md/raid1: perform bad-block tests for WriteMostly devices too.
[pandora-kernel.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* When there are this many requests queue to be written by
50  * the raid1 thread, we become 'congested' to provide back-pressure
51  * for writeback.
52  */
53 static int max_queued_requests = 1024;
54
55 static void allow_barrier(struct r1conf *conf);
56 static void lower_barrier(struct r1conf *conf);
57
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 {
60         struct pool_info *pi = data;
61         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
62
63         /* allocate a r1bio with room for raid_disks entries in the bios array */
64         return kzalloc(size, gfp_flags);
65 }
66
67 static void r1bio_pool_free(void *r1_bio, void *data)
68 {
69         kfree(r1_bio);
70 }
71
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
77
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80         struct pool_info *pi = data;
81         struct page *page;
82         struct r1bio *r1_bio;
83         struct bio *bio;
84         int i, j;
85
86         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87         if (!r1_bio)
88                 return NULL;
89
90         /*
91          * Allocate bios : 1 for reading, n-1 for writing
92          */
93         for (j = pi->raid_disks ; j-- ; ) {
94                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95                 if (!bio)
96                         goto out_free_bio;
97                 r1_bio->bios[j] = bio;
98         }
99         /*
100          * Allocate RESYNC_PAGES data pages and attach them to
101          * the first bio.
102          * If this is a user-requested check/repair, allocate
103          * RESYNC_PAGES for each bio.
104          */
105         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106                 j = pi->raid_disks;
107         else
108                 j = 1;
109         while(j--) {
110                 bio = r1_bio->bios[j];
111                 for (i = 0; i < RESYNC_PAGES; i++) {
112                         page = alloc_page(gfp_flags);
113                         if (unlikely(!page))
114                                 goto out_free_pages;
115
116                         bio->bi_io_vec[i].bv_page = page;
117                         bio->bi_vcnt = i+1;
118                 }
119         }
120         /* If not user-requests, copy the page pointers to all bios */
121         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122                 for (i=0; i<RESYNC_PAGES ; i++)
123                         for (j=1; j<pi->raid_disks; j++)
124                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
125                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
126         }
127
128         r1_bio->master_bio = NULL;
129
130         return r1_bio;
131
132 out_free_pages:
133         for (j=0 ; j < pi->raid_disks; j++)
134                 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135                         put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136         j = -1;
137 out_free_bio:
138         while ( ++j < pi->raid_disks )
139                 bio_put(r1_bio->bios[j]);
140         r1bio_pool_free(r1_bio, data);
141         return NULL;
142 }
143
144 static void r1buf_pool_free(void *__r1_bio, void *data)
145 {
146         struct pool_info *pi = data;
147         int i,j;
148         struct r1bio *r1bio = __r1_bio;
149
150         for (i = 0; i < RESYNC_PAGES; i++)
151                 for (j = pi->raid_disks; j-- ;) {
152                         if (j == 0 ||
153                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
154                             r1bio->bios[0]->bi_io_vec[i].bv_page)
155                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156                 }
157         for (i=0 ; i < pi->raid_disks; i++)
158                 bio_put(r1bio->bios[i]);
159
160         r1bio_pool_free(r1bio, data);
161 }
162
163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
164 {
165         int i;
166
167         for (i = 0; i < conf->raid_disks; i++) {
168                 struct bio **bio = r1_bio->bios + i;
169                 if (!BIO_SPECIAL(*bio))
170                         bio_put(*bio);
171                 *bio = NULL;
172         }
173 }
174
175 static void free_r1bio(struct r1bio *r1_bio)
176 {
177         struct r1conf *conf = r1_bio->mddev->private;
178
179         put_all_bios(conf, r1_bio);
180         mempool_free(r1_bio, conf->r1bio_pool);
181 }
182
183 static void put_buf(struct r1bio *r1_bio)
184 {
185         struct r1conf *conf = r1_bio->mddev->private;
186         int i;
187
188         for (i=0; i<conf->raid_disks; i++) {
189                 struct bio *bio = r1_bio->bios[i];
190                 if (bio->bi_end_io)
191                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
192         }
193
194         mempool_free(r1_bio, conf->r1buf_pool);
195
196         lower_barrier(conf);
197 }
198
199 static void reschedule_retry(struct r1bio *r1_bio)
200 {
201         unsigned long flags;
202         struct mddev *mddev = r1_bio->mddev;
203         struct r1conf *conf = mddev->private;
204
205         spin_lock_irqsave(&conf->device_lock, flags);
206         list_add(&r1_bio->retry_list, &conf->retry_list);
207         conf->nr_queued ++;
208         spin_unlock_irqrestore(&conf->device_lock, flags);
209
210         wake_up(&conf->wait_barrier);
211         md_wakeup_thread(mddev->thread);
212 }
213
214 /*
215  * raid_end_bio_io() is called when we have finished servicing a mirrored
216  * operation and are ready to return a success/failure code to the buffer
217  * cache layer.
218  */
219 static void call_bio_endio(struct r1bio *r1_bio)
220 {
221         struct bio *bio = r1_bio->master_bio;
222         int done;
223         struct r1conf *conf = r1_bio->mddev->private;
224
225         if (bio->bi_phys_segments) {
226                 unsigned long flags;
227                 spin_lock_irqsave(&conf->device_lock, flags);
228                 bio->bi_phys_segments--;
229                 done = (bio->bi_phys_segments == 0);
230                 spin_unlock_irqrestore(&conf->device_lock, flags);
231         } else
232                 done = 1;
233
234         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
236         if (done) {
237                 bio_endio(bio, 0);
238                 /*
239                  * Wake up any possible resync thread that waits for the device
240                  * to go idle.
241                  */
242                 allow_barrier(conf);
243         }
244 }
245
246 static void raid_end_bio_io(struct r1bio *r1_bio)
247 {
248         struct bio *bio = r1_bio->master_bio;
249
250         /* if nobody has done the final endio yet, do it now */
251         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
252                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
254                          (unsigned long long) bio->bi_sector,
255                          (unsigned long long) bio->bi_sector +
256                          (bio->bi_size >> 9) - 1);
257
258                 call_bio_endio(r1_bio);
259         }
260         free_r1bio(r1_bio);
261 }
262
263 /*
264  * Update disk head position estimator based on IRQ completion info.
265  */
266 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
267 {
268         struct r1conf *conf = r1_bio->mddev->private;
269
270         conf->mirrors[disk].head_position =
271                 r1_bio->sector + (r1_bio->sectors);
272 }
273
274 /*
275  * Find the disk number which triggered given bio
276  */
277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
278 {
279         int mirror;
280         int raid_disks = r1_bio->mddev->raid_disks;
281
282         for (mirror = 0; mirror < raid_disks; mirror++)
283                 if (r1_bio->bios[mirror] == bio)
284                         break;
285
286         BUG_ON(mirror == raid_disks);
287         update_head_pos(mirror, r1_bio);
288
289         return mirror;
290 }
291
292 static void raid1_end_read_request(struct bio *bio, int error)
293 {
294         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
295         struct r1bio *r1_bio = bio->bi_private;
296         int mirror;
297         struct r1conf *conf = r1_bio->mddev->private;
298
299         mirror = r1_bio->read_disk;
300         /*
301          * this branch is our 'one mirror IO has finished' event handler:
302          */
303         update_head_pos(mirror, r1_bio);
304
305         if (uptodate)
306                 set_bit(R1BIO_Uptodate, &r1_bio->state);
307         else {
308                 /* If all other devices have failed, we want to return
309                  * the error upwards rather than fail the last device.
310                  * Here we redefine "uptodate" to mean "Don't want to retry"
311                  */
312                 unsigned long flags;
313                 spin_lock_irqsave(&conf->device_lock, flags);
314                 if (r1_bio->mddev->degraded == conf->raid_disks ||
315                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
316                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
317                         uptodate = 1;
318                 spin_unlock_irqrestore(&conf->device_lock, flags);
319         }
320
321         if (uptodate)
322                 raid_end_bio_io(r1_bio);
323         else {
324                 /*
325                  * oops, read error:
326                  */
327                 char b[BDEVNAME_SIZE];
328                 printk_ratelimited(
329                         KERN_ERR "md/raid1:%s: %s: "
330                         "rescheduling sector %llu\n",
331                         mdname(conf->mddev),
332                         bdevname(conf->mirrors[mirror].rdev->bdev,
333                                  b),
334                         (unsigned long long)r1_bio->sector);
335                 set_bit(R1BIO_ReadError, &r1_bio->state);
336                 reschedule_retry(r1_bio);
337         }
338
339         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
340 }
341
342 static void close_write(struct r1bio *r1_bio)
343 {
344         /* it really is the end of this request */
345         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
346                 /* free extra copy of the data pages */
347                 int i = r1_bio->behind_page_count;
348                 while (i--)
349                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
350                 kfree(r1_bio->behind_bvecs);
351                 r1_bio->behind_bvecs = NULL;
352         }
353         /* clear the bitmap if all writes complete successfully */
354         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
355                         r1_bio->sectors,
356                         !test_bit(R1BIO_Degraded, &r1_bio->state),
357                         test_bit(R1BIO_BehindIO, &r1_bio->state));
358         md_write_end(r1_bio->mddev);
359 }
360
361 static void r1_bio_write_done(struct r1bio *r1_bio)
362 {
363         if (!atomic_dec_and_test(&r1_bio->remaining))
364                 return;
365
366         if (test_bit(R1BIO_WriteError, &r1_bio->state))
367                 reschedule_retry(r1_bio);
368         else {
369                 close_write(r1_bio);
370                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
371                         reschedule_retry(r1_bio);
372                 else
373                         raid_end_bio_io(r1_bio);
374         }
375 }
376
377 static void raid1_end_write_request(struct bio *bio, int error)
378 {
379         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
380         struct r1bio *r1_bio = bio->bi_private;
381         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
382         struct r1conf *conf = r1_bio->mddev->private;
383         struct bio *to_put = NULL;
384
385         mirror = find_bio_disk(r1_bio, bio);
386
387         /*
388          * 'one mirror IO has finished' event handler:
389          */
390         if (!uptodate) {
391                 set_bit(WriteErrorSeen,
392                         &conf->mirrors[mirror].rdev->flags);
393                 set_bit(R1BIO_WriteError, &r1_bio->state);
394         } else {
395                 /*
396                  * Set R1BIO_Uptodate in our master bio, so that we
397                  * will return a good error code for to the higher
398                  * levels even if IO on some other mirrored buffer
399                  * fails.
400                  *
401                  * The 'master' represents the composite IO operation
402                  * to user-side. So if something waits for IO, then it
403                  * will wait for the 'master' bio.
404                  */
405                 sector_t first_bad;
406                 int bad_sectors;
407
408                 r1_bio->bios[mirror] = NULL;
409                 to_put = bio;
410                 set_bit(R1BIO_Uptodate, &r1_bio->state);
411
412                 /* Maybe we can clear some bad blocks. */
413                 if (is_badblock(conf->mirrors[mirror].rdev,
414                                 r1_bio->sector, r1_bio->sectors,
415                                 &first_bad, &bad_sectors)) {
416                         r1_bio->bios[mirror] = IO_MADE_GOOD;
417                         set_bit(R1BIO_MadeGood, &r1_bio->state);
418                 }
419         }
420
421         if (behind) {
422                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
423                         atomic_dec(&r1_bio->behind_remaining);
424
425                 /*
426                  * In behind mode, we ACK the master bio once the I/O
427                  * has safely reached all non-writemostly
428                  * disks. Setting the Returned bit ensures that this
429                  * gets done only once -- we don't ever want to return
430                  * -EIO here, instead we'll wait
431                  */
432                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
433                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
434                         /* Maybe we can return now */
435                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
436                                 struct bio *mbio = r1_bio->master_bio;
437                                 pr_debug("raid1: behind end write sectors"
438                                          " %llu-%llu\n",
439                                          (unsigned long long) mbio->bi_sector,
440                                          (unsigned long long) mbio->bi_sector +
441                                          (mbio->bi_size >> 9) - 1);
442                                 call_bio_endio(r1_bio);
443                         }
444                 }
445         }
446         if (r1_bio->bios[mirror] == NULL)
447                 rdev_dec_pending(conf->mirrors[mirror].rdev,
448                                  conf->mddev);
449
450         /*
451          * Let's see if all mirrored write operations have finished
452          * already.
453          */
454         r1_bio_write_done(r1_bio);
455
456         if (to_put)
457                 bio_put(to_put);
458 }
459
460
461 /*
462  * This routine returns the disk from which the requested read should
463  * be done. There is a per-array 'next expected sequential IO' sector
464  * number - if this matches on the next IO then we use the last disk.
465  * There is also a per-disk 'last know head position' sector that is
466  * maintained from IRQ contexts, both the normal and the resync IO
467  * completion handlers update this position correctly. If there is no
468  * perfect sequential match then we pick the disk whose head is closest.
469  *
470  * If there are 2 mirrors in the same 2 devices, performance degrades
471  * because position is mirror, not device based.
472  *
473  * The rdev for the device selected will have nr_pending incremented.
474  */
475 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
476 {
477         const sector_t this_sector = r1_bio->sector;
478         int sectors;
479         int best_good_sectors;
480         int start_disk;
481         int best_disk;
482         int i;
483         sector_t best_dist;
484         struct md_rdev *rdev;
485         int choose_first;
486
487         rcu_read_lock();
488         /*
489          * Check if we can balance. We can balance on the whole
490          * device if no resync is going on, or below the resync window.
491          * We take the first readable disk when above the resync window.
492          */
493  retry:
494         sectors = r1_bio->sectors;
495         best_disk = -1;
496         best_dist = MaxSector;
497         best_good_sectors = 0;
498
499         if (conf->mddev->recovery_cp < MaxSector &&
500             (this_sector + sectors >= conf->next_resync)) {
501                 choose_first = 1;
502                 start_disk = 0;
503         } else {
504                 choose_first = 0;
505                 start_disk = conf->last_used;
506         }
507
508         for (i = 0 ; i < conf->raid_disks ; i++) {
509                 sector_t dist;
510                 sector_t first_bad;
511                 int bad_sectors;
512
513                 int disk = start_disk + i;
514                 if (disk >= conf->raid_disks)
515                         disk -= conf->raid_disks;
516
517                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
518                 if (r1_bio->bios[disk] == IO_BLOCKED
519                     || rdev == NULL
520                     || test_bit(Faulty, &rdev->flags))
521                         continue;
522                 if (!test_bit(In_sync, &rdev->flags) &&
523                     rdev->recovery_offset < this_sector + sectors)
524                         continue;
525                 if (test_bit(WriteMostly, &rdev->flags)) {
526                         /* Don't balance among write-mostly, just
527                          * use the first as a last resort */
528                         if (best_disk < 0) {
529                                 if (is_badblock(rdev, this_sector, sectors,
530                                                 &first_bad, &bad_sectors)) {
531                                         if (first_bad < this_sector)
532                                                 /* Cannot use this */
533                                                 continue;
534                                         best_good_sectors = first_bad - this_sector;
535                                 } else
536                                         best_good_sectors = sectors;
537                                 best_disk = disk;
538                         }
539                         continue;
540                 }
541                 /* This is a reasonable device to use.  It might
542                  * even be best.
543                  */
544                 if (is_badblock(rdev, this_sector, sectors,
545                                 &first_bad, &bad_sectors)) {
546                         if (best_dist < MaxSector)
547                                 /* already have a better device */
548                                 continue;
549                         if (first_bad <= this_sector) {
550                                 /* cannot read here. If this is the 'primary'
551                                  * device, then we must not read beyond
552                                  * bad_sectors from another device..
553                                  */
554                                 bad_sectors -= (this_sector - first_bad);
555                                 if (choose_first && sectors > bad_sectors)
556                                         sectors = bad_sectors;
557                                 if (best_good_sectors > sectors)
558                                         best_good_sectors = sectors;
559
560                         } else {
561                                 sector_t good_sectors = first_bad - this_sector;
562                                 if (good_sectors > best_good_sectors) {
563                                         best_good_sectors = good_sectors;
564                                         best_disk = disk;
565                                 }
566                                 if (choose_first)
567                                         break;
568                         }
569                         continue;
570                 } else
571                         best_good_sectors = sectors;
572
573                 dist = abs(this_sector - conf->mirrors[disk].head_position);
574                 if (choose_first
575                     /* Don't change to another disk for sequential reads */
576                     || conf->next_seq_sect == this_sector
577                     || dist == 0
578                     /* If device is idle, use it */
579                     || atomic_read(&rdev->nr_pending) == 0) {
580                         best_disk = disk;
581                         break;
582                 }
583                 if (dist < best_dist) {
584                         best_dist = dist;
585                         best_disk = disk;
586                 }
587         }
588
589         if (best_disk >= 0) {
590                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
591                 if (!rdev)
592                         goto retry;
593                 atomic_inc(&rdev->nr_pending);
594                 if (test_bit(Faulty, &rdev->flags)) {
595                         /* cannot risk returning a device that failed
596                          * before we inc'ed nr_pending
597                          */
598                         rdev_dec_pending(rdev, conf->mddev);
599                         goto retry;
600                 }
601                 sectors = best_good_sectors;
602                 conf->next_seq_sect = this_sector + sectors;
603                 conf->last_used = best_disk;
604         }
605         rcu_read_unlock();
606         *max_sectors = sectors;
607
608         return best_disk;
609 }
610
611 int md_raid1_congested(struct mddev *mddev, int bits)
612 {
613         struct r1conf *conf = mddev->private;
614         int i, ret = 0;
615
616         if ((bits & (1 << BDI_async_congested)) &&
617             conf->pending_count >= max_queued_requests)
618                 return 1;
619
620         rcu_read_lock();
621         for (i = 0; i < mddev->raid_disks; i++) {
622                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
623                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
624                         struct request_queue *q = bdev_get_queue(rdev->bdev);
625
626                         BUG_ON(!q);
627
628                         /* Note the '|| 1' - when read_balance prefers
629                          * non-congested targets, it can be removed
630                          */
631                         if ((bits & (1<<BDI_async_congested)) || 1)
632                                 ret |= bdi_congested(&q->backing_dev_info, bits);
633                         else
634                                 ret &= bdi_congested(&q->backing_dev_info, bits);
635                 }
636         }
637         rcu_read_unlock();
638         return ret;
639 }
640 EXPORT_SYMBOL_GPL(md_raid1_congested);
641
642 static int raid1_congested(void *data, int bits)
643 {
644         struct mddev *mddev = data;
645
646         return mddev_congested(mddev, bits) ||
647                 md_raid1_congested(mddev, bits);
648 }
649
650 static void flush_pending_writes(struct r1conf *conf)
651 {
652         /* Any writes that have been queued but are awaiting
653          * bitmap updates get flushed here.
654          */
655         spin_lock_irq(&conf->device_lock);
656
657         if (conf->pending_bio_list.head) {
658                 struct bio *bio;
659                 bio = bio_list_get(&conf->pending_bio_list);
660                 conf->pending_count = 0;
661                 spin_unlock_irq(&conf->device_lock);
662                 /* flush any pending bitmap writes to
663                  * disk before proceeding w/ I/O */
664                 bitmap_unplug(conf->mddev->bitmap);
665                 wake_up(&conf->wait_barrier);
666
667                 while (bio) { /* submit pending writes */
668                         struct bio *next = bio->bi_next;
669                         bio->bi_next = NULL;
670                         generic_make_request(bio);
671                         bio = next;
672                 }
673         } else
674                 spin_unlock_irq(&conf->device_lock);
675 }
676
677 /* Barriers....
678  * Sometimes we need to suspend IO while we do something else,
679  * either some resync/recovery, or reconfigure the array.
680  * To do this we raise a 'barrier'.
681  * The 'barrier' is a counter that can be raised multiple times
682  * to count how many activities are happening which preclude
683  * normal IO.
684  * We can only raise the barrier if there is no pending IO.
685  * i.e. if nr_pending == 0.
686  * We choose only to raise the barrier if no-one is waiting for the
687  * barrier to go down.  This means that as soon as an IO request
688  * is ready, no other operations which require a barrier will start
689  * until the IO request has had a chance.
690  *
691  * So: regular IO calls 'wait_barrier'.  When that returns there
692  *    is no backgroup IO happening,  It must arrange to call
693  *    allow_barrier when it has finished its IO.
694  * backgroup IO calls must call raise_barrier.  Once that returns
695  *    there is no normal IO happeing.  It must arrange to call
696  *    lower_barrier when the particular background IO completes.
697  */
698 #define RESYNC_DEPTH 32
699
700 static void raise_barrier(struct r1conf *conf)
701 {
702         spin_lock_irq(&conf->resync_lock);
703
704         /* Wait until no block IO is waiting */
705         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
706                             conf->resync_lock, );
707
708         /* block any new IO from starting */
709         conf->barrier++;
710
711         /* Now wait for all pending IO to complete */
712         wait_event_lock_irq(conf->wait_barrier,
713                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
714                             conf->resync_lock, );
715
716         spin_unlock_irq(&conf->resync_lock);
717 }
718
719 static void lower_barrier(struct r1conf *conf)
720 {
721         unsigned long flags;
722         BUG_ON(conf->barrier <= 0);
723         spin_lock_irqsave(&conf->resync_lock, flags);
724         conf->barrier--;
725         spin_unlock_irqrestore(&conf->resync_lock, flags);
726         wake_up(&conf->wait_barrier);
727 }
728
729 static void wait_barrier(struct r1conf *conf)
730 {
731         spin_lock_irq(&conf->resync_lock);
732         if (conf->barrier) {
733                 conf->nr_waiting++;
734                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
735                                     conf->resync_lock,
736                                     );
737                 conf->nr_waiting--;
738         }
739         conf->nr_pending++;
740         spin_unlock_irq(&conf->resync_lock);
741 }
742
743 static void allow_barrier(struct r1conf *conf)
744 {
745         unsigned long flags;
746         spin_lock_irqsave(&conf->resync_lock, flags);
747         conf->nr_pending--;
748         spin_unlock_irqrestore(&conf->resync_lock, flags);
749         wake_up(&conf->wait_barrier);
750 }
751
752 static void freeze_array(struct r1conf *conf)
753 {
754         /* stop syncio and normal IO and wait for everything to
755          * go quite.
756          * We increment barrier and nr_waiting, and then
757          * wait until nr_pending match nr_queued+1
758          * This is called in the context of one normal IO request
759          * that has failed. Thus any sync request that might be pending
760          * will be blocked by nr_pending, and we need to wait for
761          * pending IO requests to complete or be queued for re-try.
762          * Thus the number queued (nr_queued) plus this request (1)
763          * must match the number of pending IOs (nr_pending) before
764          * we continue.
765          */
766         spin_lock_irq(&conf->resync_lock);
767         conf->barrier++;
768         conf->nr_waiting++;
769         wait_event_lock_irq(conf->wait_barrier,
770                             conf->nr_pending == conf->nr_queued+1,
771                             conf->resync_lock,
772                             flush_pending_writes(conf));
773         spin_unlock_irq(&conf->resync_lock);
774 }
775 static void unfreeze_array(struct r1conf *conf)
776 {
777         /* reverse the effect of the freeze */
778         spin_lock_irq(&conf->resync_lock);
779         conf->barrier--;
780         conf->nr_waiting--;
781         wake_up(&conf->wait_barrier);
782         spin_unlock_irq(&conf->resync_lock);
783 }
784
785
786 /* duplicate the data pages for behind I/O 
787  */
788 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
789 {
790         int i;
791         struct bio_vec *bvec;
792         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
793                                         GFP_NOIO);
794         if (unlikely(!bvecs))
795                 return;
796
797         bio_for_each_segment(bvec, bio, i) {
798                 bvecs[i] = *bvec;
799                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
800                 if (unlikely(!bvecs[i].bv_page))
801                         goto do_sync_io;
802                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
803                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
804                 kunmap(bvecs[i].bv_page);
805                 kunmap(bvec->bv_page);
806         }
807         r1_bio->behind_bvecs = bvecs;
808         r1_bio->behind_page_count = bio->bi_vcnt;
809         set_bit(R1BIO_BehindIO, &r1_bio->state);
810         return;
811
812 do_sync_io:
813         for (i = 0; i < bio->bi_vcnt; i++)
814                 if (bvecs[i].bv_page)
815                         put_page(bvecs[i].bv_page);
816         kfree(bvecs);
817         pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
818 }
819
820 static void make_request(struct mddev *mddev, struct bio * bio)
821 {
822         struct r1conf *conf = mddev->private;
823         struct mirror_info *mirror;
824         struct r1bio *r1_bio;
825         struct bio *read_bio;
826         int i, disks;
827         struct bitmap *bitmap;
828         unsigned long flags;
829         const int rw = bio_data_dir(bio);
830         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
831         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
832         struct md_rdev *blocked_rdev;
833         int plugged;
834         int first_clone;
835         int sectors_handled;
836         int max_sectors;
837
838         /*
839          * Register the new request and wait if the reconstruction
840          * thread has put up a bar for new requests.
841          * Continue immediately if no resync is active currently.
842          */
843
844         md_write_start(mddev, bio); /* wait on superblock update early */
845
846         if (bio_data_dir(bio) == WRITE &&
847             bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
848             bio->bi_sector < mddev->suspend_hi) {
849                 /* As the suspend_* range is controlled by
850                  * userspace, we want an interruptible
851                  * wait.
852                  */
853                 DEFINE_WAIT(w);
854                 for (;;) {
855                         flush_signals(current);
856                         prepare_to_wait(&conf->wait_barrier,
857                                         &w, TASK_INTERRUPTIBLE);
858                         if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
859                             bio->bi_sector >= mddev->suspend_hi)
860                                 break;
861                         schedule();
862                 }
863                 finish_wait(&conf->wait_barrier, &w);
864         }
865
866         wait_barrier(conf);
867
868         bitmap = mddev->bitmap;
869
870         /*
871          * make_request() can abort the operation when READA is being
872          * used and no empty request is available.
873          *
874          */
875         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
876
877         r1_bio->master_bio = bio;
878         r1_bio->sectors = bio->bi_size >> 9;
879         r1_bio->state = 0;
880         r1_bio->mddev = mddev;
881         r1_bio->sector = bio->bi_sector;
882
883         /* We might need to issue multiple reads to different
884          * devices if there are bad blocks around, so we keep
885          * track of the number of reads in bio->bi_phys_segments.
886          * If this is 0, there is only one r1_bio and no locking
887          * will be needed when requests complete.  If it is
888          * non-zero, then it is the number of not-completed requests.
889          */
890         bio->bi_phys_segments = 0;
891         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
892
893         if (rw == READ) {
894                 /*
895                  * read balancing logic:
896                  */
897                 int rdisk;
898
899 read_again:
900                 rdisk = read_balance(conf, r1_bio, &max_sectors);
901
902                 if (rdisk < 0) {
903                         /* couldn't find anywhere to read from */
904                         raid_end_bio_io(r1_bio);
905                         return;
906                 }
907                 mirror = conf->mirrors + rdisk;
908
909                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
910                     bitmap) {
911                         /* Reading from a write-mostly device must
912                          * take care not to over-take any writes
913                          * that are 'behind'
914                          */
915                         wait_event(bitmap->behind_wait,
916                                    atomic_read(&bitmap->behind_writes) == 0);
917                 }
918                 r1_bio->read_disk = rdisk;
919
920                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
921                 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
922                             max_sectors);
923
924                 r1_bio->bios[rdisk] = read_bio;
925
926                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
927                 read_bio->bi_bdev = mirror->rdev->bdev;
928                 read_bio->bi_end_io = raid1_end_read_request;
929                 read_bio->bi_rw = READ | do_sync;
930                 read_bio->bi_private = r1_bio;
931
932                 if (max_sectors < r1_bio->sectors) {
933                         /* could not read all from this device, so we will
934                          * need another r1_bio.
935                          */
936
937                         sectors_handled = (r1_bio->sector + max_sectors
938                                            - bio->bi_sector);
939                         r1_bio->sectors = max_sectors;
940                         spin_lock_irq(&conf->device_lock);
941                         if (bio->bi_phys_segments == 0)
942                                 bio->bi_phys_segments = 2;
943                         else
944                                 bio->bi_phys_segments++;
945                         spin_unlock_irq(&conf->device_lock);
946                         /* Cannot call generic_make_request directly
947                          * as that will be queued in __make_request
948                          * and subsequent mempool_alloc might block waiting
949                          * for it.  So hand bio over to raid1d.
950                          */
951                         reschedule_retry(r1_bio);
952
953                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
954
955                         r1_bio->master_bio = bio;
956                         r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
957                         r1_bio->state = 0;
958                         r1_bio->mddev = mddev;
959                         r1_bio->sector = bio->bi_sector + sectors_handled;
960                         goto read_again;
961                 } else
962                         generic_make_request(read_bio);
963                 return;
964         }
965
966         /*
967          * WRITE:
968          */
969         if (conf->pending_count >= max_queued_requests) {
970                 md_wakeup_thread(mddev->thread);
971                 wait_event(conf->wait_barrier,
972                            conf->pending_count < max_queued_requests);
973         }
974         /* first select target devices under rcu_lock and
975          * inc refcount on their rdev.  Record them by setting
976          * bios[x] to bio
977          * If there are known/acknowledged bad blocks on any device on
978          * which we have seen a write error, we want to avoid writing those
979          * blocks.
980          * This potentially requires several writes to write around
981          * the bad blocks.  Each set of writes gets it's own r1bio
982          * with a set of bios attached.
983          */
984         plugged = mddev_check_plugged(mddev);
985
986         disks = conf->raid_disks;
987  retry_write:
988         blocked_rdev = NULL;
989         rcu_read_lock();
990         max_sectors = r1_bio->sectors;
991         for (i = 0;  i < disks; i++) {
992                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
993                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
994                         atomic_inc(&rdev->nr_pending);
995                         blocked_rdev = rdev;
996                         break;
997                 }
998                 r1_bio->bios[i] = NULL;
999                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1000                         set_bit(R1BIO_Degraded, &r1_bio->state);
1001                         continue;
1002                 }
1003
1004                 atomic_inc(&rdev->nr_pending);
1005                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1006                         sector_t first_bad;
1007                         int bad_sectors;
1008                         int is_bad;
1009
1010                         is_bad = is_badblock(rdev, r1_bio->sector,
1011                                              max_sectors,
1012                                              &first_bad, &bad_sectors);
1013                         if (is_bad < 0) {
1014                                 /* mustn't write here until the bad block is
1015                                  * acknowledged*/
1016                                 set_bit(BlockedBadBlocks, &rdev->flags);
1017                                 blocked_rdev = rdev;
1018                                 break;
1019                         }
1020                         if (is_bad && first_bad <= r1_bio->sector) {
1021                                 /* Cannot write here at all */
1022                                 bad_sectors -= (r1_bio->sector - first_bad);
1023                                 if (bad_sectors < max_sectors)
1024                                         /* mustn't write more than bad_sectors
1025                                          * to other devices yet
1026                                          */
1027                                         max_sectors = bad_sectors;
1028                                 rdev_dec_pending(rdev, mddev);
1029                                 /* We don't set R1BIO_Degraded as that
1030                                  * only applies if the disk is
1031                                  * missing, so it might be re-added,
1032                                  * and we want to know to recover this
1033                                  * chunk.
1034                                  * In this case the device is here,
1035                                  * and the fact that this chunk is not
1036                                  * in-sync is recorded in the bad
1037                                  * block log
1038                                  */
1039                                 continue;
1040                         }
1041                         if (is_bad) {
1042                                 int good_sectors = first_bad - r1_bio->sector;
1043                                 if (good_sectors < max_sectors)
1044                                         max_sectors = good_sectors;
1045                         }
1046                 }
1047                 r1_bio->bios[i] = bio;
1048         }
1049         rcu_read_unlock();
1050
1051         if (unlikely(blocked_rdev)) {
1052                 /* Wait for this device to become unblocked */
1053                 int j;
1054
1055                 for (j = 0; j < i; j++)
1056                         if (r1_bio->bios[j])
1057                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1058                 r1_bio->state = 0;
1059                 allow_barrier(conf);
1060                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1061                 wait_barrier(conf);
1062                 goto retry_write;
1063         }
1064
1065         if (max_sectors < r1_bio->sectors) {
1066                 /* We are splitting this write into multiple parts, so
1067                  * we need to prepare for allocating another r1_bio.
1068                  */
1069                 r1_bio->sectors = max_sectors;
1070                 spin_lock_irq(&conf->device_lock);
1071                 if (bio->bi_phys_segments == 0)
1072                         bio->bi_phys_segments = 2;
1073                 else
1074                         bio->bi_phys_segments++;
1075                 spin_unlock_irq(&conf->device_lock);
1076         }
1077         sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1078
1079         atomic_set(&r1_bio->remaining, 1);
1080         atomic_set(&r1_bio->behind_remaining, 0);
1081
1082         first_clone = 1;
1083         for (i = 0; i < disks; i++) {
1084                 struct bio *mbio;
1085                 if (!r1_bio->bios[i])
1086                         continue;
1087
1088                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1089                 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1090
1091                 if (first_clone) {
1092                         /* do behind I/O ?
1093                          * Not if there are too many, or cannot
1094                          * allocate memory, or a reader on WriteMostly
1095                          * is waiting for behind writes to flush */
1096                         if (bitmap &&
1097                             (atomic_read(&bitmap->behind_writes)
1098                              < mddev->bitmap_info.max_write_behind) &&
1099                             !waitqueue_active(&bitmap->behind_wait))
1100                                 alloc_behind_pages(mbio, r1_bio);
1101
1102                         bitmap_startwrite(bitmap, r1_bio->sector,
1103                                           r1_bio->sectors,
1104                                           test_bit(R1BIO_BehindIO,
1105                                                    &r1_bio->state));
1106                         first_clone = 0;
1107                 }
1108                 if (r1_bio->behind_bvecs) {
1109                         struct bio_vec *bvec;
1110                         int j;
1111
1112                         /* Yes, I really want the '__' version so that
1113                          * we clear any unused pointer in the io_vec, rather
1114                          * than leave them unchanged.  This is important
1115                          * because when we come to free the pages, we won't
1116                          * know the original bi_idx, so we just free
1117                          * them all
1118                          */
1119                         __bio_for_each_segment(bvec, mbio, j, 0)
1120                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1121                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1122                                 atomic_inc(&r1_bio->behind_remaining);
1123                 }
1124
1125                 r1_bio->bios[i] = mbio;
1126
1127                 mbio->bi_sector = (r1_bio->sector +
1128                                    conf->mirrors[i].rdev->data_offset);
1129                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1130                 mbio->bi_end_io = raid1_end_write_request;
1131                 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1132                 mbio->bi_private = r1_bio;
1133
1134                 atomic_inc(&r1_bio->remaining);
1135                 spin_lock_irqsave(&conf->device_lock, flags);
1136                 bio_list_add(&conf->pending_bio_list, mbio);
1137                 conf->pending_count++;
1138                 spin_unlock_irqrestore(&conf->device_lock, flags);
1139         }
1140         /* Mustn't call r1_bio_write_done before this next test,
1141          * as it could result in the bio being freed.
1142          */
1143         if (sectors_handled < (bio->bi_size >> 9)) {
1144                 r1_bio_write_done(r1_bio);
1145                 /* We need another r1_bio.  It has already been counted
1146                  * in bio->bi_phys_segments
1147                  */
1148                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1149                 r1_bio->master_bio = bio;
1150                 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1151                 r1_bio->state = 0;
1152                 r1_bio->mddev = mddev;
1153                 r1_bio->sector = bio->bi_sector + sectors_handled;
1154                 goto retry_write;
1155         }
1156
1157         r1_bio_write_done(r1_bio);
1158
1159         /* In case raid1d snuck in to freeze_array */
1160         wake_up(&conf->wait_barrier);
1161
1162         if (do_sync || !bitmap || !plugged)
1163                 md_wakeup_thread(mddev->thread);
1164 }
1165
1166 static void status(struct seq_file *seq, struct mddev *mddev)
1167 {
1168         struct r1conf *conf = mddev->private;
1169         int i;
1170
1171         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1172                    conf->raid_disks - mddev->degraded);
1173         rcu_read_lock();
1174         for (i = 0; i < conf->raid_disks; i++) {
1175                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1176                 seq_printf(seq, "%s",
1177                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1178         }
1179         rcu_read_unlock();
1180         seq_printf(seq, "]");
1181 }
1182
1183
1184 static void error(struct mddev *mddev, struct md_rdev *rdev)
1185 {
1186         char b[BDEVNAME_SIZE];
1187         struct r1conf *conf = mddev->private;
1188
1189         /*
1190          * If it is not operational, then we have already marked it as dead
1191          * else if it is the last working disks, ignore the error, let the
1192          * next level up know.
1193          * else mark the drive as failed
1194          */
1195         if (test_bit(In_sync, &rdev->flags)
1196             && (conf->raid_disks - mddev->degraded) == 1) {
1197                 /*
1198                  * Don't fail the drive, act as though we were just a
1199                  * normal single drive.
1200                  * However don't try a recovery from this drive as
1201                  * it is very likely to fail.
1202                  */
1203                 conf->recovery_disabled = mddev->recovery_disabled;
1204                 return;
1205         }
1206         set_bit(Blocked, &rdev->flags);
1207         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1208                 unsigned long flags;
1209                 spin_lock_irqsave(&conf->device_lock, flags);
1210                 mddev->degraded++;
1211                 set_bit(Faulty, &rdev->flags);
1212                 spin_unlock_irqrestore(&conf->device_lock, flags);
1213                 /*
1214                  * if recovery is running, make sure it aborts.
1215                  */
1216                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1217         } else
1218                 set_bit(Faulty, &rdev->flags);
1219         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1220         printk(KERN_ALERT
1221                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1222                "md/raid1:%s: Operation continuing on %d devices.\n",
1223                mdname(mddev), bdevname(rdev->bdev, b),
1224                mdname(mddev), conf->raid_disks - mddev->degraded);
1225 }
1226
1227 static void print_conf(struct r1conf *conf)
1228 {
1229         int i;
1230
1231         printk(KERN_DEBUG "RAID1 conf printout:\n");
1232         if (!conf) {
1233                 printk(KERN_DEBUG "(!conf)\n");
1234                 return;
1235         }
1236         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1237                 conf->raid_disks);
1238
1239         rcu_read_lock();
1240         for (i = 0; i < conf->raid_disks; i++) {
1241                 char b[BDEVNAME_SIZE];
1242                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1243                 if (rdev)
1244                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1245                                i, !test_bit(In_sync, &rdev->flags),
1246                                !test_bit(Faulty, &rdev->flags),
1247                                bdevname(rdev->bdev,b));
1248         }
1249         rcu_read_unlock();
1250 }
1251
1252 static void close_sync(struct r1conf *conf)
1253 {
1254         wait_barrier(conf);
1255         allow_barrier(conf);
1256
1257         mempool_destroy(conf->r1buf_pool);
1258         conf->r1buf_pool = NULL;
1259 }
1260
1261 static int raid1_spare_active(struct mddev *mddev)
1262 {
1263         int i;
1264         struct r1conf *conf = mddev->private;
1265         int count = 0;
1266         unsigned long flags;
1267
1268         /*
1269          * Find all failed disks within the RAID1 configuration 
1270          * and mark them readable.
1271          * Called under mddev lock, so rcu protection not needed.
1272          */
1273         for (i = 0; i < conf->raid_disks; i++) {
1274                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1275                 if (rdev
1276                     && !test_bit(Faulty, &rdev->flags)
1277                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1278                         count++;
1279                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1280                 }
1281         }
1282         spin_lock_irqsave(&conf->device_lock, flags);
1283         mddev->degraded -= count;
1284         spin_unlock_irqrestore(&conf->device_lock, flags);
1285
1286         print_conf(conf);
1287         return count;
1288 }
1289
1290
1291 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1292 {
1293         struct r1conf *conf = mddev->private;
1294         int err = -EEXIST;
1295         int mirror = 0;
1296         struct mirror_info *p;
1297         int first = 0;
1298         int last = mddev->raid_disks - 1;
1299
1300         if (mddev->recovery_disabled == conf->recovery_disabled)
1301                 return -EBUSY;
1302
1303         if (rdev->raid_disk >= 0)
1304                 first = last = rdev->raid_disk;
1305
1306         for (mirror = first; mirror <= last; mirror++)
1307                 if ( !(p=conf->mirrors+mirror)->rdev) {
1308
1309                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1310                                           rdev->data_offset << 9);
1311                         /* as we don't honour merge_bvec_fn, we must
1312                          * never risk violating it, so limit
1313                          * ->max_segments to one lying with a single
1314                          * page, as a one page request is never in
1315                          * violation.
1316                          */
1317                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1318                                 blk_queue_max_segments(mddev->queue, 1);
1319                                 blk_queue_segment_boundary(mddev->queue,
1320                                                            PAGE_CACHE_SIZE - 1);
1321                         }
1322
1323                         p->head_position = 0;
1324                         rdev->raid_disk = mirror;
1325                         err = 0;
1326                         /* As all devices are equivalent, we don't need a full recovery
1327                          * if this was recently any drive of the array
1328                          */
1329                         if (rdev->saved_raid_disk < 0)
1330                                 conf->fullsync = 1;
1331                         rcu_assign_pointer(p->rdev, rdev);
1332                         break;
1333                 }
1334         md_integrity_add_rdev(rdev, mddev);
1335         print_conf(conf);
1336         return err;
1337 }
1338
1339 static int raid1_remove_disk(struct mddev *mddev, int number)
1340 {
1341         struct r1conf *conf = mddev->private;
1342         int err = 0;
1343         struct md_rdev *rdev;
1344         struct mirror_info *p = conf->mirrors+ number;
1345
1346         print_conf(conf);
1347         rdev = p->rdev;
1348         if (rdev) {
1349                 if (test_bit(In_sync, &rdev->flags) ||
1350                     atomic_read(&rdev->nr_pending)) {
1351                         err = -EBUSY;
1352                         goto abort;
1353                 }
1354                 /* Only remove non-faulty devices if recovery
1355                  * is not possible.
1356                  */
1357                 if (!test_bit(Faulty, &rdev->flags) &&
1358                     mddev->recovery_disabled != conf->recovery_disabled &&
1359                     mddev->degraded < conf->raid_disks) {
1360                         err = -EBUSY;
1361                         goto abort;
1362                 }
1363                 p->rdev = NULL;
1364                 synchronize_rcu();
1365                 if (atomic_read(&rdev->nr_pending)) {
1366                         /* lost the race, try later */
1367                         err = -EBUSY;
1368                         p->rdev = rdev;
1369                         goto abort;
1370                 }
1371                 err = md_integrity_register(mddev);
1372         }
1373 abort:
1374
1375         print_conf(conf);
1376         return err;
1377 }
1378
1379
1380 static void end_sync_read(struct bio *bio, int error)
1381 {
1382         struct r1bio *r1_bio = bio->bi_private;
1383
1384         update_head_pos(r1_bio->read_disk, r1_bio);
1385
1386         /*
1387          * we have read a block, now it needs to be re-written,
1388          * or re-read if the read failed.
1389          * We don't do much here, just schedule handling by raid1d
1390          */
1391         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1392                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1393
1394         if (atomic_dec_and_test(&r1_bio->remaining))
1395                 reschedule_retry(r1_bio);
1396 }
1397
1398 static void end_sync_write(struct bio *bio, int error)
1399 {
1400         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1401         struct r1bio *r1_bio = bio->bi_private;
1402         struct mddev *mddev = r1_bio->mddev;
1403         struct r1conf *conf = mddev->private;
1404         int mirror=0;
1405         sector_t first_bad;
1406         int bad_sectors;
1407
1408         mirror = find_bio_disk(r1_bio, bio);
1409
1410         if (!uptodate) {
1411                 sector_t sync_blocks = 0;
1412                 sector_t s = r1_bio->sector;
1413                 long sectors_to_go = r1_bio->sectors;
1414                 /* make sure these bits doesn't get cleared. */
1415                 do {
1416                         bitmap_end_sync(mddev->bitmap, s,
1417                                         &sync_blocks, 1);
1418                         s += sync_blocks;
1419                         sectors_to_go -= sync_blocks;
1420                 } while (sectors_to_go > 0);
1421                 set_bit(WriteErrorSeen,
1422                         &conf->mirrors[mirror].rdev->flags);
1423                 set_bit(R1BIO_WriteError, &r1_bio->state);
1424         } else if (is_badblock(conf->mirrors[mirror].rdev,
1425                                r1_bio->sector,
1426                                r1_bio->sectors,
1427                                &first_bad, &bad_sectors) &&
1428                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1429                                 r1_bio->sector,
1430                                 r1_bio->sectors,
1431                                 &first_bad, &bad_sectors)
1432                 )
1433                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1434
1435         if (atomic_dec_and_test(&r1_bio->remaining)) {
1436                 int s = r1_bio->sectors;
1437                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1438                     test_bit(R1BIO_WriteError, &r1_bio->state))
1439                         reschedule_retry(r1_bio);
1440                 else {
1441                         put_buf(r1_bio);
1442                         md_done_sync(mddev, s, uptodate);
1443                 }
1444         }
1445 }
1446
1447 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1448                             int sectors, struct page *page, int rw)
1449 {
1450         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1451                 /* success */
1452                 return 1;
1453         if (rw == WRITE)
1454                 set_bit(WriteErrorSeen, &rdev->flags);
1455         /* need to record an error - either for the block or the device */
1456         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1457                 md_error(rdev->mddev, rdev);
1458         return 0;
1459 }
1460
1461 static int fix_sync_read_error(struct r1bio *r1_bio)
1462 {
1463         /* Try some synchronous reads of other devices to get
1464          * good data, much like with normal read errors.  Only
1465          * read into the pages we already have so we don't
1466          * need to re-issue the read request.
1467          * We don't need to freeze the array, because being in an
1468          * active sync request, there is no normal IO, and
1469          * no overlapping syncs.
1470          * We don't need to check is_badblock() again as we
1471          * made sure that anything with a bad block in range
1472          * will have bi_end_io clear.
1473          */
1474         struct mddev *mddev = r1_bio->mddev;
1475         struct r1conf *conf = mddev->private;
1476         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1477         sector_t sect = r1_bio->sector;
1478         int sectors = r1_bio->sectors;
1479         int idx = 0;
1480
1481         while(sectors) {
1482                 int s = sectors;
1483                 int d = r1_bio->read_disk;
1484                 int success = 0;
1485                 struct md_rdev *rdev;
1486                 int start;
1487
1488                 if (s > (PAGE_SIZE>>9))
1489                         s = PAGE_SIZE >> 9;
1490                 do {
1491                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1492                                 /* No rcu protection needed here devices
1493                                  * can only be removed when no resync is
1494                                  * active, and resync is currently active
1495                                  */
1496                                 rdev = conf->mirrors[d].rdev;
1497                                 if (sync_page_io(rdev, sect, s<<9,
1498                                                  bio->bi_io_vec[idx].bv_page,
1499                                                  READ, false)) {
1500                                         success = 1;
1501                                         break;
1502                                 }
1503                         }
1504                         d++;
1505                         if (d == conf->raid_disks)
1506                                 d = 0;
1507                 } while (!success && d != r1_bio->read_disk);
1508
1509                 if (!success) {
1510                         char b[BDEVNAME_SIZE];
1511                         int abort = 0;
1512                         /* Cannot read from anywhere, this block is lost.
1513                          * Record a bad block on each device.  If that doesn't
1514                          * work just disable and interrupt the recovery.
1515                          * Don't fail devices as that won't really help.
1516                          */
1517                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1518                                " for block %llu\n",
1519                                mdname(mddev),
1520                                bdevname(bio->bi_bdev, b),
1521                                (unsigned long long)r1_bio->sector);
1522                         for (d = 0; d < conf->raid_disks; d++) {
1523                                 rdev = conf->mirrors[d].rdev;
1524                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1525                                         continue;
1526                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1527                                         abort = 1;
1528                         }
1529                         if (abort) {
1530                                 conf->recovery_disabled =
1531                                         mddev->recovery_disabled;
1532                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1533                                 md_done_sync(mddev, r1_bio->sectors, 0);
1534                                 put_buf(r1_bio);
1535                                 return 0;
1536                         }
1537                         /* Try next page */
1538                         sectors -= s;
1539                         sect += s;
1540                         idx++;
1541                         continue;
1542                 }
1543
1544                 start = d;
1545                 /* write it back and re-read */
1546                 while (d != r1_bio->read_disk) {
1547                         if (d == 0)
1548                                 d = conf->raid_disks;
1549                         d--;
1550                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1551                                 continue;
1552                         rdev = conf->mirrors[d].rdev;
1553                         if (r1_sync_page_io(rdev, sect, s,
1554                                             bio->bi_io_vec[idx].bv_page,
1555                                             WRITE) == 0) {
1556                                 r1_bio->bios[d]->bi_end_io = NULL;
1557                                 rdev_dec_pending(rdev, mddev);
1558                         }
1559                 }
1560                 d = start;
1561                 while (d != r1_bio->read_disk) {
1562                         if (d == 0)
1563                                 d = conf->raid_disks;
1564                         d--;
1565                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1566                                 continue;
1567                         rdev = conf->mirrors[d].rdev;
1568                         if (r1_sync_page_io(rdev, sect, s,
1569                                             bio->bi_io_vec[idx].bv_page,
1570                                             READ) != 0)
1571                                 atomic_add(s, &rdev->corrected_errors);
1572                 }
1573                 sectors -= s;
1574                 sect += s;
1575                 idx ++;
1576         }
1577         set_bit(R1BIO_Uptodate, &r1_bio->state);
1578         set_bit(BIO_UPTODATE, &bio->bi_flags);
1579         return 1;
1580 }
1581
1582 static int process_checks(struct r1bio *r1_bio)
1583 {
1584         /* We have read all readable devices.  If we haven't
1585          * got the block, then there is no hope left.
1586          * If we have, then we want to do a comparison
1587          * and skip the write if everything is the same.
1588          * If any blocks failed to read, then we need to
1589          * attempt an over-write
1590          */
1591         struct mddev *mddev = r1_bio->mddev;
1592         struct r1conf *conf = mddev->private;
1593         int primary;
1594         int i;
1595
1596         for (primary = 0; primary < conf->raid_disks; primary++)
1597                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1598                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1599                         r1_bio->bios[primary]->bi_end_io = NULL;
1600                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1601                         break;
1602                 }
1603         r1_bio->read_disk = primary;
1604         for (i = 0; i < conf->raid_disks; i++) {
1605                 int j;
1606                 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1607                 struct bio *pbio = r1_bio->bios[primary];
1608                 struct bio *sbio = r1_bio->bios[i];
1609                 int size;
1610
1611                 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1612                         continue;
1613
1614                 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1615                         for (j = vcnt; j-- ; ) {
1616                                 struct page *p, *s;
1617                                 p = pbio->bi_io_vec[j].bv_page;
1618                                 s = sbio->bi_io_vec[j].bv_page;
1619                                 if (memcmp(page_address(p),
1620                                            page_address(s),
1621                                            PAGE_SIZE))
1622                                         break;
1623                         }
1624                 } else
1625                         j = 0;
1626                 if (j >= 0)
1627                         mddev->resync_mismatches += r1_bio->sectors;
1628                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1629                               && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1630                         /* No need to write to this device. */
1631                         sbio->bi_end_io = NULL;
1632                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1633                         continue;
1634                 }
1635                 /* fixup the bio for reuse */
1636                 sbio->bi_vcnt = vcnt;
1637                 sbio->bi_size = r1_bio->sectors << 9;
1638                 sbio->bi_idx = 0;
1639                 sbio->bi_phys_segments = 0;
1640                 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1641                 sbio->bi_flags |= 1 << BIO_UPTODATE;
1642                 sbio->bi_next = NULL;
1643                 sbio->bi_sector = r1_bio->sector +
1644                         conf->mirrors[i].rdev->data_offset;
1645                 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1646                 size = sbio->bi_size;
1647                 for (j = 0; j < vcnt ; j++) {
1648                         struct bio_vec *bi;
1649                         bi = &sbio->bi_io_vec[j];
1650                         bi->bv_offset = 0;
1651                         if (size > PAGE_SIZE)
1652                                 bi->bv_len = PAGE_SIZE;
1653                         else
1654                                 bi->bv_len = size;
1655                         size -= PAGE_SIZE;
1656                         memcpy(page_address(bi->bv_page),
1657                                page_address(pbio->bi_io_vec[j].bv_page),
1658                                PAGE_SIZE);
1659                 }
1660         }
1661         return 0;
1662 }
1663
1664 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1665 {
1666         struct r1conf *conf = mddev->private;
1667         int i;
1668         int disks = conf->raid_disks;
1669         struct bio *bio, *wbio;
1670
1671         bio = r1_bio->bios[r1_bio->read_disk];
1672
1673         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1674                 /* ouch - failed to read all of that. */
1675                 if (!fix_sync_read_error(r1_bio))
1676                         return;
1677
1678         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1679                 if (process_checks(r1_bio) < 0)
1680                         return;
1681         /*
1682          * schedule writes
1683          */
1684         atomic_set(&r1_bio->remaining, 1);
1685         for (i = 0; i < disks ; i++) {
1686                 wbio = r1_bio->bios[i];
1687                 if (wbio->bi_end_io == NULL ||
1688                     (wbio->bi_end_io == end_sync_read &&
1689                      (i == r1_bio->read_disk ||
1690                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1691                         continue;
1692
1693                 wbio->bi_rw = WRITE;
1694                 wbio->bi_end_io = end_sync_write;
1695                 atomic_inc(&r1_bio->remaining);
1696                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1697
1698                 generic_make_request(wbio);
1699         }
1700
1701         if (atomic_dec_and_test(&r1_bio->remaining)) {
1702                 /* if we're here, all write(s) have completed, so clean up */
1703                 md_done_sync(mddev, r1_bio->sectors, 1);
1704                 put_buf(r1_bio);
1705         }
1706 }
1707
1708 /*
1709  * This is a kernel thread which:
1710  *
1711  *      1.      Retries failed read operations on working mirrors.
1712  *      2.      Updates the raid superblock when problems encounter.
1713  *      3.      Performs writes following reads for array synchronising.
1714  */
1715
1716 static void fix_read_error(struct r1conf *conf, int read_disk,
1717                            sector_t sect, int sectors)
1718 {
1719         struct mddev *mddev = conf->mddev;
1720         while(sectors) {
1721                 int s = sectors;
1722                 int d = read_disk;
1723                 int success = 0;
1724                 int start;
1725                 struct md_rdev *rdev;
1726
1727                 if (s > (PAGE_SIZE>>9))
1728                         s = PAGE_SIZE >> 9;
1729
1730                 do {
1731                         /* Note: no rcu protection needed here
1732                          * as this is synchronous in the raid1d thread
1733                          * which is the thread that might remove
1734                          * a device.  If raid1d ever becomes multi-threaded....
1735                          */
1736                         sector_t first_bad;
1737                         int bad_sectors;
1738
1739                         rdev = conf->mirrors[d].rdev;
1740                         if (rdev &&
1741                             test_bit(In_sync, &rdev->flags) &&
1742                             is_badblock(rdev, sect, s,
1743                                         &first_bad, &bad_sectors) == 0 &&
1744                             sync_page_io(rdev, sect, s<<9,
1745                                          conf->tmppage, READ, false))
1746                                 success = 1;
1747                         else {
1748                                 d++;
1749                                 if (d == conf->raid_disks)
1750                                         d = 0;
1751                         }
1752                 } while (!success && d != read_disk);
1753
1754                 if (!success) {
1755                         /* Cannot read from anywhere - mark it bad */
1756                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1757                         if (!rdev_set_badblocks(rdev, sect, s, 0))
1758                                 md_error(mddev, rdev);
1759                         break;
1760                 }
1761                 /* write it back and re-read */
1762                 start = d;
1763                 while (d != read_disk) {
1764                         if (d==0)
1765                                 d = conf->raid_disks;
1766                         d--;
1767                         rdev = conf->mirrors[d].rdev;
1768                         if (rdev &&
1769                             test_bit(In_sync, &rdev->flags))
1770                                 r1_sync_page_io(rdev, sect, s,
1771                                                 conf->tmppage, WRITE);
1772                 }
1773                 d = start;
1774                 while (d != read_disk) {
1775                         char b[BDEVNAME_SIZE];
1776                         if (d==0)
1777                                 d = conf->raid_disks;
1778                         d--;
1779                         rdev = conf->mirrors[d].rdev;
1780                         if (rdev &&
1781                             test_bit(In_sync, &rdev->flags)) {
1782                                 if (r1_sync_page_io(rdev, sect, s,
1783                                                     conf->tmppage, READ)) {
1784                                         atomic_add(s, &rdev->corrected_errors);
1785                                         printk(KERN_INFO
1786                                                "md/raid1:%s: read error corrected "
1787                                                "(%d sectors at %llu on %s)\n",
1788                                                mdname(mddev), s,
1789                                                (unsigned long long)(sect +
1790                                                    rdev->data_offset),
1791                                                bdevname(rdev->bdev, b));
1792                                 }
1793                         }
1794                 }
1795                 sectors -= s;
1796                 sect += s;
1797         }
1798 }
1799
1800 static void bi_complete(struct bio *bio, int error)
1801 {
1802         complete((struct completion *)bio->bi_private);
1803 }
1804
1805 static int submit_bio_wait(int rw, struct bio *bio)
1806 {
1807         struct completion event;
1808         rw |= REQ_SYNC;
1809
1810         init_completion(&event);
1811         bio->bi_private = &event;
1812         bio->bi_end_io = bi_complete;
1813         submit_bio(rw, bio);
1814         wait_for_completion(&event);
1815
1816         return test_bit(BIO_UPTODATE, &bio->bi_flags);
1817 }
1818
1819 static int narrow_write_error(struct r1bio *r1_bio, int i)
1820 {
1821         struct mddev *mddev = r1_bio->mddev;
1822         struct r1conf *conf = mddev->private;
1823         struct md_rdev *rdev = conf->mirrors[i].rdev;
1824         int vcnt, idx;
1825         struct bio_vec *vec;
1826
1827         /* bio has the data to be written to device 'i' where
1828          * we just recently had a write error.
1829          * We repeatedly clone the bio and trim down to one block,
1830          * then try the write.  Where the write fails we record
1831          * a bad block.
1832          * It is conceivable that the bio doesn't exactly align with
1833          * blocks.  We must handle this somehow.
1834          *
1835          * We currently own a reference on the rdev.
1836          */
1837
1838         int block_sectors;
1839         sector_t sector;
1840         int sectors;
1841         int sect_to_write = r1_bio->sectors;
1842         int ok = 1;
1843
1844         if (rdev->badblocks.shift < 0)
1845                 return 0;
1846
1847         block_sectors = 1 << rdev->badblocks.shift;
1848         sector = r1_bio->sector;
1849         sectors = ((sector + block_sectors)
1850                    & ~(sector_t)(block_sectors - 1))
1851                 - sector;
1852
1853         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1854                 vcnt = r1_bio->behind_page_count;
1855                 vec = r1_bio->behind_bvecs;
1856                 idx = 0;
1857                 while (vec[idx].bv_page == NULL)
1858                         idx++;
1859         } else {
1860                 vcnt = r1_bio->master_bio->bi_vcnt;
1861                 vec = r1_bio->master_bio->bi_io_vec;
1862                 idx = r1_bio->master_bio->bi_idx;
1863         }
1864         while (sect_to_write) {
1865                 struct bio *wbio;
1866                 if (sectors > sect_to_write)
1867                         sectors = sect_to_write;
1868                 /* Write at 'sector' for 'sectors'*/
1869
1870                 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1871                 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1872                 wbio->bi_sector = r1_bio->sector;
1873                 wbio->bi_rw = WRITE;
1874                 wbio->bi_vcnt = vcnt;
1875                 wbio->bi_size = r1_bio->sectors << 9;
1876                 wbio->bi_idx = idx;
1877
1878                 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1879                 wbio->bi_sector += rdev->data_offset;
1880                 wbio->bi_bdev = rdev->bdev;
1881                 if (submit_bio_wait(WRITE, wbio) == 0)
1882                         /* failure! */
1883                         ok = rdev_set_badblocks(rdev, sector,
1884                                                 sectors, 0)
1885                                 && ok;
1886
1887                 bio_put(wbio);
1888                 sect_to_write -= sectors;
1889                 sector += sectors;
1890                 sectors = block_sectors;
1891         }
1892         return ok;
1893 }
1894
1895 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1896 {
1897         int m;
1898         int s = r1_bio->sectors;
1899         for (m = 0; m < conf->raid_disks ; m++) {
1900                 struct md_rdev *rdev = conf->mirrors[m].rdev;
1901                 struct bio *bio = r1_bio->bios[m];
1902                 if (bio->bi_end_io == NULL)
1903                         continue;
1904                 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1905                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1906                         rdev_clear_badblocks(rdev, r1_bio->sector, s);
1907                 }
1908                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1909                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
1910                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1911                                 md_error(conf->mddev, rdev);
1912                 }
1913         }
1914         put_buf(r1_bio);
1915         md_done_sync(conf->mddev, s, 1);
1916 }
1917
1918 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1919 {
1920         int m;
1921         for (m = 0; m < conf->raid_disks ; m++)
1922                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
1923                         struct md_rdev *rdev = conf->mirrors[m].rdev;
1924                         rdev_clear_badblocks(rdev,
1925                                              r1_bio->sector,
1926                                              r1_bio->sectors);
1927                         rdev_dec_pending(rdev, conf->mddev);
1928                 } else if (r1_bio->bios[m] != NULL) {
1929                         /* This drive got a write error.  We need to
1930                          * narrow down and record precise write
1931                          * errors.
1932                          */
1933                         if (!narrow_write_error(r1_bio, m)) {
1934                                 md_error(conf->mddev,
1935                                          conf->mirrors[m].rdev);
1936                                 /* an I/O failed, we can't clear the bitmap */
1937                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1938                         }
1939                         rdev_dec_pending(conf->mirrors[m].rdev,
1940                                          conf->mddev);
1941                 }
1942         if (test_bit(R1BIO_WriteError, &r1_bio->state))
1943                 close_write(r1_bio);
1944         raid_end_bio_io(r1_bio);
1945 }
1946
1947 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
1948 {
1949         int disk;
1950         int max_sectors;
1951         struct mddev *mddev = conf->mddev;
1952         struct bio *bio;
1953         char b[BDEVNAME_SIZE];
1954         struct md_rdev *rdev;
1955
1956         clear_bit(R1BIO_ReadError, &r1_bio->state);
1957         /* we got a read error. Maybe the drive is bad.  Maybe just
1958          * the block and we can fix it.
1959          * We freeze all other IO, and try reading the block from
1960          * other devices.  When we find one, we re-write
1961          * and check it that fixes the read error.
1962          * This is all done synchronously while the array is
1963          * frozen
1964          */
1965         if (mddev->ro == 0) {
1966                 freeze_array(conf);
1967                 fix_read_error(conf, r1_bio->read_disk,
1968                                r1_bio->sector, r1_bio->sectors);
1969                 unfreeze_array(conf);
1970         } else
1971                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1972
1973         bio = r1_bio->bios[r1_bio->read_disk];
1974         bdevname(bio->bi_bdev, b);
1975 read_more:
1976         disk = read_balance(conf, r1_bio, &max_sectors);
1977         if (disk == -1) {
1978                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1979                        " read error for block %llu\n",
1980                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
1981                 raid_end_bio_io(r1_bio);
1982         } else {
1983                 const unsigned long do_sync
1984                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
1985                 if (bio) {
1986                         r1_bio->bios[r1_bio->read_disk] =
1987                                 mddev->ro ? IO_BLOCKED : NULL;
1988                         bio_put(bio);
1989                 }
1990                 r1_bio->read_disk = disk;
1991                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1992                 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1993                 r1_bio->bios[r1_bio->read_disk] = bio;
1994                 rdev = conf->mirrors[disk].rdev;
1995                 printk_ratelimited(KERN_ERR
1996                                    "md/raid1:%s: redirecting sector %llu"
1997                                    " to other mirror: %s\n",
1998                                    mdname(mddev),
1999                                    (unsigned long long)r1_bio->sector,
2000                                    bdevname(rdev->bdev, b));
2001                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2002                 bio->bi_bdev = rdev->bdev;
2003                 bio->bi_end_io = raid1_end_read_request;
2004                 bio->bi_rw = READ | do_sync;
2005                 bio->bi_private = r1_bio;
2006                 if (max_sectors < r1_bio->sectors) {
2007                         /* Drat - have to split this up more */
2008                         struct bio *mbio = r1_bio->master_bio;
2009                         int sectors_handled = (r1_bio->sector + max_sectors
2010                                                - mbio->bi_sector);
2011                         r1_bio->sectors = max_sectors;
2012                         spin_lock_irq(&conf->device_lock);
2013                         if (mbio->bi_phys_segments == 0)
2014                                 mbio->bi_phys_segments = 2;
2015                         else
2016                                 mbio->bi_phys_segments++;
2017                         spin_unlock_irq(&conf->device_lock);
2018                         generic_make_request(bio);
2019                         bio = NULL;
2020
2021                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2022
2023                         r1_bio->master_bio = mbio;
2024                         r1_bio->sectors = (mbio->bi_size >> 9)
2025                                           - sectors_handled;
2026                         r1_bio->state = 0;
2027                         set_bit(R1BIO_ReadError, &r1_bio->state);
2028                         r1_bio->mddev = mddev;
2029                         r1_bio->sector = mbio->bi_sector + sectors_handled;
2030
2031                         goto read_more;
2032                 } else
2033                         generic_make_request(bio);
2034         }
2035 }
2036
2037 static void raid1d(struct mddev *mddev)
2038 {
2039         struct r1bio *r1_bio;
2040         unsigned long flags;
2041         struct r1conf *conf = mddev->private;
2042         struct list_head *head = &conf->retry_list;
2043         struct blk_plug plug;
2044
2045         md_check_recovery(mddev);
2046
2047         blk_start_plug(&plug);
2048         for (;;) {
2049
2050                 if (atomic_read(&mddev->plug_cnt) == 0)
2051                         flush_pending_writes(conf);
2052
2053                 spin_lock_irqsave(&conf->device_lock, flags);
2054                 if (list_empty(head)) {
2055                         spin_unlock_irqrestore(&conf->device_lock, flags);
2056                         break;
2057                 }
2058                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2059                 list_del(head->prev);
2060                 conf->nr_queued--;
2061                 spin_unlock_irqrestore(&conf->device_lock, flags);
2062
2063                 mddev = r1_bio->mddev;
2064                 conf = mddev->private;
2065                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2066                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2067                             test_bit(R1BIO_WriteError, &r1_bio->state))
2068                                 handle_sync_write_finished(conf, r1_bio);
2069                         else
2070                                 sync_request_write(mddev, r1_bio);
2071                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2072                            test_bit(R1BIO_WriteError, &r1_bio->state))
2073                         handle_write_finished(conf, r1_bio);
2074                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2075                         handle_read_error(conf, r1_bio);
2076                 else
2077                         /* just a partial read to be scheduled from separate
2078                          * context
2079                          */
2080                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2081
2082                 cond_resched();
2083                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2084                         md_check_recovery(mddev);
2085         }
2086         blk_finish_plug(&plug);
2087 }
2088
2089
2090 static int init_resync(struct r1conf *conf)
2091 {
2092         int buffs;
2093
2094         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2095         BUG_ON(conf->r1buf_pool);
2096         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2097                                           conf->poolinfo);
2098         if (!conf->r1buf_pool)
2099                 return -ENOMEM;
2100         conf->next_resync = 0;
2101         return 0;
2102 }
2103
2104 /*
2105  * perform a "sync" on one "block"
2106  *
2107  * We need to make sure that no normal I/O request - particularly write
2108  * requests - conflict with active sync requests.
2109  *
2110  * This is achieved by tracking pending requests and a 'barrier' concept
2111  * that can be installed to exclude normal IO requests.
2112  */
2113
2114 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2115 {
2116         struct r1conf *conf = mddev->private;
2117         struct r1bio *r1_bio;
2118         struct bio *bio;
2119         sector_t max_sector, nr_sectors;
2120         int disk = -1;
2121         int i;
2122         int wonly = -1;
2123         int write_targets = 0, read_targets = 0;
2124         sector_t sync_blocks;
2125         int still_degraded = 0;
2126         int good_sectors = RESYNC_SECTORS;
2127         int min_bad = 0; /* number of sectors that are bad in all devices */
2128
2129         if (!conf->r1buf_pool)
2130                 if (init_resync(conf))
2131                         return 0;
2132
2133         max_sector = mddev->dev_sectors;
2134         if (sector_nr >= max_sector) {
2135                 /* If we aborted, we need to abort the
2136                  * sync on the 'current' bitmap chunk (there will
2137                  * only be one in raid1 resync.
2138                  * We can find the current addess in mddev->curr_resync
2139                  */
2140                 if (mddev->curr_resync < max_sector) /* aborted */
2141                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2142                                                 &sync_blocks, 1);
2143                 else /* completed sync */
2144                         conf->fullsync = 0;
2145
2146                 bitmap_close_sync(mddev->bitmap);
2147                 close_sync(conf);
2148                 return 0;
2149         }
2150
2151         if (mddev->bitmap == NULL &&
2152             mddev->recovery_cp == MaxSector &&
2153             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2154             conf->fullsync == 0) {
2155                 *skipped = 1;
2156                 return max_sector - sector_nr;
2157         }
2158         /* before building a request, check if we can skip these blocks..
2159          * This call the bitmap_start_sync doesn't actually record anything
2160          */
2161         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2162             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2163                 /* We can skip this block, and probably several more */
2164                 *skipped = 1;
2165                 return sync_blocks;
2166         }
2167         /*
2168          * If there is non-resync activity waiting for a turn,
2169          * and resync is going fast enough,
2170          * then let it though before starting on this new sync request.
2171          */
2172         if (!go_faster && conf->nr_waiting)
2173                 msleep_interruptible(1000);
2174
2175         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2176         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2177         raise_barrier(conf);
2178
2179         conf->next_resync = sector_nr;
2180
2181         rcu_read_lock();
2182         /*
2183          * If we get a correctably read error during resync or recovery,
2184          * we might want to read from a different device.  So we
2185          * flag all drives that could conceivably be read from for READ,
2186          * and any others (which will be non-In_sync devices) for WRITE.
2187          * If a read fails, we try reading from something else for which READ
2188          * is OK.
2189          */
2190
2191         r1_bio->mddev = mddev;
2192         r1_bio->sector = sector_nr;
2193         r1_bio->state = 0;
2194         set_bit(R1BIO_IsSync, &r1_bio->state);
2195
2196         for (i=0; i < conf->raid_disks; i++) {
2197                 struct md_rdev *rdev;
2198                 bio = r1_bio->bios[i];
2199
2200                 /* take from bio_init */
2201                 bio->bi_next = NULL;
2202                 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2203                 bio->bi_flags |= 1 << BIO_UPTODATE;
2204                 bio->bi_rw = READ;
2205                 bio->bi_vcnt = 0;
2206                 bio->bi_idx = 0;
2207                 bio->bi_phys_segments = 0;
2208                 bio->bi_size = 0;
2209                 bio->bi_end_io = NULL;
2210                 bio->bi_private = NULL;
2211
2212                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2213                 if (rdev == NULL ||
2214                     test_bit(Faulty, &rdev->flags)) {
2215                         still_degraded = 1;
2216                 } else if (!test_bit(In_sync, &rdev->flags)) {
2217                         bio->bi_rw = WRITE;
2218                         bio->bi_end_io = end_sync_write;
2219                         write_targets ++;
2220                 } else {
2221                         /* may need to read from here */
2222                         sector_t first_bad = MaxSector;
2223                         int bad_sectors;
2224
2225                         if (is_badblock(rdev, sector_nr, good_sectors,
2226                                         &first_bad, &bad_sectors)) {
2227                                 if (first_bad > sector_nr)
2228                                         good_sectors = first_bad - sector_nr;
2229                                 else {
2230                                         bad_sectors -= (sector_nr - first_bad);
2231                                         if (min_bad == 0 ||
2232                                             min_bad > bad_sectors)
2233                                                 min_bad = bad_sectors;
2234                                 }
2235                         }
2236                         if (sector_nr < first_bad) {
2237                                 if (test_bit(WriteMostly, &rdev->flags)) {
2238                                         if (wonly < 0)
2239                                                 wonly = i;
2240                                 } else {
2241                                         if (disk < 0)
2242                                                 disk = i;
2243                                 }
2244                                 bio->bi_rw = READ;
2245                                 bio->bi_end_io = end_sync_read;
2246                                 read_targets++;
2247                         }
2248                 }
2249                 if (bio->bi_end_io) {
2250                         atomic_inc(&rdev->nr_pending);
2251                         bio->bi_sector = sector_nr + rdev->data_offset;
2252                         bio->bi_bdev = rdev->bdev;
2253                         bio->bi_private = r1_bio;
2254                 }
2255         }
2256         rcu_read_unlock();
2257         if (disk < 0)
2258                 disk = wonly;
2259         r1_bio->read_disk = disk;
2260
2261         if (read_targets == 0 && min_bad > 0) {
2262                 /* These sectors are bad on all InSync devices, so we
2263                  * need to mark them bad on all write targets
2264                  */
2265                 int ok = 1;
2266                 for (i = 0 ; i < conf->raid_disks ; i++)
2267                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2268                                 struct md_rdev *rdev =
2269                                         rcu_dereference(conf->mirrors[i].rdev);
2270                                 ok = rdev_set_badblocks(rdev, sector_nr,
2271                                                         min_bad, 0
2272                                         ) && ok;
2273                         }
2274                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2275                 *skipped = 1;
2276                 put_buf(r1_bio);
2277
2278                 if (!ok) {
2279                         /* Cannot record the badblocks, so need to
2280                          * abort the resync.
2281                          * If there are multiple read targets, could just
2282                          * fail the really bad ones ???
2283                          */
2284                         conf->recovery_disabled = mddev->recovery_disabled;
2285                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2286                         return 0;
2287                 } else
2288                         return min_bad;
2289
2290         }
2291         if (min_bad > 0 && min_bad < good_sectors) {
2292                 /* only resync enough to reach the next bad->good
2293                  * transition */
2294                 good_sectors = min_bad;
2295         }
2296
2297         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2298                 /* extra read targets are also write targets */
2299                 write_targets += read_targets-1;
2300
2301         if (write_targets == 0 || read_targets == 0) {
2302                 /* There is nowhere to write, so all non-sync
2303                  * drives must be failed - so we are finished
2304                  */
2305                 sector_t rv = max_sector - sector_nr;
2306                 *skipped = 1;
2307                 put_buf(r1_bio);
2308                 return rv;
2309         }
2310
2311         if (max_sector > mddev->resync_max)
2312                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2313         if (max_sector > sector_nr + good_sectors)
2314                 max_sector = sector_nr + good_sectors;
2315         nr_sectors = 0;
2316         sync_blocks = 0;
2317         do {
2318                 struct page *page;
2319                 int len = PAGE_SIZE;
2320                 if (sector_nr + (len>>9) > max_sector)
2321                         len = (max_sector - sector_nr) << 9;
2322                 if (len == 0)
2323                         break;
2324                 if (sync_blocks == 0) {
2325                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2326                                                &sync_blocks, still_degraded) &&
2327                             !conf->fullsync &&
2328                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2329                                 break;
2330                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2331                         if ((len >> 9) > sync_blocks)
2332                                 len = sync_blocks<<9;
2333                 }
2334
2335                 for (i=0 ; i < conf->raid_disks; i++) {
2336                         bio = r1_bio->bios[i];
2337                         if (bio->bi_end_io) {
2338                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2339                                 if (bio_add_page(bio, page, len, 0) == 0) {
2340                                         /* stop here */
2341                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2342                                         while (i > 0) {
2343                                                 i--;
2344                                                 bio = r1_bio->bios[i];
2345                                                 if (bio->bi_end_io==NULL)
2346                                                         continue;
2347                                                 /* remove last page from this bio */
2348                                                 bio->bi_vcnt--;
2349                                                 bio->bi_size -= len;
2350                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2351                                         }
2352                                         goto bio_full;
2353                                 }
2354                         }
2355                 }
2356                 nr_sectors += len>>9;
2357                 sector_nr += len>>9;
2358                 sync_blocks -= (len>>9);
2359         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2360  bio_full:
2361         r1_bio->sectors = nr_sectors;
2362
2363         /* For a user-requested sync, we read all readable devices and do a
2364          * compare
2365          */
2366         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2367                 atomic_set(&r1_bio->remaining, read_targets);
2368                 for (i=0; i<conf->raid_disks; i++) {
2369                         bio = r1_bio->bios[i];
2370                         if (bio->bi_end_io == end_sync_read) {
2371                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2372                                 generic_make_request(bio);
2373                         }
2374                 }
2375         } else {
2376                 atomic_set(&r1_bio->remaining, 1);
2377                 bio = r1_bio->bios[r1_bio->read_disk];
2378                 md_sync_acct(bio->bi_bdev, nr_sectors);
2379                 generic_make_request(bio);
2380
2381         }
2382         return nr_sectors;
2383 }
2384
2385 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2386 {
2387         if (sectors)
2388                 return sectors;
2389
2390         return mddev->dev_sectors;
2391 }
2392
2393 static struct r1conf *setup_conf(struct mddev *mddev)
2394 {
2395         struct r1conf *conf;
2396         int i;
2397         struct mirror_info *disk;
2398         struct md_rdev *rdev;
2399         int err = -ENOMEM;
2400
2401         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2402         if (!conf)
2403                 goto abort;
2404
2405         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2406                                  GFP_KERNEL);
2407         if (!conf->mirrors)
2408                 goto abort;
2409
2410         conf->tmppage = alloc_page(GFP_KERNEL);
2411         if (!conf->tmppage)
2412                 goto abort;
2413
2414         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2415         if (!conf->poolinfo)
2416                 goto abort;
2417         conf->poolinfo->raid_disks = mddev->raid_disks;
2418         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2419                                           r1bio_pool_free,
2420                                           conf->poolinfo);
2421         if (!conf->r1bio_pool)
2422                 goto abort;
2423
2424         conf->poolinfo->mddev = mddev;
2425
2426         spin_lock_init(&conf->device_lock);
2427         list_for_each_entry(rdev, &mddev->disks, same_set) {
2428                 int disk_idx = rdev->raid_disk;
2429                 if (disk_idx >= mddev->raid_disks
2430                     || disk_idx < 0)
2431                         continue;
2432                 disk = conf->mirrors + disk_idx;
2433
2434                 disk->rdev = rdev;
2435
2436                 disk->head_position = 0;
2437         }
2438         conf->raid_disks = mddev->raid_disks;
2439         conf->mddev = mddev;
2440         INIT_LIST_HEAD(&conf->retry_list);
2441
2442         spin_lock_init(&conf->resync_lock);
2443         init_waitqueue_head(&conf->wait_barrier);
2444
2445         bio_list_init(&conf->pending_bio_list);
2446         conf->pending_count = 0;
2447         conf->recovery_disabled = mddev->recovery_disabled - 1;
2448
2449         conf->last_used = -1;
2450         for (i = 0; i < conf->raid_disks; i++) {
2451
2452                 disk = conf->mirrors + i;
2453
2454                 if (!disk->rdev ||
2455                     !test_bit(In_sync, &disk->rdev->flags)) {
2456                         disk->head_position = 0;
2457                         if (disk->rdev)
2458                                 conf->fullsync = 1;
2459                 } else if (conf->last_used < 0)
2460                         /*
2461                          * The first working device is used as a
2462                          * starting point to read balancing.
2463                          */
2464                         conf->last_used = i;
2465         }
2466
2467         err = -EIO;
2468         if (conf->last_used < 0) {
2469                 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2470                        mdname(mddev));
2471                 goto abort;
2472         }
2473         err = -ENOMEM;
2474         conf->thread = md_register_thread(raid1d, mddev, NULL);
2475         if (!conf->thread) {
2476                 printk(KERN_ERR
2477                        "md/raid1:%s: couldn't allocate thread\n",
2478                        mdname(mddev));
2479                 goto abort;
2480         }
2481
2482         return conf;
2483
2484  abort:
2485         if (conf) {
2486                 if (conf->r1bio_pool)
2487                         mempool_destroy(conf->r1bio_pool);
2488                 kfree(conf->mirrors);
2489                 safe_put_page(conf->tmppage);
2490                 kfree(conf->poolinfo);
2491                 kfree(conf);
2492         }
2493         return ERR_PTR(err);
2494 }
2495
2496 static int run(struct mddev *mddev)
2497 {
2498         struct r1conf *conf;
2499         int i;
2500         struct md_rdev *rdev;
2501
2502         if (mddev->level != 1) {
2503                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2504                        mdname(mddev), mddev->level);
2505                 return -EIO;
2506         }
2507         if (mddev->reshape_position != MaxSector) {
2508                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2509                        mdname(mddev));
2510                 return -EIO;
2511         }
2512         /*
2513          * copy the already verified devices into our private RAID1
2514          * bookkeeping area. [whatever we allocate in run(),
2515          * should be freed in stop()]
2516          */
2517         if (mddev->private == NULL)
2518                 conf = setup_conf(mddev);
2519         else
2520                 conf = mddev->private;
2521
2522         if (IS_ERR(conf))
2523                 return PTR_ERR(conf);
2524
2525         list_for_each_entry(rdev, &mddev->disks, same_set) {
2526                 if (!mddev->gendisk)
2527                         continue;
2528                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2529                                   rdev->data_offset << 9);
2530                 /* as we don't honour merge_bvec_fn, we must never risk
2531                  * violating it, so limit ->max_segments to 1 lying within
2532                  * a single page, as a one page request is never in violation.
2533                  */
2534                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2535                         blk_queue_max_segments(mddev->queue, 1);
2536                         blk_queue_segment_boundary(mddev->queue,
2537                                                    PAGE_CACHE_SIZE - 1);
2538                 }
2539         }
2540
2541         mddev->degraded = 0;
2542         for (i=0; i < conf->raid_disks; i++)
2543                 if (conf->mirrors[i].rdev == NULL ||
2544                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2545                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2546                         mddev->degraded++;
2547
2548         if (conf->raid_disks - mddev->degraded == 1)
2549                 mddev->recovery_cp = MaxSector;
2550
2551         if (mddev->recovery_cp != MaxSector)
2552                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2553                        " -- starting background reconstruction\n",
2554                        mdname(mddev));
2555         printk(KERN_INFO 
2556                 "md/raid1:%s: active with %d out of %d mirrors\n",
2557                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
2558                 mddev->raid_disks);
2559
2560         /*
2561          * Ok, everything is just fine now
2562          */
2563         mddev->thread = conf->thread;
2564         conf->thread = NULL;
2565         mddev->private = conf;
2566
2567         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2568
2569         if (mddev->queue) {
2570                 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2571                 mddev->queue->backing_dev_info.congested_data = mddev;
2572         }
2573         return md_integrity_register(mddev);
2574 }
2575
2576 static int stop(struct mddev *mddev)
2577 {
2578         struct r1conf *conf = mddev->private;
2579         struct bitmap *bitmap = mddev->bitmap;
2580
2581         /* wait for behind writes to complete */
2582         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2583                 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2584                        mdname(mddev));
2585                 /* need to kick something here to make sure I/O goes? */
2586                 wait_event(bitmap->behind_wait,
2587                            atomic_read(&bitmap->behind_writes) == 0);
2588         }
2589
2590         raise_barrier(conf);
2591         lower_barrier(conf);
2592
2593         md_unregister_thread(&mddev->thread);
2594         if (conf->r1bio_pool)
2595                 mempool_destroy(conf->r1bio_pool);
2596         kfree(conf->mirrors);
2597         kfree(conf->poolinfo);
2598         kfree(conf);
2599         mddev->private = NULL;
2600         return 0;
2601 }
2602
2603 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2604 {
2605         /* no resync is happening, and there is enough space
2606          * on all devices, so we can resize.
2607          * We need to make sure resync covers any new space.
2608          * If the array is shrinking we should possibly wait until
2609          * any io in the removed space completes, but it hardly seems
2610          * worth it.
2611          */
2612         md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2613         if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2614                 return -EINVAL;
2615         set_capacity(mddev->gendisk, mddev->array_sectors);
2616         revalidate_disk(mddev->gendisk);
2617         if (sectors > mddev->dev_sectors &&
2618             mddev->recovery_cp > mddev->dev_sectors) {
2619                 mddev->recovery_cp = mddev->dev_sectors;
2620                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2621         }
2622         mddev->dev_sectors = sectors;
2623         mddev->resync_max_sectors = sectors;
2624         return 0;
2625 }
2626
2627 static int raid1_reshape(struct mddev *mddev)
2628 {
2629         /* We need to:
2630          * 1/ resize the r1bio_pool
2631          * 2/ resize conf->mirrors
2632          *
2633          * We allocate a new r1bio_pool if we can.
2634          * Then raise a device barrier and wait until all IO stops.
2635          * Then resize conf->mirrors and swap in the new r1bio pool.
2636          *
2637          * At the same time, we "pack" the devices so that all the missing
2638          * devices have the higher raid_disk numbers.
2639          */
2640         mempool_t *newpool, *oldpool;
2641         struct pool_info *newpoolinfo;
2642         struct mirror_info *newmirrors;
2643         struct r1conf *conf = mddev->private;
2644         int cnt, raid_disks;
2645         unsigned long flags;
2646         int d, d2, err;
2647
2648         /* Cannot change chunk_size, layout, or level */
2649         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2650             mddev->layout != mddev->new_layout ||
2651             mddev->level != mddev->new_level) {
2652                 mddev->new_chunk_sectors = mddev->chunk_sectors;
2653                 mddev->new_layout = mddev->layout;
2654                 mddev->new_level = mddev->level;
2655                 return -EINVAL;
2656         }
2657
2658         err = md_allow_write(mddev);
2659         if (err)
2660                 return err;
2661
2662         raid_disks = mddev->raid_disks + mddev->delta_disks;
2663
2664         if (raid_disks < conf->raid_disks) {
2665                 cnt=0;
2666                 for (d= 0; d < conf->raid_disks; d++)
2667                         if (conf->mirrors[d].rdev)
2668                                 cnt++;
2669                 if (cnt > raid_disks)
2670                         return -EBUSY;
2671         }
2672
2673         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2674         if (!newpoolinfo)
2675                 return -ENOMEM;
2676         newpoolinfo->mddev = mddev;
2677         newpoolinfo->raid_disks = raid_disks;
2678
2679         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2680                                  r1bio_pool_free, newpoolinfo);
2681         if (!newpool) {
2682                 kfree(newpoolinfo);
2683                 return -ENOMEM;
2684         }
2685         newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2686         if (!newmirrors) {
2687                 kfree(newpoolinfo);
2688                 mempool_destroy(newpool);
2689                 return -ENOMEM;
2690         }
2691
2692         raise_barrier(conf);
2693
2694         /* ok, everything is stopped */
2695         oldpool = conf->r1bio_pool;
2696         conf->r1bio_pool = newpool;
2697
2698         for (d = d2 = 0; d < conf->raid_disks; d++) {
2699                 struct md_rdev *rdev = conf->mirrors[d].rdev;
2700                 if (rdev && rdev->raid_disk != d2) {
2701                         sysfs_unlink_rdev(mddev, rdev);
2702                         rdev->raid_disk = d2;
2703                         sysfs_unlink_rdev(mddev, rdev);
2704                         if (sysfs_link_rdev(mddev, rdev))
2705                                 printk(KERN_WARNING
2706                                        "md/raid1:%s: cannot register rd%d\n",
2707                                        mdname(mddev), rdev->raid_disk);
2708                 }
2709                 if (rdev)
2710                         newmirrors[d2++].rdev = rdev;
2711         }
2712         kfree(conf->mirrors);
2713         conf->mirrors = newmirrors;
2714         kfree(conf->poolinfo);
2715         conf->poolinfo = newpoolinfo;
2716
2717         spin_lock_irqsave(&conf->device_lock, flags);
2718         mddev->degraded += (raid_disks - conf->raid_disks);
2719         spin_unlock_irqrestore(&conf->device_lock, flags);
2720         conf->raid_disks = mddev->raid_disks = raid_disks;
2721         mddev->delta_disks = 0;
2722
2723         conf->last_used = 0; /* just make sure it is in-range */
2724         lower_barrier(conf);
2725
2726         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2727         md_wakeup_thread(mddev->thread);
2728
2729         mempool_destroy(oldpool);
2730         return 0;
2731 }
2732
2733 static void raid1_quiesce(struct mddev *mddev, int state)
2734 {
2735         struct r1conf *conf = mddev->private;
2736
2737         switch(state) {
2738         case 2: /* wake for suspend */
2739                 wake_up(&conf->wait_barrier);
2740                 break;
2741         case 1:
2742                 raise_barrier(conf);
2743                 break;
2744         case 0:
2745                 lower_barrier(conf);
2746                 break;
2747         }
2748 }
2749
2750 static void *raid1_takeover(struct mddev *mddev)
2751 {
2752         /* raid1 can take over:
2753          *  raid5 with 2 devices, any layout or chunk size
2754          */
2755         if (mddev->level == 5 && mddev->raid_disks == 2) {
2756                 struct r1conf *conf;
2757                 mddev->new_level = 1;
2758                 mddev->new_layout = 0;
2759                 mddev->new_chunk_sectors = 0;
2760                 conf = setup_conf(mddev);
2761                 if (!IS_ERR(conf))
2762                         conf->barrier = 1;
2763                 return conf;
2764         }
2765         return ERR_PTR(-EINVAL);
2766 }
2767
2768 static struct md_personality raid1_personality =
2769 {
2770         .name           = "raid1",
2771         .level          = 1,
2772         .owner          = THIS_MODULE,
2773         .make_request   = make_request,
2774         .run            = run,
2775         .stop           = stop,
2776         .status         = status,
2777         .error_handler  = error,
2778         .hot_add_disk   = raid1_add_disk,
2779         .hot_remove_disk= raid1_remove_disk,
2780         .spare_active   = raid1_spare_active,
2781         .sync_request   = sync_request,
2782         .resize         = raid1_resize,
2783         .size           = raid1_size,
2784         .check_reshape  = raid1_reshape,
2785         .quiesce        = raid1_quiesce,
2786         .takeover       = raid1_takeover,
2787 };
2788
2789 static int __init raid_init(void)
2790 {
2791         return register_md_personality(&raid1_personality);
2792 }
2793
2794 static void raid_exit(void)
2795 {
2796         unregister_md_personality(&raid1_personality);
2797 }
2798
2799 module_init(raid_init);
2800 module_exit(raid_exit);
2801 MODULE_LICENSE("GPL");
2802 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2803 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2804 MODULE_ALIAS("md-raid1");
2805 MODULE_ALIAS("md-level-1");
2806
2807 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);