md/raid1: ensure device failure recorded before write request returns.
[pandora-kernel.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         struct r1bio *r1_bio;
99         struct bio *bio;
100         int need_pages;
101         int i, j;
102
103         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104         if (!r1_bio)
105                 return NULL;
106
107         /*
108          * Allocate bios : 1 for reading, n-1 for writing
109          */
110         for (j = pi->raid_disks ; j-- ; ) {
111                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112                 if (!bio)
113                         goto out_free_bio;
114                 r1_bio->bios[j] = bio;
115         }
116         /*
117          * Allocate RESYNC_PAGES data pages and attach them to
118          * the first bio.
119          * If this is a user-requested check/repair, allocate
120          * RESYNC_PAGES for each bio.
121          */
122         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123                 need_pages = pi->raid_disks;
124         else
125                 need_pages = 1;
126         for (j = 0; j < need_pages; j++) {
127                 bio = r1_bio->bios[j];
128                 bio->bi_vcnt = RESYNC_PAGES;
129
130                 if (bio_alloc_pages(bio, gfp_flags))
131                         goto out_free_pages;
132         }
133         /* If not user-requests, copy the page pointers to all bios */
134         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135                 for (i=0; i<RESYNC_PAGES ; i++)
136                         for (j=1; j<pi->raid_disks; j++)
137                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
139         }
140
141         r1_bio->master_bio = NULL;
142
143         return r1_bio;
144
145 out_free_pages:
146         while (--j >= 0) {
147                 struct bio_vec *bv;
148
149                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150                         __free_page(bv->bv_page);
151         }
152
153 out_free_bio:
154         while (++j < pi->raid_disks)
155                 bio_put(r1_bio->bios[j]);
156         r1bio_pool_free(r1_bio, data);
157         return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162         struct pool_info *pi = data;
163         int i,j;
164         struct r1bio *r1bio = __r1_bio;
165
166         for (i = 0; i < RESYNC_PAGES; i++)
167                 for (j = pi->raid_disks; j-- ;) {
168                         if (j == 0 ||
169                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
170                             r1bio->bios[0]->bi_io_vec[i].bv_page)
171                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172                 }
173         for (i=0 ; i < pi->raid_disks; i++)
174                 bio_put(r1bio->bios[i]);
175
176         r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181         int i;
182
183         for (i = 0; i < conf->raid_disks * 2; i++) {
184                 struct bio **bio = r1_bio->bios + i;
185                 if (!BIO_SPECIAL(*bio))
186                         bio_put(*bio);
187                 *bio = NULL;
188         }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193         struct r1conf *conf = r1_bio->mddev->private;
194
195         put_all_bios(conf, r1_bio);
196         mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201         struct r1conf *conf = r1_bio->mddev->private;
202         int i;
203
204         for (i = 0; i < conf->raid_disks * 2; i++) {
205                 struct bio *bio = r1_bio->bios[i];
206                 if (bio->bi_end_io)
207                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208         }
209
210         mempool_free(r1_bio, conf->r1buf_pool);
211
212         lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217         unsigned long flags;
218         struct mddev *mddev = r1_bio->mddev;
219         struct r1conf *conf = mddev->private;
220
221         spin_lock_irqsave(&conf->device_lock, flags);
222         list_add(&r1_bio->retry_list, &conf->retry_list);
223         conf->nr_queued ++;
224         spin_unlock_irqrestore(&conf->device_lock, flags);
225
226         wake_up(&conf->wait_barrier);
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237         struct bio *bio = r1_bio->master_bio;
238         int done;
239         struct r1conf *conf = r1_bio->mddev->private;
240         sector_t start_next_window = r1_bio->start_next_window;
241         sector_t bi_sector = bio->bi_iter.bi_sector;
242
243         if (bio->bi_phys_segments) {
244                 unsigned long flags;
245                 spin_lock_irqsave(&conf->device_lock, flags);
246                 bio->bi_phys_segments--;
247                 done = (bio->bi_phys_segments == 0);
248                 spin_unlock_irqrestore(&conf->device_lock, flags);
249                 /*
250                  * make_request() might be waiting for
251                  * bi_phys_segments to decrease
252                  */
253                 wake_up(&conf->wait_barrier);
254         } else
255                 done = 1;
256
257         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259         if (done) {
260                 bio_endio(bio, 0);
261                 /*
262                  * Wake up any possible resync thread that waits for the device
263                  * to go idle.
264                  */
265                 allow_barrier(conf, start_next_window, bi_sector);
266         }
267 }
268
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271         struct bio *bio = r1_bio->master_bio;
272
273         /* if nobody has done the final endio yet, do it now */
274         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
277                          (unsigned long long) bio->bi_iter.bi_sector,
278                          (unsigned long long) bio_end_sector(bio) - 1);
279
280                 call_bio_endio(r1_bio);
281         }
282         free_r1bio(r1_bio);
283 }
284
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290         struct r1conf *conf = r1_bio->mddev->private;
291
292         conf->mirrors[disk].head_position =
293                 r1_bio->sector + (r1_bio->sectors);
294 }
295
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301         int mirror;
302         struct r1conf *conf = r1_bio->mddev->private;
303         int raid_disks = conf->raid_disks;
304
305         for (mirror = 0; mirror < raid_disks * 2; mirror++)
306                 if (r1_bio->bios[mirror] == bio)
307                         break;
308
309         BUG_ON(mirror == raid_disks * 2);
310         update_head_pos(mirror, r1_bio);
311
312         return mirror;
313 }
314
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318         struct r1bio *r1_bio = bio->bi_private;
319         int mirror;
320         struct r1conf *conf = r1_bio->mddev->private;
321
322         mirror = r1_bio->read_disk;
323         /*
324          * this branch is our 'one mirror IO has finished' event handler:
325          */
326         update_head_pos(mirror, r1_bio);
327
328         if (uptodate)
329                 set_bit(R1BIO_Uptodate, &r1_bio->state);
330         else {
331                 /* If all other devices have failed, we want to return
332                  * the error upwards rather than fail the last device.
333                  * Here we redefine "uptodate" to mean "Don't want to retry"
334                  */
335                 unsigned long flags;
336                 spin_lock_irqsave(&conf->device_lock, flags);
337                 if (r1_bio->mddev->degraded == conf->raid_disks ||
338                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339                      test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
340                         uptodate = 1;
341                 spin_unlock_irqrestore(&conf->device_lock, flags);
342         }
343
344         if (uptodate) {
345                 raid_end_bio_io(r1_bio);
346                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347         } else {
348                 /*
349                  * oops, read error:
350                  */
351                 char b[BDEVNAME_SIZE];
352                 printk_ratelimited(
353                         KERN_ERR "md/raid1:%s: %s: "
354                         "rescheduling sector %llu\n",
355                         mdname(conf->mddev),
356                         bdevname(conf->mirrors[mirror].rdev->bdev,
357                                  b),
358                         (unsigned long long)r1_bio->sector);
359                 set_bit(R1BIO_ReadError, &r1_bio->state);
360                 reschedule_retry(r1_bio);
361                 /* don't drop the reference on read_disk yet */
362         }
363 }
364
365 static void close_write(struct r1bio *r1_bio)
366 {
367         /* it really is the end of this request */
368         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369                 /* free extra copy of the data pages */
370                 int i = r1_bio->behind_page_count;
371                 while (i--)
372                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373                 kfree(r1_bio->behind_bvecs);
374                 r1_bio->behind_bvecs = NULL;
375         }
376         /* clear the bitmap if all writes complete successfully */
377         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378                         r1_bio->sectors,
379                         !test_bit(R1BIO_Degraded, &r1_bio->state),
380                         test_bit(R1BIO_BehindIO, &r1_bio->state));
381         md_write_end(r1_bio->mddev);
382 }
383
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386         if (!atomic_dec_and_test(&r1_bio->remaining))
387                 return;
388
389         if (test_bit(R1BIO_WriteError, &r1_bio->state))
390                 reschedule_retry(r1_bio);
391         else {
392                 close_write(r1_bio);
393                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394                         reschedule_retry(r1_bio);
395                 else
396                         raid_end_bio_io(r1_bio);
397         }
398 }
399
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403         struct r1bio *r1_bio = bio->bi_private;
404         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405         struct r1conf *conf = r1_bio->mddev->private;
406         struct bio *to_put = NULL;
407
408         mirror = find_bio_disk(r1_bio, bio);
409
410         /*
411          * 'one mirror IO has finished' event handler:
412          */
413         if (!uptodate) {
414                 set_bit(WriteErrorSeen,
415                         &conf->mirrors[mirror].rdev->flags);
416                 if (!test_and_set_bit(WantReplacement,
417                                       &conf->mirrors[mirror].rdev->flags))
418                         set_bit(MD_RECOVERY_NEEDED, &
419                                 conf->mddev->recovery);
420
421                 set_bit(R1BIO_WriteError, &r1_bio->state);
422         } else {
423                 /*
424                  * Set R1BIO_Uptodate in our master bio, so that we
425                  * will return a good error code for to the higher
426                  * levels even if IO on some other mirrored buffer
427                  * fails.
428                  *
429                  * The 'master' represents the composite IO operation
430                  * to user-side. So if something waits for IO, then it
431                  * will wait for the 'master' bio.
432                  */
433                 sector_t first_bad;
434                 int bad_sectors;
435
436                 r1_bio->bios[mirror] = NULL;
437                 to_put = bio;
438                 /*
439                  * Do not set R1BIO_Uptodate if the current device is
440                  * rebuilding or Faulty. This is because we cannot use
441                  * such device for properly reading the data back (we could
442                  * potentially use it, if the current write would have felt
443                  * before rdev->recovery_offset, but for simplicity we don't
444                  * check this here.
445                  */
446                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448                         set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450                 /* Maybe we can clear some bad blocks. */
451                 if (is_badblock(conf->mirrors[mirror].rdev,
452                                 r1_bio->sector, r1_bio->sectors,
453                                 &first_bad, &bad_sectors)) {
454                         r1_bio->bios[mirror] = IO_MADE_GOOD;
455                         set_bit(R1BIO_MadeGood, &r1_bio->state);
456                 }
457         }
458
459         if (behind) {
460                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461                         atomic_dec(&r1_bio->behind_remaining);
462
463                 /*
464                  * In behind mode, we ACK the master bio once the I/O
465                  * has safely reached all non-writemostly
466                  * disks. Setting the Returned bit ensures that this
467                  * gets done only once -- we don't ever want to return
468                  * -EIO here, instead we'll wait
469                  */
470                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472                         /* Maybe we can return now */
473                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474                                 struct bio *mbio = r1_bio->master_bio;
475                                 pr_debug("raid1: behind end write sectors"
476                                          " %llu-%llu\n",
477                                          (unsigned long long) mbio->bi_iter.bi_sector,
478                                          (unsigned long long) bio_end_sector(mbio) - 1);
479                                 call_bio_endio(r1_bio);
480                         }
481                 }
482         }
483         if (r1_bio->bios[mirror] == NULL)
484                 rdev_dec_pending(conf->mirrors[mirror].rdev,
485                                  conf->mddev);
486
487         /*
488          * Let's see if all mirrored write operations have finished
489          * already.
490          */
491         r1_bio_write_done(r1_bio);
492
493         if (to_put)
494                 bio_put(to_put);
495 }
496
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513         const sector_t this_sector = r1_bio->sector;
514         int sectors;
515         int best_good_sectors;
516         int best_disk, best_dist_disk, best_pending_disk;
517         int has_nonrot_disk;
518         int disk;
519         sector_t best_dist;
520         unsigned int min_pending;
521         struct md_rdev *rdev;
522         int choose_first;
523         int choose_next_idle;
524
525         rcu_read_lock();
526         /*
527          * Check if we can balance. We can balance on the whole
528          * device if no resync is going on, or below the resync window.
529          * We take the first readable disk when above the resync window.
530          */
531  retry:
532         sectors = r1_bio->sectors;
533         best_disk = -1;
534         best_dist_disk = -1;
535         best_dist = MaxSector;
536         best_pending_disk = -1;
537         min_pending = UINT_MAX;
538         best_good_sectors = 0;
539         has_nonrot_disk = 0;
540         choose_next_idle = 0;
541
542         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543             (mddev_is_clustered(conf->mddev) &&
544             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
545                     this_sector + sectors)))
546                 choose_first = 1;
547         else
548                 choose_first = 0;
549
550         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
551                 sector_t dist;
552                 sector_t first_bad;
553                 int bad_sectors;
554                 unsigned int pending;
555                 bool nonrot;
556
557                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
558                 if (r1_bio->bios[disk] == IO_BLOCKED
559                     || rdev == NULL
560                     || test_bit(Unmerged, &rdev->flags)
561                     || test_bit(Faulty, &rdev->flags))
562                         continue;
563                 if (!test_bit(In_sync, &rdev->flags) &&
564                     rdev->recovery_offset < this_sector + sectors)
565                         continue;
566                 if (test_bit(WriteMostly, &rdev->flags)) {
567                         /* Don't balance among write-mostly, just
568                          * use the first as a last resort */
569                         if (best_dist_disk < 0) {
570                                 if (is_badblock(rdev, this_sector, sectors,
571                                                 &first_bad, &bad_sectors)) {
572                                         if (first_bad < this_sector)
573                                                 /* Cannot use this */
574                                                 continue;
575                                         best_good_sectors = first_bad - this_sector;
576                                 } else
577                                         best_good_sectors = sectors;
578                                 best_dist_disk = disk;
579                                 best_pending_disk = disk;
580                         }
581                         continue;
582                 }
583                 /* This is a reasonable device to use.  It might
584                  * even be best.
585                  */
586                 if (is_badblock(rdev, this_sector, sectors,
587                                 &first_bad, &bad_sectors)) {
588                         if (best_dist < MaxSector)
589                                 /* already have a better device */
590                                 continue;
591                         if (first_bad <= this_sector) {
592                                 /* cannot read here. If this is the 'primary'
593                                  * device, then we must not read beyond
594                                  * bad_sectors from another device..
595                                  */
596                                 bad_sectors -= (this_sector - first_bad);
597                                 if (choose_first && sectors > bad_sectors)
598                                         sectors = bad_sectors;
599                                 if (best_good_sectors > sectors)
600                                         best_good_sectors = sectors;
601
602                         } else {
603                                 sector_t good_sectors = first_bad - this_sector;
604                                 if (good_sectors > best_good_sectors) {
605                                         best_good_sectors = good_sectors;
606                                         best_disk = disk;
607                                 }
608                                 if (choose_first)
609                                         break;
610                         }
611                         continue;
612                 } else
613                         best_good_sectors = sectors;
614
615                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
616                 has_nonrot_disk |= nonrot;
617                 pending = atomic_read(&rdev->nr_pending);
618                 dist = abs(this_sector - conf->mirrors[disk].head_position);
619                 if (choose_first) {
620                         best_disk = disk;
621                         break;
622                 }
623                 /* Don't change to another disk for sequential reads */
624                 if (conf->mirrors[disk].next_seq_sect == this_sector
625                     || dist == 0) {
626                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
627                         struct raid1_info *mirror = &conf->mirrors[disk];
628
629                         best_disk = disk;
630                         /*
631                          * If buffered sequential IO size exceeds optimal
632                          * iosize, check if there is idle disk. If yes, choose
633                          * the idle disk. read_balance could already choose an
634                          * idle disk before noticing it's a sequential IO in
635                          * this disk. This doesn't matter because this disk
636                          * will idle, next time it will be utilized after the
637                          * first disk has IO size exceeds optimal iosize. In
638                          * this way, iosize of the first disk will be optimal
639                          * iosize at least. iosize of the second disk might be
640                          * small, but not a big deal since when the second disk
641                          * starts IO, the first disk is likely still busy.
642                          */
643                         if (nonrot && opt_iosize > 0 &&
644                             mirror->seq_start != MaxSector &&
645                             mirror->next_seq_sect > opt_iosize &&
646                             mirror->next_seq_sect - opt_iosize >=
647                             mirror->seq_start) {
648                                 choose_next_idle = 1;
649                                 continue;
650                         }
651                         break;
652                 }
653                 /* If device is idle, use it */
654                 if (pending == 0) {
655                         best_disk = disk;
656                         break;
657                 }
658
659                 if (choose_next_idle)
660                         continue;
661
662                 if (min_pending > pending) {
663                         min_pending = pending;
664                         best_pending_disk = disk;
665                 }
666
667                 if (dist < best_dist) {
668                         best_dist = dist;
669                         best_dist_disk = disk;
670                 }
671         }
672
673         /*
674          * If all disks are rotational, choose the closest disk. If any disk is
675          * non-rotational, choose the disk with less pending request even the
676          * disk is rotational, which might/might not be optimal for raids with
677          * mixed ratation/non-rotational disks depending on workload.
678          */
679         if (best_disk == -1) {
680                 if (has_nonrot_disk)
681                         best_disk = best_pending_disk;
682                 else
683                         best_disk = best_dist_disk;
684         }
685
686         if (best_disk >= 0) {
687                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
688                 if (!rdev)
689                         goto retry;
690                 atomic_inc(&rdev->nr_pending);
691                 if (test_bit(Faulty, &rdev->flags)) {
692                         /* cannot risk returning a device that failed
693                          * before we inc'ed nr_pending
694                          */
695                         rdev_dec_pending(rdev, conf->mddev);
696                         goto retry;
697                 }
698                 sectors = best_good_sectors;
699
700                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
701                         conf->mirrors[best_disk].seq_start = this_sector;
702
703                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
704         }
705         rcu_read_unlock();
706         *max_sectors = sectors;
707
708         return best_disk;
709 }
710
711 static int raid1_mergeable_bvec(struct mddev *mddev,
712                                 struct bvec_merge_data *bvm,
713                                 struct bio_vec *biovec)
714 {
715         struct r1conf *conf = mddev->private;
716         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
717         int max = biovec->bv_len;
718
719         if (mddev->merge_check_needed) {
720                 int disk;
721                 rcu_read_lock();
722                 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
723                         struct md_rdev *rdev = rcu_dereference(
724                                 conf->mirrors[disk].rdev);
725                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
726                                 struct request_queue *q =
727                                         bdev_get_queue(rdev->bdev);
728                                 if (q->merge_bvec_fn) {
729                                         bvm->bi_sector = sector +
730                                                 rdev->data_offset;
731                                         bvm->bi_bdev = rdev->bdev;
732                                         max = min(max, q->merge_bvec_fn(
733                                                           q, bvm, biovec));
734                                 }
735                         }
736                 }
737                 rcu_read_unlock();
738         }
739         return max;
740
741 }
742
743 static int raid1_congested(struct mddev *mddev, int bits)
744 {
745         struct r1conf *conf = mddev->private;
746         int i, ret = 0;
747
748         if ((bits & (1 << WB_async_congested)) &&
749             conf->pending_count >= max_queued_requests)
750                 return 1;
751
752         rcu_read_lock();
753         for (i = 0; i < conf->raid_disks * 2; i++) {
754                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
755                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
756                         struct request_queue *q = bdev_get_queue(rdev->bdev);
757
758                         BUG_ON(!q);
759
760                         /* Note the '|| 1' - when read_balance prefers
761                          * non-congested targets, it can be removed
762                          */
763                         if ((bits & (1 << WB_async_congested)) || 1)
764                                 ret |= bdi_congested(&q->backing_dev_info, bits);
765                         else
766                                 ret &= bdi_congested(&q->backing_dev_info, bits);
767                 }
768         }
769         rcu_read_unlock();
770         return ret;
771 }
772
773 static void flush_pending_writes(struct r1conf *conf)
774 {
775         /* Any writes that have been queued but are awaiting
776          * bitmap updates get flushed here.
777          */
778         spin_lock_irq(&conf->device_lock);
779
780         if (conf->pending_bio_list.head) {
781                 struct bio *bio;
782                 bio = bio_list_get(&conf->pending_bio_list);
783                 conf->pending_count = 0;
784                 spin_unlock_irq(&conf->device_lock);
785                 /* flush any pending bitmap writes to
786                  * disk before proceeding w/ I/O */
787                 bitmap_unplug(conf->mddev->bitmap);
788                 wake_up(&conf->wait_barrier);
789
790                 while (bio) { /* submit pending writes */
791                         struct bio *next = bio->bi_next;
792                         bio->bi_next = NULL;
793                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
794                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
795                                 /* Just ignore it */
796                                 bio_endio(bio, 0);
797                         else
798                                 generic_make_request(bio);
799                         bio = next;
800                 }
801         } else
802                 spin_unlock_irq(&conf->device_lock);
803 }
804
805 /* Barriers....
806  * Sometimes we need to suspend IO while we do something else,
807  * either some resync/recovery, or reconfigure the array.
808  * To do this we raise a 'barrier'.
809  * The 'barrier' is a counter that can be raised multiple times
810  * to count how many activities are happening which preclude
811  * normal IO.
812  * We can only raise the barrier if there is no pending IO.
813  * i.e. if nr_pending == 0.
814  * We choose only to raise the barrier if no-one is waiting for the
815  * barrier to go down.  This means that as soon as an IO request
816  * is ready, no other operations which require a barrier will start
817  * until the IO request has had a chance.
818  *
819  * So: regular IO calls 'wait_barrier'.  When that returns there
820  *    is no backgroup IO happening,  It must arrange to call
821  *    allow_barrier when it has finished its IO.
822  * backgroup IO calls must call raise_barrier.  Once that returns
823  *    there is no normal IO happeing.  It must arrange to call
824  *    lower_barrier when the particular background IO completes.
825  */
826 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
827 {
828         spin_lock_irq(&conf->resync_lock);
829
830         /* Wait until no block IO is waiting */
831         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
832                             conf->resync_lock);
833
834         /* block any new IO from starting */
835         conf->barrier++;
836         conf->next_resync = sector_nr;
837
838         /* For these conditions we must wait:
839          * A: while the array is in frozen state
840          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
841          *    the max count which allowed.
842          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
843          *    next resync will reach to the window which normal bios are
844          *    handling.
845          * D: while there are any active requests in the current window.
846          */
847         wait_event_lock_irq(conf->wait_barrier,
848                             !conf->array_frozen &&
849                             conf->barrier < RESYNC_DEPTH &&
850                             conf->current_window_requests == 0 &&
851                             (conf->start_next_window >=
852                              conf->next_resync + RESYNC_SECTORS),
853                             conf->resync_lock);
854
855         conf->nr_pending++;
856         spin_unlock_irq(&conf->resync_lock);
857 }
858
859 static void lower_barrier(struct r1conf *conf)
860 {
861         unsigned long flags;
862         BUG_ON(conf->barrier <= 0);
863         spin_lock_irqsave(&conf->resync_lock, flags);
864         conf->barrier--;
865         conf->nr_pending--;
866         spin_unlock_irqrestore(&conf->resync_lock, flags);
867         wake_up(&conf->wait_barrier);
868 }
869
870 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
871 {
872         bool wait = false;
873
874         if (conf->array_frozen || !bio)
875                 wait = true;
876         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
877                 if ((conf->mddev->curr_resync_completed
878                      >= bio_end_sector(bio)) ||
879                     (conf->next_resync + NEXT_NORMALIO_DISTANCE
880                      <= bio->bi_iter.bi_sector))
881                         wait = false;
882                 else
883                         wait = true;
884         }
885
886         return wait;
887 }
888
889 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
890 {
891         sector_t sector = 0;
892
893         spin_lock_irq(&conf->resync_lock);
894         if (need_to_wait_for_sync(conf, bio)) {
895                 conf->nr_waiting++;
896                 /* Wait for the barrier to drop.
897                  * However if there are already pending
898                  * requests (preventing the barrier from
899                  * rising completely), and the
900                  * per-process bio queue isn't empty,
901                  * then don't wait, as we need to empty
902                  * that queue to allow conf->start_next_window
903                  * to increase.
904                  */
905                 wait_event_lock_irq(conf->wait_barrier,
906                                     !conf->array_frozen &&
907                                     (!conf->barrier ||
908                                      ((conf->start_next_window <
909                                        conf->next_resync + RESYNC_SECTORS) &&
910                                       current->bio_list &&
911                                       !bio_list_empty(current->bio_list))),
912                                     conf->resync_lock);
913                 conf->nr_waiting--;
914         }
915
916         if (bio && bio_data_dir(bio) == WRITE) {
917                 if (bio->bi_iter.bi_sector >=
918                     conf->mddev->curr_resync_completed) {
919                         if (conf->start_next_window == MaxSector)
920                                 conf->start_next_window =
921                                         conf->next_resync +
922                                         NEXT_NORMALIO_DISTANCE;
923
924                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
925                             <= bio->bi_iter.bi_sector)
926                                 conf->next_window_requests++;
927                         else
928                                 conf->current_window_requests++;
929                         sector = conf->start_next_window;
930                 }
931         }
932
933         conf->nr_pending++;
934         spin_unlock_irq(&conf->resync_lock);
935         return sector;
936 }
937
938 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
939                           sector_t bi_sector)
940 {
941         unsigned long flags;
942
943         spin_lock_irqsave(&conf->resync_lock, flags);
944         conf->nr_pending--;
945         if (start_next_window) {
946                 if (start_next_window == conf->start_next_window) {
947                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
948                             <= bi_sector)
949                                 conf->next_window_requests--;
950                         else
951                                 conf->current_window_requests--;
952                 } else
953                         conf->current_window_requests--;
954
955                 if (!conf->current_window_requests) {
956                         if (conf->next_window_requests) {
957                                 conf->current_window_requests =
958                                         conf->next_window_requests;
959                                 conf->next_window_requests = 0;
960                                 conf->start_next_window +=
961                                         NEXT_NORMALIO_DISTANCE;
962                         } else
963                                 conf->start_next_window = MaxSector;
964                 }
965         }
966         spin_unlock_irqrestore(&conf->resync_lock, flags);
967         wake_up(&conf->wait_barrier);
968 }
969
970 static void freeze_array(struct r1conf *conf, int extra)
971 {
972         /* stop syncio and normal IO and wait for everything to
973          * go quite.
974          * We wait until nr_pending match nr_queued+extra
975          * This is called in the context of one normal IO request
976          * that has failed. Thus any sync request that might be pending
977          * will be blocked by nr_pending, and we need to wait for
978          * pending IO requests to complete or be queued for re-try.
979          * Thus the number queued (nr_queued) plus this request (extra)
980          * must match the number of pending IOs (nr_pending) before
981          * we continue.
982          */
983         spin_lock_irq(&conf->resync_lock);
984         conf->array_frozen = 1;
985         wait_event_lock_irq_cmd(conf->wait_barrier,
986                                 conf->nr_pending == conf->nr_queued+extra,
987                                 conf->resync_lock,
988                                 flush_pending_writes(conf));
989         spin_unlock_irq(&conf->resync_lock);
990 }
991 static void unfreeze_array(struct r1conf *conf)
992 {
993         /* reverse the effect of the freeze */
994         spin_lock_irq(&conf->resync_lock);
995         conf->array_frozen = 0;
996         wake_up(&conf->wait_barrier);
997         spin_unlock_irq(&conf->resync_lock);
998 }
999
1000 /* duplicate the data pages for behind I/O
1001  */
1002 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1003 {
1004         int i;
1005         struct bio_vec *bvec;
1006         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1007                                         GFP_NOIO);
1008         if (unlikely(!bvecs))
1009                 return;
1010
1011         bio_for_each_segment_all(bvec, bio, i) {
1012                 bvecs[i] = *bvec;
1013                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1014                 if (unlikely(!bvecs[i].bv_page))
1015                         goto do_sync_io;
1016                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1017                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1018                 kunmap(bvecs[i].bv_page);
1019                 kunmap(bvec->bv_page);
1020         }
1021         r1_bio->behind_bvecs = bvecs;
1022         r1_bio->behind_page_count = bio->bi_vcnt;
1023         set_bit(R1BIO_BehindIO, &r1_bio->state);
1024         return;
1025
1026 do_sync_io:
1027         for (i = 0; i < bio->bi_vcnt; i++)
1028                 if (bvecs[i].bv_page)
1029                         put_page(bvecs[i].bv_page);
1030         kfree(bvecs);
1031         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1032                  bio->bi_iter.bi_size);
1033 }
1034
1035 struct raid1_plug_cb {
1036         struct blk_plug_cb      cb;
1037         struct bio_list         pending;
1038         int                     pending_cnt;
1039 };
1040
1041 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1042 {
1043         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1044                                                   cb);
1045         struct mddev *mddev = plug->cb.data;
1046         struct r1conf *conf = mddev->private;
1047         struct bio *bio;
1048
1049         if (from_schedule || current->bio_list) {
1050                 spin_lock_irq(&conf->device_lock);
1051                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1052                 conf->pending_count += plug->pending_cnt;
1053                 spin_unlock_irq(&conf->device_lock);
1054                 wake_up(&conf->wait_barrier);
1055                 md_wakeup_thread(mddev->thread);
1056                 kfree(plug);
1057                 return;
1058         }
1059
1060         /* we aren't scheduling, so we can do the write-out directly. */
1061         bio = bio_list_get(&plug->pending);
1062         bitmap_unplug(mddev->bitmap);
1063         wake_up(&conf->wait_barrier);
1064
1065         while (bio) { /* submit pending writes */
1066                 struct bio *next = bio->bi_next;
1067                 bio->bi_next = NULL;
1068                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1069                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1070                         /* Just ignore it */
1071                         bio_endio(bio, 0);
1072                 else
1073                         generic_make_request(bio);
1074                 bio = next;
1075         }
1076         kfree(plug);
1077 }
1078
1079 static void make_request(struct mddev *mddev, struct bio * bio)
1080 {
1081         struct r1conf *conf = mddev->private;
1082         struct raid1_info *mirror;
1083         struct r1bio *r1_bio;
1084         struct bio *read_bio;
1085         int i, disks;
1086         struct bitmap *bitmap;
1087         unsigned long flags;
1088         const int rw = bio_data_dir(bio);
1089         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1090         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1091         const unsigned long do_discard = (bio->bi_rw
1092                                           & (REQ_DISCARD | REQ_SECURE));
1093         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1094         struct md_rdev *blocked_rdev;
1095         struct blk_plug_cb *cb;
1096         struct raid1_plug_cb *plug = NULL;
1097         int first_clone;
1098         int sectors_handled;
1099         int max_sectors;
1100         sector_t start_next_window;
1101
1102         /*
1103          * Register the new request and wait if the reconstruction
1104          * thread has put up a bar for new requests.
1105          * Continue immediately if no resync is active currently.
1106          */
1107
1108         md_write_start(mddev, bio); /* wait on superblock update early */
1109
1110         if (bio_data_dir(bio) == WRITE &&
1111             ((bio_end_sector(bio) > mddev->suspend_lo &&
1112             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1113             (mddev_is_clustered(mddev) &&
1114              md_cluster_ops->area_resyncing(mddev, WRITE,
1115                      bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1116                 /* As the suspend_* range is controlled by
1117                  * userspace, we want an interruptible
1118                  * wait.
1119                  */
1120                 DEFINE_WAIT(w);
1121                 for (;;) {
1122                         flush_signals(current);
1123                         prepare_to_wait(&conf->wait_barrier,
1124                                         &w, TASK_INTERRUPTIBLE);
1125                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1126                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1127                             (mddev_is_clustered(mddev) &&
1128                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1129                                      bio->bi_iter.bi_sector, bio_end_sector(bio))))
1130                                 break;
1131                         schedule();
1132                 }
1133                 finish_wait(&conf->wait_barrier, &w);
1134         }
1135
1136         start_next_window = wait_barrier(conf, bio);
1137
1138         bitmap = mddev->bitmap;
1139
1140         /*
1141          * make_request() can abort the operation when READA is being
1142          * used and no empty request is available.
1143          *
1144          */
1145         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1146
1147         r1_bio->master_bio = bio;
1148         r1_bio->sectors = bio_sectors(bio);
1149         r1_bio->state = 0;
1150         r1_bio->mddev = mddev;
1151         r1_bio->sector = bio->bi_iter.bi_sector;
1152
1153         /* We might need to issue multiple reads to different
1154          * devices if there are bad blocks around, so we keep
1155          * track of the number of reads in bio->bi_phys_segments.
1156          * If this is 0, there is only one r1_bio and no locking
1157          * will be needed when requests complete.  If it is
1158          * non-zero, then it is the number of not-completed requests.
1159          */
1160         bio->bi_phys_segments = 0;
1161         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162
1163         if (rw == READ) {
1164                 /*
1165                  * read balancing logic:
1166                  */
1167                 int rdisk;
1168
1169 read_again:
1170                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1171
1172                 if (rdisk < 0) {
1173                         /* couldn't find anywhere to read from */
1174                         raid_end_bio_io(r1_bio);
1175                         return;
1176                 }
1177                 mirror = conf->mirrors + rdisk;
1178
1179                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180                     bitmap) {
1181                         /* Reading from a write-mostly device must
1182                          * take care not to over-take any writes
1183                          * that are 'behind'
1184                          */
1185                         wait_event(bitmap->behind_wait,
1186                                    atomic_read(&bitmap->behind_writes) == 0);
1187                 }
1188                 r1_bio->read_disk = rdisk;
1189                 r1_bio->start_next_window = 0;
1190
1191                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1192                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1193                          max_sectors);
1194
1195                 r1_bio->bios[rdisk] = read_bio;
1196
1197                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1198                         mirror->rdev->data_offset;
1199                 read_bio->bi_bdev = mirror->rdev->bdev;
1200                 read_bio->bi_end_io = raid1_end_read_request;
1201                 read_bio->bi_rw = READ | do_sync;
1202                 read_bio->bi_private = r1_bio;
1203
1204                 if (max_sectors < r1_bio->sectors) {
1205                         /* could not read all from this device, so we will
1206                          * need another r1_bio.
1207                          */
1208
1209                         sectors_handled = (r1_bio->sector + max_sectors
1210                                            - bio->bi_iter.bi_sector);
1211                         r1_bio->sectors = max_sectors;
1212                         spin_lock_irq(&conf->device_lock);
1213                         if (bio->bi_phys_segments == 0)
1214                                 bio->bi_phys_segments = 2;
1215                         else
1216                                 bio->bi_phys_segments++;
1217                         spin_unlock_irq(&conf->device_lock);
1218                         /* Cannot call generic_make_request directly
1219                          * as that will be queued in __make_request
1220                          * and subsequent mempool_alloc might block waiting
1221                          * for it.  So hand bio over to raid1d.
1222                          */
1223                         reschedule_retry(r1_bio);
1224
1225                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1226
1227                         r1_bio->master_bio = bio;
1228                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1229                         r1_bio->state = 0;
1230                         r1_bio->mddev = mddev;
1231                         r1_bio->sector = bio->bi_iter.bi_sector +
1232                                 sectors_handled;
1233                         goto read_again;
1234                 } else
1235                         generic_make_request(read_bio);
1236                 return;
1237         }
1238
1239         /*
1240          * WRITE:
1241          */
1242         if (conf->pending_count >= max_queued_requests) {
1243                 md_wakeup_thread(mddev->thread);
1244                 wait_event(conf->wait_barrier,
1245                            conf->pending_count < max_queued_requests);
1246         }
1247         /* first select target devices under rcu_lock and
1248          * inc refcount on their rdev.  Record them by setting
1249          * bios[x] to bio
1250          * If there are known/acknowledged bad blocks on any device on
1251          * which we have seen a write error, we want to avoid writing those
1252          * blocks.
1253          * This potentially requires several writes to write around
1254          * the bad blocks.  Each set of writes gets it's own r1bio
1255          * with a set of bios attached.
1256          */
1257
1258         disks = conf->raid_disks * 2;
1259  retry_write:
1260         r1_bio->start_next_window = start_next_window;
1261         blocked_rdev = NULL;
1262         rcu_read_lock();
1263         max_sectors = r1_bio->sectors;
1264         for (i = 0;  i < disks; i++) {
1265                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1266                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1267                         atomic_inc(&rdev->nr_pending);
1268                         blocked_rdev = rdev;
1269                         break;
1270                 }
1271                 r1_bio->bios[i] = NULL;
1272                 if (!rdev || test_bit(Faulty, &rdev->flags)
1273                     || test_bit(Unmerged, &rdev->flags)) {
1274                         if (i < conf->raid_disks)
1275                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1276                         continue;
1277                 }
1278
1279                 atomic_inc(&rdev->nr_pending);
1280                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1281                         sector_t first_bad;
1282                         int bad_sectors;
1283                         int is_bad;
1284
1285                         is_bad = is_badblock(rdev, r1_bio->sector,
1286                                              max_sectors,
1287                                              &first_bad, &bad_sectors);
1288                         if (is_bad < 0) {
1289                                 /* mustn't write here until the bad block is
1290                                  * acknowledged*/
1291                                 set_bit(BlockedBadBlocks, &rdev->flags);
1292                                 blocked_rdev = rdev;
1293                                 break;
1294                         }
1295                         if (is_bad && first_bad <= r1_bio->sector) {
1296                                 /* Cannot write here at all */
1297                                 bad_sectors -= (r1_bio->sector - first_bad);
1298                                 if (bad_sectors < max_sectors)
1299                                         /* mustn't write more than bad_sectors
1300                                          * to other devices yet
1301                                          */
1302                                         max_sectors = bad_sectors;
1303                                 rdev_dec_pending(rdev, mddev);
1304                                 /* We don't set R1BIO_Degraded as that
1305                                  * only applies if the disk is
1306                                  * missing, so it might be re-added,
1307                                  * and we want to know to recover this
1308                                  * chunk.
1309                                  * In this case the device is here,
1310                                  * and the fact that this chunk is not
1311                                  * in-sync is recorded in the bad
1312                                  * block log
1313                                  */
1314                                 continue;
1315                         }
1316                         if (is_bad) {
1317                                 int good_sectors = first_bad - r1_bio->sector;
1318                                 if (good_sectors < max_sectors)
1319                                         max_sectors = good_sectors;
1320                         }
1321                 }
1322                 r1_bio->bios[i] = bio;
1323         }
1324         rcu_read_unlock();
1325
1326         if (unlikely(blocked_rdev)) {
1327                 /* Wait for this device to become unblocked */
1328                 int j;
1329                 sector_t old = start_next_window;
1330
1331                 for (j = 0; j < i; j++)
1332                         if (r1_bio->bios[j])
1333                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1334                 r1_bio->state = 0;
1335                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1336                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1337                 start_next_window = wait_barrier(conf, bio);
1338                 /*
1339                  * We must make sure the multi r1bios of bio have
1340                  * the same value of bi_phys_segments
1341                  */
1342                 if (bio->bi_phys_segments && old &&
1343                     old != start_next_window)
1344                         /* Wait for the former r1bio(s) to complete */
1345                         wait_event(conf->wait_barrier,
1346                                    bio->bi_phys_segments == 1);
1347                 goto retry_write;
1348         }
1349
1350         if (max_sectors < r1_bio->sectors) {
1351                 /* We are splitting this write into multiple parts, so
1352                  * we need to prepare for allocating another r1_bio.
1353                  */
1354                 r1_bio->sectors = max_sectors;
1355                 spin_lock_irq(&conf->device_lock);
1356                 if (bio->bi_phys_segments == 0)
1357                         bio->bi_phys_segments = 2;
1358                 else
1359                         bio->bi_phys_segments++;
1360                 spin_unlock_irq(&conf->device_lock);
1361         }
1362         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1363
1364         atomic_set(&r1_bio->remaining, 1);
1365         atomic_set(&r1_bio->behind_remaining, 0);
1366
1367         first_clone = 1;
1368         for (i = 0; i < disks; i++) {
1369                 struct bio *mbio;
1370                 if (!r1_bio->bios[i])
1371                         continue;
1372
1373                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1374                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1375
1376                 if (first_clone) {
1377                         /* do behind I/O ?
1378                          * Not if there are too many, or cannot
1379                          * allocate memory, or a reader on WriteMostly
1380                          * is waiting for behind writes to flush */
1381                         if (bitmap &&
1382                             (atomic_read(&bitmap->behind_writes)
1383                              < mddev->bitmap_info.max_write_behind) &&
1384                             !waitqueue_active(&bitmap->behind_wait))
1385                                 alloc_behind_pages(mbio, r1_bio);
1386
1387                         bitmap_startwrite(bitmap, r1_bio->sector,
1388                                           r1_bio->sectors,
1389                                           test_bit(R1BIO_BehindIO,
1390                                                    &r1_bio->state));
1391                         first_clone = 0;
1392                 }
1393                 if (r1_bio->behind_bvecs) {
1394                         struct bio_vec *bvec;
1395                         int j;
1396
1397                         /*
1398                          * We trimmed the bio, so _all is legit
1399                          */
1400                         bio_for_each_segment_all(bvec, mbio, j)
1401                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1402                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1403                                 atomic_inc(&r1_bio->behind_remaining);
1404                 }
1405
1406                 r1_bio->bios[i] = mbio;
1407
1408                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1409                                    conf->mirrors[i].rdev->data_offset);
1410                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1411                 mbio->bi_end_io = raid1_end_write_request;
1412                 mbio->bi_rw =
1413                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1414                 mbio->bi_private = r1_bio;
1415
1416                 atomic_inc(&r1_bio->remaining);
1417
1418                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1419                 if (cb)
1420                         plug = container_of(cb, struct raid1_plug_cb, cb);
1421                 else
1422                         plug = NULL;
1423                 spin_lock_irqsave(&conf->device_lock, flags);
1424                 if (plug) {
1425                         bio_list_add(&plug->pending, mbio);
1426                         plug->pending_cnt++;
1427                 } else {
1428                         bio_list_add(&conf->pending_bio_list, mbio);
1429                         conf->pending_count++;
1430                 }
1431                 spin_unlock_irqrestore(&conf->device_lock, flags);
1432                 if (!plug)
1433                         md_wakeup_thread(mddev->thread);
1434         }
1435         /* Mustn't call r1_bio_write_done before this next test,
1436          * as it could result in the bio being freed.
1437          */
1438         if (sectors_handled < bio_sectors(bio)) {
1439                 r1_bio_write_done(r1_bio);
1440                 /* We need another r1_bio.  It has already been counted
1441                  * in bio->bi_phys_segments
1442                  */
1443                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1444                 r1_bio->master_bio = bio;
1445                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1446                 r1_bio->state = 0;
1447                 r1_bio->mddev = mddev;
1448                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1449                 goto retry_write;
1450         }
1451
1452         r1_bio_write_done(r1_bio);
1453
1454         /* In case raid1d snuck in to freeze_array */
1455         wake_up(&conf->wait_barrier);
1456 }
1457
1458 static void status(struct seq_file *seq, struct mddev *mddev)
1459 {
1460         struct r1conf *conf = mddev->private;
1461         int i;
1462
1463         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1464                    conf->raid_disks - mddev->degraded);
1465         rcu_read_lock();
1466         for (i = 0; i < conf->raid_disks; i++) {
1467                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1468                 seq_printf(seq, "%s",
1469                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1470         }
1471         rcu_read_unlock();
1472         seq_printf(seq, "]");
1473 }
1474
1475 static void error(struct mddev *mddev, struct md_rdev *rdev)
1476 {
1477         char b[BDEVNAME_SIZE];
1478         struct r1conf *conf = mddev->private;
1479         unsigned long flags;
1480
1481         /*
1482          * If it is not operational, then we have already marked it as dead
1483          * else if it is the last working disks, ignore the error, let the
1484          * next level up know.
1485          * else mark the drive as failed
1486          */
1487         if (test_bit(In_sync, &rdev->flags)
1488             && (conf->raid_disks - mddev->degraded) == 1) {
1489                 /*
1490                  * Don't fail the drive, act as though we were just a
1491                  * normal single drive.
1492                  * However don't try a recovery from this drive as
1493                  * it is very likely to fail.
1494                  */
1495                 conf->recovery_disabled = mddev->recovery_disabled;
1496                 return;
1497         }
1498         set_bit(Blocked, &rdev->flags);
1499         spin_lock_irqsave(&conf->device_lock, flags);
1500         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1501                 mddev->degraded++;
1502                 set_bit(Faulty, &rdev->flags);
1503         } else
1504                 set_bit(Faulty, &rdev->flags);
1505         spin_unlock_irqrestore(&conf->device_lock, flags);
1506         /*
1507          * if recovery is running, make sure it aborts.
1508          */
1509         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1510         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1511         set_bit(MD_CHANGE_PENDING, &mddev->flags);
1512         printk(KERN_ALERT
1513                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1514                "md/raid1:%s: Operation continuing on %d devices.\n",
1515                mdname(mddev), bdevname(rdev->bdev, b),
1516                mdname(mddev), conf->raid_disks - mddev->degraded);
1517 }
1518
1519 static void print_conf(struct r1conf *conf)
1520 {
1521         int i;
1522
1523         printk(KERN_DEBUG "RAID1 conf printout:\n");
1524         if (!conf) {
1525                 printk(KERN_DEBUG "(!conf)\n");
1526                 return;
1527         }
1528         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1529                 conf->raid_disks);
1530
1531         rcu_read_lock();
1532         for (i = 0; i < conf->raid_disks; i++) {
1533                 char b[BDEVNAME_SIZE];
1534                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1535                 if (rdev)
1536                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1537                                i, !test_bit(In_sync, &rdev->flags),
1538                                !test_bit(Faulty, &rdev->flags),
1539                                bdevname(rdev->bdev,b));
1540         }
1541         rcu_read_unlock();
1542 }
1543
1544 static void close_sync(struct r1conf *conf)
1545 {
1546         wait_barrier(conf, NULL);
1547         allow_barrier(conf, 0, 0);
1548
1549         mempool_destroy(conf->r1buf_pool);
1550         conf->r1buf_pool = NULL;
1551
1552         spin_lock_irq(&conf->resync_lock);
1553         conf->next_resync = 0;
1554         conf->start_next_window = MaxSector;
1555         conf->current_window_requests +=
1556                 conf->next_window_requests;
1557         conf->next_window_requests = 0;
1558         spin_unlock_irq(&conf->resync_lock);
1559 }
1560
1561 static int raid1_spare_active(struct mddev *mddev)
1562 {
1563         int i;
1564         struct r1conf *conf = mddev->private;
1565         int count = 0;
1566         unsigned long flags;
1567
1568         /*
1569          * Find all failed disks within the RAID1 configuration
1570          * and mark them readable.
1571          * Called under mddev lock, so rcu protection not needed.
1572          * device_lock used to avoid races with raid1_end_read_request
1573          * which expects 'In_sync' flags and ->degraded to be consistent.
1574          */
1575         spin_lock_irqsave(&conf->device_lock, flags);
1576         for (i = 0; i < conf->raid_disks; i++) {
1577                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1578                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1579                 if (repl
1580                     && !test_bit(Candidate, &repl->flags)
1581                     && repl->recovery_offset == MaxSector
1582                     && !test_bit(Faulty, &repl->flags)
1583                     && !test_and_set_bit(In_sync, &repl->flags)) {
1584                         /* replacement has just become active */
1585                         if (!rdev ||
1586                             !test_and_clear_bit(In_sync, &rdev->flags))
1587                                 count++;
1588                         if (rdev) {
1589                                 /* Replaced device not technically
1590                                  * faulty, but we need to be sure
1591                                  * it gets removed and never re-added
1592                                  */
1593                                 set_bit(Faulty, &rdev->flags);
1594                                 sysfs_notify_dirent_safe(
1595                                         rdev->sysfs_state);
1596                         }
1597                 }
1598                 if (rdev
1599                     && rdev->recovery_offset == MaxSector
1600                     && !test_bit(Faulty, &rdev->flags)
1601                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1602                         count++;
1603                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1604                 }
1605         }
1606         mddev->degraded -= count;
1607         spin_unlock_irqrestore(&conf->device_lock, flags);
1608
1609         print_conf(conf);
1610         return count;
1611 }
1612
1613 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1614 {
1615         struct r1conf *conf = mddev->private;
1616         int err = -EEXIST;
1617         int mirror = 0;
1618         struct raid1_info *p;
1619         int first = 0;
1620         int last = conf->raid_disks - 1;
1621         struct request_queue *q = bdev_get_queue(rdev->bdev);
1622
1623         if (mddev->recovery_disabled == conf->recovery_disabled)
1624                 return -EBUSY;
1625
1626         if (rdev->raid_disk >= 0)
1627                 first = last = rdev->raid_disk;
1628
1629         if (q->merge_bvec_fn) {
1630                 set_bit(Unmerged, &rdev->flags);
1631                 mddev->merge_check_needed = 1;
1632         }
1633
1634         for (mirror = first; mirror <= last; mirror++) {
1635                 p = conf->mirrors+mirror;
1636                 if (!p->rdev) {
1637
1638                         if (mddev->gendisk)
1639                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1640                                                   rdev->data_offset << 9);
1641
1642                         p->head_position = 0;
1643                         rdev->raid_disk = mirror;
1644                         err = 0;
1645                         /* As all devices are equivalent, we don't need a full recovery
1646                          * if this was recently any drive of the array
1647                          */
1648                         if (rdev->saved_raid_disk < 0)
1649                                 conf->fullsync = 1;
1650                         rcu_assign_pointer(p->rdev, rdev);
1651                         break;
1652                 }
1653                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1654                     p[conf->raid_disks].rdev == NULL) {
1655                         /* Add this device as a replacement */
1656                         clear_bit(In_sync, &rdev->flags);
1657                         set_bit(Replacement, &rdev->flags);
1658                         rdev->raid_disk = mirror;
1659                         err = 0;
1660                         conf->fullsync = 1;
1661                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1662                         break;
1663                 }
1664         }
1665         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1666                 /* Some requests might not have seen this new
1667                  * merge_bvec_fn.  We must wait for them to complete
1668                  * before merging the device fully.
1669                  * First we make sure any code which has tested
1670                  * our function has submitted the request, then
1671                  * we wait for all outstanding requests to complete.
1672                  */
1673                 synchronize_sched();
1674                 freeze_array(conf, 0);
1675                 unfreeze_array(conf);
1676                 clear_bit(Unmerged, &rdev->flags);
1677         }
1678         md_integrity_add_rdev(rdev, mddev);
1679         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1680                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1681         print_conf(conf);
1682         return err;
1683 }
1684
1685 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1686 {
1687         struct r1conf *conf = mddev->private;
1688         int err = 0;
1689         int number = rdev->raid_disk;
1690         struct raid1_info *p = conf->mirrors + number;
1691
1692         if (rdev != p->rdev)
1693                 p = conf->mirrors + conf->raid_disks + number;
1694
1695         print_conf(conf);
1696         if (rdev == p->rdev) {
1697                 if (test_bit(In_sync, &rdev->flags) ||
1698                     atomic_read(&rdev->nr_pending)) {
1699                         err = -EBUSY;
1700                         goto abort;
1701                 }
1702                 /* Only remove non-faulty devices if recovery
1703                  * is not possible.
1704                  */
1705                 if (!test_bit(Faulty, &rdev->flags) &&
1706                     mddev->recovery_disabled != conf->recovery_disabled &&
1707                     mddev->degraded < conf->raid_disks) {
1708                         err = -EBUSY;
1709                         goto abort;
1710                 }
1711                 p->rdev = NULL;
1712                 synchronize_rcu();
1713                 if (atomic_read(&rdev->nr_pending)) {
1714                         /* lost the race, try later */
1715                         err = -EBUSY;
1716                         p->rdev = rdev;
1717                         goto abort;
1718                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1719                         /* We just removed a device that is being replaced.
1720                          * Move down the replacement.  We drain all IO before
1721                          * doing this to avoid confusion.
1722                          */
1723                         struct md_rdev *repl =
1724                                 conf->mirrors[conf->raid_disks + number].rdev;
1725                         freeze_array(conf, 0);
1726                         clear_bit(Replacement, &repl->flags);
1727                         p->rdev = repl;
1728                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1729                         unfreeze_array(conf);
1730                         clear_bit(WantReplacement, &rdev->flags);
1731                 } else
1732                         clear_bit(WantReplacement, &rdev->flags);
1733                 err = md_integrity_register(mddev);
1734         }
1735 abort:
1736
1737         print_conf(conf);
1738         return err;
1739 }
1740
1741 static void end_sync_read(struct bio *bio, int error)
1742 {
1743         struct r1bio *r1_bio = bio->bi_private;
1744
1745         update_head_pos(r1_bio->read_disk, r1_bio);
1746
1747         /*
1748          * we have read a block, now it needs to be re-written,
1749          * or re-read if the read failed.
1750          * We don't do much here, just schedule handling by raid1d
1751          */
1752         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1753                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1754
1755         if (atomic_dec_and_test(&r1_bio->remaining))
1756                 reschedule_retry(r1_bio);
1757 }
1758
1759 static void end_sync_write(struct bio *bio, int error)
1760 {
1761         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1762         struct r1bio *r1_bio = bio->bi_private;
1763         struct mddev *mddev = r1_bio->mddev;
1764         struct r1conf *conf = mddev->private;
1765         int mirror=0;
1766         sector_t first_bad;
1767         int bad_sectors;
1768
1769         mirror = find_bio_disk(r1_bio, bio);
1770
1771         if (!uptodate) {
1772                 sector_t sync_blocks = 0;
1773                 sector_t s = r1_bio->sector;
1774                 long sectors_to_go = r1_bio->sectors;
1775                 /* make sure these bits doesn't get cleared. */
1776                 do {
1777                         bitmap_end_sync(mddev->bitmap, s,
1778                                         &sync_blocks, 1);
1779                         s += sync_blocks;
1780                         sectors_to_go -= sync_blocks;
1781                 } while (sectors_to_go > 0);
1782                 set_bit(WriteErrorSeen,
1783                         &conf->mirrors[mirror].rdev->flags);
1784                 if (!test_and_set_bit(WantReplacement,
1785                                       &conf->mirrors[mirror].rdev->flags))
1786                         set_bit(MD_RECOVERY_NEEDED, &
1787                                 mddev->recovery);
1788                 set_bit(R1BIO_WriteError, &r1_bio->state);
1789         } else if (is_badblock(conf->mirrors[mirror].rdev,
1790                                r1_bio->sector,
1791                                r1_bio->sectors,
1792                                &first_bad, &bad_sectors) &&
1793                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1794                                 r1_bio->sector,
1795                                 r1_bio->sectors,
1796                                 &first_bad, &bad_sectors)
1797                 )
1798                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1799
1800         if (atomic_dec_and_test(&r1_bio->remaining)) {
1801                 int s = r1_bio->sectors;
1802                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1803                     test_bit(R1BIO_WriteError, &r1_bio->state))
1804                         reschedule_retry(r1_bio);
1805                 else {
1806                         put_buf(r1_bio);
1807                         md_done_sync(mddev, s, uptodate);
1808                 }
1809         }
1810 }
1811
1812 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1813                             int sectors, struct page *page, int rw)
1814 {
1815         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1816                 /* success */
1817                 return 1;
1818         if (rw == WRITE) {
1819                 set_bit(WriteErrorSeen, &rdev->flags);
1820                 if (!test_and_set_bit(WantReplacement,
1821                                       &rdev->flags))
1822                         set_bit(MD_RECOVERY_NEEDED, &
1823                                 rdev->mddev->recovery);
1824         }
1825         /* need to record an error - either for the block or the device */
1826         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1827                 md_error(rdev->mddev, rdev);
1828         return 0;
1829 }
1830
1831 static int fix_sync_read_error(struct r1bio *r1_bio)
1832 {
1833         /* Try some synchronous reads of other devices to get
1834          * good data, much like with normal read errors.  Only
1835          * read into the pages we already have so we don't
1836          * need to re-issue the read request.
1837          * We don't need to freeze the array, because being in an
1838          * active sync request, there is no normal IO, and
1839          * no overlapping syncs.
1840          * We don't need to check is_badblock() again as we
1841          * made sure that anything with a bad block in range
1842          * will have bi_end_io clear.
1843          */
1844         struct mddev *mddev = r1_bio->mddev;
1845         struct r1conf *conf = mddev->private;
1846         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1847         sector_t sect = r1_bio->sector;
1848         int sectors = r1_bio->sectors;
1849         int idx = 0;
1850
1851         while(sectors) {
1852                 int s = sectors;
1853                 int d = r1_bio->read_disk;
1854                 int success = 0;
1855                 struct md_rdev *rdev;
1856                 int start;
1857
1858                 if (s > (PAGE_SIZE>>9))
1859                         s = PAGE_SIZE >> 9;
1860                 do {
1861                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1862                                 /* No rcu protection needed here devices
1863                                  * can only be removed when no resync is
1864                                  * active, and resync is currently active
1865                                  */
1866                                 rdev = conf->mirrors[d].rdev;
1867                                 if (sync_page_io(rdev, sect, s<<9,
1868                                                  bio->bi_io_vec[idx].bv_page,
1869                                                  READ, false)) {
1870                                         success = 1;
1871                                         break;
1872                                 }
1873                         }
1874                         d++;
1875                         if (d == conf->raid_disks * 2)
1876                                 d = 0;
1877                 } while (!success && d != r1_bio->read_disk);
1878
1879                 if (!success) {
1880                         char b[BDEVNAME_SIZE];
1881                         int abort = 0;
1882                         /* Cannot read from anywhere, this block is lost.
1883                          * Record a bad block on each device.  If that doesn't
1884                          * work just disable and interrupt the recovery.
1885                          * Don't fail devices as that won't really help.
1886                          */
1887                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1888                                " for block %llu\n",
1889                                mdname(mddev),
1890                                bdevname(bio->bi_bdev, b),
1891                                (unsigned long long)r1_bio->sector);
1892                         for (d = 0; d < conf->raid_disks * 2; d++) {
1893                                 rdev = conf->mirrors[d].rdev;
1894                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1895                                         continue;
1896                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1897                                         abort = 1;
1898                         }
1899                         if (abort) {
1900                                 conf->recovery_disabled =
1901                                         mddev->recovery_disabled;
1902                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1903                                 md_done_sync(mddev, r1_bio->sectors, 0);
1904                                 put_buf(r1_bio);
1905                                 return 0;
1906                         }
1907                         /* Try next page */
1908                         sectors -= s;
1909                         sect += s;
1910                         idx++;
1911                         continue;
1912                 }
1913
1914                 start = d;
1915                 /* write it back and re-read */
1916                 while (d != r1_bio->read_disk) {
1917                         if (d == 0)
1918                                 d = conf->raid_disks * 2;
1919                         d--;
1920                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1921                                 continue;
1922                         rdev = conf->mirrors[d].rdev;
1923                         if (r1_sync_page_io(rdev, sect, s,
1924                                             bio->bi_io_vec[idx].bv_page,
1925                                             WRITE) == 0) {
1926                                 r1_bio->bios[d]->bi_end_io = NULL;
1927                                 rdev_dec_pending(rdev, mddev);
1928                         }
1929                 }
1930                 d = start;
1931                 while (d != r1_bio->read_disk) {
1932                         if (d == 0)
1933                                 d = conf->raid_disks * 2;
1934                         d--;
1935                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1936                                 continue;
1937                         rdev = conf->mirrors[d].rdev;
1938                         if (r1_sync_page_io(rdev, sect, s,
1939                                             bio->bi_io_vec[idx].bv_page,
1940                                             READ) != 0)
1941                                 atomic_add(s, &rdev->corrected_errors);
1942                 }
1943                 sectors -= s;
1944                 sect += s;
1945                 idx ++;
1946         }
1947         set_bit(R1BIO_Uptodate, &r1_bio->state);
1948         set_bit(BIO_UPTODATE, &bio->bi_flags);
1949         return 1;
1950 }
1951
1952 static void process_checks(struct r1bio *r1_bio)
1953 {
1954         /* We have read all readable devices.  If we haven't
1955          * got the block, then there is no hope left.
1956          * If we have, then we want to do a comparison
1957          * and skip the write if everything is the same.
1958          * If any blocks failed to read, then we need to
1959          * attempt an over-write
1960          */
1961         struct mddev *mddev = r1_bio->mddev;
1962         struct r1conf *conf = mddev->private;
1963         int primary;
1964         int i;
1965         int vcnt;
1966
1967         /* Fix variable parts of all bios */
1968         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1969         for (i = 0; i < conf->raid_disks * 2; i++) {
1970                 int j;
1971                 int size;
1972                 int uptodate;
1973                 struct bio *b = r1_bio->bios[i];
1974                 if (b->bi_end_io != end_sync_read)
1975                         continue;
1976                 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1977                 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1978                 bio_reset(b);
1979                 if (!uptodate)
1980                         clear_bit(BIO_UPTODATE, &b->bi_flags);
1981                 b->bi_vcnt = vcnt;
1982                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1983                 b->bi_iter.bi_sector = r1_bio->sector +
1984                         conf->mirrors[i].rdev->data_offset;
1985                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1986                 b->bi_end_io = end_sync_read;
1987                 b->bi_private = r1_bio;
1988
1989                 size = b->bi_iter.bi_size;
1990                 for (j = 0; j < vcnt ; j++) {
1991                         struct bio_vec *bi;
1992                         bi = &b->bi_io_vec[j];
1993                         bi->bv_offset = 0;
1994                         if (size > PAGE_SIZE)
1995                                 bi->bv_len = PAGE_SIZE;
1996                         else
1997                                 bi->bv_len = size;
1998                         size -= PAGE_SIZE;
1999                 }
2000         }
2001         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2002                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2003                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2004                         r1_bio->bios[primary]->bi_end_io = NULL;
2005                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2006                         break;
2007                 }
2008         r1_bio->read_disk = primary;
2009         for (i = 0; i < conf->raid_disks * 2; i++) {
2010                 int j;
2011                 struct bio *pbio = r1_bio->bios[primary];
2012                 struct bio *sbio = r1_bio->bios[i];
2013                 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2014
2015                 if (sbio->bi_end_io != end_sync_read)
2016                         continue;
2017                 /* Now we can 'fixup' the BIO_UPTODATE flag */
2018                 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2019
2020                 if (uptodate) {
2021                         for (j = vcnt; j-- ; ) {
2022                                 struct page *p, *s;
2023                                 p = pbio->bi_io_vec[j].bv_page;
2024                                 s = sbio->bi_io_vec[j].bv_page;
2025                                 if (memcmp(page_address(p),
2026                                            page_address(s),
2027                                            sbio->bi_io_vec[j].bv_len))
2028                                         break;
2029                         }
2030                 } else
2031                         j = 0;
2032                 if (j >= 0)
2033                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2034                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2035                               && uptodate)) {
2036                         /* No need to write to this device. */
2037                         sbio->bi_end_io = NULL;
2038                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2039                         continue;
2040                 }
2041
2042                 bio_copy_data(sbio, pbio);
2043         }
2044 }
2045
2046 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2047 {
2048         struct r1conf *conf = mddev->private;
2049         int i;
2050         int disks = conf->raid_disks * 2;
2051         struct bio *bio, *wbio;
2052
2053         bio = r1_bio->bios[r1_bio->read_disk];
2054
2055         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2056                 /* ouch - failed to read all of that. */
2057                 if (!fix_sync_read_error(r1_bio))
2058                         return;
2059
2060         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2061                 process_checks(r1_bio);
2062
2063         /*
2064          * schedule writes
2065          */
2066         atomic_set(&r1_bio->remaining, 1);
2067         for (i = 0; i < disks ; i++) {
2068                 wbio = r1_bio->bios[i];
2069                 if (wbio->bi_end_io == NULL ||
2070                     (wbio->bi_end_io == end_sync_read &&
2071                      (i == r1_bio->read_disk ||
2072                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2073                         continue;
2074
2075                 wbio->bi_rw = WRITE;
2076                 wbio->bi_end_io = end_sync_write;
2077                 atomic_inc(&r1_bio->remaining);
2078                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2079
2080                 generic_make_request(wbio);
2081         }
2082
2083         if (atomic_dec_and_test(&r1_bio->remaining)) {
2084                 /* if we're here, all write(s) have completed, so clean up */
2085                 int s = r1_bio->sectors;
2086                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2087                     test_bit(R1BIO_WriteError, &r1_bio->state))
2088                         reschedule_retry(r1_bio);
2089                 else {
2090                         put_buf(r1_bio);
2091                         md_done_sync(mddev, s, 1);
2092                 }
2093         }
2094 }
2095
2096 /*
2097  * This is a kernel thread which:
2098  *
2099  *      1.      Retries failed read operations on working mirrors.
2100  *      2.      Updates the raid superblock when problems encounter.
2101  *      3.      Performs writes following reads for array synchronising.
2102  */
2103
2104 static void fix_read_error(struct r1conf *conf, int read_disk,
2105                            sector_t sect, int sectors)
2106 {
2107         struct mddev *mddev = conf->mddev;
2108         while(sectors) {
2109                 int s = sectors;
2110                 int d = read_disk;
2111                 int success = 0;
2112                 int start;
2113                 struct md_rdev *rdev;
2114
2115                 if (s > (PAGE_SIZE>>9))
2116                         s = PAGE_SIZE >> 9;
2117
2118                 do {
2119                         /* Note: no rcu protection needed here
2120                          * as this is synchronous in the raid1d thread
2121                          * which is the thread that might remove
2122                          * a device.  If raid1d ever becomes multi-threaded....
2123                          */
2124                         sector_t first_bad;
2125                         int bad_sectors;
2126
2127                         rdev = conf->mirrors[d].rdev;
2128                         if (rdev &&
2129                             (test_bit(In_sync, &rdev->flags) ||
2130                              (!test_bit(Faulty, &rdev->flags) &&
2131                               rdev->recovery_offset >= sect + s)) &&
2132                             is_badblock(rdev, sect, s,
2133                                         &first_bad, &bad_sectors) == 0 &&
2134                             sync_page_io(rdev, sect, s<<9,
2135                                          conf->tmppage, READ, false))
2136                                 success = 1;
2137                         else {
2138                                 d++;
2139                                 if (d == conf->raid_disks * 2)
2140                                         d = 0;
2141                         }
2142                 } while (!success && d != read_disk);
2143
2144                 if (!success) {
2145                         /* Cannot read from anywhere - mark it bad */
2146                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2147                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2148                                 md_error(mddev, rdev);
2149                         break;
2150                 }
2151                 /* write it back and re-read */
2152                 start = d;
2153                 while (d != read_disk) {
2154                         if (d==0)
2155                                 d = conf->raid_disks * 2;
2156                         d--;
2157                         rdev = conf->mirrors[d].rdev;
2158                         if (rdev &&
2159                             !test_bit(Faulty, &rdev->flags))
2160                                 r1_sync_page_io(rdev, sect, s,
2161                                                 conf->tmppage, WRITE);
2162                 }
2163                 d = start;
2164                 while (d != read_disk) {
2165                         char b[BDEVNAME_SIZE];
2166                         if (d==0)
2167                                 d = conf->raid_disks * 2;
2168                         d--;
2169                         rdev = conf->mirrors[d].rdev;
2170                         if (rdev &&
2171                             !test_bit(Faulty, &rdev->flags)) {
2172                                 if (r1_sync_page_io(rdev, sect, s,
2173                                                     conf->tmppage, READ)) {
2174                                         atomic_add(s, &rdev->corrected_errors);
2175                                         printk(KERN_INFO
2176                                                "md/raid1:%s: read error corrected "
2177                                                "(%d sectors at %llu on %s)\n",
2178                                                mdname(mddev), s,
2179                                                (unsigned long long)(sect +
2180                                                    rdev->data_offset),
2181                                                bdevname(rdev->bdev, b));
2182                                 }
2183                         }
2184                 }
2185                 sectors -= s;
2186                 sect += s;
2187         }
2188 }
2189
2190 static int narrow_write_error(struct r1bio *r1_bio, int i)
2191 {
2192         struct mddev *mddev = r1_bio->mddev;
2193         struct r1conf *conf = mddev->private;
2194         struct md_rdev *rdev = conf->mirrors[i].rdev;
2195
2196         /* bio has the data to be written to device 'i' where
2197          * we just recently had a write error.
2198          * We repeatedly clone the bio and trim down to one block,
2199          * then try the write.  Where the write fails we record
2200          * a bad block.
2201          * It is conceivable that the bio doesn't exactly align with
2202          * blocks.  We must handle this somehow.
2203          *
2204          * We currently own a reference on the rdev.
2205          */
2206
2207         int block_sectors;
2208         sector_t sector;
2209         int sectors;
2210         int sect_to_write = r1_bio->sectors;
2211         int ok = 1;
2212
2213         if (rdev->badblocks.shift < 0)
2214                 return 0;
2215
2216         block_sectors = roundup(1 << rdev->badblocks.shift,
2217                                 bdev_logical_block_size(rdev->bdev) >> 9);
2218         sector = r1_bio->sector;
2219         sectors = ((sector + block_sectors)
2220                    & ~(sector_t)(block_sectors - 1))
2221                 - sector;
2222
2223         while (sect_to_write) {
2224                 struct bio *wbio;
2225                 if (sectors > sect_to_write)
2226                         sectors = sect_to_write;
2227                 /* Write at 'sector' for 'sectors'*/
2228
2229                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2230                         unsigned vcnt = r1_bio->behind_page_count;
2231                         struct bio_vec *vec = r1_bio->behind_bvecs;
2232
2233                         while (!vec->bv_page) {
2234                                 vec++;
2235                                 vcnt--;
2236                         }
2237
2238                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2239                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2240
2241                         wbio->bi_vcnt = vcnt;
2242                 } else {
2243                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2244                 }
2245
2246                 wbio->bi_rw = WRITE;
2247                 wbio->bi_iter.bi_sector = r1_bio->sector;
2248                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2249
2250                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2251                 wbio->bi_iter.bi_sector += rdev->data_offset;
2252                 wbio->bi_bdev = rdev->bdev;
2253                 if (submit_bio_wait(WRITE, wbio) == 0)
2254                         /* failure! */
2255                         ok = rdev_set_badblocks(rdev, sector,
2256                                                 sectors, 0)
2257                                 && ok;
2258
2259                 bio_put(wbio);
2260                 sect_to_write -= sectors;
2261                 sector += sectors;
2262                 sectors = block_sectors;
2263         }
2264         return ok;
2265 }
2266
2267 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2268 {
2269         int m;
2270         int s = r1_bio->sectors;
2271         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2272                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2273                 struct bio *bio = r1_bio->bios[m];
2274                 if (bio->bi_end_io == NULL)
2275                         continue;
2276                 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2277                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2278                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2279                 }
2280                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2281                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2282                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2283                                 md_error(conf->mddev, rdev);
2284                 }
2285         }
2286         put_buf(r1_bio);
2287         md_done_sync(conf->mddev, s, 1);
2288 }
2289
2290 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2291 {
2292         int m;
2293         bool fail = false;
2294         for (m = 0; m < conf->raid_disks * 2 ; m++)
2295                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2296                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2297                         rdev_clear_badblocks(rdev,
2298                                              r1_bio->sector,
2299                                              r1_bio->sectors, 0);
2300                         rdev_dec_pending(rdev, conf->mddev);
2301                 } else if (r1_bio->bios[m] != NULL) {
2302                         /* This drive got a write error.  We need to
2303                          * narrow down and record precise write
2304                          * errors.
2305                          */
2306                         fail = true;
2307                         if (!narrow_write_error(r1_bio, m)) {
2308                                 md_error(conf->mddev,
2309                                          conf->mirrors[m].rdev);
2310                                 /* an I/O failed, we can't clear the bitmap */
2311                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2312                         }
2313                         rdev_dec_pending(conf->mirrors[m].rdev,
2314                                          conf->mddev);
2315                 }
2316         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2317                 close_write(r1_bio);
2318         if (fail) {
2319                 spin_lock_irq(&conf->device_lock);
2320                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2321                 spin_unlock_irq(&conf->device_lock);
2322                 md_wakeup_thread(conf->mddev->thread);
2323         } else
2324                 raid_end_bio_io(r1_bio);
2325 }
2326
2327 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2328 {
2329         int disk;
2330         int max_sectors;
2331         struct mddev *mddev = conf->mddev;
2332         struct bio *bio;
2333         char b[BDEVNAME_SIZE];
2334         struct md_rdev *rdev;
2335
2336         clear_bit(R1BIO_ReadError, &r1_bio->state);
2337         /* we got a read error. Maybe the drive is bad.  Maybe just
2338          * the block and we can fix it.
2339          * We freeze all other IO, and try reading the block from
2340          * other devices.  When we find one, we re-write
2341          * and check it that fixes the read error.
2342          * This is all done synchronously while the array is
2343          * frozen
2344          */
2345         if (mddev->ro == 0) {
2346                 freeze_array(conf, 1);
2347                 fix_read_error(conf, r1_bio->read_disk,
2348                                r1_bio->sector, r1_bio->sectors);
2349                 unfreeze_array(conf);
2350         } else
2351                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2352         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2353
2354         bio = r1_bio->bios[r1_bio->read_disk];
2355         bdevname(bio->bi_bdev, b);
2356 read_more:
2357         disk = read_balance(conf, r1_bio, &max_sectors);
2358         if (disk == -1) {
2359                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2360                        " read error for block %llu\n",
2361                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2362                 raid_end_bio_io(r1_bio);
2363         } else {
2364                 const unsigned long do_sync
2365                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2366                 if (bio) {
2367                         r1_bio->bios[r1_bio->read_disk] =
2368                                 mddev->ro ? IO_BLOCKED : NULL;
2369                         bio_put(bio);
2370                 }
2371                 r1_bio->read_disk = disk;
2372                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2373                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2374                          max_sectors);
2375                 r1_bio->bios[r1_bio->read_disk] = bio;
2376                 rdev = conf->mirrors[disk].rdev;
2377                 printk_ratelimited(KERN_ERR
2378                                    "md/raid1:%s: redirecting sector %llu"
2379                                    " to other mirror: %s\n",
2380                                    mdname(mddev),
2381                                    (unsigned long long)r1_bio->sector,
2382                                    bdevname(rdev->bdev, b));
2383                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2384                 bio->bi_bdev = rdev->bdev;
2385                 bio->bi_end_io = raid1_end_read_request;
2386                 bio->bi_rw = READ | do_sync;
2387                 bio->bi_private = r1_bio;
2388                 if (max_sectors < r1_bio->sectors) {
2389                         /* Drat - have to split this up more */
2390                         struct bio *mbio = r1_bio->master_bio;
2391                         int sectors_handled = (r1_bio->sector + max_sectors
2392                                                - mbio->bi_iter.bi_sector);
2393                         r1_bio->sectors = max_sectors;
2394                         spin_lock_irq(&conf->device_lock);
2395                         if (mbio->bi_phys_segments == 0)
2396                                 mbio->bi_phys_segments = 2;
2397                         else
2398                                 mbio->bi_phys_segments++;
2399                         spin_unlock_irq(&conf->device_lock);
2400                         generic_make_request(bio);
2401                         bio = NULL;
2402
2403                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2404
2405                         r1_bio->master_bio = mbio;
2406                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2407                         r1_bio->state = 0;
2408                         set_bit(R1BIO_ReadError, &r1_bio->state);
2409                         r1_bio->mddev = mddev;
2410                         r1_bio->sector = mbio->bi_iter.bi_sector +
2411                                 sectors_handled;
2412
2413                         goto read_more;
2414                 } else
2415                         generic_make_request(bio);
2416         }
2417 }
2418
2419 static void raid1d(struct md_thread *thread)
2420 {
2421         struct mddev *mddev = thread->mddev;
2422         struct r1bio *r1_bio;
2423         unsigned long flags;
2424         struct r1conf *conf = mddev->private;
2425         struct list_head *head = &conf->retry_list;
2426         struct blk_plug plug;
2427
2428         md_check_recovery(mddev);
2429
2430         if (!list_empty_careful(&conf->bio_end_io_list) &&
2431             !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2432                 LIST_HEAD(tmp);
2433                 spin_lock_irqsave(&conf->device_lock, flags);
2434                 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2435                         list_add(&tmp, &conf->bio_end_io_list);
2436                         list_del_init(&conf->bio_end_io_list);
2437                 }
2438                 spin_unlock_irqrestore(&conf->device_lock, flags);
2439                 while (!list_empty(&tmp)) {
2440                         r1_bio = list_first_entry(&conf->bio_end_io_list,
2441                                                   struct r1bio, retry_list);
2442                         list_del(&r1_bio->retry_list);
2443                         raid_end_bio_io(r1_bio);
2444                 }
2445         }
2446
2447         blk_start_plug(&plug);
2448         for (;;) {
2449
2450                 flush_pending_writes(conf);
2451
2452                 spin_lock_irqsave(&conf->device_lock, flags);
2453                 if (list_empty(head)) {
2454                         spin_unlock_irqrestore(&conf->device_lock, flags);
2455                         break;
2456                 }
2457                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2458                 list_del(head->prev);
2459                 conf->nr_queued--;
2460                 spin_unlock_irqrestore(&conf->device_lock, flags);
2461
2462                 mddev = r1_bio->mddev;
2463                 conf = mddev->private;
2464                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2465                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2466                             test_bit(R1BIO_WriteError, &r1_bio->state))
2467                                 handle_sync_write_finished(conf, r1_bio);
2468                         else
2469                                 sync_request_write(mddev, r1_bio);
2470                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2471                            test_bit(R1BIO_WriteError, &r1_bio->state))
2472                         handle_write_finished(conf, r1_bio);
2473                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2474                         handle_read_error(conf, r1_bio);
2475                 else
2476                         /* just a partial read to be scheduled from separate
2477                          * context
2478                          */
2479                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2480
2481                 cond_resched();
2482                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2483                         md_check_recovery(mddev);
2484         }
2485         blk_finish_plug(&plug);
2486 }
2487
2488 static int init_resync(struct r1conf *conf)
2489 {
2490         int buffs;
2491
2492         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2493         BUG_ON(conf->r1buf_pool);
2494         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2495                                           conf->poolinfo);
2496         if (!conf->r1buf_pool)
2497                 return -ENOMEM;
2498         conf->next_resync = 0;
2499         return 0;
2500 }
2501
2502 /*
2503  * perform a "sync" on one "block"
2504  *
2505  * We need to make sure that no normal I/O request - particularly write
2506  * requests - conflict with active sync requests.
2507  *
2508  * This is achieved by tracking pending requests and a 'barrier' concept
2509  * that can be installed to exclude normal IO requests.
2510  */
2511
2512 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2513 {
2514         struct r1conf *conf = mddev->private;
2515         struct r1bio *r1_bio;
2516         struct bio *bio;
2517         sector_t max_sector, nr_sectors;
2518         int disk = -1;
2519         int i;
2520         int wonly = -1;
2521         int write_targets = 0, read_targets = 0;
2522         sector_t sync_blocks;
2523         int still_degraded = 0;
2524         int good_sectors = RESYNC_SECTORS;
2525         int min_bad = 0; /* number of sectors that are bad in all devices */
2526
2527         if (!conf->r1buf_pool)
2528                 if (init_resync(conf))
2529                         return 0;
2530
2531         max_sector = mddev->dev_sectors;
2532         if (sector_nr >= max_sector) {
2533                 /* If we aborted, we need to abort the
2534                  * sync on the 'current' bitmap chunk (there will
2535                  * only be one in raid1 resync.
2536                  * We can find the current addess in mddev->curr_resync
2537                  */
2538                 if (mddev->curr_resync < max_sector) /* aborted */
2539                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2540                                                 &sync_blocks, 1);
2541                 else /* completed sync */
2542                         conf->fullsync = 0;
2543
2544                 bitmap_close_sync(mddev->bitmap);
2545                 close_sync(conf);
2546                 return 0;
2547         }
2548
2549         if (mddev->bitmap == NULL &&
2550             mddev->recovery_cp == MaxSector &&
2551             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2552             conf->fullsync == 0) {
2553                 *skipped = 1;
2554                 return max_sector - sector_nr;
2555         }
2556         /* before building a request, check if we can skip these blocks..
2557          * This call the bitmap_start_sync doesn't actually record anything
2558          */
2559         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2560             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2561                 /* We can skip this block, and probably several more */
2562                 *skipped = 1;
2563                 return sync_blocks;
2564         }
2565
2566         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2567         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2568
2569         raise_barrier(conf, sector_nr);
2570
2571         rcu_read_lock();
2572         /*
2573          * If we get a correctably read error during resync or recovery,
2574          * we might want to read from a different device.  So we
2575          * flag all drives that could conceivably be read from for READ,
2576          * and any others (which will be non-In_sync devices) for WRITE.
2577          * If a read fails, we try reading from something else for which READ
2578          * is OK.
2579          */
2580
2581         r1_bio->mddev = mddev;
2582         r1_bio->sector = sector_nr;
2583         r1_bio->state = 0;
2584         set_bit(R1BIO_IsSync, &r1_bio->state);
2585
2586         for (i = 0; i < conf->raid_disks * 2; i++) {
2587                 struct md_rdev *rdev;
2588                 bio = r1_bio->bios[i];
2589                 bio_reset(bio);
2590
2591                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2592                 if (rdev == NULL ||
2593                     test_bit(Faulty, &rdev->flags)) {
2594                         if (i < conf->raid_disks)
2595                                 still_degraded = 1;
2596                 } else if (!test_bit(In_sync, &rdev->flags)) {
2597                         bio->bi_rw = WRITE;
2598                         bio->bi_end_io = end_sync_write;
2599                         write_targets ++;
2600                 } else {
2601                         /* may need to read from here */
2602                         sector_t first_bad = MaxSector;
2603                         int bad_sectors;
2604
2605                         if (is_badblock(rdev, sector_nr, good_sectors,
2606                                         &first_bad, &bad_sectors)) {
2607                                 if (first_bad > sector_nr)
2608                                         good_sectors = first_bad - sector_nr;
2609                                 else {
2610                                         bad_sectors -= (sector_nr - first_bad);
2611                                         if (min_bad == 0 ||
2612                                             min_bad > bad_sectors)
2613                                                 min_bad = bad_sectors;
2614                                 }
2615                         }
2616                         if (sector_nr < first_bad) {
2617                                 if (test_bit(WriteMostly, &rdev->flags)) {
2618                                         if (wonly < 0)
2619                                                 wonly = i;
2620                                 } else {
2621                                         if (disk < 0)
2622                                                 disk = i;
2623                                 }
2624                                 bio->bi_rw = READ;
2625                                 bio->bi_end_io = end_sync_read;
2626                                 read_targets++;
2627                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2628                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2629                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2630                                 /*
2631                                  * The device is suitable for reading (InSync),
2632                                  * but has bad block(s) here. Let's try to correct them,
2633                                  * if we are doing resync or repair. Otherwise, leave
2634                                  * this device alone for this sync request.
2635                                  */
2636                                 bio->bi_rw = WRITE;
2637                                 bio->bi_end_io = end_sync_write;
2638                                 write_targets++;
2639                         }
2640                 }
2641                 if (bio->bi_end_io) {
2642                         atomic_inc(&rdev->nr_pending);
2643                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2644                         bio->bi_bdev = rdev->bdev;
2645                         bio->bi_private = r1_bio;
2646                 }
2647         }
2648         rcu_read_unlock();
2649         if (disk < 0)
2650                 disk = wonly;
2651         r1_bio->read_disk = disk;
2652
2653         if (read_targets == 0 && min_bad > 0) {
2654                 /* These sectors are bad on all InSync devices, so we
2655                  * need to mark them bad on all write targets
2656                  */
2657                 int ok = 1;
2658                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2659                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2660                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2661                                 ok = rdev_set_badblocks(rdev, sector_nr,
2662                                                         min_bad, 0
2663                                         ) && ok;
2664                         }
2665                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2666                 *skipped = 1;
2667                 put_buf(r1_bio);
2668
2669                 if (!ok) {
2670                         /* Cannot record the badblocks, so need to
2671                          * abort the resync.
2672                          * If there are multiple read targets, could just
2673                          * fail the really bad ones ???
2674                          */
2675                         conf->recovery_disabled = mddev->recovery_disabled;
2676                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2677                         return 0;
2678                 } else
2679                         return min_bad;
2680
2681         }
2682         if (min_bad > 0 && min_bad < good_sectors) {
2683                 /* only resync enough to reach the next bad->good
2684                  * transition */
2685                 good_sectors = min_bad;
2686         }
2687
2688         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2689                 /* extra read targets are also write targets */
2690                 write_targets += read_targets-1;
2691
2692         if (write_targets == 0 || read_targets == 0) {
2693                 /* There is nowhere to write, so all non-sync
2694                  * drives must be failed - so we are finished
2695                  */
2696                 sector_t rv;
2697                 if (min_bad > 0)
2698                         max_sector = sector_nr + min_bad;
2699                 rv = max_sector - sector_nr;
2700                 *skipped = 1;
2701                 put_buf(r1_bio);
2702                 return rv;
2703         }
2704
2705         if (max_sector > mddev->resync_max)
2706                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2707         if (max_sector > sector_nr + good_sectors)
2708                 max_sector = sector_nr + good_sectors;
2709         nr_sectors = 0;
2710         sync_blocks = 0;
2711         do {
2712                 struct page *page;
2713                 int len = PAGE_SIZE;
2714                 if (sector_nr + (len>>9) > max_sector)
2715                         len = (max_sector - sector_nr) << 9;
2716                 if (len == 0)
2717                         break;
2718                 if (sync_blocks == 0) {
2719                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2720                                                &sync_blocks, still_degraded) &&
2721                             !conf->fullsync &&
2722                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2723                                 break;
2724                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2725                         if ((len >> 9) > sync_blocks)
2726                                 len = sync_blocks<<9;
2727                 }
2728
2729                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2730                         bio = r1_bio->bios[i];
2731                         if (bio->bi_end_io) {
2732                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2733                                 if (bio_add_page(bio, page, len, 0) == 0) {
2734                                         /* stop here */
2735                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2736                                         while (i > 0) {
2737                                                 i--;
2738                                                 bio = r1_bio->bios[i];
2739                                                 if (bio->bi_end_io==NULL)
2740                                                         continue;
2741                                                 /* remove last page from this bio */
2742                                                 bio->bi_vcnt--;
2743                                                 bio->bi_iter.bi_size -= len;
2744                                                 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2745                                         }
2746                                         goto bio_full;
2747                                 }
2748                         }
2749                 }
2750                 nr_sectors += len>>9;
2751                 sector_nr += len>>9;
2752                 sync_blocks -= (len>>9);
2753         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2754  bio_full:
2755         r1_bio->sectors = nr_sectors;
2756
2757         /* For a user-requested sync, we read all readable devices and do a
2758          * compare
2759          */
2760         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2761                 atomic_set(&r1_bio->remaining, read_targets);
2762                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2763                         bio = r1_bio->bios[i];
2764                         if (bio->bi_end_io == end_sync_read) {
2765                                 read_targets--;
2766                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2767                                 generic_make_request(bio);
2768                         }
2769                 }
2770         } else {
2771                 atomic_set(&r1_bio->remaining, 1);
2772                 bio = r1_bio->bios[r1_bio->read_disk];
2773                 md_sync_acct(bio->bi_bdev, nr_sectors);
2774                 generic_make_request(bio);
2775
2776         }
2777         return nr_sectors;
2778 }
2779
2780 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2781 {
2782         if (sectors)
2783                 return sectors;
2784
2785         return mddev->dev_sectors;
2786 }
2787
2788 static struct r1conf *setup_conf(struct mddev *mddev)
2789 {
2790         struct r1conf *conf;
2791         int i;
2792         struct raid1_info *disk;
2793         struct md_rdev *rdev;
2794         int err = -ENOMEM;
2795
2796         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2797         if (!conf)
2798                 goto abort;
2799
2800         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2801                                 * mddev->raid_disks * 2,
2802                                  GFP_KERNEL);
2803         if (!conf->mirrors)
2804                 goto abort;
2805
2806         conf->tmppage = alloc_page(GFP_KERNEL);
2807         if (!conf->tmppage)
2808                 goto abort;
2809
2810         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2811         if (!conf->poolinfo)
2812                 goto abort;
2813         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2814         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2815                                           r1bio_pool_free,
2816                                           conf->poolinfo);
2817         if (!conf->r1bio_pool)
2818                 goto abort;
2819
2820         conf->poolinfo->mddev = mddev;
2821
2822         err = -EINVAL;
2823         spin_lock_init(&conf->device_lock);
2824         rdev_for_each(rdev, mddev) {
2825                 struct request_queue *q;
2826                 int disk_idx = rdev->raid_disk;
2827                 if (disk_idx >= mddev->raid_disks
2828                     || disk_idx < 0)
2829                         continue;
2830                 if (test_bit(Replacement, &rdev->flags))
2831                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2832                 else
2833                         disk = conf->mirrors + disk_idx;
2834
2835                 if (disk->rdev)
2836                         goto abort;
2837                 disk->rdev = rdev;
2838                 q = bdev_get_queue(rdev->bdev);
2839                 if (q->merge_bvec_fn)
2840                         mddev->merge_check_needed = 1;
2841
2842                 disk->head_position = 0;
2843                 disk->seq_start = MaxSector;
2844         }
2845         conf->raid_disks = mddev->raid_disks;
2846         conf->mddev = mddev;
2847         INIT_LIST_HEAD(&conf->retry_list);
2848         INIT_LIST_HEAD(&conf->bio_end_io_list);
2849
2850         spin_lock_init(&conf->resync_lock);
2851         init_waitqueue_head(&conf->wait_barrier);
2852
2853         bio_list_init(&conf->pending_bio_list);
2854         conf->pending_count = 0;
2855         conf->recovery_disabled = mddev->recovery_disabled - 1;
2856
2857         conf->start_next_window = MaxSector;
2858         conf->current_window_requests = conf->next_window_requests = 0;
2859
2860         err = -EIO;
2861         for (i = 0; i < conf->raid_disks * 2; i++) {
2862
2863                 disk = conf->mirrors + i;
2864
2865                 if (i < conf->raid_disks &&
2866                     disk[conf->raid_disks].rdev) {
2867                         /* This slot has a replacement. */
2868                         if (!disk->rdev) {
2869                                 /* No original, just make the replacement
2870                                  * a recovering spare
2871                                  */
2872                                 disk->rdev =
2873                                         disk[conf->raid_disks].rdev;
2874                                 disk[conf->raid_disks].rdev = NULL;
2875                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2876                                 /* Original is not in_sync - bad */
2877                                 goto abort;
2878                 }
2879
2880                 if (!disk->rdev ||
2881                     !test_bit(In_sync, &disk->rdev->flags)) {
2882                         disk->head_position = 0;
2883                         if (disk->rdev &&
2884                             (disk->rdev->saved_raid_disk < 0))
2885                                 conf->fullsync = 1;
2886                 }
2887         }
2888
2889         err = -ENOMEM;
2890         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2891         if (!conf->thread) {
2892                 printk(KERN_ERR
2893                        "md/raid1:%s: couldn't allocate thread\n",
2894                        mdname(mddev));
2895                 goto abort;
2896         }
2897
2898         return conf;
2899
2900  abort:
2901         if (conf) {
2902                 if (conf->r1bio_pool)
2903                         mempool_destroy(conf->r1bio_pool);
2904                 kfree(conf->mirrors);
2905                 safe_put_page(conf->tmppage);
2906                 kfree(conf->poolinfo);
2907                 kfree(conf);
2908         }
2909         return ERR_PTR(err);
2910 }
2911
2912 static void raid1_free(struct mddev *mddev, void *priv);
2913 static int run(struct mddev *mddev)
2914 {
2915         struct r1conf *conf;
2916         int i;
2917         struct md_rdev *rdev;
2918         int ret;
2919         bool discard_supported = false;
2920
2921         if (mddev->level != 1) {
2922                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2923                        mdname(mddev), mddev->level);
2924                 return -EIO;
2925         }
2926         if (mddev->reshape_position != MaxSector) {
2927                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2928                        mdname(mddev));
2929                 return -EIO;
2930         }
2931         /*
2932          * copy the already verified devices into our private RAID1
2933          * bookkeeping area. [whatever we allocate in run(),
2934          * should be freed in raid1_free()]
2935          */
2936         if (mddev->private == NULL)
2937                 conf = setup_conf(mddev);
2938         else
2939                 conf = mddev->private;
2940
2941         if (IS_ERR(conf))
2942                 return PTR_ERR(conf);
2943
2944         if (mddev->queue)
2945                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2946
2947         rdev_for_each(rdev, mddev) {
2948                 if (!mddev->gendisk)
2949                         continue;
2950                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2951                                   rdev->data_offset << 9);
2952                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2953                         discard_supported = true;
2954         }
2955
2956         mddev->degraded = 0;
2957         for (i=0; i < conf->raid_disks; i++)
2958                 if (conf->mirrors[i].rdev == NULL ||
2959                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2960                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2961                         mddev->degraded++;
2962
2963         if (conf->raid_disks - mddev->degraded == 1)
2964                 mddev->recovery_cp = MaxSector;
2965
2966         if (mddev->recovery_cp != MaxSector)
2967                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2968                        " -- starting background reconstruction\n",
2969                        mdname(mddev));
2970         printk(KERN_INFO
2971                 "md/raid1:%s: active with %d out of %d mirrors\n",
2972                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2973                 mddev->raid_disks);
2974
2975         /*
2976          * Ok, everything is just fine now
2977          */
2978         mddev->thread = conf->thread;
2979         conf->thread = NULL;
2980         mddev->private = conf;
2981
2982         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2983
2984         if (mddev->queue) {
2985                 if (discard_supported)
2986                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2987                                                 mddev->queue);
2988                 else
2989                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2990                                                   mddev->queue);
2991         }
2992
2993         ret =  md_integrity_register(mddev);
2994         if (ret) {
2995                 md_unregister_thread(&mddev->thread);
2996                 raid1_free(mddev, conf);
2997         }
2998         return ret;
2999 }
3000
3001 static void raid1_free(struct mddev *mddev, void *priv)
3002 {
3003         struct r1conf *conf = priv;
3004
3005         if (conf->r1bio_pool)
3006                 mempool_destroy(conf->r1bio_pool);
3007         kfree(conf->mirrors);
3008         safe_put_page(conf->tmppage);
3009         kfree(conf->poolinfo);
3010         kfree(conf);
3011 }
3012
3013 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3014 {
3015         /* no resync is happening, and there is enough space
3016          * on all devices, so we can resize.
3017          * We need to make sure resync covers any new space.
3018          * If the array is shrinking we should possibly wait until
3019          * any io in the removed space completes, but it hardly seems
3020          * worth it.
3021          */
3022         sector_t newsize = raid1_size(mddev, sectors, 0);
3023         if (mddev->external_size &&
3024             mddev->array_sectors > newsize)
3025                 return -EINVAL;
3026         if (mddev->bitmap) {
3027                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3028                 if (ret)
3029                         return ret;
3030         }
3031         md_set_array_sectors(mddev, newsize);
3032         set_capacity(mddev->gendisk, mddev->array_sectors);
3033         revalidate_disk(mddev->gendisk);
3034         if (sectors > mddev->dev_sectors &&
3035             mddev->recovery_cp > mddev->dev_sectors) {
3036                 mddev->recovery_cp = mddev->dev_sectors;
3037                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3038         }
3039         mddev->dev_sectors = sectors;
3040         mddev->resync_max_sectors = sectors;
3041         return 0;
3042 }
3043
3044 static int raid1_reshape(struct mddev *mddev)
3045 {
3046         /* We need to:
3047          * 1/ resize the r1bio_pool
3048          * 2/ resize conf->mirrors
3049          *
3050          * We allocate a new r1bio_pool if we can.
3051          * Then raise a device barrier and wait until all IO stops.
3052          * Then resize conf->mirrors and swap in the new r1bio pool.
3053          *
3054          * At the same time, we "pack" the devices so that all the missing
3055          * devices have the higher raid_disk numbers.
3056          */
3057         mempool_t *newpool, *oldpool;
3058         struct pool_info *newpoolinfo;
3059         struct raid1_info *newmirrors;
3060         struct r1conf *conf = mddev->private;
3061         int cnt, raid_disks;
3062         unsigned long flags;
3063         int d, d2, err;
3064
3065         /* Cannot change chunk_size, layout, or level */
3066         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3067             mddev->layout != mddev->new_layout ||
3068             mddev->level != mddev->new_level) {
3069                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3070                 mddev->new_layout = mddev->layout;
3071                 mddev->new_level = mddev->level;
3072                 return -EINVAL;
3073         }
3074
3075         err = md_allow_write(mddev);
3076         if (err)
3077                 return err;
3078
3079         raid_disks = mddev->raid_disks + mddev->delta_disks;
3080
3081         if (raid_disks < conf->raid_disks) {
3082                 cnt=0;
3083                 for (d= 0; d < conf->raid_disks; d++)
3084                         if (conf->mirrors[d].rdev)
3085                                 cnt++;
3086                 if (cnt > raid_disks)
3087                         return -EBUSY;
3088         }
3089
3090         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3091         if (!newpoolinfo)
3092                 return -ENOMEM;
3093         newpoolinfo->mddev = mddev;
3094         newpoolinfo->raid_disks = raid_disks * 2;
3095
3096         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3097                                  r1bio_pool_free, newpoolinfo);
3098         if (!newpool) {
3099                 kfree(newpoolinfo);
3100                 return -ENOMEM;
3101         }
3102         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3103                              GFP_KERNEL);
3104         if (!newmirrors) {
3105                 kfree(newpoolinfo);
3106                 mempool_destroy(newpool);
3107                 return -ENOMEM;
3108         }
3109
3110         freeze_array(conf, 0);
3111
3112         /* ok, everything is stopped */
3113         oldpool = conf->r1bio_pool;
3114         conf->r1bio_pool = newpool;
3115
3116         for (d = d2 = 0; d < conf->raid_disks; d++) {
3117                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3118                 if (rdev && rdev->raid_disk != d2) {
3119                         sysfs_unlink_rdev(mddev, rdev);
3120                         rdev->raid_disk = d2;
3121                         sysfs_unlink_rdev(mddev, rdev);
3122                         if (sysfs_link_rdev(mddev, rdev))
3123                                 printk(KERN_WARNING
3124                                        "md/raid1:%s: cannot register rd%d\n",
3125                                        mdname(mddev), rdev->raid_disk);
3126                 }
3127                 if (rdev)
3128                         newmirrors[d2++].rdev = rdev;
3129         }
3130         kfree(conf->mirrors);
3131         conf->mirrors = newmirrors;
3132         kfree(conf->poolinfo);
3133         conf->poolinfo = newpoolinfo;
3134
3135         spin_lock_irqsave(&conf->device_lock, flags);
3136         mddev->degraded += (raid_disks - conf->raid_disks);
3137         spin_unlock_irqrestore(&conf->device_lock, flags);
3138         conf->raid_disks = mddev->raid_disks = raid_disks;
3139         mddev->delta_disks = 0;
3140
3141         unfreeze_array(conf);
3142
3143         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3144         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3145         md_wakeup_thread(mddev->thread);
3146
3147         mempool_destroy(oldpool);
3148         return 0;
3149 }
3150
3151 static void raid1_quiesce(struct mddev *mddev, int state)
3152 {
3153         struct r1conf *conf = mddev->private;
3154
3155         switch(state) {
3156         case 2: /* wake for suspend */
3157                 wake_up(&conf->wait_barrier);
3158                 break;
3159         case 1:
3160                 freeze_array(conf, 0);
3161                 break;
3162         case 0:
3163                 unfreeze_array(conf);
3164                 break;
3165         }
3166 }
3167
3168 static void *raid1_takeover(struct mddev *mddev)
3169 {
3170         /* raid1 can take over:
3171          *  raid5 with 2 devices, any layout or chunk size
3172          */
3173         if (mddev->level == 5 && mddev->raid_disks == 2) {
3174                 struct r1conf *conf;
3175                 mddev->new_level = 1;
3176                 mddev->new_layout = 0;
3177                 mddev->new_chunk_sectors = 0;
3178                 conf = setup_conf(mddev);
3179                 if (!IS_ERR(conf))
3180                         /* Array must appear to be quiesced */
3181                         conf->array_frozen = 1;
3182                 return conf;
3183         }
3184         return ERR_PTR(-EINVAL);
3185 }
3186
3187 static struct md_personality raid1_personality =
3188 {
3189         .name           = "raid1",
3190         .level          = 1,
3191         .owner          = THIS_MODULE,
3192         .make_request   = make_request,
3193         .run            = run,
3194         .free           = raid1_free,
3195         .status         = status,
3196         .error_handler  = error,
3197         .hot_add_disk   = raid1_add_disk,
3198         .hot_remove_disk= raid1_remove_disk,
3199         .spare_active   = raid1_spare_active,
3200         .sync_request   = sync_request,
3201         .resize         = raid1_resize,
3202         .size           = raid1_size,
3203         .check_reshape  = raid1_reshape,
3204         .quiesce        = raid1_quiesce,
3205         .takeover       = raid1_takeover,
3206         .congested      = raid1_congested,
3207         .mergeable_bvec = raid1_mergeable_bvec,
3208 };
3209
3210 static int __init raid_init(void)
3211 {
3212         return register_md_personality(&raid1_personality);
3213 }
3214
3215 static void raid_exit(void)
3216 {
3217         unregister_md_personality(&raid1_personality);
3218 }
3219
3220 module_init(raid_init);
3221 module_exit(raid_exit);
3222 MODULE_LICENSE("GPL");
3223 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3224 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3225 MODULE_ALIAS("md-raid1");
3226 MODULE_ALIAS("md-level-1");
3227
3228 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);