Merge branches 'stable/ia64', 'stable/blkfront-cleanup' and 'stable/cleanup' of git...
[pandora-kernel.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include "md.h"
26 #include "raid10.h"
27 #include "raid0.h"
28 #include "bitmap.h"
29
30 /*
31  * RAID10 provides a combination of RAID0 and RAID1 functionality.
32  * The layout of data is defined by
33  *    chunk_size
34  *    raid_disks
35  *    near_copies (stored in low byte of layout)
36  *    far_copies (stored in second byte of layout)
37  *    far_offset (stored in bit 16 of layout )
38  *
39  * The data to be stored is divided into chunks using chunksize.
40  * Each device is divided into far_copies sections.
41  * In each section, chunks are laid out in a style similar to raid0, but
42  * near_copies copies of each chunk is stored (each on a different drive).
43  * The starting device for each section is offset near_copies from the starting
44  * device of the previous section.
45  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
46  * drive.
47  * near_copies and far_copies must be at least one, and their product is at most
48  * raid_disks.
49  *
50  * If far_offset is true, then the far_copies are handled a bit differently.
51  * The copies are still in different stripes, but instead of be very far apart
52  * on disk, there are adjacent stripes.
53  */
54
55 /*
56  * Number of guaranteed r10bios in case of extreme VM load:
57  */
58 #define NR_RAID10_BIOS 256
59
60 static void unplug_slaves(mddev_t *mddev);
61
62 static void allow_barrier(conf_t *conf);
63 static void lower_barrier(conf_t *conf);
64
65 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
66 {
67         conf_t *conf = data;
68         r10bio_t *r10_bio;
69         int size = offsetof(struct r10bio_s, devs[conf->copies]);
70
71         /* allocate a r10bio with room for raid_disks entries in the bios array */
72         r10_bio = kzalloc(size, gfp_flags);
73         if (!r10_bio && conf->mddev)
74                 unplug_slaves(conf->mddev);
75
76         return r10_bio;
77 }
78
79 static void r10bio_pool_free(void *r10_bio, void *data)
80 {
81         kfree(r10_bio);
82 }
83
84 /* Maximum size of each resync request */
85 #define RESYNC_BLOCK_SIZE (64*1024)
86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
87 /* amount of memory to reserve for resync requests */
88 #define RESYNC_WINDOW (1024*1024)
89 /* maximum number of concurrent requests, memory permitting */
90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
91
92 /*
93  * When performing a resync, we need to read and compare, so
94  * we need as many pages are there are copies.
95  * When performing a recovery, we need 2 bios, one for read,
96  * one for write (we recover only one drive per r10buf)
97  *
98  */
99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
100 {
101         conf_t *conf = data;
102         struct page *page;
103         r10bio_t *r10_bio;
104         struct bio *bio;
105         int i, j;
106         int nalloc;
107
108         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
109         if (!r10_bio) {
110                 unplug_slaves(conf->mddev);
111                 return NULL;
112         }
113
114         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
115                 nalloc = conf->copies; /* resync */
116         else
117                 nalloc = 2; /* recovery */
118
119         /*
120          * Allocate bios.
121          */
122         for (j = nalloc ; j-- ; ) {
123                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
124                 if (!bio)
125                         goto out_free_bio;
126                 r10_bio->devs[j].bio = bio;
127         }
128         /*
129          * Allocate RESYNC_PAGES data pages and attach them
130          * where needed.
131          */
132         for (j = 0 ; j < nalloc; j++) {
133                 bio = r10_bio->devs[j].bio;
134                 for (i = 0; i < RESYNC_PAGES; i++) {
135                         page = alloc_page(gfp_flags);
136                         if (unlikely(!page))
137                                 goto out_free_pages;
138
139                         bio->bi_io_vec[i].bv_page = page;
140                 }
141         }
142
143         return r10_bio;
144
145 out_free_pages:
146         for ( ; i > 0 ; i--)
147                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
148         while (j--)
149                 for (i = 0; i < RESYNC_PAGES ; i++)
150                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
151         j = -1;
152 out_free_bio:
153         while ( ++j < nalloc )
154                 bio_put(r10_bio->devs[j].bio);
155         r10bio_pool_free(r10_bio, conf);
156         return NULL;
157 }
158
159 static void r10buf_pool_free(void *__r10_bio, void *data)
160 {
161         int i;
162         conf_t *conf = data;
163         r10bio_t *r10bio = __r10_bio;
164         int j;
165
166         for (j=0; j < conf->copies; j++) {
167                 struct bio *bio = r10bio->devs[j].bio;
168                 if (bio) {
169                         for (i = 0; i < RESYNC_PAGES; i++) {
170                                 safe_put_page(bio->bi_io_vec[i].bv_page);
171                                 bio->bi_io_vec[i].bv_page = NULL;
172                         }
173                         bio_put(bio);
174                 }
175         }
176         r10bio_pool_free(r10bio, conf);
177 }
178
179 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
180 {
181         int i;
182
183         for (i = 0; i < conf->copies; i++) {
184                 struct bio **bio = & r10_bio->devs[i].bio;
185                 if (*bio && *bio != IO_BLOCKED)
186                         bio_put(*bio);
187                 *bio = NULL;
188         }
189 }
190
191 static void free_r10bio(r10bio_t *r10_bio)
192 {
193         conf_t *conf = r10_bio->mddev->private;
194
195         /*
196          * Wake up any possible resync thread that waits for the device
197          * to go idle.
198          */
199         allow_barrier(conf);
200
201         put_all_bios(conf, r10_bio);
202         mempool_free(r10_bio, conf->r10bio_pool);
203 }
204
205 static void put_buf(r10bio_t *r10_bio)
206 {
207         conf_t *conf = r10_bio->mddev->private;
208
209         mempool_free(r10_bio, conf->r10buf_pool);
210
211         lower_barrier(conf);
212 }
213
214 static void reschedule_retry(r10bio_t *r10_bio)
215 {
216         unsigned long flags;
217         mddev_t *mddev = r10_bio->mddev;
218         conf_t *conf = mddev->private;
219
220         spin_lock_irqsave(&conf->device_lock, flags);
221         list_add(&r10_bio->retry_list, &conf->retry_list);
222         conf->nr_queued ++;
223         spin_unlock_irqrestore(&conf->device_lock, flags);
224
225         /* wake up frozen array... */
226         wake_up(&conf->wait_barrier);
227
228         md_wakeup_thread(mddev->thread);
229 }
230
231 /*
232  * raid_end_bio_io() is called when we have finished servicing a mirrored
233  * operation and are ready to return a success/failure code to the buffer
234  * cache layer.
235  */
236 static void raid_end_bio_io(r10bio_t *r10_bio)
237 {
238         struct bio *bio = r10_bio->master_bio;
239
240         bio_endio(bio,
241                 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242         free_r10bio(r10_bio);
243 }
244
245 /*
246  * Update disk head position estimator based on IRQ completion info.
247  */
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 {
250         conf_t *conf = r10_bio->mddev->private;
251
252         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253                 r10_bio->devs[slot].addr + (r10_bio->sectors);
254 }
255
256 static void raid10_end_read_request(struct bio *bio, int error)
257 {
258         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259         r10bio_t *r10_bio = bio->bi_private;
260         int slot, dev;
261         conf_t *conf = r10_bio->mddev->private;
262
263
264         slot = r10_bio->read_slot;
265         dev = r10_bio->devs[slot].devnum;
266         /*
267          * this branch is our 'one mirror IO has finished' event handler:
268          */
269         update_head_pos(slot, r10_bio);
270
271         if (uptodate) {
272                 /*
273                  * Set R10BIO_Uptodate in our master bio, so that
274                  * we will return a good error code to the higher
275                  * levels even if IO on some other mirrored buffer fails.
276                  *
277                  * The 'master' represents the composite IO operation to
278                  * user-side. So if something waits for IO, then it will
279                  * wait for the 'master' bio.
280                  */
281                 set_bit(R10BIO_Uptodate, &r10_bio->state);
282                 raid_end_bio_io(r10_bio);
283         } else {
284                 /*
285                  * oops, read error:
286                  */
287                 char b[BDEVNAME_SIZE];
288                 if (printk_ratelimit())
289                         printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
290                                mdname(conf->mddev),
291                                bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
292                 reschedule_retry(r10_bio);
293         }
294
295         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
296 }
297
298 static void raid10_end_write_request(struct bio *bio, int error)
299 {
300         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
301         r10bio_t *r10_bio = bio->bi_private;
302         int slot, dev;
303         conf_t *conf = r10_bio->mddev->private;
304
305         for (slot = 0; slot < conf->copies; slot++)
306                 if (r10_bio->devs[slot].bio == bio)
307                         break;
308         dev = r10_bio->devs[slot].devnum;
309
310         /*
311          * this branch is our 'one mirror IO has finished' event handler:
312          */
313         if (!uptodate) {
314                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
315                 /* an I/O failed, we can't clear the bitmap */
316                 set_bit(R10BIO_Degraded, &r10_bio->state);
317         } else
318                 /*
319                  * Set R10BIO_Uptodate in our master bio, so that
320                  * we will return a good error code for to the higher
321                  * levels even if IO on some other mirrored buffer fails.
322                  *
323                  * The 'master' represents the composite IO operation to
324                  * user-side. So if something waits for IO, then it will
325                  * wait for the 'master' bio.
326                  */
327                 set_bit(R10BIO_Uptodate, &r10_bio->state);
328
329         update_head_pos(slot, r10_bio);
330
331         /*
332          *
333          * Let's see if all mirrored write operations have finished
334          * already.
335          */
336         if (atomic_dec_and_test(&r10_bio->remaining)) {
337                 /* clear the bitmap if all writes complete successfully */
338                 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
339                                 r10_bio->sectors,
340                                 !test_bit(R10BIO_Degraded, &r10_bio->state),
341                                 0);
342                 md_write_end(r10_bio->mddev);
343                 raid_end_bio_io(r10_bio);
344         }
345
346         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
347 }
348
349
350 /*
351  * RAID10 layout manager
352  * Aswell as the chunksize and raid_disks count, there are two
353  * parameters: near_copies and far_copies.
354  * near_copies * far_copies must be <= raid_disks.
355  * Normally one of these will be 1.
356  * If both are 1, we get raid0.
357  * If near_copies == raid_disks, we get raid1.
358  *
359  * Chunks are layed out in raid0 style with near_copies copies of the
360  * first chunk, followed by near_copies copies of the next chunk and
361  * so on.
362  * If far_copies > 1, then after 1/far_copies of the array has been assigned
363  * as described above, we start again with a device offset of near_copies.
364  * So we effectively have another copy of the whole array further down all
365  * the drives, but with blocks on different drives.
366  * With this layout, and block is never stored twice on the one device.
367  *
368  * raid10_find_phys finds the sector offset of a given virtual sector
369  * on each device that it is on.
370  *
371  * raid10_find_virt does the reverse mapping, from a device and a
372  * sector offset to a virtual address
373  */
374
375 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
376 {
377         int n,f;
378         sector_t sector;
379         sector_t chunk;
380         sector_t stripe;
381         int dev;
382
383         int slot = 0;
384
385         /* now calculate first sector/dev */
386         chunk = r10bio->sector >> conf->chunk_shift;
387         sector = r10bio->sector & conf->chunk_mask;
388
389         chunk *= conf->near_copies;
390         stripe = chunk;
391         dev = sector_div(stripe, conf->raid_disks);
392         if (conf->far_offset)
393                 stripe *= conf->far_copies;
394
395         sector += stripe << conf->chunk_shift;
396
397         /* and calculate all the others */
398         for (n=0; n < conf->near_copies; n++) {
399                 int d = dev;
400                 sector_t s = sector;
401                 r10bio->devs[slot].addr = sector;
402                 r10bio->devs[slot].devnum = d;
403                 slot++;
404
405                 for (f = 1; f < conf->far_copies; f++) {
406                         d += conf->near_copies;
407                         if (d >= conf->raid_disks)
408                                 d -= conf->raid_disks;
409                         s += conf->stride;
410                         r10bio->devs[slot].devnum = d;
411                         r10bio->devs[slot].addr = s;
412                         slot++;
413                 }
414                 dev++;
415                 if (dev >= conf->raid_disks) {
416                         dev = 0;
417                         sector += (conf->chunk_mask + 1);
418                 }
419         }
420         BUG_ON(slot != conf->copies);
421 }
422
423 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
424 {
425         sector_t offset, chunk, vchunk;
426
427         offset = sector & conf->chunk_mask;
428         if (conf->far_offset) {
429                 int fc;
430                 chunk = sector >> conf->chunk_shift;
431                 fc = sector_div(chunk, conf->far_copies);
432                 dev -= fc * conf->near_copies;
433                 if (dev < 0)
434                         dev += conf->raid_disks;
435         } else {
436                 while (sector >= conf->stride) {
437                         sector -= conf->stride;
438                         if (dev < conf->near_copies)
439                                 dev += conf->raid_disks - conf->near_copies;
440                         else
441                                 dev -= conf->near_copies;
442                 }
443                 chunk = sector >> conf->chunk_shift;
444         }
445         vchunk = chunk * conf->raid_disks + dev;
446         sector_div(vchunk, conf->near_copies);
447         return (vchunk << conf->chunk_shift) + offset;
448 }
449
450 /**
451  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
452  *      @q: request queue
453  *      @bvm: properties of new bio
454  *      @biovec: the request that could be merged to it.
455  *
456  *      Return amount of bytes we can accept at this offset
457  *      If near_copies == raid_disk, there are no striping issues,
458  *      but in that case, the function isn't called at all.
459  */
460 static int raid10_mergeable_bvec(struct request_queue *q,
461                                  struct bvec_merge_data *bvm,
462                                  struct bio_vec *biovec)
463 {
464         mddev_t *mddev = q->queuedata;
465         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
466         int max;
467         unsigned int chunk_sectors = mddev->chunk_sectors;
468         unsigned int bio_sectors = bvm->bi_size >> 9;
469
470         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
471         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
472         if (max <= biovec->bv_len && bio_sectors == 0)
473                 return biovec->bv_len;
474         else
475                 return max;
476 }
477
478 /*
479  * This routine returns the disk from which the requested read should
480  * be done. There is a per-array 'next expected sequential IO' sector
481  * number - if this matches on the next IO then we use the last disk.
482  * There is also a per-disk 'last know head position' sector that is
483  * maintained from IRQ contexts, both the normal and the resync IO
484  * completion handlers update this position correctly. If there is no
485  * perfect sequential match then we pick the disk whose head is closest.
486  *
487  * If there are 2 mirrors in the same 2 devices, performance degrades
488  * because position is mirror, not device based.
489  *
490  * The rdev for the device selected will have nr_pending incremented.
491  */
492
493 /*
494  * FIXME: possibly should rethink readbalancing and do it differently
495  * depending on near_copies / far_copies geometry.
496  */
497 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
498 {
499         const sector_t this_sector = r10_bio->sector;
500         int disk, slot, nslot;
501         const int sectors = r10_bio->sectors;
502         sector_t new_distance, current_distance;
503         mdk_rdev_t *rdev;
504
505         raid10_find_phys(conf, r10_bio);
506         rcu_read_lock();
507         /*
508          * Check if we can balance. We can balance on the whole
509          * device if no resync is going on (recovery is ok), or below
510          * the resync window. We take the first readable disk when
511          * above the resync window.
512          */
513         if (conf->mddev->recovery_cp < MaxSector
514             && (this_sector + sectors >= conf->next_resync)) {
515                 /* make sure that disk is operational */
516                 slot = 0;
517                 disk = r10_bio->devs[slot].devnum;
518
519                 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
520                        r10_bio->devs[slot].bio == IO_BLOCKED ||
521                        !test_bit(In_sync, &rdev->flags)) {
522                         slot++;
523                         if (slot == conf->copies) {
524                                 slot = 0;
525                                 disk = -1;
526                                 break;
527                         }
528                         disk = r10_bio->devs[slot].devnum;
529                 }
530                 goto rb_out;
531         }
532
533
534         /* make sure the disk is operational */
535         slot = 0;
536         disk = r10_bio->devs[slot].devnum;
537         while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
538                r10_bio->devs[slot].bio == IO_BLOCKED ||
539                !test_bit(In_sync, &rdev->flags)) {
540                 slot ++;
541                 if (slot == conf->copies) {
542                         disk = -1;
543                         goto rb_out;
544                 }
545                 disk = r10_bio->devs[slot].devnum;
546         }
547
548
549         current_distance = abs(r10_bio->devs[slot].addr -
550                                conf->mirrors[disk].head_position);
551
552         /* Find the disk whose head is closest,
553          * or - for far > 1 - find the closest to partition beginning */
554
555         for (nslot = slot; nslot < conf->copies; nslot++) {
556                 int ndisk = r10_bio->devs[nslot].devnum;
557
558
559                 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
560                     r10_bio->devs[nslot].bio == IO_BLOCKED ||
561                     !test_bit(In_sync, &rdev->flags))
562                         continue;
563
564                 /* This optimisation is debatable, and completely destroys
565                  * sequential read speed for 'far copies' arrays.  So only
566                  * keep it for 'near' arrays, and review those later.
567                  */
568                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
569                         disk = ndisk;
570                         slot = nslot;
571                         break;
572                 }
573
574                 /* for far > 1 always use the lowest address */
575                 if (conf->far_copies > 1)
576                         new_distance = r10_bio->devs[nslot].addr;
577                 else
578                         new_distance = abs(r10_bio->devs[nslot].addr -
579                                            conf->mirrors[ndisk].head_position);
580                 if (new_distance < current_distance) {
581                         current_distance = new_distance;
582                         disk = ndisk;
583                         slot = nslot;
584                 }
585         }
586
587 rb_out:
588         r10_bio->read_slot = slot;
589 /*      conf->next_seq_sect = this_sector + sectors;*/
590
591         if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
592                 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
593         else
594                 disk = -1;
595         rcu_read_unlock();
596
597         return disk;
598 }
599
600 static void unplug_slaves(mddev_t *mddev)
601 {
602         conf_t *conf = mddev->private;
603         int i;
604
605         rcu_read_lock();
606         for (i=0; i < conf->raid_disks; i++) {
607                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
608                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
609                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
610
611                         atomic_inc(&rdev->nr_pending);
612                         rcu_read_unlock();
613
614                         blk_unplug(r_queue);
615
616                         rdev_dec_pending(rdev, mddev);
617                         rcu_read_lock();
618                 }
619         }
620         rcu_read_unlock();
621 }
622
623 static void raid10_unplug(struct request_queue *q)
624 {
625         mddev_t *mddev = q->queuedata;
626
627         unplug_slaves(q->queuedata);
628         md_wakeup_thread(mddev->thread);
629 }
630
631 static int raid10_congested(void *data, int bits)
632 {
633         mddev_t *mddev = data;
634         conf_t *conf = mddev->private;
635         int i, ret = 0;
636
637         if (mddev_congested(mddev, bits))
638                 return 1;
639         rcu_read_lock();
640         for (i = 0; i < conf->raid_disks && ret == 0; i++) {
641                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
642                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
643                         struct request_queue *q = bdev_get_queue(rdev->bdev);
644
645                         ret |= bdi_congested(&q->backing_dev_info, bits);
646                 }
647         }
648         rcu_read_unlock();
649         return ret;
650 }
651
652 static int flush_pending_writes(conf_t *conf)
653 {
654         /* Any writes that have been queued but are awaiting
655          * bitmap updates get flushed here.
656          * We return 1 if any requests were actually submitted.
657          */
658         int rv = 0;
659
660         spin_lock_irq(&conf->device_lock);
661
662         if (conf->pending_bio_list.head) {
663                 struct bio *bio;
664                 bio = bio_list_get(&conf->pending_bio_list);
665                 /* Spinlock only taken to quiet a warning */
666                 spin_lock(conf->mddev->queue->queue_lock);
667                 blk_remove_plug(conf->mddev->queue);
668                 spin_unlock(conf->mddev->queue->queue_lock);
669                 spin_unlock_irq(&conf->device_lock);
670                 /* flush any pending bitmap writes to disk
671                  * before proceeding w/ I/O */
672                 bitmap_unplug(conf->mddev->bitmap);
673
674                 while (bio) { /* submit pending writes */
675                         struct bio *next = bio->bi_next;
676                         bio->bi_next = NULL;
677                         generic_make_request(bio);
678                         bio = next;
679                 }
680                 rv = 1;
681         } else
682                 spin_unlock_irq(&conf->device_lock);
683         return rv;
684 }
685 /* Barriers....
686  * Sometimes we need to suspend IO while we do something else,
687  * either some resync/recovery, or reconfigure the array.
688  * To do this we raise a 'barrier'.
689  * The 'barrier' is a counter that can be raised multiple times
690  * to count how many activities are happening which preclude
691  * normal IO.
692  * We can only raise the barrier if there is no pending IO.
693  * i.e. if nr_pending == 0.
694  * We choose only to raise the barrier if no-one is waiting for the
695  * barrier to go down.  This means that as soon as an IO request
696  * is ready, no other operations which require a barrier will start
697  * until the IO request has had a chance.
698  *
699  * So: regular IO calls 'wait_barrier'.  When that returns there
700  *    is no backgroup IO happening,  It must arrange to call
701  *    allow_barrier when it has finished its IO.
702  * backgroup IO calls must call raise_barrier.  Once that returns
703  *    there is no normal IO happeing.  It must arrange to call
704  *    lower_barrier when the particular background IO completes.
705  */
706
707 static void raise_barrier(conf_t *conf, int force)
708 {
709         BUG_ON(force && !conf->barrier);
710         spin_lock_irq(&conf->resync_lock);
711
712         /* Wait until no block IO is waiting (unless 'force') */
713         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
714                             conf->resync_lock,
715                             raid10_unplug(conf->mddev->queue));
716
717         /* block any new IO from starting */
718         conf->barrier++;
719
720         /* No wait for all pending IO to complete */
721         wait_event_lock_irq(conf->wait_barrier,
722                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
723                             conf->resync_lock,
724                             raid10_unplug(conf->mddev->queue));
725
726         spin_unlock_irq(&conf->resync_lock);
727 }
728
729 static void lower_barrier(conf_t *conf)
730 {
731         unsigned long flags;
732         spin_lock_irqsave(&conf->resync_lock, flags);
733         conf->barrier--;
734         spin_unlock_irqrestore(&conf->resync_lock, flags);
735         wake_up(&conf->wait_barrier);
736 }
737
738 static void wait_barrier(conf_t *conf)
739 {
740         spin_lock_irq(&conf->resync_lock);
741         if (conf->barrier) {
742                 conf->nr_waiting++;
743                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
744                                     conf->resync_lock,
745                                     raid10_unplug(conf->mddev->queue));
746                 conf->nr_waiting--;
747         }
748         conf->nr_pending++;
749         spin_unlock_irq(&conf->resync_lock);
750 }
751
752 static void allow_barrier(conf_t *conf)
753 {
754         unsigned long flags;
755         spin_lock_irqsave(&conf->resync_lock, flags);
756         conf->nr_pending--;
757         spin_unlock_irqrestore(&conf->resync_lock, flags);
758         wake_up(&conf->wait_barrier);
759 }
760
761 static void freeze_array(conf_t *conf)
762 {
763         /* stop syncio and normal IO and wait for everything to
764          * go quiet.
765          * We increment barrier and nr_waiting, and then
766          * wait until nr_pending match nr_queued+1
767          * This is called in the context of one normal IO request
768          * that has failed. Thus any sync request that might be pending
769          * will be blocked by nr_pending, and we need to wait for
770          * pending IO requests to complete or be queued for re-try.
771          * Thus the number queued (nr_queued) plus this request (1)
772          * must match the number of pending IOs (nr_pending) before
773          * we continue.
774          */
775         spin_lock_irq(&conf->resync_lock);
776         conf->barrier++;
777         conf->nr_waiting++;
778         wait_event_lock_irq(conf->wait_barrier,
779                             conf->nr_pending == conf->nr_queued+1,
780                             conf->resync_lock,
781                             ({ flush_pending_writes(conf);
782                                raid10_unplug(conf->mddev->queue); }));
783         spin_unlock_irq(&conf->resync_lock);
784 }
785
786 static void unfreeze_array(conf_t *conf)
787 {
788         /* reverse the effect of the freeze */
789         spin_lock_irq(&conf->resync_lock);
790         conf->barrier--;
791         conf->nr_waiting--;
792         wake_up(&conf->wait_barrier);
793         spin_unlock_irq(&conf->resync_lock);
794 }
795
796 static int make_request(mddev_t *mddev, struct bio * bio)
797 {
798         conf_t *conf = mddev->private;
799         mirror_info_t *mirror;
800         r10bio_t *r10_bio;
801         struct bio *read_bio;
802         int i;
803         int chunk_sects = conf->chunk_mask + 1;
804         const int rw = bio_data_dir(bio);
805         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
806         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
807         unsigned long flags;
808         mdk_rdev_t *blocked_rdev;
809
810         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
811                 md_flush_request(mddev, bio);
812                 return 0;
813         }
814
815         /* If this request crosses a chunk boundary, we need to
816          * split it.  This will only happen for 1 PAGE (or less) requests.
817          */
818         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
819                       > chunk_sects &&
820                     conf->near_copies < conf->raid_disks)) {
821                 struct bio_pair *bp;
822                 /* Sanity check -- queue functions should prevent this happening */
823                 if (bio->bi_vcnt != 1 ||
824                     bio->bi_idx != 0)
825                         goto bad_map;
826                 /* This is a one page bio that upper layers
827                  * refuse to split for us, so we need to split it.
828                  */
829                 bp = bio_split(bio,
830                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
831
832                 /* Each of these 'make_request' calls will call 'wait_barrier'.
833                  * If the first succeeds but the second blocks due to the resync
834                  * thread raising the barrier, we will deadlock because the
835                  * IO to the underlying device will be queued in generic_make_request
836                  * and will never complete, so will never reduce nr_pending.
837                  * So increment nr_waiting here so no new raise_barriers will
838                  * succeed, and so the second wait_barrier cannot block.
839                  */
840                 spin_lock_irq(&conf->resync_lock);
841                 conf->nr_waiting++;
842                 spin_unlock_irq(&conf->resync_lock);
843
844                 if (make_request(mddev, &bp->bio1))
845                         generic_make_request(&bp->bio1);
846                 if (make_request(mddev, &bp->bio2))
847                         generic_make_request(&bp->bio2);
848
849                 spin_lock_irq(&conf->resync_lock);
850                 conf->nr_waiting--;
851                 wake_up(&conf->wait_barrier);
852                 spin_unlock_irq(&conf->resync_lock);
853
854                 bio_pair_release(bp);
855                 return 0;
856         bad_map:
857                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
858                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
859                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
860
861                 bio_io_error(bio);
862                 return 0;
863         }
864
865         md_write_start(mddev, bio);
866
867         /*
868          * Register the new request and wait if the reconstruction
869          * thread has put up a bar for new requests.
870          * Continue immediately if no resync is active currently.
871          */
872         wait_barrier(conf);
873
874         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
875
876         r10_bio->master_bio = bio;
877         r10_bio->sectors = bio->bi_size >> 9;
878
879         r10_bio->mddev = mddev;
880         r10_bio->sector = bio->bi_sector;
881         r10_bio->state = 0;
882
883         if (rw == READ) {
884                 /*
885                  * read balancing logic:
886                  */
887                 int disk = read_balance(conf, r10_bio);
888                 int slot = r10_bio->read_slot;
889                 if (disk < 0) {
890                         raid_end_bio_io(r10_bio);
891                         return 0;
892                 }
893                 mirror = conf->mirrors + disk;
894
895                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
896
897                 r10_bio->devs[slot].bio = read_bio;
898
899                 read_bio->bi_sector = r10_bio->devs[slot].addr +
900                         mirror->rdev->data_offset;
901                 read_bio->bi_bdev = mirror->rdev->bdev;
902                 read_bio->bi_end_io = raid10_end_read_request;
903                 read_bio->bi_rw = READ | do_sync;
904                 read_bio->bi_private = r10_bio;
905
906                 generic_make_request(read_bio);
907                 return 0;
908         }
909
910         /*
911          * WRITE:
912          */
913         /* first select target devices under rcu_lock and
914          * inc refcount on their rdev.  Record them by setting
915          * bios[x] to bio
916          */
917         raid10_find_phys(conf, r10_bio);
918  retry_write:
919         blocked_rdev = NULL;
920         rcu_read_lock();
921         for (i = 0;  i < conf->copies; i++) {
922                 int d = r10_bio->devs[i].devnum;
923                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
924                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
925                         atomic_inc(&rdev->nr_pending);
926                         blocked_rdev = rdev;
927                         break;
928                 }
929                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
930                         atomic_inc(&rdev->nr_pending);
931                         r10_bio->devs[i].bio = bio;
932                 } else {
933                         r10_bio->devs[i].bio = NULL;
934                         set_bit(R10BIO_Degraded, &r10_bio->state);
935                 }
936         }
937         rcu_read_unlock();
938
939         if (unlikely(blocked_rdev)) {
940                 /* Have to wait for this device to get unblocked, then retry */
941                 int j;
942                 int d;
943
944                 for (j = 0; j < i; j++)
945                         if (r10_bio->devs[j].bio) {
946                                 d = r10_bio->devs[j].devnum;
947                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
948                         }
949                 allow_barrier(conf);
950                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
951                 wait_barrier(conf);
952                 goto retry_write;
953         }
954
955         atomic_set(&r10_bio->remaining, 1);
956         bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
957
958         for (i = 0; i < conf->copies; i++) {
959                 struct bio *mbio;
960                 int d = r10_bio->devs[i].devnum;
961                 if (!r10_bio->devs[i].bio)
962                         continue;
963
964                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
965                 r10_bio->devs[i].bio = mbio;
966
967                 mbio->bi_sector = r10_bio->devs[i].addr+
968                         conf->mirrors[d].rdev->data_offset;
969                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
970                 mbio->bi_end_io = raid10_end_write_request;
971                 mbio->bi_rw = WRITE | do_sync | do_fua;
972                 mbio->bi_private = r10_bio;
973
974                 atomic_inc(&r10_bio->remaining);
975                 spin_lock_irqsave(&conf->device_lock, flags);
976                 bio_list_add(&conf->pending_bio_list, mbio);
977                 blk_plug_device_unlocked(mddev->queue);
978                 spin_unlock_irqrestore(&conf->device_lock, flags);
979         }
980
981         if (atomic_dec_and_test(&r10_bio->remaining)) {
982                 /* This matches the end of raid10_end_write_request() */
983                 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
984                                 r10_bio->sectors,
985                                 !test_bit(R10BIO_Degraded, &r10_bio->state),
986                                 0);
987                 md_write_end(mddev);
988                 raid_end_bio_io(r10_bio);
989         }
990
991         /* In case raid10d snuck in to freeze_array */
992         wake_up(&conf->wait_barrier);
993
994         if (do_sync)
995                 md_wakeup_thread(mddev->thread);
996
997         return 0;
998 }
999
1000 static void status(struct seq_file *seq, mddev_t *mddev)
1001 {
1002         conf_t *conf = mddev->private;
1003         int i;
1004
1005         if (conf->near_copies < conf->raid_disks)
1006                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1007         if (conf->near_copies > 1)
1008                 seq_printf(seq, " %d near-copies", conf->near_copies);
1009         if (conf->far_copies > 1) {
1010                 if (conf->far_offset)
1011                         seq_printf(seq, " %d offset-copies", conf->far_copies);
1012                 else
1013                         seq_printf(seq, " %d far-copies", conf->far_copies);
1014         }
1015         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1016                                         conf->raid_disks - mddev->degraded);
1017         for (i = 0; i < conf->raid_disks; i++)
1018                 seq_printf(seq, "%s",
1019                               conf->mirrors[i].rdev &&
1020                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1021         seq_printf(seq, "]");
1022 }
1023
1024 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1025 {
1026         char b[BDEVNAME_SIZE];
1027         conf_t *conf = mddev->private;
1028
1029         /*
1030          * If it is not operational, then we have already marked it as dead
1031          * else if it is the last working disks, ignore the error, let the
1032          * next level up know.
1033          * else mark the drive as failed
1034          */
1035         if (test_bit(In_sync, &rdev->flags)
1036             && conf->raid_disks-mddev->degraded == 1)
1037                 /*
1038                  * Don't fail the drive, just return an IO error.
1039                  * The test should really be more sophisticated than
1040                  * "working_disks == 1", but it isn't critical, and
1041                  * can wait until we do more sophisticated "is the drive
1042                  * really dead" tests...
1043                  */
1044                 return;
1045         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1046                 unsigned long flags;
1047                 spin_lock_irqsave(&conf->device_lock, flags);
1048                 mddev->degraded++;
1049                 spin_unlock_irqrestore(&conf->device_lock, flags);
1050                 /*
1051                  * if recovery is running, make sure it aborts.
1052                  */
1053                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1054         }
1055         set_bit(Faulty, &rdev->flags);
1056         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1057         printk(KERN_ALERT
1058                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1059                "md/raid10:%s: Operation continuing on %d devices.\n",
1060                mdname(mddev), bdevname(rdev->bdev, b),
1061                mdname(mddev), conf->raid_disks - mddev->degraded);
1062 }
1063
1064 static void print_conf(conf_t *conf)
1065 {
1066         int i;
1067         mirror_info_t *tmp;
1068
1069         printk(KERN_DEBUG "RAID10 conf printout:\n");
1070         if (!conf) {
1071                 printk(KERN_DEBUG "(!conf)\n");
1072                 return;
1073         }
1074         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1075                 conf->raid_disks);
1076
1077         for (i = 0; i < conf->raid_disks; i++) {
1078                 char b[BDEVNAME_SIZE];
1079                 tmp = conf->mirrors + i;
1080                 if (tmp->rdev)
1081                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1082                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1083                                 !test_bit(Faulty, &tmp->rdev->flags),
1084                                 bdevname(tmp->rdev->bdev,b));
1085         }
1086 }
1087
1088 static void close_sync(conf_t *conf)
1089 {
1090         wait_barrier(conf);
1091         allow_barrier(conf);
1092
1093         mempool_destroy(conf->r10buf_pool);
1094         conf->r10buf_pool = NULL;
1095 }
1096
1097 /* check if there are enough drives for
1098  * every block to appear on atleast one
1099  */
1100 static int enough(conf_t *conf)
1101 {
1102         int first = 0;
1103
1104         do {
1105                 int n = conf->copies;
1106                 int cnt = 0;
1107                 while (n--) {
1108                         if (conf->mirrors[first].rdev)
1109                                 cnt++;
1110                         first = (first+1) % conf->raid_disks;
1111                 }
1112                 if (cnt == 0)
1113                         return 0;
1114         } while (first != 0);
1115         return 1;
1116 }
1117
1118 static int raid10_spare_active(mddev_t *mddev)
1119 {
1120         int i;
1121         conf_t *conf = mddev->private;
1122         mirror_info_t *tmp;
1123         int count = 0;
1124         unsigned long flags;
1125
1126         /*
1127          * Find all non-in_sync disks within the RAID10 configuration
1128          * and mark them in_sync
1129          */
1130         for (i = 0; i < conf->raid_disks; i++) {
1131                 tmp = conf->mirrors + i;
1132                 if (tmp->rdev
1133                     && !test_bit(Faulty, &tmp->rdev->flags)
1134                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1135                         count++;
1136                         sysfs_notify_dirent(tmp->rdev->sysfs_state);
1137                 }
1138         }
1139         spin_lock_irqsave(&conf->device_lock, flags);
1140         mddev->degraded -= count;
1141         spin_unlock_irqrestore(&conf->device_lock, flags);
1142
1143         print_conf(conf);
1144         return count;
1145 }
1146
1147
1148 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1149 {
1150         conf_t *conf = mddev->private;
1151         int err = -EEXIST;
1152         int mirror;
1153         mirror_info_t *p;
1154         int first = 0;
1155         int last = conf->raid_disks - 1;
1156
1157         if (mddev->recovery_cp < MaxSector)
1158                 /* only hot-add to in-sync arrays, as recovery is
1159                  * very different from resync
1160                  */
1161                 return -EBUSY;
1162         if (!enough(conf))
1163                 return -EINVAL;
1164
1165         if (rdev->raid_disk >= 0)
1166                 first = last = rdev->raid_disk;
1167
1168         if (rdev->saved_raid_disk >= 0 &&
1169             rdev->saved_raid_disk >= first &&
1170             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1171                 mirror = rdev->saved_raid_disk;
1172         else
1173                 mirror = first;
1174         for ( ; mirror <= last ; mirror++)
1175                 if ( !(p=conf->mirrors+mirror)->rdev) {
1176
1177                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1178                                           rdev->data_offset << 9);
1179                         /* as we don't honour merge_bvec_fn, we must
1180                          * never risk violating it, so limit
1181                          * ->max_segments to one lying with a single
1182                          * page, as a one page request is never in
1183                          * violation.
1184                          */
1185                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1186                                 blk_queue_max_segments(mddev->queue, 1);
1187                                 blk_queue_segment_boundary(mddev->queue,
1188                                                            PAGE_CACHE_SIZE - 1);
1189                         }
1190
1191                         p->head_position = 0;
1192                         rdev->raid_disk = mirror;
1193                         err = 0;
1194                         if (rdev->saved_raid_disk != mirror)
1195                                 conf->fullsync = 1;
1196                         rcu_assign_pointer(p->rdev, rdev);
1197                         break;
1198                 }
1199
1200         md_integrity_add_rdev(rdev, mddev);
1201         print_conf(conf);
1202         return err;
1203 }
1204
1205 static int raid10_remove_disk(mddev_t *mddev, int number)
1206 {
1207         conf_t *conf = mddev->private;
1208         int err = 0;
1209         mdk_rdev_t *rdev;
1210         mirror_info_t *p = conf->mirrors+ number;
1211
1212         print_conf(conf);
1213         rdev = p->rdev;
1214         if (rdev) {
1215                 if (test_bit(In_sync, &rdev->flags) ||
1216                     atomic_read(&rdev->nr_pending)) {
1217                         err = -EBUSY;
1218                         goto abort;
1219                 }
1220                 /* Only remove faulty devices in recovery
1221                  * is not possible.
1222                  */
1223                 if (!test_bit(Faulty, &rdev->flags) &&
1224                     enough(conf)) {
1225                         err = -EBUSY;
1226                         goto abort;
1227                 }
1228                 p->rdev = NULL;
1229                 synchronize_rcu();
1230                 if (atomic_read(&rdev->nr_pending)) {
1231                         /* lost the race, try later */
1232                         err = -EBUSY;
1233                         p->rdev = rdev;
1234                         goto abort;
1235                 }
1236                 md_integrity_register(mddev);
1237         }
1238 abort:
1239
1240         print_conf(conf);
1241         return err;
1242 }
1243
1244
1245 static void end_sync_read(struct bio *bio, int error)
1246 {
1247         r10bio_t *r10_bio = bio->bi_private;
1248         conf_t *conf = r10_bio->mddev->private;
1249         int i,d;
1250
1251         for (i=0; i<conf->copies; i++)
1252                 if (r10_bio->devs[i].bio == bio)
1253                         break;
1254         BUG_ON(i == conf->copies);
1255         update_head_pos(i, r10_bio);
1256         d = r10_bio->devs[i].devnum;
1257
1258         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1259                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1260         else {
1261                 atomic_add(r10_bio->sectors,
1262                            &conf->mirrors[d].rdev->corrected_errors);
1263                 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1264                         md_error(r10_bio->mddev,
1265                                  conf->mirrors[d].rdev);
1266         }
1267
1268         /* for reconstruct, we always reschedule after a read.
1269          * for resync, only after all reads
1270          */
1271         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1272         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1273             atomic_dec_and_test(&r10_bio->remaining)) {
1274                 /* we have read all the blocks,
1275                  * do the comparison in process context in raid10d
1276                  */
1277                 reschedule_retry(r10_bio);
1278         }
1279 }
1280
1281 static void end_sync_write(struct bio *bio, int error)
1282 {
1283         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1284         r10bio_t *r10_bio = bio->bi_private;
1285         mddev_t *mddev = r10_bio->mddev;
1286         conf_t *conf = mddev->private;
1287         int i,d;
1288
1289         for (i = 0; i < conf->copies; i++)
1290                 if (r10_bio->devs[i].bio == bio)
1291                         break;
1292         d = r10_bio->devs[i].devnum;
1293
1294         if (!uptodate)
1295                 md_error(mddev, conf->mirrors[d].rdev);
1296
1297         update_head_pos(i, r10_bio);
1298
1299         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1300         while (atomic_dec_and_test(&r10_bio->remaining)) {
1301                 if (r10_bio->master_bio == NULL) {
1302                         /* the primary of several recovery bios */
1303                         sector_t s = r10_bio->sectors;
1304                         put_buf(r10_bio);
1305                         md_done_sync(mddev, s, 1);
1306                         break;
1307                 } else {
1308                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1309                         put_buf(r10_bio);
1310                         r10_bio = r10_bio2;
1311                 }
1312         }
1313 }
1314
1315 /*
1316  * Note: sync and recover and handled very differently for raid10
1317  * This code is for resync.
1318  * For resync, we read through virtual addresses and read all blocks.
1319  * If there is any error, we schedule a write.  The lowest numbered
1320  * drive is authoritative.
1321  * However requests come for physical address, so we need to map.
1322  * For every physical address there are raid_disks/copies virtual addresses,
1323  * which is always are least one, but is not necessarly an integer.
1324  * This means that a physical address can span multiple chunks, so we may
1325  * have to submit multiple io requests for a single sync request.
1326  */
1327 /*
1328  * We check if all blocks are in-sync and only write to blocks that
1329  * aren't in sync
1330  */
1331 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1332 {
1333         conf_t *conf = mddev->private;
1334         int i, first;
1335         struct bio *tbio, *fbio;
1336
1337         atomic_set(&r10_bio->remaining, 1);
1338
1339         /* find the first device with a block */
1340         for (i=0; i<conf->copies; i++)
1341                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1342                         break;
1343
1344         if (i == conf->copies)
1345                 goto done;
1346
1347         first = i;
1348         fbio = r10_bio->devs[i].bio;
1349
1350         /* now find blocks with errors */
1351         for (i=0 ; i < conf->copies ; i++) {
1352                 int  j, d;
1353                 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1354
1355                 tbio = r10_bio->devs[i].bio;
1356
1357                 if (tbio->bi_end_io != end_sync_read)
1358                         continue;
1359                 if (i == first)
1360                         continue;
1361                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1362                         /* We know that the bi_io_vec layout is the same for
1363                          * both 'first' and 'i', so we just compare them.
1364                          * All vec entries are PAGE_SIZE;
1365                          */
1366                         for (j = 0; j < vcnt; j++)
1367                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1368                                            page_address(tbio->bi_io_vec[j].bv_page),
1369                                            PAGE_SIZE))
1370                                         break;
1371                         if (j == vcnt)
1372                                 continue;
1373                         mddev->resync_mismatches += r10_bio->sectors;
1374                 }
1375                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1376                         /* Don't fix anything. */
1377                         continue;
1378                 /* Ok, we need to write this bio
1379                  * First we need to fixup bv_offset, bv_len and
1380                  * bi_vecs, as the read request might have corrupted these
1381                  */
1382                 tbio->bi_vcnt = vcnt;
1383                 tbio->bi_size = r10_bio->sectors << 9;
1384                 tbio->bi_idx = 0;
1385                 tbio->bi_phys_segments = 0;
1386                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1387                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1388                 tbio->bi_next = NULL;
1389                 tbio->bi_rw = WRITE;
1390                 tbio->bi_private = r10_bio;
1391                 tbio->bi_sector = r10_bio->devs[i].addr;
1392
1393                 for (j=0; j < vcnt ; j++) {
1394                         tbio->bi_io_vec[j].bv_offset = 0;
1395                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1396
1397                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1398                                page_address(fbio->bi_io_vec[j].bv_page),
1399                                PAGE_SIZE);
1400                 }
1401                 tbio->bi_end_io = end_sync_write;
1402
1403                 d = r10_bio->devs[i].devnum;
1404                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1405                 atomic_inc(&r10_bio->remaining);
1406                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1407
1408                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1409                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1410                 generic_make_request(tbio);
1411         }
1412
1413 done:
1414         if (atomic_dec_and_test(&r10_bio->remaining)) {
1415                 md_done_sync(mddev, r10_bio->sectors, 1);
1416                 put_buf(r10_bio);
1417         }
1418 }
1419
1420 /*
1421  * Now for the recovery code.
1422  * Recovery happens across physical sectors.
1423  * We recover all non-is_sync drives by finding the virtual address of
1424  * each, and then choose a working drive that also has that virt address.
1425  * There is a separate r10_bio for each non-in_sync drive.
1426  * Only the first two slots are in use. The first for reading,
1427  * The second for writing.
1428  *
1429  */
1430
1431 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1432 {
1433         conf_t *conf = mddev->private;
1434         int i, d;
1435         struct bio *bio, *wbio;
1436
1437
1438         /* move the pages across to the second bio
1439          * and submit the write request
1440          */
1441         bio = r10_bio->devs[0].bio;
1442         wbio = r10_bio->devs[1].bio;
1443         for (i=0; i < wbio->bi_vcnt; i++) {
1444                 struct page *p = bio->bi_io_vec[i].bv_page;
1445                 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1446                 wbio->bi_io_vec[i].bv_page = p;
1447         }
1448         d = r10_bio->devs[1].devnum;
1449
1450         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1451         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1452         if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1453                 generic_make_request(wbio);
1454         else
1455                 bio_endio(wbio, -EIO);
1456 }
1457
1458
1459 /*
1460  * Used by fix_read_error() to decay the per rdev read_errors.
1461  * We halve the read error count for every hour that has elapsed
1462  * since the last recorded read error.
1463  *
1464  */
1465 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1466 {
1467         struct timespec cur_time_mon;
1468         unsigned long hours_since_last;
1469         unsigned int read_errors = atomic_read(&rdev->read_errors);
1470
1471         ktime_get_ts(&cur_time_mon);
1472
1473         if (rdev->last_read_error.tv_sec == 0 &&
1474             rdev->last_read_error.tv_nsec == 0) {
1475                 /* first time we've seen a read error */
1476                 rdev->last_read_error = cur_time_mon;
1477                 return;
1478         }
1479
1480         hours_since_last = (cur_time_mon.tv_sec -
1481                             rdev->last_read_error.tv_sec) / 3600;
1482
1483         rdev->last_read_error = cur_time_mon;
1484
1485         /*
1486          * if hours_since_last is > the number of bits in read_errors
1487          * just set read errors to 0. We do this to avoid
1488          * overflowing the shift of read_errors by hours_since_last.
1489          */
1490         if (hours_since_last >= 8 * sizeof(read_errors))
1491                 atomic_set(&rdev->read_errors, 0);
1492         else
1493                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1494 }
1495
1496 /*
1497  * This is a kernel thread which:
1498  *
1499  *      1.      Retries failed read operations on working mirrors.
1500  *      2.      Updates the raid superblock when problems encounter.
1501  *      3.      Performs writes following reads for array synchronising.
1502  */
1503
1504 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1505 {
1506         int sect = 0; /* Offset from r10_bio->sector */
1507         int sectors = r10_bio->sectors;
1508         mdk_rdev_t*rdev;
1509         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1510         int d = r10_bio->devs[r10_bio->read_slot].devnum;
1511
1512         rcu_read_lock();
1513         rdev = rcu_dereference(conf->mirrors[d].rdev);
1514         if (rdev) { /* If rdev is not NULL */
1515                 char b[BDEVNAME_SIZE];
1516                 int cur_read_error_count = 0;
1517
1518                 bdevname(rdev->bdev, b);
1519
1520                 if (test_bit(Faulty, &rdev->flags)) {
1521                         rcu_read_unlock();
1522                         /* drive has already been failed, just ignore any
1523                            more fix_read_error() attempts */
1524                         return;
1525                 }
1526
1527                 check_decay_read_errors(mddev, rdev);
1528                 atomic_inc(&rdev->read_errors);
1529                 cur_read_error_count = atomic_read(&rdev->read_errors);
1530                 if (cur_read_error_count > max_read_errors) {
1531                         rcu_read_unlock();
1532                         printk(KERN_NOTICE
1533                                "md/raid10:%s: %s: Raid device exceeded "
1534                                "read_error threshold "
1535                                "[cur %d:max %d]\n",
1536                                mdname(mddev),
1537                                b, cur_read_error_count, max_read_errors);
1538                         printk(KERN_NOTICE
1539                                "md/raid10:%s: %s: Failing raid "
1540                                "device\n", mdname(mddev), b);
1541                         md_error(mddev, conf->mirrors[d].rdev);
1542                         return;
1543                 }
1544         }
1545         rcu_read_unlock();
1546
1547         while(sectors) {
1548                 int s = sectors;
1549                 int sl = r10_bio->read_slot;
1550                 int success = 0;
1551                 int start;
1552
1553                 if (s > (PAGE_SIZE>>9))
1554                         s = PAGE_SIZE >> 9;
1555
1556                 rcu_read_lock();
1557                 do {
1558                         d = r10_bio->devs[sl].devnum;
1559                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1560                         if (rdev &&
1561                             test_bit(In_sync, &rdev->flags)) {
1562                                 atomic_inc(&rdev->nr_pending);
1563                                 rcu_read_unlock();
1564                                 success = sync_page_io(rdev,
1565                                                        r10_bio->devs[sl].addr +
1566                                                        sect,
1567                                                        s<<9,
1568                                                        conf->tmppage, READ, false);
1569                                 rdev_dec_pending(rdev, mddev);
1570                                 rcu_read_lock();
1571                                 if (success)
1572                                         break;
1573                         }
1574                         sl++;
1575                         if (sl == conf->copies)
1576                                 sl = 0;
1577                 } while (!success && sl != r10_bio->read_slot);
1578                 rcu_read_unlock();
1579
1580                 if (!success) {
1581                         /* Cannot read from anywhere -- bye bye array */
1582                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1583                         md_error(mddev, conf->mirrors[dn].rdev);
1584                         break;
1585                 }
1586
1587                 start = sl;
1588                 /* write it back and re-read */
1589                 rcu_read_lock();
1590                 while (sl != r10_bio->read_slot) {
1591                         char b[BDEVNAME_SIZE];
1592
1593                         if (sl==0)
1594                                 sl = conf->copies;
1595                         sl--;
1596                         d = r10_bio->devs[sl].devnum;
1597                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1598                         if (rdev &&
1599                             test_bit(In_sync, &rdev->flags)) {
1600                                 atomic_inc(&rdev->nr_pending);
1601                                 rcu_read_unlock();
1602                                 atomic_add(s, &rdev->corrected_errors);
1603                                 if (sync_page_io(rdev,
1604                                                  r10_bio->devs[sl].addr +
1605                                                  sect,
1606                                                  s<<9, conf->tmppage, WRITE, false)
1607                                     == 0) {
1608                                         /* Well, this device is dead */
1609                                         printk(KERN_NOTICE
1610                                                "md/raid10:%s: read correction "
1611                                                "write failed"
1612                                                " (%d sectors at %llu on %s)\n",
1613                                                mdname(mddev), s,
1614                                                (unsigned long long)(sect+
1615                                                rdev->data_offset),
1616                                                bdevname(rdev->bdev, b));
1617                                         printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1618                                                "drive\n",
1619                                                mdname(mddev),
1620                                                bdevname(rdev->bdev, b));
1621                                         md_error(mddev, rdev);
1622                                 }
1623                                 rdev_dec_pending(rdev, mddev);
1624                                 rcu_read_lock();
1625                         }
1626                 }
1627                 sl = start;
1628                 while (sl != r10_bio->read_slot) {
1629
1630                         if (sl==0)
1631                                 sl = conf->copies;
1632                         sl--;
1633                         d = r10_bio->devs[sl].devnum;
1634                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1635                         if (rdev &&
1636                             test_bit(In_sync, &rdev->flags)) {
1637                                 char b[BDEVNAME_SIZE];
1638                                 atomic_inc(&rdev->nr_pending);
1639                                 rcu_read_unlock();
1640                                 if (sync_page_io(rdev,
1641                                                  r10_bio->devs[sl].addr +
1642                                                  sect,
1643                                                  s<<9, conf->tmppage,
1644                                                  READ, false) == 0) {
1645                                         /* Well, this device is dead */
1646                                         printk(KERN_NOTICE
1647                                                "md/raid10:%s: unable to read back "
1648                                                "corrected sectors"
1649                                                " (%d sectors at %llu on %s)\n",
1650                                                mdname(mddev), s,
1651                                                (unsigned long long)(sect+
1652                                                     rdev->data_offset),
1653                                                bdevname(rdev->bdev, b));
1654                                         printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1655                                                mdname(mddev),
1656                                                bdevname(rdev->bdev, b));
1657
1658                                         md_error(mddev, rdev);
1659                                 } else {
1660                                         printk(KERN_INFO
1661                                                "md/raid10:%s: read error corrected"
1662                                                " (%d sectors at %llu on %s)\n",
1663                                                mdname(mddev), s,
1664                                                (unsigned long long)(sect+
1665                                                     rdev->data_offset),
1666                                                bdevname(rdev->bdev, b));
1667                                 }
1668
1669                                 rdev_dec_pending(rdev, mddev);
1670                                 rcu_read_lock();
1671                         }
1672                 }
1673                 rcu_read_unlock();
1674
1675                 sectors -= s;
1676                 sect += s;
1677         }
1678 }
1679
1680 static void raid10d(mddev_t *mddev)
1681 {
1682         r10bio_t *r10_bio;
1683         struct bio *bio;
1684         unsigned long flags;
1685         conf_t *conf = mddev->private;
1686         struct list_head *head = &conf->retry_list;
1687         int unplug=0;
1688         mdk_rdev_t *rdev;
1689
1690         md_check_recovery(mddev);
1691
1692         for (;;) {
1693                 char b[BDEVNAME_SIZE];
1694
1695                 unplug += flush_pending_writes(conf);
1696
1697                 spin_lock_irqsave(&conf->device_lock, flags);
1698                 if (list_empty(head)) {
1699                         spin_unlock_irqrestore(&conf->device_lock, flags);
1700                         break;
1701                 }
1702                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1703                 list_del(head->prev);
1704                 conf->nr_queued--;
1705                 spin_unlock_irqrestore(&conf->device_lock, flags);
1706
1707                 mddev = r10_bio->mddev;
1708                 conf = mddev->private;
1709                 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1710                         sync_request_write(mddev, r10_bio);
1711                         unplug = 1;
1712                 } else  if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1713                         recovery_request_write(mddev, r10_bio);
1714                         unplug = 1;
1715                 } else {
1716                         int mirror;
1717                         /* we got a read error. Maybe the drive is bad.  Maybe just
1718                          * the block and we can fix it.
1719                          * We freeze all other IO, and try reading the block from
1720                          * other devices.  When we find one, we re-write
1721                          * and check it that fixes the read error.
1722                          * This is all done synchronously while the array is
1723                          * frozen.
1724                          */
1725                         if (mddev->ro == 0) {
1726                                 freeze_array(conf);
1727                                 fix_read_error(conf, mddev, r10_bio);
1728                                 unfreeze_array(conf);
1729                         }
1730
1731                         bio = r10_bio->devs[r10_bio->read_slot].bio;
1732                         r10_bio->devs[r10_bio->read_slot].bio =
1733                                 mddev->ro ? IO_BLOCKED : NULL;
1734                         mirror = read_balance(conf, r10_bio);
1735                         if (mirror == -1) {
1736                                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1737                                        " read error for block %llu\n",
1738                                        mdname(mddev),
1739                                        bdevname(bio->bi_bdev,b),
1740                                        (unsigned long long)r10_bio->sector);
1741                                 raid_end_bio_io(r10_bio);
1742                                 bio_put(bio);
1743                         } else {
1744                                 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1745                                 bio_put(bio);
1746                                 rdev = conf->mirrors[mirror].rdev;
1747                                 if (printk_ratelimit())
1748                                         printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1749                                                " another mirror\n",
1750                                                mdname(mddev),
1751                                                bdevname(rdev->bdev,b),
1752                                                (unsigned long long)r10_bio->sector);
1753                                 bio = bio_clone_mddev(r10_bio->master_bio,
1754                                                       GFP_NOIO, mddev);
1755                                 r10_bio->devs[r10_bio->read_slot].bio = bio;
1756                                 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1757                                         + rdev->data_offset;
1758                                 bio->bi_bdev = rdev->bdev;
1759                                 bio->bi_rw = READ | do_sync;
1760                                 bio->bi_private = r10_bio;
1761                                 bio->bi_end_io = raid10_end_read_request;
1762                                 unplug = 1;
1763                                 generic_make_request(bio);
1764                         }
1765                 }
1766                 cond_resched();
1767         }
1768         if (unplug)
1769                 unplug_slaves(mddev);
1770 }
1771
1772
1773 static int init_resync(conf_t *conf)
1774 {
1775         int buffs;
1776
1777         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1778         BUG_ON(conf->r10buf_pool);
1779         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1780         if (!conf->r10buf_pool)
1781                 return -ENOMEM;
1782         conf->next_resync = 0;
1783         return 0;
1784 }
1785
1786 /*
1787  * perform a "sync" on one "block"
1788  *
1789  * We need to make sure that no normal I/O request - particularly write
1790  * requests - conflict with active sync requests.
1791  *
1792  * This is achieved by tracking pending requests and a 'barrier' concept
1793  * that can be installed to exclude normal IO requests.
1794  *
1795  * Resync and recovery are handled very differently.
1796  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1797  *
1798  * For resync, we iterate over virtual addresses, read all copies,
1799  * and update if there are differences.  If only one copy is live,
1800  * skip it.
1801  * For recovery, we iterate over physical addresses, read a good
1802  * value for each non-in_sync drive, and over-write.
1803  *
1804  * So, for recovery we may have several outstanding complex requests for a
1805  * given address, one for each out-of-sync device.  We model this by allocating
1806  * a number of r10_bio structures, one for each out-of-sync device.
1807  * As we setup these structures, we collect all bio's together into a list
1808  * which we then process collectively to add pages, and then process again
1809  * to pass to generic_make_request.
1810  *
1811  * The r10_bio structures are linked using a borrowed master_bio pointer.
1812  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1813  * has its remaining count decremented to 0, the whole complex operation
1814  * is complete.
1815  *
1816  */
1817
1818 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1819 {
1820         conf_t *conf = mddev->private;
1821         r10bio_t *r10_bio;
1822         struct bio *biolist = NULL, *bio;
1823         sector_t max_sector, nr_sectors;
1824         int disk;
1825         int i;
1826         int max_sync;
1827         sector_t sync_blocks;
1828
1829         sector_t sectors_skipped = 0;
1830         int chunks_skipped = 0;
1831
1832         if (!conf->r10buf_pool)
1833                 if (init_resync(conf))
1834                         return 0;
1835
1836  skipped:
1837         max_sector = mddev->dev_sectors;
1838         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1839                 max_sector = mddev->resync_max_sectors;
1840         if (sector_nr >= max_sector) {
1841                 /* If we aborted, we need to abort the
1842                  * sync on the 'current' bitmap chucks (there can
1843                  * be several when recovering multiple devices).
1844                  * as we may have started syncing it but not finished.
1845                  * We can find the current address in
1846                  * mddev->curr_resync, but for recovery,
1847                  * we need to convert that to several
1848                  * virtual addresses.
1849                  */
1850                 if (mddev->curr_resync < max_sector) { /* aborted */
1851                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1852                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1853                                                 &sync_blocks, 1);
1854                         else for (i=0; i<conf->raid_disks; i++) {
1855                                 sector_t sect =
1856                                         raid10_find_virt(conf, mddev->curr_resync, i);
1857                                 bitmap_end_sync(mddev->bitmap, sect,
1858                                                 &sync_blocks, 1);
1859                         }
1860                 } else /* completed sync */
1861                         conf->fullsync = 0;
1862
1863                 bitmap_close_sync(mddev->bitmap);
1864                 close_sync(conf);
1865                 *skipped = 1;
1866                 return sectors_skipped;
1867         }
1868         if (chunks_skipped >= conf->raid_disks) {
1869                 /* if there has been nothing to do on any drive,
1870                  * then there is nothing to do at all..
1871                  */
1872                 *skipped = 1;
1873                 return (max_sector - sector_nr) + sectors_skipped;
1874         }
1875
1876         if (max_sector > mddev->resync_max)
1877                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1878
1879         /* make sure whole request will fit in a chunk - if chunks
1880          * are meaningful
1881          */
1882         if (conf->near_copies < conf->raid_disks &&
1883             max_sector > (sector_nr | conf->chunk_mask))
1884                 max_sector = (sector_nr | conf->chunk_mask) + 1;
1885         /*
1886          * If there is non-resync activity waiting for us then
1887          * put in a delay to throttle resync.
1888          */
1889         if (!go_faster && conf->nr_waiting)
1890                 msleep_interruptible(1000);
1891
1892         /* Again, very different code for resync and recovery.
1893          * Both must result in an r10bio with a list of bios that
1894          * have bi_end_io, bi_sector, bi_bdev set,
1895          * and bi_private set to the r10bio.
1896          * For recovery, we may actually create several r10bios
1897          * with 2 bios in each, that correspond to the bios in the main one.
1898          * In this case, the subordinate r10bios link back through a
1899          * borrowed master_bio pointer, and the counter in the master
1900          * includes a ref from each subordinate.
1901          */
1902         /* First, we decide what to do and set ->bi_end_io
1903          * To end_sync_read if we want to read, and
1904          * end_sync_write if we will want to write.
1905          */
1906
1907         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1908         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1909                 /* recovery... the complicated one */
1910                 int j, k;
1911                 r10_bio = NULL;
1912
1913                 for (i=0 ; i<conf->raid_disks; i++)
1914                         if (conf->mirrors[i].rdev &&
1915                             !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1916                                 int still_degraded = 0;
1917                                 /* want to reconstruct this device */
1918                                 r10bio_t *rb2 = r10_bio;
1919                                 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1920                                 int must_sync;
1921                                 /* Unless we are doing a full sync, we only need
1922                                  * to recover the block if it is set in the bitmap
1923                                  */
1924                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1925                                                               &sync_blocks, 1);
1926                                 if (sync_blocks < max_sync)
1927                                         max_sync = sync_blocks;
1928                                 if (!must_sync &&
1929                                     !conf->fullsync) {
1930                                         /* yep, skip the sync_blocks here, but don't assume
1931                                          * that there will never be anything to do here
1932                                          */
1933                                         chunks_skipped = -1;
1934                                         continue;
1935                                 }
1936
1937                                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1938                                 raise_barrier(conf, rb2 != NULL);
1939                                 atomic_set(&r10_bio->remaining, 0);
1940
1941                                 r10_bio->master_bio = (struct bio*)rb2;
1942                                 if (rb2)
1943                                         atomic_inc(&rb2->remaining);
1944                                 r10_bio->mddev = mddev;
1945                                 set_bit(R10BIO_IsRecover, &r10_bio->state);
1946                                 r10_bio->sector = sect;
1947
1948                                 raid10_find_phys(conf, r10_bio);
1949
1950                                 /* Need to check if the array will still be
1951                                  * degraded
1952                                  */
1953                                 for (j=0; j<conf->raid_disks; j++)
1954                                         if (conf->mirrors[j].rdev == NULL ||
1955                                             test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1956                                                 still_degraded = 1;
1957                                                 break;
1958                                         }
1959
1960                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1961                                                               &sync_blocks, still_degraded);
1962
1963                                 for (j=0; j<conf->copies;j++) {
1964                                         int d = r10_bio->devs[j].devnum;
1965                                         if (conf->mirrors[d].rdev &&
1966                                             test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1967                                                 /* This is where we read from */
1968                                                 bio = r10_bio->devs[0].bio;
1969                                                 bio->bi_next = biolist;
1970                                                 biolist = bio;
1971                                                 bio->bi_private = r10_bio;
1972                                                 bio->bi_end_io = end_sync_read;
1973                                                 bio->bi_rw = READ;
1974                                                 bio->bi_sector = r10_bio->devs[j].addr +
1975                                                         conf->mirrors[d].rdev->data_offset;
1976                                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1977                                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1978                                                 atomic_inc(&r10_bio->remaining);
1979                                                 /* and we write to 'i' */
1980
1981                                                 for (k=0; k<conf->copies; k++)
1982                                                         if (r10_bio->devs[k].devnum == i)
1983                                                                 break;
1984                                                 BUG_ON(k == conf->copies);
1985                                                 bio = r10_bio->devs[1].bio;
1986                                                 bio->bi_next = biolist;
1987                                                 biolist = bio;
1988                                                 bio->bi_private = r10_bio;
1989                                                 bio->bi_end_io = end_sync_write;
1990                                                 bio->bi_rw = WRITE;
1991                                                 bio->bi_sector = r10_bio->devs[k].addr +
1992                                                         conf->mirrors[i].rdev->data_offset;
1993                                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1994
1995                                                 r10_bio->devs[0].devnum = d;
1996                                                 r10_bio->devs[1].devnum = i;
1997
1998                                                 break;
1999                                         }
2000                                 }
2001                                 if (j == conf->copies) {
2002                                         /* Cannot recover, so abort the recovery */
2003                                         put_buf(r10_bio);
2004                                         if (rb2)
2005                                                 atomic_dec(&rb2->remaining);
2006                                         r10_bio = rb2;
2007                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
2008                                                               &mddev->recovery))
2009                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
2010                                                        "working devices for recovery.\n",
2011                                                        mdname(mddev));
2012                                         break;
2013                                 }
2014                         }
2015                 if (biolist == NULL) {
2016                         while (r10_bio) {
2017                                 r10bio_t *rb2 = r10_bio;
2018                                 r10_bio = (r10bio_t*) rb2->master_bio;
2019                                 rb2->master_bio = NULL;
2020                                 put_buf(rb2);
2021                         }
2022                         goto giveup;
2023                 }
2024         } else {
2025                 /* resync. Schedule a read for every block at this virt offset */
2026                 int count = 0;
2027
2028                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2029
2030                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2031                                        &sync_blocks, mddev->degraded) &&
2032                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2033                         /* We can skip this block */
2034                         *skipped = 1;
2035                         return sync_blocks + sectors_skipped;
2036                 }
2037                 if (sync_blocks < max_sync)
2038                         max_sync = sync_blocks;
2039                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2040
2041                 r10_bio->mddev = mddev;
2042                 atomic_set(&r10_bio->remaining, 0);
2043                 raise_barrier(conf, 0);
2044                 conf->next_resync = sector_nr;
2045
2046                 r10_bio->master_bio = NULL;
2047                 r10_bio->sector = sector_nr;
2048                 set_bit(R10BIO_IsSync, &r10_bio->state);
2049                 raid10_find_phys(conf, r10_bio);
2050                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2051
2052                 for (i=0; i<conf->copies; i++) {
2053                         int d = r10_bio->devs[i].devnum;
2054                         bio = r10_bio->devs[i].bio;
2055                         bio->bi_end_io = NULL;
2056                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
2057                         if (conf->mirrors[d].rdev == NULL ||
2058                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2059                                 continue;
2060                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2061                         atomic_inc(&r10_bio->remaining);
2062                         bio->bi_next = biolist;
2063                         biolist = bio;
2064                         bio->bi_private = r10_bio;
2065                         bio->bi_end_io = end_sync_read;
2066                         bio->bi_rw = READ;
2067                         bio->bi_sector = r10_bio->devs[i].addr +
2068                                 conf->mirrors[d].rdev->data_offset;
2069                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2070                         count++;
2071                 }
2072
2073                 if (count < 2) {
2074                         for (i=0; i<conf->copies; i++) {
2075                                 int d = r10_bio->devs[i].devnum;
2076                                 if (r10_bio->devs[i].bio->bi_end_io)
2077                                         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2078                         }
2079                         put_buf(r10_bio);
2080                         biolist = NULL;
2081                         goto giveup;
2082                 }
2083         }
2084
2085         for (bio = biolist; bio ; bio=bio->bi_next) {
2086
2087                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2088                 if (bio->bi_end_io)
2089                         bio->bi_flags |= 1 << BIO_UPTODATE;
2090                 bio->bi_vcnt = 0;
2091                 bio->bi_idx = 0;
2092                 bio->bi_phys_segments = 0;
2093                 bio->bi_size = 0;
2094         }
2095
2096         nr_sectors = 0;
2097         if (sector_nr + max_sync < max_sector)
2098                 max_sector = sector_nr + max_sync;
2099         do {
2100                 struct page *page;
2101                 int len = PAGE_SIZE;
2102                 disk = 0;
2103                 if (sector_nr + (len>>9) > max_sector)
2104                         len = (max_sector - sector_nr) << 9;
2105                 if (len == 0)
2106                         break;
2107                 for (bio= biolist ; bio ; bio=bio->bi_next) {
2108                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2109                         if (bio_add_page(bio, page, len, 0) == 0) {
2110                                 /* stop here */
2111                                 struct bio *bio2;
2112                                 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2113                                 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2114                                         /* remove last page from this bio */
2115                                         bio2->bi_vcnt--;
2116                                         bio2->bi_size -= len;
2117                                         bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2118                                 }
2119                                 goto bio_full;
2120                         }
2121                         disk = i;
2122                 }
2123                 nr_sectors += len>>9;
2124                 sector_nr += len>>9;
2125         } while (biolist->bi_vcnt < RESYNC_PAGES);
2126  bio_full:
2127         r10_bio->sectors = nr_sectors;
2128
2129         while (biolist) {
2130                 bio = biolist;
2131                 biolist = biolist->bi_next;
2132
2133                 bio->bi_next = NULL;
2134                 r10_bio = bio->bi_private;
2135                 r10_bio->sectors = nr_sectors;
2136
2137                 if (bio->bi_end_io == end_sync_read) {
2138                         md_sync_acct(bio->bi_bdev, nr_sectors);
2139                         generic_make_request(bio);
2140                 }
2141         }
2142
2143         if (sectors_skipped)
2144                 /* pretend they weren't skipped, it makes
2145                  * no important difference in this case
2146                  */
2147                 md_done_sync(mddev, sectors_skipped, 1);
2148
2149         return sectors_skipped + nr_sectors;
2150  giveup:
2151         /* There is nowhere to write, so all non-sync
2152          * drives must be failed, so try the next chunk...
2153          */
2154         if (sector_nr + max_sync < max_sector)
2155                 max_sector = sector_nr + max_sync;
2156
2157         sectors_skipped += (max_sector - sector_nr);
2158         chunks_skipped ++;
2159         sector_nr = max_sector;
2160         goto skipped;
2161 }
2162
2163 static sector_t
2164 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2165 {
2166         sector_t size;
2167         conf_t *conf = mddev->private;
2168
2169         if (!raid_disks)
2170                 raid_disks = conf->raid_disks;
2171         if (!sectors)
2172                 sectors = conf->dev_sectors;
2173
2174         size = sectors >> conf->chunk_shift;
2175         sector_div(size, conf->far_copies);
2176         size = size * raid_disks;
2177         sector_div(size, conf->near_copies);
2178
2179         return size << conf->chunk_shift;
2180 }
2181
2182
2183 static conf_t *setup_conf(mddev_t *mddev)
2184 {
2185         conf_t *conf = NULL;
2186         int nc, fc, fo;
2187         sector_t stride, size;
2188         int err = -EINVAL;
2189
2190         if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2191             !is_power_of_2(mddev->new_chunk_sectors)) {
2192                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2193                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2194                        mdname(mddev), PAGE_SIZE);
2195                 goto out;
2196         }
2197
2198         nc = mddev->new_layout & 255;
2199         fc = (mddev->new_layout >> 8) & 255;
2200         fo = mddev->new_layout & (1<<16);
2201
2202         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2203             (mddev->new_layout >> 17)) {
2204                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2205                        mdname(mddev), mddev->new_layout);
2206                 goto out;
2207         }
2208
2209         err = -ENOMEM;
2210         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2211         if (!conf)
2212                 goto out;
2213
2214         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2215                                 GFP_KERNEL);
2216         if (!conf->mirrors)
2217                 goto out;
2218
2219         conf->tmppage = alloc_page(GFP_KERNEL);
2220         if (!conf->tmppage)
2221                 goto out;
2222
2223
2224         conf->raid_disks = mddev->raid_disks;
2225         conf->near_copies = nc;
2226         conf->far_copies = fc;
2227         conf->copies = nc*fc;
2228         conf->far_offset = fo;
2229         conf->chunk_mask = mddev->new_chunk_sectors - 1;
2230         conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2231
2232         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2233                                            r10bio_pool_free, conf);
2234         if (!conf->r10bio_pool)
2235                 goto out;
2236
2237         size = mddev->dev_sectors >> conf->chunk_shift;
2238         sector_div(size, fc);
2239         size = size * conf->raid_disks;
2240         sector_div(size, nc);
2241         /* 'size' is now the number of chunks in the array */
2242         /* calculate "used chunks per device" in 'stride' */
2243         stride = size * conf->copies;
2244
2245         /* We need to round up when dividing by raid_disks to
2246          * get the stride size.
2247          */
2248         stride += conf->raid_disks - 1;
2249         sector_div(stride, conf->raid_disks);
2250
2251         conf->dev_sectors = stride << conf->chunk_shift;
2252
2253         if (fo)
2254                 stride = 1;
2255         else
2256                 sector_div(stride, fc);
2257         conf->stride = stride << conf->chunk_shift;
2258
2259
2260         spin_lock_init(&conf->device_lock);
2261         INIT_LIST_HEAD(&conf->retry_list);
2262
2263         spin_lock_init(&conf->resync_lock);
2264         init_waitqueue_head(&conf->wait_barrier);
2265
2266         conf->thread = md_register_thread(raid10d, mddev, NULL);
2267         if (!conf->thread)
2268                 goto out;
2269
2270         conf->mddev = mddev;
2271         return conf;
2272
2273  out:
2274         printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2275                mdname(mddev));
2276         if (conf) {
2277                 if (conf->r10bio_pool)
2278                         mempool_destroy(conf->r10bio_pool);
2279                 kfree(conf->mirrors);
2280                 safe_put_page(conf->tmppage);
2281                 kfree(conf);
2282         }
2283         return ERR_PTR(err);
2284 }
2285
2286 static int run(mddev_t *mddev)
2287 {
2288         conf_t *conf;
2289         int i, disk_idx, chunk_size;
2290         mirror_info_t *disk;
2291         mdk_rdev_t *rdev;
2292         sector_t size;
2293
2294         /*
2295          * copy the already verified devices into our private RAID10
2296          * bookkeeping area. [whatever we allocate in run(),
2297          * should be freed in stop()]
2298          */
2299
2300         if (mddev->private == NULL) {
2301                 conf = setup_conf(mddev);
2302                 if (IS_ERR(conf))
2303                         return PTR_ERR(conf);
2304                 mddev->private = conf;
2305         }
2306         conf = mddev->private;
2307         if (!conf)
2308                 goto out;
2309
2310         mddev->thread = conf->thread;
2311         conf->thread = NULL;
2312
2313         chunk_size = mddev->chunk_sectors << 9;
2314         blk_queue_io_min(mddev->queue, chunk_size);
2315         if (conf->raid_disks % conf->near_copies)
2316                 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2317         else
2318                 blk_queue_io_opt(mddev->queue, chunk_size *
2319                                  (conf->raid_disks / conf->near_copies));
2320
2321         list_for_each_entry(rdev, &mddev->disks, same_set) {
2322                 disk_idx = rdev->raid_disk;
2323                 if (disk_idx >= conf->raid_disks
2324                     || disk_idx < 0)
2325                         continue;
2326                 disk = conf->mirrors + disk_idx;
2327
2328                 disk->rdev = rdev;
2329                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2330                                   rdev->data_offset << 9);
2331                 /* as we don't honour merge_bvec_fn, we must never risk
2332                  * violating it, so limit max_segments to 1 lying
2333                  * within a single page.
2334                  */
2335                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2336                         blk_queue_max_segments(mddev->queue, 1);
2337                         blk_queue_segment_boundary(mddev->queue,
2338                                                    PAGE_CACHE_SIZE - 1);
2339                 }
2340
2341                 disk->head_position = 0;
2342         }
2343         /* need to check that every block has at least one working mirror */
2344         if (!enough(conf)) {
2345                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2346                        mdname(mddev));
2347                 goto out_free_conf;
2348         }
2349
2350         mddev->degraded = 0;
2351         for (i = 0; i < conf->raid_disks; i++) {
2352
2353                 disk = conf->mirrors + i;
2354
2355                 if (!disk->rdev ||
2356                     !test_bit(In_sync, &disk->rdev->flags)) {
2357                         disk->head_position = 0;
2358                         mddev->degraded++;
2359                         if (disk->rdev)
2360                                 conf->fullsync = 1;
2361                 }
2362         }
2363
2364         if (mddev->recovery_cp != MaxSector)
2365                 printk(KERN_NOTICE "md/raid10:%s: not clean"
2366                        " -- starting background reconstruction\n",
2367                        mdname(mddev));
2368         printk(KERN_INFO
2369                 "md/raid10:%s: active with %d out of %d devices\n",
2370                 mdname(mddev), conf->raid_disks - mddev->degraded,
2371                 conf->raid_disks);
2372         /*
2373          * Ok, everything is just fine now
2374          */
2375         mddev->dev_sectors = conf->dev_sectors;
2376         size = raid10_size(mddev, 0, 0);
2377         md_set_array_sectors(mddev, size);
2378         mddev->resync_max_sectors = size;
2379
2380         mddev->queue->unplug_fn = raid10_unplug;
2381         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2382         mddev->queue->backing_dev_info.congested_data = mddev;
2383
2384         /* Calculate max read-ahead size.
2385          * We need to readahead at least twice a whole stripe....
2386          * maybe...
2387          */
2388         {
2389                 int stripe = conf->raid_disks *
2390                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2391                 stripe /= conf->near_copies;
2392                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2393                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2394         }
2395
2396         if (conf->near_copies < conf->raid_disks)
2397                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2398         md_integrity_register(mddev);
2399         return 0;
2400
2401 out_free_conf:
2402         md_unregister_thread(mddev->thread);
2403         if (conf->r10bio_pool)
2404                 mempool_destroy(conf->r10bio_pool);
2405         safe_put_page(conf->tmppage);
2406         kfree(conf->mirrors);
2407         kfree(conf);
2408         mddev->private = NULL;
2409 out:
2410         return -EIO;
2411 }
2412
2413 static int stop(mddev_t *mddev)
2414 {
2415         conf_t *conf = mddev->private;
2416
2417         raise_barrier(conf, 0);
2418         lower_barrier(conf);
2419
2420         md_unregister_thread(mddev->thread);
2421         mddev->thread = NULL;
2422         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2423         if (conf->r10bio_pool)
2424                 mempool_destroy(conf->r10bio_pool);
2425         kfree(conf->mirrors);
2426         kfree(conf);
2427         mddev->private = NULL;
2428         return 0;
2429 }
2430
2431 static void raid10_quiesce(mddev_t *mddev, int state)
2432 {
2433         conf_t *conf = mddev->private;
2434
2435         switch(state) {
2436         case 1:
2437                 raise_barrier(conf, 0);
2438                 break;
2439         case 0:
2440                 lower_barrier(conf);
2441                 break;
2442         }
2443 }
2444
2445 static void *raid10_takeover_raid0(mddev_t *mddev)
2446 {
2447         mdk_rdev_t *rdev;
2448         conf_t *conf;
2449
2450         if (mddev->degraded > 0) {
2451                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2452                        mdname(mddev));
2453                 return ERR_PTR(-EINVAL);
2454         }
2455
2456         /* Set new parameters */
2457         mddev->new_level = 10;
2458         /* new layout: far_copies = 1, near_copies = 2 */
2459         mddev->new_layout = (1<<8) + 2;
2460         mddev->new_chunk_sectors = mddev->chunk_sectors;
2461         mddev->delta_disks = mddev->raid_disks;
2462         mddev->raid_disks *= 2;
2463         /* make sure it will be not marked as dirty */
2464         mddev->recovery_cp = MaxSector;
2465
2466         conf = setup_conf(mddev);
2467         if (!IS_ERR(conf)) {
2468                 list_for_each_entry(rdev, &mddev->disks, same_set)
2469                         if (rdev->raid_disk >= 0)
2470                                 rdev->new_raid_disk = rdev->raid_disk * 2;
2471                 conf->barrier = 1;
2472         }
2473
2474         return conf;
2475 }
2476
2477 static void *raid10_takeover(mddev_t *mddev)
2478 {
2479         struct raid0_private_data *raid0_priv;
2480
2481         /* raid10 can take over:
2482          *  raid0 - providing it has only two drives
2483          */
2484         if (mddev->level == 0) {
2485                 /* for raid0 takeover only one zone is supported */
2486                 raid0_priv = mddev->private;
2487                 if (raid0_priv->nr_strip_zones > 1) {
2488                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2489                                " with more than one zone.\n",
2490                                mdname(mddev));
2491                         return ERR_PTR(-EINVAL);
2492                 }
2493                 return raid10_takeover_raid0(mddev);
2494         }
2495         return ERR_PTR(-EINVAL);
2496 }
2497
2498 static struct mdk_personality raid10_personality =
2499 {
2500         .name           = "raid10",
2501         .level          = 10,
2502         .owner          = THIS_MODULE,
2503         .make_request   = make_request,
2504         .run            = run,
2505         .stop           = stop,
2506         .status         = status,
2507         .error_handler  = error,
2508         .hot_add_disk   = raid10_add_disk,
2509         .hot_remove_disk= raid10_remove_disk,
2510         .spare_active   = raid10_spare_active,
2511         .sync_request   = sync_request,
2512         .quiesce        = raid10_quiesce,
2513         .size           = raid10_size,
2514         .takeover       = raid10_takeover,
2515 };
2516
2517 static int __init raid_init(void)
2518 {
2519         return register_md_personality(&raid10_personality);
2520 }
2521
2522 static void raid_exit(void)
2523 {
2524         unregister_md_personality(&raid10_personality);
2525 }
2526
2527 module_init(raid_init);
2528 module_exit(raid_exit);
2529 MODULE_LICENSE("GPL");
2530 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2531 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2532 MODULE_ALIAS("md-raid10");
2533 MODULE_ALIAS("md-level-10");