_num[0], 0);
2437                                 break;
2438                         case 2:
2439                                 compute_block_2(sh, r6s->failed_num[0],
2440                                                 r6s->failed_num[1]);
2441                                 break;
2442                         default: /* This request should have been failed? */
2443                                 BUG();
2444                         }
2445                 }
2446
2447                 pr_debug("Computing parity for stripe %llu\n",
2448                         (unsigned long long)sh->sector);
2449                 compute_parity6(sh, RECONSTRUCT_WRITE);
2450                 /* now every locked buffer is ready to be written */
2451                 for (i = disks; i--; )
2452                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2453                                 pr_debug("Writing stripe %llu block %d\n",
2454                                        (unsigned long long)sh->sector, i);
2455                                 s->locked++;
2456                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2457                         }
2458                 if (s->locked == disks)
2459                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2460                                 atomic_inc(&conf->pending_full_writes);
2461                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2462                 set_bit(STRIPE_INSYNC, &sh->state);
2463
2464                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2465                         atomic_dec(&conf->preread_active_stripes);
2466                         if (atomic_read(&conf->preread_active_stripes) <
2467                             IO_THRESHOLD)
2468                                 md_wakeup_thread(conf->mddev->thread);
2469                 }
2470         }
2471 }
2472
2473 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2474                                 struct stripe_head_state *s, int disks)
2475 {
2476         struct r5dev *dev = NULL;
2477
2478         set_bit(STRIPE_HANDLE, &sh->state);
2479
2480         switch (sh->check_state) {
2481         case check_state_idle:
2482                 /* start a new check operation if there are no failures */
2483                 if (s->failed == 0) {
2484                         BUG_ON(s->uptodate != disks);
2485                         sh->check_state = check_state_run;
2486                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2487                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2488                         s->uptodate--;
2489                         break;
2490                 }
2491                 dev = &sh->dev[s->failed_num];
2492                 /* fall through */
2493         case check_state_compute_result:
2494                 sh->check_state = check_state_idle;
2495                 if (!dev)
2496                         dev = &sh->dev[sh->pd_idx];
2497
2498                 /* check that a write has not made the stripe insync */
2499                 if (test_bit(STRIPE_INSYNC, &sh->state))
2500                         break;
2501
2502                 /* either failed parity check, or recovery is happening */
2503                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2504                 BUG_ON(s->uptodate != disks);
2505
2506                 set_bit(R5_LOCKED, &dev->flags);
2507                 s->locked++;
2508                 set_bit(R5_Wantwrite, &dev->flags);
2509
2510                 clear_bit(STRIPE_DEGRADED, &sh->state);
2511                 set_bit(STRIPE_INSYNC, &sh->state);
2512                 break;
2513         case check_state_run:
2514                 break; /* we will be called again upon completion */
2515         case check_state_check_result:
2516                 sh->check_state = check_state_idle;
2517
2518                 /* if a failure occurred during the check operation, leave
2519                  * STRIPE_INSYNC not set and let the stripe be handled again
2520                  */
2521                 if (s->failed)
2522                         break;
2523
2524                 /* handle a successful check operation, if parity is correct
2525                  * we are done.  Otherwise update the mismatch count and repair
2526                  * parity if !MD_RECOVERY_CHECK
2527                  */
2528                 if (sh->ops.zero_sum_result == 0)
2529                         /* parity is correct (on disc,
2530                          * not in buffer any more)
2531                          */
2532                         set_bit(STRIPE_INSYNC, &sh->state);
2533                 else {
2534                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2535                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2536                                 /* don't try to repair!! */
2537                                 set_bit(STRIPE_INSYNC, &sh->state);
2538                         else {
2539                                 sh->check_state = check_state_compute_run;
2540                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2541                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2542                                 set_bit(R5_Wantcompute,
2543                                         &sh->dev[sh->pd_idx].flags);
2544                                 sh->ops.target = sh->pd_idx;
2545                                 s->uptodate++;
2546                         }
2547                 }
2548                 break;
2549         case check_state_compute_run:
2550                 break;
2551         default:
2552                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2553                        __func__, sh->check_state,
2554                        (unsigned long long) sh->sector);
2555                 BUG();
2556         }
2557 }
2558
2559
2560 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2561                                 struct stripe_head_state *s,
2562                                 struct r6_state *r6s, struct page *tmp_page,
2563                                 int disks)
2564 {
2565         int update_p = 0, update_q = 0;
2566         struct r5dev *dev;
2567         int pd_idx = sh->pd_idx;
2568         int qd_idx = sh->qd_idx;
2569
2570         set_bit(STRIPE_HANDLE, &sh->state);
2571
2572         BUG_ON(s->failed > 2);
2573         BUG_ON(s->uptodate < disks);
2574         /* Want to check and possibly repair P and Q.
2575          * However there could be one 'failed' device, in which
2576          * case we can only check one of them, possibly using the
2577          * other to generate missing data
2578          */
2579
2580         /* If !tmp_page, we cannot do the calculations,
2581          * but as we have set STRIPE_HANDLE, we will soon be called
2582          * by stripe_handle with a tmp_page - just wait until then.
2583          */
2584         if (tmp_page) {
2585                 if (s->failed == r6s->q_failed) {
2586                         /* The only possible failed device holds 'Q', so it
2587                          * makes sense to check P (If anything else were failed,
2588                          * we would have used P to recreate it).
2589                          */
2590                         compute_block_1(sh, pd_idx, 1);
2591                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2592                                 compute_block_1(sh, pd_idx, 0);
2593                                 update_p = 1;
2594                         }
2595                 }
2596                 if (!r6s->q_failed && s->failed < 2) {
2597                         /* q is not failed, and we didn't use it to generate
2598                          * anything, so it makes sense to check it
2599                          */
2600                         memcpy(page_address(tmp_page),
2601                                page_address(sh->dev[qd_idx].page),
2602                                STRIPE_SIZE);
2603                         compute_parity6(sh, UPDATE_PARITY);
2604                         if (memcmp(page_address(tmp_page),
2605                                    page_address(sh->dev[qd_idx].page),
2606                                    STRIPE_SIZE) != 0) {
2607                                 clear_bit(STRIPE_INSYNC, &sh->state);
2608                                 update_q = 1;
2609                         }
2610                 }
2611                 if (update_p || update_q) {
2612                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2613                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2614                                 /* don't try to repair!! */
2615                                 update_p = update_q = 0;
2616                 }
2617
2618                 /* now write out any block on a failed drive,
2619                  * or P or Q if they need it
2620                  */
2621
2622                 if (s->failed == 2) {
2623                         dev = &sh->dev[r6s->failed_num[1]];
2624                         s->locked++;
2625                         set_bit(R5_LOCKED, &dev->flags);
2626                         set_bit(R5_Wantwrite, &dev->flags);
2627                 }
2628                 if (s->failed >= 1) {
2629                         dev = &sh->dev[r6s->failed_num[0]];
2630                         s->locked++;
2631                         set_bit(R5_LOCKED, &dev->flags);
2632                         set_bit(R5_Wantwrite, &dev->flags);
2633                 }
2634
2635                 if (update_p) {
2636                         dev = &sh->dev[pd_idx];
2637                         s->locked++;
2638                         set_bit(R5_LOCKED, &dev->flags);
2639                         set_bit(R5_Wantwrite, &dev->flags);
2640                 }
2641                 if (update_q) {
2642                         dev = &sh->dev[qd_idx];
2643                         s->locked++;
2644                         set_bit(R5_LOCKED, &dev->flags);
2645                         set_bit(R5_Wantwrite, &dev->flags);
2646                 }
2647                 clear_bit(STRIPE_DEGRADED, &sh->state);
2648
2649                 set_bit(STRIPE_INSYNC, &sh->state);
2650         }
2651 }
2652
2653 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2654                                 struct r6_state *r6s)
2655 {
2656         int i;
2657
2658         /* We have read all the blocks in this stripe and now we need to
2659          * copy some of them into a target stripe for expand.
2660          */
2661         struct dma_async_tx_descriptor *tx = NULL;
2662         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2663         for (i = 0; i < sh->disks; i++)
2664                 if (i != sh->pd_idx && i != sh->qd_idx) {
2665                         int dd_idx, j;
2666                         struct stripe_head *sh2;
2667
2668                         sector_t bn = compute_blocknr(sh, i, 1);
2669                         sector_t s = raid5_compute_sector(conf, bn, 0,
2670                                                           &dd_idx, NULL);
2671                         sh2 = get_active_stripe(conf, s, 0, 1);
2672                         if (sh2 == NULL)
2673                                 /* so far only the early blocks of this stripe
2674                                  * have been requested.  When later blocks
2675                                  * get requested, we will try again
2676                                  */
2677                                 continue;
2678                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2679                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2680                                 /* must have already done this block */
2681                                 release_stripe(sh2);
2682                                 continue;
2683                         }
2684
2685                         /* place all the copies on one channel */
2686                         tx = async_memcpy(sh2->dev[dd_idx].page,
2687                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2688                                           0, tx, NULL, NULL);
2689
2690                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2691                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2692                         for (j = 0; j < conf->raid_disks; j++)
2693                                 if (j != sh2->pd_idx &&
2694                                     (!r6s || j != sh2->qd_idx) &&
2695                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2696                                         break;
2697                         if (j == conf->raid_disks) {
2698                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2699                                 set_bit(STRIPE_HANDLE, &sh2->state);
2700                         }
2701                         release_stripe(sh2);
2702
2703                 }
2704         /* done submitting copies, wait for them to complete */
2705         if (tx) {
2706                 async_tx_ack(tx);
2707                 dma_wait_for_async_tx(tx);
2708         }
2709 }
2710
2711
2712 /*
2713  * handle_stripe - do things to a stripe.
2714  *
2715  * We lock the stripe and then examine the state of various bits
2716  * to see what needs to be done.
2717  * Possible results:
2718  *    return some read request which now have data
2719  *    return some write requests which are safely on disc
2720  *    schedule a read on some buffers
2721  *    schedule a write of some buffers
2722  *    return confirmation of parity correctness
2723  *
2724  * buffers are taken off read_list or write_list, and bh_cache buffers
2725  * get BH_Lock set before the stripe lock is released.
2726  *
2727  */
2728
2729 static bool handle_stripe5(struct stripe_head *sh)
2730 {
2731         raid5_conf_t *conf = sh->raid_conf;
2732         int disks = sh->disks, i;
2733         struct bio *return_bi = NULL;
2734         struct stripe_head_state s;
2735         struct r5dev *dev;
2736         mdk_rdev_t *blocked_rdev = NULL;
2737         int prexor;
2738
2739         memset(&s, 0, sizeof(s));
2740         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2741                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2742                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2743                  sh->reconstruct_state);
2744
2745         spin_lock(&sh->lock);
2746         clear_bit(STRIPE_HANDLE, &sh->state);
2747         clear_bit(STRIPE_DELAYED, &sh->state);
2748
2749         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2750         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2751         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2752
2753         /* Now to look around and see what can be done */
2754         rcu_read_lock();
2755         for (i=disks; i--; ) {
2756                 mdk_rdev_t *rdev;
2757                 struct r5dev *dev = &sh->dev[i];
2758                 clear_bit(R5_Insync, &dev->flags);
2759
2760                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2761                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2762                         dev->towrite, dev->written);
2763
2764                 /* maybe we can request a biofill operation
2765                  *
2766                  * new wantfill requests are only permitted while
2767                  * ops_complete_biofill is guaranteed to be inactive
2768                  */
2769                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2770                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2771                         set_bit(R5_Wantfill, &dev->flags);
2772
2773                 /* now count some things */
2774                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2775                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2776                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2777
2778                 if (test_bit(R5_Wantfill, &dev->flags))
2779                         s.to_fill++;
2780                 else if (dev->toread)
2781                         s.to_read++;
2782                 if (dev->towrite) {
2783                         s.to_write++;
2784                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2785                                 s.non_overwrite++;
2786                 }
2787                 if (dev->written)
2788                         s.written++;
2789                 rdev = rcu_dereference(conf->disks[i].rdev);
2790                 if (blocked_rdev == NULL &&
2791                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2792                         blocked_rdev = rdev;
2793                         atomic_inc(&rdev->nr_pending);
2794                 }
2795                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2796                         /* The ReadError flag will just be confusing now */
2797                         clear_bit(R5_ReadError, &dev->flags);
2798                         clear_bit(R5_ReWrite, &dev->flags);
2799                 }
2800                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2801                     || test_bit(R5_ReadError, &dev->flags)) {
2802                         s.failed++;
2803                         s.failed_num = i;
2804                 } else
2805                         set_bit(R5_Insync, &dev->flags);
2806         }
2807         rcu_read_unlock();
2808
2809         if (unlikely(blocked_rdev)) {
2810                 if (s.syncing || s.expanding || s.expanded ||
2811                     s.to_write || s.written) {
2812                         set_bit(STRIPE_HANDLE, &sh->state);
2813                         goto unlock;
2814                 }
2815                 /* There is nothing for the blocked_rdev to block */
2816                 rdev_dec_pending(blocked_rdev, conf->mddev);
2817                 blocked_rdev = NULL;
2818         }
2819
2820         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2821                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2822                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2823         }
2824
2825         pr_debug("locked=%d uptodate=%d to_read=%d"
2826                 " to_write=%d failed=%d failed_num=%d\n",
2827                 s.locked, s.uptodate, s.to_read, s.to_write,
2828                 s.failed, s.failed_num);
2829         /* check if the array has lost two devices and, if so, some requests might
2830          * need to be failed
2831          */
2832         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2833                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2834         if (s.failed > 1 && s.syncing) {
2835                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2836                 clear_bit(STRIPE_SYNCING, &sh->state);
2837                 s.syncing = 0;
2838         }
2839
2840         /* might be able to return some write requests if the parity block
2841          * is safe, or on a failed drive
2842          */
2843         dev = &sh->dev[sh->pd_idx];
2844         if ( s.written &&
2845              ((test_bit(R5_Insync, &dev->flags) &&
2846                !test_bit(R5_LOCKED, &dev->flags) &&
2847                test_bit(R5_UPTODATE, &dev->flags)) ||
2848                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2849                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2850
2851         /* Now we might consider reading some blocks, either to check/generate
2852          * parity, or to satisfy requests
2853          * or to load a block that is being partially written.
2854          */
2855         if (s.to_read || s.non_overwrite ||
2856             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2857                 handle_stripe_fill5(sh, &s, disks);
2858
2859         /* Now we check to see if any write operations have recently
2860          * completed
2861          */
2862         prexor = 0;
2863         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2864                 prexor = 1;
2865         if (sh->reconstruct_state == reconstruct_state_drain_result ||
2866             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2867                 sh->reconstruct_state = reconstruct_state_idle;
2868
2869                 /* All the 'written' buffers and the parity block are ready to
2870                  * be written back to disk
2871                  */
2872                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2873                 for (i = disks; i--; ) {
2874                         dev = &sh->dev[i];
2875                         if (test_bit(R5_LOCKED, &dev->flags) &&
2876                                 (i == sh->pd_idx || dev->written)) {
2877                                 pr_debug("Writing block %d\n", i);
2878                                 set_bit(R5_Wantwrite, &dev->flags);
2879                                 if (prexor)
2880                                         continue;
2881                                 if (!test_bit(R5_Insync, &dev->flags) ||
2882                                     (i == sh->pd_idx && s.failed == 0))
2883                                         set_bit(STRIPE_INSYNC, &sh->state);
2884                         }
2885                 }
2886                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2887                         atomic_dec(&conf->preread_active_stripes);
2888                         if (atomic_read(&conf->preread_active_stripes) <
2889                                 IO_THRESHOLD)
2890                                 md_wakeup_thread(conf->mddev->thread);
2891                 }
2892         }
2893
2894         /* Now to consider new write requests and what else, if anything
2895          * should be read.  We do not handle new writes when:
2896          * 1/ A 'write' operation (copy+xor) is already in flight.
2897          * 2/ A 'check' operation is in flight, as it may clobber the parity
2898          *    block.
2899          */
2900         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2901                 handle_stripe_dirtying5(conf, sh, &s, disks);
2902
2903         /* maybe we need to check and possibly fix the parity for this stripe
2904          * Any reads will already have been scheduled, so we just see if enough
2905          * data is available.  The parity check is held off while parity
2906          * dependent operations are in flight.
2907          */
2908         if (sh->check_state ||
2909             (s.syncing && s.locked == 0 &&
2910              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2911              !test_bit(STRIPE_INSYNC, &sh->state)))
2912                 handle_parity_checks5(conf, sh, &s, disks);
2913
2914         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2915                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2916                 clear_bit(STRIPE_SYNCING, &sh->state);
2917         }
2918
2919         /* If the failed drive is just a ReadError, then we might need to progress
2920          * the repair/check process
2921          */
2922         if (s.failed == 1 && !conf->mddev->ro &&
2923             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2924             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2925             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2926                 ) {
2927                 dev = &sh->dev[s.failed_num];
2928                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2929                         set_bit(R5_Wantwrite, &dev->flags);
2930                         set_bit(R5_ReWrite, &dev->flags);
2931                         set_bit(R5_LOCKED, &dev->flags);
2932                         s.locked++;
2933                 } else {
2934                         /* let's read it back */
2935                         set_bit(R5_Wantread, &dev->flags);
2936                         set_bit(R5_LOCKED, &dev->flags);
2937                         s.locked++;
2938                 }
2939         }
2940
2941         /* Finish reconstruct operations initiated by the expansion process */
2942         if (sh->reconstruct_state == reconstruct_state_result) {
2943                 struct stripe_head *sh2
2944                         = get_active_stripe(conf, sh->sector, 1, 1);
2945                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
2946                         /* sh cannot be written until sh2 has been read.
2947                          * so arrange for sh to be delayed a little
2948                          */
2949                         set_bit(STRIPE_DELAYED, &sh->state);
2950                         set_bit(STRIPE_HANDLE, &sh->state);
2951                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
2952                                               &sh2->state))
2953                                 atomic_inc(&conf->preread_active_stripes);
2954                         release_stripe(sh2);
2955                         goto unlock;
2956                 }
2957                 if (sh2)
2958                         release_stripe(sh2);
2959
2960                 sh->reconstruct_state = reconstruct_state_idle;
2961                 clear_bit(STRIPE_EXPANDING, &sh->state);
2962                 for (i = conf->raid_disks; i--; ) {
2963                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2964                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2965                         s.locked++;
2966                 }
2967         }
2968
2969         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2970             !sh->reconstruct_state) {
2971                 /* Need to write out all blocks after computing parity */
2972                 sh->disks = conf->raid_disks;
2973                 stripe_set_idx(sh->sector, conf, 0, sh);
2974                 schedule_reconstruction5(sh, &s, 1, 1);
2975         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2976                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2977                 atomic_dec(&conf->reshape_stripes);
2978                 wake_up(&conf->wait_for_overlap);
2979                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2980         }
2981
2982         if (s.expanding && s.locked == 0 &&
2983             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2984                 handle_stripe_expansion(conf, sh, NULL);
2985
2986  unlock:
2987         spin_unlock(&sh->lock);
2988
2989         /* wait for this device to become unblocked */
2990         if (unlikely(blocked_rdev))
2991                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2992
2993         if (s.ops_request)
2994                 raid5_run_ops(sh, s.ops_request);
2995
2996         ops_run_io(sh, &s);
2997
2998         return_io(return_bi);
2999
3000         return blocked_rdev == NULL;
3001 }
3002
3003 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
3004 {
3005         raid5_conf_t *conf = sh->raid_conf;
3006         int disks = sh->disks;
3007         struct bio *return_bi = NULL;
3008         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3009         struct stripe_head_state s;
3010         struct r6_state r6s;
3011         struct r5dev *dev, *pdev, *qdev;
3012         mdk_rdev_t *blocked_rdev = NULL;
3013
3014         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3015                 "pd_idx=%d, qd_idx=%d\n",
3016                (unsigned long long)sh->sector, sh->state,
3017                atomic_read(&sh->count), pd_idx, qd_idx);
3018         memset(&s, 0, sizeof(s));
3019
3020         spin_lock(&sh->lock);
3021         clear_bit(STRIPE_HANDLE, &sh->state);
3022         clear_bit(STRIPE_DELAYED, &sh->state);
3023
3024         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3025         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3026         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3027         /* Now to look around and see what can be done */
3028
3029         rcu_read_lock();
3030         for (i=disks; i--; ) {
3031                 mdk_rdev_t *rdev;
3032                 dev = &sh->dev[i];
3033                 clear_bit(R5_Insync, &dev->flags);
3034
3035                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3036                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3037                 /* maybe we can reply to a read */
3038                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3039                         struct bio *rbi, *rbi2;
3040                         pr_debug("Return read for disc %d\n", i);
3041                         spin_lock_irq(&conf->device_lock);
3042                         rbi = dev->toread;
3043                         dev->toread = NULL;
3044                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
3045                                 wake_up(&conf->wait_for_overlap);
3046                         spin_unlock_irq(&conf->device_lock);
3047                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3048                                 copy_data(0, rbi, dev->page, dev->sector);
3049                                 rbi2 = r5_next_bio(rbi, dev->sector);
3050                                 spin_lock_irq(&conf->device_lock);
3051                                 if (!raid5_dec_bi_phys_segments(rbi)) {
3052                                         rbi->bi_next = return_bi;
3053                                         return_bi = rbi;
3054                                 }
3055                                 spin_unlock_irq(&conf->device_lock);
3056                                 rbi = rbi2;
3057                         }
3058                 }
3059
3060                 /* now count some things */
3061                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3062                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3063
3064
3065                 if (dev->toread)
3066                         s.to_read++;
3067                 if (dev->towrite) {
3068                         s.to_write++;
3069                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3070                                 s.non_overwrite++;
3071                 }
3072                 if (dev->written)
3073                         s.written++;
3074                 rdev = rcu_dereference(conf->disks[i].rdev);
3075                 if (blocked_rdev == NULL &&
3076                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3077                         blocked_rdev = rdev;
3078                         atomic_inc(&rdev->nr_pending);
3079                 }
3080                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3081                         /* The ReadError flag will just be confusing now */
3082                         clear_bit(R5_ReadError, &dev->flags);
3083                         clear_bit(R5_ReWrite, &dev->flags);
3084                 }
3085                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3086                     || test_bit(R5_ReadError, &dev->flags)) {
3087                         if (s.failed < 2)
3088                                 r6s.failed_num[s.failed] = i;
3089                         s.failed++;
3090                 } else
3091                         set_bit(R5_Insync, &dev->flags);
3092         }
3093         rcu_read_unlock();
3094
3095         if (unlikely(blocked_rdev)) {
3096                 if (s.syncing || s.expanding || s.expanded ||
3097                     s.to_write || s.written) {
3098                         set_bit(STRIPE_HANDLE, &sh->state);
3099                         goto unlock;
3100                 }
3101                 /* There is nothing for the blocked_rdev to block */
3102                 rdev_dec_pending(blocked_rdev, conf->mddev);
3103                 blocked_rdev = NULL;
3104         }
3105
3106         pr_debug("locked=%d uptodate=%d to_read=%d"
3107                " to_write=%d failed=%d failed_num=%d,%d\n",
3108                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3109                r6s.failed_num[0], r6s.failed_num[1]);
3110         /* check if the array has lost >2 devices and, if so, some requests
3111          * might need to be failed
3112          */
3113         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3114                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3115         if (s.failed > 2 && s.syncing) {
3116                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3117                 clear_bit(STRIPE_SYNCING, &sh->state);
3118                 s.syncing = 0;
3119         }
3120
3121         /*
3122          * might be able to return some write requests if the parity blocks
3123          * are safe, or on a failed drive
3124          */
3125         pdev = &sh->dev[pd_idx];
3126         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3127                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3128         qdev = &sh->dev[qd_idx];
3129         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3130                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3131
3132         if ( s.written &&
3133              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3134                              && !test_bit(R5_LOCKED, &pdev->flags)
3135                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3136              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3137                              && !test_bit(R5_LOCKED, &qdev->flags)
3138                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3139                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3140
3141         /* Now we might consider reading some blocks, either to check/generate
3142          * parity, or to satisfy requests
3143          * or to load a block that is being partially written.
3144          */
3145         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3146             (s.syncing && (s.uptodate < disks)) || s.expanding)
3147                 handle_stripe_fill6(sh, &s, &r6s, disks);
3148
3149         /* now to consider writing and what else, if anything should be read */
3150         if (s.to_write)
3151                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3152
3153         /* maybe we need to check and possibly fix the parity for this stripe
3154          * Any reads will already have been scheduled, so we just see if enough
3155          * data is available
3156          */
3157         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3158                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3159
3160         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3161                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3162                 clear_bit(STRIPE_SYNCING, &sh->state);
3163         }
3164
3165         /* If the failed drives are just a ReadError, then we might need
3166          * to progress the repair/check process
3167          */
3168         if (s.failed <= 2 && !conf->mddev->ro)
3169                 for (i = 0; i < s.failed; i++) {
3170                         dev = &sh->dev[r6s.failed_num[i]];
3171                         if (test_bit(R5_ReadError, &dev->flags)
3172                             && !test_bit(R5_LOCKED, &dev->flags)
3173                             && test_bit(R5_UPTODATE, &dev->flags)
3174                                 ) {
3175                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3176                                         set_bit(R5_Wantwrite, &dev->flags);
3177                                         set_bit(R5_ReWrite, &dev->flags);
3178                                         set_bit(R5_LOCKED, &dev->flags);
3179                                 } else {
3180                                         /* let's read it back */
3181                                         set_bit(R5_Wantread, &dev->flags);
3182                                         set_bit(R5_LOCKED, &dev->flags);
3183                                 }
3184                         }
3185                 }
3186
3187         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3188                 struct stripe_head *sh2
3189                         = get_active_stripe(conf, sh->sector, 1, 1);
3190                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3191                         /* sh cannot be written until sh2 has been read.
3192                          * so arrange for sh to be delayed a little
3193                          */
3194                         set_bit(STRIPE_DELAYED, &sh->state);
3195                         set_bit(STRIPE_HANDLE, &sh->state);
3196                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3197                                               &sh2->state))
3198                                 atomic_inc(&conf->preread_active_stripes);
3199                         release_stripe(sh2);
3200                         goto unlock;
3201                 }
3202                 if (sh2)
3203                         release_stripe(sh2);
3204
3205                 /* Need to write out all blocks after computing P&Q */
3206                 sh->disks = conf->raid_disks;
3207                 stripe_set_idx(sh->sector, conf, 0, sh);
3208                 compute_parity6(sh, RECONSTRUCT_WRITE);
3209                 for (i = conf->raid_disks ; i-- ;  ) {
3210                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3211                         s.locked++;
3212                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3213                 }
3214                 clear_bit(STRIPE_EXPANDING, &sh->state);
3215         } else if (s.expanded) {
3216                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3217                 atomic_dec(&conf->reshape_stripes);
3218                 wake_up(&conf->wait_for_overlap);
3219                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3220         }
3221
3222         if (s.expanding && s.locked == 0 &&
3223             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3224                 handle_stripe_expansion(conf, sh, &r6s);
3225
3226  unlock:
3227         spin_unlock(&sh->lock);
3228
3229         /* wait for this device to become unblocked */
3230         if (unlikely(blocked_rdev))
3231                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3232
3233         ops_run_io(sh, &s);
3234
3235         return_io(return_bi);
3236
3237         return blocked_rdev == NULL;
3238 }
3239
3240 /* returns true if the stripe was handled */
3241 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3242 {
3243         if (sh->raid_conf->level == 6)
3244                 return handle_stripe6(sh, tmp_page);
3245         else
3246                 return handle_stripe5(sh);
3247 }
3248
3249
3250
3251 static void raid5_activate_delayed(raid5_conf_t *conf)
3252 {
3253         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3254                 while (!list_empty(&conf->delayed_list)) {
3255                         struct list_head *l = conf->delayed_list.next;
3256                         struct stripe_head *sh;
3257                         sh = list_entry(l, struct stripe_head, lru);
3258                         list_del_init(l);
3259                         clear_bit(STRIPE_DELAYED, &sh->state);
3260                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3261                                 atomic_inc(&conf->preread_active_stripes);
3262                         list_add_tail(&sh->lru, &conf->hold_list);
3263                 }
3264         } else
3265                 blk_plug_device(conf->mddev->queue);
3266 }
3267
3268 static void activate_bit_delay(raid5_conf_t *conf)
3269 {
3270         /* device_lock is held */
3271         struct list_head head;
3272         list_add(&head, &conf->bitmap_list);
3273         list_del_init(&conf->bitmap_list);
3274         while (!list_empty(&head)) {
3275                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3276                 list_del_init(&sh->lru);
3277                 atomic_inc(&sh->count);
3278                 __release_stripe(conf, sh);
3279         }
3280 }
3281
3282 static void unplug_slaves(mddev_t *mddev)
3283 {
3284         raid5_conf_t *conf = mddev_to_conf(mddev);
3285         int i;
3286
3287         rcu_read_lock();
3288         for (i=0; i<mddev->raid_disks; i++) {
3289                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3290                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3291                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3292
3293                         atomic_inc(&rdev->nr_pending);
3294                         rcu_read_unlock();
3295
3296                         blk_unplug(r_queue);
3297
3298                         rdev_dec_pending(rdev, mddev);
3299                         rcu_read_lock();
3300                 }
3301         }
3302         rcu_read_unlock();
3303 }
3304
3305 static void raid5_unplug_device(struct request_queue *q)
3306 {
3307         mddev_t *mddev = q->queuedata;
3308         raid5_conf_t *conf = mddev_to_conf(mddev);
3309         unsigned long flags;
3310
3311         spin_lock_irqsave(&conf->device_lock, flags);
3312
3313         if (blk_remove_plug(q)) {
3314                 conf->seq_flush++;
3315                 raid5_activate_delayed(conf);
3316         }
3317         md_wakeup_thread(mddev->thread);
3318
3319         spin_unlock_irqrestore(&conf->device_lock, flags);
3320
3321         unplug_slaves(mddev);
3322 }
3323
3324 static int raid5_congested(void *data, int bits)
3325 {
3326         mddev_t *mddev = data;
3327         raid5_conf_t *conf = mddev_to_conf(mddev);
3328
3329         /* No difference between reads and writes.  Just check
3330          * how busy the stripe_cache is
3331          */
3332         if (conf->inactive_blocked)
3333                 return 1;
3334         if (conf->quiesce)
3335                 return 1;
3336         if (list_empty_careful(&conf->inactive_list))
3337                 return 1;
3338
3339         return 0;
3340 }
3341
3342 /* We want read requests to align with chunks where possible,
3343  * but write requests don't need to.
3344  */
3345 static int raid5_mergeable_bvec(struct request_queue *q,
3346                                 struct bvec_merge_data *bvm,
3347                                 struct bio_vec *biovec)
3348 {
3349         mddev_t *mddev = q->queuedata;
3350         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3351         int max;
3352         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3353         unsigned int bio_sectors = bvm->bi_size >> 9;
3354
3355         if ((bvm->bi_rw & 1) == WRITE)
3356                 return biovec->bv_len; /* always allow writes to be mergeable */
3357
3358         if (mddev->new_chunk < mddev->chunk_size)
3359                 chunk_sectors = mddev->new_chunk >> 9;
3360         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3361         if (max < 0) max = 0;
3362         if (max <= biovec->bv_len && bio_sectors == 0)
3363                 return biovec->bv_len;
3364         else
3365                 return max;
3366 }
3367
3368
3369 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3370 {
3371         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3372         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3373         unsigned int bio_sectors = bio->bi_size >> 9;
3374
3375         if (mddev->new_chunk < mddev->chunk_size)
3376                 chunk_sectors = mddev->new_chunk >> 9;
3377         return  chunk_sectors >=
3378                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3379 }
3380
3381 /*
3382  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3383  *  later sampled by raid5d.
3384  */
3385 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3386 {
3387         unsigned long flags;
3388
3389         spin_lock_irqsave(&conf->device_lock, flags);
3390
3391         bi->bi_next = conf->retry_read_aligned_list;
3392         conf->retry_read_aligned_list = bi;
3393
3394         spin_unlock_irqrestore(&conf->device_lock, flags);
3395         md_wakeup_thread(conf->mddev->thread);
3396 }
3397
3398
3399 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3400 {
3401         struct bio *bi;
3402
3403         bi = conf->retry_read_aligned;
3404         if (bi) {
3405                 conf->retry_read_aligned = NULL;
3406                 return bi;
3407         }
3408         bi = conf->retry_read_aligned_list;
3409         if(bi) {
3410                 conf->retry_read_aligned_list = bi->bi_next;
3411                 bi->bi_next = NULL;
3412                 /*
3413                  * this sets the active strip count to 1 and the processed
3414                  * strip count to zero (upper 8 bits)
3415                  */
3416                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3417         }
3418
3419         return bi;
3420 }
3421
3422
3423 /*
3424  *  The "raid5_align_endio" should check if the read succeeded and if it
3425  *  did, call bio_endio on the original bio (having bio_put the new bio
3426  *  first).
3427  *  If the read failed..
3428  */
3429 static void raid5_align_endio(struct bio *bi, int error)
3430 {
3431         struct bio* raid_bi  = bi->bi_private;
3432         mddev_t *mddev;
3433         raid5_conf_t *conf;
3434         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3435         mdk_rdev_t *rdev;
3436
3437         bio_put(bi);
3438
3439         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3440         conf = mddev_to_conf(mddev);
3441         rdev = (void*)raid_bi->bi_next;
3442         raid_bi->bi_next = NULL;
3443
3444         rdev_dec_pending(rdev, conf->mddev);
3445
3446         if (!error && uptodate) {
3447                 bio_endio(raid_bi, 0);
3448                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3449                         wake_up(&conf->wait_for_stripe);
3450                 return;
3451         }
3452
3453
3454         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3455
3456         add_bio_to_retry(raid_bi, conf);
3457 }
3458
3459 static int bio_fits_rdev(struct bio *bi)
3460 {
3461         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3462
3463         if ((bi->bi_size>>9) > q->max_sectors)
3464                 return 0;
3465         blk_recount_segments(q, bi);
3466         if (bi->bi_phys_segments > q->max_phys_segments)
3467                 return 0;
3468
3469         if (q->merge_bvec_fn)
3470                 /* it's too hard to apply the merge_bvec_fn at this stage,
3471                  * just just give up
3472                  */
3473                 return 0;
3474
3475         return 1;
3476 }
3477
3478
3479 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3480 {
3481         mddev_t *mddev = q->queuedata;
3482         raid5_conf_t *conf = mddev_to_conf(mddev);
3483         unsigned int dd_idx;
3484         struct bio* align_bi;
3485         mdk_rdev_t *rdev;
3486
3487         if (!in_chunk_boundary(mddev, raid_bio)) {
3488                 pr_debug("chunk_aligned_read : non aligned\n");
3489                 return 0;
3490         }
3491         /*
3492          * use bio_clone to make a copy of the bio
3493          */
3494         align_bi = bio_clone(raid_bio, GFP_NOIO);
3495         if (!align_bi)
3496                 return 0;
3497         /*
3498          *   set bi_end_io to a new function, and set bi_private to the
3499          *     original bio.
3500          */
3501         align_bi->bi_end_io  = raid5_align_endio;
3502         align_bi->bi_private = raid_bio;
3503         /*
3504          *      compute position
3505          */
3506         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3507                                                     0,
3508                                                     &dd_idx, NULL);
3509
3510         rcu_read_lock();
3511         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3512         if (rdev && test_bit(In_sync, &rdev->flags)) {
3513                 atomic_inc(&rdev->nr_pending);
3514                 rcu_read_unlock();
3515                 raid_bio->bi_next = (void*)rdev;
3516                 align_bi->bi_bdev =  rdev->bdev;
3517                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3518                 align_bi->bi_sector += rdev->data_offset;
3519
3520                 if (!bio_fits_rdev(align_bi)) {
3521                         /* too big in some way */
3522                         bio_put(align_bi);
3523                         rdev_dec_pending(rdev, mddev);
3524                         return 0;
3525                 }
3526
3527                 spin_lock_irq(&conf->device_lock);
3528                 wait_event_lock_irq(conf->wait_for_stripe,
3529                                     conf->quiesce == 0,
3530                                     conf->device_lock, /* nothing */);
3531                 atomic_inc(&conf->active_aligned_reads);
3532                 spin_unlock_irq(&conf->device_lock);
3533
3534                 generic_make_request(align_bi);
3535                 return 1;
3536         } else {
3537                 rcu_read_unlock();
3538                 bio_put(align_bi);
3539                 return 0;
3540         }
3541 }
3542
3543 /* __get_priority_stripe - get the next stripe to process
3544  *
3545  * Full stripe writes are allowed to pass preread active stripes up until
3546  * the bypass_threshold is exceeded.  In general the bypass_count
3547  * increments when the handle_list is handled before the hold_list; however, it
3548  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3549  * stripe with in flight i/o.  The bypass_count will be reset when the
3550  * head of the hold_list has changed, i.e. the head was promoted to the
3551  * handle_list.
3552  */
3553 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3554 {
3555         struct stripe_head *sh;
3556
3557         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3558                   __func__,
3559                   list_empty(&conf->handle_list) ? "empty" : "busy",
3560                   list_empty(&conf->hold_list) ? "empty" : "busy",
3561                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3562
3563         if (!list_empty(&conf->handle_list)) {
3564                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3565
3566                 if (list_empty(&conf->hold_list))
3567                         conf->bypass_count = 0;
3568                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3569                         if (conf->hold_list.next == conf->last_hold)
3570                                 conf->bypass_count++;
3571                         else {
3572                                 conf->last_hold = conf->hold_list.next;
3573                                 conf->bypass_count -= conf->bypass_threshold;
3574                                 if (conf->bypass_count < 0)
3575                                         conf->bypass_count = 0;
3576                         }
3577                 }
3578         } else if (!list_empty(&conf->hold_list) &&
3579                    ((conf->bypass_threshold &&
3580                      conf->bypass_count > conf->bypass_threshold) ||
3581                     atomic_read(&conf->pending_full_writes) == 0)) {
3582                 sh = list_entry(conf->hold_list.next,
3583                                 typeof(*sh), lru);
3584                 conf->bypass_count -= conf->bypass_threshold;
3585                 if (conf->bypass_count < 0)
3586                         conf->bypass_count = 0;
3587         } else
3588                 return NULL;
3589
3590         list_del_init(&sh->lru);
3591         atomic_inc(&sh->count);
3592         BUG_ON(atomic_read(&sh->count) != 1);
3593         return sh;
3594 }
3595
3596 static int make_request(struct request_queue *q, struct bio * bi)
3597 {
3598         mddev_t *mddev = q->queuedata;
3599         raid5_conf_t *conf = mddev_to_conf(mddev);
3600         int dd_idx;
3601         sector_t new_sector;
3602         sector_t logical_sector, last_sector;
3603         struct stripe_head *sh;
3604         const int rw = bio_data_dir(bi);
3605         int cpu, remaining;
3606
3607         if (unlikely(bio_barrier(bi))) {
3608                 bio_endio(bi, -EOPNOTSUPP);
3609                 return 0;
3610         }
3611
3612         md_write_start(mddev, bi);
3613
3614         cpu = part_stat_lock();
3615         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3616         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3617                       bio_sectors(bi));
3618         part_stat_unlock();
3619
3620         if (rw == READ &&
3621              mddev->reshape_position == MaxSector &&
3622              chunk_aligned_read(q,bi))
3623                 return 0;
3624
3625         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3626         last_sector = bi->bi_sector + (bi->bi_size>>9);
3627         bi->bi_next = NULL;
3628         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3629
3630         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3631                 DEFINE_WAIT(w);
3632                 int disks, data_disks;
3633                 int previous;
3634
3635         retry:
3636                 previous = 0;
3637                 disks = conf->raid_disks;
3638                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3639                 if (unlikely(conf->reshape_progress != MaxSector)) {
3640                         /* spinlock is needed as reshape_progress may be
3641                          * 64bit on a 32bit platform, and so it might be
3642                          * possible to see a half-updated value
3643                          * Ofcourse reshape_progress could change after
3644                          * the lock is dropped, so once we get a reference
3645                          * to the stripe that we think it is, we will have
3646                          * to check again.
3647                          */
3648                         spin_lock_irq(&conf->device_lock);
3649                         if (mddev->delta_disks < 0
3650                             ? logical_sector < conf->reshape_progress
3651                             : logical_sector >= conf->reshape_progress) {
3652                                 disks = conf->previous_raid_disks;
3653                                 previous = 1;
3654                         } else {
3655                                 if (mddev->delta_disks < 0
3656                                     ? logical_sector < conf->reshape_safe
3657                                     : logical_sector >= conf->reshape_safe) {
3658                                         spin_unlock_irq(&conf->device_lock);
3659                                         schedule();
3660                                         goto retry;
3661                                 }
3662                         }
3663                         spin_unlock_irq(&conf->device_lock);
3664                 }
3665                 data_disks = disks - conf->max_degraded;
3666
3667                 new_sector = raid5_compute_sector(conf, logical_sector,
3668                                                   previous,
3669                                                   &dd_idx, NULL);
3670                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3671                         (unsigned long long)new_sector, 
3672                         (unsigned long long)logical_sector);
3673
3674                 sh = get_active_stripe(conf, new_sector, previous,
3675                                        (bi->bi_rw&RWA_MASK));
3676                 if (sh) {
3677                         if (unlikely(previous)) {
3678                                 /* expansion might have moved on while waiting for a
3679                                  * stripe, so we must do the range check again.
3680                                  * Expansion could still move past after this
3681                                  * test, but as we are holding a reference to
3682                                  * 'sh', we know that if that happens,
3683                                  *  STRIPE_EXPANDING will get set and the expansion
3684                                  * won't proceed until we finish with the stripe.
3685                                  */
3686                                 int must_retry = 0;
3687                                 spin_lock_irq(&conf->device_lock);
3688                                 if (mddev->delta_disks < 0
3689                                     ? logical_sector >= conf->reshape_progress
3690                                     : logical_sector < conf->reshape_progress)
3691                                         /* mismatch, need to try again */
3692                                         must_retry = 1;
3693                                 spin_unlock_irq(&conf->device_lock);
3694                                 if (must_retry) {
3695                                         release_stripe(sh);
3696                                         goto retry;
3697                                 }
3698                         }
3699                         /* FIXME what if we get a false positive because these
3700                          * are being updated.
3701                          */
3702                         if (logical_sector >= mddev->suspend_lo &&
3703                             logical_sector < mddev->suspend_hi) {
3704                                 release_stripe(sh);
3705                                 schedule();
3706                                 goto retry;
3707                         }
3708
3709                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3710                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3711                                 /* Stripe is busy expanding or
3712                                  * add failed due to overlap.  Flush everything
3713                                  * and wait a while
3714                                  */
3715                                 raid5_unplug_device(mddev->queue);
3716                                 release_stripe(sh);
3717                                 schedule();
3718                                 goto retry;
3719                         }
3720                         finish_wait(&conf->wait_for_overlap, &w);
3721                         set_bit(STRIPE_HANDLE, &sh->state);
3722                         clear_bit(STRIPE_DELAYED, &sh->state);
3723                         release_stripe(sh);
3724                 } else {
3725                         /* cannot get stripe for read-ahead, just give-up */
3726                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3727                         finish_wait(&conf->wait_for_overlap, &w);
3728                         break;
3729                 }
3730                         
3731         }
3732         spin_lock_irq(&conf->device_lock);
3733         remaining = raid5_dec_bi_phys_segments(bi);
3734         spin_unlock_irq(&conf->device_lock);
3735         if (remaining == 0) {
3736
3737                 if ( rw == WRITE )
3738                         md_write_end(mddev);
3739
3740                 bio_endio(bi, 0);
3741         }
3742         return 0;
3743 }
3744
3745 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3746
3747 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3748 {
3749         /* reshaping is quite different to recovery/resync so it is
3750          * handled quite separately ... here.
3751          *
3752          * On each call to sync_request, we gather one chunk worth of
3753          * destination stripes and flag them as expanding.
3754          * Then we find all the source stripes and request reads.
3755          * As the reads complete, handle_stripe will copy the data
3756          * into the destination stripe and release that stripe.
3757          */
3758         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3759         struct stripe_head *sh;
3760         sector_t first_sector, last_sector;
3761         int raid_disks = conf->previous_raid_disks;
3762         int data_disks = raid_disks - conf->max_degraded;
3763         int new_data_disks = conf->raid_disks - conf->max_degraded;
3764         int i;
3765         int dd_idx;
3766         sector_t writepos, readpos, safepos;
3767         sector_t stripe_addr;
3768         int reshape_sectors;
3769         struct list_head stripes;
3770
3771         if (sector_nr == 0) {
3772                 /* If restarting in the middle, skip the initial sectors */
3773                 if (mddev->delta_disks < 0 &&
3774                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3775                         sector_nr = raid5_size(mddev, 0, 0)
3776                                 - conf->reshape_progress;
3777                 } else if (mddev->delta_disks > 0 &&
3778                            conf->reshape_progress > 0)
3779                         sector_nr = conf->reshape_progress;
3780                 sector_div(sector_nr, new_data_disks);
3781                 if (sector_nr) {
3782                         *skipped = 1;
3783                         return sector_nr;
3784                 }
3785         }
3786
3787         /* We need to process a full chunk at a time.
3788          * If old and new chunk sizes differ, we need to process the
3789          * largest of these
3790          */
3791         if (mddev->new_chunk > mddev->chunk_size)
3792                 reshape_sectors = mddev->new_chunk / 512;
3793         else
3794                 reshape_sectors = mddev->chunk_size / 512;
3795
3796         /* we update the metadata when there is more than 3Meg
3797          * in the block range (that is rather arbitrary, should
3798          * probably be time based) or when the data about to be
3799          * copied would over-write the source of the data at
3800          * the front of the range.
3801          * i.e. one new_stripe along from reshape_progress new_maps
3802          * to after where reshape_safe old_maps to
3803          */
3804         writepos = conf->reshape_progress;
3805         sector_div(writepos, new_data_disks);
3806         readpos = conf->reshape_progress;
3807         sector_div(readpos, data_disks);
3808         safepos = conf->reshape_safe;
3809         sector_div(safepos, data_disks);
3810         if (mddev->delta_disks < 0) {
3811                 writepos -= reshape_sectors;
3812                 readpos += reshape_sectors;
3813                 safepos += reshape_sectors;
3814         } else {
3815                 writepos += reshape_sectors;
3816                 readpos -= reshape_sectors;
3817                 safepos -= reshape_sectors;
3818         }
3819
3820         /* 'writepos' is the most advanced device address we might write.
3821          * 'readpos' is the least advanced device address we might read.
3822          * 'safepos' is the least address recorded in the metadata as having
3823          *     been reshaped.
3824          * If 'readpos' is behind 'writepos', then there is no way that we can
3825          * ensure safety in the face of a crash - that must be done by userspace
3826          * making a backup of the data.  So in that case there is no particular
3827          * rush to update metadata.
3828          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3829          * update the metadata to advance 'safepos' to match 'readpos' so that
3830          * we can be safe in the event of a crash.
3831          * So we insist on updating metadata if safepos is behind writepos and
3832          * readpos is beyond writepos.
3833          * In any case, update the metadata every 10 seconds.
3834          * Maybe that number should be configurable, but I'm not sure it is
3835          * worth it.... maybe it could be a multiple of safemode_delay???
3836          */
3837         if ((mddev->delta_disks < 0
3838              ? (safepos > writepos && readpos < writepos)
3839              : (safepos < writepos && readpos > writepos)) ||
3840             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3841                 /* Cannot proceed until we've updated the superblock... */
3842                 wait_event(conf->wait_for_overlap,
3843                            atomic_read(&conf->reshape_stripes)==0);
3844                 mddev->reshape_position = conf->reshape_progress;
3845                 conf->reshape_checkpoint = jiffies;
3846                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3847                 md_wakeup_thread(mddev->thread);
3848                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3849                            kthread_should_stop());
3850                 spin_lock_irq(&conf->device_lock);
3851                 conf->reshape_safe = mddev->reshape_position;
3852                 spin_unlock_irq(&conf->device_lock);
3853                 wake_up(&conf->wait_for_overlap);
3854         }
3855
3856         if (mddev->delta_disks < 0) {
3857                 BUG_ON(conf->reshape_progress == 0);
3858                 stripe_addr = writepos;
3859                 BUG_ON((mddev->dev_sectors &
3860                         ~((sector_t)reshape_sectors - 1))
3861                        - reshape_sectors - stripe_addr
3862                        != sector_nr);
3863         } else {
3864                 BUG_ON(writepos != sector_nr + reshape_sectors);
3865                 stripe_addr = sector_nr;
3866         }
3867         INIT_LIST_HEAD(&stripes);
3868         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3869                 int j;
3870                 int skipped = 0;
3871                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3872                 set_bit(STRIPE_EXPANDING, &sh->state);
3873                 atomic_inc(&conf->reshape_stripes);
3874                 /* If any of this stripe is beyond the end of the old
3875                  * array, then we need to zero those blocks
3876                  */
3877                 for (j=sh->disks; j--;) {
3878                         sector_t s;
3879                         if (j == sh->pd_idx)
3880                                 continue;
3881                         if (conf->level == 6 &&
3882                             j == sh->qd_idx)
3883                                 continue;
3884                         s = compute_blocknr(sh, j, 0);
3885                         if (s < raid5_size(mddev, 0, 0)) {
3886                                 skipped = 1;
3887                                 continue;
3888                         }
3889                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3890                         set_bit(R5_Expanded, &sh->dev[j].flags);
3891                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3892                 }
3893                 if (!skipped) {
3894                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3895                         set_bit(STRIPE_HANDLE, &sh->state);
3896                 }
3897                 list_add(&sh->lru, &stripes);
3898         }
3899         spin_lock_irq(&conf->device_lock);
3900         if (mddev->delta_disks < 0)
3901                 conf->reshape_progress -= reshape_sectors * new_data_disks;
3902         else
3903                 conf->reshape_progress += reshape_sectors * new_data_disks;
3904         spin_unlock_irq(&conf->device_lock);
3905         /* Ok, those stripe are ready. We can start scheduling
3906          * reads on the source stripes.
3907          * The source stripes are determined by mapping the first and last
3908          * block on the destination stripes.
3909          */
3910         first_sector =
3911                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3912                                      1, &dd_idx, NULL);
3913         last_sector =
3914                 raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3915                                             *(new_data_disks) - 1),
3916                                      1, &dd_idx, NULL);
3917         if (last_sector >= mddev->dev_sectors)
3918                 last_sector = mddev->dev_sectors - 1;
3919         while (first_sector <= last_sector) {
3920                 sh = get_active_stripe(conf, first_sector, 1, 0);
3921                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3922                 set_bit(STRIPE_HANDLE, &sh->state);
3923                 release_stripe(sh);
3924                 first_sector += STRIPE_SECTORS;
3925         }
3926         /* Now that the sources are clearly marked, we can release
3927          * the destination stripes
3928          */
3929         while (!list_empty(&stripes)) {
3930                 sh = list_entry(stripes.next, struct stripe_head, lru);
3931                 list_del_init(&sh->lru);
3932                 release_stripe(sh);
3933         }
3934         /* If this takes us to the resync_max point where we have to pause,
3935          * then we need to write out the superblock.
3936          */
3937         sector_nr += reshape_sectors;
3938         if (sector_nr >= mddev->resync_max) {
3939                 /* Cannot proceed until we've updated the superblock... */
3940                 wait_event(conf->wait_for_overlap,
3941                            atomic_read(&conf->reshape_stripes) == 0);
3942                 mddev->reshape_position = conf->reshape_progress;
3943                 conf->reshape_checkpoint = jiffies;
3944                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3945                 md_wakeup_thread(mddev->thread);
3946                 wait_event(mddev->sb_wait,
3947                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3948                            || kthread_should_stop());
3949                 spin_lock_irq(&conf->device_lock);
3950                 conf->reshape_safe = mddev->reshape_position;
3951                 spin_unlock_irq(&conf->device_lock);
3952                 wake_up(&conf->wait_for_overlap);
3953         }
3954         return reshape_sectors;
3955 }
3956
3957 /* FIXME go_faster isn't used */
3958 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3959 {
3960         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3961         struct stripe_head *sh;
3962         sector_t max_sector = mddev->dev_sectors;
3963         int sync_blocks;
3964         int still_degraded = 0;
3965         int i;
3966
3967         if (sector_nr >= max_sector) {
3968                 /* just being told to finish up .. nothing much to do */
3969                 unplug_slaves(mddev);
3970
3971                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3972                         end_reshape(conf);
3973                         return 0;
3974                 }
3975
3976                 if (mddev->curr_resync < max_sector) /* aborted */
3977                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3978                                         &sync_blocks, 1);
3979                 else /* completed sync */
3980                         conf->fullsync = 0;
3981                 bitmap_close_sync(mddev->bitmap);
3982
3983                 return 0;
3984         }
3985
3986         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3987                 return reshape_request(mddev, sector_nr, skipped);
3988
3989         /* No need to check resync_max as we never do more than one
3990          * stripe, and as resync_max will always be on a chunk boundary,
3991          * if the check in md_do_sync didn't fire, there is no chance
3992          * of overstepping resync_max here
3993          */
3994
3995         /* if there is too many failed drives and we are trying
3996          * to resync, then assert that we are finished, because there is
3997          * nothing we can do.
3998          */
3999         if (mddev->degraded >= conf->max_degraded &&
4000             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4001                 sector_t rv = mddev->dev_sectors - sector_nr;
4002                 *skipped = 1;
4003                 return rv;
4004         }
4005         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4006             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4007             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4008                 /* we can skip this block, and probably more */
4009                 sync_blocks /= STRIPE_SECTORS;
4010                 *skipped = 1;
4011                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4012         }
4013
4014
4015         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4016
4017         sh = get_active_stripe(conf, sector_nr, 0, 1);
4018         if (sh == NULL) {
4019                 sh = get_active_stripe(conf, sector_nr, 0, 0);
4020                 /* make sure we don't swamp the stripe cache if someone else
4021                  * is trying to get access
4022                  */
4023                 schedule_timeout_uninterruptible(1);
4024         }
4025         /* Need to check if array will still be degraded after recovery/resync
4026          * We don't need to check the 'failed' flag as when that gets set,
4027          * recovery aborts.
4028          */
4029         for (i=0; i<mddev->raid_disks; i++)
4030                 if (conf->disks[i].rdev == NULL)
4031                         still_degraded = 1;
4032
4033         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4034
4035         spin_lock(&sh->lock);
4036         set_bit(STRIPE_SYNCING, &sh->state);
4037         clear_bit(STRIPE_INSYNC, &sh->state);
4038         spin_unlock(&sh->lock);
4039
4040         /* wait for any blocked device to be handled */
4041         while(unlikely(!handle_stripe(sh, NULL)))
4042                 ;
4043         release_stripe(sh);
4044
4045         return STRIPE_SECTORS;
4046 }
4047
4048 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4049 {
4050         /* We may not be able to submit a whole bio at once as there
4051          * may not be enough stripe_heads available.
4052          * We cannot pre-allocate enough stripe_heads as we may need
4053          * more than exist in the cache (if we allow ever large chunks).
4054          * So we do one stripe head at a time and record in
4055          * ->bi_hw_segments how many have been done.
4056          *
4057          * We *know* that this entire raid_bio is in one chunk, so
4058          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4059          */
4060         struct stripe_head *sh;
4061         int dd_idx;
4062         sector_t sector, logical_sector, last_sector;
4063         int scnt = 0;
4064         int remaining;
4065         int handled = 0;
4066
4067         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4068         sector = raid5_compute_sector(conf, logical_sector,
4069                                       0, &dd_idx, NULL);
4070         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4071
4072         for (; logical_sector < last_sector;
4073              logical_sector += STRIPE_SECTORS,
4074                      sector += STRIPE_SECTORS,
4075                      scnt++) {
4076
4077                 if (scnt < raid5_bi_hw_segments(raid_bio))
4078                         /* already done this stripe */
4079                         continue;
4080
4081                 sh = get_active_stripe(conf, sector, 0, 1);
4082
4083                 if (!sh) {
4084                         /* failed to get a stripe - must wait */
4085                         raid5_set_bi_hw_segments(raid_bio, scnt);
4086                         conf->retry_read_aligned = raid_bio;
4087                         return handled;
4088                 }
4089
4090                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4091                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4092                         release_stripe(sh);
4093                         raid5_set_bi_hw_segments(raid_bio, scnt);
4094                         conf->retry_read_aligned = raid_bio;
4095                         return handled;
4096                 }
4097
4098                 handle_stripe(sh, NULL);
4099                 release_stripe(sh);
4100                 handled++;
4101         }
4102         spin_lock_irq(&conf->device_lock);
4103         remaining = raid5_dec_bi_phys_segments(raid_bio);
4104         spin_unlock_irq(&conf->device_lock);
4105         if (remaining == 0)
4106                 bio_endio(raid_bio, 0);
4107         if (atomic_dec_and_test(&conf->active_aligned_reads))
4108                 wake_up(&conf->wait_for_stripe);
4109         return handled;
4110 }
4111
4112
4113
4114 /*
4115  * This is our raid5 kernel thread.
4116  *
4117  * We scan the hash table for stripes which can be handled now.
4118  * During the scan, completed stripes are saved for us by the interrupt
4119  * handler, so that they will not have to wait for our next wakeup.
4120  */
4121 static void raid5d(mddev_t *mddev)
4122 {
4123         struct stripe_head *sh;
4124         raid5_conf_t *conf = mddev_to_conf(mddev);
4125         int handled;
4126
4127         pr_debug("+++ raid5d active\n");
4128
4129         md_check_recovery(mddev);
4130
4131         handled = 0;
4132         spin_lock_irq(&conf->device_lock);
4133         while (1) {
4134                 struct bio *bio;
4135
4136                 if (conf->seq_flush != conf->seq_write) {
4137                         int seq = conf->seq_flush;
4138                         spin_unlock_irq(&conf->device_lock);
4139                         bitmap_unplug(mddev->bitmap);
4140                         spin_lock_irq(&conf->device_lock);
4141                         conf->seq_write = seq;
4142                         activate_bit_delay(conf);
4143                 }
4144
4145                 while ((bio = remove_bio_from_retry(conf))) {
4146                         int ok;
4147                         spin_unlock_irq(&conf->device_lock);
4148                         ok = retry_aligned_read(conf, bio);
4149                         spin_lock_irq(&conf->device_lock);
4150                         if (!ok)
4151                                 break;
4152                         handled++;
4153                 }
4154
4155                 sh = __get_priority_stripe(conf);
4156
4157                 if (!sh)
4158                         break;
4159                 spin_unlock_irq(&conf->device_lock);
4160                 
4161                 handled++;
4162                 handle_stripe(sh, conf->spare_page);
4163                 release_stripe(sh);
4164
4165                 spin_lock_irq(&conf->device_lock);
4166         }
4167         pr_debug("%d stripes handled\n", handled);
4168
4169         spin_unlock_irq(&conf->device_lock);
4170
4171         async_tx_issue_pending_all();
4172         unplug_slaves(mddev);
4173
4174         pr_debug("--- raid5d inactive\n");
4175 }
4176
4177 static ssize_t
4178 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4179 {
4180         raid5_conf_t *conf = mddev_to_conf(mddev);
4181         if (conf)
4182                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4183         else
4184                 return 0;
4185 }
4186
4187 static ssize_t
4188 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4189 {
4190         raid5_conf_t *conf = mddev_to_conf(mddev);
4191         unsigned long new;
4192         int err;
4193
4194         if (len >= PAGE_SIZE)
4195                 return -EINVAL;
4196         if (!conf)
4197                 return -ENODEV;
4198
4199         if (strict_strtoul(page, 10, &new))
4200                 return -EINVAL;
4201         if (new <= 16 || new > 32768)
4202                 return -EINVAL;
4203         while (new < conf->max_nr_stripes) {
4204                 if (drop_one_stripe(conf))
4205                         conf->max_nr_stripes--;
4206                 else
4207                         break;
4208         }
4209         err = md_allow_write(mddev);
4210         if (err)
4211                 return err;
4212         while (new > conf->max_nr_stripes) {
4213                 if (grow_one_stripe(conf))
4214                         conf->max_nr_stripes++;
4215                 else break;
4216         }
4217         return len;
4218 }
4219
4220 static struct md_sysfs_entry
4221 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4222                                 raid5_show_stripe_cache_size,
4223                                 raid5_store_stripe_cache_size);
4224
4225 static ssize_t
4226 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4227 {
4228         raid5_conf_t *conf = mddev_to_conf(mddev);
4229         if (conf)
4230                 return sprintf(page, "%d\n", conf->bypass_threshold);
4231         else
4232                 return 0;
4233 }
4234
4235 static ssize_t
4236 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4237 {
4238         raid5_conf_t *conf = mddev_to_conf(mddev);
4239         unsigned long new;
4240         if (len >= PAGE_SIZE)
4241                 return -EINVAL;
4242         if (!conf)
4243                 return -ENODEV;
4244
4245         if (strict_strtoul(page, 10, &new))
4246                 return -EINVAL;
4247         if (new > conf->max_nr_stripes)
4248                 return -EINVAL;
4249         conf->bypass_threshold = new;
4250         return len;
4251 }
4252
4253 static struct md_sysfs_entry
4254 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4255                                         S_IRUGO | S_IWUSR,
4256                                         raid5_show_preread_threshold,
4257                                         raid5_store_preread_threshold);
4258
4259 static ssize_t
4260 stripe_cache_active_show(mddev_t *mddev, char *page)
4261 {
4262         raid5_conf_t *conf = mddev_to_conf(mddev);
4263         if (conf)
4264                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4265         else
4266                 return 0;
4267 }
4268
4269 static struct md_sysfs_entry
4270 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4271
4272 static struct attribute *raid5_attrs[] =  {
4273         &raid5_stripecache_size.attr,
4274         &raid5_stripecache_active.attr,
4275         &raid5_preread_bypass_threshold.attr,
4276         NULL,
4277 };
4278 static struct attribute_group raid5_attrs_group = {
4279         .name = NULL,
4280         .attrs = raid5_attrs,
4281 };
4282
4283 static sector_t
4284 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4285 {
4286         raid5_conf_t *conf = mddev_to_conf(mddev);
4287
4288         if (!sectors)
4289                 sectors = mddev->dev_sectors;
4290         if (!raid_disks) {
4291                 /* size is defined by the smallest of previous and new size */
4292                 if (conf->raid_disks < conf->previous_raid_disks)
4293                         raid_disks = conf->raid_disks;
4294                 else
4295                         raid_disks = conf->previous_raid_disks;
4296         }
4297
4298         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4299         sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
4300         return sectors * (raid_disks - conf->max_degraded);
4301 }
4302
4303 static raid5_conf_t *setup_conf(mddev_t *mddev)
4304 {
4305         raid5_conf_t *conf;
4306         int raid_disk, memory;
4307         mdk_rdev_t *rdev;
4308         struct disk_info *disk;
4309
4310         if (mddev->new_level != 5
4311             && mddev->new_level != 4
4312             && mddev->new_level != 6) {
4313                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4314                        mdname(mddev), mddev->new_level);
4315                 return ERR_PTR(-EIO);
4316         }
4317         if ((mddev->new_level == 5
4318              && !algorithm_valid_raid5(mddev->new_layout)) ||
4319             (mddev->new_level == 6
4320              && !algorithm_valid_raid6(mddev->new_layout))) {
4321                 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4322                        mdname(mddev), mddev->new_layout);
4323                 return ERR_PTR(-EIO);
4324         }
4325         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4326                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4327                        mdname(mddev), mddev->raid_disks);
4328                 return ERR_PTR(-EINVAL);
4329         }
4330
4331         if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4332                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4333                         mddev->new_chunk, mdname(mddev));
4334                 return ERR_PTR(-EINVAL);
4335         }
4336
4337         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4338         if (conf == NULL)
4339                 goto abort;
4340
4341         conf->raid_disks = mddev->raid_disks;
4342         if (mddev->reshape_position == MaxSector)
4343                 conf->previous_raid_disks = mddev->raid_disks;
4344         else
4345                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4346
4347         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4348                               GFP_KERNEL);
4349         if (!conf->disks)
4350                 goto abort;
4351
4352         conf->mddev = mddev;
4353
4354         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4355                 goto abort;
4356
4357         if (mddev->new_level == 6) {
4358                 conf->spare_page = alloc_page(GFP_KERNEL);
4359                 if (!conf->spare_page)
4360                         goto abort;
4361         }
4362         spin_lock_init(&conf->device_lock);
4363         init_waitqueue_head(&conf->wait_for_stripe);
4364         init_waitqueue_head(&conf->wait_for_overlap);
4365         INIT_LIST_HEAD(&conf->handle_list);
4366         INIT_LIST_HEAD(&conf->hold_list);
4367         INIT_LIST_HEAD(&conf->delayed_list);
4368         INIT_LIST_HEAD(&conf->bitmap_list);
4369         INIT_LIST_HEAD(&conf->inactive_list);
4370         atomic_set(&conf->active_stripes, 0);
4371         atomic_set(&conf->preread_active_stripes, 0);
4372         atomic_set(&conf->active_aligned_reads, 0);
4373         conf->bypass_threshold = BYPASS_THRESHOLD;
4374
4375         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4376
4377         list_for_each_entry(rdev, &mddev->disks, same_set) {
4378                 raid_disk = rdev->raid_disk;
4379                 if (raid_disk >= conf->raid_disks
4380                     || raid_disk < 0)
4381                         continue;
4382                 disk = conf->disks + raid_disk;
4383
4384                 disk->rdev = rdev;
4385
4386                 if (test_bit(In_sync, &rdev->flags)) {
4387                         char b[BDEVNAME_SIZE];
4388                         printk(KERN_INFO "raid5: device %s operational as raid"
4389                                 " disk %d\n", bdevname(rdev->bdev,b),
4390                                 raid_disk);
4391                 } else
4392                         /* Cannot rely on bitmap to complete recovery */
4393                         conf->fullsync = 1;
4394         }
4395
4396         conf->chunk_size = mddev->new_chunk;
4397         conf->level = mddev->new_level;
4398         if (conf->level == 6)
4399                 conf->max_degraded = 2;
4400         else
4401                 conf->max_degraded = 1;
4402         conf->algorithm = mddev->new_layout;
4403         conf->max_nr_stripes = NR_STRIPES;
4404         conf->reshape_progress = mddev->reshape_position;
4405         if (conf->reshape_progress != MaxSector) {
4406                 conf->prev_chunk = mddev->chunk_size;
4407                 conf->prev_algo = mddev->layout;
4408         }
4409
4410         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4411                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4412         if (grow_stripes(conf, conf->max_nr_stripes)) {
4413                 printk(KERN_ERR
4414                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4415                 goto abort;
4416         } else
4417                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4418                         memory, mdname(mddev));
4419
4420         conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4421         if (!conf->thread) {
4422                 printk(KERN_ERR
4423                        "raid5: couldn't allocate thread for %s\n",
4424                        mdname(mddev));
4425                 goto abort;
4426         }
4427
4428         return conf;
4429
4430  abort:
4431         if (conf) {
4432                 shrink_stripes(conf);
4433                 safe_put_page(conf->spare_page);
4434                 kfree(conf->disks);
4435                 kfree(conf->stripe_hashtbl);
4436                 kfree(conf);
4437                 return ERR_PTR(-EIO);
4438         } else
4439                 return ERR_PTR(-ENOMEM);
4440 }
4441
4442 static int run(mddev_t *mddev)
4443 {
4444         raid5_conf_t *conf;
4445         int working_disks = 0;
4446         mdk_rdev_t *rdev;
4447
4448         if (mddev->reshape_position != MaxSector) {
4449                 /* Check that we can continue the reshape.
4450                  * Currently only disks can change, it must
4451                  * increase, and we must be past the point where
4452                  * a stripe over-writes itself
4453                  */
4454                 sector_t here_new, here_old;
4455                 int old_disks;
4456                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4457
4458                 if (mddev->new_level != mddev->level) {
4459                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4460                                "required - aborting.\n",
4461                                mdname(mddev));
4462                         return -EINVAL;
4463                 }
4464                 old_disks = mddev->raid_disks - mddev->delta_disks;
4465                 /* reshape_position must be on a new-stripe boundary, and one
4466                  * further up in new geometry must map after here in old
4467                  * geometry.
4468                  */
4469                 here_new = mddev->reshape_position;
4470                 if (sector_div(here_new, (mddev->new_chunk>>9)*
4471                                (mddev->raid_disks - max_degraded))) {
4472                         printk(KERN_ERR "raid5: reshape_position not "
4473                                "on a stripe boundary\n");
4474                         return -EINVAL;
4475                 }
4476                 /* here_new is the stripe we will write to */
4477                 here_old = mddev->reshape_position;
4478                 sector_div(here_old, (mddev->chunk_size>>9)*
4479                            (old_disks-max_degraded));
4480                 /* here_old is the first stripe that we might need to read
4481                  * from */
4482                 if (here_new >= here_old) {
4483                         /* Reading from the same stripe as writing to - bad */
4484                         printk(KERN_ERR "raid5: reshape_position too early for "
4485                                "auto-recovery - aborting.\n");
4486                         return -EINVAL;
4487                 }
4488                 printk(KERN_INFO "raid5: reshape will continue\n");
4489                 /* OK, we should be able to continue; */
4490         } else {
4491                 BUG_ON(mddev->level != mddev->new_level);
4492                 BUG_ON(mddev->layout != mddev->new_layout);
4493                 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4494                 BUG_ON(mddev->delta_disks != 0);
4495         }
4496
4497         if (mddev->private == NULL)
4498                 conf = setup_conf(mddev);
4499         else
4500                 conf = mddev->private;
4501
4502         if (IS_ERR(conf))
4503                 return PTR_ERR(conf);
4504
4505         mddev->thread = conf->thread;
4506         conf->thread = NULL;
4507         mddev->private = conf;
4508
4509         /*
4510          * 0 for a fully functional array, 1 or 2 for a degraded array.
4511          */
4512         list_for_each_entry(rdev, &mddev->disks, same_set)
4513                 if (rdev->raid_disk >= 0 &&
4514                     test_bit(In_sync, &rdev->flags))
4515                         working_disks++;
4516
4517         mddev->degraded = conf->raid_disks - working_disks;
4518
4519         if (mddev->degraded > conf->max_degraded) {
4520                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4521                         " (%d/%d failed)\n",
4522                         mdname(mddev), mddev->degraded, conf->raid_disks);
4523                 goto abort;
4524         }
4525
4526         /* device size must be a multiple of chunk size */
4527         mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4528         mddev->resync_max_sectors = mddev->dev_sectors;
4529
4530         if (mddev->degraded > 0 &&
4531             mddev->recovery_cp != MaxSector) {
4532                 if (mddev->ok_start_degraded)
4533                         printk(KERN_WARNING
4534                                "raid5: starting dirty degraded array: %s"
4535                                "- data corruption possible.\n",
4536                                mdname(mddev));
4537                 else {
4538                         printk(KERN_ERR
4539                                "raid5: cannot start dirty degraded array for %s\n",
4540                                mdname(mddev));
4541                         goto abort;
4542                 }
4543         }
4544
4545         if (mddev->degraded == 0)
4546                 printk("raid5: raid level %d set %s active with %d out of %d"
4547                        " devices, algorithm %d\n", conf->level, mdname(mddev),
4548                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4549                        mddev->new_layout);
4550         else
4551                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4552                         " out of %d devices, algorithm %d\n", conf->level,
4553                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4554                         mddev->raid_disks, mddev->new_layout);
4555
4556         print_raid5_conf(conf);
4557
4558         if (conf->reshape_progress != MaxSector) {
4559                 printk("...ok start reshape thread\n");
4560                 conf->reshape_safe = conf->reshape_progress;
4561                 atomic_set(&conf->reshape_stripes, 0);
4562                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4563                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4564                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4565                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4566                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4567                                                         "%s_reshape");
4568         }
4569
4570         /* read-ahead size must cover two whole stripes, which is
4571          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4572          */
4573         {
4574                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4575                 int stripe = data_disks *
4576                         (mddev->chunk_size / PAGE_SIZE);
4577                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4578                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4579         }
4580
4581         /* Ok, everything is just fine now */
4582         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4583                 printk(KERN_WARNING
4584                        "raid5: failed to create sysfs attributes for %s\n",
4585                        mdname(mddev));
4586
4587         mddev->queue->queue_lock = &conf->device_lock;
4588
4589         mddev->queue->unplug_fn = raid5_unplug_device;
4590         mddev->queue->backing_dev_info.congested_data = mddev;
4591         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4592
4593         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4594
4595         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4596
4597         return 0;
4598 abort:
4599         md_unregister_thread(mddev->thread);
4600         mddev->thread = NULL;
4601         if (conf) {
4602                 shrink_stripes(conf);
4603                 print_raid5_conf(conf);
4604                 safe_put_page(conf->spare_page);
4605                 kfree(conf->disks);
4606                 kfree(conf->stripe_hashtbl);
4607                 kfree(conf);
4608         }
4609         mddev->private = NULL;
4610         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4611         return -EIO;
4612 }
4613
4614
4615
4616 static int stop(mddev_t *mddev)
4617 {
4618         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4619
4620         md_unregister_thread(mddev->thread);
4621         mddev->thread = NULL;
4622         shrink_stripes(conf);
4623         kfree(conf->stripe_hashtbl);
4624         mddev->queue->backing_dev_info.congested_fn = NULL;
4625         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4626         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4627         kfree(conf->disks);
4628         kfree(conf);
4629         mddev->private = NULL;
4630         return 0;
4631 }
4632
4633 #ifdef DEBUG
4634 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4635 {
4636         int i;
4637
4638         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4639                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4640         seq_printf(seq, "sh %llu,  count %d.\n",
4641                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4642         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4643         for (i = 0; i < sh->disks; i++) {
4644                 seq_printf(seq, "(cache%d: %p %ld) ",
4645                            i, sh->dev[i].page, sh->dev[i].flags);
4646         }
4647         seq_printf(seq, "\n");
4648 }
4649
4650 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4651 {
4652         struct stripe_head *sh;
4653         struct hlist_node *hn;
4654         int i;
4655
4656         spin_lock_irq(&conf->device_lock);
4657         for (i = 0; i < NR_HASH; i++) {
4658                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4659                         if (sh->raid_conf != conf)
4660                                 continue;
4661                         print_sh(seq, sh);
4662                 }
4663         }
4664         spin_unlock_irq(&conf->device_lock);
4665 }
4666 #endif
4667
4668 static void status(struct seq_file *seq, mddev_t *mddev)
4669 {
4670         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4671         int i;
4672
4673         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4674         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4675         for (i = 0; i < conf->raid_disks; i++)
4676                 seq_printf (seq, "%s",
4677                                conf->disks[i].rdev &&
4678                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4679         seq_printf (seq, "]");
4680 #ifdef DEBUG
4681         seq_printf (seq, "\n");
4682         printall(seq, conf);
4683 #endif
4684 }
4685
4686 static void print_raid5_conf (raid5_conf_t *conf)
4687 {
4688         int i;
4689         struct disk_info *tmp;
4690
4691         printk("RAID5 conf printout:\n");
4692         if (!conf) {
4693                 printk("(conf==NULL)\n");
4694                 return;
4695         }
4696         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4697                  conf->raid_disks - conf->mddev->degraded);
4698
4699         for (i = 0; i < conf->raid_disks; i++) {
4700                 char b[BDEVNAME_SIZE];
4701                 tmp = conf->disks + i;
4702                 if (tmp->rdev)
4703                 printk(" disk %d, o:%d, dev:%s\n",
4704                         i, !test_bit(Faulty, &tmp->rdev->flags),
4705                         bdevname(tmp->rdev->bdev,b));
4706         }
4707 }
4708
4709 static int raid5_spare_active(mddev_t *mddev)
4710 {
4711         int i;
4712         raid5_conf_t *conf = mddev->private;
4713         struct disk_info *tmp;
4714
4715         for (i = 0; i < conf->raid_disks; i++) {
4716                 tmp = conf->disks + i;
4717                 if (tmp->rdev
4718                     && !test_bit(Faulty, &tmp->rdev->flags)
4719                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4720                         unsigned long flags;
4721                         spin_lock_irqsave(&conf->device_lock, flags);
4722                         mddev->degraded--;
4723                         spin_unlock_irqrestore(&conf->device_lock, flags);
4724                 }
4725         }
4726         print_raid5_conf(conf);
4727         return 0;
4728 }
4729
4730 static int raid5_remove_disk(mddev_t *mddev, int number)
4731 {
4732         raid5_conf_t *conf = mddev->private;
4733         int err = 0;
4734         mdk_rdev_t *rdev;
4735         struct disk_info *p = conf->disks + number;
4736
4737         print_raid5_conf(conf);
4738         rdev = p->rdev;
4739         if (rdev) {
4740                 if (number >= conf->raid_disks &&
4741                     conf->reshape_progress == MaxSector)
4742                         clear_bit(In_sync, &rdev->flags);
4743
4744                 if (test_bit(In_sync, &rdev->flags) ||
4745                     atomic_read(&rdev->nr_pending)) {
4746                         err = -EBUSY;
4747                         goto abort;
4748                 }
4749                 /* Only remove non-faulty devices if recovery
4750                  * isn't possible.
4751                  */
4752                 if (!test_bit(Faulty, &rdev->flags) &&
4753                     mddev->degraded <= conf->max_degraded &&
4754                     number < conf->raid_disks) {
4755                         err = -EBUSY;
4756                         goto abort;
4757                 }
4758                 p->rdev = NULL;
4759                 synchronize_rcu();
4760                 if (atomic_read(&rdev->nr_pending)) {
4761                         /* lost the race, try later */
4762                         err = -EBUSY;
4763                         p->rdev = rdev;
4764                 }
4765         }
4766 abort:
4767
4768         print_raid5_conf(conf);
4769         return err;
4770 }
4771
4772 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4773 {
4774         raid5_conf_t *conf = mddev->private;
4775         int err = -EEXIST;
4776         int disk;
4777         struct disk_info *p;
4778         int first = 0;
4779         int last = conf->raid_disks - 1;
4780
4781         if (mddev->degraded > conf->max_degraded)
4782                 /* no point adding a device */
4783                 return -EINVAL;
4784
4785         if (rdev->raid_disk >= 0)
4786                 first = last = rdev->raid_disk;
4787
4788         /*
4789          * find the disk ... but prefer rdev->saved_raid_disk
4790          * if possible.
4791          */
4792         if (rdev->saved_raid_disk >= 0 &&
4793             rdev->saved_raid_disk >= first &&
4794             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4795                 disk = rdev->saved_raid_disk;
4796         else
4797                 disk = first;
4798         for ( ; disk <= last ; disk++)
4799                 if ((p=conf->disks + disk)->rdev == NULL) {
4800                         clear_bit(In_sync, &rdev->flags);
4801                         rdev->raid_disk = disk;
4802                         err = 0;
4803                         if (rdev->saved_raid_disk != disk)
4804                                 conf->fullsync = 1;
4805                         rcu_assign_pointer(p->rdev, rdev);
4806                         break;
4807                 }
4808         print_raid5_conf(conf);
4809         return err;
4810 }
4811
4812 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4813 {
4814         /* no resync is happening, and there is enough space
4815          * on all devices, so we can resize.
4816          * We need to make sure resync covers any new space.
4817          * If the array is shrinking we should possibly wait until
4818          * any io in the removed space completes, but it hardly seems
4819          * worth it.
4820          */
4821         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4822         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4823                                                mddev->raid_disks));
4824         if (mddev->array_sectors >
4825             raid5_size(mddev, sectors, mddev->raid_disks))
4826                 return -EINVAL;
4827         set_capacity(mddev->gendisk, mddev->array_sectors);
4828         mddev->changed = 1;
4829         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4830                 mddev->recovery_cp = mddev->dev_sectors;
4831                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4832         }
4833         mddev->dev_sectors = sectors;
4834         mddev->resync_max_sectors = sectors;
4835         return 0;
4836 }
4837
4838 static int raid5_check_reshape(mddev_t *mddev)
4839 {
4840         raid5_conf_t *conf = mddev_to_conf(mddev);
4841
4842         if (mddev->delta_disks == 0 &&
4843             mddev->new_layout == mddev->layout &&
4844             mddev->new_chunk == mddev->chunk_size)
4845                 return -EINVAL; /* nothing to do */
4846         if (mddev->bitmap)
4847                 /* Cannot grow a bitmap yet */
4848                 return -EBUSY;
4849         if (mddev->degraded > conf->max_degraded)
4850                 return -EINVAL;
4851         if (mddev->delta_disks < 0) {
4852                 /* We might be able to shrink, but the devices must
4853                  * be made bigger first.
4854                  * For raid6, 4 is the minimum size.
4855                  * Otherwise 2 is the minimum
4856                  */
4857                 int min = 2;
4858                 if (mddev->level == 6)
4859                         min = 4;
4860                 if (mddev->raid_disks + mddev->delta_disks < min)
4861                         return -EINVAL;
4862         }
4863
4864         /* Can only proceed if there are plenty of stripe_heads.
4865          * We need a minimum of one full stripe,, and for sensible progress
4866          * it is best to have about 4 times that.
4867          * If we require 4 times, then the default 256 4K stripe_heads will
4868          * allow for chunk sizes up to 256K, which is probably OK.
4869          * If the chunk size is greater, user-space should request more
4870          * stripe_heads first.
4871          */
4872         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4873             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4874                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4875                        (max(mddev->chunk_size, mddev->new_chunk)
4876                         / STRIPE_SIZE)*4);
4877                 return -ENOSPC;
4878         }
4879
4880         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4881 }
4882
4883 static int raid5_start_reshape(mddev_t *mddev)
4884 {
4885         raid5_conf_t *conf = mddev_to_conf(mddev);
4886         mdk_rdev_t *rdev;
4887         int spares = 0;
4888         int added_devices = 0;
4889         unsigned long flags;
4890
4891         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4892                 return -EBUSY;
4893
4894         list_for_each_entry(rdev, &mddev->disks, same_set)
4895                 if (rdev->raid_disk < 0 &&
4896                     !test_bit(Faulty, &rdev->flags))
4897                         spares++;
4898
4899         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4900                 /* Not enough devices even to make a degraded array
4901                  * of that size
4902                  */
4903                 return -EINVAL;
4904
4905         /* Refuse to reduce size of the array.  Any reductions in
4906          * array size must be through explicit setting of array_size
4907          * attribute.
4908          */
4909         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4910             < mddev->array_sectors) {
4911                 printk(KERN_ERR "md: %s: array size must be reduced "
4912                        "before number of disks\n", mdname(mddev));
4913                 return -EINVAL;
4914         }
4915
4916         atomic_set(&conf->reshape_stripes, 0);
4917         spin_lock_irq(&conf->device_lock);
4918         conf->previous_raid_disks = conf->raid_disks;
4919         conf->raid_disks += mddev->delta_disks;
4920         conf->prev_chunk = conf->chunk_size;
4921         conf->chunk_size = mddev->new_chunk;
4922         conf->prev_algo = conf->algorithm;
4923         conf->algorithm = mddev->new_layout;
4924         if (mddev->delta_disks < 0)
4925                 conf->reshape_progress = raid5_size(mddev, 0, 0);
4926         else
4927                 conf->reshape_progress = 0;
4928         conf->reshape_safe = conf->reshape_progress;
4929         conf->generation++;
4930         spin_unlock_irq(&conf->device_lock);
4931
4932         /* Add some new drives, as many as will fit.
4933          * We know there are enough to make the newly sized array work.
4934          */
4935         list_for_each_entry(rdev, &mddev->disks, same_set)
4936                 if (rdev->raid_disk < 0 &&
4937                     !test_bit(Faulty, &rdev->flags)) {
4938                         if (raid5_add_disk(mddev, rdev) == 0) {
4939                                 char nm[20];
4940                                 set_bit(In_sync, &rdev->flags);
4941                                 added_devices++;
4942                                 rdev->recovery_offset = 0;
4943                                 sprintf(nm, "rd%d", rdev->raid_disk);
4944                                 if (sysfs_create_link(&mddev->kobj,
4945                                                       &rdev->kobj, nm))
4946                                         printk(KERN_WARNING
4947                                                "raid5: failed to create "
4948                                                " link %s for %s\n",
4949                                                nm, mdname(mddev));
4950                         } else
4951                                 break;
4952                 }
4953
4954         if (mddev->delta_disks > 0) {
4955                 spin_lock_irqsave(&conf->device_lock, flags);
4956                 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4957                         - added_devices;
4958                 spin_unlock_irqrestore(&conf->device_lock, flags);
4959         }
4960         mddev->raid_disks = conf->raid_disks;
4961         mddev->reshape_position = 0;
4962         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4963
4964         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4965         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4966         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4967         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4968         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4969                                                 "%s_reshape");
4970         if (!mddev->sync_thread) {
4971                 mddev->recovery = 0;
4972                 spin_lock_irq(&conf->device_lock);
4973                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4974                 conf->reshape_progress = MaxSector;
4975                 spin_unlock_irq(&conf->device_lock);
4976                 return -EAGAIN;
4977         }
4978         conf->reshape_checkpoint = jiffies;
4979         md_wakeup_thread(mddev->sync_thread);
4980         md_new_event(mddev);
4981         return 0;
4982 }
4983
4984 /* This is called from the reshape thread and should make any
4985  * changes needed in 'conf'
4986  */
4987 static void end_reshape(raid5_conf_t *conf)
4988 {
4989
4990         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4991
4992                 spin_lock_irq(&conf->device_lock);
4993                 conf->previous_raid_disks = conf->raid_disks;
4994                 conf->reshape_progress = MaxSector;
4995                 spin_unlock_irq(&conf->device_lock);
4996                 wake_up(&conf->wait_for_overlap);
4997
4998                 /* read-ahead size must cover two whole stripes, which is
4999                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5000                  */
5001                 {
5002                         int data_disks = conf->raid_disks - conf->max_degraded;
5003                         int stripe = data_disks * (conf->chunk_size
5004                                                    / PAGE_SIZE);
5005                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5006                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5007                 }
5008         }
5009 }
5010
5011 /* This is called from the raid5d thread with mddev_lock held.
5012  * It makes config changes to the device.
5013  */
5014 static void raid5_finish_reshape(mddev_t *mddev)
5015 {
5016         struct block_device *bdev;
5017         raid5_conf_t *conf = mddev_to_conf(mddev);
5018
5019         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5020
5021                 if (mddev->delta_disks > 0) {
5022                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5023                         set_capacity(mddev->gendisk, mddev->array_sectors);
5024                         mddev->changed = 1;
5025
5026                         bdev = bdget_disk(mddev->gendisk, 0);
5027                         if (bdev) {
5028                                 mutex_lock(&bdev->bd_inode->i_mutex);
5029                                 i_size_write(bdev->bd_inode,
5030                                              (loff_t)mddev->array_sectors << 9);
5031                                 mutex_unlock(&bdev->bd_inode->i_mutex);
5032                                 bdput(bdev);
5033                         }
5034                 } else {
5035                         int d;
5036                         mddev->degraded = conf->raid_disks;
5037                         for (d = 0; d < conf->raid_disks ; d++)
5038                                 if (conf->disks[d].rdev &&
5039                                     test_bit(In_sync,
5040                                              &conf->disks[d].rdev->flags))
5041                                         mddev->degraded--;
5042                         for (d = conf->raid_disks ;
5043                              d < conf->raid_disks - mddev->delta_disks;
5044                              d++)
5045                                 raid5_remove_disk(mddev, d);
5046                 }
5047                 mddev->layout = conf->algorithm;
5048                 mddev->chunk_size = conf->chunk_size;
5049                 mddev->reshape_position = MaxSector;
5050                 mddev->delta_disks = 0;
5051         }
5052 }
5053
5054 static void raid5_quiesce(mddev_t *mddev, int state)
5055 {
5056         raid5_conf_t *conf = mddev_to_conf(mddev);
5057
5058         switch(state) {
5059         case 2: /* resume for a suspend */
5060                 wake_up(&conf->wait_for_overlap);
5061                 break;
5062
5063         case 1: /* stop all writes */
5064                 spin_lock_irq(&conf->device_lock);
5065                 conf->quiesce = 1;
5066                 wait_event_lock_irq(conf->wait_for_stripe,
5067                                     atomic_read(&conf->active_stripes) == 0 &&
5068                                     atomic_read(&conf->active_aligned_reads) == 0,
5069                                     conf->device_lock, /* nothing */);
5070                 spin_unlock_irq(&conf->device_lock);
5071                 break;
5072
5073         case 0: /* re-enable writes */
5074                 spin_lock_irq(&conf->device_lock);
5075                 conf->quiesce = 0;
5076                 wake_up(&conf->wait_for_stripe);
5077                 wake_up(&conf->wait_for_overlap);
5078                 spin_unlock_irq(&conf->device_lock);
5079                 break;
5080         }
5081 }
5082
5083
5084 static void *raid5_takeover_raid1(mddev_t *mddev)
5085 {
5086         int chunksect;
5087
5088         if (mddev->raid_disks != 2 ||
5089             mddev->degraded > 1)
5090                 return ERR_PTR(-EINVAL);
5091
5092         /* Should check if there are write-behind devices? */
5093
5094         chunksect = 64*2; /* 64K by default */
5095
5096         /* The array must be an exact multiple of chunksize */
5097         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5098                 chunksect >>= 1;
5099
5100         if ((chunksect<<9) < STRIPE_SIZE)
5101                 /* array size does not allow a suitable chunk size */
5102                 return ERR_PTR(-EINVAL);
5103
5104         mddev->new_level = 5;
5105         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5106         mddev->new_chunk = chunksect << 9;
5107
5108         return setup_conf(mddev);
5109 }
5110
5111 static void *raid5_takeover_raid6(mddev_t *mddev)
5112 {
5113         int new_layout;
5114
5115         switch (mddev->layout) {
5116         case ALGORITHM_LEFT_ASYMMETRIC_6:
5117                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5118                 break;
5119         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5120                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5121                 break;
5122         case ALGORITHM_LEFT_SYMMETRIC_6:
5123                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5124                 break;
5125         case ALGORITHM_RIGHT_SYMMETRIC_6:
5126                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5127                 break;
5128         case ALGORITHM_PARITY_0_6:
5129                 new_layout = ALGORITHM_PARITY_0;
5130                 break;
5131         case ALGORITHM_PARITY_N:
5132                 new_layout = ALGORITHM_PARITY_N;
5133                 break;
5134         default:
5135                 return ERR_PTR(-EINVAL);
5136         }
5137         mddev->new_level = 5;
5138         mddev->new_layout = new_layout;
5139         mddev->delta_disks = -1;
5140         mddev->raid_disks -= 1;
5141         return setup_conf(mddev);
5142 }
5143
5144
5145 static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5146 {
5147         /* For a 2-drive array, the layout and chunk size can be changed
5148          * immediately as not restriping is needed.
5149          * For larger arrays we record the new value - after validation
5150          * to be used by a reshape pass.
5151          */
5152         raid5_conf_t *conf = mddev_to_conf(mddev);
5153
5154         if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5155                 return -EINVAL;
5156         if (new_chunk > 0) {
5157                 if (new_chunk & (new_chunk-1))
5158                         /* not a power of 2 */
5159                         return -EINVAL;
5160                 if (new_chunk < PAGE_SIZE)
5161                         return -EINVAL;
5162                 if (mddev->array_sectors & ((new_chunk>>9)-1))
5163                         /* not factor of array size */
5164                         return -EINVAL;
5165         }
5166
5167         /* They look valid */
5168
5169         if (mddev->raid_disks == 2) {
5170
5171                 if (new_layout >= 0) {
5172                         conf->algorithm = new_layout;
5173                         mddev->layout = mddev->new_layout = new_layout;
5174                 }
5175                 if (new_chunk > 0) {
5176                         conf->chunk_size = new_chunk;
5177                         mddev->chunk_size = mddev->new_chunk = new_chunk;
5178                 }
5179                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5180                 md_wakeup_thread(mddev->thread);
5181         } else {
5182                 if (new_layout >= 0)
5183                         mddev->new_layout = new_layout;
5184                 if (new_chunk > 0)
5185                         mddev->new_chunk = new_chunk;
5186         }
5187         return 0;
5188 }
5189
5190 static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5191 {
5192         if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
5193                 return -EINVAL;
5194         if (new_chunk > 0) {
5195                 if (new_chunk & (new_chunk-1))
5196                         /* not a power of 2 */
5197                         return -EINVAL;
5198                 if (new_chunk < PAGE_SIZE)
5199                         return -EINVAL;
5200                 if (mddev->array_sectors & ((new_chunk>>9)-1))
5201                         /* not factor of array size */
5202                         return -EINVAL;
5203         }
5204
5205         /* They look valid */
5206
5207         if (new_layout >= 0)
5208                 mddev->new_layout = new_layout;
5209         if (new_chunk > 0)
5210                 mddev->new_chunk = new_chunk;
5211
5212         return 0;
5213 }
5214
5215 static void *raid5_takeover(mddev_t *mddev)
5216 {
5217         /* raid5 can take over:
5218          *  raid0 - if all devices are the same - make it a raid4 layout
5219          *  raid1 - if there are two drives.  We need to know the chunk size
5220          *  raid4 - trivial - just use a raid4 layout.
5221          *  raid6 - Providing it is a *_6 layout
5222          *
5223          * For now, just do raid1
5224          */
5225
5226         if (mddev->level == 1)
5227                 return raid5_takeover_raid1(mddev);
5228         if (mddev->level == 4) {
5229                 mddev->new_layout = ALGORITHM_PARITY_N;
5230                 mddev->new_level = 5;
5231                 return setup_conf(mddev);
5232         }
5233         if (mddev->level == 6)
5234                 return raid5_takeover_raid6(mddev);
5235
5236         return ERR_PTR(-EINVAL);
5237 }
5238
5239
5240 static struct mdk_personality raid5_personality;
5241
5242 static void *raid6_takeover(mddev_t *mddev)
5243 {
5244         /* Currently can only take over a raid5.  We map the
5245          * personality to an equivalent raid6 personality
5246          * with the Q block at the end.
5247          */
5248         int new_layout;
5249
5250         if (mddev->pers != &raid5_personality)
5251                 return ERR_PTR(-EINVAL);
5252         if (mddev->degraded > 1)
5253                 return ERR_PTR(-EINVAL);
5254         if (mddev->raid_disks > 253)
5255                 return ERR_PTR(-EINVAL);
5256         if (mddev->raid_disks < 3)
5257                 return ERR_PTR(-EINVAL);
5258
5259         switch (mddev->layout) {
5260         case ALGORITHM_LEFT_ASYMMETRIC:
5261                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5262                 break;
5263         case ALGORITHM_RIGHT_ASYMMETRIC:
5264                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5265                 break;
5266         case ALGORITHM_LEFT_SYMMETRIC:
5267                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5268                 break;
5269         case ALGORITHM_RIGHT_SYMMETRIC:
5270                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5271                 break;
5272         case ALGORITHM_PARITY_0:
5273                 new_layout = ALGORITHM_PARITY_0_6;
5274                 break;
5275         case ALGORITHM_PARITY_N:
5276                 new_layout = ALGORITHM_PARITY_N;
5277                 break;
5278         default:
5279                 return ERR_PTR(-EINVAL);
5280         }
5281         mddev->new_level = 6;
5282         mddev->new_layout = new_layout;
5283         mddev->delta_disks = 1;
5284         mddev->raid_disks += 1;
5285         return setup_conf(mddev);
5286 }
5287
5288
5289 static struct mdk_personality raid6_personality =
5290 {
5291         .name           = "raid6",
5292         .level          = 6,
5293         .owner          = THIS_MODULE,
5294         .make_request   = make_request,
5295         .run            = run,
5296         .stop           = stop,
5297         .status         = status,
5298         .error_handler  = error,
5299         .hot_add_disk   = raid5_add_disk,
5300         .hot_remove_disk= raid5_remove_disk,
5301         .spare_active   = raid5_spare_active,
5302         .sync_request   = sync_request,
5303         .resize         = raid5_resize,
5304         .size           = raid5_size,
5305         .check_reshape  = raid5_check_reshape,
5306         .start_reshape  = raid5_start_reshape,
5307         .finish_reshape = raid5_finish_reshape,
5308         .quiesce        = raid5_quiesce,
5309         .takeover       = raid6_takeover,
5310         .reconfig       = raid6_reconfig,
5311 };
5312 static struct mdk_personality raid5_personality =
5313 {
5314         .name           = "raid5",
5315         .level          = 5,
5316         .owner          = THIS_MODULE,
5317         .make_request   = make_request,
5318         .run            = run,
5319         .stop           = stop,
5320         .status         = status,
5321         .error_handler  = error,
5322         .hot_add_disk   = raid5_add_disk,
5323         .hot_remove_disk= raid5_remove_disk,
5324         .spare_active   = raid5_spare_active,
5325         .sync_request   = sync_request,
5326         .resize         = raid5_resize,
5327         .size           = raid5_size,
5328         .check_reshape  = raid5_check_reshape,
5329         .start_reshape  = raid5_start_reshape,
5330         .finish_reshape = raid5_finish_reshape,
5331         .quiesce        = raid5_quiesce,
5332         .takeover       = raid5_takeover,
5333         .reconfig       = raid5_reconfig,
5334 };
5335
5336 static struct mdk_personality raid4_personality =
5337 {
5338         .name           = "raid4",
5339         .level          = 4,
5340         .owner          = THIS_MODULE,
5341         .make_request   = make_request,
5342         .run            = run,
5343         .stop           = stop,
5344         .status         = status,
5345         .error_handler  = error,
5346         .hot_add_disk   = raid5_add_disk,
5347         .hot_remove_disk= raid5_remove_disk,
5348         .spare_active   = raid5_spare_active,
5349         .sync_request   = sync_request,
5350         .resize         = raid5_resize,
5351         .size           = raid5_size,
5352         .check_reshape  = raid5_check_reshape,
5353         .start_reshape  = raid5_start_reshape,
5354         .finish_reshape = raid5_finish_reshape,
5355         .quiesce        = raid5_quiesce,
5356 };
5357
5358 static int __init raid5_init(void)
5359 {
5360         register_md_personality(&raid6_personality);
5361         register_md_personality(&raid5_personality);
5362         register_md_personality(&raid4_personality);
5363         return 0;
5364 }
5365
5366 static void raid5_exit(void)
5367 {
5368         unregister_md_personality(&raid6_personality);
5369         unregister_md_personality(&raid5_personality);
5370         unregister_md_personality(&raid4_personality);
5371 }
5372
5373 module_init(raid5_init);
5374 module_exit(raid5_exit);
5375 MODULE_LICENSE("GPL");
5376 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5377 MODULE_ALIAS("md-raid5");
5378 MODULE_ALIAS("md-raid4");
5379 MODULE_ALIAS("md-level-5");
5380 MODULE_ALIAS("md-level-4");
5381 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5382 MODULE_ALIAS("md-raid6");
5383 MODULE_ALIAS("md-level-6");
5384
5385 /* This used to be two separate modules, they were: */
5386 MODULE_ALIAS("raid5");
5387 MODULE_ALIAS("raid6");