md/raid5: don't record new size if resize_stripes fails.
[pandora-kernel.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 static void md_print_devices(void);
71
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79  * Default number of read corrections we'll attempt on an rdev
80  * before ejecting it from the array. We divide the read error
81  * count by 2 for every hour elapsed between read errors.
82  */
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 /*
85  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86  * is 1000 KB/sec, so the extra system load does not show up that much.
87  * Increase it if you want to have more _guaranteed_ speed. Note that
88  * the RAID driver will use the maximum available bandwidth if the IO
89  * subsystem is idle. There is also an 'absolute maximum' reconstruction
90  * speed limit - in case reconstruction slows down your system despite
91  * idle IO detection.
92  *
93  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94  * or /sys/block/mdX/md/sync_speed_{min,max}
95  */
96
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
100 {
101         return mddev->sync_speed_min ?
102                 mddev->sync_speed_min : sysctl_speed_limit_min;
103 }
104
105 static inline int speed_max(struct mddev *mddev)
106 {
107         return mddev->sync_speed_max ?
108                 mddev->sync_speed_max : sysctl_speed_limit_max;
109 }
110
111 static struct ctl_table_header *raid_table_header;
112
113 static ctl_table raid_table[] = {
114         {
115                 .procname       = "speed_limit_min",
116                 .data           = &sysctl_speed_limit_min,
117                 .maxlen         = sizeof(int),
118                 .mode           = S_IRUGO|S_IWUSR,
119                 .proc_handler   = proc_dointvec,
120         },
121         {
122                 .procname       = "speed_limit_max",
123                 .data           = &sysctl_speed_limit_max,
124                 .maxlen         = sizeof(int),
125                 .mode           = S_IRUGO|S_IWUSR,
126                 .proc_handler   = proc_dointvec,
127         },
128         { }
129 };
130
131 static ctl_table raid_dir_table[] = {
132         {
133                 .procname       = "raid",
134                 .maxlen         = 0,
135                 .mode           = S_IRUGO|S_IXUGO,
136                 .child          = raid_table,
137         },
138         { }
139 };
140
141 static ctl_table raid_root_table[] = {
142         {
143                 .procname       = "dev",
144                 .maxlen         = 0,
145                 .mode           = 0555,
146                 .child          = raid_dir_table,
147         },
148         {  }
149 };
150
151 static const struct block_device_operations md_fops;
152
153 static int start_readonly;
154
155 /* bio_clone_mddev
156  * like bio_clone, but with a local bio set
157  */
158
159 static void mddev_bio_destructor(struct bio *bio)
160 {
161         struct mddev *mddev, **mddevp;
162
163         mddevp = (void*)bio;
164         mddev = mddevp[-1];
165
166         bio_free(bio, mddev->bio_set);
167 }
168
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170                             struct mddev *mddev)
171 {
172         struct bio *b;
173         struct mddev **mddevp;
174
175         if (!mddev || !mddev->bio_set)
176                 return bio_alloc(gfp_mask, nr_iovecs);
177
178         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179                              mddev->bio_set);
180         if (!b)
181                 return NULL;
182         mddevp = (void*)b;
183         mddevp[-1] = mddev;
184         b->bi_destructor = mddev_bio_destructor;
185         return b;
186 }
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190                             struct mddev *mddev)
191 {
192         struct bio *b;
193         struct mddev **mddevp;
194
195         if (!mddev || !mddev->bio_set)
196                 return bio_clone(bio, gfp_mask);
197
198         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199                              mddev->bio_set);
200         if (!b)
201                 return NULL;
202         mddevp = (void*)b;
203         mddevp[-1] = mddev;
204         b->bi_destructor = mddev_bio_destructor;
205         __bio_clone(b, bio);
206         if (bio_integrity(bio)) {
207                 int ret;
208
209                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210
211                 if (ret < 0) {
212                         bio_put(b);
213                         return NULL;
214                 }
215         }
216
217         return b;
218 }
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220
221 void md_trim_bio(struct bio *bio, int offset, int size)
222 {
223         /* 'bio' is a cloned bio which we need to trim to match
224          * the given offset and size.
225          * This requires adjusting bi_sector, bi_size, and bi_io_vec
226          */
227         int i;
228         struct bio_vec *bvec;
229         int sofar = 0;
230
231         size <<= 9;
232         if (offset == 0 && size == bio->bi_size)
233                 return;
234
235         bio->bi_sector += offset;
236         bio->bi_size = size;
237         offset <<= 9;
238         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239
240         while (bio->bi_idx < bio->bi_vcnt &&
241                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242                 /* remove this whole bio_vec */
243                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244                 bio->bi_idx++;
245         }
246         if (bio->bi_idx < bio->bi_vcnt) {
247                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249         }
250         /* avoid any complications with bi_idx being non-zero*/
251         if (bio->bi_idx) {
252                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254                 bio->bi_vcnt -= bio->bi_idx;
255                 bio->bi_idx = 0;
256         }
257         /* Make sure vcnt and last bv are not too big */
258         bio_for_each_segment(bvec, bio, i) {
259                 if (sofar + bvec->bv_len > size)
260                         bvec->bv_len = size - sofar;
261                 if (bvec->bv_len == 0) {
262                         bio->bi_vcnt = i;
263                         break;
264                 }
265                 sofar += bvec->bv_len;
266         }
267 }
268 EXPORT_SYMBOL_GPL(md_trim_bio);
269
270 /*
271  * We have a system wide 'event count' that is incremented
272  * on any 'interesting' event, and readers of /proc/mdstat
273  * can use 'poll' or 'select' to find out when the event
274  * count increases.
275  *
276  * Events are:
277  *  start array, stop array, error, add device, remove device,
278  *  start build, activate spare
279  */
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
283 {
284         atomic_inc(&md_event_count);
285         wake_up(&md_event_waiters);
286 }
287 EXPORT_SYMBOL_GPL(md_new_event);
288
289 /* Alternate version that can be called from interrupts
290  * when calling sysfs_notify isn't needed.
291  */
292 static void md_new_event_inintr(struct mddev *mddev)
293 {
294         atomic_inc(&md_event_count);
295         wake_up(&md_event_waiters);
296 }
297
298 /*
299  * Enables to iterate over all existing md arrays
300  * all_mddevs_lock protects this list.
301  */
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
304
305
306 /*
307  * iterates through all used mddevs in the system.
308  * We take care to grab the all_mddevs_lock whenever navigating
309  * the list, and to always hold a refcount when unlocked.
310  * Any code which breaks out of this loop while own
311  * a reference to the current mddev and must mddev_put it.
312  */
313 #define for_each_mddev(_mddev,_tmp)                                     \
314                                                                         \
315         for (({ spin_lock(&all_mddevs_lock);                            \
316                 _tmp = all_mddevs.next;                                 \
317                 _mddev = NULL;});                                       \
318              ({ if (_tmp != &all_mddevs)                                \
319                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320                 spin_unlock(&all_mddevs_lock);                          \
321                 if (_mddev) mddev_put(_mddev);                          \
322                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
323                 _tmp != &all_mddevs;});                                 \
324              ({ spin_lock(&all_mddevs_lock);                            \
325                 _tmp = _tmp->next;})                                    \
326                 )
327
328
329 /* Rather than calling directly into the personality make_request function,
330  * IO requests come here first so that we can check if the device is
331  * being suspended pending a reconfiguration.
332  * We hold a refcount over the call to ->make_request.  By the time that
333  * call has finished, the bio has been linked into some internal structure
334  * and so is visible to ->quiesce(), so we don't need the refcount any more.
335  */
336 static void md_make_request(struct request_queue *q, struct bio *bio)
337 {
338         const int rw = bio_data_dir(bio);
339         struct mddev *mddev = q->queuedata;
340         int cpu;
341         unsigned int sectors;
342
343         if (mddev == NULL || mddev->pers == NULL
344             || !mddev->ready) {
345                 bio_io_error(bio);
346                 return;
347         }
348         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
349                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
350                 return;
351         }
352         smp_rmb(); /* Ensure implications of  'active' are visible */
353         rcu_read_lock();
354         if (mddev->suspended) {
355                 DEFINE_WAIT(__wait);
356                 for (;;) {
357                         prepare_to_wait(&mddev->sb_wait, &__wait,
358                                         TASK_UNINTERRUPTIBLE);
359                         if (!mddev->suspended)
360                                 break;
361                         rcu_read_unlock();
362                         schedule();
363                         rcu_read_lock();
364                 }
365                 finish_wait(&mddev->sb_wait, &__wait);
366         }
367         atomic_inc(&mddev->active_io);
368         rcu_read_unlock();
369
370         /*
371          * save the sectors now since our bio can
372          * go away inside make_request
373          */
374         sectors = bio_sectors(bio);
375         mddev->pers->make_request(mddev, bio);
376
377         cpu = part_stat_lock();
378         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
379         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
380         part_stat_unlock();
381
382         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
383                 wake_up(&mddev->sb_wait);
384 }
385
386 /* mddev_suspend makes sure no new requests are submitted
387  * to the device, and that any requests that have been submitted
388  * are completely handled.
389  * Once ->stop is called and completes, the module will be completely
390  * unused.
391  */
392 void mddev_suspend(struct mddev *mddev)
393 {
394         BUG_ON(mddev->suspended);
395         mddev->suspended = 1;
396         synchronize_rcu();
397         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
398         mddev->pers->quiesce(mddev, 1);
399
400         del_timer_sync(&mddev->safemode_timer);
401 }
402 EXPORT_SYMBOL_GPL(mddev_suspend);
403
404 void mddev_resume(struct mddev *mddev)
405 {
406         mddev->suspended = 0;
407         wake_up(&mddev->sb_wait);
408         mddev->pers->quiesce(mddev, 0);
409
410         md_wakeup_thread(mddev->thread);
411         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
412 }
413 EXPORT_SYMBOL_GPL(mddev_resume);
414
415 int mddev_congested(struct mddev *mddev, int bits)
416 {
417         return mddev->suspended;
418 }
419 EXPORT_SYMBOL(mddev_congested);
420
421 /*
422  * Generic flush handling for md
423  */
424
425 static void md_end_flush(struct bio *bio, int err)
426 {
427         struct md_rdev *rdev = bio->bi_private;
428         struct mddev *mddev = rdev->mddev;
429
430         rdev_dec_pending(rdev, mddev);
431
432         if (atomic_dec_and_test(&mddev->flush_pending)) {
433                 /* The pre-request flush has finished */
434                 queue_work(md_wq, &mddev->flush_work);
435         }
436         bio_put(bio);
437 }
438
439 static void md_submit_flush_data(struct work_struct *ws);
440
441 static void submit_flushes(struct work_struct *ws)
442 {
443         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
444         struct md_rdev *rdev;
445
446         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
447         atomic_set(&mddev->flush_pending, 1);
448         rcu_read_lock();
449         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
450                 if (rdev->raid_disk >= 0 &&
451                     !test_bit(Faulty, &rdev->flags)) {
452                         /* Take two references, one is dropped
453                          * when request finishes, one after
454                          * we reclaim rcu_read_lock
455                          */
456                         struct bio *bi;
457                         atomic_inc(&rdev->nr_pending);
458                         atomic_inc(&rdev->nr_pending);
459                         rcu_read_unlock();
460                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
461                         bi->bi_end_io = md_end_flush;
462                         bi->bi_private = rdev;
463                         bi->bi_bdev = rdev->bdev;
464                         atomic_inc(&mddev->flush_pending);
465                         submit_bio(WRITE_FLUSH, bi);
466                         rcu_read_lock();
467                         rdev_dec_pending(rdev, mddev);
468                 }
469         rcu_read_unlock();
470         if (atomic_dec_and_test(&mddev->flush_pending))
471                 queue_work(md_wq, &mddev->flush_work);
472 }
473
474 static void md_submit_flush_data(struct work_struct *ws)
475 {
476         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
477         struct bio *bio = mddev->flush_bio;
478
479         if (bio->bi_size == 0)
480                 /* an empty barrier - all done */
481                 bio_endio(bio, 0);
482         else {
483                 bio->bi_rw &= ~REQ_FLUSH;
484                 mddev->pers->make_request(mddev, bio);
485         }
486
487         mddev->flush_bio = NULL;
488         wake_up(&mddev->sb_wait);
489 }
490
491 void md_flush_request(struct mddev *mddev, struct bio *bio)
492 {
493         spin_lock_irq(&mddev->write_lock);
494         wait_event_lock_irq(mddev->sb_wait,
495                             !mddev->flush_bio,
496                             mddev->write_lock, /*nothing*/);
497         mddev->flush_bio = bio;
498         spin_unlock_irq(&mddev->write_lock);
499
500         INIT_WORK(&mddev->flush_work, submit_flushes);
501         queue_work(md_wq, &mddev->flush_work);
502 }
503 EXPORT_SYMBOL(md_flush_request);
504
505 /* Support for plugging.
506  * This mirrors the plugging support in request_queue, but does not
507  * require having a whole queue or request structures.
508  * We allocate an md_plug_cb for each md device and each thread it gets
509  * plugged on.  This links tot the private plug_handle structure in the
510  * personality data where we keep a count of the number of outstanding
511  * plugs so other code can see if a plug is active.
512  */
513 struct md_plug_cb {
514         struct blk_plug_cb cb;
515         struct mddev *mddev;
516 };
517
518 static void plugger_unplug(struct blk_plug_cb *cb)
519 {
520         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
521         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
522                 md_wakeup_thread(mdcb->mddev->thread);
523         kfree(mdcb);
524 }
525
526 /* Check that an unplug wakeup will come shortly.
527  * If not, wakeup the md thread immediately
528  */
529 int mddev_check_plugged(struct mddev *mddev)
530 {
531         struct blk_plug *plug = current->plug;
532         struct md_plug_cb *mdcb;
533
534         if (!plug)
535                 return 0;
536
537         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
538                 if (mdcb->cb.callback == plugger_unplug &&
539                     mdcb->mddev == mddev) {
540                         /* Already on the list, move to top */
541                         if (mdcb != list_first_entry(&plug->cb_list,
542                                                     struct md_plug_cb,
543                                                     cb.list))
544                                 list_move(&mdcb->cb.list, &plug->cb_list);
545                         return 1;
546                 }
547         }
548         /* Not currently on the callback list */
549         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
550         if (!mdcb)
551                 return 0;
552
553         mdcb->mddev = mddev;
554         mdcb->cb.callback = plugger_unplug;
555         atomic_inc(&mddev->plug_cnt);
556         list_add(&mdcb->cb.list, &plug->cb_list);
557         return 1;
558 }
559 EXPORT_SYMBOL_GPL(mddev_check_plugged);
560
561 static inline struct mddev *mddev_get(struct mddev *mddev)
562 {
563         atomic_inc(&mddev->active);
564         return mddev;
565 }
566
567 static void mddev_delayed_delete(struct work_struct *ws);
568
569 static void mddev_put(struct mddev *mddev)
570 {
571         struct bio_set *bs = NULL;
572
573         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
574                 return;
575         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
576             mddev->ctime == 0 && !mddev->hold_active) {
577                 /* Array is not configured at all, and not held active,
578                  * so destroy it */
579                 list_del_init(&mddev->all_mddevs);
580                 bs = mddev->bio_set;
581                 mddev->bio_set = NULL;
582                 if (mddev->gendisk) {
583                         /* We did a probe so need to clean up.  Call
584                          * queue_work inside the spinlock so that
585                          * flush_workqueue() after mddev_find will
586                          * succeed in waiting for the work to be done.
587                          */
588                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
589                         queue_work(md_misc_wq, &mddev->del_work);
590                 } else
591                         kfree(mddev);
592         }
593         spin_unlock(&all_mddevs_lock);
594         if (bs)
595                 bioset_free(bs);
596 }
597
598 void mddev_init(struct mddev *mddev)
599 {
600         mutex_init(&mddev->open_mutex);
601         mutex_init(&mddev->reconfig_mutex);
602         mutex_init(&mddev->bitmap_info.mutex);
603         INIT_LIST_HEAD(&mddev->disks);
604         INIT_LIST_HEAD(&mddev->all_mddevs);
605         init_timer(&mddev->safemode_timer);
606         atomic_set(&mddev->active, 1);
607         atomic_set(&mddev->openers, 0);
608         atomic_set(&mddev->active_io, 0);
609         atomic_set(&mddev->plug_cnt, 0);
610         spin_lock_init(&mddev->write_lock);
611         atomic_set(&mddev->flush_pending, 0);
612         init_waitqueue_head(&mddev->sb_wait);
613         init_waitqueue_head(&mddev->recovery_wait);
614         mddev->reshape_position = MaxSector;
615         mddev->resync_min = 0;
616         mddev->resync_max = MaxSector;
617         mddev->level = LEVEL_NONE;
618 }
619 EXPORT_SYMBOL_GPL(mddev_init);
620
621 static struct mddev * mddev_find(dev_t unit)
622 {
623         struct mddev *mddev, *new = NULL;
624
625         if (unit && MAJOR(unit) != MD_MAJOR)
626                 unit &= ~((1<<MdpMinorShift)-1);
627
628  retry:
629         spin_lock(&all_mddevs_lock);
630
631         if (unit) {
632                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
633                         if (mddev->unit == unit) {
634                                 mddev_get(mddev);
635                                 spin_unlock(&all_mddevs_lock);
636                                 kfree(new);
637                                 return mddev;
638                         }
639
640                 if (new) {
641                         list_add(&new->all_mddevs, &all_mddevs);
642                         spin_unlock(&all_mddevs_lock);
643                         new->hold_active = UNTIL_IOCTL;
644                         return new;
645                 }
646         } else if (new) {
647                 /* find an unused unit number */
648                 static int next_minor = 512;
649                 int start = next_minor;
650                 int is_free = 0;
651                 int dev = 0;
652                 while (!is_free) {
653                         dev = MKDEV(MD_MAJOR, next_minor);
654                         next_minor++;
655                         if (next_minor > MINORMASK)
656                                 next_minor = 0;
657                         if (next_minor == start) {
658                                 /* Oh dear, all in use. */
659                                 spin_unlock(&all_mddevs_lock);
660                                 kfree(new);
661                                 return NULL;
662                         }
663                                 
664                         is_free = 1;
665                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
666                                 if (mddev->unit == dev) {
667                                         is_free = 0;
668                                         break;
669                                 }
670                 }
671                 new->unit = dev;
672                 new->md_minor = MINOR(dev);
673                 new->hold_active = UNTIL_STOP;
674                 list_add(&new->all_mddevs, &all_mddevs);
675                 spin_unlock(&all_mddevs_lock);
676                 return new;
677         }
678         spin_unlock(&all_mddevs_lock);
679
680         new = kzalloc(sizeof(*new), GFP_KERNEL);
681         if (!new)
682                 return NULL;
683
684         new->unit = unit;
685         if (MAJOR(unit) == MD_MAJOR)
686                 new->md_minor = MINOR(unit);
687         else
688                 new->md_minor = MINOR(unit) >> MdpMinorShift;
689
690         mddev_init(new);
691
692         goto retry;
693 }
694
695 static inline int mddev_lock(struct mddev * mddev)
696 {
697         return mutex_lock_interruptible(&mddev->reconfig_mutex);
698 }
699
700 static inline int mddev_is_locked(struct mddev *mddev)
701 {
702         return mutex_is_locked(&mddev->reconfig_mutex);
703 }
704
705 static inline int mddev_trylock(struct mddev * mddev)
706 {
707         return mutex_trylock(&mddev->reconfig_mutex);
708 }
709
710 static struct attribute_group md_redundancy_group;
711
712 static void mddev_unlock(struct mddev * mddev)
713 {
714         if (mddev->to_remove) {
715                 /* These cannot be removed under reconfig_mutex as
716                  * an access to the files will try to take reconfig_mutex
717                  * while holding the file unremovable, which leads to
718                  * a deadlock.
719                  * So hold set sysfs_active while the remove in happeing,
720                  * and anything else which might set ->to_remove or my
721                  * otherwise change the sysfs namespace will fail with
722                  * -EBUSY if sysfs_active is still set.
723                  * We set sysfs_active under reconfig_mutex and elsewhere
724                  * test it under the same mutex to ensure its correct value
725                  * is seen.
726                  */
727                 struct attribute_group *to_remove = mddev->to_remove;
728                 mddev->to_remove = NULL;
729                 mddev->sysfs_active = 1;
730                 mutex_unlock(&mddev->reconfig_mutex);
731
732                 if (mddev->kobj.sd) {
733                         if (to_remove != &md_redundancy_group)
734                                 sysfs_remove_group(&mddev->kobj, to_remove);
735                         if (mddev->pers == NULL ||
736                             mddev->pers->sync_request == NULL) {
737                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
738                                 if (mddev->sysfs_action)
739                                         sysfs_put(mddev->sysfs_action);
740                                 mddev->sysfs_action = NULL;
741                         }
742                 }
743                 mddev->sysfs_active = 0;
744         } else
745                 mutex_unlock(&mddev->reconfig_mutex);
746
747         /* As we've dropped the mutex we need a spinlock to
748          * make sure the thread doesn't disappear
749          */
750         spin_lock(&pers_lock);
751         md_wakeup_thread(mddev->thread);
752         spin_unlock(&pers_lock);
753 }
754
755 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
756 {
757         struct md_rdev *rdev;
758
759         list_for_each_entry(rdev, &mddev->disks, same_set)
760                 if (rdev->desc_nr == nr)
761                         return rdev;
762
763         return NULL;
764 }
765
766 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
767 {
768         struct md_rdev *rdev;
769
770         list_for_each_entry(rdev, &mddev->disks, same_set)
771                 if (rdev->bdev->bd_dev == dev)
772                         return rdev;
773
774         return NULL;
775 }
776
777 static struct md_personality *find_pers(int level, char *clevel)
778 {
779         struct md_personality *pers;
780         list_for_each_entry(pers, &pers_list, list) {
781                 if (level != LEVEL_NONE && pers->level == level)
782                         return pers;
783                 if (strcmp(pers->name, clevel)==0)
784                         return pers;
785         }
786         return NULL;
787 }
788
789 /* return the offset of the super block in 512byte sectors */
790 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
791 {
792         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
793         return MD_NEW_SIZE_SECTORS(num_sectors);
794 }
795
796 static int alloc_disk_sb(struct md_rdev * rdev)
797 {
798         if (rdev->sb_page)
799                 MD_BUG();
800
801         rdev->sb_page = alloc_page(GFP_KERNEL);
802         if (!rdev->sb_page) {
803                 printk(KERN_ALERT "md: out of memory.\n");
804                 return -ENOMEM;
805         }
806
807         return 0;
808 }
809
810 static void free_disk_sb(struct md_rdev * rdev)
811 {
812         if (rdev->sb_page) {
813                 put_page(rdev->sb_page);
814                 rdev->sb_loaded = 0;
815                 rdev->sb_page = NULL;
816                 rdev->sb_start = 0;
817                 rdev->sectors = 0;
818         }
819         if (rdev->bb_page) {
820                 put_page(rdev->bb_page);
821                 rdev->bb_page = NULL;
822         }
823 }
824
825
826 static void super_written(struct bio *bio, int error)
827 {
828         struct md_rdev *rdev = bio->bi_private;
829         struct mddev *mddev = rdev->mddev;
830
831         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
832                 printk("md: super_written gets error=%d, uptodate=%d\n",
833                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
834                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
835                 md_error(mddev, rdev);
836         }
837
838         if (atomic_dec_and_test(&mddev->pending_writes))
839                 wake_up(&mddev->sb_wait);
840         bio_put(bio);
841 }
842
843 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
844                    sector_t sector, int size, struct page *page)
845 {
846         /* write first size bytes of page to sector of rdev
847          * Increment mddev->pending_writes before returning
848          * and decrement it on completion, waking up sb_wait
849          * if zero is reached.
850          * If an error occurred, call md_error
851          */
852         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
853
854         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
855         bio->bi_sector = sector;
856         bio_add_page(bio, page, size, 0);
857         bio->bi_private = rdev;
858         bio->bi_end_io = super_written;
859
860         atomic_inc(&mddev->pending_writes);
861         submit_bio(WRITE_FLUSH_FUA, bio);
862 }
863
864 void md_super_wait(struct mddev *mddev)
865 {
866         /* wait for all superblock writes that were scheduled to complete */
867         DEFINE_WAIT(wq);
868         for(;;) {
869                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
870                 if (atomic_read(&mddev->pending_writes)==0)
871                         break;
872                 schedule();
873         }
874         finish_wait(&mddev->sb_wait, &wq);
875 }
876
877 static void bi_complete(struct bio *bio, int error)
878 {
879         complete((struct completion*)bio->bi_private);
880 }
881
882 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
883                  struct page *page, int rw, bool metadata_op)
884 {
885         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
886         struct completion event;
887         int ret;
888
889         rw |= REQ_SYNC;
890
891         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
892                 rdev->meta_bdev : rdev->bdev;
893         if (metadata_op)
894                 bio->bi_sector = sector + rdev->sb_start;
895         else
896                 bio->bi_sector = sector + rdev->data_offset;
897         bio_add_page(bio, page, size, 0);
898         init_completion(&event);
899         bio->bi_private = &event;
900         bio->bi_end_io = bi_complete;
901         submit_bio(rw, bio);
902         wait_for_completion(&event);
903
904         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
905         bio_put(bio);
906         return ret;
907 }
908 EXPORT_SYMBOL_GPL(sync_page_io);
909
910 static int read_disk_sb(struct md_rdev * rdev, int size)
911 {
912         char b[BDEVNAME_SIZE];
913         if (!rdev->sb_page) {
914                 MD_BUG();
915                 return -EINVAL;
916         }
917         if (rdev->sb_loaded)
918                 return 0;
919
920
921         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
922                 goto fail;
923         rdev->sb_loaded = 1;
924         return 0;
925
926 fail:
927         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
928                 bdevname(rdev->bdev,b));
929         return -EINVAL;
930 }
931
932 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
933 {
934         return  sb1->set_uuid0 == sb2->set_uuid0 &&
935                 sb1->set_uuid1 == sb2->set_uuid1 &&
936                 sb1->set_uuid2 == sb2->set_uuid2 &&
937                 sb1->set_uuid3 == sb2->set_uuid3;
938 }
939
940 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
941 {
942         int ret;
943         mdp_super_t *tmp1, *tmp2;
944
945         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
946         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
947
948         if (!tmp1 || !tmp2) {
949                 ret = 0;
950                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
951                 goto abort;
952         }
953
954         *tmp1 = *sb1;
955         *tmp2 = *sb2;
956
957         /*
958          * nr_disks is not constant
959          */
960         tmp1->nr_disks = 0;
961         tmp2->nr_disks = 0;
962
963         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
964 abort:
965         kfree(tmp1);
966         kfree(tmp2);
967         return ret;
968 }
969
970
971 static u32 md_csum_fold(u32 csum)
972 {
973         csum = (csum & 0xffff) + (csum >> 16);
974         return (csum & 0xffff) + (csum >> 16);
975 }
976
977 static unsigned int calc_sb_csum(mdp_super_t * sb)
978 {
979         u64 newcsum = 0;
980         u32 *sb32 = (u32*)sb;
981         int i;
982         unsigned int disk_csum, csum;
983
984         disk_csum = sb->sb_csum;
985         sb->sb_csum = 0;
986
987         for (i = 0; i < MD_SB_BYTES/4 ; i++)
988                 newcsum += sb32[i];
989         csum = (newcsum & 0xffffffff) + (newcsum>>32);
990
991
992 #ifdef CONFIG_ALPHA
993         /* This used to use csum_partial, which was wrong for several
994          * reasons including that different results are returned on
995          * different architectures.  It isn't critical that we get exactly
996          * the same return value as before (we always csum_fold before
997          * testing, and that removes any differences).  However as we
998          * know that csum_partial always returned a 16bit value on
999          * alphas, do a fold to maximise conformity to previous behaviour.
1000          */
1001         sb->sb_csum = md_csum_fold(disk_csum);
1002 #else
1003         sb->sb_csum = disk_csum;
1004 #endif
1005         return csum;
1006 }
1007
1008
1009 /*
1010  * Handle superblock details.
1011  * We want to be able to handle multiple superblock formats
1012  * so we have a common interface to them all, and an array of
1013  * different handlers.
1014  * We rely on user-space to write the initial superblock, and support
1015  * reading and updating of superblocks.
1016  * Interface methods are:
1017  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1018  *      loads and validates a superblock on dev.
1019  *      if refdev != NULL, compare superblocks on both devices
1020  *    Return:
1021  *      0 - dev has a superblock that is compatible with refdev
1022  *      1 - dev has a superblock that is compatible and newer than refdev
1023  *          so dev should be used as the refdev in future
1024  *     -EINVAL superblock incompatible or invalid
1025  *     -othererror e.g. -EIO
1026  *
1027  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1028  *      Verify that dev is acceptable into mddev.
1029  *       The first time, mddev->raid_disks will be 0, and data from
1030  *       dev should be merged in.  Subsequent calls check that dev
1031  *       is new enough.  Return 0 or -EINVAL
1032  *
1033  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1034  *     Update the superblock for rdev with data in mddev
1035  *     This does not write to disc.
1036  *
1037  */
1038
1039 struct super_type  {
1040         char                *name;
1041         struct module       *owner;
1042         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1043                                           int minor_version);
1044         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1045         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1046         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1047                                                 sector_t num_sectors);
1048 };
1049
1050 /*
1051  * Check that the given mddev has no bitmap.
1052  *
1053  * This function is called from the run method of all personalities that do not
1054  * support bitmaps. It prints an error message and returns non-zero if mddev
1055  * has a bitmap. Otherwise, it returns 0.
1056  *
1057  */
1058 int md_check_no_bitmap(struct mddev *mddev)
1059 {
1060         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1061                 return 0;
1062         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1063                 mdname(mddev), mddev->pers->name);
1064         return 1;
1065 }
1066 EXPORT_SYMBOL(md_check_no_bitmap);
1067
1068 /*
1069  * load_super for 0.90.0 
1070  */
1071 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1072 {
1073         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1074         mdp_super_t *sb;
1075         int ret;
1076
1077         /*
1078          * Calculate the position of the superblock (512byte sectors),
1079          * it's at the end of the disk.
1080          *
1081          * It also happens to be a multiple of 4Kb.
1082          */
1083         rdev->sb_start = calc_dev_sboffset(rdev);
1084
1085         ret = read_disk_sb(rdev, MD_SB_BYTES);
1086         if (ret) return ret;
1087
1088         ret = -EINVAL;
1089
1090         bdevname(rdev->bdev, b);
1091         sb = page_address(rdev->sb_page);
1092
1093         if (sb->md_magic != MD_SB_MAGIC) {
1094                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1095                        b);
1096                 goto abort;
1097         }
1098
1099         if (sb->major_version != 0 ||
1100             sb->minor_version < 90 ||
1101             sb->minor_version > 91) {
1102                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1103                         sb->major_version, sb->minor_version,
1104                         b);
1105                 goto abort;
1106         }
1107
1108         if (sb->raid_disks <= 0)
1109                 goto abort;
1110
1111         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1112                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1113                         b);
1114                 goto abort;
1115         }
1116
1117         rdev->preferred_minor = sb->md_minor;
1118         rdev->data_offset = 0;
1119         rdev->sb_size = MD_SB_BYTES;
1120         rdev->badblocks.shift = -1;
1121
1122         if (sb->level == LEVEL_MULTIPATH)
1123                 rdev->desc_nr = -1;
1124         else
1125                 rdev->desc_nr = sb->this_disk.number;
1126
1127         if (!refdev) {
1128                 ret = 1;
1129         } else {
1130                 __u64 ev1, ev2;
1131                 mdp_super_t *refsb = page_address(refdev->sb_page);
1132                 if (!uuid_equal(refsb, sb)) {
1133                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1134                                 b, bdevname(refdev->bdev,b2));
1135                         goto abort;
1136                 }
1137                 if (!sb_equal(refsb, sb)) {
1138                         printk(KERN_WARNING "md: %s has same UUID"
1139                                " but different superblock to %s\n",
1140                                b, bdevname(refdev->bdev, b2));
1141                         goto abort;
1142                 }
1143                 ev1 = md_event(sb);
1144                 ev2 = md_event(refsb);
1145                 if (ev1 > ev2)
1146                         ret = 1;
1147                 else 
1148                         ret = 0;
1149         }
1150         rdev->sectors = rdev->sb_start;
1151         /* Limit to 4TB as metadata cannot record more than that.
1152          * (not needed for Linear and RAID0 as metadata doesn't
1153          * record this size)
1154          */
1155         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1156                 rdev->sectors = (2ULL << 32) - 2;
1157
1158         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1159                 /* "this cannot possibly happen" ... */
1160                 ret = -EINVAL;
1161
1162  abort:
1163         return ret;
1164 }
1165
1166 /*
1167  * validate_super for 0.90.0
1168  */
1169 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1170 {
1171         mdp_disk_t *desc;
1172         mdp_super_t *sb = page_address(rdev->sb_page);
1173         __u64 ev1 = md_event(sb);
1174
1175         rdev->raid_disk = -1;
1176         clear_bit(Faulty, &rdev->flags);
1177         clear_bit(In_sync, &rdev->flags);
1178         clear_bit(WriteMostly, &rdev->flags);
1179
1180         if (mddev->raid_disks == 0) {
1181                 mddev->major_version = 0;
1182                 mddev->minor_version = sb->minor_version;
1183                 mddev->patch_version = sb->patch_version;
1184                 mddev->external = 0;
1185                 mddev->chunk_sectors = sb->chunk_size >> 9;
1186                 mddev->ctime = sb->ctime;
1187                 mddev->utime = sb->utime;
1188                 mddev->level = sb->level;
1189                 mddev->clevel[0] = 0;
1190                 mddev->layout = sb->layout;
1191                 mddev->raid_disks = sb->raid_disks;
1192                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1193                 mddev->events = ev1;
1194                 mddev->bitmap_info.offset = 0;
1195                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1196
1197                 if (mddev->minor_version >= 91) {
1198                         mddev->reshape_position = sb->reshape_position;
1199                         mddev->delta_disks = sb->delta_disks;
1200                         mddev->new_level = sb->new_level;
1201                         mddev->new_layout = sb->new_layout;
1202                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1203                 } else {
1204                         mddev->reshape_position = MaxSector;
1205                         mddev->delta_disks = 0;
1206                         mddev->new_level = mddev->level;
1207                         mddev->new_layout = mddev->layout;
1208                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1209                 }
1210
1211                 if (sb->state & (1<<MD_SB_CLEAN))
1212                         mddev->recovery_cp = MaxSector;
1213                 else {
1214                         if (sb->events_hi == sb->cp_events_hi && 
1215                                 sb->events_lo == sb->cp_events_lo) {
1216                                 mddev->recovery_cp = sb->recovery_cp;
1217                         } else
1218                                 mddev->recovery_cp = 0;
1219                 }
1220
1221                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1222                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1223                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1224                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1225
1226                 mddev->max_disks = MD_SB_DISKS;
1227
1228                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1229                     mddev->bitmap_info.file == NULL)
1230                         mddev->bitmap_info.offset =
1231                                 mddev->bitmap_info.default_offset;
1232
1233         } else if (mddev->pers == NULL) {
1234                 /* Insist on good event counter while assembling, except
1235                  * for spares (which don't need an event count) */
1236                 ++ev1;
1237                 if (sb->disks[rdev->desc_nr].state & (
1238                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1239                         if (ev1 < mddev->events) 
1240                                 return -EINVAL;
1241         } else if (mddev->bitmap) {
1242                 /* if adding to array with a bitmap, then we can accept an
1243                  * older device ... but not too old.
1244                  */
1245                 if (ev1 < mddev->bitmap->events_cleared)
1246                         return 0;
1247         } else {
1248                 if (ev1 < mddev->events)
1249                         /* just a hot-add of a new device, leave raid_disk at -1 */
1250                         return 0;
1251         }
1252
1253         if (mddev->level != LEVEL_MULTIPATH) {
1254                 desc = sb->disks + rdev->desc_nr;
1255
1256                 if (desc->state & (1<<MD_DISK_FAULTY))
1257                         set_bit(Faulty, &rdev->flags);
1258                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1259                             desc->raid_disk < mddev->raid_disks */) {
1260                         set_bit(In_sync, &rdev->flags);
1261                         rdev->raid_disk = desc->raid_disk;
1262                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1263                         /* active but not in sync implies recovery up to
1264                          * reshape position.  We don't know exactly where
1265                          * that is, so set to zero for now */
1266                         if (mddev->minor_version >= 91) {
1267                                 rdev->recovery_offset = 0;
1268                                 rdev->raid_disk = desc->raid_disk;
1269                         }
1270                 }
1271                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1272                         set_bit(WriteMostly, &rdev->flags);
1273         } else /* MULTIPATH are always insync */
1274                 set_bit(In_sync, &rdev->flags);
1275         return 0;
1276 }
1277
1278 /*
1279  * sync_super for 0.90.0
1280  */
1281 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1282 {
1283         mdp_super_t *sb;
1284         struct md_rdev *rdev2;
1285         int next_spare = mddev->raid_disks;
1286
1287
1288         /* make rdev->sb match mddev data..
1289          *
1290          * 1/ zero out disks
1291          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1292          * 3/ any empty disks < next_spare become removed
1293          *
1294          * disks[0] gets initialised to REMOVED because
1295          * we cannot be sure from other fields if it has
1296          * been initialised or not.
1297          */
1298         int i;
1299         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1300
1301         rdev->sb_size = MD_SB_BYTES;
1302
1303         sb = page_address(rdev->sb_page);
1304
1305         memset(sb, 0, sizeof(*sb));
1306
1307         sb->md_magic = MD_SB_MAGIC;
1308         sb->major_version = mddev->major_version;
1309         sb->patch_version = mddev->patch_version;
1310         sb->gvalid_words  = 0; /* ignored */
1311         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1312         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1313         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1314         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1315
1316         sb->ctime = mddev->ctime;
1317         sb->level = mddev->level;
1318         sb->size = mddev->dev_sectors / 2;
1319         sb->raid_disks = mddev->raid_disks;
1320         sb->md_minor = mddev->md_minor;
1321         sb->not_persistent = 0;
1322         sb->utime = mddev->utime;
1323         sb->state = 0;
1324         sb->events_hi = (mddev->events>>32);
1325         sb->events_lo = (u32)mddev->events;
1326
1327         if (mddev->reshape_position == MaxSector)
1328                 sb->minor_version = 90;
1329         else {
1330                 sb->minor_version = 91;
1331                 sb->reshape_position = mddev->reshape_position;
1332                 sb->new_level = mddev->new_level;
1333                 sb->delta_disks = mddev->delta_disks;
1334                 sb->new_layout = mddev->new_layout;
1335                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1336         }
1337         mddev->minor_version = sb->minor_version;
1338         if (mddev->in_sync)
1339         {
1340                 sb->recovery_cp = mddev->recovery_cp;
1341                 sb->cp_events_hi = (mddev->events>>32);
1342                 sb->cp_events_lo = (u32)mddev->events;
1343                 if (mddev->recovery_cp == MaxSector)
1344                         sb->state = (1<< MD_SB_CLEAN);
1345         } else
1346                 sb->recovery_cp = 0;
1347
1348         sb->layout = mddev->layout;
1349         sb->chunk_size = mddev->chunk_sectors << 9;
1350
1351         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1352                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1353
1354         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1355         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1356                 mdp_disk_t *d;
1357                 int desc_nr;
1358                 int is_active = test_bit(In_sync, &rdev2->flags);
1359
1360                 if (rdev2->raid_disk >= 0 &&
1361                     sb->minor_version >= 91)
1362                         /* we have nowhere to store the recovery_offset,
1363                          * but if it is not below the reshape_position,
1364                          * we can piggy-back on that.
1365                          */
1366                         is_active = 1;
1367                 if (rdev2->raid_disk < 0 ||
1368                     test_bit(Faulty, &rdev2->flags))
1369                         is_active = 0;
1370                 if (is_active)
1371                         desc_nr = rdev2->raid_disk;
1372                 else
1373                         desc_nr = next_spare++;
1374                 rdev2->desc_nr = desc_nr;
1375                 d = &sb->disks[rdev2->desc_nr];
1376                 nr_disks++;
1377                 d->number = rdev2->desc_nr;
1378                 d->major = MAJOR(rdev2->bdev->bd_dev);
1379                 d->minor = MINOR(rdev2->bdev->bd_dev);
1380                 if (is_active)
1381                         d->raid_disk = rdev2->raid_disk;
1382                 else
1383                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1384                 if (test_bit(Faulty, &rdev2->flags))
1385                         d->state = (1<<MD_DISK_FAULTY);
1386                 else if (is_active) {
1387                         d->state = (1<<MD_DISK_ACTIVE);
1388                         if (test_bit(In_sync, &rdev2->flags))
1389                                 d->state |= (1<<MD_DISK_SYNC);
1390                         active++;
1391                         working++;
1392                 } else {
1393                         d->state = 0;
1394                         spare++;
1395                         working++;
1396                 }
1397                 if (test_bit(WriteMostly, &rdev2->flags))
1398                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1399         }
1400         /* now set the "removed" and "faulty" bits on any missing devices */
1401         for (i=0 ; i < mddev->raid_disks ; i++) {
1402                 mdp_disk_t *d = &sb->disks[i];
1403                 if (d->state == 0 && d->number == 0) {
1404                         d->number = i;
1405                         d->raid_disk = i;
1406                         d->state = (1<<MD_DISK_REMOVED);
1407                         d->state |= (1<<MD_DISK_FAULTY);
1408                         failed++;
1409                 }
1410         }
1411         sb->nr_disks = nr_disks;
1412         sb->active_disks = active;
1413         sb->working_disks = working;
1414         sb->failed_disks = failed;
1415         sb->spare_disks = spare;
1416
1417         sb->this_disk = sb->disks[rdev->desc_nr];
1418         sb->sb_csum = calc_sb_csum(sb);
1419 }
1420
1421 /*
1422  * rdev_size_change for 0.90.0
1423  */
1424 static unsigned long long
1425 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1426 {
1427         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1428                 return 0; /* component must fit device */
1429         if (rdev->mddev->bitmap_info.offset)
1430                 return 0; /* can't move bitmap */
1431         rdev->sb_start = calc_dev_sboffset(rdev);
1432         if (!num_sectors || num_sectors > rdev->sb_start)
1433                 num_sectors = rdev->sb_start;
1434         /* Limit to 4TB as metadata cannot record more than that.
1435          * 4TB == 2^32 KB, or 2*2^32 sectors.
1436          */
1437         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1438                 num_sectors = (2ULL << 32) - 2;
1439         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1440                        rdev->sb_page);
1441         md_super_wait(rdev->mddev);
1442         return num_sectors;
1443 }
1444
1445
1446 /*
1447  * version 1 superblock
1448  */
1449
1450 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1451 {
1452         __le32 disk_csum;
1453         u32 csum;
1454         unsigned long long newcsum;
1455         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1456         __le32 *isuper = (__le32*)sb;
1457         int i;
1458
1459         disk_csum = sb->sb_csum;
1460         sb->sb_csum = 0;
1461         newcsum = 0;
1462         for (i=0; size>=4; size -= 4 )
1463                 newcsum += le32_to_cpu(*isuper++);
1464
1465         if (size == 2)
1466                 newcsum += le16_to_cpu(*(__le16*) isuper);
1467
1468         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1469         sb->sb_csum = disk_csum;
1470         return cpu_to_le32(csum);
1471 }
1472
1473 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1474                             int acknowledged);
1475 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1476 {
1477         struct mdp_superblock_1 *sb;
1478         int ret;
1479         sector_t sb_start;
1480         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1481         int bmask;
1482
1483         /*
1484          * Calculate the position of the superblock in 512byte sectors.
1485          * It is always aligned to a 4K boundary and
1486          * depeding on minor_version, it can be:
1487          * 0: At least 8K, but less than 12K, from end of device
1488          * 1: At start of device
1489          * 2: 4K from start of device.
1490          */
1491         switch(minor_version) {
1492         case 0:
1493                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1494                 sb_start -= 8*2;
1495                 sb_start &= ~(sector_t)(4*2-1);
1496                 break;
1497         case 1:
1498                 sb_start = 0;
1499                 break;
1500         case 2:
1501                 sb_start = 8;
1502                 break;
1503         default:
1504                 return -EINVAL;
1505         }
1506         rdev->sb_start = sb_start;
1507
1508         /* superblock is rarely larger than 1K, but it can be larger,
1509          * and it is safe to read 4k, so we do that
1510          */
1511         ret = read_disk_sb(rdev, 4096);
1512         if (ret) return ret;
1513
1514
1515         sb = page_address(rdev->sb_page);
1516
1517         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1518             sb->major_version != cpu_to_le32(1) ||
1519             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1520             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1521             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1522                 return -EINVAL;
1523
1524         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1525                 printk("md: invalid superblock checksum on %s\n",
1526                         bdevname(rdev->bdev,b));
1527                 return -EINVAL;
1528         }
1529         if (le64_to_cpu(sb->data_size) < 10) {
1530                 printk("md: data_size too small on %s\n",
1531                        bdevname(rdev->bdev,b));
1532                 return -EINVAL;
1533         }
1534
1535         rdev->preferred_minor = 0xffff;
1536         rdev->data_offset = le64_to_cpu(sb->data_offset);
1537         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1538
1539         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1540         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1541         if (rdev->sb_size & bmask)
1542                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1543
1544         if (minor_version
1545             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1546                 return -EINVAL;
1547
1548         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1549                 rdev->desc_nr = -1;
1550         else
1551                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1552
1553         if (!rdev->bb_page) {
1554                 rdev->bb_page = alloc_page(GFP_KERNEL);
1555                 if (!rdev->bb_page)
1556                         return -ENOMEM;
1557         }
1558         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1559             rdev->badblocks.count == 0) {
1560                 /* need to load the bad block list.
1561                  * Currently we limit it to one page.
1562                  */
1563                 s32 offset;
1564                 sector_t bb_sector;
1565                 u64 *bbp;
1566                 int i;
1567                 int sectors = le16_to_cpu(sb->bblog_size);
1568                 if (sectors > (PAGE_SIZE / 512))
1569                         return -EINVAL;
1570                 offset = le32_to_cpu(sb->bblog_offset);
1571                 if (offset == 0)
1572                         return -EINVAL;
1573                 bb_sector = (long long)offset;
1574                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1575                                   rdev->bb_page, READ, true))
1576                         return -EIO;
1577                 bbp = (u64 *)page_address(rdev->bb_page);
1578                 rdev->badblocks.shift = sb->bblog_shift;
1579                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1580                         u64 bb = le64_to_cpu(*bbp);
1581                         int count = bb & (0x3ff);
1582                         u64 sector = bb >> 10;
1583                         sector <<= sb->bblog_shift;
1584                         count <<= sb->bblog_shift;
1585                         if (bb + 1 == 0)
1586                                 break;
1587                         if (md_set_badblocks(&rdev->badblocks,
1588                                              sector, count, 1) == 0)
1589                                 return -EINVAL;
1590                 }
1591         } else if (sb->bblog_offset != 0)
1592                 rdev->badblocks.shift = 0;
1593
1594         if (!refdev) {
1595                 ret = 1;
1596         } else {
1597                 __u64 ev1, ev2;
1598                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1599
1600                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1601                     sb->level != refsb->level ||
1602                     sb->layout != refsb->layout ||
1603                     sb->chunksize != refsb->chunksize) {
1604                         printk(KERN_WARNING "md: %s has strangely different"
1605                                 " superblock to %s\n",
1606                                 bdevname(rdev->bdev,b),
1607                                 bdevname(refdev->bdev,b2));
1608                         return -EINVAL;
1609                 }
1610                 ev1 = le64_to_cpu(sb->events);
1611                 ev2 = le64_to_cpu(refsb->events);
1612
1613                 if (ev1 > ev2)
1614                         ret = 1;
1615                 else
1616                         ret = 0;
1617         }
1618         if (minor_version)
1619                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1620                         le64_to_cpu(sb->data_offset);
1621         else
1622                 rdev->sectors = rdev->sb_start;
1623         if (rdev->sectors < le64_to_cpu(sb->data_size))
1624                 return -EINVAL;
1625         rdev->sectors = le64_to_cpu(sb->data_size);
1626         if (le64_to_cpu(sb->size) > rdev->sectors)
1627                 return -EINVAL;
1628         return ret;
1629 }
1630
1631 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1632 {
1633         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1634         __u64 ev1 = le64_to_cpu(sb->events);
1635
1636         rdev->raid_disk = -1;
1637         clear_bit(Faulty, &rdev->flags);
1638         clear_bit(In_sync, &rdev->flags);
1639         clear_bit(WriteMostly, &rdev->flags);
1640
1641         if (mddev->raid_disks == 0) {
1642                 mddev->major_version = 1;
1643                 mddev->patch_version = 0;
1644                 mddev->external = 0;
1645                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1646                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1647                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1648                 mddev->level = le32_to_cpu(sb->level);
1649                 mddev->clevel[0] = 0;
1650                 mddev->layout = le32_to_cpu(sb->layout);
1651                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1652                 mddev->dev_sectors = le64_to_cpu(sb->size);
1653                 mddev->events = ev1;
1654                 mddev->bitmap_info.offset = 0;
1655                 mddev->bitmap_info.default_offset = 1024 >> 9;
1656                 
1657                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1658                 memcpy(mddev->uuid, sb->set_uuid, 16);
1659
1660                 mddev->max_disks =  (4096-256)/2;
1661
1662                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1663                     mddev->bitmap_info.file == NULL )
1664                         mddev->bitmap_info.offset =
1665                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1666
1667                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1668                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1669                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1670                         mddev->new_level = le32_to_cpu(sb->new_level);
1671                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1672                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1673                 } else {
1674                         mddev->reshape_position = MaxSector;
1675                         mddev->delta_disks = 0;
1676                         mddev->new_level = mddev->level;
1677                         mddev->new_layout = mddev->layout;
1678                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1679                 }
1680
1681         } else if (mddev->pers == NULL) {
1682                 /* Insist of good event counter while assembling, except for
1683                  * spares (which don't need an event count) */
1684                 ++ev1;
1685                 if (rdev->desc_nr >= 0 &&
1686                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1687                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1688                         if (ev1 < mddev->events)
1689                                 return -EINVAL;
1690         } else if (mddev->bitmap) {
1691                 /* If adding to array with a bitmap, then we can accept an
1692                  * older device, but not too old.
1693                  */
1694                 if (ev1 < mddev->bitmap->events_cleared)
1695                         return 0;
1696         } else {
1697                 if (ev1 < mddev->events)
1698                         /* just a hot-add of a new device, leave raid_disk at -1 */
1699                         return 0;
1700         }
1701         if (mddev->level != LEVEL_MULTIPATH) {
1702                 int role;
1703                 if (rdev->desc_nr < 0 ||
1704                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1705                         role = 0xffff;
1706                         rdev->desc_nr = -1;
1707                 } else
1708                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1709                 switch(role) {
1710                 case 0xffff: /* spare */
1711                         break;
1712                 case 0xfffe: /* faulty */
1713                         set_bit(Faulty, &rdev->flags);
1714                         break;
1715                 default:
1716                         if ((le32_to_cpu(sb->feature_map) &
1717                              MD_FEATURE_RECOVERY_OFFSET))
1718                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1719                         else
1720                                 set_bit(In_sync, &rdev->flags);
1721                         rdev->raid_disk = role;
1722                         break;
1723                 }
1724                 if (sb->devflags & WriteMostly1)
1725                         set_bit(WriteMostly, &rdev->flags);
1726         } else /* MULTIPATH are always insync */
1727                 set_bit(In_sync, &rdev->flags);
1728
1729         return 0;
1730 }
1731
1732 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1733 {
1734         struct mdp_superblock_1 *sb;
1735         struct md_rdev *rdev2;
1736         int max_dev, i;
1737         /* make rdev->sb match mddev and rdev data. */
1738
1739         sb = page_address(rdev->sb_page);
1740
1741         sb->feature_map = 0;
1742         sb->pad0 = 0;
1743         sb->recovery_offset = cpu_to_le64(0);
1744         memset(sb->pad1, 0, sizeof(sb->pad1));
1745         memset(sb->pad3, 0, sizeof(sb->pad3));
1746
1747         sb->utime = cpu_to_le64((__u64)mddev->utime);
1748         sb->events = cpu_to_le64(mddev->events);
1749         if (mddev->in_sync)
1750                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1751         else
1752                 sb->resync_offset = cpu_to_le64(0);
1753
1754         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1755
1756         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1757         sb->size = cpu_to_le64(mddev->dev_sectors);
1758         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1759         sb->level = cpu_to_le32(mddev->level);
1760         sb->layout = cpu_to_le32(mddev->layout);
1761
1762         if (test_bit(WriteMostly, &rdev->flags))
1763                 sb->devflags |= WriteMostly1;
1764         else
1765                 sb->devflags &= ~WriteMostly1;
1766
1767         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1768                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1769                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1770         }
1771
1772         if (rdev->raid_disk >= 0 &&
1773             !test_bit(In_sync, &rdev->flags)) {
1774                 sb->feature_map |=
1775                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1776                 sb->recovery_offset =
1777                         cpu_to_le64(rdev->recovery_offset);
1778         }
1779
1780         if (mddev->reshape_position != MaxSector) {
1781                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1782                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1783                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1784                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1785                 sb->new_level = cpu_to_le32(mddev->new_level);
1786                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1787         }
1788
1789         if (rdev->badblocks.count == 0)
1790                 /* Nothing to do for bad blocks*/ ;
1791         else if (sb->bblog_offset == 0)
1792                 /* Cannot record bad blocks on this device */
1793                 md_error(mddev, rdev);
1794         else {
1795                 struct badblocks *bb = &rdev->badblocks;
1796                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1797                 u64 *p = bb->page;
1798                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1799                 if (bb->changed) {
1800                         unsigned seq;
1801
1802 retry:
1803                         seq = read_seqbegin(&bb->lock);
1804
1805                         memset(bbp, 0xff, PAGE_SIZE);
1806
1807                         for (i = 0 ; i < bb->count ; i++) {
1808                                 u64 internal_bb = p[i];
1809                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1810                                                 | BB_LEN(internal_bb));
1811                                 bbp[i] = cpu_to_le64(store_bb);
1812                         }
1813                         bb->changed = 0;
1814                         if (read_seqretry(&bb->lock, seq))
1815                                 goto retry;
1816
1817                         bb->sector = (rdev->sb_start +
1818                                       (int)le32_to_cpu(sb->bblog_offset));
1819                         bb->size = le16_to_cpu(sb->bblog_size);
1820                 }
1821         }
1822
1823         max_dev = 0;
1824         list_for_each_entry(rdev2, &mddev->disks, same_set)
1825                 if (rdev2->desc_nr+1 > max_dev)
1826                         max_dev = rdev2->desc_nr+1;
1827
1828         if (max_dev > le32_to_cpu(sb->max_dev)) {
1829                 int bmask;
1830                 sb->max_dev = cpu_to_le32(max_dev);
1831                 rdev->sb_size = max_dev * 2 + 256;
1832                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1833                 if (rdev->sb_size & bmask)
1834                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1835         } else
1836                 max_dev = le32_to_cpu(sb->max_dev);
1837
1838         for (i=0; i<max_dev;i++)
1839                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1840         
1841         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1842                 i = rdev2->desc_nr;
1843                 if (test_bit(Faulty, &rdev2->flags))
1844                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1845                 else if (test_bit(In_sync, &rdev2->flags))
1846                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1847                 else if (rdev2->raid_disk >= 0)
1848                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1849                 else
1850                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1851         }
1852
1853         sb->sb_csum = calc_sb_1_csum(sb);
1854 }
1855
1856 static unsigned long long
1857 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1858 {
1859         struct mdp_superblock_1 *sb;
1860         sector_t max_sectors;
1861         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1862                 return 0; /* component must fit device */
1863         if (rdev->sb_start < rdev->data_offset) {
1864                 /* minor versions 1 and 2; superblock before data */
1865                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1866                 max_sectors -= rdev->data_offset;
1867                 if (!num_sectors || num_sectors > max_sectors)
1868                         num_sectors = max_sectors;
1869         } else if (rdev->mddev->bitmap_info.offset) {
1870                 /* minor version 0 with bitmap we can't move */
1871                 return 0;
1872         } else {
1873                 /* minor version 0; superblock after data */
1874                 sector_t sb_start;
1875                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1876                 sb_start &= ~(sector_t)(4*2 - 1);
1877                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1878                 if (!num_sectors || num_sectors > max_sectors)
1879                         num_sectors = max_sectors;
1880                 rdev->sb_start = sb_start;
1881         }
1882         sb = page_address(rdev->sb_page);
1883         sb->data_size = cpu_to_le64(num_sectors);
1884         sb->super_offset = rdev->sb_start;
1885         sb->sb_csum = calc_sb_1_csum(sb);
1886         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1887                        rdev->sb_page);
1888         md_super_wait(rdev->mddev);
1889         return num_sectors;
1890 }
1891
1892 static struct super_type super_types[] = {
1893         [0] = {
1894                 .name   = "0.90.0",
1895                 .owner  = THIS_MODULE,
1896                 .load_super         = super_90_load,
1897                 .validate_super     = super_90_validate,
1898                 .sync_super         = super_90_sync,
1899                 .rdev_size_change   = super_90_rdev_size_change,
1900         },
1901         [1] = {
1902                 .name   = "md-1",
1903                 .owner  = THIS_MODULE,
1904                 .load_super         = super_1_load,
1905                 .validate_super     = super_1_validate,
1906                 .sync_super         = super_1_sync,
1907                 .rdev_size_change   = super_1_rdev_size_change,
1908         },
1909 };
1910
1911 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1912 {
1913         if (mddev->sync_super) {
1914                 mddev->sync_super(mddev, rdev);
1915                 return;
1916         }
1917
1918         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1919
1920         super_types[mddev->major_version].sync_super(mddev, rdev);
1921 }
1922
1923 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1924 {
1925         struct md_rdev *rdev, *rdev2;
1926
1927         rcu_read_lock();
1928         rdev_for_each_rcu(rdev, mddev1)
1929                 rdev_for_each_rcu(rdev2, mddev2)
1930                         if (rdev->bdev->bd_contains ==
1931                             rdev2->bdev->bd_contains) {
1932                                 rcu_read_unlock();
1933                                 return 1;
1934                         }
1935         rcu_read_unlock();
1936         return 0;
1937 }
1938
1939 static LIST_HEAD(pending_raid_disks);
1940
1941 /*
1942  * Try to register data integrity profile for an mddev
1943  *
1944  * This is called when an array is started and after a disk has been kicked
1945  * from the array. It only succeeds if all working and active component devices
1946  * are integrity capable with matching profiles.
1947  */
1948 int md_integrity_register(struct mddev *mddev)
1949 {
1950         struct md_rdev *rdev, *reference = NULL;
1951
1952         if (list_empty(&mddev->disks))
1953                 return 0; /* nothing to do */
1954         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1955                 return 0; /* shouldn't register, or already is */
1956         list_for_each_entry(rdev, &mddev->disks, same_set) {
1957                 /* skip spares and non-functional disks */
1958                 if (test_bit(Faulty, &rdev->flags))
1959                         continue;
1960                 if (rdev->raid_disk < 0)
1961                         continue;
1962                 if (!reference) {
1963                         /* Use the first rdev as the reference */
1964                         reference = rdev;
1965                         continue;
1966                 }
1967                 /* does this rdev's profile match the reference profile? */
1968                 if (blk_integrity_compare(reference->bdev->bd_disk,
1969                                 rdev->bdev->bd_disk) < 0)
1970                         return -EINVAL;
1971         }
1972         if (!reference || !bdev_get_integrity(reference->bdev))
1973                 return 0;
1974         /*
1975          * All component devices are integrity capable and have matching
1976          * profiles, register the common profile for the md device.
1977          */
1978         if (blk_integrity_register(mddev->gendisk,
1979                         bdev_get_integrity(reference->bdev)) != 0) {
1980                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1981                         mdname(mddev));
1982                 return -EINVAL;
1983         }
1984         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1985         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1986                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1987                        mdname(mddev));
1988                 return -EINVAL;
1989         }
1990         return 0;
1991 }
1992 EXPORT_SYMBOL(md_integrity_register);
1993
1994 /* Disable data integrity if non-capable/non-matching disk is being added */
1995 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1996 {
1997         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1998         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1999
2000         if (!bi_mddev) /* nothing to do */
2001                 return;
2002         if (rdev->raid_disk < 0) /* skip spares */
2003                 return;
2004         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2005                                              rdev->bdev->bd_disk) >= 0)
2006                 return;
2007         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2008         blk_integrity_unregister(mddev->gendisk);
2009 }
2010 EXPORT_SYMBOL(md_integrity_add_rdev);
2011
2012 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2013 {
2014         char b[BDEVNAME_SIZE];
2015         struct kobject *ko;
2016         char *s;
2017         int err;
2018
2019         if (rdev->mddev) {
2020                 MD_BUG();
2021                 return -EINVAL;
2022         }
2023
2024         /* prevent duplicates */
2025         if (find_rdev(mddev, rdev->bdev->bd_dev))
2026                 return -EEXIST;
2027
2028         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2029         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2030                         rdev->sectors < mddev->dev_sectors)) {
2031                 if (mddev->pers) {
2032                         /* Cannot change size, so fail
2033                          * If mddev->level <= 0, then we don't care
2034                          * about aligning sizes (e.g. linear)
2035                          */
2036                         if (mddev->level > 0)
2037                                 return -ENOSPC;
2038                 } else
2039                         mddev->dev_sectors = rdev->sectors;
2040         }
2041
2042         /* Verify rdev->desc_nr is unique.
2043          * If it is -1, assign a free number, else
2044          * check number is not in use
2045          */
2046         if (rdev->desc_nr < 0) {
2047                 int choice = 0;
2048                 if (mddev->pers) choice = mddev->raid_disks;
2049                 while (find_rdev_nr(mddev, choice))
2050                         choice++;
2051                 rdev->desc_nr = choice;
2052         } else {
2053                 if (find_rdev_nr(mddev, rdev->desc_nr))
2054                         return -EBUSY;
2055         }
2056         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2057                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2058                        mdname(mddev), mddev->max_disks);
2059                 return -EBUSY;
2060         }
2061         bdevname(rdev->bdev,b);
2062         while ( (s=strchr(b, '/')) != NULL)
2063                 *s = '!';
2064
2065         rdev->mddev = mddev;
2066         printk(KERN_INFO "md: bind<%s>\n", b);
2067
2068         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2069                 goto fail;
2070
2071         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2072         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2073                 /* failure here is OK */;
2074         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2075
2076         list_add_rcu(&rdev->same_set, &mddev->disks);
2077         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2078
2079         /* May as well allow recovery to be retried once */
2080         mddev->recovery_disabled++;
2081
2082         return 0;
2083
2084  fail:
2085         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2086                b, mdname(mddev));
2087         return err;
2088 }
2089
2090 static void md_delayed_delete(struct work_struct *ws)
2091 {
2092         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2093         kobject_del(&rdev->kobj);
2094         kobject_put(&rdev->kobj);
2095 }
2096
2097 static void unbind_rdev_from_array(struct md_rdev * rdev)
2098 {
2099         char b[BDEVNAME_SIZE];
2100         if (!rdev->mddev) {
2101                 MD_BUG();
2102                 return;
2103         }
2104         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2105         list_del_rcu(&rdev->same_set);
2106         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2107         rdev->mddev = NULL;
2108         sysfs_remove_link(&rdev->kobj, "block");
2109         sysfs_put(rdev->sysfs_state);
2110         rdev->sysfs_state = NULL;
2111         kfree(rdev->badblocks.page);
2112         rdev->badblocks.count = 0;
2113         rdev->badblocks.page = NULL;
2114         /* We need to delay this, otherwise we can deadlock when
2115          * writing to 'remove' to "dev/state".  We also need
2116          * to delay it due to rcu usage.
2117          */
2118         synchronize_rcu();
2119         INIT_WORK(&rdev->del_work, md_delayed_delete);
2120         kobject_get(&rdev->kobj);
2121         queue_work(md_misc_wq, &rdev->del_work);
2122 }
2123
2124 /*
2125  * prevent the device from being mounted, repartitioned or
2126  * otherwise reused by a RAID array (or any other kernel
2127  * subsystem), by bd_claiming the device.
2128  */
2129 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2130 {
2131         int err = 0;
2132         struct block_device *bdev;
2133         char b[BDEVNAME_SIZE];
2134
2135         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2136                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2137         if (IS_ERR(bdev)) {
2138                 printk(KERN_ERR "md: could not open %s.\n",
2139                         __bdevname(dev, b));
2140                 return PTR_ERR(bdev);
2141         }
2142         rdev->bdev = bdev;
2143         return err;
2144 }
2145
2146 static void unlock_rdev(struct md_rdev *rdev)
2147 {
2148         struct block_device *bdev = rdev->bdev;
2149         rdev->bdev = NULL;
2150         if (!bdev)
2151                 MD_BUG();
2152         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2153 }
2154
2155 void md_autodetect_dev(dev_t dev);
2156
2157 static void export_rdev(struct md_rdev * rdev)
2158 {
2159         char b[BDEVNAME_SIZE];
2160         printk(KERN_INFO "md: export_rdev(%s)\n",
2161                 bdevname(rdev->bdev,b));
2162         if (rdev->mddev)
2163                 MD_BUG();
2164         free_disk_sb(rdev);
2165 #ifndef MODULE
2166         if (test_bit(AutoDetected, &rdev->flags))
2167                 md_autodetect_dev(rdev->bdev->bd_dev);
2168 #endif
2169         unlock_rdev(rdev);
2170         kobject_put(&rdev->kobj);
2171 }
2172
2173 static void kick_rdev_from_array(struct md_rdev * rdev)
2174 {
2175         unbind_rdev_from_array(rdev);
2176         export_rdev(rdev);
2177 }
2178
2179 static void export_array(struct mddev *mddev)
2180 {
2181         struct md_rdev *rdev, *tmp;
2182
2183         rdev_for_each(rdev, tmp, mddev) {
2184                 if (!rdev->mddev) {
2185                         MD_BUG();
2186                         continue;
2187                 }
2188                 kick_rdev_from_array(rdev);
2189         }
2190         if (!list_empty(&mddev->disks))
2191                 MD_BUG();
2192         mddev->raid_disks = 0;
2193         mddev->major_version = 0;
2194 }
2195
2196 static void print_desc(mdp_disk_t *desc)
2197 {
2198         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2199                 desc->major,desc->minor,desc->raid_disk,desc->state);
2200 }
2201
2202 static void print_sb_90(mdp_super_t *sb)
2203 {
2204         int i;
2205
2206         printk(KERN_INFO 
2207                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2208                 sb->major_version, sb->minor_version, sb->patch_version,
2209                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2210                 sb->ctime);
2211         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2212                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2213                 sb->md_minor, sb->layout, sb->chunk_size);
2214         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2215                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2216                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2217                 sb->failed_disks, sb->spare_disks,
2218                 sb->sb_csum, (unsigned long)sb->events_lo);
2219
2220         printk(KERN_INFO);
2221         for (i = 0; i < MD_SB_DISKS; i++) {
2222                 mdp_disk_t *desc;
2223
2224                 desc = sb->disks + i;
2225                 if (desc->number || desc->major || desc->minor ||
2226                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2227                         printk("     D %2d: ", i);
2228                         print_desc(desc);
2229                 }
2230         }
2231         printk(KERN_INFO "md:     THIS: ");
2232         print_desc(&sb->this_disk);
2233 }
2234
2235 static void print_sb_1(struct mdp_superblock_1 *sb)
2236 {
2237         __u8 *uuid;
2238
2239         uuid = sb->set_uuid;
2240         printk(KERN_INFO
2241                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2242                "md:    Name: \"%s\" CT:%llu\n",
2243                 le32_to_cpu(sb->major_version),
2244                 le32_to_cpu(sb->feature_map),
2245                 uuid,
2246                 sb->set_name,
2247                 (unsigned long long)le64_to_cpu(sb->ctime)
2248                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2249
2250         uuid = sb->device_uuid;
2251         printk(KERN_INFO
2252                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2253                         " RO:%llu\n"
2254                "md:     Dev:%08x UUID: %pU\n"
2255                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2256                "md:         (MaxDev:%u) \n",
2257                 le32_to_cpu(sb->level),
2258                 (unsigned long long)le64_to_cpu(sb->size),
2259                 le32_to_cpu(sb->raid_disks),
2260                 le32_to_cpu(sb->layout),
2261                 le32_to_cpu(sb->chunksize),
2262                 (unsigned long long)le64_to_cpu(sb->data_offset),
2263                 (unsigned long long)le64_to_cpu(sb->data_size),
2264                 (unsigned long long)le64_to_cpu(sb->super_offset),
2265                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2266                 le32_to_cpu(sb->dev_number),
2267                 uuid,
2268                 sb->devflags,
2269                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2270                 (unsigned long long)le64_to_cpu(sb->events),
2271                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2272                 le32_to_cpu(sb->sb_csum),
2273                 le32_to_cpu(sb->max_dev)
2274                 );
2275 }
2276
2277 static void print_rdev(struct md_rdev *rdev, int major_version)
2278 {
2279         char b[BDEVNAME_SIZE];
2280         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2281                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2282                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2283                 rdev->desc_nr);
2284         if (rdev->sb_loaded) {
2285                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2286                 switch (major_version) {
2287                 case 0:
2288                         print_sb_90(page_address(rdev->sb_page));
2289                         break;
2290                 case 1:
2291                         print_sb_1(page_address(rdev->sb_page));
2292                         break;
2293                 }
2294         } else
2295                 printk(KERN_INFO "md: no rdev superblock!\n");
2296 }
2297
2298 static void md_print_devices(void)
2299 {
2300         struct list_head *tmp;
2301         struct md_rdev *rdev;
2302         struct mddev *mddev;
2303         char b[BDEVNAME_SIZE];
2304
2305         printk("\n");
2306         printk("md:     **********************************\n");
2307         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2308         printk("md:     **********************************\n");
2309         for_each_mddev(mddev, tmp) {
2310
2311                 if (mddev->bitmap)
2312                         bitmap_print_sb(mddev->bitmap);
2313                 else
2314                         printk("%s: ", mdname(mddev));
2315                 list_for_each_entry(rdev, &mddev->disks, same_set)
2316                         printk("<%s>", bdevname(rdev->bdev,b));
2317                 printk("\n");
2318
2319                 list_for_each_entry(rdev, &mddev->disks, same_set)
2320                         print_rdev(rdev, mddev->major_version);
2321         }
2322         printk("md:     **********************************\n");
2323         printk("\n");
2324 }
2325
2326
2327 static void sync_sbs(struct mddev * mddev, int nospares)
2328 {
2329         /* Update each superblock (in-memory image), but
2330          * if we are allowed to, skip spares which already
2331          * have the right event counter, or have one earlier
2332          * (which would mean they aren't being marked as dirty
2333          * with the rest of the array)
2334          */
2335         struct md_rdev *rdev;
2336         list_for_each_entry(rdev, &mddev->disks, same_set) {
2337                 if (rdev->sb_events == mddev->events ||
2338                     (nospares &&
2339                      rdev->raid_disk < 0 &&
2340                      rdev->sb_events+1 == mddev->events)) {
2341                         /* Don't update this superblock */
2342                         rdev->sb_loaded = 2;
2343                 } else {
2344                         sync_super(mddev, rdev);
2345                         rdev->sb_loaded = 1;
2346                 }
2347         }
2348 }
2349
2350 static void md_update_sb(struct mddev * mddev, int force_change)
2351 {
2352         struct md_rdev *rdev;
2353         int sync_req;
2354         int nospares = 0;
2355         int any_badblocks_changed = 0;
2356
2357 repeat:
2358         /* First make sure individual recovery_offsets are correct */
2359         list_for_each_entry(rdev, &mddev->disks, same_set) {
2360                 if (rdev->raid_disk >= 0 &&
2361                     mddev->delta_disks >= 0 &&
2362                     !test_bit(In_sync, &rdev->flags) &&
2363                     mddev->curr_resync_completed > rdev->recovery_offset)
2364                                 rdev->recovery_offset = mddev->curr_resync_completed;
2365
2366         }       
2367         if (!mddev->persistent) {
2368                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2369                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2370                 if (!mddev->external) {
2371                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2372                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2373                                 if (rdev->badblocks.changed) {
2374                                         rdev->badblocks.changed = 0;
2375                                         md_ack_all_badblocks(&rdev->badblocks);
2376                                         md_error(mddev, rdev);
2377                                 }
2378                                 clear_bit(Blocked, &rdev->flags);
2379                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2380                                 wake_up(&rdev->blocked_wait);
2381                         }
2382                 }
2383                 wake_up(&mddev->sb_wait);
2384                 return;
2385         }
2386
2387         spin_lock_irq(&mddev->write_lock);
2388
2389         mddev->utime = get_seconds();
2390
2391         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2392                 force_change = 1;
2393         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2394                 /* just a clean<-> dirty transition, possibly leave spares alone,
2395                  * though if events isn't the right even/odd, we will have to do
2396                  * spares after all
2397                  */
2398                 nospares = 1;
2399         if (force_change)
2400                 nospares = 0;
2401         if (mddev->degraded)
2402                 /* If the array is degraded, then skipping spares is both
2403                  * dangerous and fairly pointless.
2404                  * Dangerous because a device that was removed from the array
2405                  * might have a event_count that still looks up-to-date,
2406                  * so it can be re-added without a resync.
2407                  * Pointless because if there are any spares to skip,
2408                  * then a recovery will happen and soon that array won't
2409                  * be degraded any more and the spare can go back to sleep then.
2410                  */
2411                 nospares = 0;
2412
2413         sync_req = mddev->in_sync;
2414
2415         /* If this is just a dirty<->clean transition, and the array is clean
2416          * and 'events' is odd, we can roll back to the previous clean state */
2417         if (nospares
2418             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2419             && mddev->can_decrease_events
2420             && mddev->events != 1) {
2421                 mddev->events--;
2422                 mddev->can_decrease_events = 0;
2423         } else {
2424                 /* otherwise we have to go forward and ... */
2425                 mddev->events ++;
2426                 mddev->can_decrease_events = nospares;
2427         }
2428
2429         if (!mddev->events) {
2430                 /*
2431                  * oops, this 64-bit counter should never wrap.
2432                  * Either we are in around ~1 trillion A.C., assuming
2433                  * 1 reboot per second, or we have a bug:
2434                  */
2435                 MD_BUG();
2436                 mddev->events --;
2437         }
2438
2439         list_for_each_entry(rdev, &mddev->disks, same_set) {
2440                 if (rdev->badblocks.changed)
2441                         any_badblocks_changed++;
2442                 if (test_bit(Faulty, &rdev->flags))
2443                         set_bit(FaultRecorded, &rdev->flags);
2444         }
2445
2446         sync_sbs(mddev, nospares);
2447         spin_unlock_irq(&mddev->write_lock);
2448
2449         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2450                  mdname(mddev), mddev->in_sync);
2451
2452         bitmap_update_sb(mddev->bitmap);
2453         list_for_each_entry(rdev, &mddev->disks, same_set) {
2454                 char b[BDEVNAME_SIZE];
2455
2456                 if (rdev->sb_loaded != 1)
2457                         continue; /* no noise on spare devices */
2458
2459                 if (!test_bit(Faulty, &rdev->flags) &&
2460                     rdev->saved_raid_disk == -1) {
2461                         md_super_write(mddev,rdev,
2462                                        rdev->sb_start, rdev->sb_size,
2463                                        rdev->sb_page);
2464                         pr_debug("md: (write) %s's sb offset: %llu\n",
2465                                  bdevname(rdev->bdev, b),
2466                                  (unsigned long long)rdev->sb_start);
2467                         rdev->sb_events = mddev->events;
2468                         if (rdev->badblocks.size) {
2469                                 md_super_write(mddev, rdev,
2470                                                rdev->badblocks.sector,
2471                                                rdev->badblocks.size << 9,
2472                                                rdev->bb_page);
2473                                 rdev->badblocks.size = 0;
2474                         }
2475
2476                 } else if (test_bit(Faulty, &rdev->flags))
2477                         pr_debug("md: %s (skipping faulty)\n",
2478                                  bdevname(rdev->bdev, b));
2479                 else
2480                         pr_debug("(skipping incremental s/r ");
2481
2482                 if (mddev->level == LEVEL_MULTIPATH)
2483                         /* only need to write one superblock... */
2484                         break;
2485         }
2486         md_super_wait(mddev);
2487         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2488
2489         spin_lock_irq(&mddev->write_lock);
2490         if (mddev->in_sync != sync_req ||
2491             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2492                 /* have to write it out again */
2493                 spin_unlock_irq(&mddev->write_lock);
2494                 goto repeat;
2495         }
2496         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2497         spin_unlock_irq(&mddev->write_lock);
2498         wake_up(&mddev->sb_wait);
2499         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2500                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2501
2502         list_for_each_entry(rdev, &mddev->disks, same_set) {
2503                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2504                         clear_bit(Blocked, &rdev->flags);
2505
2506                 if (any_badblocks_changed)
2507                         md_ack_all_badblocks(&rdev->badblocks);
2508                 clear_bit(BlockedBadBlocks, &rdev->flags);
2509                 wake_up(&rdev->blocked_wait);
2510         }
2511 }
2512
2513 /* words written to sysfs files may, or may not, be \n terminated.
2514  * We want to accept with case. For this we use cmd_match.
2515  */
2516 static int cmd_match(const char *cmd, const char *str)
2517 {
2518         /* See if cmd, written into a sysfs file, matches
2519          * str.  They must either be the same, or cmd can
2520          * have a trailing newline
2521          */
2522         while (*cmd && *str && *cmd == *str) {
2523                 cmd++;
2524                 str++;
2525         }
2526         if (*cmd == '\n')
2527                 cmd++;
2528         if (*str || *cmd)
2529                 return 0;
2530         return 1;
2531 }
2532
2533 struct rdev_sysfs_entry {
2534         struct attribute attr;
2535         ssize_t (*show)(struct md_rdev *, char *);
2536         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2537 };
2538
2539 static ssize_t
2540 state_show(struct md_rdev *rdev, char *page)
2541 {
2542         char *sep = "";
2543         size_t len = 0;
2544
2545         if (test_bit(Faulty, &rdev->flags) ||
2546             rdev->badblocks.unacked_exist) {
2547                 len+= sprintf(page+len, "%sfaulty",sep);
2548                 sep = ",";
2549         }
2550         if (test_bit(In_sync, &rdev->flags)) {
2551                 len += sprintf(page+len, "%sin_sync",sep);
2552                 sep = ",";
2553         }
2554         if (test_bit(WriteMostly, &rdev->flags)) {
2555                 len += sprintf(page+len, "%swrite_mostly",sep);
2556                 sep = ",";
2557         }
2558         if (test_bit(Blocked, &rdev->flags) ||
2559             (rdev->badblocks.unacked_exist
2560              && !test_bit(Faulty, &rdev->flags))) {
2561                 len += sprintf(page+len, "%sblocked", sep);
2562                 sep = ",";
2563         }
2564         if (!test_bit(Faulty, &rdev->flags) &&
2565             !test_bit(In_sync, &rdev->flags)) {
2566                 len += sprintf(page+len, "%sspare", sep);
2567                 sep = ",";
2568         }
2569         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2570                 len += sprintf(page+len, "%swrite_error", sep);
2571                 sep = ",";
2572         }
2573         return len+sprintf(page+len, "\n");
2574 }
2575
2576 static ssize_t
2577 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2578 {
2579         /* can write
2580          *  faulty  - simulates an error
2581          *  remove  - disconnects the device
2582          *  writemostly - sets write_mostly
2583          *  -writemostly - clears write_mostly
2584          *  blocked - sets the Blocked flags
2585          *  -blocked - clears the Blocked and possibly simulates an error
2586          *  insync - sets Insync providing device isn't active
2587          *  write_error - sets WriteErrorSeen
2588          *  -write_error - clears WriteErrorSeen
2589          */
2590         int err = -EINVAL;
2591         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2592                 md_error(rdev->mddev, rdev);
2593                 if (test_bit(Faulty, &rdev->flags))
2594                         err = 0;
2595                 else
2596                         err = -EBUSY;
2597         } else if (cmd_match(buf, "remove")) {
2598                 if (rdev->raid_disk >= 0)
2599                         err = -EBUSY;
2600                 else {
2601                         struct mddev *mddev = rdev->mddev;
2602                         kick_rdev_from_array(rdev);
2603                         if (mddev->pers)
2604                                 md_update_sb(mddev, 1);
2605                         md_new_event(mddev);
2606                         err = 0;
2607                 }
2608         } else if (cmd_match(buf, "writemostly")) {
2609                 set_bit(WriteMostly, &rdev->flags);
2610                 err = 0;
2611         } else if (cmd_match(buf, "-writemostly")) {
2612                 clear_bit(WriteMostly, &rdev->flags);
2613                 err = 0;
2614         } else if (cmd_match(buf, "blocked")) {
2615                 set_bit(Blocked, &rdev->flags);
2616                 err = 0;
2617         } else if (cmd_match(buf, "-blocked")) {
2618                 if (!test_bit(Faulty, &rdev->flags) &&
2619                     rdev->badblocks.unacked_exist) {
2620                         /* metadata handler doesn't understand badblocks,
2621                          * so we need to fail the device
2622                          */
2623                         md_error(rdev->mddev, rdev);
2624                 }
2625                 clear_bit(Blocked, &rdev->flags);
2626                 clear_bit(BlockedBadBlocks, &rdev->flags);
2627                 wake_up(&rdev->blocked_wait);
2628                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2629                 md_wakeup_thread(rdev->mddev->thread);
2630
2631                 err = 0;
2632         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2633                 set_bit(In_sync, &rdev->flags);
2634                 err = 0;
2635         } else if (cmd_match(buf, "write_error")) {
2636                 set_bit(WriteErrorSeen, &rdev->flags);
2637                 err = 0;
2638         } else if (cmd_match(buf, "-write_error")) {
2639                 clear_bit(WriteErrorSeen, &rdev->flags);
2640                 err = 0;
2641         }
2642         if (!err)
2643                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2644         return err ? err : len;
2645 }
2646 static struct rdev_sysfs_entry rdev_state =
2647 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2648
2649 static ssize_t
2650 errors_show(struct md_rdev *rdev, char *page)
2651 {
2652         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2653 }
2654
2655 static ssize_t
2656 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2657 {
2658         char *e;
2659         unsigned long n = simple_strtoul(buf, &e, 10);
2660         if (*buf && (*e == 0 || *e == '\n')) {
2661                 atomic_set(&rdev->corrected_errors, n);
2662                 return len;
2663         }
2664         return -EINVAL;
2665 }
2666 static struct rdev_sysfs_entry rdev_errors =
2667 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2668
2669 static ssize_t
2670 slot_show(struct md_rdev *rdev, char *page)
2671 {
2672         if (rdev->raid_disk < 0)
2673                 return sprintf(page, "none\n");
2674         else
2675                 return sprintf(page, "%d\n", rdev->raid_disk);
2676 }
2677
2678 static ssize_t
2679 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2680 {
2681         char *e;
2682         int err;
2683         int slot = simple_strtoul(buf, &e, 10);
2684         if (strncmp(buf, "none", 4)==0)
2685                 slot = -1;
2686         else if (e==buf || (*e && *e!= '\n'))
2687                 return -EINVAL;
2688         if (rdev->mddev->pers && slot == -1) {
2689                 /* Setting 'slot' on an active array requires also
2690                  * updating the 'rd%d' link, and communicating
2691                  * with the personality with ->hot_*_disk.
2692                  * For now we only support removing
2693                  * failed/spare devices.  This normally happens automatically,
2694                  * but not when the metadata is externally managed.
2695                  */
2696                 if (rdev->raid_disk == -1)
2697                         return -EEXIST;
2698                 /* personality does all needed checks */
2699                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2700                         return -EINVAL;
2701                 err = rdev->mddev->pers->
2702                         hot_remove_disk(rdev->mddev, rdev->raid_disk);
2703                 if (err)
2704                         return err;
2705                 sysfs_unlink_rdev(rdev->mddev, rdev);
2706                 rdev->raid_disk = -1;
2707                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2708                 md_wakeup_thread(rdev->mddev->thread);
2709         } else if (rdev->mddev->pers) {
2710                 struct md_rdev *rdev2;
2711                 /* Activating a spare .. or possibly reactivating
2712                  * if we ever get bitmaps working here.
2713                  */
2714
2715                 if (rdev->raid_disk != -1)
2716                         return -EBUSY;
2717
2718                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2719                         return -EBUSY;
2720
2721                 if (rdev->mddev->pers->hot_add_disk == NULL)
2722                         return -EINVAL;
2723
2724                 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2725                         if (rdev2->raid_disk == slot)
2726                                 return -EEXIST;
2727
2728                 if (slot >= rdev->mddev->raid_disks &&
2729                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2730                         return -ENOSPC;
2731
2732                 rdev->raid_disk = slot;
2733                 if (test_bit(In_sync, &rdev->flags))
2734                         rdev->saved_raid_disk = slot;
2735                 else
2736                         rdev->saved_raid_disk = -1;
2737                 clear_bit(In_sync, &rdev->flags);
2738                 err = rdev->mddev->pers->
2739                         hot_add_disk(rdev->mddev, rdev);
2740                 if (err) {
2741                         rdev->raid_disk = -1;
2742                         return err;
2743                 } else
2744                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2745                 if (sysfs_link_rdev(rdev->mddev, rdev))
2746                         /* failure here is OK */;
2747                 /* don't wakeup anyone, leave that to userspace. */
2748         } else {
2749                 if (slot >= rdev->mddev->raid_disks &&
2750                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2751                         return -ENOSPC;
2752                 rdev->raid_disk = slot;
2753                 /* assume it is working */
2754                 clear_bit(Faulty, &rdev->flags);
2755                 clear_bit(WriteMostly, &rdev->flags);
2756                 set_bit(In_sync, &rdev->flags);
2757                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2758         }
2759         return len;
2760 }
2761
2762
2763 static struct rdev_sysfs_entry rdev_slot =
2764 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2765
2766 static ssize_t
2767 offset_show(struct md_rdev *rdev, char *page)
2768 {
2769         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2770 }
2771
2772 static ssize_t
2773 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2774 {
2775         char *e;
2776         unsigned long long offset = simple_strtoull(buf, &e, 10);
2777         if (e==buf || (*e && *e != '\n'))
2778                 return -EINVAL;
2779         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2780                 return -EBUSY;
2781         if (rdev->sectors && rdev->mddev->external)
2782                 /* Must set offset before size, so overlap checks
2783                  * can be sane */
2784                 return -EBUSY;
2785         rdev->data_offset = offset;
2786         return len;
2787 }
2788
2789 static struct rdev_sysfs_entry rdev_offset =
2790 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2791
2792 static ssize_t
2793 rdev_size_show(struct md_rdev *rdev, char *page)
2794 {
2795         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2796 }
2797
2798 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2799 {
2800         /* check if two start/length pairs overlap */
2801         if (s1+l1 <= s2)
2802                 return 0;
2803         if (s2+l2 <= s1)
2804                 return 0;
2805         return 1;
2806 }
2807
2808 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2809 {
2810         unsigned long long blocks;
2811         sector_t new;
2812
2813         if (strict_strtoull(buf, 10, &blocks) < 0)
2814                 return -EINVAL;
2815
2816         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2817                 return -EINVAL; /* sector conversion overflow */
2818
2819         new = blocks * 2;
2820         if (new != blocks * 2)
2821                 return -EINVAL; /* unsigned long long to sector_t overflow */
2822
2823         *sectors = new;
2824         return 0;
2825 }
2826
2827 static ssize_t
2828 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2829 {
2830         struct mddev *my_mddev = rdev->mddev;
2831         sector_t oldsectors = rdev->sectors;
2832         sector_t sectors;
2833
2834         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2835                 return -EINVAL;
2836         if (my_mddev->pers && rdev->raid_disk >= 0) {
2837                 if (my_mddev->persistent) {
2838                         sectors = super_types[my_mddev->major_version].
2839                                 rdev_size_change(rdev, sectors);
2840                         if (!sectors)
2841                                 return -EBUSY;
2842                 } else if (!sectors)
2843                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2844                                 rdev->data_offset;
2845                 if (!my_mddev->pers->resize)
2846                         /* Cannot change size for RAID0 or Linear etc */
2847                         return -EINVAL;
2848         }
2849         if (sectors < my_mddev->dev_sectors)
2850                 return -EINVAL; /* component must fit device */
2851
2852         rdev->sectors = sectors;
2853         if (sectors > oldsectors && my_mddev->external) {
2854                 /* need to check that all other rdevs with the same ->bdev
2855                  * do not overlap.  We need to unlock the mddev to avoid
2856                  * a deadlock.  We have already changed rdev->sectors, and if
2857                  * we have to change it back, we will have the lock again.
2858                  */
2859                 struct mddev *mddev;
2860                 int overlap = 0;
2861                 struct list_head *tmp;
2862
2863                 mddev_unlock(my_mddev);
2864                 for_each_mddev(mddev, tmp) {
2865                         struct md_rdev *rdev2;
2866
2867                         mddev_lock(mddev);
2868                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2869                                 if (rdev->bdev == rdev2->bdev &&
2870                                     rdev != rdev2 &&
2871                                     overlaps(rdev->data_offset, rdev->sectors,
2872                                              rdev2->data_offset,
2873                                              rdev2->sectors)) {
2874                                         overlap = 1;
2875                                         break;
2876                                 }
2877                         mddev_unlock(mddev);
2878                         if (overlap) {
2879                                 mddev_put(mddev);
2880                                 break;
2881                         }
2882                 }
2883                 mddev_lock(my_mddev);
2884                 if (overlap) {
2885                         /* Someone else could have slipped in a size
2886                          * change here, but doing so is just silly.
2887                          * We put oldsectors back because we *know* it is
2888                          * safe, and trust userspace not to race with
2889                          * itself
2890                          */
2891                         rdev->sectors = oldsectors;
2892                         return -EBUSY;
2893                 }
2894         }
2895         return len;
2896 }
2897
2898 static struct rdev_sysfs_entry rdev_size =
2899 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2900
2901
2902 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2903 {
2904         unsigned long long recovery_start = rdev->recovery_offset;
2905
2906         if (test_bit(In_sync, &rdev->flags) ||
2907             recovery_start == MaxSector)
2908                 return sprintf(page, "none\n");
2909
2910         return sprintf(page, "%llu\n", recovery_start);
2911 }
2912
2913 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2914 {
2915         unsigned long long recovery_start;
2916
2917         if (cmd_match(buf, "none"))
2918                 recovery_start = MaxSector;
2919         else if (strict_strtoull(buf, 10, &recovery_start))
2920                 return -EINVAL;
2921
2922         if (rdev->mddev->pers &&
2923             rdev->raid_disk >= 0)
2924                 return -EBUSY;
2925
2926         rdev->recovery_offset = recovery_start;
2927         if (recovery_start == MaxSector)
2928                 set_bit(In_sync, &rdev->flags);
2929         else
2930                 clear_bit(In_sync, &rdev->flags);
2931         return len;
2932 }
2933
2934 static struct rdev_sysfs_entry rdev_recovery_start =
2935 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2936
2937
2938 static ssize_t
2939 badblocks_show(struct badblocks *bb, char *page, int unack);
2940 static ssize_t
2941 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2942
2943 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2944 {
2945         return badblocks_show(&rdev->badblocks, page, 0);
2946 }
2947 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2948 {
2949         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2950         /* Maybe that ack was all we needed */
2951         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2952                 wake_up(&rdev->blocked_wait);
2953         return rv;
2954 }
2955 static struct rdev_sysfs_entry rdev_bad_blocks =
2956 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2957
2958
2959 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2960 {
2961         return badblocks_show(&rdev->badblocks, page, 1);
2962 }
2963 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2964 {
2965         return badblocks_store(&rdev->badblocks, page, len, 1);
2966 }
2967 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2968 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2969
2970 static struct attribute *rdev_default_attrs[] = {
2971         &rdev_state.attr,
2972         &rdev_errors.attr,
2973         &rdev_slot.attr,
2974         &rdev_offset.attr,
2975         &rdev_size.attr,
2976         &rdev_recovery_start.attr,
2977         &rdev_bad_blocks.attr,
2978         &rdev_unack_bad_blocks.attr,
2979         NULL,
2980 };
2981 static ssize_t
2982 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2983 {
2984         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2985         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2986         struct mddev *mddev = rdev->mddev;
2987         ssize_t rv;
2988
2989         if (!entry->show)
2990                 return -EIO;
2991
2992         rv = mddev ? mddev_lock(mddev) : -EBUSY;
2993         if (!rv) {
2994                 if (rdev->mddev == NULL)
2995                         rv = -EBUSY;
2996                 else
2997                         rv = entry->show(rdev, page);
2998                 mddev_unlock(mddev);
2999         }
3000         return rv;
3001 }
3002
3003 static ssize_t
3004 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3005               const char *page, size_t length)
3006 {
3007         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3008         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3009         ssize_t rv;
3010         struct mddev *mddev = rdev->mddev;
3011
3012         if (!entry->store)
3013                 return -EIO;
3014         if (!capable(CAP_SYS_ADMIN))
3015                 return -EACCES;
3016         rv = mddev ? mddev_lock(mddev): -EBUSY;
3017         if (!rv) {
3018                 if (rdev->mddev == NULL)
3019                         rv = -EBUSY;
3020                 else
3021                         rv = entry->store(rdev, page, length);
3022                 mddev_unlock(mddev);
3023         }
3024         return rv;
3025 }
3026
3027 static void rdev_free(struct kobject *ko)
3028 {
3029         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3030         kfree(rdev);
3031 }
3032 static const struct sysfs_ops rdev_sysfs_ops = {
3033         .show           = rdev_attr_show,
3034         .store          = rdev_attr_store,
3035 };
3036 static struct kobj_type rdev_ktype = {
3037         .release        = rdev_free,
3038         .sysfs_ops      = &rdev_sysfs_ops,
3039         .default_attrs  = rdev_default_attrs,
3040 };
3041
3042 int md_rdev_init(struct md_rdev *rdev)
3043 {
3044         rdev->desc_nr = -1;
3045         rdev->saved_raid_disk = -1;
3046         rdev->raid_disk = -1;
3047         rdev->flags = 0;
3048         rdev->data_offset = 0;
3049         rdev->sb_events = 0;
3050         rdev->last_read_error.tv_sec  = 0;
3051         rdev->last_read_error.tv_nsec = 0;
3052         rdev->sb_loaded = 0;
3053         rdev->bb_page = NULL;
3054         atomic_set(&rdev->nr_pending, 0);
3055         atomic_set(&rdev->read_errors, 0);
3056         atomic_set(&rdev->corrected_errors, 0);
3057
3058         INIT_LIST_HEAD(&rdev->same_set);
3059         init_waitqueue_head(&rdev->blocked_wait);
3060
3061         /* Add space to store bad block list.
3062          * This reserves the space even on arrays where it cannot
3063          * be used - I wonder if that matters
3064          */
3065         rdev->badblocks.count = 0;
3066         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3067         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3068         seqlock_init(&rdev->badblocks.lock);
3069         if (rdev->badblocks.page == NULL)
3070                 return -ENOMEM;
3071
3072         return 0;
3073 }
3074 EXPORT_SYMBOL_GPL(md_rdev_init);
3075 /*
3076  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3077  *
3078  * mark the device faulty if:
3079  *
3080  *   - the device is nonexistent (zero size)
3081  *   - the device has no valid superblock
3082  *
3083  * a faulty rdev _never_ has rdev->sb set.
3084  */
3085 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3086 {
3087         char b[BDEVNAME_SIZE];
3088         int err;
3089         struct md_rdev *rdev;
3090         sector_t size;
3091
3092         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3093         if (!rdev) {
3094                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3095                 return ERR_PTR(-ENOMEM);
3096         }
3097
3098         err = md_rdev_init(rdev);
3099         if (err)
3100                 goto abort_free;
3101         err = alloc_disk_sb(rdev);
3102         if (err)
3103                 goto abort_free;
3104
3105         err = lock_rdev(rdev, newdev, super_format == -2);
3106         if (err)
3107                 goto abort_free;
3108
3109         kobject_init(&rdev->kobj, &rdev_ktype);
3110
3111         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3112         if (!size) {
3113                 printk(KERN_WARNING 
3114                         "md: %s has zero or unknown size, marking faulty!\n",
3115                         bdevname(rdev->bdev,b));
3116                 err = -EINVAL;
3117                 goto abort_free;
3118         }
3119
3120         if (super_format >= 0) {
3121                 err = super_types[super_format].
3122                         load_super(rdev, NULL, super_minor);
3123                 if (err == -EINVAL) {
3124                         printk(KERN_WARNING
3125                                 "md: %s does not have a valid v%d.%d "
3126                                "superblock, not importing!\n",
3127                                 bdevname(rdev->bdev,b),
3128                                super_format, super_minor);
3129                         goto abort_free;
3130                 }
3131                 if (err < 0) {
3132                         printk(KERN_WARNING 
3133                                 "md: could not read %s's sb, not importing!\n",
3134                                 bdevname(rdev->bdev,b));
3135                         goto abort_free;
3136                 }
3137         }
3138
3139         return rdev;
3140
3141 abort_free:
3142         if (rdev->bdev)
3143                 unlock_rdev(rdev);
3144         free_disk_sb(rdev);
3145         kfree(rdev->badblocks.page);
3146         kfree(rdev);
3147         return ERR_PTR(err);
3148 }
3149
3150 /*
3151  * Check a full RAID array for plausibility
3152  */
3153
3154
3155 static void analyze_sbs(struct mddev * mddev)
3156 {
3157         int i;
3158         struct md_rdev *rdev, *freshest, *tmp;
3159         char b[BDEVNAME_SIZE];
3160
3161         freshest = NULL;
3162         rdev_for_each(rdev, tmp, mddev)
3163                 switch (super_types[mddev->major_version].
3164                         load_super(rdev, freshest, mddev->minor_version)) {
3165                 case 1:
3166                         freshest = rdev;
3167                         break;
3168                 case 0:
3169                         break;
3170                 default:
3171                         printk( KERN_ERR \
3172                                 "md: fatal superblock inconsistency in %s"
3173                                 " -- removing from array\n", 
3174                                 bdevname(rdev->bdev,b));
3175                         kick_rdev_from_array(rdev);
3176                 }
3177
3178
3179         super_types[mddev->major_version].
3180                 validate_super(mddev, freshest);
3181
3182         i = 0;
3183         rdev_for_each(rdev, tmp, mddev) {
3184                 if (mddev->max_disks &&
3185                     (rdev->desc_nr >= mddev->max_disks ||
3186                      i > mddev->max_disks)) {
3187                         printk(KERN_WARNING
3188                                "md: %s: %s: only %d devices permitted\n",
3189                                mdname(mddev), bdevname(rdev->bdev, b),
3190                                mddev->max_disks);
3191                         kick_rdev_from_array(rdev);
3192                         continue;
3193                 }
3194                 if (rdev != freshest)
3195                         if (super_types[mddev->major_version].
3196                             validate_super(mddev, rdev)) {
3197                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3198                                         " from array!\n",
3199                                         bdevname(rdev->bdev,b));
3200                                 kick_rdev_from_array(rdev);
3201                                 continue;
3202                         }
3203                 if (mddev->level == LEVEL_MULTIPATH) {
3204                         rdev->desc_nr = i++;
3205                         rdev->raid_disk = rdev->desc_nr;
3206                         set_bit(In_sync, &rdev->flags);
3207                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3208                         rdev->raid_disk = -1;
3209                         clear_bit(In_sync, &rdev->flags);
3210                 }
3211         }
3212 }
3213
3214 /* Read a fixed-point number.
3215  * Numbers in sysfs attributes should be in "standard" units where
3216  * possible, so time should be in seconds.
3217  * However we internally use a a much smaller unit such as 
3218  * milliseconds or jiffies.
3219  * This function takes a decimal number with a possible fractional
3220  * component, and produces an integer which is the result of
3221  * multiplying that number by 10^'scale'.
3222  * all without any floating-point arithmetic.
3223  */
3224 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3225 {
3226         unsigned long result = 0;
3227         long decimals = -1;
3228         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3229                 if (*cp == '.')
3230                         decimals = 0;
3231                 else if (decimals < scale) {
3232                         unsigned int value;
3233                         value = *cp - '0';
3234                         result = result * 10 + value;
3235                         if (decimals >= 0)
3236                                 decimals++;
3237                 }
3238                 cp++;
3239         }
3240         if (*cp == '\n')
3241                 cp++;
3242         if (*cp)
3243                 return -EINVAL;
3244         if (decimals < 0)
3245                 decimals = 0;
3246         while (decimals < scale) {
3247                 result *= 10;
3248                 decimals ++;
3249         }
3250         *res = result;
3251         return 0;
3252 }
3253
3254
3255 static void md_safemode_timeout(unsigned long data);
3256
3257 static ssize_t
3258 safe_delay_show(struct mddev *mddev, char *page)
3259 {
3260         int msec = (mddev->safemode_delay*1000)/HZ;
3261         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3262 }
3263 static ssize_t
3264 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3265 {
3266         unsigned long msec;
3267
3268         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3269                 return -EINVAL;
3270         if (msec == 0)
3271                 mddev->safemode_delay = 0;
3272         else {
3273                 unsigned long old_delay = mddev->safemode_delay;
3274                 mddev->safemode_delay = (msec*HZ)/1000;
3275                 if (mddev->safemode_delay == 0)
3276                         mddev->safemode_delay = 1;
3277                 if (mddev->safemode_delay < old_delay)
3278                         md_safemode_timeout((unsigned long)mddev);
3279         }
3280         return len;
3281 }
3282 static struct md_sysfs_entry md_safe_delay =
3283 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3284
3285 static ssize_t
3286 level_show(struct mddev *mddev, char *page)
3287 {
3288         struct md_personality *p = mddev->pers;
3289         if (p)
3290                 return sprintf(page, "%s\n", p->name);
3291         else if (mddev->clevel[0])
3292                 return sprintf(page, "%s\n", mddev->clevel);
3293         else if (mddev->level != LEVEL_NONE)
3294                 return sprintf(page, "%d\n", mddev->level);
3295         else
3296                 return 0;
3297 }
3298
3299 static ssize_t
3300 level_store(struct mddev *mddev, const char *buf, size_t len)
3301 {
3302         char clevel[16];
3303         ssize_t rv = len;
3304         struct md_personality *pers;
3305         long level;
3306         void *priv;
3307         struct md_rdev *rdev;
3308
3309         if (mddev->pers == NULL) {
3310                 if (len == 0)
3311                         return 0;
3312                 if (len >= sizeof(mddev->clevel))
3313                         return -ENOSPC;
3314                 strncpy(mddev->clevel, buf, len);
3315                 if (mddev->clevel[len-1] == '\n')
3316                         len--;
3317                 mddev->clevel[len] = 0;
3318                 mddev->level = LEVEL_NONE;
3319                 return rv;
3320         }
3321
3322         /* request to change the personality.  Need to ensure:
3323          *  - array is not engaged in resync/recovery/reshape
3324          *  - old personality can be suspended
3325          *  - new personality will access other array.
3326          */
3327
3328         if (mddev->sync_thread ||
3329             mddev->reshape_position != MaxSector ||
3330             mddev->sysfs_active)
3331                 return -EBUSY;
3332
3333         if (!mddev->pers->quiesce) {
3334                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3335                        mdname(mddev), mddev->pers->name);
3336                 return -EINVAL;
3337         }
3338
3339         /* Now find the new personality */
3340         if (len == 0 || len >= sizeof(clevel))
3341                 return -EINVAL;
3342         strncpy(clevel, buf, len);
3343         if (clevel[len-1] == '\n')
3344                 len--;
3345         clevel[len] = 0;
3346         if (strict_strtol(clevel, 10, &level))
3347                 level = LEVEL_NONE;
3348
3349         if (request_module("md-%s", clevel) != 0)
3350                 request_module("md-level-%s", clevel);
3351         spin_lock(&pers_lock);
3352         pers = find_pers(level, clevel);
3353         if (!pers || !try_module_get(pers->owner)) {
3354                 spin_unlock(&pers_lock);
3355                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3356                 return -EINVAL;
3357         }
3358         spin_unlock(&pers_lock);
3359
3360         if (pers == mddev->pers) {
3361                 /* Nothing to do! */
3362                 module_put(pers->owner);
3363                 return rv;
3364         }
3365         if (!pers->takeover) {
3366                 module_put(pers->owner);
3367                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3368                        mdname(mddev), clevel);
3369                 return -EINVAL;
3370         }
3371
3372         list_for_each_entry(rdev, &mddev->disks, same_set)
3373                 rdev->new_raid_disk = rdev->raid_disk;
3374
3375         /* ->takeover must set new_* and/or delta_disks
3376          * if it succeeds, and may set them when it fails.
3377          */
3378         priv = pers->takeover(mddev);
3379         if (IS_ERR(priv)) {
3380                 mddev->new_level = mddev->level;
3381                 mddev->new_layout = mddev->layout;
3382                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3383                 mddev->raid_disks -= mddev->delta_disks;
3384                 mddev->delta_disks = 0;
3385                 module_put(pers->owner);
3386                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3387                        mdname(mddev), clevel);
3388                 return PTR_ERR(priv);
3389         }
3390
3391         /* Looks like we have a winner */
3392         mddev_suspend(mddev);
3393         mddev->pers->stop(mddev);
3394         
3395         if (mddev->pers->sync_request == NULL &&
3396             pers->sync_request != NULL) {
3397                 /* need to add the md_redundancy_group */
3398                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3399                         printk(KERN_WARNING
3400                                "md: cannot register extra attributes for %s\n",
3401                                mdname(mddev));
3402                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3403         }               
3404         if (mddev->pers->sync_request != NULL &&
3405             pers->sync_request == NULL) {
3406                 /* need to remove the md_redundancy_group */
3407                 if (mddev->to_remove == NULL)
3408                         mddev->to_remove = &md_redundancy_group;
3409         }
3410
3411         if (mddev->pers->sync_request == NULL &&
3412             mddev->external) {
3413                 /* We are converting from a no-redundancy array
3414                  * to a redundancy array and metadata is managed
3415                  * externally so we need to be sure that writes
3416                  * won't block due to a need to transition
3417                  *      clean->dirty
3418                  * until external management is started.
3419                  */
3420                 mddev->in_sync = 0;
3421                 mddev->safemode_delay = 0;
3422                 mddev->safemode = 0;
3423         }
3424
3425         list_for_each_entry(rdev, &mddev->disks, same_set) {
3426                 if (rdev->raid_disk < 0)
3427                         continue;
3428                 if (rdev->new_raid_disk >= mddev->raid_disks)
3429                         rdev->new_raid_disk = -1;
3430                 if (rdev->new_raid_disk == rdev->raid_disk)
3431                         continue;
3432                 sysfs_unlink_rdev(mddev, rdev);
3433         }
3434         list_for_each_entry(rdev, &mddev->disks, same_set) {
3435                 if (rdev->raid_disk < 0)
3436                         continue;
3437                 if (rdev->new_raid_disk == rdev->raid_disk)
3438                         continue;
3439                 rdev->raid_disk = rdev->new_raid_disk;
3440                 if (rdev->raid_disk < 0)
3441                         clear_bit(In_sync, &rdev->flags);
3442                 else {
3443                         if (sysfs_link_rdev(mddev, rdev))
3444                                 printk(KERN_WARNING "md: cannot register rd%d"
3445                                        " for %s after level change\n",
3446                                        rdev->raid_disk, mdname(mddev));
3447                 }
3448         }
3449
3450         module_put(mddev->pers->owner);
3451         mddev->pers = pers;
3452         mddev->private = priv;
3453         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3454         mddev->level = mddev->new_level;
3455         mddev->layout = mddev->new_layout;
3456         mddev->chunk_sectors = mddev->new_chunk_sectors;
3457         mddev->delta_disks = 0;
3458         mddev->degraded = 0;
3459         if (mddev->pers->sync_request == NULL) {
3460                 /* this is now an array without redundancy, so
3461                  * it must always be in_sync
3462                  */
3463                 mddev->in_sync = 1;
3464                 del_timer_sync(&mddev->safemode_timer);
3465         }
3466         pers->run(mddev);
3467         mddev_resume(mddev);
3468         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3469         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3470         md_wakeup_thread(mddev->thread);
3471         sysfs_notify(&mddev->kobj, NULL, "level");
3472         md_new_event(mddev);
3473         return rv;
3474 }
3475
3476 static struct md_sysfs_entry md_level =
3477 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3478
3479
3480 static ssize_t
3481 layout_show(struct mddev *mddev, char *page)
3482 {
3483         /* just a number, not meaningful for all levels */
3484         if (mddev->reshape_position != MaxSector &&
3485             mddev->layout != mddev->new_layout)
3486                 return sprintf(page, "%d (%d)\n",
3487                                mddev->new_layout, mddev->layout);
3488         return sprintf(page, "%d\n", mddev->layout);
3489 }
3490
3491 static ssize_t
3492 layout_store(struct mddev *mddev, const char *buf, size_t len)
3493 {
3494         char *e;
3495         unsigned long n = simple_strtoul(buf, &e, 10);
3496
3497         if (!*buf || (*e && *e != '\n'))
3498                 return -EINVAL;
3499
3500         if (mddev->pers) {
3501                 int err;
3502                 if (mddev->pers->check_reshape == NULL)
3503                         return -EBUSY;
3504                 mddev->new_layout = n;
3505                 err = mddev->pers->check_reshape(mddev);
3506                 if (err) {
3507                         mddev->new_layout = mddev->layout;
3508                         return err;
3509                 }
3510         } else {
3511                 mddev->new_layout = n;
3512                 if (mddev->reshape_position == MaxSector)
3513                         mddev->layout = n;
3514         }
3515         return len;
3516 }
3517 static struct md_sysfs_entry md_layout =
3518 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3519
3520
3521 static ssize_t
3522 raid_disks_show(struct mddev *mddev, char *page)
3523 {
3524         if (mddev->raid_disks == 0)
3525                 return 0;
3526         if (mddev->reshape_position != MaxSector &&
3527             mddev->delta_disks != 0)
3528                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3529                                mddev->raid_disks - mddev->delta_disks);
3530         return sprintf(page, "%d\n", mddev->raid_disks);
3531 }
3532
3533 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3534
3535 static ssize_t
3536 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3537 {
3538         char *e;
3539         int rv = 0;
3540         unsigned long n = simple_strtoul(buf, &e, 10);
3541
3542         if (!*buf || (*e && *e != '\n'))
3543                 return -EINVAL;
3544
3545         if (mddev->pers)
3546                 rv = update_raid_disks(mddev, n);
3547         else if (mddev->reshape_position != MaxSector) {
3548                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3549                 mddev->delta_disks = n - olddisks;
3550                 mddev->raid_disks = n;
3551         } else
3552                 mddev->raid_disks = n;
3553         return rv ? rv : len;
3554 }
3555 static struct md_sysfs_entry md_raid_disks =
3556 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3557
3558 static ssize_t
3559 chunk_size_show(struct mddev *mddev, char *page)
3560 {
3561         if (mddev->reshape_position != MaxSector &&
3562             mddev->chunk_sectors != mddev->new_chunk_sectors)
3563                 return sprintf(page, "%d (%d)\n",
3564                                mddev->new_chunk_sectors << 9,
3565                                mddev->chunk_sectors << 9);
3566         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3567 }
3568
3569 static ssize_t
3570 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3571 {
3572         char *e;
3573         unsigned long n = simple_strtoul(buf, &e, 10);
3574
3575         if (!*buf || (*e && *e != '\n'))
3576                 return -EINVAL;
3577
3578         if (mddev->pers) {
3579                 int err;
3580                 if (mddev->pers->check_reshape == NULL)
3581                         return -EBUSY;
3582                 mddev->new_chunk_sectors = n >> 9;
3583                 err = mddev->pers->check_reshape(mddev);
3584                 if (err) {
3585                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3586                         return err;
3587                 }
3588         } else {
3589                 mddev->new_chunk_sectors = n >> 9;
3590                 if (mddev->reshape_position == MaxSector)
3591                         mddev->chunk_sectors = n >> 9;
3592         }
3593         return len;
3594 }
3595 static struct md_sysfs_entry md_chunk_size =
3596 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3597
3598 static ssize_t
3599 resync_start_show(struct mddev *mddev, char *page)
3600 {
3601         if (mddev->recovery_cp == MaxSector)
3602                 return sprintf(page, "none\n");
3603         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3604 }
3605
3606 static ssize_t
3607 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3608 {
3609         char *e;
3610         unsigned long long n = simple_strtoull(buf, &e, 10);
3611
3612         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3613                 return -EBUSY;
3614         if (cmd_match(buf, "none"))
3615                 n = MaxSector;
3616         else if (!*buf || (*e && *e != '\n'))
3617                 return -EINVAL;
3618
3619         mddev->recovery_cp = n;
3620         return len;
3621 }
3622 static struct md_sysfs_entry md_resync_start =
3623 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3624
3625 /*
3626  * The array state can be:
3627  *
3628  * clear
3629  *     No devices, no size, no level
3630  *     Equivalent to STOP_ARRAY ioctl
3631  * inactive
3632  *     May have some settings, but array is not active
3633  *        all IO results in error
3634  *     When written, doesn't tear down array, but just stops it
3635  * suspended (not supported yet)
3636  *     All IO requests will block. The array can be reconfigured.
3637  *     Writing this, if accepted, will block until array is quiescent
3638  * readonly
3639  *     no resync can happen.  no superblocks get written.
3640  *     write requests fail
3641  * read-auto
3642  *     like readonly, but behaves like 'clean' on a write request.
3643  *
3644  * clean - no pending writes, but otherwise active.
3645  *     When written to inactive array, starts without resync
3646  *     If a write request arrives then
3647  *       if metadata is known, mark 'dirty' and switch to 'active'.
3648  *       if not known, block and switch to write-pending
3649  *     If written to an active array that has pending writes, then fails.
3650  * active
3651  *     fully active: IO and resync can be happening.
3652  *     When written to inactive array, starts with resync
3653  *
3654  * write-pending
3655  *     clean, but writes are blocked waiting for 'active' to be written.
3656  *
3657  * active-idle
3658  *     like active, but no writes have been seen for a while (100msec).
3659  *
3660  */
3661 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3662                    write_pending, active_idle, bad_word};
3663 static char *array_states[] = {
3664         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3665         "write-pending", "active-idle", NULL };
3666
3667 static int match_word(const char *word, char **list)
3668 {
3669         int n;
3670         for (n=0; list[n]; n++)
3671                 if (cmd_match(word, list[n]))
3672                         break;
3673         return n;
3674 }
3675
3676 static ssize_t
3677 array_state_show(struct mddev *mddev, char *page)
3678 {
3679         enum array_state st = inactive;
3680
3681         if (mddev->pers)
3682                 switch(mddev->ro) {
3683                 case 1:
3684                         st = readonly;
3685                         break;
3686                 case 2:
3687                         st = read_auto;
3688                         break;
3689                 case 0:
3690                         if (mddev->in_sync)
3691                                 st = clean;
3692                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3693                                 st = write_pending;
3694                         else if (mddev->safemode)
3695                                 st = active_idle;
3696                         else
3697                                 st = active;
3698                 }
3699         else {
3700                 if (list_empty(&mddev->disks) &&
3701                     mddev->raid_disks == 0 &&
3702                     mddev->dev_sectors == 0)
3703                         st = clear;
3704                 else
3705                         st = inactive;
3706         }
3707         return sprintf(page, "%s\n", array_states[st]);
3708 }
3709
3710 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3711 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3712 static int do_md_run(struct mddev * mddev);
3713 static int restart_array(struct mddev *mddev);
3714
3715 static ssize_t
3716 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3717 {
3718         int err = -EINVAL;
3719         enum array_state st = match_word(buf, array_states);
3720         switch(st) {
3721         case bad_word:
3722                 break;
3723         case clear:
3724                 /* stopping an active array */
3725                 if (atomic_read(&mddev->openers) > 0)
3726                         return -EBUSY;
3727                 err = do_md_stop(mddev, 0, NULL);
3728                 break;
3729         case inactive:
3730                 /* stopping an active array */
3731                 if (mddev->pers) {
3732                         if (atomic_read(&mddev->openers) > 0)
3733                                 return -EBUSY;
3734                         err = do_md_stop(mddev, 2, NULL);
3735                 } else
3736                         err = 0; /* already inactive */
3737                 break;
3738         case suspended:
3739                 break; /* not supported yet */
3740         case readonly:
3741                 if (mddev->pers)
3742                         err = md_set_readonly(mddev, NULL);
3743                 else {
3744                         mddev->ro = 1;
3745                         set_disk_ro(mddev->gendisk, 1);
3746                         err = do_md_run(mddev);
3747                 }
3748                 break;
3749         case read_auto:
3750                 if (mddev->pers) {
3751                         if (mddev->ro == 0)
3752                                 err = md_set_readonly(mddev, NULL);
3753                         else if (mddev->ro == 1)
3754                                 err = restart_array(mddev);
3755                         if (err == 0) {
3756                                 mddev->ro = 2;
3757                                 set_disk_ro(mddev->gendisk, 0);
3758                         }
3759                 } else {
3760                         mddev->ro = 2;
3761                         err = do_md_run(mddev);
3762                 }
3763                 break;
3764         case clean:
3765                 if (mddev->pers) {
3766                         restart_array(mddev);
3767                         spin_lock_irq(&mddev->write_lock);
3768                         if (atomic_read(&mddev->writes_pending) == 0) {
3769                                 if (mddev->in_sync == 0) {
3770                                         mddev->in_sync = 1;
3771                                         if (mddev->safemode == 1)
3772                                                 mddev->safemode = 0;
3773                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3774                                 }
3775                                 err = 0;
3776                         } else
3777                                 err = -EBUSY;
3778                         spin_unlock_irq(&mddev->write_lock);
3779                 } else
3780                         err = -EINVAL;
3781                 break;
3782         case active:
3783                 if (mddev->pers) {
3784                         restart_array(mddev);
3785                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3786                         wake_up(&mddev->sb_wait);
3787                         err = 0;
3788                 } else {
3789                         mddev->ro = 0;
3790                         set_disk_ro(mddev->gendisk, 0);
3791                         err = do_md_run(mddev);
3792                 }
3793                 break;
3794         case write_pending:
3795         case active_idle:
3796                 /* these cannot be set */
3797                 break;
3798         }
3799         if (err)
3800                 return err;
3801         else {
3802                 if (mddev->hold_active == UNTIL_IOCTL)
3803                         mddev->hold_active = 0;
3804                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3805                 return len;
3806         }
3807 }
3808 static struct md_sysfs_entry md_array_state =
3809 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3810
3811 static ssize_t
3812 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3813         return sprintf(page, "%d\n",
3814                        atomic_read(&mddev->max_corr_read_errors));
3815 }
3816
3817 static ssize_t
3818 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3819 {
3820         char *e;
3821         unsigned long n = simple_strtoul(buf, &e, 10);
3822
3823         if (*buf && (*e == 0 || *e == '\n')) {
3824                 atomic_set(&mddev->max_corr_read_errors, n);
3825                 return len;
3826         }
3827         return -EINVAL;
3828 }
3829
3830 static struct md_sysfs_entry max_corr_read_errors =
3831 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3832         max_corrected_read_errors_store);
3833
3834 static ssize_t
3835 null_show(struct mddev *mddev, char *page)
3836 {
3837         return -EINVAL;
3838 }
3839
3840 static ssize_t
3841 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3842 {
3843         /* buf must be %d:%d\n? giving major and minor numbers */
3844         /* The new device is added to the array.
3845          * If the array has a persistent superblock, we read the
3846          * superblock to initialise info and check validity.
3847          * Otherwise, only checking done is that in bind_rdev_to_array,
3848          * which mainly checks size.
3849          */
3850         char *e;
3851         int major = simple_strtoul(buf, &e, 10);
3852         int minor;
3853         dev_t dev;
3854         struct md_rdev *rdev;
3855         int err;
3856
3857         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3858                 return -EINVAL;
3859         minor = simple_strtoul(e+1, &e, 10);
3860         if (*e && *e != '\n')
3861                 return -EINVAL;
3862         dev = MKDEV(major, minor);
3863         if (major != MAJOR(dev) ||
3864             minor != MINOR(dev))
3865                 return -EOVERFLOW;
3866
3867
3868         if (mddev->persistent) {
3869                 rdev = md_import_device(dev, mddev->major_version,
3870                                         mddev->minor_version);
3871                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3872                         struct md_rdev *rdev0
3873                                 = list_entry(mddev->disks.next,
3874                                              struct md_rdev, same_set);
3875                         err = super_types[mddev->major_version]
3876                                 .load_super(rdev, rdev0, mddev->minor_version);
3877                         if (err < 0)
3878                                 goto out;
3879                 }
3880         } else if (mddev->external)
3881                 rdev = md_import_device(dev, -2, -1);
3882         else
3883                 rdev = md_import_device(dev, -1, -1);
3884
3885         if (IS_ERR(rdev))
3886                 return PTR_ERR(rdev);
3887         err = bind_rdev_to_array(rdev, mddev);
3888  out:
3889         if (err)
3890                 export_rdev(rdev);
3891         return err ? err : len;
3892 }
3893
3894 static struct md_sysfs_entry md_new_device =
3895 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3896
3897 static ssize_t
3898 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3899 {
3900         char *end;
3901         unsigned long chunk, end_chunk;
3902
3903         if (!mddev->bitmap)
3904                 goto out;
3905         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3906         while (*buf) {
3907                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3908                 if (buf == end) break;
3909                 if (*end == '-') { /* range */
3910                         buf = end + 1;
3911                         end_chunk = simple_strtoul(buf, &end, 0);
3912                         if (buf == end) break;
3913                 }
3914                 if (*end && !isspace(*end)) break;
3915                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3916                 buf = skip_spaces(end);
3917         }
3918         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3919 out:
3920         return len;
3921 }
3922
3923 static struct md_sysfs_entry md_bitmap =
3924 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3925
3926 static ssize_t
3927 size_show(struct mddev *mddev, char *page)
3928 {
3929         return sprintf(page, "%llu\n",
3930                 (unsigned long long)mddev->dev_sectors / 2);
3931 }
3932
3933 static int update_size(struct mddev *mddev, sector_t num_sectors);
3934
3935 static ssize_t
3936 size_store(struct mddev *mddev, const char *buf, size_t len)
3937 {
3938         /* If array is inactive, we can reduce the component size, but
3939          * not increase it (except from 0).
3940          * If array is active, we can try an on-line resize
3941          */
3942         sector_t sectors;
3943         int err = strict_blocks_to_sectors(buf, &sectors);
3944
3945         if (err < 0)
3946                 return err;
3947         if (mddev->pers) {
3948                 err = update_size(mddev, sectors);
3949                 md_update_sb(mddev, 1);
3950         } else {
3951                 if (mddev->dev_sectors == 0 ||
3952                     mddev->dev_sectors > sectors)
3953                         mddev->dev_sectors = sectors;
3954                 else
3955                         err = -ENOSPC;
3956         }
3957         return err ? err : len;
3958 }
3959
3960 static struct md_sysfs_entry md_size =
3961 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3962
3963
3964 /* Metdata version.
3965  * This is one of
3966  *   'none' for arrays with no metadata (good luck...)
3967  *   'external' for arrays with externally managed metadata,
3968  * or N.M for internally known formats
3969  */
3970 static ssize_t
3971 metadata_show(struct mddev *mddev, char *page)
3972 {
3973         if (mddev->persistent)
3974                 return sprintf(page, "%d.%d\n",
3975                                mddev->major_version, mddev->minor_version);
3976         else if (mddev->external)
3977                 return sprintf(page, "external:%s\n", mddev->metadata_type);
3978         else
3979                 return sprintf(page, "none\n");
3980 }
3981
3982 static ssize_t
3983 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3984 {
3985         int major, minor;
3986         char *e;
3987         /* Changing the details of 'external' metadata is
3988          * always permitted.  Otherwise there must be
3989          * no devices attached to the array.
3990          */
3991         if (mddev->external && strncmp(buf, "external:", 9) == 0)
3992                 ;
3993         else if (!list_empty(&mddev->disks))
3994                 return -EBUSY;
3995
3996         if (cmd_match(buf, "none")) {
3997                 mddev->persistent = 0;
3998                 mddev->external = 0;
3999                 mddev->major_version = 0;
4000                 mddev->minor_version = 90;
4001                 return len;
4002         }
4003         if (strncmp(buf, "external:", 9) == 0) {
4004                 size_t namelen = len-9;
4005                 if (namelen >= sizeof(mddev->metadata_type))
4006                         namelen = sizeof(mddev->metadata_type)-1;
4007                 strncpy(mddev->metadata_type, buf+9, namelen);
4008                 mddev->metadata_type[namelen] = 0;
4009                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4010                         mddev->metadata_type[--namelen] = 0;
4011                 mddev->persistent = 0;
4012                 mddev->external = 1;
4013                 mddev->major_version = 0;
4014                 mddev->minor_version = 90;
4015                 return len;
4016         }
4017         major = simple_strtoul(buf, &e, 10);
4018         if (e==buf || *e != '.')
4019                 return -EINVAL;
4020         buf = e+1;
4021         minor = simple_strtoul(buf, &e, 10);
4022         if (e==buf || (*e && *e != '\n') )
4023                 return -EINVAL;
4024         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4025                 return -ENOENT;
4026         mddev->major_version = major;
4027         mddev->minor_version = minor;
4028         mddev->persistent = 1;
4029         mddev->external = 0;
4030         return len;
4031 }
4032
4033 static struct md_sysfs_entry md_metadata =
4034 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4035
4036 static ssize_t
4037 action_show(struct mddev *mddev, char *page)
4038 {
4039         char *type = "idle";
4040         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4041                 type = "frozen";
4042         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4043             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4044                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4045                         type = "reshape";
4046                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4047                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4048                                 type = "resync";
4049                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4050                                 type = "check";
4051                         else
4052                                 type = "repair";
4053                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4054                         type = "recover";
4055         }
4056         return sprintf(page, "%s\n", type);
4057 }
4058
4059 static void reap_sync_thread(struct mddev *mddev);
4060
4061 static ssize_t
4062 action_store(struct mddev *mddev, const char *page, size_t len)
4063 {
4064         if (!mddev->pers || !mddev->pers->sync_request)
4065                 return -EINVAL;
4066
4067         if (cmd_match(page, "frozen"))
4068                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4069         else
4070                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4071
4072         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4073                 if (mddev->sync_thread) {
4074                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4075                         reap_sync_thread(mddev);
4076                 }
4077         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4078                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4079                 return -EBUSY;
4080         else if (cmd_match(page, "resync"))
4081                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4082         else if (cmd_match(page, "recover")) {
4083                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4084                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4085         } else if (cmd_match(page, "reshape")) {
4086                 int err;
4087                 if (mddev->pers->start_reshape == NULL)
4088                         return -EINVAL;
4089                 err = mddev->pers->start_reshape(mddev);
4090                 if (err)
4091                         return err;
4092                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4093         } else {
4094                 if (cmd_match(page, "check"))
4095                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4096                 else if (!cmd_match(page, "repair"))
4097                         return -EINVAL;
4098                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4099                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4100         }
4101         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4102         md_wakeup_thread(mddev->thread);
4103         sysfs_notify_dirent_safe(mddev->sysfs_action);
4104         return len;
4105 }
4106
4107 static ssize_t
4108 mismatch_cnt_show(struct mddev *mddev, char *page)
4109 {
4110         return sprintf(page, "%llu\n",
4111                        (unsigned long long) mddev->resync_mismatches);
4112 }
4113
4114 static struct md_sysfs_entry md_scan_mode =
4115 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4116
4117
4118 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4119
4120 static ssize_t
4121 sync_min_show(struct mddev *mddev, char *page)
4122 {
4123         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4124                        mddev->sync_speed_min ? "local": "system");
4125 }
4126
4127 static ssize_t
4128 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4129 {
4130         int min;
4131         char *e;
4132         if (strncmp(buf, "system", 6)==0) {
4133                 mddev->sync_speed_min = 0;
4134                 return len;
4135         }
4136         min = simple_strtoul(buf, &e, 10);
4137         if (buf == e || (*e && *e != '\n') || min <= 0)
4138                 return -EINVAL;
4139         mddev->sync_speed_min = min;
4140         return len;
4141 }
4142
4143 static struct md_sysfs_entry md_sync_min =
4144 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4145
4146 static ssize_t
4147 sync_max_show(struct mddev *mddev, char *page)
4148 {
4149         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4150                        mddev->sync_speed_max ? "local": "system");
4151 }
4152
4153 static ssize_t
4154 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4155 {
4156         int max;
4157         char *e;
4158         if (strncmp(buf, "system", 6)==0) {
4159                 mddev->sync_speed_max = 0;
4160                 return len;
4161         }
4162         max = simple_strtoul(buf, &e, 10);
4163         if (buf == e || (*e && *e != '\n') || max <= 0)
4164                 return -EINVAL;
4165         mddev->sync_speed_max = max;
4166         return len;
4167 }
4168
4169 static struct md_sysfs_entry md_sync_max =
4170 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4171
4172 static ssize_t
4173 degraded_show(struct mddev *mddev, char *page)
4174 {
4175         return sprintf(page, "%d\n", mddev->degraded);
4176 }
4177 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4178
4179 static ssize_t
4180 sync_force_parallel_show(struct mddev *mddev, char *page)
4181 {
4182         return sprintf(page, "%d\n", mddev->parallel_resync);
4183 }
4184
4185 static ssize_t
4186 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4187 {
4188         long n;
4189
4190         if (strict_strtol(buf, 10, &n))
4191                 return -EINVAL;
4192
4193         if (n != 0 && n != 1)
4194                 return -EINVAL;
4195
4196         mddev->parallel_resync = n;
4197
4198         if (mddev->sync_thread)
4199                 wake_up(&resync_wait);
4200
4201         return len;
4202 }
4203
4204 /* force parallel resync, even with shared block devices */
4205 static struct md_sysfs_entry md_sync_force_parallel =
4206 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4207        sync_force_parallel_show, sync_force_parallel_store);
4208
4209 static ssize_t
4210 sync_speed_show(struct mddev *mddev, char *page)
4211 {
4212         unsigned long resync, dt, db;
4213         if (mddev->curr_resync == 0)
4214                 return sprintf(page, "none\n");
4215         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4216         dt = (jiffies - mddev->resync_mark) / HZ;
4217         if (!dt) dt++;
4218         db = resync - mddev->resync_mark_cnt;
4219         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4220 }
4221
4222 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4223
4224 static ssize_t
4225 sync_completed_show(struct mddev *mddev, char *page)
4226 {
4227         unsigned long long max_sectors, resync;
4228
4229         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4230                 return sprintf(page, "none\n");
4231
4232         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4233                 max_sectors = mddev->resync_max_sectors;
4234         else
4235                 max_sectors = mddev->dev_sectors;
4236
4237         resync = mddev->curr_resync_completed;
4238         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4239 }
4240
4241 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4242
4243 static ssize_t
4244 min_sync_show(struct mddev *mddev, char *page)
4245 {
4246         return sprintf(page, "%llu\n",
4247                        (unsigned long long)mddev->resync_min);
4248 }
4249 static ssize_t
4250 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4251 {
4252         unsigned long long min;
4253         if (strict_strtoull(buf, 10, &min))
4254                 return -EINVAL;
4255         if (min > mddev->resync_max)
4256                 return -EINVAL;
4257         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4258                 return -EBUSY;
4259
4260         /* Must be a multiple of chunk_size */
4261         if (mddev->chunk_sectors) {
4262                 sector_t temp = min;
4263                 if (sector_div(temp, mddev->chunk_sectors))
4264                         return -EINVAL;
4265         }
4266         mddev->resync_min = min;
4267
4268         return len;
4269 }
4270
4271 static struct md_sysfs_entry md_min_sync =
4272 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4273
4274 static ssize_t
4275 max_sync_show(struct mddev *mddev, char *page)
4276 {
4277         if (mddev->resync_max == MaxSector)
4278                 return sprintf(page, "max\n");
4279         else
4280                 return sprintf(page, "%llu\n",
4281                                (unsigned long long)mddev->resync_max);
4282 }
4283 static ssize_t
4284 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4285 {
4286         if (strncmp(buf, "max", 3) == 0)
4287                 mddev->resync_max = MaxSector;
4288         else {
4289                 unsigned long long max;
4290                 if (strict_strtoull(buf, 10, &max))
4291                         return -EINVAL;
4292                 if (max < mddev->resync_min)
4293                         return -EINVAL;
4294                 if (max < mddev->resync_max &&
4295                     mddev->ro == 0 &&
4296                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4297                         return -EBUSY;
4298
4299                 /* Must be a multiple of chunk_size */
4300                 if (mddev->chunk_sectors) {
4301                         sector_t temp = max;
4302                         if (sector_div(temp, mddev->chunk_sectors))
4303                                 return -EINVAL;
4304                 }
4305                 mddev->resync_max = max;
4306         }
4307         wake_up(&mddev->recovery_wait);
4308         return len;
4309 }
4310
4311 static struct md_sysfs_entry md_max_sync =
4312 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4313
4314 static ssize_t
4315 suspend_lo_show(struct mddev *mddev, char *page)
4316 {
4317         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4318 }
4319
4320 static ssize_t
4321 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4322 {
4323         char *e;
4324         unsigned long long new = simple_strtoull(buf, &e, 10);
4325         unsigned long long old = mddev->suspend_lo;
4326
4327         if (mddev->pers == NULL || 
4328             mddev->pers->quiesce == NULL)
4329                 return -EINVAL;
4330         if (buf == e || (*e && *e != '\n'))
4331                 return -EINVAL;
4332
4333         mddev->suspend_lo = new;
4334         if (new >= old)
4335                 /* Shrinking suspended region */
4336                 mddev->pers->quiesce(mddev, 2);
4337         else {
4338                 /* Expanding suspended region - need to wait */
4339                 mddev->pers->quiesce(mddev, 1);
4340                 mddev->pers->quiesce(mddev, 0);
4341         }
4342         return len;
4343 }
4344 static struct md_sysfs_entry md_suspend_lo =
4345 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4346
4347
4348 static ssize_t
4349 suspend_hi_show(struct mddev *mddev, char *page)
4350 {
4351         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4352 }
4353
4354 static ssize_t
4355 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4356 {
4357         char *e;
4358         unsigned long long new = simple_strtoull(buf, &e, 10);
4359         unsigned long long old = mddev->suspend_hi;
4360
4361         if (mddev->pers == NULL ||
4362             mddev->pers->quiesce == NULL)
4363                 return -EINVAL;
4364         if (buf == e || (*e && *e != '\n'))
4365                 return -EINVAL;
4366
4367         mddev->suspend_hi = new;
4368         if (new <= old)
4369                 /* Shrinking suspended region */
4370                 mddev->pers->quiesce(mddev, 2);
4371         else {
4372                 /* Expanding suspended region - need to wait */
4373                 mddev->pers->quiesce(mddev, 1);
4374                 mddev->pers->quiesce(mddev, 0);
4375         }
4376         return len;
4377 }
4378 static struct md_sysfs_entry md_suspend_hi =
4379 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4380
4381 static ssize_t
4382 reshape_position_show(struct mddev *mddev, char *page)
4383 {
4384         if (mddev->reshape_position != MaxSector)
4385                 return sprintf(page, "%llu\n",
4386                                (unsigned long long)mddev->reshape_position);
4387         strcpy(page, "none\n");
4388         return 5;
4389 }
4390
4391 static ssize_t
4392 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4393 {
4394         char *e;
4395         unsigned long long new = simple_strtoull(buf, &e, 10);
4396         if (mddev->pers)
4397                 return -EBUSY;
4398         if (buf == e || (*e && *e != '\n'))
4399                 return -EINVAL;
4400         mddev->reshape_position = new;
4401         mddev->delta_disks = 0;
4402         mddev->new_level = mddev->level;
4403         mddev->new_layout = mddev->layout;
4404         mddev->new_chunk_sectors = mddev->chunk_sectors;
4405         return len;
4406 }
4407
4408 static struct md_sysfs_entry md_reshape_position =
4409 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4410        reshape_position_store);
4411
4412 static ssize_t
4413 array_size_show(struct mddev *mddev, char *page)
4414 {
4415         if (mddev->external_size)
4416                 return sprintf(page, "%llu\n",
4417                                (unsigned long long)mddev->array_sectors/2);
4418         else
4419                 return sprintf(page, "default\n");
4420 }
4421
4422 static ssize_t
4423 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4424 {
4425         sector_t sectors;
4426
4427         if (strncmp(buf, "default", 7) == 0) {
4428                 if (mddev->pers)
4429                         sectors = mddev->pers->size(mddev, 0, 0);
4430                 else
4431                         sectors = mddev->array_sectors;
4432
4433                 mddev->external_size = 0;
4434         } else {
4435                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4436                         return -EINVAL;
4437                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4438                         return -E2BIG;
4439
4440                 mddev->external_size = 1;
4441         }
4442
4443         mddev->array_sectors = sectors;
4444         if (mddev->pers) {
4445                 set_capacity(mddev->gendisk, mddev->array_sectors);
4446                 revalidate_disk(mddev->gendisk);
4447         }
4448         return len;
4449 }
4450
4451 static struct md_sysfs_entry md_array_size =
4452 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4453        array_size_store);
4454
4455 static struct attribute *md_default_attrs[] = {
4456         &md_level.attr,
4457         &md_layout.attr,
4458         &md_raid_disks.attr,
4459         &md_chunk_size.attr,
4460         &md_size.attr,
4461         &md_resync_start.attr,
4462         &md_metadata.attr,
4463         &md_new_device.attr,
4464         &md_safe_delay.attr,
4465         &md_array_state.attr,
4466         &md_reshape_position.attr,
4467         &md_array_size.attr,
4468         &max_corr_read_errors.attr,
4469         NULL,
4470 };
4471
4472 static struct attribute *md_redundancy_attrs[] = {
4473         &md_scan_mode.attr,
4474         &md_mismatches.attr,
4475         &md_sync_min.attr,
4476         &md_sync_max.attr,
4477         &md_sync_speed.attr,
4478         &md_sync_force_parallel.attr,
4479         &md_sync_completed.attr,
4480         &md_min_sync.attr,
4481         &md_max_sync.attr,
4482         &md_suspend_lo.attr,
4483         &md_suspend_hi.attr,
4484         &md_bitmap.attr,
4485         &md_degraded.attr,
4486         NULL,
4487 };
4488 static struct attribute_group md_redundancy_group = {
4489         .name = NULL,
4490         .attrs = md_redundancy_attrs,
4491 };
4492
4493
4494 static ssize_t
4495 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4496 {
4497         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4498         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4499         ssize_t rv;
4500
4501         if (!entry->show)
4502                 return -EIO;
4503         spin_lock(&all_mddevs_lock);
4504         if (list_empty(&mddev->all_mddevs)) {
4505                 spin_unlock(&all_mddevs_lock);
4506                 return -EBUSY;
4507         }
4508         mddev_get(mddev);
4509         spin_unlock(&all_mddevs_lock);
4510
4511         rv = mddev_lock(mddev);
4512         if (!rv) {
4513                 rv = entry->show(mddev, page);
4514                 mddev_unlock(mddev);
4515         }
4516         mddev_put(mddev);
4517         return rv;
4518 }
4519
4520 static ssize_t
4521 md_attr_store(struct kobject *kobj, struct attribute *attr,
4522               const char *page, size_t length)
4523 {
4524         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4525         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4526         ssize_t rv;
4527
4528         if (!entry->store)
4529                 return -EIO;
4530         if (!capable(CAP_SYS_ADMIN))
4531                 return -EACCES;
4532         spin_lock(&all_mddevs_lock);
4533         if (list_empty(&mddev->all_mddevs)) {
4534                 spin_unlock(&all_mddevs_lock);
4535                 return -EBUSY;
4536         }
4537         mddev_get(mddev);
4538         spin_unlock(&all_mddevs_lock);
4539         rv = mddev_lock(mddev);
4540         if (!rv) {
4541                 rv = entry->store(mddev, page, length);
4542                 mddev_unlock(mddev);
4543         }
4544         mddev_put(mddev);
4545         return rv;
4546 }
4547
4548 static void md_free(struct kobject *ko)
4549 {
4550         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4551
4552         if (mddev->sysfs_state)
4553                 sysfs_put(mddev->sysfs_state);
4554
4555         if (mddev->gendisk) {
4556                 del_gendisk(mddev->gendisk);
4557                 put_disk(mddev->gendisk);
4558         }
4559         if (mddev->queue)
4560                 blk_cleanup_queue(mddev->queue);
4561
4562         kfree(mddev);
4563 }
4564
4565 static const struct sysfs_ops md_sysfs_ops = {
4566         .show   = md_attr_show,
4567         .store  = md_attr_store,
4568 };
4569 static struct kobj_type md_ktype = {
4570         .release        = md_free,
4571         .sysfs_ops      = &md_sysfs_ops,
4572         .default_attrs  = md_default_attrs,
4573 };
4574
4575 int mdp_major = 0;
4576
4577 static void mddev_delayed_delete(struct work_struct *ws)
4578 {
4579         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4580
4581         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4582         kobject_del(&mddev->kobj);
4583         kobject_put(&mddev->kobj);
4584 }
4585
4586 static int md_alloc(dev_t dev, char *name)
4587 {
4588         static DEFINE_MUTEX(disks_mutex);
4589         struct mddev *mddev = mddev_find(dev);
4590         struct gendisk *disk;
4591         int partitioned;
4592         int shift;
4593         int unit;
4594         int error;
4595
4596         if (!mddev)
4597                 return -ENODEV;
4598
4599         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4600         shift = partitioned ? MdpMinorShift : 0;
4601         unit = MINOR(mddev->unit) >> shift;
4602
4603         /* wait for any previous instance of this device to be
4604          * completely removed (mddev_delayed_delete).
4605          */
4606         flush_workqueue(md_misc_wq);
4607
4608         mutex_lock(&disks_mutex);
4609         error = -EEXIST;
4610         if (mddev->gendisk)
4611                 goto abort;
4612
4613         if (name) {
4614                 /* Need to ensure that 'name' is not a duplicate.
4615                  */
4616                 struct mddev *mddev2;
4617                 spin_lock(&all_mddevs_lock);
4618
4619                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4620                         if (mddev2->gendisk &&
4621                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4622                                 spin_unlock(&all_mddevs_lock);
4623                                 goto abort;
4624                         }
4625                 spin_unlock(&all_mddevs_lock);
4626         }
4627
4628         error = -ENOMEM;
4629         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4630         if (!mddev->queue)
4631                 goto abort;
4632         mddev->queue->queuedata = mddev;
4633
4634         blk_queue_make_request(mddev->queue, md_make_request);
4635
4636         disk = alloc_disk(1 << shift);
4637         if (!disk) {
4638                 blk_cleanup_queue(mddev->queue);
4639                 mddev->queue = NULL;
4640                 goto abort;
4641         }
4642         disk->major = MAJOR(mddev->unit);
4643         disk->first_minor = unit << shift;
4644         if (name)
4645                 strcpy(disk->disk_name, name);
4646         else if (partitioned)
4647                 sprintf(disk->disk_name, "md_d%d", unit);
4648         else
4649                 sprintf(disk->disk_name, "md%d", unit);
4650         disk->fops = &md_fops;
4651         disk->private_data = mddev;
4652         disk->queue = mddev->queue;
4653         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4654         /* Allow extended partitions.  This makes the
4655          * 'mdp' device redundant, but we can't really
4656          * remove it now.
4657          */
4658         disk->flags |= GENHD_FL_EXT_DEVT;
4659         mddev->gendisk = disk;
4660         /* As soon as we call add_disk(), another thread could get
4661          * through to md_open, so make sure it doesn't get too far
4662          */
4663         mutex_lock(&mddev->open_mutex);
4664         add_disk(disk);
4665
4666         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4667                                      &disk_to_dev(disk)->kobj, "%s", "md");
4668         if (error) {
4669                 /* This isn't possible, but as kobject_init_and_add is marked
4670                  * __must_check, we must do something with the result
4671                  */
4672                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4673                        disk->disk_name);
4674                 error = 0;
4675         }
4676         if (mddev->kobj.sd &&
4677             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4678                 printk(KERN_DEBUG "pointless warning\n");
4679         mutex_unlock(&mddev->open_mutex);
4680  abort:
4681         mutex_unlock(&disks_mutex);
4682         if (!error && mddev->kobj.sd) {
4683                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4684                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4685         }
4686         mddev_put(mddev);
4687         return error;
4688 }
4689
4690 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4691 {
4692         md_alloc(dev, NULL);
4693         return NULL;
4694 }
4695
4696 static int add_named_array(const char *val, struct kernel_param *kp)
4697 {
4698         /* val must be "md_*" where * is not all digits.
4699          * We allocate an array with a large free minor number, and
4700          * set the name to val.  val must not already be an active name.
4701          */
4702         int len = strlen(val);
4703         char buf[DISK_NAME_LEN];
4704
4705         while (len && val[len-1] == '\n')
4706                 len--;
4707         if (len >= DISK_NAME_LEN)
4708                 return -E2BIG;
4709         strlcpy(buf, val, len+1);
4710         if (strncmp(buf, "md_", 3) != 0)
4711                 return -EINVAL;
4712         return md_alloc(0, buf);
4713 }
4714
4715 static void md_safemode_timeout(unsigned long data)
4716 {
4717         struct mddev *mddev = (struct mddev *) data;
4718
4719         if (!atomic_read(&mddev->writes_pending)) {
4720                 mddev->safemode = 1;
4721                 if (mddev->external)
4722                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4723         }
4724         md_wakeup_thread(mddev->thread);
4725 }
4726
4727 static int start_dirty_degraded;
4728
4729 int md_run(struct mddev *mddev)
4730 {
4731         int err;
4732         struct md_rdev *rdev;
4733         struct md_personality *pers;
4734
4735         if (list_empty(&mddev->disks))
4736                 /* cannot run an array with no devices.. */
4737                 return -EINVAL;
4738
4739         if (mddev->pers)
4740                 return -EBUSY;
4741         /* Cannot run until previous stop completes properly */
4742         if (mddev->sysfs_active)
4743                 return -EBUSY;
4744
4745         /*
4746          * Analyze all RAID superblock(s)
4747          */
4748         if (!mddev->raid_disks) {
4749                 if (!mddev->persistent)
4750                         return -EINVAL;
4751                 analyze_sbs(mddev);
4752         }
4753
4754         if (mddev->level != LEVEL_NONE)
4755                 request_module("md-level-%d", mddev->level);
4756         else if (mddev->clevel[0])
4757                 request_module("md-%s", mddev->clevel);
4758
4759         /*
4760          * Drop all container device buffers, from now on
4761          * the only valid external interface is through the md
4762          * device.
4763          */
4764         list_for_each_entry(rdev, &mddev->disks, same_set) {
4765                 if (test_bit(Faulty, &rdev->flags))
4766                         continue;
4767                 sync_blockdev(rdev->bdev);
4768                 invalidate_bdev(rdev->bdev);
4769
4770                 /* perform some consistency tests on the device.
4771                  * We don't want the data to overlap the metadata,
4772                  * Internal Bitmap issues have been handled elsewhere.
4773                  */
4774                 if (rdev->meta_bdev) {
4775                         /* Nothing to check */;
4776                 } else if (rdev->data_offset < rdev->sb_start) {
4777                         if (mddev->dev_sectors &&
4778                             rdev->data_offset + mddev->dev_sectors
4779                             > rdev->sb_start) {
4780                                 printk("md: %s: data overlaps metadata\n",
4781                                        mdname(mddev));
4782                                 return -EINVAL;
4783                         }
4784                 } else {
4785                         if (rdev->sb_start + rdev->sb_size/512
4786                             > rdev->data_offset) {
4787                                 printk("md: %s: metadata overlaps data\n",
4788                                        mdname(mddev));
4789                                 return -EINVAL;
4790                         }
4791                 }
4792                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4793         }
4794
4795         if (mddev->bio_set == NULL)
4796                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4797                                                sizeof(struct mddev *));
4798
4799         spin_lock(&pers_lock);
4800         pers = find_pers(mddev->level, mddev->clevel);
4801         if (!pers || !try_module_get(pers->owner)) {
4802                 spin_unlock(&pers_lock);
4803                 if (mddev->level != LEVEL_NONE)
4804                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4805                                mddev->level);
4806                 else
4807                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4808                                mddev->clevel);
4809                 return -EINVAL;
4810         }
4811         mddev->pers = pers;
4812         spin_unlock(&pers_lock);
4813         if (mddev->level != pers->level) {
4814                 mddev->level = pers->level;
4815                 mddev->new_level = pers->level;
4816         }
4817         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4818
4819         if (mddev->reshape_position != MaxSector &&
4820             pers->start_reshape == NULL) {
4821                 /* This personality cannot handle reshaping... */
4822                 mddev->pers = NULL;
4823                 module_put(pers->owner);
4824                 return -EINVAL;
4825         }
4826
4827         if (pers->sync_request) {
4828                 /* Warn if this is a potentially silly
4829                  * configuration.
4830                  */
4831                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4832                 struct md_rdev *rdev2;
4833                 int warned = 0;
4834
4835                 list_for_each_entry(rdev, &mddev->disks, same_set)
4836                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4837                                 if (rdev < rdev2 &&
4838                                     rdev->bdev->bd_contains ==
4839                                     rdev2->bdev->bd_contains) {
4840                                         printk(KERN_WARNING
4841                                                "%s: WARNING: %s appears to be"
4842                                                " on the same physical disk as"
4843                                                " %s.\n",
4844                                                mdname(mddev),
4845                                                bdevname(rdev->bdev,b),
4846                                                bdevname(rdev2->bdev,b2));
4847                                         warned = 1;
4848                                 }
4849                         }
4850
4851                 if (warned)
4852                         printk(KERN_WARNING
4853                                "True protection against single-disk"
4854                                " failure might be compromised.\n");
4855         }
4856
4857         mddev->recovery = 0;
4858         /* may be over-ridden by personality */
4859         mddev->resync_max_sectors = mddev->dev_sectors;
4860
4861         mddev->ok_start_degraded = start_dirty_degraded;
4862
4863         if (start_readonly && mddev->ro == 0)
4864                 mddev->ro = 2; /* read-only, but switch on first write */
4865
4866         err = mddev->pers->run(mddev);
4867         if (err)
4868                 printk(KERN_ERR "md: pers->run() failed ...\n");
4869         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4870                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4871                           " but 'external_size' not in effect?\n", __func__);
4872                 printk(KERN_ERR
4873                        "md: invalid array_size %llu > default size %llu\n",
4874                        (unsigned long long)mddev->array_sectors / 2,
4875                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4876                 err = -EINVAL;
4877                 mddev->pers->stop(mddev);
4878         }
4879         if (err == 0 && mddev->pers->sync_request) {
4880                 err = bitmap_create(mddev);
4881                 if (err) {
4882                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4883                                mdname(mddev), err);
4884                         mddev->pers->stop(mddev);
4885                 }
4886         }
4887         if (err) {
4888                 module_put(mddev->pers->owner);
4889                 mddev->pers = NULL;
4890                 bitmap_destroy(mddev);
4891                 return err;
4892         }
4893         if (mddev->pers->sync_request) {
4894                 if (mddev->kobj.sd &&
4895                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4896                         printk(KERN_WARNING
4897                                "md: cannot register extra attributes for %s\n",
4898                                mdname(mddev));
4899                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4900         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4901                 mddev->ro = 0;
4902
4903         atomic_set(&mddev->writes_pending,0);
4904         atomic_set(&mddev->max_corr_read_errors,
4905                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4906         mddev->safemode = 0;
4907         mddev->safemode_timer.function = md_safemode_timeout;
4908         mddev->safemode_timer.data = (unsigned long) mddev;
4909         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4910         mddev->in_sync = 1;
4911         smp_wmb();
4912         mddev->ready = 1;
4913         list_for_each_entry(rdev, &mddev->disks, same_set)
4914                 if (rdev->raid_disk >= 0)
4915                         if (sysfs_link_rdev(mddev, rdev))
4916                                 /* failure here is OK */;
4917         
4918         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4919         
4920         if (mddev->flags)
4921                 md_update_sb(mddev, 0);
4922
4923         md_new_event(mddev);
4924         sysfs_notify_dirent_safe(mddev->sysfs_state);
4925         sysfs_notify_dirent_safe(mddev->sysfs_action);
4926         sysfs_notify(&mddev->kobj, NULL, "degraded");
4927         return 0;
4928 }
4929 EXPORT_SYMBOL_GPL(md_run);
4930
4931 static int do_md_run(struct mddev *mddev)
4932 {
4933         int err;
4934
4935         err = md_run(mddev);
4936         if (err)
4937                 goto out;
4938         err = bitmap_load(mddev);
4939         if (err) {
4940                 bitmap_destroy(mddev);
4941                 goto out;
4942         }
4943
4944         md_wakeup_thread(mddev->thread);
4945         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4946
4947         set_capacity(mddev->gendisk, mddev->array_sectors);
4948         revalidate_disk(mddev->gendisk);
4949         mddev->changed = 1;
4950         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4951 out:
4952         return err;
4953 }
4954
4955 static int restart_array(struct mddev *mddev)
4956 {
4957         struct gendisk *disk = mddev->gendisk;
4958
4959         /* Complain if it has no devices */
4960         if (list_empty(&mddev->disks))
4961                 return -ENXIO;
4962         if (!mddev->pers)
4963                 return -EINVAL;
4964         if (!mddev->ro)
4965                 return -EBUSY;
4966         mddev->safemode = 0;
4967         mddev->ro = 0;
4968         set_disk_ro(disk, 0);
4969         printk(KERN_INFO "md: %s switched to read-write mode.\n",
4970                 mdname(mddev));
4971         /* Kick recovery or resync if necessary */
4972         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4973         md_wakeup_thread(mddev->thread);
4974         md_wakeup_thread(mddev->sync_thread);
4975         sysfs_notify_dirent_safe(mddev->sysfs_state);
4976         return 0;
4977 }
4978
4979 /* similar to deny_write_access, but accounts for our holding a reference
4980  * to the file ourselves */
4981 static int deny_bitmap_write_access(struct file * file)
4982 {
4983         struct inode *inode = file->f_mapping->host;
4984
4985         spin_lock(&inode->i_lock);
4986         if (atomic_read(&inode->i_writecount) > 1) {
4987                 spin_unlock(&inode->i_lock);
4988                 return -ETXTBSY;
4989         }
4990         atomic_set(&inode->i_writecount, -1);
4991         spin_unlock(&inode->i_lock);
4992
4993         return 0;
4994 }
4995
4996 void restore_bitmap_write_access(struct file *file)
4997 {
4998         struct inode *inode = file->f_mapping->host;
4999
5000         spin_lock(&inode->i_lock);
5001         atomic_set(&inode->i_writecount, 1);
5002         spin_unlock(&inode->i_lock);
5003 }
5004
5005 static void md_clean(struct mddev *mddev)
5006 {
5007         mddev->array_sectors = 0;
5008         mddev->external_size = 0;
5009         mddev->dev_sectors = 0;
5010         mddev->raid_disks = 0;
5011         mddev->recovery_cp = 0;
5012         mddev->resync_min = 0;
5013         mddev->resync_max = MaxSector;
5014         mddev->reshape_position = MaxSector;
5015         mddev->external = 0;
5016         mddev->persistent = 0;
5017         mddev->level = LEVEL_NONE;
5018         mddev->clevel[0] = 0;
5019         mddev->flags = 0;
5020         mddev->ro = 0;
5021         mddev->metadata_type[0] = 0;
5022         mddev->chunk_sectors = 0;
5023         mddev->ctime = mddev->utime = 0;
5024         mddev->layout = 0;
5025         mddev->max_disks = 0;
5026         mddev->events = 0;
5027         mddev->can_decrease_events = 0;
5028         mddev->delta_disks = 0;
5029         mddev->new_level = LEVEL_NONE;
5030         mddev->new_layout = 0;
5031         mddev->new_chunk_sectors = 0;
5032         mddev->curr_resync = 0;
5033         mddev->resync_mismatches = 0;
5034         mddev->suspend_lo = mddev->suspend_hi = 0;
5035         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5036         mddev->recovery = 0;
5037         mddev->in_sync = 0;
5038         mddev->changed = 0;
5039         mddev->degraded = 0;
5040         mddev->safemode = 0;
5041         mddev->bitmap_info.offset = 0;
5042         mddev->bitmap_info.default_offset = 0;
5043         mddev->bitmap_info.chunksize = 0;
5044         mddev->bitmap_info.daemon_sleep = 0;
5045         mddev->bitmap_info.max_write_behind = 0;
5046 }
5047
5048 static void __md_stop_writes(struct mddev *mddev)
5049 {
5050         if (mddev->sync_thread) {
5051                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5052                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5053                 reap_sync_thread(mddev);
5054         }
5055
5056         del_timer_sync(&mddev->safemode_timer);
5057
5058         bitmap_flush(mddev);
5059         md_super_wait(mddev);
5060
5061         if (!mddev->in_sync || mddev->flags) {
5062                 /* mark array as shutdown cleanly */
5063                 mddev->in_sync = 1;
5064                 md_update_sb(mddev, 1);
5065         }
5066 }
5067
5068 void md_stop_writes(struct mddev *mddev)
5069 {
5070         mddev_lock(mddev);
5071         __md_stop_writes(mddev);
5072         mddev_unlock(mddev);
5073 }
5074 EXPORT_SYMBOL_GPL(md_stop_writes);
5075
5076 void md_stop(struct mddev *mddev)
5077 {
5078         mddev->ready = 0;
5079         mddev->pers->stop(mddev);
5080         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5081                 mddev->to_remove = &md_redundancy_group;
5082         module_put(mddev->pers->owner);
5083         mddev->pers = NULL;
5084         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5085 }
5086 EXPORT_SYMBOL_GPL(md_stop);
5087
5088 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5089 {
5090         int err = 0;
5091         mutex_lock(&mddev->open_mutex);
5092         if (atomic_read(&mddev->openers) > !!bdev) {
5093                 printk("md: %s still in use.\n",mdname(mddev));
5094                 err = -EBUSY;
5095                 goto out;
5096         }
5097         if (bdev)
5098                 sync_blockdev(bdev);
5099         if (mddev->pers) {
5100                 __md_stop_writes(mddev);
5101
5102                 err  = -ENXIO;
5103                 if (mddev->ro==1)
5104                         goto out;
5105                 mddev->ro = 1;
5106                 set_disk_ro(mddev->gendisk, 1);
5107                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5108                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5109                 err = 0;        
5110         }
5111 out:
5112         mutex_unlock(&mddev->open_mutex);
5113         return err;
5114 }
5115
5116 /* mode:
5117  *   0 - completely stop and dis-assemble array
5118  *   2 - stop but do not disassemble array
5119  */
5120 static int do_md_stop(struct mddev * mddev, int mode,
5121                       struct block_device *bdev)
5122 {
5123         struct gendisk *disk = mddev->gendisk;
5124         struct md_rdev *rdev;
5125
5126         mutex_lock(&mddev->open_mutex);
5127         if (atomic_read(&mddev->openers) > !!bdev ||
5128             mddev->sysfs_active) {
5129                 printk("md: %s still in use.\n",mdname(mddev));
5130                 mutex_unlock(&mddev->open_mutex);
5131                 return -EBUSY;
5132         }
5133         if (bdev)
5134                 /* It is possible IO was issued on some other
5135                  * open file which was closed before we took ->open_mutex.
5136                  * As that was not the last close __blkdev_put will not
5137                  * have called sync_blockdev, so we must.
5138                  */
5139                 sync_blockdev(bdev);
5140
5141         if (mddev->pers) {
5142                 if (mddev->ro)
5143                         set_disk_ro(disk, 0);
5144
5145                 __md_stop_writes(mddev);
5146                 md_stop(mddev);
5147                 mddev->queue->merge_bvec_fn = NULL;
5148                 mddev->queue->backing_dev_info.congested_fn = NULL;
5149
5150                 /* tell userspace to handle 'inactive' */
5151                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5152
5153                 list_for_each_entry(rdev, &mddev->disks, same_set)
5154                         if (rdev->raid_disk >= 0)
5155                                 sysfs_unlink_rdev(mddev, rdev);
5156
5157                 set_capacity(disk, 0);
5158                 mutex_unlock(&mddev->open_mutex);
5159                 mddev->changed = 1;
5160                 revalidate_disk(disk);
5161
5162                 if (mddev->ro)
5163                         mddev->ro = 0;
5164         } else
5165                 mutex_unlock(&mddev->open_mutex);
5166         /*
5167          * Free resources if final stop
5168          */
5169         if (mode == 0) {
5170                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5171
5172                 bitmap_destroy(mddev);
5173                 if (mddev->bitmap_info.file) {
5174                         restore_bitmap_write_access(mddev->bitmap_info.file);
5175                         fput(mddev->bitmap_info.file);
5176                         mddev->bitmap_info.file = NULL;
5177                 }
5178                 mddev->bitmap_info.offset = 0;
5179
5180                 export_array(mddev);
5181
5182                 md_clean(mddev);
5183                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5184                 if (mddev->hold_active == UNTIL_STOP)
5185                         mddev->hold_active = 0;
5186         }
5187         blk_integrity_unregister(disk);
5188         md_new_event(mddev);
5189         sysfs_notify_dirent_safe(mddev->sysfs_state);
5190         return 0;
5191 }
5192
5193 #ifndef MODULE
5194 static void autorun_array(struct mddev *mddev)
5195 {
5196         struct md_rdev *rdev;
5197         int err;
5198
5199         if (list_empty(&mddev->disks))
5200                 return;
5201
5202         printk(KERN_INFO "md: running: ");
5203
5204         list_for_each_entry(rdev, &mddev->disks, same_set) {
5205                 char b[BDEVNAME_SIZE];
5206                 printk("<%s>", bdevname(rdev->bdev,b));
5207         }
5208         printk("\n");
5209
5210         err = do_md_run(mddev);
5211         if (err) {
5212                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5213                 do_md_stop(mddev, 0, NULL);
5214         }
5215 }
5216
5217 /*
5218  * lets try to run arrays based on all disks that have arrived
5219  * until now. (those are in pending_raid_disks)
5220  *
5221  * the method: pick the first pending disk, collect all disks with
5222  * the same UUID, remove all from the pending list and put them into
5223  * the 'same_array' list. Then order this list based on superblock
5224  * update time (freshest comes first), kick out 'old' disks and
5225  * compare superblocks. If everything's fine then run it.
5226  *
5227  * If "unit" is allocated, then bump its reference count
5228  */
5229 static void autorun_devices(int part)
5230 {
5231         struct md_rdev *rdev0, *rdev, *tmp;
5232         struct mddev *mddev;
5233         char b[BDEVNAME_SIZE];
5234
5235         printk(KERN_INFO "md: autorun ...\n");
5236         while (!list_empty(&pending_raid_disks)) {
5237                 int unit;
5238                 dev_t dev;
5239                 LIST_HEAD(candidates);
5240                 rdev0 = list_entry(pending_raid_disks.next,
5241                                          struct md_rdev, same_set);
5242
5243                 printk(KERN_INFO "md: considering %s ...\n",
5244                         bdevname(rdev0->bdev,b));
5245                 INIT_LIST_HEAD(&candidates);
5246                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5247                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5248                                 printk(KERN_INFO "md:  adding %s ...\n",
5249                                         bdevname(rdev->bdev,b));
5250                                 list_move(&rdev->same_set, &candidates);
5251                         }
5252                 /*
5253                  * now we have a set of devices, with all of them having
5254                  * mostly sane superblocks. It's time to allocate the
5255                  * mddev.
5256                  */
5257                 if (part) {
5258                         dev = MKDEV(mdp_major,
5259                                     rdev0->preferred_minor << MdpMinorShift);
5260                         unit = MINOR(dev) >> MdpMinorShift;
5261                 } else {
5262                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5263                         unit = MINOR(dev);
5264                 }
5265                 if (rdev0->preferred_minor != unit) {
5266                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5267                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5268                         break;
5269                 }
5270
5271                 md_probe(dev, NULL, NULL);
5272                 mddev = mddev_find(dev);
5273                 if (!mddev || !mddev->gendisk) {
5274                         if (mddev)
5275                                 mddev_put(mddev);
5276                         printk(KERN_ERR
5277                                 "md: cannot allocate memory for md drive.\n");
5278                         break;
5279                 }
5280                 if (mddev_lock(mddev)) 
5281                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5282                                mdname(mddev));
5283                 else if (mddev->raid_disks || mddev->major_version
5284                          || !list_empty(&mddev->disks)) {
5285                         printk(KERN_WARNING 
5286                                 "md: %s already running, cannot run %s\n",
5287                                 mdname(mddev), bdevname(rdev0->bdev,b));
5288                         mddev_unlock(mddev);
5289                 } else {
5290                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5291                         mddev->persistent = 1;
5292                         rdev_for_each_list(rdev, tmp, &candidates) {
5293                                 list_del_init(&rdev->same_set);
5294                                 if (bind_rdev_to_array(rdev, mddev))
5295                                         export_rdev(rdev);
5296                         }
5297                         autorun_array(mddev);
5298                         mddev_unlock(mddev);
5299                 }
5300                 /* on success, candidates will be empty, on error
5301                  * it won't...
5302                  */
5303                 rdev_for_each_list(rdev, tmp, &candidates) {
5304                         list_del_init(&rdev->same_set);
5305                         export_rdev(rdev);
5306                 }
5307                 mddev_put(mddev);
5308         }
5309         printk(KERN_INFO "md: ... autorun DONE.\n");
5310 }
5311 #endif /* !MODULE */
5312
5313 static int get_version(void __user * arg)
5314 {
5315         mdu_version_t ver;
5316
5317         ver.major = MD_MAJOR_VERSION;
5318         ver.minor = MD_MINOR_VERSION;
5319         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5320
5321         if (copy_to_user(arg, &ver, sizeof(ver)))
5322                 return -EFAULT;
5323
5324         return 0;
5325 }
5326
5327 static int get_array_info(struct mddev * mddev, void __user * arg)
5328 {
5329         mdu_array_info_t info;
5330         int nr,working,insync,failed,spare;
5331         struct md_rdev *rdev;
5332
5333         nr=working=insync=failed=spare=0;
5334         list_for_each_entry(rdev, &mddev->disks, same_set) {
5335                 nr++;
5336                 if (test_bit(Faulty, &rdev->flags))
5337                         failed++;
5338                 else {
5339                         working++;
5340                         if (test_bit(In_sync, &rdev->flags))
5341                                 insync++;       
5342                         else
5343                                 spare++;
5344                 }
5345         }
5346
5347         info.major_version = mddev->major_version;
5348         info.minor_version = mddev->minor_version;
5349         info.patch_version = MD_PATCHLEVEL_VERSION;
5350         info.ctime         = mddev->ctime;
5351         info.level         = mddev->level;
5352         info.size          = mddev->dev_sectors / 2;
5353         if (info.size != mddev->dev_sectors / 2) /* overflow */
5354                 info.size = -1;
5355         info.nr_disks      = nr;
5356         info.raid_disks    = mddev->raid_disks;
5357         info.md_minor      = mddev->md_minor;
5358         info.not_persistent= !mddev->persistent;
5359
5360         info.utime         = mddev->utime;
5361         info.state         = 0;
5362         if (mddev->in_sync)
5363                 info.state = (1<<MD_SB_CLEAN);
5364         if (mddev->bitmap && mddev->bitmap_info.offset)
5365                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5366         info.active_disks  = insync;
5367         info.working_disks = working;
5368         info.failed_disks  = failed;
5369         info.spare_disks   = spare;
5370
5371         info.layout        = mddev->layout;
5372         info.chunk_size    = mddev->chunk_sectors << 9;
5373
5374         if (copy_to_user(arg, &info, sizeof(info)))
5375                 return -EFAULT;
5376
5377         return 0;
5378 }
5379
5380 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5381 {
5382         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5383         char *ptr, *buf = NULL;
5384         int err = -ENOMEM;
5385
5386         if (md_allow_write(mddev))
5387                 file = kmalloc(sizeof(*file), GFP_NOIO);
5388         else
5389                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5390
5391         if (!file)
5392                 goto out;
5393
5394         /* bitmap disabled, zero the first byte and copy out */
5395         if (!mddev->bitmap || !mddev->bitmap->file) {
5396                 file->pathname[0] = '\0';
5397                 goto copy_out;
5398         }
5399
5400         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5401         if (!buf)
5402                 goto out;
5403
5404         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5405         if (IS_ERR(ptr))
5406                 goto out;
5407
5408         strcpy(file->pathname, ptr);
5409
5410 copy_out:
5411         err = 0;
5412         if (copy_to_user(arg, file, sizeof(*file)))
5413                 err = -EFAULT;
5414 out:
5415         kfree(buf);
5416         kfree(file);
5417         return err;
5418 }
5419
5420 static int get_disk_info(struct mddev * mddev, void __user * arg)
5421 {
5422         mdu_disk_info_t info;
5423         struct md_rdev *rdev;
5424
5425         if (copy_from_user(&info, arg, sizeof(info)))
5426                 return -EFAULT;
5427
5428         rdev = find_rdev_nr(mddev, info.number);
5429         if (rdev) {
5430                 info.major = MAJOR(rdev->bdev->bd_dev);
5431                 info.minor = MINOR(rdev->bdev->bd_dev);
5432                 info.raid_disk = rdev->raid_disk;
5433                 info.state = 0;
5434                 if (test_bit(Faulty, &rdev->flags))
5435                         info.state |= (1<<MD_DISK_FAULTY);
5436                 else if (test_bit(In_sync, &rdev->flags)) {
5437                         info.state |= (1<<MD_DISK_ACTIVE);
5438                         info.state |= (1<<MD_DISK_SYNC);
5439                 }
5440                 if (test_bit(WriteMostly, &rdev->flags))
5441                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5442         } else {
5443                 info.major = info.minor = 0;
5444                 info.raid_disk = -1;
5445                 info.state = (1<<MD_DISK_REMOVED);
5446         }
5447
5448         if (copy_to_user(arg, &info, sizeof(info)))
5449                 return -EFAULT;
5450
5451         return 0;
5452 }
5453
5454 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5455 {
5456         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5457         struct md_rdev *rdev;
5458         dev_t dev = MKDEV(info->major,info->minor);
5459
5460         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5461                 return -EOVERFLOW;
5462
5463         if (!mddev->raid_disks) {
5464                 int err;
5465                 /* expecting a device which has a superblock */
5466                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5467                 if (IS_ERR(rdev)) {
5468                         printk(KERN_WARNING 
5469                                 "md: md_import_device returned %ld\n",
5470                                 PTR_ERR(rdev));
5471                         return PTR_ERR(rdev);
5472                 }
5473                 if (!list_empty(&mddev->disks)) {
5474                         struct md_rdev *rdev0
5475                                 = list_entry(mddev->disks.next,
5476                                              struct md_rdev, same_set);
5477                         err = super_types[mddev->major_version]
5478                                 .load_super(rdev, rdev0, mddev->minor_version);
5479                         if (err < 0) {
5480                                 printk(KERN_WARNING 
5481                                         "md: %s has different UUID to %s\n",
5482                                         bdevname(rdev->bdev,b), 
5483                                         bdevname(rdev0->bdev,b2));
5484                                 export_rdev(rdev);
5485                                 return -EINVAL;
5486                         }
5487                 }
5488                 err = bind_rdev_to_array(rdev, mddev);
5489                 if (err)
5490                         export_rdev(rdev);
5491                 return err;
5492         }
5493
5494         /*
5495          * add_new_disk can be used once the array is assembled
5496          * to add "hot spares".  They must already have a superblock
5497          * written
5498          */
5499         if (mddev->pers) {
5500                 int err;
5501                 if (!mddev->pers->hot_add_disk) {
5502                         printk(KERN_WARNING 
5503                                 "%s: personality does not support diskops!\n",
5504                                mdname(mddev));
5505                         return -EINVAL;
5506                 }
5507                 if (mddev->persistent)
5508                         rdev = md_import_device(dev, mddev->major_version,
5509                                                 mddev->minor_version);
5510                 else
5511                         rdev = md_import_device(dev, -1, -1);
5512                 if (IS_ERR(rdev)) {
5513                         printk(KERN_WARNING 
5514                                 "md: md_import_device returned %ld\n",
5515                                 PTR_ERR(rdev));
5516                         return PTR_ERR(rdev);
5517                 }
5518                 /* set saved_raid_disk if appropriate */
5519                 if (!mddev->persistent) {
5520                         if (info->state & (1<<MD_DISK_SYNC)  &&
5521                             info->raid_disk < mddev->raid_disks) {
5522                                 rdev->raid_disk = info->raid_disk;
5523                                 set_bit(In_sync, &rdev->flags);
5524                         } else
5525                                 rdev->raid_disk = -1;
5526                 } else
5527                         super_types[mddev->major_version].
5528                                 validate_super(mddev, rdev);
5529                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5530                     (!test_bit(In_sync, &rdev->flags) ||
5531                      rdev->raid_disk != info->raid_disk)) {
5532                         /* This was a hot-add request, but events doesn't
5533                          * match, so reject it.
5534                          */
5535                         export_rdev(rdev);
5536                         return -EINVAL;
5537                 }
5538
5539                 if (test_bit(In_sync, &rdev->flags))
5540                         rdev->saved_raid_disk = rdev->raid_disk;
5541                 else
5542                         rdev->saved_raid_disk = -1;
5543
5544                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5545                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5546                         set_bit(WriteMostly, &rdev->flags);
5547                 else
5548                         clear_bit(WriteMostly, &rdev->flags);
5549
5550                 rdev->raid_disk = -1;
5551                 err = bind_rdev_to_array(rdev, mddev);
5552                 if (!err && !mddev->pers->hot_remove_disk) {
5553                         /* If there is hot_add_disk but no hot_remove_disk
5554                          * then added disks for geometry changes,
5555                          * and should be added immediately.
5556                          */
5557                         super_types[mddev->major_version].
5558                                 validate_super(mddev, rdev);
5559                         err = mddev->pers->hot_add_disk(mddev, rdev);
5560                         if (err)
5561                                 unbind_rdev_from_array(rdev);
5562                 }
5563                 if (err)
5564                         export_rdev(rdev);
5565                 else
5566                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5567
5568                 md_update_sb(mddev, 1);
5569                 if (mddev->degraded)
5570                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5571                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5572                 if (!err)
5573                         md_new_event(mddev);
5574                 md_wakeup_thread(mddev->thread);
5575                 return err;
5576         }
5577
5578         /* otherwise, add_new_disk is only allowed
5579          * for major_version==0 superblocks
5580          */
5581         if (mddev->major_version != 0) {
5582                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5583                        mdname(mddev));
5584                 return -EINVAL;
5585         }
5586
5587         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5588                 int err;
5589                 rdev = md_import_device(dev, -1, 0);
5590                 if (IS_ERR(rdev)) {
5591                         printk(KERN_WARNING 
5592                                 "md: error, md_import_device() returned %ld\n",
5593                                 PTR_ERR(rdev));
5594                         return PTR_ERR(rdev);
5595                 }
5596                 rdev->desc_nr = info->number;
5597                 if (info->raid_disk < mddev->raid_disks)
5598                         rdev->raid_disk = info->raid_disk;
5599                 else
5600                         rdev->raid_disk = -1;
5601
5602                 if (rdev->raid_disk < mddev->raid_disks)
5603                         if (info->state & (1<<MD_DISK_SYNC))
5604                                 set_bit(In_sync, &rdev->flags);
5605
5606                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5607                         set_bit(WriteMostly, &rdev->flags);
5608
5609                 if (!mddev->persistent) {
5610                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5611                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5612                 } else
5613                         rdev->sb_start = calc_dev_sboffset(rdev);
5614                 rdev->sectors = rdev->sb_start;
5615
5616                 err = bind_rdev_to_array(rdev, mddev);
5617                 if (err) {
5618                         export_rdev(rdev);
5619                         return err;
5620                 }
5621         }
5622
5623         return 0;
5624 }
5625
5626 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5627 {
5628         char b[BDEVNAME_SIZE];
5629         struct md_rdev *rdev;
5630
5631         rdev = find_rdev(mddev, dev);
5632         if (!rdev)
5633                 return -ENXIO;
5634
5635         if (rdev->raid_disk >= 0)
5636                 goto busy;
5637
5638         kick_rdev_from_array(rdev);
5639         md_update_sb(mddev, 1);
5640         md_new_event(mddev);
5641
5642         return 0;
5643 busy:
5644         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5645                 bdevname(rdev->bdev,b), mdname(mddev));
5646         return -EBUSY;
5647 }
5648
5649 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5650 {
5651         char b[BDEVNAME_SIZE];
5652         int err;
5653         struct md_rdev *rdev;
5654
5655         if (!mddev->pers)
5656                 return -ENODEV;
5657
5658         if (mddev->major_version != 0) {
5659                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5660                         " version-0 superblocks.\n",
5661                         mdname(mddev));
5662                 return -EINVAL;
5663         }
5664         if (!mddev->pers->hot_add_disk) {
5665                 printk(KERN_WARNING 
5666                         "%s: personality does not support diskops!\n",
5667                         mdname(mddev));
5668                 return -EINVAL;
5669         }
5670
5671         rdev = md_import_device(dev, -1, 0);
5672         if (IS_ERR(rdev)) {
5673                 printk(KERN_WARNING 
5674                         "md: error, md_import_device() returned %ld\n",
5675                         PTR_ERR(rdev));
5676                 return -EINVAL;
5677         }
5678
5679         if (mddev->persistent)
5680                 rdev->sb_start = calc_dev_sboffset(rdev);
5681         else
5682                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5683
5684         rdev->sectors = rdev->sb_start;
5685
5686         if (test_bit(Faulty, &rdev->flags)) {
5687                 printk(KERN_WARNING 
5688                         "md: can not hot-add faulty %s disk to %s!\n",
5689                         bdevname(rdev->bdev,b), mdname(mddev));
5690                 err = -EINVAL;
5691                 goto abort_export;
5692         }
5693         clear_bit(In_sync, &rdev->flags);
5694         rdev->desc_nr = -1;
5695         rdev->saved_raid_disk = -1;
5696         err = bind_rdev_to_array(rdev, mddev);
5697         if (err)
5698                 goto abort_export;
5699
5700         /*
5701          * The rest should better be atomic, we can have disk failures
5702          * noticed in interrupt contexts ...
5703          */
5704
5705         rdev->raid_disk = -1;
5706
5707         md_update_sb(mddev, 1);
5708
5709         /*
5710          * Kick recovery, maybe this spare has to be added to the
5711          * array immediately.
5712          */
5713         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5714         md_wakeup_thread(mddev->thread);
5715         md_new_event(mddev);
5716         return 0;
5717
5718 abort_export:
5719         export_rdev(rdev);
5720         return err;
5721 }
5722
5723 static int set_bitmap_file(struct mddev *mddev, int fd)
5724 {
5725         int err;
5726
5727         if (mddev->pers) {
5728                 if (!mddev->pers->quiesce)
5729                         return -EBUSY;
5730                 if (mddev->recovery || mddev->sync_thread)
5731                         return -EBUSY;
5732                 /* we should be able to change the bitmap.. */
5733         }
5734
5735
5736         if (fd >= 0) {
5737                 if (mddev->bitmap)
5738                         return -EEXIST; /* cannot add when bitmap is present */
5739                 mddev->bitmap_info.file = fget(fd);
5740
5741                 if (mddev->bitmap_info.file == NULL) {
5742                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5743                                mdname(mddev));
5744                         return -EBADF;
5745                 }
5746
5747                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5748                 if (err) {
5749                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5750                                mdname(mddev));
5751                         fput(mddev->bitmap_info.file);
5752                         mddev->bitmap_info.file = NULL;
5753                         return err;
5754                 }
5755                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5756         } else if (mddev->bitmap == NULL)
5757                 return -ENOENT; /* cannot remove what isn't there */
5758         err = 0;
5759         if (mddev->pers) {
5760                 mddev->pers->quiesce(mddev, 1);
5761                 if (fd >= 0) {
5762                         err = bitmap_create(mddev);
5763                         if (!err)
5764                                 err = bitmap_load(mddev);
5765                 }
5766                 if (fd < 0 || err) {
5767                         bitmap_destroy(mddev);
5768                         fd = -1; /* make sure to put the file */
5769                 }
5770                 mddev->pers->quiesce(mddev, 0);
5771         }
5772         if (fd < 0) {
5773                 if (mddev->bitmap_info.file) {
5774                         restore_bitmap_write_access(mddev->bitmap_info.file);
5775                         fput(mddev->bitmap_info.file);
5776                 }
5777                 mddev->bitmap_info.file = NULL;
5778         }
5779
5780         return err;
5781 }
5782
5783 /*
5784  * set_array_info is used two different ways
5785  * The original usage is when creating a new array.
5786  * In this usage, raid_disks is > 0 and it together with
5787  *  level, size, not_persistent,layout,chunksize determine the
5788  *  shape of the array.
5789  *  This will always create an array with a type-0.90.0 superblock.
5790  * The newer usage is when assembling an array.
5791  *  In this case raid_disks will be 0, and the major_version field is
5792  *  use to determine which style super-blocks are to be found on the devices.
5793  *  The minor and patch _version numbers are also kept incase the
5794  *  super_block handler wishes to interpret them.
5795  */
5796 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5797 {
5798
5799         if (info->raid_disks == 0) {
5800                 /* just setting version number for superblock loading */
5801                 if (info->major_version < 0 ||
5802                     info->major_version >= ARRAY_SIZE(super_types) ||
5803                     super_types[info->major_version].name == NULL) {
5804                         /* maybe try to auto-load a module? */
5805                         printk(KERN_INFO 
5806                                 "md: superblock version %d not known\n",
5807                                 info->major_version);
5808                         return -EINVAL;
5809                 }
5810                 mddev->major_version = info->major_version;
5811                 mddev->minor_version = info->minor_version;
5812                 mddev->patch_version = info->patch_version;
5813                 mddev->persistent = !info->not_persistent;
5814                 /* ensure mddev_put doesn't delete this now that there
5815                  * is some minimal configuration.
5816                  */
5817                 mddev->ctime         = get_seconds();
5818                 return 0;
5819         }
5820         mddev->major_version = MD_MAJOR_VERSION;
5821         mddev->minor_version = MD_MINOR_VERSION;
5822         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5823         mddev->ctime         = get_seconds();
5824
5825         mddev->level         = info->level;
5826         mddev->clevel[0]     = 0;
5827         mddev->dev_sectors   = 2 * (sector_t)info->size;
5828         mddev->raid_disks    = info->raid_disks;
5829         /* don't set md_minor, it is determined by which /dev/md* was
5830          * openned
5831          */
5832         if (info->state & (1<<MD_SB_CLEAN))
5833                 mddev->recovery_cp = MaxSector;
5834         else
5835                 mddev->recovery_cp = 0;
5836         mddev->persistent    = ! info->not_persistent;
5837         mddev->external      = 0;
5838
5839         mddev->layout        = info->layout;
5840         mddev->chunk_sectors = info->chunk_size >> 9;
5841
5842         mddev->max_disks     = MD_SB_DISKS;
5843
5844         if (mddev->persistent)
5845                 mddev->flags         = 0;
5846         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5847
5848         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5849         mddev->bitmap_info.offset = 0;
5850
5851         mddev->reshape_position = MaxSector;
5852
5853         /*
5854          * Generate a 128 bit UUID
5855          */
5856         get_random_bytes(mddev->uuid, 16);
5857
5858         mddev->new_level = mddev->level;
5859         mddev->new_chunk_sectors = mddev->chunk_sectors;
5860         mddev->new_layout = mddev->layout;
5861         mddev->delta_disks = 0;
5862
5863         return 0;
5864 }
5865
5866 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5867 {
5868         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5869
5870         if (mddev->external_size)
5871                 return;
5872
5873         mddev->array_sectors = array_sectors;
5874 }
5875 EXPORT_SYMBOL(md_set_array_sectors);
5876
5877 static int update_size(struct mddev *mddev, sector_t num_sectors)
5878 {
5879         struct md_rdev *rdev;
5880         int rv;
5881         int fit = (num_sectors == 0);
5882
5883         if (mddev->pers->resize == NULL)
5884                 return -EINVAL;
5885         /* The "num_sectors" is the number of sectors of each device that
5886          * is used.  This can only make sense for arrays with redundancy.
5887          * linear and raid0 always use whatever space is available. We can only
5888          * consider changing this number if no resync or reconstruction is
5889          * happening, and if the new size is acceptable. It must fit before the
5890          * sb_start or, if that is <data_offset, it must fit before the size
5891          * of each device.  If num_sectors is zero, we find the largest size
5892          * that fits.
5893          */
5894         if (mddev->sync_thread)
5895                 return -EBUSY;
5896         if (mddev->bitmap)
5897                 /* Sorry, cannot grow a bitmap yet, just remove it,
5898                  * grow, and re-add.
5899                  */
5900                 return -EBUSY;
5901         list_for_each_entry(rdev, &mddev->disks, same_set) {
5902                 sector_t avail = rdev->sectors;
5903
5904                 if (fit && (num_sectors == 0 || num_sectors > avail))
5905                         num_sectors = avail;
5906                 if (avail < num_sectors)
5907                         return -ENOSPC;
5908         }
5909         rv = mddev->pers->resize(mddev, num_sectors);
5910         if (!rv)
5911                 revalidate_disk(mddev->gendisk);
5912         return rv;
5913 }
5914
5915 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5916 {
5917         int rv;
5918         /* change the number of raid disks */
5919         if (mddev->pers->check_reshape == NULL)
5920                 return -EINVAL;
5921         if (raid_disks <= 0 ||
5922             (mddev->max_disks && raid_disks >= mddev->max_disks))
5923                 return -EINVAL;
5924         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5925                 return -EBUSY;
5926         mddev->delta_disks = raid_disks - mddev->raid_disks;
5927
5928         rv = mddev->pers->check_reshape(mddev);
5929         if (rv < 0)
5930                 mddev->delta_disks = 0;
5931         return rv;
5932 }
5933
5934
5935 /*
5936  * update_array_info is used to change the configuration of an
5937  * on-line array.
5938  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5939  * fields in the info are checked against the array.
5940  * Any differences that cannot be handled will cause an error.
5941  * Normally, only one change can be managed at a time.
5942  */
5943 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5944 {
5945         int rv = 0;
5946         int cnt = 0;
5947         int state = 0;
5948
5949         /* calculate expected state,ignoring low bits */
5950         if (mddev->bitmap && mddev->bitmap_info.offset)
5951                 state |= (1 << MD_SB_BITMAP_PRESENT);
5952
5953         if (mddev->major_version != info->major_version ||
5954             mddev->minor_version != info->minor_version ||
5955 /*          mddev->patch_version != info->patch_version || */
5956             mddev->ctime         != info->ctime         ||
5957             mddev->level         != info->level         ||
5958 /*          mddev->layout        != info->layout        || */
5959             !mddev->persistent   != info->not_persistent||
5960             mddev->chunk_sectors != info->chunk_size >> 9 ||
5961             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5962             ((state^info->state) & 0xfffffe00)
5963                 )
5964                 return -EINVAL;
5965         /* Check there is only one change */
5966         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5967                 cnt++;
5968         if (mddev->raid_disks != info->raid_disks)
5969                 cnt++;
5970         if (mddev->layout != info->layout)
5971                 cnt++;
5972         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5973                 cnt++;
5974         if (cnt == 0)
5975                 return 0;
5976         if (cnt > 1)
5977                 return -EINVAL;
5978
5979         if (mddev->layout != info->layout) {
5980                 /* Change layout
5981                  * we don't need to do anything at the md level, the
5982                  * personality will take care of it all.
5983                  */
5984                 if (mddev->pers->check_reshape == NULL)
5985                         return -EINVAL;
5986                 else {
5987                         mddev->new_layout = info->layout;
5988                         rv = mddev->pers->check_reshape(mddev);
5989                         if (rv)
5990                                 mddev->new_layout = mddev->layout;
5991                         return rv;
5992                 }
5993         }
5994         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5995                 rv = update_size(mddev, (sector_t)info->size * 2);
5996
5997         if (mddev->raid_disks    != info->raid_disks)
5998                 rv = update_raid_disks(mddev, info->raid_disks);
5999
6000         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6001                 if (mddev->pers->quiesce == NULL)
6002                         return -EINVAL;
6003                 if (mddev->recovery || mddev->sync_thread)
6004                         return -EBUSY;
6005                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6006                         /* add the bitmap */
6007                         if (mddev->bitmap)
6008                                 return -EEXIST;
6009                         if (mddev->bitmap_info.default_offset == 0)
6010                                 return -EINVAL;
6011                         mddev->bitmap_info.offset =
6012                                 mddev->bitmap_info.default_offset;
6013                         mddev->pers->quiesce(mddev, 1);
6014                         rv = bitmap_create(mddev);
6015                         if (!rv)
6016                                 rv = bitmap_load(mddev);
6017                         if (rv)
6018                                 bitmap_destroy(mddev);
6019                         mddev->pers->quiesce(mddev, 0);
6020                 } else {
6021                         /* remove the bitmap */
6022                         if (!mddev->bitmap)
6023                                 return -ENOENT;
6024                         if (mddev->bitmap->file)
6025                                 return -EINVAL;
6026                         mddev->pers->quiesce(mddev, 1);
6027                         bitmap_destroy(mddev);
6028                         mddev->pers->quiesce(mddev, 0);
6029                         mddev->bitmap_info.offset = 0;
6030                 }
6031         }
6032         md_update_sb(mddev, 1);
6033         return rv;
6034 }
6035
6036 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6037 {
6038         struct md_rdev *rdev;
6039
6040         if (mddev->pers == NULL)
6041                 return -ENODEV;
6042
6043         rdev = find_rdev(mddev, dev);
6044         if (!rdev)
6045                 return -ENODEV;
6046
6047         md_error(mddev, rdev);
6048         if (!test_bit(Faulty, &rdev->flags))
6049                 return -EBUSY;
6050         return 0;
6051 }
6052
6053 /*
6054  * We have a problem here : there is no easy way to give a CHS
6055  * virtual geometry. We currently pretend that we have a 2 heads
6056  * 4 sectors (with a BIG number of cylinders...). This drives
6057  * dosfs just mad... ;-)
6058  */
6059 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6060 {
6061         struct mddev *mddev = bdev->bd_disk->private_data;
6062
6063         geo->heads = 2;
6064         geo->sectors = 4;
6065         geo->cylinders = mddev->array_sectors / 8;
6066         return 0;
6067 }
6068
6069 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6070                         unsigned int cmd, unsigned long arg)
6071 {
6072         int err = 0;
6073         void __user *argp = (void __user *)arg;
6074         struct mddev *mddev = NULL;
6075         int ro;
6076
6077         if (!capable(CAP_SYS_ADMIN))
6078                 return -EACCES;
6079
6080         /*
6081          * Commands dealing with the RAID driver but not any
6082          * particular array:
6083          */
6084         switch (cmd)
6085         {
6086                 case RAID_VERSION:
6087                         err = get_version(argp);
6088                         goto done;
6089
6090                 case PRINT_RAID_DEBUG:
6091                         err = 0;
6092                         md_print_devices();
6093                         goto done;
6094
6095 #ifndef MODULE
6096                 case RAID_AUTORUN:
6097                         err = 0;
6098                         autostart_arrays(arg);
6099                         goto done;
6100 #endif
6101                 default:;
6102         }
6103
6104         /*
6105          * Commands creating/starting a new array:
6106          */
6107
6108         mddev = bdev->bd_disk->private_data;
6109
6110         if (!mddev) {
6111                 BUG();
6112                 goto abort;
6113         }
6114
6115         err = mddev_lock(mddev);
6116         if (err) {
6117                 printk(KERN_INFO 
6118                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6119                         err, cmd);
6120                 goto abort;
6121         }
6122
6123         switch (cmd)
6124         {
6125                 case SET_ARRAY_INFO:
6126                         {
6127                                 mdu_array_info_t info;
6128                                 if (!arg)
6129                                         memset(&info, 0, sizeof(info));
6130                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6131                                         err = -EFAULT;
6132                                         goto abort_unlock;
6133                                 }
6134                                 if (mddev->pers) {
6135                                         err = update_array_info(mddev, &info);
6136                                         if (err) {
6137                                                 printk(KERN_WARNING "md: couldn't update"
6138                                                        " array info. %d\n", err);
6139                                                 goto abort_unlock;
6140                                         }
6141                                         goto done_unlock;
6142                                 }
6143                                 if (!list_empty(&mddev->disks)) {
6144                                         printk(KERN_WARNING
6145                                                "md: array %s already has disks!\n",
6146                                                mdname(mddev));
6147                                         err = -EBUSY;
6148                                         goto abort_unlock;
6149                                 }
6150                                 if (mddev->raid_disks) {
6151                                         printk(KERN_WARNING
6152                                                "md: array %s already initialised!\n",
6153                                                mdname(mddev));
6154                                         err = -EBUSY;
6155                                         goto abort_unlock;
6156                                 }
6157                                 err = set_array_info(mddev, &info);
6158                                 if (err) {
6159                                         printk(KERN_WARNING "md: couldn't set"
6160                                                " array info. %d\n", err);
6161                                         goto abort_unlock;
6162                                 }
6163                         }
6164                         goto done_unlock;
6165
6166                 default:;
6167         }
6168
6169         /*
6170          * Commands querying/configuring an existing array:
6171          */
6172         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6173          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6174         if ((!mddev->raid_disks && !mddev->external)
6175             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6176             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6177             && cmd != GET_BITMAP_FILE) {
6178                 err = -ENODEV;
6179                 goto abort_unlock;
6180         }
6181
6182         /*
6183          * Commands even a read-only array can execute:
6184          */
6185         switch (cmd)
6186         {
6187                 case GET_ARRAY_INFO:
6188                         err = get_array_info(mddev, argp);
6189                         goto done_unlock;
6190
6191                 case GET_BITMAP_FILE:
6192                         err = get_bitmap_file(mddev, argp);
6193                         goto done_unlock;
6194
6195                 case GET_DISK_INFO:
6196                         err = get_disk_info(mddev, argp);
6197                         goto done_unlock;
6198
6199                 case RESTART_ARRAY_RW:
6200                         err = restart_array(mddev);
6201                         goto done_unlock;
6202
6203                 case STOP_ARRAY:
6204                         err = do_md_stop(mddev, 0, bdev);
6205                         goto done_unlock;
6206
6207                 case STOP_ARRAY_RO:
6208                         err = md_set_readonly(mddev, bdev);
6209                         goto done_unlock;
6210
6211                 case BLKROSET:
6212                         if (get_user(ro, (int __user *)(arg))) {
6213                                 err = -EFAULT;
6214                                 goto done_unlock;
6215                         }
6216                         err = -EINVAL;
6217
6218                         /* if the bdev is going readonly the value of mddev->ro
6219                          * does not matter, no writes are coming
6220                          */
6221                         if (ro)
6222                                 goto done_unlock;
6223
6224                         /* are we are already prepared for writes? */
6225                         if (mddev->ro != 1)
6226                                 goto done_unlock;
6227
6228                         /* transitioning to readauto need only happen for
6229                          * arrays that call md_write_start
6230                          */
6231                         if (mddev->pers) {
6232                                 err = restart_array(mddev);
6233                                 if (err == 0) {
6234                                         mddev->ro = 2;
6235                                         set_disk_ro(mddev->gendisk, 0);
6236                                 }
6237                         }
6238                         goto done_unlock;
6239         }
6240
6241         /*
6242          * The remaining ioctls are changing the state of the
6243          * superblock, so we do not allow them on read-only arrays.
6244          * However non-MD ioctls (e.g. get-size) will still come through
6245          * here and hit the 'default' below, so only disallow
6246          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6247          */
6248         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6249                 if (mddev->ro == 2) {
6250                         mddev->ro = 0;
6251                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6252                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6253                         md_wakeup_thread(mddev->thread);
6254                 } else {
6255                         err = -EROFS;
6256                         goto abort_unlock;
6257                 }
6258         }
6259
6260         switch (cmd)
6261         {
6262                 case ADD_NEW_DISK:
6263                 {
6264                         mdu_disk_info_t info;
6265                         if (copy_from_user(&info, argp, sizeof(info)))
6266                                 err = -EFAULT;
6267                         else
6268                                 err = add_new_disk(mddev, &info);
6269                         goto done_unlock;
6270                 }
6271
6272                 case HOT_REMOVE_DISK:
6273                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6274                         goto done_unlock;
6275
6276                 case HOT_ADD_DISK:
6277                         err = hot_add_disk(mddev, new_decode_dev(arg));
6278                         goto done_unlock;
6279
6280                 case SET_DISK_FAULTY:
6281                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6282                         goto done_unlock;
6283
6284                 case RUN_ARRAY:
6285                         err = do_md_run(mddev);
6286                         goto done_unlock;
6287
6288                 case SET_BITMAP_FILE:
6289                         err = set_bitmap_file(mddev, (int)arg);
6290                         goto done_unlock;
6291
6292                 default:
6293                         err = -EINVAL;
6294                         goto abort_unlock;
6295         }
6296
6297 done_unlock:
6298 abort_unlock:
6299         if (mddev->hold_active == UNTIL_IOCTL &&
6300             err != -EINVAL)
6301                 mddev->hold_active = 0;
6302         mddev_unlock(mddev);
6303
6304         return err;
6305 done:
6306         if (err)
6307                 MD_BUG();
6308 abort:
6309         return err;
6310 }
6311 #ifdef CONFIG_COMPAT
6312 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6313                     unsigned int cmd, unsigned long arg)
6314 {
6315         switch (cmd) {
6316         case HOT_REMOVE_DISK:
6317         case HOT_ADD_DISK:
6318         case SET_DISK_FAULTY:
6319         case SET_BITMAP_FILE:
6320                 /* These take in integer arg, do not convert */
6321                 break;
6322         default:
6323                 arg = (unsigned long)compat_ptr(arg);
6324                 break;
6325         }
6326
6327         return md_ioctl(bdev, mode, cmd, arg);
6328 }
6329 #endif /* CONFIG_COMPAT */
6330
6331 static int md_open(struct block_device *bdev, fmode_t mode)
6332 {
6333         /*
6334          * Succeed if we can lock the mddev, which confirms that
6335          * it isn't being stopped right now.
6336          */
6337         struct mddev *mddev = mddev_find(bdev->bd_dev);
6338         int err;
6339
6340         if (mddev->gendisk != bdev->bd_disk) {
6341                 /* we are racing with mddev_put which is discarding this
6342                  * bd_disk.
6343                  */
6344                 mddev_put(mddev);
6345                 /* Wait until bdev->bd_disk is definitely gone */
6346                 flush_workqueue(md_misc_wq);
6347                 /* Then retry the open from the top */
6348                 return -ERESTARTSYS;
6349         }
6350         BUG_ON(mddev != bdev->bd_disk->private_data);
6351
6352         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6353                 goto out;
6354
6355         err = 0;
6356         atomic_inc(&mddev->openers);
6357         mutex_unlock(&mddev->open_mutex);
6358
6359         check_disk_change(bdev);
6360  out:
6361         return err;
6362 }
6363
6364 static int md_release(struct gendisk *disk, fmode_t mode)
6365 {
6366         struct mddev *mddev = disk->private_data;
6367
6368         BUG_ON(!mddev);
6369         atomic_dec(&mddev->openers);
6370         mddev_put(mddev);
6371
6372         return 0;
6373 }
6374
6375 static int md_media_changed(struct gendisk *disk)
6376 {
6377         struct mddev *mddev = disk->private_data;
6378
6379         return mddev->changed;
6380 }
6381
6382 static int md_revalidate(struct gendisk *disk)
6383 {
6384         struct mddev *mddev = disk->private_data;
6385
6386         mddev->changed = 0;
6387         return 0;
6388 }
6389 static const struct block_device_operations md_fops =
6390 {
6391         .owner          = THIS_MODULE,
6392         .open           = md_open,
6393         .release        = md_release,
6394         .ioctl          = md_ioctl,
6395 #ifdef CONFIG_COMPAT
6396         .compat_ioctl   = md_compat_ioctl,
6397 #endif
6398         .getgeo         = md_getgeo,
6399         .media_changed  = md_media_changed,
6400         .revalidate_disk= md_revalidate,
6401 };
6402
6403 static int md_thread(void * arg)
6404 {
6405         struct md_thread *thread = arg;
6406
6407         /*
6408          * md_thread is a 'system-thread', it's priority should be very
6409          * high. We avoid resource deadlocks individually in each
6410          * raid personality. (RAID5 does preallocation) We also use RR and
6411          * the very same RT priority as kswapd, thus we will never get
6412          * into a priority inversion deadlock.
6413          *
6414          * we definitely have to have equal or higher priority than
6415          * bdflush, otherwise bdflush will deadlock if there are too
6416          * many dirty RAID5 blocks.
6417          */
6418
6419         allow_signal(SIGKILL);
6420         while (!kthread_should_stop()) {
6421
6422                 /* We need to wait INTERRUPTIBLE so that
6423                  * we don't add to the load-average.
6424                  * That means we need to be sure no signals are
6425                  * pending
6426                  */
6427                 if (signal_pending(current))
6428                         flush_signals(current);
6429
6430                 wait_event_interruptible_timeout
6431                         (thread->wqueue,
6432                          test_bit(THREAD_WAKEUP, &thread->flags)
6433                          || kthread_should_stop(),
6434                          thread->timeout);
6435
6436                 clear_bit(THREAD_WAKEUP, &thread->flags);
6437                 if (!kthread_should_stop())
6438                         thread->run(thread->mddev);
6439         }
6440
6441         return 0;
6442 }
6443
6444 void md_wakeup_thread(struct md_thread *thread)
6445 {
6446         if (thread) {
6447                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6448                 set_bit(THREAD_WAKEUP, &thread->flags);
6449                 wake_up(&thread->wqueue);
6450         }
6451 }
6452
6453 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6454                                  const char *name)
6455 {
6456         struct md_thread *thread;
6457
6458         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6459         if (!thread)
6460                 return NULL;
6461
6462         init_waitqueue_head(&thread->wqueue);
6463
6464         thread->run = run;
6465         thread->mddev = mddev;
6466         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6467         thread->tsk = kthread_run(md_thread, thread,
6468                                   "%s_%s",
6469                                   mdname(thread->mddev),
6470                                   name ?: mddev->pers->name);
6471         if (IS_ERR(thread->tsk)) {
6472                 kfree(thread);
6473                 return NULL;
6474         }
6475         return thread;
6476 }
6477
6478 void md_unregister_thread(struct md_thread **threadp)
6479 {
6480         struct md_thread *thread = *threadp;
6481         if (!thread)
6482                 return;
6483         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6484         /* Locking ensures that mddev_unlock does not wake_up a
6485          * non-existent thread
6486          */
6487         spin_lock(&pers_lock);
6488         *threadp = NULL;
6489         spin_unlock(&pers_lock);
6490
6491         kthread_stop(thread->tsk);
6492         kfree(thread);
6493 }
6494
6495 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6496 {
6497         if (!mddev) {
6498                 MD_BUG();
6499                 return;
6500         }
6501
6502         if (!rdev || test_bit(Faulty, &rdev->flags))
6503                 return;
6504
6505         if (!mddev->pers || !mddev->pers->error_handler)
6506                 return;
6507         mddev->pers->error_handler(mddev,rdev);
6508         if (mddev->degraded)
6509                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6510         sysfs_notify_dirent_safe(rdev->sysfs_state);
6511         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6512         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6513         md_wakeup_thread(mddev->thread);
6514         if (mddev->event_work.func)
6515                 queue_work(md_misc_wq, &mddev->event_work);
6516         md_new_event_inintr(mddev);
6517 }
6518
6519 /* seq_file implementation /proc/mdstat */
6520
6521 static void status_unused(struct seq_file *seq)
6522 {
6523         int i = 0;
6524         struct md_rdev *rdev;
6525
6526         seq_printf(seq, "unused devices: ");
6527
6528         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6529                 char b[BDEVNAME_SIZE];
6530                 i++;
6531                 seq_printf(seq, "%s ",
6532                               bdevname(rdev->bdev,b));
6533         }
6534         if (!i)
6535                 seq_printf(seq, "<none>");
6536
6537         seq_printf(seq, "\n");
6538 }
6539
6540
6541 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6542 {
6543         sector_t max_sectors, resync, res;
6544         unsigned long dt, db;
6545         sector_t rt;
6546         int scale;
6547         unsigned int per_milli;
6548
6549         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6550
6551         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6552                 max_sectors = mddev->resync_max_sectors;
6553         else
6554                 max_sectors = mddev->dev_sectors;
6555
6556         /*
6557          * Should not happen.
6558          */
6559         if (!max_sectors) {
6560                 MD_BUG();
6561                 return;
6562         }
6563         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6564          * in a sector_t, and (max_sectors>>scale) will fit in a
6565          * u32, as those are the requirements for sector_div.
6566          * Thus 'scale' must be at least 10
6567          */
6568         scale = 10;
6569         if (sizeof(sector_t) > sizeof(unsigned long)) {
6570                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6571                         scale++;
6572         }
6573         res = (resync>>scale)*1000;
6574         sector_div(res, (u32)((max_sectors>>scale)+1));
6575
6576         per_milli = res;
6577         {
6578                 int i, x = per_milli/50, y = 20-x;
6579                 seq_printf(seq, "[");
6580                 for (i = 0; i < x; i++)
6581                         seq_printf(seq, "=");
6582                 seq_printf(seq, ">");
6583                 for (i = 0; i < y; i++)
6584                         seq_printf(seq, ".");
6585                 seq_printf(seq, "] ");
6586         }
6587         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6588                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6589                     "reshape" :
6590                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6591                      "check" :
6592                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6593                       "resync" : "recovery"))),
6594                    per_milli/10, per_milli % 10,
6595                    (unsigned long long) resync/2,
6596                    (unsigned long long) max_sectors/2);
6597
6598         /*
6599          * dt: time from mark until now
6600          * db: blocks written from mark until now
6601          * rt: remaining time
6602          *
6603          * rt is a sector_t, so could be 32bit or 64bit.
6604          * So we divide before multiply in case it is 32bit and close
6605          * to the limit.
6606          * We scale the divisor (db) by 32 to avoid losing precision
6607          * near the end of resync when the number of remaining sectors
6608          * is close to 'db'.
6609          * We then divide rt by 32 after multiplying by db to compensate.
6610          * The '+1' avoids division by zero if db is very small.
6611          */
6612         dt = ((jiffies - mddev->resync_mark) / HZ);
6613         if (!dt) dt++;
6614         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6615                 - mddev->resync_mark_cnt;
6616
6617         rt = max_sectors - resync;    /* number of remaining sectors */
6618         sector_div(rt, db/32+1);
6619         rt *= dt;
6620         rt >>= 5;
6621
6622         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6623                    ((unsigned long)rt % 60)/6);
6624
6625         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6626 }
6627
6628 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6629 {
6630         struct list_head *tmp;
6631         loff_t l = *pos;
6632         struct mddev *mddev;
6633
6634         if (l >= 0x10000)
6635                 return NULL;
6636         if (!l--)
6637                 /* header */
6638                 return (void*)1;
6639
6640         spin_lock(&all_mddevs_lock);
6641         list_for_each(tmp,&all_mddevs)
6642                 if (!l--) {
6643                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6644                         mddev_get(mddev);
6645                         spin_unlock(&all_mddevs_lock);
6646                         return mddev;
6647                 }
6648         spin_unlock(&all_mddevs_lock);
6649         if (!l--)
6650                 return (void*)2;/* tail */
6651         return NULL;
6652 }
6653
6654 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6655 {
6656         struct list_head *tmp;
6657         struct mddev *next_mddev, *mddev = v;
6658         
6659         ++*pos;
6660         if (v == (void*)2)
6661                 return NULL;
6662
6663         spin_lock(&all_mddevs_lock);
6664         if (v == (void*)1)
6665                 tmp = all_mddevs.next;
6666         else
6667                 tmp = mddev->all_mddevs.next;
6668         if (tmp != &all_mddevs)
6669                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6670         else {
6671                 next_mddev = (void*)2;
6672                 *pos = 0x10000;
6673         }               
6674         spin_unlock(&all_mddevs_lock);
6675
6676         if (v != (void*)1)
6677                 mddev_put(mddev);
6678         return next_mddev;
6679
6680 }
6681
6682 static void md_seq_stop(struct seq_file *seq, void *v)
6683 {
6684         struct mddev *mddev = v;
6685
6686         if (mddev && v != (void*)1 && v != (void*)2)
6687                 mddev_put(mddev);
6688 }
6689
6690 static int md_seq_show(struct seq_file *seq, void *v)
6691 {
6692         struct mddev *mddev = v;
6693         sector_t sectors;
6694         struct md_rdev *rdev;
6695         struct bitmap *bitmap;
6696
6697         if (v == (void*)1) {
6698                 struct md_personality *pers;
6699                 seq_printf(seq, "Personalities : ");
6700                 spin_lock(&pers_lock);
6701                 list_for_each_entry(pers, &pers_list, list)
6702                         seq_printf(seq, "[%s] ", pers->name);
6703
6704                 spin_unlock(&pers_lock);
6705                 seq_printf(seq, "\n");
6706                 seq->poll_event = atomic_read(&md_event_count);
6707                 return 0;
6708         }
6709         if (v == (void*)2) {
6710                 status_unused(seq);
6711                 return 0;
6712         }
6713
6714         if (mddev_lock(mddev) < 0)
6715                 return -EINTR;
6716
6717         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6718                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6719                                                 mddev->pers ? "" : "in");
6720                 if (mddev->pers) {
6721                         if (mddev->ro==1)
6722                                 seq_printf(seq, " (read-only)");
6723                         if (mddev->ro==2)
6724                                 seq_printf(seq, " (auto-read-only)");
6725                         seq_printf(seq, " %s", mddev->pers->name);
6726                 }
6727
6728                 sectors = 0;
6729                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6730                         char b[BDEVNAME_SIZE];
6731                         seq_printf(seq, " %s[%d]",
6732                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6733                         if (test_bit(WriteMostly, &rdev->flags))
6734                                 seq_printf(seq, "(W)");
6735                         if (test_bit(Faulty, &rdev->flags)) {
6736                                 seq_printf(seq, "(F)");
6737                                 continue;
6738                         } else if (rdev->raid_disk < 0)
6739                                 seq_printf(seq, "(S)"); /* spare */
6740                         sectors += rdev->sectors;
6741                 }
6742
6743                 if (!list_empty(&mddev->disks)) {
6744                         if (mddev->pers)
6745                                 seq_printf(seq, "\n      %llu blocks",
6746                                            (unsigned long long)
6747                                            mddev->array_sectors / 2);
6748                         else
6749                                 seq_printf(seq, "\n      %llu blocks",
6750                                            (unsigned long long)sectors / 2);
6751                 }
6752                 if (mddev->persistent) {
6753                         if (mddev->major_version != 0 ||
6754                             mddev->minor_version != 90) {
6755                                 seq_printf(seq," super %d.%d",
6756                                            mddev->major_version,
6757                                            mddev->minor_version);
6758                         }
6759                 } else if (mddev->external)
6760                         seq_printf(seq, " super external:%s",
6761                                    mddev->metadata_type);
6762                 else
6763                         seq_printf(seq, " super non-persistent");
6764
6765                 if (mddev->pers) {
6766                         mddev->pers->status(seq, mddev);
6767                         seq_printf(seq, "\n      ");
6768                         if (mddev->pers->sync_request) {
6769                                 if (mddev->curr_resync > 2) {
6770                                         status_resync(seq, mddev);
6771                                         seq_printf(seq, "\n      ");
6772                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6773                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6774                                 else if (mddev->recovery_cp < MaxSector)
6775                                         seq_printf(seq, "\tresync=PENDING\n      ");
6776                         }
6777                 } else
6778                         seq_printf(seq, "\n       ");
6779
6780                 if ((bitmap = mddev->bitmap)) {
6781                         unsigned long chunk_kb;
6782                         unsigned long flags;
6783                         spin_lock_irqsave(&bitmap->lock, flags);
6784                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6785                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6786                                 "%lu%s chunk",
6787                                 bitmap->pages - bitmap->missing_pages,
6788                                 bitmap->pages,
6789                                 (bitmap->pages - bitmap->missing_pages)
6790                                         << (PAGE_SHIFT - 10),
6791                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6792                                 chunk_kb ? "KB" : "B");
6793                         if (bitmap->file) {
6794                                 seq_printf(seq, ", file: ");
6795                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6796                         }
6797
6798                         seq_printf(seq, "\n");
6799                         spin_unlock_irqrestore(&bitmap->lock, flags);
6800                 }
6801
6802                 seq_printf(seq, "\n");
6803         }
6804         mddev_unlock(mddev);
6805         
6806         return 0;
6807 }
6808
6809 static const struct seq_operations md_seq_ops = {
6810         .start  = md_seq_start,
6811         .next   = md_seq_next,
6812         .stop   = md_seq_stop,
6813         .show   = md_seq_show,
6814 };
6815
6816 static int md_seq_open(struct inode *inode, struct file *file)
6817 {
6818         struct seq_file *seq;
6819         int error;
6820
6821         error = seq_open(file, &md_seq_ops);
6822         if (error)
6823                 return error;
6824
6825         seq = file->private_data;
6826         seq->poll_event = atomic_read(&md_event_count);
6827         return error;
6828 }
6829
6830 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6831 {
6832         struct seq_file *seq = filp->private_data;
6833         int mask;
6834
6835         poll_wait(filp, &md_event_waiters, wait);
6836
6837         /* always allow read */
6838         mask = POLLIN | POLLRDNORM;
6839
6840         if (seq->poll_event != atomic_read(&md_event_count))
6841                 mask |= POLLERR | POLLPRI;
6842         return mask;
6843 }
6844
6845 static const struct file_operations md_seq_fops = {
6846         .owner          = THIS_MODULE,
6847         .open           = md_seq_open,
6848         .read           = seq_read,
6849         .llseek         = seq_lseek,
6850         .release        = seq_release_private,
6851         .poll           = mdstat_poll,
6852 };
6853
6854 int register_md_personality(struct md_personality *p)
6855 {
6856         spin_lock(&pers_lock);
6857         list_add_tail(&p->list, &pers_list);
6858         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6859         spin_unlock(&pers_lock);
6860         return 0;
6861 }
6862
6863 int unregister_md_personality(struct md_personality *p)
6864 {
6865         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6866         spin_lock(&pers_lock);
6867         list_del_init(&p->list);
6868         spin_unlock(&pers_lock);
6869         return 0;
6870 }
6871
6872 static int is_mddev_idle(struct mddev *mddev, int init)
6873 {
6874         struct md_rdev * rdev;
6875         int idle;
6876         int curr_events;
6877
6878         idle = 1;
6879         rcu_read_lock();
6880         rdev_for_each_rcu(rdev, mddev) {
6881                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6882                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6883                               (int)part_stat_read(&disk->part0, sectors[1]) -
6884                               atomic_read(&disk->sync_io);
6885                 /* sync IO will cause sync_io to increase before the disk_stats
6886                  * as sync_io is counted when a request starts, and
6887                  * disk_stats is counted when it completes.
6888                  * So resync activity will cause curr_events to be smaller than
6889                  * when there was no such activity.
6890                  * non-sync IO will cause disk_stat to increase without
6891                  * increasing sync_io so curr_events will (eventually)
6892                  * be larger than it was before.  Once it becomes
6893                  * substantially larger, the test below will cause
6894                  * the array to appear non-idle, and resync will slow
6895                  * down.
6896                  * If there is a lot of outstanding resync activity when
6897                  * we set last_event to curr_events, then all that activity
6898                  * completing might cause the array to appear non-idle
6899                  * and resync will be slowed down even though there might
6900                  * not have been non-resync activity.  This will only
6901                  * happen once though.  'last_events' will soon reflect
6902                  * the state where there is little or no outstanding
6903                  * resync requests, and further resync activity will
6904                  * always make curr_events less than last_events.
6905                  *
6906                  */
6907                 if (init || curr_events - rdev->last_events > 64) {
6908                         rdev->last_events = curr_events;
6909                         idle = 0;
6910                 }
6911         }
6912         rcu_read_unlock();
6913         return idle;
6914 }
6915
6916 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6917 {
6918         /* another "blocks" (512byte) blocks have been synced */
6919         atomic_sub(blocks, &mddev->recovery_active);
6920         wake_up(&mddev->recovery_wait);
6921         if (!ok) {
6922                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6923                 md_wakeup_thread(mddev->thread);
6924                 // stop recovery, signal do_sync ....
6925         }
6926 }
6927
6928
6929 /* md_write_start(mddev, bi)
6930  * If we need to update some array metadata (e.g. 'active' flag
6931  * in superblock) before writing, schedule a superblock update
6932  * and wait for it to complete.
6933  */
6934 void md_write_start(struct mddev *mddev, struct bio *bi)
6935 {
6936         int did_change = 0;
6937         if (bio_data_dir(bi) != WRITE)
6938                 return;
6939
6940         BUG_ON(mddev->ro == 1);
6941         if (mddev->ro == 2) {
6942                 /* need to switch to read/write */
6943                 mddev->ro = 0;
6944                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6945                 md_wakeup_thread(mddev->thread);
6946                 md_wakeup_thread(mddev->sync_thread);
6947                 did_change = 1;
6948         }
6949         atomic_inc(&mddev->writes_pending);
6950         if (mddev->safemode == 1)
6951                 mddev->safemode = 0;
6952         if (mddev->in_sync) {
6953                 spin_lock_irq(&mddev->write_lock);
6954                 if (mddev->in_sync) {
6955                         mddev->in_sync = 0;
6956                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6957                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6958                         md_wakeup_thread(mddev->thread);
6959                         did_change = 1;
6960                 }
6961                 spin_unlock_irq(&mddev->write_lock);
6962         }
6963         if (did_change)
6964                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6965         wait_event(mddev->sb_wait,
6966                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6967 }
6968
6969 void md_write_end(struct mddev *mddev)
6970 {
6971         if (atomic_dec_and_test(&mddev->writes_pending)) {
6972                 if (mddev->safemode == 2)
6973                         md_wakeup_thread(mddev->thread);
6974                 else if (mddev->safemode_delay)
6975                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6976         }
6977 }
6978
6979 /* md_allow_write(mddev)
6980  * Calling this ensures that the array is marked 'active' so that writes
6981  * may proceed without blocking.  It is important to call this before
6982  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6983  * Must be called with mddev_lock held.
6984  *
6985  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6986  * is dropped, so return -EAGAIN after notifying userspace.
6987  */
6988 int md_allow_write(struct mddev *mddev)
6989 {
6990         if (!mddev->pers)
6991                 return 0;
6992         if (mddev->ro)
6993                 return 0;
6994         if (!mddev->pers->sync_request)
6995                 return 0;
6996
6997         spin_lock_irq(&mddev->write_lock);
6998         if (mddev->in_sync) {
6999                 mddev->in_sync = 0;
7000                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7001                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7002                 if (mddev->safemode_delay &&
7003                     mddev->safemode == 0)
7004                         mddev->safemode = 1;
7005                 spin_unlock_irq(&mddev->write_lock);
7006                 md_update_sb(mddev, 0);
7007                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7008         } else
7009                 spin_unlock_irq(&mddev->write_lock);
7010
7011         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7012                 return -EAGAIN;
7013         else
7014                 return 0;
7015 }
7016 EXPORT_SYMBOL_GPL(md_allow_write);
7017
7018 #define SYNC_MARKS      10
7019 #define SYNC_MARK_STEP  (3*HZ)
7020 void md_do_sync(struct mddev *mddev)
7021 {
7022         struct mddev *mddev2;
7023         unsigned int currspeed = 0,
7024                  window;
7025         sector_t max_sectors,j, io_sectors;
7026         unsigned long mark[SYNC_MARKS];
7027         sector_t mark_cnt[SYNC_MARKS];
7028         int last_mark,m;
7029         struct list_head *tmp;
7030         sector_t last_check;
7031         int skipped = 0;
7032         struct md_rdev *rdev;
7033         char *desc;
7034
7035         /* just incase thread restarts... */
7036         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7037                 return;
7038         if (mddev->ro) {/* never try to sync a read-only array */
7039                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7040                 return;
7041         }
7042
7043         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7044                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7045                         desc = "data-check";
7046                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7047                         desc = "requested-resync";
7048                 else
7049                         desc = "resync";
7050         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7051                 desc = "reshape";
7052         else
7053                 desc = "recovery";
7054
7055         /* we overload curr_resync somewhat here.
7056          * 0 == not engaged in resync at all
7057          * 2 == checking that there is no conflict with another sync
7058          * 1 == like 2, but have yielded to allow conflicting resync to
7059          *              commense
7060          * other == active in resync - this many blocks
7061          *
7062          * Before starting a resync we must have set curr_resync to
7063          * 2, and then checked that every "conflicting" array has curr_resync
7064          * less than ours.  When we find one that is the same or higher
7065          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7066          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7067          * This will mean we have to start checking from the beginning again.
7068          *
7069          */
7070
7071         do {
7072                 mddev->curr_resync = 2;
7073
7074         try_again:
7075                 if (kthread_should_stop())
7076                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7077
7078                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7079                         goto skip;
7080                 for_each_mddev(mddev2, tmp) {
7081                         if (mddev2 == mddev)
7082                                 continue;
7083                         if (!mddev->parallel_resync
7084                         &&  mddev2->curr_resync
7085                         &&  match_mddev_units(mddev, mddev2)) {
7086                                 DEFINE_WAIT(wq);
7087                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7088                                         /* arbitrarily yield */
7089                                         mddev->curr_resync = 1;
7090                                         wake_up(&resync_wait);
7091                                 }
7092                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7093                                         /* no need to wait here, we can wait the next
7094                                          * time 'round when curr_resync == 2
7095                                          */
7096                                         continue;
7097                                 /* We need to wait 'interruptible' so as not to
7098                                  * contribute to the load average, and not to
7099                                  * be caught by 'softlockup'
7100                                  */
7101                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7102                                 if (!kthread_should_stop() &&
7103                                     mddev2->curr_resync >= mddev->curr_resync) {
7104                                         printk(KERN_INFO "md: delaying %s of %s"
7105                                                " until %s has finished (they"
7106                                                " share one or more physical units)\n",
7107                                                desc, mdname(mddev), mdname(mddev2));
7108                                         mddev_put(mddev2);
7109                                         if (signal_pending(current))
7110                                                 flush_signals(current);
7111                                         schedule();
7112                                         finish_wait(&resync_wait, &wq);
7113                                         goto try_again;
7114                                 }
7115                                 finish_wait(&resync_wait, &wq);
7116                         }
7117                 }
7118         } while (mddev->curr_resync < 2);
7119
7120         j = 0;
7121         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7122                 /* resync follows the size requested by the personality,
7123                  * which defaults to physical size, but can be virtual size
7124                  */
7125                 max_sectors = mddev->resync_max_sectors;
7126                 mddev->resync_mismatches = 0;
7127                 /* we don't use the checkpoint if there's a bitmap */
7128                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7129                         j = mddev->resync_min;
7130                 else if (!mddev->bitmap)
7131                         j = mddev->recovery_cp;
7132
7133         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7134                 max_sectors = mddev->dev_sectors;
7135         else {
7136                 /* recovery follows the physical size of devices */
7137                 max_sectors = mddev->dev_sectors;
7138                 j = MaxSector;
7139                 rcu_read_lock();
7140                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7141                         if (rdev->raid_disk >= 0 &&
7142                             !test_bit(Faulty, &rdev->flags) &&
7143                             !test_bit(In_sync, &rdev->flags) &&
7144                             rdev->recovery_offset < j)
7145                                 j = rdev->recovery_offset;
7146                 rcu_read_unlock();
7147
7148                 /* If there is a bitmap, we need to make sure all
7149                  * writes that started before we added a spare
7150                  * complete before we start doing a recovery.
7151                  * Otherwise the write might complete and (via
7152                  * bitmap_endwrite) set a bit in the bitmap after the
7153                  * recovery has checked that bit and skipped that
7154                  * region.
7155                  */
7156                 if (mddev->bitmap) {
7157                         mddev->pers->quiesce(mddev, 1);
7158                         mddev->pers->quiesce(mddev, 0);
7159                 }
7160         }
7161
7162         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7163         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7164                 " %d KB/sec/disk.\n", speed_min(mddev));
7165         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7166                "(but not more than %d KB/sec) for %s.\n",
7167                speed_max(mddev), desc);
7168
7169         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7170
7171         io_sectors = 0;
7172         for (m = 0; m < SYNC_MARKS; m++) {
7173                 mark[m] = jiffies;
7174                 mark_cnt[m] = io_sectors;
7175         }
7176         last_mark = 0;
7177         mddev->resync_mark = mark[last_mark];
7178         mddev->resync_mark_cnt = mark_cnt[last_mark];
7179
7180         /*
7181          * Tune reconstruction:
7182          */
7183         window = 32*(PAGE_SIZE/512);
7184         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7185                 window/2, (unsigned long long)max_sectors/2);
7186
7187         atomic_set(&mddev->recovery_active, 0);
7188         last_check = 0;
7189
7190         if (j>2) {
7191                 printk(KERN_INFO 
7192                        "md: resuming %s of %s from checkpoint.\n",
7193                        desc, mdname(mddev));
7194                 mddev->curr_resync = j;
7195         }
7196         mddev->curr_resync_completed = j;
7197
7198         while (j < max_sectors) {
7199                 sector_t sectors;
7200
7201                 skipped = 0;
7202
7203                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7204                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7205                       (mddev->curr_resync - mddev->curr_resync_completed)
7206                       > (max_sectors >> 4)) ||
7207                      (j - mddev->curr_resync_completed)*2
7208                      >= mddev->resync_max - mddev->curr_resync_completed
7209                             )) {
7210                         /* time to update curr_resync_completed */
7211                         wait_event(mddev->recovery_wait,
7212                                    atomic_read(&mddev->recovery_active) == 0);
7213                         mddev->curr_resync_completed = j;
7214                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7215                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7216                 }
7217
7218                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7219                         /* As this condition is controlled by user-space,
7220                          * we can block indefinitely, so use '_interruptible'
7221                          * to avoid triggering warnings.
7222                          */
7223                         flush_signals(current); /* just in case */
7224                         wait_event_interruptible(mddev->recovery_wait,
7225                                                  mddev->resync_max > j
7226                                                  || kthread_should_stop());
7227                 }
7228
7229                 if (kthread_should_stop())
7230                         goto interrupted;
7231
7232                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7233                                                   currspeed < speed_min(mddev));
7234                 if (sectors == 0) {
7235                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7236                         goto out;
7237                 }
7238
7239                 if (!skipped) { /* actual IO requested */
7240                         io_sectors += sectors;
7241                         atomic_add(sectors, &mddev->recovery_active);
7242                 }
7243
7244                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7245                         break;
7246
7247                 j += sectors;
7248                 if (j>1) mddev->curr_resync = j;
7249                 mddev->curr_mark_cnt = io_sectors;
7250                 if (last_check == 0)
7251                         /* this is the earliest that rebuild will be
7252                          * visible in /proc/mdstat
7253                          */
7254                         md_new_event(mddev);
7255
7256                 if (last_check + window > io_sectors || j == max_sectors)
7257                         continue;
7258
7259                 last_check = io_sectors;
7260         repeat:
7261                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7262                         /* step marks */
7263                         int next = (last_mark+1) % SYNC_MARKS;
7264
7265                         mddev->resync_mark = mark[next];
7266                         mddev->resync_mark_cnt = mark_cnt[next];
7267                         mark[next] = jiffies;
7268                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7269                         last_mark = next;
7270                 }
7271
7272
7273                 if (kthread_should_stop())
7274                         goto interrupted;
7275
7276
7277                 /*
7278                  * this loop exits only if either when we are slower than
7279                  * the 'hard' speed limit, or the system was IO-idle for
7280                  * a jiffy.
7281                  * the system might be non-idle CPU-wise, but we only care
7282                  * about not overloading the IO subsystem. (things like an
7283                  * e2fsck being done on the RAID array should execute fast)
7284                  */
7285                 cond_resched();
7286
7287                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7288                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7289
7290                 if (currspeed > speed_min(mddev)) {
7291                         if ((currspeed > speed_max(mddev)) ||
7292                                         !is_mddev_idle(mddev, 0)) {
7293                                 msleep(500);
7294                                 goto repeat;
7295                         }
7296                 }
7297         }
7298         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7299         /*
7300          * this also signals 'finished resyncing' to md_stop
7301          */
7302  out:
7303         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7304
7305         /* tell personality that we are finished */
7306         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7307
7308         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7309             mddev->curr_resync > 2) {
7310                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7311                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7312                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7313                                         printk(KERN_INFO
7314                                                "md: checkpointing %s of %s.\n",
7315                                                desc, mdname(mddev));
7316                                         mddev->recovery_cp = mddev->curr_resync;
7317                                 }
7318                         } else
7319                                 mddev->recovery_cp = MaxSector;
7320                 } else {
7321                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7322                                 mddev->curr_resync = MaxSector;
7323                         rcu_read_lock();
7324                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7325                                 if (rdev->raid_disk >= 0 &&
7326                                     mddev->delta_disks >= 0 &&
7327                                     !test_bit(Faulty, &rdev->flags) &&
7328                                     !test_bit(In_sync, &rdev->flags) &&
7329                                     rdev->recovery_offset < mddev->curr_resync)
7330                                         rdev->recovery_offset = mddev->curr_resync;
7331                         rcu_read_unlock();
7332                 }
7333         }
7334         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7335
7336  skip:
7337         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7338                 /* We completed so min/max setting can be forgotten if used. */
7339                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7340                         mddev->resync_min = 0;
7341                 mddev->resync_max = MaxSector;
7342         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7343                 mddev->resync_min = mddev->curr_resync_completed;
7344         mddev->curr_resync = 0;
7345         wake_up(&resync_wait);
7346         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7347         md_wakeup_thread(mddev->thread);
7348         return;
7349
7350  interrupted:
7351         /*
7352          * got a signal, exit.
7353          */
7354         printk(KERN_INFO
7355                "md: md_do_sync() got signal ... exiting\n");
7356         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7357         goto out;
7358
7359 }
7360 EXPORT_SYMBOL_GPL(md_do_sync);
7361
7362 static int remove_and_add_spares(struct mddev *mddev)
7363 {
7364         struct md_rdev *rdev;
7365         int spares = 0;
7366
7367         mddev->curr_resync_completed = 0;
7368
7369         list_for_each_entry(rdev, &mddev->disks, same_set)
7370                 if (rdev->raid_disk >= 0 &&
7371                     !test_bit(Blocked, &rdev->flags) &&
7372                     (test_bit(Faulty, &rdev->flags) ||
7373                      ! test_bit(In_sync, &rdev->flags)) &&
7374                     atomic_read(&rdev->nr_pending)==0) {
7375                         if (mddev->pers->hot_remove_disk(
7376                                     mddev, rdev->raid_disk)==0) {
7377                                 sysfs_unlink_rdev(mddev, rdev);
7378                                 rdev->raid_disk = -1;
7379                         }
7380                 }
7381
7382         if (mddev->degraded) {
7383                 list_for_each_entry(rdev, &mddev->disks, same_set) {
7384                         if (rdev->raid_disk >= 0 &&
7385                             !test_bit(In_sync, &rdev->flags) &&
7386                             !test_bit(Faulty, &rdev->flags))
7387                                 spares++;
7388                         if (rdev->raid_disk < 0
7389                             && !test_bit(Faulty, &rdev->flags)) {
7390                                 rdev->recovery_offset = 0;
7391                                 if (mddev->pers->
7392                                     hot_add_disk(mddev, rdev) == 0) {
7393                                         if (sysfs_link_rdev(mddev, rdev))
7394                                                 /* failure here is OK */;
7395                                         spares++;
7396                                         md_new_event(mddev);
7397                                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7398                                 }
7399                         }
7400                 }
7401         }
7402         return spares;
7403 }
7404
7405 static void reap_sync_thread(struct mddev *mddev)
7406 {
7407         struct md_rdev *rdev;
7408
7409         /* resync has finished, collect result */
7410         md_unregister_thread(&mddev->sync_thread);
7411         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7412             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7413                 /* success...*/
7414                 /* activate any spares */
7415                 if (mddev->pers->spare_active(mddev))
7416                         sysfs_notify(&mddev->kobj, NULL,
7417                                      "degraded");
7418         }
7419         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7420             mddev->pers->finish_reshape)
7421                 mddev->pers->finish_reshape(mddev);
7422
7423         /* If array is no-longer degraded, then any saved_raid_disk
7424          * information must be scrapped.  Also if any device is now
7425          * In_sync we must scrape the saved_raid_disk for that device
7426          * do the superblock for an incrementally recovered device
7427          * written out.
7428          */
7429         list_for_each_entry(rdev, &mddev->disks, same_set)
7430                 if (!mddev->degraded ||
7431                     test_bit(In_sync, &rdev->flags))
7432                         rdev->saved_raid_disk = -1;
7433
7434         md_update_sb(mddev, 1);
7435         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7436         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7437         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7438         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7439         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7440         /* flag recovery needed just to double check */
7441         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7442         sysfs_notify_dirent_safe(mddev->sysfs_action);
7443         md_new_event(mddev);
7444         if (mddev->event_work.func)
7445                 queue_work(md_misc_wq, &mddev->event_work);
7446 }
7447
7448 /*
7449  * This routine is regularly called by all per-raid-array threads to
7450  * deal with generic issues like resync and super-block update.
7451  * Raid personalities that don't have a thread (linear/raid0) do not
7452  * need this as they never do any recovery or update the superblock.
7453  *
7454  * It does not do any resync itself, but rather "forks" off other threads
7455  * to do that as needed.
7456  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7457  * "->recovery" and create a thread at ->sync_thread.
7458  * When the thread finishes it sets MD_RECOVERY_DONE
7459  * and wakeups up this thread which will reap the thread and finish up.
7460  * This thread also removes any faulty devices (with nr_pending == 0).
7461  *
7462  * The overall approach is:
7463  *  1/ if the superblock needs updating, update it.
7464  *  2/ If a recovery thread is running, don't do anything else.
7465  *  3/ If recovery has finished, clean up, possibly marking spares active.
7466  *  4/ If there are any faulty devices, remove them.
7467  *  5/ If array is degraded, try to add spares devices
7468  *  6/ If array has spares or is not in-sync, start a resync thread.
7469  */
7470 void md_check_recovery(struct mddev *mddev)
7471 {
7472         if (mddev->suspended)
7473                 return;
7474
7475         if (mddev->bitmap)
7476                 bitmap_daemon_work(mddev);
7477
7478         if (signal_pending(current)) {
7479                 if (mddev->pers->sync_request && !mddev->external) {
7480                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7481                                mdname(mddev));
7482                         mddev->safemode = 2;
7483                 }
7484                 flush_signals(current);
7485         }
7486
7487         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7488                 return;
7489         if ( ! (
7490                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7491                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7492                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7493                 (mddev->external == 0 && mddev->safemode == 1) ||
7494                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7495                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7496                 ))
7497                 return;
7498
7499         if (mddev_trylock(mddev)) {
7500                 int spares = 0;
7501
7502                 if (mddev->ro) {
7503                         /* Only thing we do on a ro array is remove
7504                          * failed devices.
7505                          */
7506                         struct md_rdev *rdev;
7507                         list_for_each_entry(rdev, &mddev->disks, same_set)
7508                                 if (rdev->raid_disk >= 0 &&
7509                                     !test_bit(Blocked, &rdev->flags) &&
7510                                     test_bit(Faulty, &rdev->flags) &&
7511                                     atomic_read(&rdev->nr_pending)==0) {
7512                                         if (mddev->pers->hot_remove_disk(
7513                                                     mddev, rdev->raid_disk)==0) {
7514                                                 sysfs_unlink_rdev(mddev, rdev);
7515                                                 rdev->raid_disk = -1;
7516                                         }
7517                                 }
7518                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7519                         goto unlock;
7520                 }
7521
7522                 if (!mddev->external) {
7523                         int did_change = 0;
7524                         spin_lock_irq(&mddev->write_lock);
7525                         if (mddev->safemode &&
7526                             !atomic_read(&mddev->writes_pending) &&
7527                             !mddev->in_sync &&
7528                             mddev->recovery_cp == MaxSector) {
7529                                 mddev->in_sync = 1;
7530                                 did_change = 1;
7531                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7532                         }
7533                         if (mddev->safemode == 1)
7534                                 mddev->safemode = 0;
7535                         spin_unlock_irq(&mddev->write_lock);
7536                         if (did_change)
7537                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7538                 }
7539
7540                 if (mddev->flags)
7541                         md_update_sb(mddev, 0);
7542
7543                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7544                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7545                         /* resync/recovery still happening */
7546                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7547                         goto unlock;
7548                 }
7549                 if (mddev->sync_thread) {
7550                         reap_sync_thread(mddev);
7551                         goto unlock;
7552                 }
7553                 /* Set RUNNING before clearing NEEDED to avoid
7554                  * any transients in the value of "sync_action".
7555                  */
7556                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7557                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7558                 /* Clear some bits that don't mean anything, but
7559                  * might be left set
7560                  */
7561                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7562                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7563
7564                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7565                         goto unlock;
7566                 /* no recovery is running.
7567                  * remove any failed drives, then
7568                  * add spares if possible.
7569                  * Spare are also removed and re-added, to allow
7570                  * the personality to fail the re-add.
7571                  */
7572
7573                 if (mddev->reshape_position != MaxSector) {
7574                         if (mddev->pers->check_reshape == NULL ||
7575                             mddev->pers->check_reshape(mddev) != 0)
7576                                 /* Cannot proceed */
7577                                 goto unlock;
7578                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7579                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7580                 } else if ((spares = remove_and_add_spares(mddev))) {
7581                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7582                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7583                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7584                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7585                 } else if (mddev->recovery_cp < MaxSector) {
7586                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7587                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7588                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7589                         /* nothing to be done ... */
7590                         goto unlock;
7591
7592                 if (mddev->pers->sync_request) {
7593                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7594                                 /* We are adding a device or devices to an array
7595                                  * which has the bitmap stored on all devices.
7596                                  * So make sure all bitmap pages get written
7597                                  */
7598                                 bitmap_write_all(mddev->bitmap);
7599                         }
7600                         mddev->sync_thread = md_register_thread(md_do_sync,
7601                                                                 mddev,
7602                                                                 "resync");
7603                         if (!mddev->sync_thread) {
7604                                 printk(KERN_ERR "%s: could not start resync"
7605                                         " thread...\n", 
7606                                         mdname(mddev));
7607                                 /* leave the spares where they are, it shouldn't hurt */
7608                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7609                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7610                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7611                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7612                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7613                         } else
7614                                 md_wakeup_thread(mddev->sync_thread);
7615                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7616                         md_new_event(mddev);
7617                 }
7618         unlock:
7619                 if (!mddev->sync_thread) {
7620                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7621                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7622                                                &mddev->recovery))
7623                                 if (mddev->sysfs_action)
7624                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7625                 }
7626                 mddev_unlock(mddev);
7627         }
7628 }
7629
7630 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7631 {
7632         sysfs_notify_dirent_safe(rdev->sysfs_state);
7633         wait_event_timeout(rdev->blocked_wait,
7634                            !test_bit(Blocked, &rdev->flags) &&
7635                            !test_bit(BlockedBadBlocks, &rdev->flags),
7636                            msecs_to_jiffies(5000));
7637         rdev_dec_pending(rdev, mddev);
7638 }
7639 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7640
7641
7642 /* Bad block management.
7643  * We can record which blocks on each device are 'bad' and so just
7644  * fail those blocks, or that stripe, rather than the whole device.
7645  * Entries in the bad-block table are 64bits wide.  This comprises:
7646  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7647  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7648  *  A 'shift' can be set so that larger blocks are tracked and
7649  *  consequently larger devices can be covered.
7650  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7651  *
7652  * Locking of the bad-block table uses a seqlock so md_is_badblock
7653  * might need to retry if it is very unlucky.
7654  * We will sometimes want to check for bad blocks in a bi_end_io function,
7655  * so we use the write_seqlock_irq variant.
7656  *
7657  * When looking for a bad block we specify a range and want to
7658  * know if any block in the range is bad.  So we binary-search
7659  * to the last range that starts at-or-before the given endpoint,
7660  * (or "before the sector after the target range")
7661  * then see if it ends after the given start.
7662  * We return
7663  *  0 if there are no known bad blocks in the range
7664  *  1 if there are known bad block which are all acknowledged
7665  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7666  * plus the start/length of the first bad section we overlap.
7667  */
7668 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7669                    sector_t *first_bad, int *bad_sectors)
7670 {
7671         int hi;
7672         int lo;
7673         u64 *p = bb->page;
7674         int rv;
7675         sector_t target = s + sectors;
7676         unsigned seq;
7677
7678         if (bb->shift > 0) {
7679                 /* round the start down, and the end up */
7680                 s >>= bb->shift;
7681                 target += (1<<bb->shift) - 1;
7682                 target >>= bb->shift;
7683                 sectors = target - s;
7684         }
7685         /* 'target' is now the first block after the bad range */
7686
7687 retry:
7688         seq = read_seqbegin(&bb->lock);
7689         lo = 0;
7690         rv = 0;
7691         hi = bb->count;
7692
7693         /* Binary search between lo and hi for 'target'
7694          * i.e. for the last range that starts before 'target'
7695          */
7696         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7697          * are known not to be the last range before target.
7698          * VARIANT: hi-lo is the number of possible
7699          * ranges, and decreases until it reaches 1
7700          */
7701         while (hi - lo > 1) {
7702                 int mid = (lo + hi) / 2;
7703                 sector_t a = BB_OFFSET(p[mid]);
7704                 if (a < target)
7705                         /* This could still be the one, earlier ranges
7706                          * could not. */
7707                         lo = mid;
7708                 else
7709                         /* This and later ranges are definitely out. */
7710                         hi = mid;
7711         }
7712         /* 'lo' might be the last that started before target, but 'hi' isn't */
7713         if (hi > lo) {
7714                 /* need to check all range that end after 's' to see if
7715                  * any are unacknowledged.
7716                  */
7717                 while (lo >= 0 &&
7718                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7719                         if (BB_OFFSET(p[lo]) < target) {
7720                                 /* starts before the end, and finishes after
7721                                  * the start, so they must overlap
7722                                  */
7723                                 if (rv != -1 && BB_ACK(p[lo]))
7724                                         rv = 1;
7725                                 else
7726                                         rv = -1;
7727                                 *first_bad = BB_OFFSET(p[lo]);
7728                                 *bad_sectors = BB_LEN(p[lo]);
7729                         }
7730                         lo--;
7731                 }
7732         }
7733
7734         if (read_seqretry(&bb->lock, seq))
7735                 goto retry;
7736
7737         return rv;
7738 }
7739 EXPORT_SYMBOL_GPL(md_is_badblock);
7740
7741 /*
7742  * Add a range of bad blocks to the table.
7743  * This might extend the table, or might contract it
7744  * if two adjacent ranges can be merged.
7745  * We binary-search to find the 'insertion' point, then
7746  * decide how best to handle it.
7747  */
7748 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7749                             int acknowledged)
7750 {
7751         u64 *p;
7752         int lo, hi;
7753         int rv = 1;
7754
7755         if (bb->shift < 0)
7756                 /* badblocks are disabled */
7757                 return 0;
7758
7759         if (bb->shift) {
7760                 /* round the start down, and the end up */
7761                 sector_t next = s + sectors;
7762                 s >>= bb->shift;
7763                 next += (1<<bb->shift) - 1;
7764                 next >>= bb->shift;
7765                 sectors = next - s;
7766         }
7767
7768         write_seqlock_irq(&bb->lock);
7769
7770         p = bb->page;
7771         lo = 0;
7772         hi = bb->count;
7773         /* Find the last range that starts at-or-before 's' */
7774         while (hi - lo > 1) {
7775                 int mid = (lo + hi) / 2;
7776                 sector_t a = BB_OFFSET(p[mid]);
7777                 if (a <= s)
7778                         lo = mid;
7779                 else
7780                         hi = mid;
7781         }
7782         if (hi > lo && BB_OFFSET(p[lo]) > s)
7783                 hi = lo;
7784
7785         if (hi > lo) {
7786                 /* we found a range that might merge with the start
7787                  * of our new range
7788                  */
7789                 sector_t a = BB_OFFSET(p[lo]);
7790                 sector_t e = a + BB_LEN(p[lo]);
7791                 int ack = BB_ACK(p[lo]);
7792                 if (e >= s) {
7793                         /* Yes, we can merge with a previous range */
7794                         if (s == a && s + sectors >= e)
7795                                 /* new range covers old */
7796                                 ack = acknowledged;
7797                         else
7798                                 ack = ack && acknowledged;
7799
7800                         if (e < s + sectors)
7801                                 e = s + sectors;
7802                         if (e - a <= BB_MAX_LEN) {
7803                                 p[lo] = BB_MAKE(a, e-a, ack);
7804                                 s = e;
7805                         } else {
7806                                 /* does not all fit in one range,
7807                                  * make p[lo] maximal
7808                                  */
7809                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7810                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7811                                 s = a + BB_MAX_LEN;
7812                         }
7813                         sectors = e - s;
7814                 }
7815         }
7816         if (sectors && hi < bb->count) {
7817                 /* 'hi' points to the first range that starts after 's'.
7818                  * Maybe we can merge with the start of that range */
7819                 sector_t a = BB_OFFSET(p[hi]);
7820                 sector_t e = a + BB_LEN(p[hi]);
7821                 int ack = BB_ACK(p[hi]);
7822                 if (a <= s + sectors) {
7823                         /* merging is possible */
7824                         if (e <= s + sectors) {
7825                                 /* full overlap */
7826                                 e = s + sectors;
7827                                 ack = acknowledged;
7828                         } else
7829                                 ack = ack && acknowledged;
7830
7831                         a = s;
7832                         if (e - a <= BB_MAX_LEN) {
7833                                 p[hi] = BB_MAKE(a, e-a, ack);
7834                                 s = e;
7835                         } else {
7836                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7837                                 s = a + BB_MAX_LEN;
7838                         }
7839                         sectors = e - s;
7840                         lo = hi;
7841                         hi++;
7842                 }
7843         }
7844         if (sectors == 0 && hi < bb->count) {
7845                 /* we might be able to combine lo and hi */
7846                 /* Note: 's' is at the end of 'lo' */
7847                 sector_t a = BB_OFFSET(p[hi]);
7848                 int lolen = BB_LEN(p[lo]);
7849                 int hilen = BB_LEN(p[hi]);
7850                 int newlen = lolen + hilen - (s - a);
7851                 if (s >= a && newlen < BB_MAX_LEN) {
7852                         /* yes, we can combine them */
7853                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7854                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7855                         memmove(p + hi, p + hi + 1,
7856                                 (bb->count - hi - 1) * 8);
7857                         bb->count--;
7858                 }
7859         }
7860         while (sectors) {
7861                 /* didn't merge (it all).
7862                  * Need to add a range just before 'hi' */
7863                 if (bb->count >= MD_MAX_BADBLOCKS) {
7864                         /* No room for more */
7865                         rv = 0;
7866                         break;
7867                 } else {
7868                         int this_sectors = sectors;
7869                         memmove(p + hi + 1, p + hi,
7870                                 (bb->count - hi) * 8);
7871                         bb->count++;
7872
7873                         if (this_sectors > BB_MAX_LEN)
7874                                 this_sectors = BB_MAX_LEN;
7875                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7876                         sectors -= this_sectors;
7877                         s += this_sectors;
7878                 }
7879         }
7880
7881         bb->changed = 1;
7882         if (!acknowledged)
7883                 bb->unacked_exist = 1;
7884         write_sequnlock_irq(&bb->lock);
7885
7886         return rv;
7887 }
7888
7889 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7890                        int acknowledged)
7891 {
7892         int rv = md_set_badblocks(&rdev->badblocks,
7893                                   s + rdev->data_offset, sectors, acknowledged);
7894         if (rv) {
7895                 /* Make sure they get written out promptly */
7896                 sysfs_notify_dirent_safe(rdev->sysfs_state);
7897                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7898                 md_wakeup_thread(rdev->mddev->thread);
7899         }
7900         return rv;
7901 }
7902 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7903
7904 /*
7905  * Remove a range of bad blocks from the table.
7906  * This may involve extending the table if we spilt a region,
7907  * but it must not fail.  So if the table becomes full, we just
7908  * drop the remove request.
7909  */
7910 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7911 {
7912         u64 *p;
7913         int lo, hi;
7914         sector_t target = s + sectors;
7915         int rv = 0;
7916
7917         if (bb->shift > 0) {
7918                 /* When clearing we round the start up and the end down.
7919                  * This should not matter as the shift should align with
7920                  * the block size and no rounding should ever be needed.
7921                  * However it is better the think a block is bad when it
7922                  * isn't than to think a block is not bad when it is.
7923                  */
7924                 s += (1<<bb->shift) - 1;
7925                 s >>= bb->shift;
7926                 target >>= bb->shift;
7927                 sectors = target - s;
7928         }
7929
7930         write_seqlock_irq(&bb->lock);
7931
7932         p = bb->page;
7933         lo = 0;
7934         hi = bb->count;
7935         /* Find the last range that starts before 'target' */
7936         while (hi - lo > 1) {
7937                 int mid = (lo + hi) / 2;
7938                 sector_t a = BB_OFFSET(p[mid]);
7939                 if (a < target)
7940                         lo = mid;
7941                 else
7942                         hi = mid;
7943         }
7944         if (hi > lo) {
7945                 /* p[lo] is the last range that could overlap the
7946                  * current range.  Earlier ranges could also overlap,
7947                  * but only this one can overlap the end of the range.
7948                  */
7949                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7950                         /* Partial overlap, leave the tail of this range */
7951                         int ack = BB_ACK(p[lo]);
7952                         sector_t a = BB_OFFSET(p[lo]);
7953                         sector_t end = a + BB_LEN(p[lo]);
7954
7955                         if (a < s) {
7956                                 /* we need to split this range */
7957                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7958                                         rv = 0;
7959                                         goto out;
7960                                 }
7961                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7962                                 bb->count++;
7963                                 p[lo] = BB_MAKE(a, s-a, ack);
7964                                 lo++;
7965                         }
7966                         p[lo] = BB_MAKE(target, end - target, ack);
7967                         /* there is no longer an overlap */
7968                         hi = lo;
7969                         lo--;
7970                 }
7971                 while (lo >= 0 &&
7972                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7973                         /* This range does overlap */
7974                         if (BB_OFFSET(p[lo]) < s) {
7975                                 /* Keep the early parts of this range. */
7976                                 int ack = BB_ACK(p[lo]);
7977                                 sector_t start = BB_OFFSET(p[lo]);
7978                                 p[lo] = BB_MAKE(start, s - start, ack);
7979                                 /* now low doesn't overlap, so.. */
7980                                 break;
7981                         }
7982                         lo--;
7983                 }
7984                 /* 'lo' is strictly before, 'hi' is strictly after,
7985                  * anything between needs to be discarded
7986                  */
7987                 if (hi - lo > 1) {
7988                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7989                         bb->count -= (hi - lo - 1);
7990                 }
7991         }
7992
7993         bb->changed = 1;
7994 out:
7995         write_sequnlock_irq(&bb->lock);
7996         return rv;
7997 }
7998
7999 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8000 {
8001         return md_clear_badblocks(&rdev->badblocks,
8002                                   s + rdev->data_offset,
8003                                   sectors);
8004 }
8005 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8006
8007 /*
8008  * Acknowledge all bad blocks in a list.
8009  * This only succeeds if ->changed is clear.  It is used by
8010  * in-kernel metadata updates
8011  */
8012 void md_ack_all_badblocks(struct badblocks *bb)
8013 {
8014         if (bb->page == NULL || bb->changed)
8015                 /* no point even trying */
8016                 return;
8017         write_seqlock_irq(&bb->lock);
8018
8019         if (bb->changed == 0) {
8020                 u64 *p = bb->page;
8021                 int i;
8022                 for (i = 0; i < bb->count ; i++) {
8023                         if (!BB_ACK(p[i])) {
8024                                 sector_t start = BB_OFFSET(p[i]);
8025                                 int len = BB_LEN(p[i]);
8026                                 p[i] = BB_MAKE(start, len, 1);
8027                         }
8028                 }
8029                 bb->unacked_exist = 0;
8030         }
8031         write_sequnlock_irq(&bb->lock);
8032 }
8033 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8034
8035 /* sysfs access to bad-blocks list.
8036  * We present two files.
8037  * 'bad-blocks' lists sector numbers and lengths of ranges that
8038  *    are recorded as bad.  The list is truncated to fit within
8039  *    the one-page limit of sysfs.
8040  *    Writing "sector length" to this file adds an acknowledged
8041  *    bad block list.
8042  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8043  *    been acknowledged.  Writing to this file adds bad blocks
8044  *    without acknowledging them.  This is largely for testing.
8045  */
8046
8047 static ssize_t
8048 badblocks_show(struct badblocks *bb, char *page, int unack)
8049 {
8050         size_t len;
8051         int i;
8052         u64 *p = bb->page;
8053         unsigned seq;
8054
8055         if (bb->shift < 0)
8056                 return 0;
8057
8058 retry:
8059         seq = read_seqbegin(&bb->lock);
8060
8061         len = 0;
8062         i = 0;
8063
8064         while (len < PAGE_SIZE && i < bb->count) {
8065                 sector_t s = BB_OFFSET(p[i]);
8066                 unsigned int length = BB_LEN(p[i]);
8067                 int ack = BB_ACK(p[i]);
8068                 i++;
8069
8070                 if (unack && ack)
8071                         continue;
8072
8073                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8074                                 (unsigned long long)s << bb->shift,
8075                                 length << bb->shift);
8076         }
8077         if (unack && len == 0)
8078                 bb->unacked_exist = 0;
8079
8080         if (read_seqretry(&bb->lock, seq))
8081                 goto retry;
8082
8083         return len;
8084 }
8085
8086 #define DO_DEBUG 1
8087
8088 static ssize_t
8089 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8090 {
8091         unsigned long long sector;
8092         int length;
8093         char newline;
8094 #ifdef DO_DEBUG
8095         /* Allow clearing via sysfs *only* for testing/debugging.
8096          * Normally only a successful write may clear a badblock
8097          */
8098         int clear = 0;
8099         if (page[0] == '-') {
8100                 clear = 1;
8101                 page++;
8102         }
8103 #endif /* DO_DEBUG */
8104
8105         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8106         case 3:
8107                 if (newline != '\n')
8108                         return -EINVAL;
8109         case 2:
8110                 if (length <= 0)
8111                         return -EINVAL;
8112                 break;
8113         default:
8114                 return -EINVAL;
8115         }
8116
8117 #ifdef DO_DEBUG
8118         if (clear) {
8119                 md_clear_badblocks(bb, sector, length);
8120                 return len;
8121         }
8122 #endif /* DO_DEBUG */
8123         if (md_set_badblocks(bb, sector, length, !unack))
8124                 return len;
8125         else
8126                 return -ENOSPC;
8127 }
8128
8129 static int md_notify_reboot(struct notifier_block *this,
8130                             unsigned long code, void *x)
8131 {
8132         struct list_head *tmp;
8133         struct mddev *mddev;
8134         int need_delay = 0;
8135
8136         for_each_mddev(mddev, tmp) {
8137                 if (mddev_trylock(mddev)) {
8138                         if (mddev->pers)
8139                                 __md_stop_writes(mddev);
8140                         if (mddev->persistent)
8141                                 mddev->safemode = 2;
8142                         mddev_unlock(mddev);
8143                 }
8144                 need_delay = 1;
8145         }
8146         /*
8147          * certain more exotic SCSI devices are known to be
8148          * volatile wrt too early system reboots. While the
8149          * right place to handle this issue is the given
8150          * driver, we do want to have a safe RAID driver ...
8151          */
8152         if (need_delay)
8153                 mdelay(1000*1);
8154
8155         return NOTIFY_DONE;
8156 }
8157
8158 static struct notifier_block md_notifier = {
8159         .notifier_call  = md_notify_reboot,
8160         .next           = NULL,
8161         .priority       = INT_MAX, /* before any real devices */
8162 };
8163
8164 static void md_geninit(void)
8165 {
8166         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8167
8168         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8169 }
8170
8171 static int __init md_init(void)
8172 {
8173         int ret = -ENOMEM;
8174
8175         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8176         if (!md_wq)
8177                 goto err_wq;
8178
8179         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8180         if (!md_misc_wq)
8181                 goto err_misc_wq;
8182
8183         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8184                 goto err_md;
8185
8186         if ((ret = register_blkdev(0, "mdp")) < 0)
8187                 goto err_mdp;
8188         mdp_major = ret;
8189
8190         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8191                             md_probe, NULL, NULL);
8192         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8193                             md_probe, NULL, NULL);
8194
8195         register_reboot_notifier(&md_notifier);
8196         raid_table_header = register_sysctl_table(raid_root_table);
8197
8198         md_geninit();
8199         return 0;
8200
8201 err_mdp:
8202         unregister_blkdev(MD_MAJOR, "md");
8203 err_md:
8204         destroy_workqueue(md_misc_wq);
8205 err_misc_wq:
8206         destroy_workqueue(md_wq);
8207 err_wq:
8208         return ret;
8209 }
8210
8211 #ifndef MODULE
8212
8213 /*
8214  * Searches all registered partitions for autorun RAID arrays
8215  * at boot time.
8216  */
8217
8218 static LIST_HEAD(all_detected_devices);
8219 struct detected_devices_node {
8220         struct list_head list;
8221         dev_t dev;
8222 };
8223
8224 void md_autodetect_dev(dev_t dev)
8225 {
8226         struct detected_devices_node *node_detected_dev;
8227
8228         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8229         if (node_detected_dev) {
8230                 node_detected_dev->dev = dev;
8231                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8232         } else {
8233                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8234                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8235         }
8236 }
8237
8238
8239 static void autostart_arrays(int part)
8240 {
8241         struct md_rdev *rdev;
8242         struct detected_devices_node *node_detected_dev;
8243         dev_t dev;
8244         int i_scanned, i_passed;
8245
8246         i_scanned = 0;
8247         i_passed = 0;
8248
8249         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8250
8251         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8252                 i_scanned++;
8253                 node_detected_dev = list_entry(all_detected_devices.next,
8254                                         struct detected_devices_node, list);
8255                 list_del(&node_detected_dev->list);
8256                 dev = node_detected_dev->dev;
8257                 kfree(node_detected_dev);
8258                 rdev = md_import_device(dev,0, 90);
8259                 if (IS_ERR(rdev))
8260                         continue;
8261
8262                 if (test_bit(Faulty, &rdev->flags)) {
8263                         MD_BUG();
8264                         continue;
8265                 }
8266                 set_bit(AutoDetected, &rdev->flags);
8267                 list_add(&rdev->same_set, &pending_raid_disks);
8268                 i_passed++;
8269         }
8270
8271         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8272                                                 i_scanned, i_passed);
8273
8274         autorun_devices(part);
8275 }
8276
8277 #endif /* !MODULE */
8278
8279 static __exit void md_exit(void)
8280 {
8281         struct mddev *mddev;
8282         struct list_head *tmp;
8283
8284         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8285         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8286
8287         unregister_blkdev(MD_MAJOR,"md");
8288         unregister_blkdev(mdp_major, "mdp");
8289         unregister_reboot_notifier(&md_notifier);
8290         unregister_sysctl_table(raid_table_header);
8291         remove_proc_entry("mdstat", NULL);
8292         for_each_mddev(mddev, tmp) {
8293                 export_array(mddev);
8294                 mddev->hold_active = 0;
8295         }
8296         destroy_workqueue(md_misc_wq);
8297         destroy_workqueue(md_wq);
8298 }
8299
8300 subsys_initcall(md_init);
8301 module_exit(md_exit)
8302
8303 static int get_ro(char *buffer, struct kernel_param *kp)
8304 {
8305         return sprintf(buffer, "%d", start_readonly);
8306 }
8307 static int set_ro(const char *val, struct kernel_param *kp)
8308 {
8309         char *e;
8310         int num = simple_strtoul(val, &e, 10);
8311         if (*val && (*e == '\0' || *e == '\n')) {
8312                 start_readonly = num;
8313                 return 0;
8314         }
8315         return -EINVAL;
8316 }
8317
8318 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8319 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8320
8321 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8322
8323 EXPORT_SYMBOL(register_md_personality);
8324 EXPORT_SYMBOL(unregister_md_personality);
8325 EXPORT_SYMBOL(md_error);
8326 EXPORT_SYMBOL(md_done_sync);
8327 EXPORT_SYMBOL(md_write_start);
8328 EXPORT_SYMBOL(md_write_end);
8329 EXPORT_SYMBOL(md_register_thread);
8330 EXPORT_SYMBOL(md_unregister_thread);
8331 EXPORT_SYMBOL(md_wakeup_thread);
8332 EXPORT_SYMBOL(md_check_recovery);
8333 MODULE_LICENSE("GPL");
8334 MODULE_DESCRIPTION("MD RAID framework");
8335 MODULE_ALIAS("md");
8336 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);