Drop 'size' argument from bio_endio and bi_end_io
[pandora-kernel.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define NR_RAID1_BIOS 256
49
50
51 static void unplug_slaves(mddev_t *mddev);
52
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
55
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 {
58         struct pool_info *pi = data;
59         r1bio_t *r1_bio;
60         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61
62         /* allocate a r1bio with room for raid_disks entries in the bios array */
63         r1_bio = kzalloc(size, gfp_flags);
64         if (!r1_bio)
65                 unplug_slaves(pi->mddev);
66
67         return r1_bio;
68 }
69
70 static void r1bio_pool_free(void *r1_bio, void *data)
71 {
72         kfree(r1_bio);
73 }
74
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
80
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83         struct pool_info *pi = data;
84         struct page *page;
85         r1bio_t *r1_bio;
86         struct bio *bio;
87         int i, j;
88
89         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90         if (!r1_bio) {
91                 unplug_slaves(pi->mddev);
92                 return NULL;
93         }
94
95         /*
96          * Allocate bios : 1 for reading, n-1 for writing
97          */
98         for (j = pi->raid_disks ; j-- ; ) {
99                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100                 if (!bio)
101                         goto out_free_bio;
102                 r1_bio->bios[j] = bio;
103         }
104         /*
105          * Allocate RESYNC_PAGES data pages and attach them to
106          * the first bio.
107          * If this is a user-requested check/repair, allocate
108          * RESYNC_PAGES for each bio.
109          */
110         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111                 j = pi->raid_disks;
112         else
113                 j = 1;
114         while(j--) {
115                 bio = r1_bio->bios[j];
116                 for (i = 0; i < RESYNC_PAGES; i++) {
117                         page = alloc_page(gfp_flags);
118                         if (unlikely(!page))
119                                 goto out_free_pages;
120
121                         bio->bi_io_vec[i].bv_page = page;
122                 }
123         }
124         /* If not user-requests, copy the page pointers to all bios */
125         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126                 for (i=0; i<RESYNC_PAGES ; i++)
127                         for (j=1; j<pi->raid_disks; j++)
128                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
129                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
130         }
131
132         r1_bio->master_bio = NULL;
133
134         return r1_bio;
135
136 out_free_pages:
137         for (i=0; i < RESYNC_PAGES ; i++)
138                 for (j=0 ; j < pi->raid_disks; j++)
139                         safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140         j = -1;
141 out_free_bio:
142         while ( ++j < pi->raid_disks )
143                 bio_put(r1_bio->bios[j]);
144         r1bio_pool_free(r1_bio, data);
145         return NULL;
146 }
147
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150         struct pool_info *pi = data;
151         int i,j;
152         r1bio_t *r1bio = __r1_bio;
153
154         for (i = 0; i < RESYNC_PAGES; i++)
155                 for (j = pi->raid_disks; j-- ;) {
156                         if (j == 0 ||
157                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
158                             r1bio->bios[0]->bi_io_vec[i].bv_page)
159                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160                 }
161         for (i=0 ; i < pi->raid_disks; i++)
162                 bio_put(r1bio->bios[i]);
163
164         r1bio_pool_free(r1bio, data);
165 }
166
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168 {
169         int i;
170
171         for (i = 0; i < conf->raid_disks; i++) {
172                 struct bio **bio = r1_bio->bios + i;
173                 if (*bio && *bio != IO_BLOCKED)
174                         bio_put(*bio);
175                 *bio = NULL;
176         }
177 }
178
179 static void free_r1bio(r1bio_t *r1_bio)
180 {
181         conf_t *conf = mddev_to_conf(r1_bio->mddev);
182
183         /*
184          * Wake up any possible resync thread that waits for the device
185          * to go idle.
186          */
187         allow_barrier(conf);
188
189         put_all_bios(conf, r1_bio);
190         mempool_free(r1_bio, conf->r1bio_pool);
191 }
192
193 static void put_buf(r1bio_t *r1_bio)
194 {
195         conf_t *conf = mddev_to_conf(r1_bio->mddev);
196         int i;
197
198         for (i=0; i<conf->raid_disks; i++) {
199                 struct bio *bio = r1_bio->bios[i];
200                 if (bio->bi_end_io)
201                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202         }
203
204         mempool_free(r1_bio, conf->r1buf_pool);
205
206         lower_barrier(conf);
207 }
208
209 static void reschedule_retry(r1bio_t *r1_bio)
210 {
211         unsigned long flags;
212         mddev_t *mddev = r1_bio->mddev;
213         conf_t *conf = mddev_to_conf(mddev);
214
215         spin_lock_irqsave(&conf->device_lock, flags);
216         list_add(&r1_bio->retry_list, &conf->retry_list);
217         conf->nr_queued ++;
218         spin_unlock_irqrestore(&conf->device_lock, flags);
219
220         wake_up(&conf->wait_barrier);
221         md_wakeup_thread(mddev->thread);
222 }
223
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r1bio_t *r1_bio)
230 {
231         struct bio *bio = r1_bio->master_bio;
232
233         /* if nobody has done the final endio yet, do it now */
234         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
237                         (unsigned long long) bio->bi_sector,
238                         (unsigned long long) bio->bi_sector +
239                                 (bio->bi_size >> 9) - 1);
240
241                 bio_endio(bio,
242                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243         }
244         free_r1bio(r1_bio);
245 }
246
247 /*
248  * Update disk head position estimator based on IRQ completion info.
249  */
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251 {
252         conf_t *conf = mddev_to_conf(r1_bio->mddev);
253
254         conf->mirrors[disk].head_position =
255                 r1_bio->sector + (r1_bio->sectors);
256 }
257
258 static void raid1_end_read_request(struct bio *bio, int error)
259 {
260         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262         int mirror;
263         conf_t *conf = mddev_to_conf(r1_bio->mddev);
264
265         mirror = r1_bio->read_disk;
266         /*
267          * this branch is our 'one mirror IO has finished' event handler:
268          */
269         update_head_pos(mirror, r1_bio);
270
271         if (uptodate)
272                 set_bit(R1BIO_Uptodate, &r1_bio->state);
273         else {
274                 /* If all other devices have failed, we want to return
275                  * the error upwards rather than fail the last device.
276                  * Here we redefine "uptodate" to mean "Don't want to retry"
277                  */
278                 unsigned long flags;
279                 spin_lock_irqsave(&conf->device_lock, flags);
280                 if (r1_bio->mddev->degraded == conf->raid_disks ||
281                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
282                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
283                         uptodate = 1;
284                 spin_unlock_irqrestore(&conf->device_lock, flags);
285         }
286
287         if (uptodate)
288                 raid_end_bio_io(r1_bio);
289         else {
290                 /*
291                  * oops, read error:
292                  */
293                 char b[BDEVNAME_SIZE];
294                 if (printk_ratelimit())
295                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
296                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
297                 reschedule_retry(r1_bio);
298         }
299
300         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
301 }
302
303 static void raid1_end_write_request(struct bio *bio, int error)
304 {
305         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308         conf_t *conf = mddev_to_conf(r1_bio->mddev);
309         struct bio *to_put = NULL;
310
311
312         for (mirror = 0; mirror < conf->raid_disks; mirror++)
313                 if (r1_bio->bios[mirror] == bio)
314                         break;
315
316         if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
317                 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
318                 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
319                 r1_bio->mddev->barriers_work = 0;
320                 /* Don't rdev_dec_pending in this branch - keep it for the retry */
321         } else {
322                 /*
323                  * this branch is our 'one mirror IO has finished' event handler:
324                  */
325                 r1_bio->bios[mirror] = NULL;
326                 to_put = bio;
327                 if (!uptodate) {
328                         md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
329                         /* an I/O failed, we can't clear the bitmap */
330                         set_bit(R1BIO_Degraded, &r1_bio->state);
331                 } else
332                         /*
333                          * Set R1BIO_Uptodate in our master bio, so that
334                          * we will return a good error code for to the higher
335                          * levels even if IO on some other mirrored buffer fails.
336                          *
337                          * The 'master' represents the composite IO operation to
338                          * user-side. So if something waits for IO, then it will
339                          * wait for the 'master' bio.
340                          */
341                         set_bit(R1BIO_Uptodate, &r1_bio->state);
342
343                 update_head_pos(mirror, r1_bio);
344
345                 if (behind) {
346                         if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
347                                 atomic_dec(&r1_bio->behind_remaining);
348
349                         /* In behind mode, we ACK the master bio once the I/O has safely
350                          * reached all non-writemostly disks. Setting the Returned bit
351                          * ensures that this gets done only once -- we don't ever want to
352                          * return -EIO here, instead we'll wait */
353
354                         if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
355                             test_bit(R1BIO_Uptodate, &r1_bio->state)) {
356                                 /* Maybe we can return now */
357                                 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
358                                         struct bio *mbio = r1_bio->master_bio;
359                                         PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
360                                                (unsigned long long) mbio->bi_sector,
361                                                (unsigned long long) mbio->bi_sector +
362                                                (mbio->bi_size >> 9) - 1);
363                                         bio_endio(mbio, 0);
364                                 }
365                         }
366                 }
367                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
368         }
369         /*
370          *
371          * Let's see if all mirrored write operations have finished
372          * already.
373          */
374         if (atomic_dec_and_test(&r1_bio->remaining)) {
375                 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
376                         reschedule_retry(r1_bio);
377                 else {
378                         /* it really is the end of this request */
379                         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380                                 /* free extra copy of the data pages */
381                                 int i = bio->bi_vcnt;
382                                 while (i--)
383                                         safe_put_page(bio->bi_io_vec[i].bv_page);
384                         }
385                         /* clear the bitmap if all writes complete successfully */
386                         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
387                                         r1_bio->sectors,
388                                         !test_bit(R1BIO_Degraded, &r1_bio->state),
389                                         behind);
390                         md_write_end(r1_bio->mddev);
391                         raid_end_bio_io(r1_bio);
392                 }
393         }
394
395         if (to_put)
396                 bio_put(to_put);
397 }
398
399
400 /*
401  * This routine returns the disk from which the requested read should
402  * be done. There is a per-array 'next expected sequential IO' sector
403  * number - if this matches on the next IO then we use the last disk.
404  * There is also a per-disk 'last know head position' sector that is
405  * maintained from IRQ contexts, both the normal and the resync IO
406  * completion handlers update this position correctly. If there is no
407  * perfect sequential match then we pick the disk whose head is closest.
408  *
409  * If there are 2 mirrors in the same 2 devices, performance degrades
410  * because position is mirror, not device based.
411  *
412  * The rdev for the device selected will have nr_pending incremented.
413  */
414 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
415 {
416         const unsigned long this_sector = r1_bio->sector;
417         int new_disk = conf->last_used, disk = new_disk;
418         int wonly_disk = -1;
419         const int sectors = r1_bio->sectors;
420         sector_t new_distance, current_distance;
421         mdk_rdev_t *rdev;
422
423         rcu_read_lock();
424         /*
425          * Check if we can balance. We can balance on the whole
426          * device if no resync is going on, or below the resync window.
427          * We take the first readable disk when above the resync window.
428          */
429  retry:
430         if (conf->mddev->recovery_cp < MaxSector &&
431             (this_sector + sectors >= conf->next_resync)) {
432                 /* Choose the first operation device, for consistancy */
433                 new_disk = 0;
434
435                 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
436                      r1_bio->bios[new_disk] == IO_BLOCKED ||
437                      !rdev || !test_bit(In_sync, &rdev->flags)
438                              || test_bit(WriteMostly, &rdev->flags);
439                      rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
440
441                         if (rdev && test_bit(In_sync, &rdev->flags) &&
442                                 r1_bio->bios[new_disk] != IO_BLOCKED)
443                                 wonly_disk = new_disk;
444
445                         if (new_disk == conf->raid_disks - 1) {
446                                 new_disk = wonly_disk;
447                                 break;
448                         }
449                 }
450                 goto rb_out;
451         }
452
453
454         /* make sure the disk is operational */
455         for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
456              r1_bio->bios[new_disk] == IO_BLOCKED ||
457              !rdev || !test_bit(In_sync, &rdev->flags) ||
458                      test_bit(WriteMostly, &rdev->flags);
459              rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
460
461                 if (rdev && test_bit(In_sync, &rdev->flags) &&
462                     r1_bio->bios[new_disk] != IO_BLOCKED)
463                         wonly_disk = new_disk;
464
465                 if (new_disk <= 0)
466                         new_disk = conf->raid_disks;
467                 new_disk--;
468                 if (new_disk == disk) {
469                         new_disk = wonly_disk;
470                         break;
471                 }
472         }
473
474         if (new_disk < 0)
475                 goto rb_out;
476
477         disk = new_disk;
478         /* now disk == new_disk == starting point for search */
479
480         /*
481          * Don't change to another disk for sequential reads:
482          */
483         if (conf->next_seq_sect == this_sector)
484                 goto rb_out;
485         if (this_sector == conf->mirrors[new_disk].head_position)
486                 goto rb_out;
487
488         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
489
490         /* Find the disk whose head is closest */
491
492         do {
493                 if (disk <= 0)
494                         disk = conf->raid_disks;
495                 disk--;
496
497                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
498
499                 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
500                     !test_bit(In_sync, &rdev->flags) ||
501                     test_bit(WriteMostly, &rdev->flags))
502                         continue;
503
504                 if (!atomic_read(&rdev->nr_pending)) {
505                         new_disk = disk;
506                         break;
507                 }
508                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
509                 if (new_distance < current_distance) {
510                         current_distance = new_distance;
511                         new_disk = disk;
512                 }
513         } while (disk != conf->last_used);
514
515  rb_out:
516
517
518         if (new_disk >= 0) {
519                 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
520                 if (!rdev)
521                         goto retry;
522                 atomic_inc(&rdev->nr_pending);
523                 if (!test_bit(In_sync, &rdev->flags)) {
524                         /* cannot risk returning a device that failed
525                          * before we inc'ed nr_pending
526                          */
527                         rdev_dec_pending(rdev, conf->mddev);
528                         goto retry;
529                 }
530                 conf->next_seq_sect = this_sector + sectors;
531                 conf->last_used = new_disk;
532         }
533         rcu_read_unlock();
534
535         return new_disk;
536 }
537
538 static void unplug_slaves(mddev_t *mddev)
539 {
540         conf_t *conf = mddev_to_conf(mddev);
541         int i;
542
543         rcu_read_lock();
544         for (i=0; i<mddev->raid_disks; i++) {
545                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
546                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
547                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
548
549                         atomic_inc(&rdev->nr_pending);
550                         rcu_read_unlock();
551
552                         if (r_queue->unplug_fn)
553                                 r_queue->unplug_fn(r_queue);
554
555                         rdev_dec_pending(rdev, mddev);
556                         rcu_read_lock();
557                 }
558         }
559         rcu_read_unlock();
560 }
561
562 static void raid1_unplug(struct request_queue *q)
563 {
564         mddev_t *mddev = q->queuedata;
565
566         unplug_slaves(mddev);
567         md_wakeup_thread(mddev->thread);
568 }
569
570 static int raid1_issue_flush(struct request_queue *q, struct gendisk *disk,
571                              sector_t *error_sector)
572 {
573         mddev_t *mddev = q->queuedata;
574         conf_t *conf = mddev_to_conf(mddev);
575         int i, ret = 0;
576
577         rcu_read_lock();
578         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
579                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
580                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
581                         struct block_device *bdev = rdev->bdev;
582                         struct request_queue *r_queue = bdev_get_queue(bdev);
583
584                         if (!r_queue->issue_flush_fn)
585                                 ret = -EOPNOTSUPP;
586                         else {
587                                 atomic_inc(&rdev->nr_pending);
588                                 rcu_read_unlock();
589                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
590                                                               error_sector);
591                                 rdev_dec_pending(rdev, mddev);
592                                 rcu_read_lock();
593                         }
594                 }
595         }
596         rcu_read_unlock();
597         return ret;
598 }
599
600 static int raid1_congested(void *data, int bits)
601 {
602         mddev_t *mddev = data;
603         conf_t *conf = mddev_to_conf(mddev);
604         int i, ret = 0;
605
606         rcu_read_lock();
607         for (i = 0; i < mddev->raid_disks; i++) {
608                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
609                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
610                         struct request_queue *q = bdev_get_queue(rdev->bdev);
611
612                         /* Note the '|| 1' - when read_balance prefers
613                          * non-congested targets, it can be removed
614                          */
615                         if ((bits & (1<<BDI_write_congested)) || 1)
616                                 ret |= bdi_congested(&q->backing_dev_info, bits);
617                         else
618                                 ret &= bdi_congested(&q->backing_dev_info, bits);
619                 }
620         }
621         rcu_read_unlock();
622         return ret;
623 }
624
625
626 /* Barriers....
627  * Sometimes we need to suspend IO while we do something else,
628  * either some resync/recovery, or reconfigure the array.
629  * To do this we raise a 'barrier'.
630  * The 'barrier' is a counter that can be raised multiple times
631  * to count how many activities are happening which preclude
632  * normal IO.
633  * We can only raise the barrier if there is no pending IO.
634  * i.e. if nr_pending == 0.
635  * We choose only to raise the barrier if no-one is waiting for the
636  * barrier to go down.  This means that as soon as an IO request
637  * is ready, no other operations which require a barrier will start
638  * until the IO request has had a chance.
639  *
640  * So: regular IO calls 'wait_barrier'.  When that returns there
641  *    is no backgroup IO happening,  It must arrange to call
642  *    allow_barrier when it has finished its IO.
643  * backgroup IO calls must call raise_barrier.  Once that returns
644  *    there is no normal IO happeing.  It must arrange to call
645  *    lower_barrier when the particular background IO completes.
646  */
647 #define RESYNC_DEPTH 32
648
649 static void raise_barrier(conf_t *conf)
650 {
651         spin_lock_irq(&conf->resync_lock);
652
653         /* Wait until no block IO is waiting */
654         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
655                             conf->resync_lock,
656                             raid1_unplug(conf->mddev->queue));
657
658         /* block any new IO from starting */
659         conf->barrier++;
660
661         /* No wait for all pending IO to complete */
662         wait_event_lock_irq(conf->wait_barrier,
663                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
664                             conf->resync_lock,
665                             raid1_unplug(conf->mddev->queue));
666
667         spin_unlock_irq(&conf->resync_lock);
668 }
669
670 static void lower_barrier(conf_t *conf)
671 {
672         unsigned long flags;
673         spin_lock_irqsave(&conf->resync_lock, flags);
674         conf->barrier--;
675         spin_unlock_irqrestore(&conf->resync_lock, flags);
676         wake_up(&conf->wait_barrier);
677 }
678
679 static void wait_barrier(conf_t *conf)
680 {
681         spin_lock_irq(&conf->resync_lock);
682         if (conf->barrier) {
683                 conf->nr_waiting++;
684                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
685                                     conf->resync_lock,
686                                     raid1_unplug(conf->mddev->queue));
687                 conf->nr_waiting--;
688         }
689         conf->nr_pending++;
690         spin_unlock_irq(&conf->resync_lock);
691 }
692
693 static void allow_barrier(conf_t *conf)
694 {
695         unsigned long flags;
696         spin_lock_irqsave(&conf->resync_lock, flags);
697         conf->nr_pending--;
698         spin_unlock_irqrestore(&conf->resync_lock, flags);
699         wake_up(&conf->wait_barrier);
700 }
701
702 static void freeze_array(conf_t *conf)
703 {
704         /* stop syncio and normal IO and wait for everything to
705          * go quite.
706          * We increment barrier and nr_waiting, and then
707          * wait until barrier+nr_pending match nr_queued+2
708          */
709         spin_lock_irq(&conf->resync_lock);
710         conf->barrier++;
711         conf->nr_waiting++;
712         wait_event_lock_irq(conf->wait_barrier,
713                             conf->barrier+conf->nr_pending == conf->nr_queued+2,
714                             conf->resync_lock,
715                             raid1_unplug(conf->mddev->queue));
716         spin_unlock_irq(&conf->resync_lock);
717 }
718 static void unfreeze_array(conf_t *conf)
719 {
720         /* reverse the effect of the freeze */
721         spin_lock_irq(&conf->resync_lock);
722         conf->barrier--;
723         conf->nr_waiting--;
724         wake_up(&conf->wait_barrier);
725         spin_unlock_irq(&conf->resync_lock);
726 }
727
728
729 /* duplicate the data pages for behind I/O */
730 static struct page **alloc_behind_pages(struct bio *bio)
731 {
732         int i;
733         struct bio_vec *bvec;
734         struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
735                                         GFP_NOIO);
736         if (unlikely(!pages))
737                 goto do_sync_io;
738
739         bio_for_each_segment(bvec, bio, i) {
740                 pages[i] = alloc_page(GFP_NOIO);
741                 if (unlikely(!pages[i]))
742                         goto do_sync_io;
743                 memcpy(kmap(pages[i]) + bvec->bv_offset,
744                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
745                 kunmap(pages[i]);
746                 kunmap(bvec->bv_page);
747         }
748
749         return pages;
750
751 do_sync_io:
752         if (pages)
753                 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
754                         put_page(pages[i]);
755         kfree(pages);
756         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
757         return NULL;
758 }
759
760 static int make_request(struct request_queue *q, struct bio * bio)
761 {
762         mddev_t *mddev = q->queuedata;
763         conf_t *conf = mddev_to_conf(mddev);
764         mirror_info_t *mirror;
765         r1bio_t *r1_bio;
766         struct bio *read_bio;
767         int i, targets = 0, disks;
768         mdk_rdev_t *rdev;
769         struct bitmap *bitmap = mddev->bitmap;
770         unsigned long flags;
771         struct bio_list bl;
772         struct page **behind_pages = NULL;
773         const int rw = bio_data_dir(bio);
774         const int do_sync = bio_sync(bio);
775         int do_barriers;
776
777         /*
778          * Register the new request and wait if the reconstruction
779          * thread has put up a bar for new requests.
780          * Continue immediately if no resync is active currently.
781          * We test barriers_work *after* md_write_start as md_write_start
782          * may cause the first superblock write, and that will check out
783          * if barriers work.
784          */
785
786         md_write_start(mddev, bio); /* wait on superblock update early */
787
788         if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
789                 if (rw == WRITE)
790                         md_write_end(mddev);
791                 bio_endio(bio, -EOPNOTSUPP);
792                 return 0;
793         }
794
795         wait_barrier(conf);
796
797         disk_stat_inc(mddev->gendisk, ios[rw]);
798         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
799
800         /*
801          * make_request() can abort the operation when READA is being
802          * used and no empty request is available.
803          *
804          */
805         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
806
807         r1_bio->master_bio = bio;
808         r1_bio->sectors = bio->bi_size >> 9;
809         r1_bio->state = 0;
810         r1_bio->mddev = mddev;
811         r1_bio->sector = bio->bi_sector;
812
813         if (rw == READ) {
814                 /*
815                  * read balancing logic:
816                  */
817                 int rdisk = read_balance(conf, r1_bio);
818
819                 if (rdisk < 0) {
820                         /* couldn't find anywhere to read from */
821                         raid_end_bio_io(r1_bio);
822                         return 0;
823                 }
824                 mirror = conf->mirrors + rdisk;
825
826                 r1_bio->read_disk = rdisk;
827
828                 read_bio = bio_clone(bio, GFP_NOIO);
829
830                 r1_bio->bios[rdisk] = read_bio;
831
832                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
833                 read_bio->bi_bdev = mirror->rdev->bdev;
834                 read_bio->bi_end_io = raid1_end_read_request;
835                 read_bio->bi_rw = READ | do_sync;
836                 read_bio->bi_private = r1_bio;
837
838                 generic_make_request(read_bio);
839                 return 0;
840         }
841
842         /*
843          * WRITE:
844          */
845         /* first select target devices under spinlock and
846          * inc refcount on their rdev.  Record them by setting
847          * bios[x] to bio
848          */
849         disks = conf->raid_disks;
850 #if 0
851         { static int first=1;
852         if (first) printk("First Write sector %llu disks %d\n",
853                           (unsigned long long)r1_bio->sector, disks);
854         first = 0;
855         }
856 #endif
857         rcu_read_lock();
858         for (i = 0;  i < disks; i++) {
859                 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
860                     !test_bit(Faulty, &rdev->flags)) {
861                         atomic_inc(&rdev->nr_pending);
862                         if (test_bit(Faulty, &rdev->flags)) {
863                                 rdev_dec_pending(rdev, mddev);
864                                 r1_bio->bios[i] = NULL;
865                         } else
866                                 r1_bio->bios[i] = bio;
867                         targets++;
868                 } else
869                         r1_bio->bios[i] = NULL;
870         }
871         rcu_read_unlock();
872
873         BUG_ON(targets == 0); /* we never fail the last device */
874
875         if (targets < conf->raid_disks) {
876                 /* array is degraded, we will not clear the bitmap
877                  * on I/O completion (see raid1_end_write_request) */
878                 set_bit(R1BIO_Degraded, &r1_bio->state);
879         }
880
881         /* do behind I/O ? */
882         if (bitmap &&
883             atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
884             (behind_pages = alloc_behind_pages(bio)) != NULL)
885                 set_bit(R1BIO_BehindIO, &r1_bio->state);
886
887         atomic_set(&r1_bio->remaining, 0);
888         atomic_set(&r1_bio->behind_remaining, 0);
889
890         do_barriers = bio_barrier(bio);
891         if (do_barriers)
892                 set_bit(R1BIO_Barrier, &r1_bio->state);
893
894         bio_list_init(&bl);
895         for (i = 0; i < disks; i++) {
896                 struct bio *mbio;
897                 if (!r1_bio->bios[i])
898                         continue;
899
900                 mbio = bio_clone(bio, GFP_NOIO);
901                 r1_bio->bios[i] = mbio;
902
903                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
904                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
905                 mbio->bi_end_io = raid1_end_write_request;
906                 mbio->bi_rw = WRITE | do_barriers | do_sync;
907                 mbio->bi_private = r1_bio;
908
909                 if (behind_pages) {
910                         struct bio_vec *bvec;
911                         int j;
912
913                         /* Yes, I really want the '__' version so that
914                          * we clear any unused pointer in the io_vec, rather
915                          * than leave them unchanged.  This is important
916                          * because when we come to free the pages, we won't
917                          * know the originial bi_idx, so we just free
918                          * them all
919                          */
920                         __bio_for_each_segment(bvec, mbio, j, 0)
921                                 bvec->bv_page = behind_pages[j];
922                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
923                                 atomic_inc(&r1_bio->behind_remaining);
924                 }
925
926                 atomic_inc(&r1_bio->remaining);
927
928                 bio_list_add(&bl, mbio);
929         }
930         kfree(behind_pages); /* the behind pages are attached to the bios now */
931
932         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
933                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
934         spin_lock_irqsave(&conf->device_lock, flags);
935         bio_list_merge(&conf->pending_bio_list, &bl);
936         bio_list_init(&bl);
937
938         blk_plug_device(mddev->queue);
939         spin_unlock_irqrestore(&conf->device_lock, flags);
940
941         if (do_sync)
942                 md_wakeup_thread(mddev->thread);
943 #if 0
944         while ((bio = bio_list_pop(&bl)) != NULL)
945                 generic_make_request(bio);
946 #endif
947
948         return 0;
949 }
950
951 static void status(struct seq_file *seq, mddev_t *mddev)
952 {
953         conf_t *conf = mddev_to_conf(mddev);
954         int i;
955
956         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
957                    conf->raid_disks - mddev->degraded);
958         rcu_read_lock();
959         for (i = 0; i < conf->raid_disks; i++) {
960                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
961                 seq_printf(seq, "%s",
962                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
963         }
964         rcu_read_unlock();
965         seq_printf(seq, "]");
966 }
967
968
969 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
970 {
971         char b[BDEVNAME_SIZE];
972         conf_t *conf = mddev_to_conf(mddev);
973
974         /*
975          * If it is not operational, then we have already marked it as dead
976          * else if it is the last working disks, ignore the error, let the
977          * next level up know.
978          * else mark the drive as failed
979          */
980         if (test_bit(In_sync, &rdev->flags)
981             && (conf->raid_disks - mddev->degraded) == 1)
982                 /*
983                  * Don't fail the drive, act as though we were just a
984                  * normal single drive
985                  */
986                 return;
987         if (test_and_clear_bit(In_sync, &rdev->flags)) {
988                 unsigned long flags;
989                 spin_lock_irqsave(&conf->device_lock, flags);
990                 mddev->degraded++;
991                 set_bit(Faulty, &rdev->flags);
992                 spin_unlock_irqrestore(&conf->device_lock, flags);
993                 /*
994                  * if recovery is running, make sure it aborts.
995                  */
996                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
997         } else
998                 set_bit(Faulty, &rdev->flags);
999         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1000         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
1001                 "       Operation continuing on %d devices\n",
1002                 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1003 }
1004
1005 static void print_conf(conf_t *conf)
1006 {
1007         int i;
1008
1009         printk("RAID1 conf printout:\n");
1010         if (!conf) {
1011                 printk("(!conf)\n");
1012                 return;
1013         }
1014         printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1015                 conf->raid_disks);
1016
1017         rcu_read_lock();
1018         for (i = 0; i < conf->raid_disks; i++) {
1019                 char b[BDEVNAME_SIZE];
1020                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1021                 if (rdev)
1022                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1023                                i, !test_bit(In_sync, &rdev->flags),
1024                                !test_bit(Faulty, &rdev->flags),
1025                                bdevname(rdev->bdev,b));
1026         }
1027         rcu_read_unlock();
1028 }
1029
1030 static void close_sync(conf_t *conf)
1031 {
1032         wait_barrier(conf);
1033         allow_barrier(conf);
1034
1035         mempool_destroy(conf->r1buf_pool);
1036         conf->r1buf_pool = NULL;
1037 }
1038
1039 static int raid1_spare_active(mddev_t *mddev)
1040 {
1041         int i;
1042         conf_t *conf = mddev->private;
1043
1044         /*
1045          * Find all failed disks within the RAID1 configuration 
1046          * and mark them readable.
1047          * Called under mddev lock, so rcu protection not needed.
1048          */
1049         for (i = 0; i < conf->raid_disks; i++) {
1050                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1051                 if (rdev
1052                     && !test_bit(Faulty, &rdev->flags)
1053                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1054                         unsigned long flags;
1055                         spin_lock_irqsave(&conf->device_lock, flags);
1056                         mddev->degraded--;
1057                         spin_unlock_irqrestore(&conf->device_lock, flags);
1058                 }
1059         }
1060
1061         print_conf(conf);
1062         return 0;
1063 }
1064
1065
1066 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1067 {
1068         conf_t *conf = mddev->private;
1069         int found = 0;
1070         int mirror = 0;
1071         mirror_info_t *p;
1072
1073         for (mirror=0; mirror < mddev->raid_disks; mirror++)
1074                 if ( !(p=conf->mirrors+mirror)->rdev) {
1075
1076                         blk_queue_stack_limits(mddev->queue,
1077                                                rdev->bdev->bd_disk->queue);
1078                         /* as we don't honour merge_bvec_fn, we must never risk
1079                          * violating it, so limit ->max_sector to one PAGE, as
1080                          * a one page request is never in violation.
1081                          */
1082                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1083                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
1084                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1085
1086                         p->head_position = 0;
1087                         rdev->raid_disk = mirror;
1088                         found = 1;
1089                         /* As all devices are equivalent, we don't need a full recovery
1090                          * if this was recently any drive of the array
1091                          */
1092                         if (rdev->saved_raid_disk < 0)
1093                                 conf->fullsync = 1;
1094                         rcu_assign_pointer(p->rdev, rdev);
1095                         break;
1096                 }
1097
1098         print_conf(conf);
1099         return found;
1100 }
1101
1102 static int raid1_remove_disk(mddev_t *mddev, int number)
1103 {
1104         conf_t *conf = mddev->private;
1105         int err = 0;
1106         mdk_rdev_t *rdev;
1107         mirror_info_t *p = conf->mirrors+ number;
1108
1109         print_conf(conf);
1110         rdev = p->rdev;
1111         if (rdev) {
1112                 if (test_bit(In_sync, &rdev->flags) ||
1113                     atomic_read(&rdev->nr_pending)) {
1114                         err = -EBUSY;
1115                         goto abort;
1116                 }
1117                 p->rdev = NULL;
1118                 synchronize_rcu();
1119                 if (atomic_read(&rdev->nr_pending)) {
1120                         /* lost the race, try later */
1121                         err = -EBUSY;
1122                         p->rdev = rdev;
1123                 }
1124         }
1125 abort:
1126
1127         print_conf(conf);
1128         return err;
1129 }
1130
1131
1132 static void end_sync_read(struct bio *bio, int error)
1133 {
1134         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1135         int i;
1136
1137         for (i=r1_bio->mddev->raid_disks; i--; )
1138                 if (r1_bio->bios[i] == bio)
1139                         break;
1140         BUG_ON(i < 0);
1141         update_head_pos(i, r1_bio);
1142         /*
1143          * we have read a block, now it needs to be re-written,
1144          * or re-read if the read failed.
1145          * We don't do much here, just schedule handling by raid1d
1146          */
1147         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1148                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1149
1150         if (atomic_dec_and_test(&r1_bio->remaining))
1151                 reschedule_retry(r1_bio);
1152 }
1153
1154 static void end_sync_write(struct bio *bio, int error)
1155 {
1156         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1157         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1158         mddev_t *mddev = r1_bio->mddev;
1159         conf_t *conf = mddev_to_conf(mddev);
1160         int i;
1161         int mirror=0;
1162
1163         for (i = 0; i < conf->raid_disks; i++)
1164                 if (r1_bio->bios[i] == bio) {
1165                         mirror = i;
1166                         break;
1167                 }
1168         if (!uptodate) {
1169                 int sync_blocks = 0;
1170                 sector_t s = r1_bio->sector;
1171                 long sectors_to_go = r1_bio->sectors;
1172                 /* make sure these bits doesn't get cleared. */
1173                 do {
1174                         bitmap_end_sync(mddev->bitmap, s,
1175                                         &sync_blocks, 1);
1176                         s += sync_blocks;
1177                         sectors_to_go -= sync_blocks;
1178                 } while (sectors_to_go > 0);
1179                 md_error(mddev, conf->mirrors[mirror].rdev);
1180         }
1181
1182         update_head_pos(mirror, r1_bio);
1183
1184         if (atomic_dec_and_test(&r1_bio->remaining)) {
1185                 md_done_sync(mddev, r1_bio->sectors, uptodate);
1186                 put_buf(r1_bio);
1187         }
1188 }
1189
1190 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1191 {
1192         conf_t *conf = mddev_to_conf(mddev);
1193         int i;
1194         int disks = conf->raid_disks;
1195         struct bio *bio, *wbio;
1196
1197         bio = r1_bio->bios[r1_bio->read_disk];
1198
1199
1200         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1201                 /* We have read all readable devices.  If we haven't
1202                  * got the block, then there is no hope left.
1203                  * If we have, then we want to do a comparison
1204                  * and skip the write if everything is the same.
1205                  * If any blocks failed to read, then we need to
1206                  * attempt an over-write
1207                  */
1208                 int primary;
1209                 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1210                         for (i=0; i<mddev->raid_disks; i++)
1211                                 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1212                                         md_error(mddev, conf->mirrors[i].rdev);
1213
1214                         md_done_sync(mddev, r1_bio->sectors, 1);
1215                         put_buf(r1_bio);
1216                         return;
1217                 }
1218                 for (primary=0; primary<mddev->raid_disks; primary++)
1219                         if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1220                             test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1221                                 r1_bio->bios[primary]->bi_end_io = NULL;
1222                                 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1223                                 break;
1224                         }
1225                 r1_bio->read_disk = primary;
1226                 for (i=0; i<mddev->raid_disks; i++)
1227                         if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1228                                 int j;
1229                                 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1230                                 struct bio *pbio = r1_bio->bios[primary];
1231                                 struct bio *sbio = r1_bio->bios[i];
1232
1233                                 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1234                                         for (j = vcnt; j-- ; ) {
1235                                                 struct page *p, *s;
1236                                                 p = pbio->bi_io_vec[j].bv_page;
1237                                                 s = sbio->bi_io_vec[j].bv_page;
1238                                                 if (memcmp(page_address(p),
1239                                                            page_address(s),
1240                                                            PAGE_SIZE))
1241                                                         break;
1242                                         }
1243                                 } else
1244                                         j = 0;
1245                                 if (j >= 0)
1246                                         mddev->resync_mismatches += r1_bio->sectors;
1247                                 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
1248                                         sbio->bi_end_io = NULL;
1249                                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1250                                 } else {
1251                                         /* fixup the bio for reuse */
1252                                         sbio->bi_vcnt = vcnt;
1253                                         sbio->bi_size = r1_bio->sectors << 9;
1254                                         sbio->bi_idx = 0;
1255                                         sbio->bi_phys_segments = 0;
1256                                         sbio->bi_hw_segments = 0;
1257                                         sbio->bi_hw_front_size = 0;
1258                                         sbio->bi_hw_back_size = 0;
1259                                         sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1260                                         sbio->bi_flags |= 1 << BIO_UPTODATE;
1261                                         sbio->bi_next = NULL;
1262                                         sbio->bi_sector = r1_bio->sector +
1263                                                 conf->mirrors[i].rdev->data_offset;
1264                                         sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1265                                         for (j = 0; j < vcnt ; j++)
1266                                                 memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1267                                                        page_address(pbio->bi_io_vec[j].bv_page),
1268                                                        PAGE_SIZE);
1269
1270                                 }
1271                         }
1272         }
1273         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1274                 /* ouch - failed to read all of that.
1275                  * Try some synchronous reads of other devices to get
1276                  * good data, much like with normal read errors.  Only
1277                  * read into the pages we already have so we don't
1278                  * need to re-issue the read request.
1279                  * We don't need to freeze the array, because being in an
1280                  * active sync request, there is no normal IO, and
1281                  * no overlapping syncs.
1282                  */
1283                 sector_t sect = r1_bio->sector;
1284                 int sectors = r1_bio->sectors;
1285                 int idx = 0;
1286
1287                 while(sectors) {
1288                         int s = sectors;
1289                         int d = r1_bio->read_disk;
1290                         int success = 0;
1291                         mdk_rdev_t *rdev;
1292
1293                         if (s > (PAGE_SIZE>>9))
1294                                 s = PAGE_SIZE >> 9;
1295                         do {
1296                                 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1297                                         /* No rcu protection needed here devices
1298                                          * can only be removed when no resync is
1299                                          * active, and resync is currently active
1300                                          */
1301                                         rdev = conf->mirrors[d].rdev;
1302                                         if (sync_page_io(rdev->bdev,
1303                                                          sect + rdev->data_offset,
1304                                                          s<<9,
1305                                                          bio->bi_io_vec[idx].bv_page,
1306                                                          READ)) {
1307                                                 success = 1;
1308                                                 break;
1309                                         }
1310                                 }
1311                                 d++;
1312                                 if (d == conf->raid_disks)
1313                                         d = 0;
1314                         } while (!success && d != r1_bio->read_disk);
1315
1316                         if (success) {
1317                                 int start = d;
1318                                 /* write it back and re-read */
1319                                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1320                                 while (d != r1_bio->read_disk) {
1321                                         if (d == 0)
1322                                                 d = conf->raid_disks;
1323                                         d--;
1324                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1325                                                 continue;
1326                                         rdev = conf->mirrors[d].rdev;
1327                                         atomic_add(s, &rdev->corrected_errors);
1328                                         if (sync_page_io(rdev->bdev,
1329                                                          sect + rdev->data_offset,
1330                                                          s<<9,
1331                                                          bio->bi_io_vec[idx].bv_page,
1332                                                          WRITE) == 0)
1333                                                 md_error(mddev, rdev);
1334                                 }
1335                                 d = start;
1336                                 while (d != r1_bio->read_disk) {
1337                                         if (d == 0)
1338                                                 d = conf->raid_disks;
1339                                         d--;
1340                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1341                                                 continue;
1342                                         rdev = conf->mirrors[d].rdev;
1343                                         if (sync_page_io(rdev->bdev,
1344                                                          sect + rdev->data_offset,
1345                                                          s<<9,
1346                                                          bio->bi_io_vec[idx].bv_page,
1347                                                          READ) == 0)
1348                                                 md_error(mddev, rdev);
1349                                 }
1350                         } else {
1351                                 char b[BDEVNAME_SIZE];
1352                                 /* Cannot read from anywhere, array is toast */
1353                                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1354                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1355                                        " for block %llu\n",
1356                                        bdevname(bio->bi_bdev,b),
1357                                        (unsigned long long)r1_bio->sector);
1358                                 md_done_sync(mddev, r1_bio->sectors, 0);
1359                                 put_buf(r1_bio);
1360                                 return;
1361                         }
1362                         sectors -= s;
1363                         sect += s;
1364                         idx ++;
1365                 }
1366         }
1367
1368         /*
1369          * schedule writes
1370          */
1371         atomic_set(&r1_bio->remaining, 1);
1372         for (i = 0; i < disks ; i++) {
1373                 wbio = r1_bio->bios[i];
1374                 if (wbio->bi_end_io == NULL ||
1375                     (wbio->bi_end_io == end_sync_read &&
1376                      (i == r1_bio->read_disk ||
1377                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1378                         continue;
1379
1380                 wbio->bi_rw = WRITE;
1381                 wbio->bi_end_io = end_sync_write;
1382                 atomic_inc(&r1_bio->remaining);
1383                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1384
1385                 generic_make_request(wbio);
1386         }
1387
1388         if (atomic_dec_and_test(&r1_bio->remaining)) {
1389                 /* if we're here, all write(s) have completed, so clean up */
1390                 md_done_sync(mddev, r1_bio->sectors, 1);
1391                 put_buf(r1_bio);
1392         }
1393 }
1394
1395 /*
1396  * This is a kernel thread which:
1397  *
1398  *      1.      Retries failed read operations on working mirrors.
1399  *      2.      Updates the raid superblock when problems encounter.
1400  *      3.      Performs writes following reads for array syncronising.
1401  */
1402
1403 static void fix_read_error(conf_t *conf, int read_disk,
1404                            sector_t sect, int sectors)
1405 {
1406         mddev_t *mddev = conf->mddev;
1407         while(sectors) {
1408                 int s = sectors;
1409                 int d = read_disk;
1410                 int success = 0;
1411                 int start;
1412                 mdk_rdev_t *rdev;
1413
1414                 if (s > (PAGE_SIZE>>9))
1415                         s = PAGE_SIZE >> 9;
1416
1417                 do {
1418                         /* Note: no rcu protection needed here
1419                          * as this is synchronous in the raid1d thread
1420                          * which is the thread that might remove
1421                          * a device.  If raid1d ever becomes multi-threaded....
1422                          */
1423                         rdev = conf->mirrors[d].rdev;
1424                         if (rdev &&
1425                             test_bit(In_sync, &rdev->flags) &&
1426                             sync_page_io(rdev->bdev,
1427                                          sect + rdev->data_offset,
1428                                          s<<9,
1429                                          conf->tmppage, READ))
1430                                 success = 1;
1431                         else {
1432                                 d++;
1433                                 if (d == conf->raid_disks)
1434                                         d = 0;
1435                         }
1436                 } while (!success && d != read_disk);
1437
1438                 if (!success) {
1439                         /* Cannot read from anywhere -- bye bye array */
1440                         md_error(mddev, conf->mirrors[read_disk].rdev);
1441                         break;
1442                 }
1443                 /* write it back and re-read */
1444                 start = d;
1445                 while (d != read_disk) {
1446                         if (d==0)
1447                                 d = conf->raid_disks;
1448                         d--;
1449                         rdev = conf->mirrors[d].rdev;
1450                         if (rdev &&
1451                             test_bit(In_sync, &rdev->flags)) {
1452                                 if (sync_page_io(rdev->bdev,
1453                                                  sect + rdev->data_offset,
1454                                                  s<<9, conf->tmppage, WRITE)
1455                                     == 0)
1456                                         /* Well, this device is dead */
1457                                         md_error(mddev, rdev);
1458                         }
1459                 }
1460                 d = start;
1461                 while (d != read_disk) {
1462                         char b[BDEVNAME_SIZE];
1463                         if (d==0)
1464                                 d = conf->raid_disks;
1465                         d--;
1466                         rdev = conf->mirrors[d].rdev;
1467                         if (rdev &&
1468                             test_bit(In_sync, &rdev->flags)) {
1469                                 if (sync_page_io(rdev->bdev,
1470                                                  sect + rdev->data_offset,
1471                                                  s<<9, conf->tmppage, READ)
1472                                     == 0)
1473                                         /* Well, this device is dead */
1474                                         md_error(mddev, rdev);
1475                                 else {
1476                                         atomic_add(s, &rdev->corrected_errors);
1477                                         printk(KERN_INFO
1478                                                "raid1:%s: read error corrected "
1479                                                "(%d sectors at %llu on %s)\n",
1480                                                mdname(mddev), s,
1481                                                (unsigned long long)(sect +
1482                                                    rdev->data_offset),
1483                                                bdevname(rdev->bdev, b));
1484                                 }
1485                         }
1486                 }
1487                 sectors -= s;
1488                 sect += s;
1489         }
1490 }
1491
1492 static void raid1d(mddev_t *mddev)
1493 {
1494         r1bio_t *r1_bio;
1495         struct bio *bio;
1496         unsigned long flags;
1497         conf_t *conf = mddev_to_conf(mddev);
1498         struct list_head *head = &conf->retry_list;
1499         int unplug=0;
1500         mdk_rdev_t *rdev;
1501
1502         md_check_recovery(mddev);
1503         
1504         for (;;) {
1505                 char b[BDEVNAME_SIZE];
1506                 spin_lock_irqsave(&conf->device_lock, flags);
1507
1508                 if (conf->pending_bio_list.head) {
1509                         bio = bio_list_get(&conf->pending_bio_list);
1510                         blk_remove_plug(mddev->queue);
1511                         spin_unlock_irqrestore(&conf->device_lock, flags);
1512                         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1513                         bitmap_unplug(mddev->bitmap);
1514
1515                         while (bio) { /* submit pending writes */
1516                                 struct bio *next = bio->bi_next;
1517                                 bio->bi_next = NULL;
1518                                 generic_make_request(bio);
1519                                 bio = next;
1520                         }
1521                         unplug = 1;
1522
1523                         continue;
1524                 }
1525
1526                 if (list_empty(head))
1527                         break;
1528                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1529                 list_del(head->prev);
1530                 conf->nr_queued--;
1531                 spin_unlock_irqrestore(&conf->device_lock, flags);
1532
1533                 mddev = r1_bio->mddev;
1534                 conf = mddev_to_conf(mddev);
1535                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1536                         sync_request_write(mddev, r1_bio);
1537                         unplug = 1;
1538                 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1539                         /* some requests in the r1bio were BIO_RW_BARRIER
1540                          * requests which failed with -EOPNOTSUPP.  Hohumm..
1541                          * Better resubmit without the barrier.
1542                          * We know which devices to resubmit for, because
1543                          * all others have had their bios[] entry cleared.
1544                          * We already have a nr_pending reference on these rdevs.
1545                          */
1546                         int i;
1547                         const int do_sync = bio_sync(r1_bio->master_bio);
1548                         clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1549                         clear_bit(R1BIO_Barrier, &r1_bio->state);
1550                         for (i=0; i < conf->raid_disks; i++)
1551                                 if (r1_bio->bios[i])
1552                                         atomic_inc(&r1_bio->remaining);
1553                         for (i=0; i < conf->raid_disks; i++)
1554                                 if (r1_bio->bios[i]) {
1555                                         struct bio_vec *bvec;
1556                                         int j;
1557
1558                                         bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1559                                         /* copy pages from the failed bio, as
1560                                          * this might be a write-behind device */
1561                                         __bio_for_each_segment(bvec, bio, j, 0)
1562                                                 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1563                                         bio_put(r1_bio->bios[i]);
1564                                         bio->bi_sector = r1_bio->sector +
1565                                                 conf->mirrors[i].rdev->data_offset;
1566                                         bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1567                                         bio->bi_end_io = raid1_end_write_request;
1568                                         bio->bi_rw = WRITE | do_sync;
1569                                         bio->bi_private = r1_bio;
1570                                         r1_bio->bios[i] = bio;
1571                                         generic_make_request(bio);
1572                                 }
1573                 } else {
1574                         int disk;
1575
1576                         /* we got a read error. Maybe the drive is bad.  Maybe just
1577                          * the block and we can fix it.
1578                          * We freeze all other IO, and try reading the block from
1579                          * other devices.  When we find one, we re-write
1580                          * and check it that fixes the read error.
1581                          * This is all done synchronously while the array is
1582                          * frozen
1583                          */
1584                         if (mddev->ro == 0) {
1585                                 freeze_array(conf);
1586                                 fix_read_error(conf, r1_bio->read_disk,
1587                                                r1_bio->sector,
1588                                                r1_bio->sectors);
1589                                 unfreeze_array(conf);
1590                         }
1591
1592                         bio = r1_bio->bios[r1_bio->read_disk];
1593                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1594                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1595                                        " read error for block %llu\n",
1596                                        bdevname(bio->bi_bdev,b),
1597                                        (unsigned long long)r1_bio->sector);
1598                                 raid_end_bio_io(r1_bio);
1599                         } else {
1600                                 const int do_sync = bio_sync(r1_bio->master_bio);
1601                                 r1_bio->bios[r1_bio->read_disk] =
1602                                         mddev->ro ? IO_BLOCKED : NULL;
1603                                 r1_bio->read_disk = disk;
1604                                 bio_put(bio);
1605                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1606                                 r1_bio->bios[r1_bio->read_disk] = bio;
1607                                 rdev = conf->mirrors[disk].rdev;
1608                                 if (printk_ratelimit())
1609                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1610                                                " another mirror\n",
1611                                                bdevname(rdev->bdev,b),
1612                                                (unsigned long long)r1_bio->sector);
1613                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1614                                 bio->bi_bdev = rdev->bdev;
1615                                 bio->bi_end_io = raid1_end_read_request;
1616                                 bio->bi_rw = READ | do_sync;
1617                                 bio->bi_private = r1_bio;
1618                                 unplug = 1;
1619                                 generic_make_request(bio);
1620                         }
1621                 }
1622         }
1623         spin_unlock_irqrestore(&conf->device_lock, flags);
1624         if (unplug)
1625                 unplug_slaves(mddev);
1626 }
1627
1628
1629 static int init_resync(conf_t *conf)
1630 {
1631         int buffs;
1632
1633         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1634         BUG_ON(conf->r1buf_pool);
1635         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1636                                           conf->poolinfo);
1637         if (!conf->r1buf_pool)
1638                 return -ENOMEM;
1639         conf->next_resync = 0;
1640         return 0;
1641 }
1642
1643 /*
1644  * perform a "sync" on one "block"
1645  *
1646  * We need to make sure that no normal I/O request - particularly write
1647  * requests - conflict with active sync requests.
1648  *
1649  * This is achieved by tracking pending requests and a 'barrier' concept
1650  * that can be installed to exclude normal IO requests.
1651  */
1652
1653 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1654 {
1655         conf_t *conf = mddev_to_conf(mddev);
1656         r1bio_t *r1_bio;
1657         struct bio *bio;
1658         sector_t max_sector, nr_sectors;
1659         int disk = -1;
1660         int i;
1661         int wonly = -1;
1662         int write_targets = 0, read_targets = 0;
1663         int sync_blocks;
1664         int still_degraded = 0;
1665
1666         if (!conf->r1buf_pool)
1667         {
1668 /*
1669                 printk("sync start - bitmap %p\n", mddev->bitmap);
1670 */
1671                 if (init_resync(conf))
1672                         return 0;
1673         }
1674
1675         max_sector = mddev->size << 1;
1676         if (sector_nr >= max_sector) {
1677                 /* If we aborted, we need to abort the
1678                  * sync on the 'current' bitmap chunk (there will
1679                  * only be one in raid1 resync.
1680                  * We can find the current addess in mddev->curr_resync
1681                  */
1682                 if (mddev->curr_resync < max_sector) /* aborted */
1683                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1684                                                 &sync_blocks, 1);
1685                 else /* completed sync */
1686                         conf->fullsync = 0;
1687
1688                 bitmap_close_sync(mddev->bitmap);
1689                 close_sync(conf);
1690                 return 0;
1691         }
1692
1693         if (mddev->bitmap == NULL &&
1694             mddev->recovery_cp == MaxSector &&
1695             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1696             conf->fullsync == 0) {
1697                 *skipped = 1;
1698                 return max_sector - sector_nr;
1699         }
1700         /* before building a request, check if we can skip these blocks..
1701          * This call the bitmap_start_sync doesn't actually record anything
1702          */
1703         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1704             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1705                 /* We can skip this block, and probably several more */
1706                 *skipped = 1;
1707                 return sync_blocks;
1708         }
1709         /*
1710          * If there is non-resync activity waiting for a turn,
1711          * and resync is going fast enough,
1712          * then let it though before starting on this new sync request.
1713          */
1714         if (!go_faster && conf->nr_waiting)
1715                 msleep_interruptible(1000);
1716
1717         raise_barrier(conf);
1718
1719         conf->next_resync = sector_nr;
1720
1721         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1722         rcu_read_lock();
1723         /*
1724          * If we get a correctably read error during resync or recovery,
1725          * we might want to read from a different device.  So we
1726          * flag all drives that could conceivably be read from for READ,
1727          * and any others (which will be non-In_sync devices) for WRITE.
1728          * If a read fails, we try reading from something else for which READ
1729          * is OK.
1730          */
1731
1732         r1_bio->mddev = mddev;
1733         r1_bio->sector = sector_nr;
1734         r1_bio->state = 0;
1735         set_bit(R1BIO_IsSync, &r1_bio->state);
1736
1737         for (i=0; i < conf->raid_disks; i++) {
1738                 mdk_rdev_t *rdev;
1739                 bio = r1_bio->bios[i];
1740
1741                 /* take from bio_init */
1742                 bio->bi_next = NULL;
1743                 bio->bi_flags |= 1 << BIO_UPTODATE;
1744                 bio->bi_rw = READ;
1745                 bio->bi_vcnt = 0;
1746                 bio->bi_idx = 0;
1747                 bio->bi_phys_segments = 0;
1748                 bio->bi_hw_segments = 0;
1749                 bio->bi_size = 0;
1750                 bio->bi_end_io = NULL;
1751                 bio->bi_private = NULL;
1752
1753                 rdev = rcu_dereference(conf->mirrors[i].rdev);
1754                 if (rdev == NULL ||
1755                            test_bit(Faulty, &rdev->flags)) {
1756                         still_degraded = 1;
1757                         continue;
1758                 } else if (!test_bit(In_sync, &rdev->flags)) {
1759                         bio->bi_rw = WRITE;
1760                         bio->bi_end_io = end_sync_write;
1761                         write_targets ++;
1762                 } else {
1763                         /* may need to read from here */
1764                         bio->bi_rw = READ;
1765                         bio->bi_end_io = end_sync_read;
1766                         if (test_bit(WriteMostly, &rdev->flags)) {
1767                                 if (wonly < 0)
1768                                         wonly = i;
1769                         } else {
1770                                 if (disk < 0)
1771                                         disk = i;
1772                         }
1773                         read_targets++;
1774                 }
1775                 atomic_inc(&rdev->nr_pending);
1776                 bio->bi_sector = sector_nr + rdev->data_offset;
1777                 bio->bi_bdev = rdev->bdev;
1778                 bio->bi_private = r1_bio;
1779         }
1780         rcu_read_unlock();
1781         if (disk < 0)
1782                 disk = wonly;
1783         r1_bio->read_disk = disk;
1784
1785         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1786                 /* extra read targets are also write targets */
1787                 write_targets += read_targets-1;
1788
1789         if (write_targets == 0 || read_targets == 0) {
1790                 /* There is nowhere to write, so all non-sync
1791                  * drives must be failed - so we are finished
1792                  */
1793                 sector_t rv = max_sector - sector_nr;
1794                 *skipped = 1;
1795                 put_buf(r1_bio);
1796                 return rv;
1797         }
1798
1799         nr_sectors = 0;
1800         sync_blocks = 0;
1801         do {
1802                 struct page *page;
1803                 int len = PAGE_SIZE;
1804                 if (sector_nr + (len>>9) > max_sector)
1805                         len = (max_sector - sector_nr) << 9;
1806                 if (len == 0)
1807                         break;
1808                 if (sync_blocks == 0) {
1809                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1810                                                &sync_blocks, still_degraded) &&
1811                             !conf->fullsync &&
1812                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1813                                 break;
1814                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1815                         if (len > (sync_blocks<<9))
1816                                 len = sync_blocks<<9;
1817                 }
1818
1819                 for (i=0 ; i < conf->raid_disks; i++) {
1820                         bio = r1_bio->bios[i];
1821                         if (bio->bi_end_io) {
1822                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1823                                 if (bio_add_page(bio, page, len, 0) == 0) {
1824                                         /* stop here */
1825                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1826                                         while (i > 0) {
1827                                                 i--;
1828                                                 bio = r1_bio->bios[i];
1829                                                 if (bio->bi_end_io==NULL)
1830                                                         continue;
1831                                                 /* remove last page from this bio */
1832                                                 bio->bi_vcnt--;
1833                                                 bio->bi_size -= len;
1834                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1835                                         }
1836                                         goto bio_full;
1837                                 }
1838                         }
1839                 }
1840                 nr_sectors += len>>9;
1841                 sector_nr += len>>9;
1842                 sync_blocks -= (len>>9);
1843         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1844  bio_full:
1845         r1_bio->sectors = nr_sectors;
1846
1847         /* For a user-requested sync, we read all readable devices and do a
1848          * compare
1849          */
1850         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1851                 atomic_set(&r1_bio->remaining, read_targets);
1852                 for (i=0; i<conf->raid_disks; i++) {
1853                         bio = r1_bio->bios[i];
1854                         if (bio->bi_end_io == end_sync_read) {
1855                                 md_sync_acct(bio->bi_bdev, nr_sectors);
1856                                 generic_make_request(bio);
1857                         }
1858                 }
1859         } else {
1860                 atomic_set(&r1_bio->remaining, 1);
1861                 bio = r1_bio->bios[r1_bio->read_disk];
1862                 md_sync_acct(bio->bi_bdev, nr_sectors);
1863                 generic_make_request(bio);
1864
1865         }
1866         return nr_sectors;
1867 }
1868
1869 static int run(mddev_t *mddev)
1870 {
1871         conf_t *conf;
1872         int i, j, disk_idx;
1873         mirror_info_t *disk;
1874         mdk_rdev_t *rdev;
1875         struct list_head *tmp;
1876
1877         if (mddev->level != 1) {
1878                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1879                        mdname(mddev), mddev->level);
1880                 goto out;
1881         }
1882         if (mddev->reshape_position != MaxSector) {
1883                 printk("raid1: %s: reshape_position set but not supported\n",
1884                        mdname(mddev));
1885                 goto out;
1886         }
1887         /*
1888          * copy the already verified devices into our private RAID1
1889          * bookkeeping area. [whatever we allocate in run(),
1890          * should be freed in stop()]
1891          */
1892         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1893         mddev->private = conf;
1894         if (!conf)
1895                 goto out_no_mem;
1896
1897         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1898                                  GFP_KERNEL);
1899         if (!conf->mirrors)
1900                 goto out_no_mem;
1901
1902         conf->tmppage = alloc_page(GFP_KERNEL);
1903         if (!conf->tmppage)
1904                 goto out_no_mem;
1905
1906         conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1907         if (!conf->poolinfo)
1908                 goto out_no_mem;
1909         conf->poolinfo->mddev = mddev;
1910         conf->poolinfo->raid_disks = mddev->raid_disks;
1911         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1912                                           r1bio_pool_free,
1913                                           conf->poolinfo);
1914         if (!conf->r1bio_pool)
1915                 goto out_no_mem;
1916
1917         ITERATE_RDEV(mddev, rdev, tmp) {
1918                 disk_idx = rdev->raid_disk;
1919                 if (disk_idx >= mddev->raid_disks
1920                     || disk_idx < 0)
1921                         continue;
1922                 disk = conf->mirrors + disk_idx;
1923
1924                 disk->rdev = rdev;
1925
1926                 blk_queue_stack_limits(mddev->queue,
1927                                        rdev->bdev->bd_disk->queue);
1928                 /* as we don't honour merge_bvec_fn, we must never risk
1929                  * violating it, so limit ->max_sector to one PAGE, as
1930                  * a one page request is never in violation.
1931                  */
1932                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1933                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1934                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1935
1936                 disk->head_position = 0;
1937         }
1938         conf->raid_disks = mddev->raid_disks;
1939         conf->mddev = mddev;
1940         spin_lock_init(&conf->device_lock);
1941         INIT_LIST_HEAD(&conf->retry_list);
1942
1943         spin_lock_init(&conf->resync_lock);
1944         init_waitqueue_head(&conf->wait_barrier);
1945
1946         bio_list_init(&conf->pending_bio_list);
1947         bio_list_init(&conf->flushing_bio_list);
1948
1949
1950         mddev->degraded = 0;
1951         for (i = 0; i < conf->raid_disks; i++) {
1952
1953                 disk = conf->mirrors + i;
1954
1955                 if (!disk->rdev ||
1956                     !test_bit(In_sync, &disk->rdev->flags)) {
1957                         disk->head_position = 0;
1958                         mddev->degraded++;
1959                         if (disk->rdev)
1960                                 conf->fullsync = 1;
1961                 }
1962         }
1963         if (mddev->degraded == conf->raid_disks) {
1964                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1965                         mdname(mddev));
1966                 goto out_free_conf;
1967         }
1968         if (conf->raid_disks - mddev->degraded == 1)
1969                 mddev->recovery_cp = MaxSector;
1970
1971         /*
1972          * find the first working one and use it as a starting point
1973          * to read balancing.
1974          */
1975         for (j = 0; j < conf->raid_disks &&
1976                      (!conf->mirrors[j].rdev ||
1977                       !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1978                 /* nothing */;
1979         conf->last_used = j;
1980
1981
1982         mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1983         if (!mddev->thread) {
1984                 printk(KERN_ERR
1985                        "raid1: couldn't allocate thread for %s\n",
1986                        mdname(mddev));
1987                 goto out_free_conf;
1988         }
1989
1990         printk(KERN_INFO 
1991                 "raid1: raid set %s active with %d out of %d mirrors\n",
1992                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
1993                 mddev->raid_disks);
1994         /*
1995          * Ok, everything is just fine now
1996          */
1997         mddev->array_size = mddev->size;
1998
1999         mddev->queue->unplug_fn = raid1_unplug;
2000         mddev->queue->issue_flush_fn = raid1_issue_flush;
2001         mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2002         mddev->queue->backing_dev_info.congested_data = mddev;
2003
2004         return 0;
2005
2006 out_no_mem:
2007         printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2008                mdname(mddev));
2009
2010 out_free_conf:
2011         if (conf) {
2012                 if (conf->r1bio_pool)
2013                         mempool_destroy(conf->r1bio_pool);
2014                 kfree(conf->mirrors);
2015                 safe_put_page(conf->tmppage);
2016                 kfree(conf->poolinfo);
2017                 kfree(conf);
2018                 mddev->private = NULL;
2019         }
2020 out:
2021         return -EIO;
2022 }
2023
2024 static int stop(mddev_t *mddev)
2025 {
2026         conf_t *conf = mddev_to_conf(mddev);
2027         struct bitmap *bitmap = mddev->bitmap;
2028         int behind_wait = 0;
2029
2030         /* wait for behind writes to complete */
2031         while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2032                 behind_wait++;
2033                 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2034                 set_current_state(TASK_UNINTERRUPTIBLE);
2035                 schedule_timeout(HZ); /* wait a second */
2036                 /* need to kick something here to make sure I/O goes? */
2037         }
2038
2039         md_unregister_thread(mddev->thread);
2040         mddev->thread = NULL;
2041         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2042         if (conf->r1bio_pool)
2043                 mempool_destroy(conf->r1bio_pool);
2044         kfree(conf->mirrors);
2045         kfree(conf->poolinfo);
2046         kfree(conf);
2047         mddev->private = NULL;
2048         return 0;
2049 }
2050
2051 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2052 {
2053         /* no resync is happening, and there is enough space
2054          * on all devices, so we can resize.
2055          * We need to make sure resync covers any new space.
2056          * If the array is shrinking we should possibly wait until
2057          * any io in the removed space completes, but it hardly seems
2058          * worth it.
2059          */
2060         mddev->array_size = sectors>>1;
2061         set_capacity(mddev->gendisk, mddev->array_size << 1);
2062         mddev->changed = 1;
2063         if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2064                 mddev->recovery_cp = mddev->size << 1;
2065                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2066         }
2067         mddev->size = mddev->array_size;
2068         mddev->resync_max_sectors = sectors;
2069         return 0;
2070 }
2071
2072 static int raid1_reshape(mddev_t *mddev)
2073 {
2074         /* We need to:
2075          * 1/ resize the r1bio_pool
2076          * 2/ resize conf->mirrors
2077          *
2078          * We allocate a new r1bio_pool if we can.
2079          * Then raise a device barrier and wait until all IO stops.
2080          * Then resize conf->mirrors and swap in the new r1bio pool.
2081          *
2082          * At the same time, we "pack" the devices so that all the missing
2083          * devices have the higher raid_disk numbers.
2084          */
2085         mempool_t *newpool, *oldpool;
2086         struct pool_info *newpoolinfo;
2087         mirror_info_t *newmirrors;
2088         conf_t *conf = mddev_to_conf(mddev);
2089         int cnt, raid_disks;
2090         unsigned long flags;
2091         int d, d2;
2092
2093         /* Cannot change chunk_size, layout, or level */
2094         if (mddev->chunk_size != mddev->new_chunk ||
2095             mddev->layout != mddev->new_layout ||
2096             mddev->level != mddev->new_level) {
2097                 mddev->new_chunk = mddev->chunk_size;
2098                 mddev->new_layout = mddev->layout;
2099                 mddev->new_level = mddev->level;
2100                 return -EINVAL;
2101         }
2102
2103         md_allow_write(mddev);
2104
2105         raid_disks = mddev->raid_disks + mddev->delta_disks;
2106
2107         if (raid_disks < conf->raid_disks) {
2108                 cnt=0;
2109                 for (d= 0; d < conf->raid_disks; d++)
2110                         if (conf->mirrors[d].rdev)
2111                                 cnt++;
2112                 if (cnt > raid_disks)
2113                         return -EBUSY;
2114         }
2115
2116         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2117         if (!newpoolinfo)
2118                 return -ENOMEM;
2119         newpoolinfo->mddev = mddev;
2120         newpoolinfo->raid_disks = raid_disks;
2121
2122         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2123                                  r1bio_pool_free, newpoolinfo);
2124         if (!newpool) {
2125                 kfree(newpoolinfo);
2126                 return -ENOMEM;
2127         }
2128         newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2129         if (!newmirrors) {
2130                 kfree(newpoolinfo);
2131                 mempool_destroy(newpool);
2132                 return -ENOMEM;
2133         }
2134
2135         raise_barrier(conf);
2136
2137         /* ok, everything is stopped */
2138         oldpool = conf->r1bio_pool;
2139         conf->r1bio_pool = newpool;
2140
2141         for (d = d2 = 0; d < conf->raid_disks; d++) {
2142                 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2143                 if (rdev && rdev->raid_disk != d2) {
2144                         char nm[20];
2145                         sprintf(nm, "rd%d", rdev->raid_disk);
2146                         sysfs_remove_link(&mddev->kobj, nm);
2147                         rdev->raid_disk = d2;
2148                         sprintf(nm, "rd%d", rdev->raid_disk);
2149                         sysfs_remove_link(&mddev->kobj, nm);
2150                         if (sysfs_create_link(&mddev->kobj,
2151                                               &rdev->kobj, nm))
2152                                 printk(KERN_WARNING
2153                                        "md/raid1: cannot register "
2154                                        "%s for %s\n",
2155                                        nm, mdname(mddev));
2156                 }
2157                 if (rdev)
2158                         newmirrors[d2++].rdev = rdev;
2159         }
2160         kfree(conf->mirrors);
2161         conf->mirrors = newmirrors;
2162         kfree(conf->poolinfo);
2163         conf->poolinfo = newpoolinfo;
2164
2165         spin_lock_irqsave(&conf->device_lock, flags);
2166         mddev->degraded += (raid_disks - conf->raid_disks);
2167         spin_unlock_irqrestore(&conf->device_lock, flags);
2168         conf->raid_disks = mddev->raid_disks = raid_disks;
2169         mddev->delta_disks = 0;
2170
2171         conf->last_used = 0; /* just make sure it is in-range */
2172         lower_barrier(conf);
2173
2174         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2175         md_wakeup_thread(mddev->thread);
2176
2177         mempool_destroy(oldpool);
2178         return 0;
2179 }
2180
2181 static void raid1_quiesce(mddev_t *mddev, int state)
2182 {
2183         conf_t *conf = mddev_to_conf(mddev);
2184
2185         switch(state) {
2186         case 1:
2187                 raise_barrier(conf);
2188                 break;
2189         case 0:
2190                 lower_barrier(conf);
2191                 break;
2192         }
2193 }
2194
2195
2196 static struct mdk_personality raid1_personality =
2197 {
2198         .name           = "raid1",
2199         .level          = 1,
2200         .owner          = THIS_MODULE,
2201         .make_request   = make_request,
2202         .run            = run,
2203         .stop           = stop,
2204         .status         = status,
2205         .error_handler  = error,
2206         .hot_add_disk   = raid1_add_disk,
2207         .hot_remove_disk= raid1_remove_disk,
2208         .spare_active   = raid1_spare_active,
2209         .sync_request   = sync_request,
2210         .resize         = raid1_resize,
2211         .check_reshape  = raid1_reshape,
2212         .quiesce        = raid1_quiesce,
2213 };
2214
2215 static int __init raid_init(void)
2216 {
2217         return register_md_personality(&raid1_personality);
2218 }
2219
2220 static void raid_exit(void)
2221 {
2222         unregister_md_personality(&raid1_personality);
2223 }
2224
2225 module_init(raid_init);
2226 module_exit(raid_exit);
2227 MODULE_LICENSE("GPL");
2228 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2229 MODULE_ALIAS("md-raid1");
2230 MODULE_ALIAS("md-level-1");