mm: thp: set the accessed flag for old pages on access fault
[pandora-kernel.git] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "bitmap.h"
15
16 #include <linux/device-mapper.h>
17
18 #define DM_MSG_PREFIX "raid"
19
20 /*
21  * The following flags are used by dm-raid.c to set up the array state.
22  * They must be cleared before md_run is called.
23  */
24 #define FirstUse 10             /* rdev flag */
25
26 struct raid_dev {
27         /*
28          * Two DM devices, one to hold metadata and one to hold the
29          * actual data/parity.  The reason for this is to not confuse
30          * ti->len and give more flexibility in altering size and
31          * characteristics.
32          *
33          * While it is possible for this device to be associated
34          * with a different physical device than the data_dev, it
35          * is intended for it to be the same.
36          *    |--------- Physical Device ---------|
37          *    |- meta_dev -|------ data_dev ------|
38          */
39         struct dm_dev *meta_dev;
40         struct dm_dev *data_dev;
41         struct md_rdev rdev;
42 };
43
44 /*
45  * Flags for rs->print_flags field.
46  */
47 #define DMPF_SYNC              0x1
48 #define DMPF_NOSYNC            0x2
49 #define DMPF_REBUILD           0x4
50 #define DMPF_DAEMON_SLEEP      0x8
51 #define DMPF_MIN_RECOVERY_RATE 0x10
52 #define DMPF_MAX_RECOVERY_RATE 0x20
53 #define DMPF_MAX_WRITE_BEHIND  0x40
54 #define DMPF_STRIPE_CACHE      0x80
55 #define DMPF_REGION_SIZE       0X100
56 struct raid_set {
57         struct dm_target *ti;
58
59         uint64_t print_flags;
60
61         struct mddev md;
62         struct raid_type *raid_type;
63         struct dm_target_callbacks callbacks;
64
65         struct raid_dev dev[0];
66 };
67
68 /* Supported raid types and properties. */
69 static struct raid_type {
70         const char *name;               /* RAID algorithm. */
71         const char *descr;              /* Descriptor text for logging. */
72         const unsigned parity_devs;     /* # of parity devices. */
73         const unsigned minimal_devs;    /* minimal # of devices in set. */
74         const unsigned level;           /* RAID level. */
75         const unsigned algorithm;       /* RAID algorithm. */
76 } raid_types[] = {
77         {"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
78         {"raid4",    "RAID4 (dedicated parity disk)",   1, 2, 5, ALGORITHM_PARITY_0},
79         {"raid5_la", "RAID5 (left asymmetric)",         1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
80         {"raid5_ra", "RAID5 (right asymmetric)",        1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
81         {"raid5_ls", "RAID5 (left symmetric)",          1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
82         {"raid5_rs", "RAID5 (right symmetric)",         1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
83         {"raid6_zr", "RAID6 (zero restart)",            2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
84         {"raid6_nr", "RAID6 (N restart)",               2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
85         {"raid6_nc", "RAID6 (N continue)",              2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
86 };
87
88 static struct raid_type *get_raid_type(char *name)
89 {
90         int i;
91
92         for (i = 0; i < ARRAY_SIZE(raid_types); i++)
93                 if (!strcmp(raid_types[i].name, name))
94                         return &raid_types[i];
95
96         return NULL;
97 }
98
99 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
100 {
101         unsigned i;
102         struct raid_set *rs;
103         sector_t sectors_per_dev;
104
105         if (raid_devs <= raid_type->parity_devs) {
106                 ti->error = "Insufficient number of devices";
107                 return ERR_PTR(-EINVAL);
108         }
109
110         sectors_per_dev = ti->len;
111         if ((raid_type->level > 1) &&
112             sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) {
113                 ti->error = "Target length not divisible by number of data devices";
114                 return ERR_PTR(-EINVAL);
115         }
116
117         rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
118         if (!rs) {
119                 ti->error = "Cannot allocate raid context";
120                 return ERR_PTR(-ENOMEM);
121         }
122
123         mddev_init(&rs->md);
124
125         rs->ti = ti;
126         rs->raid_type = raid_type;
127         rs->md.raid_disks = raid_devs;
128         rs->md.level = raid_type->level;
129         rs->md.new_level = rs->md.level;
130         rs->md.dev_sectors = sectors_per_dev;
131         rs->md.layout = raid_type->algorithm;
132         rs->md.new_layout = rs->md.layout;
133         rs->md.delta_disks = 0;
134         rs->md.recovery_cp = 0;
135
136         for (i = 0; i < raid_devs; i++)
137                 md_rdev_init(&rs->dev[i].rdev);
138
139         /*
140          * Remaining items to be initialized by further RAID params:
141          *  rs->md.persistent
142          *  rs->md.external
143          *  rs->md.chunk_sectors
144          *  rs->md.new_chunk_sectors
145          */
146
147         return rs;
148 }
149
150 static void context_free(struct raid_set *rs)
151 {
152         int i;
153
154         for (i = 0; i < rs->md.raid_disks; i++) {
155                 if (rs->dev[i].meta_dev)
156                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
157                 if (rs->dev[i].rdev.sb_page)
158                         put_page(rs->dev[i].rdev.sb_page);
159                 rs->dev[i].rdev.sb_page = NULL;
160                 rs->dev[i].rdev.sb_loaded = 0;
161                 if (rs->dev[i].data_dev)
162                         dm_put_device(rs->ti, rs->dev[i].data_dev);
163         }
164
165         kfree(rs);
166 }
167
168 /*
169  * For every device we have two words
170  *  <meta_dev>: meta device name or '-' if missing
171  *  <data_dev>: data device name or '-' if missing
172  *
173  * The following are permitted:
174  *    - -
175  *    - <data_dev>
176  *    <meta_dev> <data_dev>
177  *
178  * The following is not allowed:
179  *    <meta_dev> -
180  *
181  * This code parses those words.  If there is a failure,
182  * the caller must use context_free to unwind the operations.
183  */
184 static int dev_parms(struct raid_set *rs, char **argv)
185 {
186         int i;
187         int rebuild = 0;
188         int metadata_available = 0;
189         int ret = 0;
190
191         for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
192                 rs->dev[i].rdev.raid_disk = i;
193
194                 rs->dev[i].meta_dev = NULL;
195                 rs->dev[i].data_dev = NULL;
196
197                 /*
198                  * There are no offsets, since there is a separate device
199                  * for data and metadata.
200                  */
201                 rs->dev[i].rdev.data_offset = 0;
202                 rs->dev[i].rdev.mddev = &rs->md;
203
204                 if (strcmp(argv[0], "-")) {
205                         ret = dm_get_device(rs->ti, argv[0],
206                                             dm_table_get_mode(rs->ti->table),
207                                             &rs->dev[i].meta_dev);
208                         rs->ti->error = "RAID metadata device lookup failure";
209                         if (ret)
210                                 return ret;
211
212                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
213                         if (!rs->dev[i].rdev.sb_page)
214                                 return -ENOMEM;
215                 }
216
217                 if (!strcmp(argv[1], "-")) {
218                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
219                             (!rs->dev[i].rdev.recovery_offset)) {
220                                 rs->ti->error = "Drive designated for rebuild not specified";
221                                 return -EINVAL;
222                         }
223
224                         rs->ti->error = "No data device supplied with metadata device";
225                         if (rs->dev[i].meta_dev)
226                                 return -EINVAL;
227
228                         continue;
229                 }
230
231                 ret = dm_get_device(rs->ti, argv[1],
232                                     dm_table_get_mode(rs->ti->table),
233                                     &rs->dev[i].data_dev);
234                 if (ret) {
235                         rs->ti->error = "RAID device lookup failure";
236                         return ret;
237                 }
238
239                 if (rs->dev[i].meta_dev) {
240                         metadata_available = 1;
241                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
242                 }
243                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
244                 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
245                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
246                         rebuild++;
247         }
248
249         if (metadata_available) {
250                 rs->md.external = 0;
251                 rs->md.persistent = 1;
252                 rs->md.major_version = 2;
253         } else if (rebuild && !rs->md.recovery_cp) {
254                 /*
255                  * Without metadata, we will not be able to tell if the array
256                  * is in-sync or not - we must assume it is not.  Therefore,
257                  * it is impossible to rebuild a drive.
258                  *
259                  * Even if there is metadata, the on-disk information may
260                  * indicate that the array is not in-sync and it will then
261                  * fail at that time.
262                  *
263                  * User could specify 'nosync' option if desperate.
264                  */
265                 DMERR("Unable to rebuild drive while array is not in-sync");
266                 rs->ti->error = "RAID device lookup failure";
267                 return -EINVAL;
268         }
269
270         return 0;
271 }
272
273 /*
274  * validate_region_size
275  * @rs
276  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
277  *
278  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
279  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
280  *
281  * Returns: 0 on success, -EINVAL on failure.
282  */
283 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
284 {
285         unsigned long min_region_size = rs->ti->len / (1 << 21);
286
287         if (!region_size) {
288                 /*
289                  * Choose a reasonable default.  All figures in sectors.
290                  */
291                 if (min_region_size > (1 << 13)) {
292                         DMINFO("Choosing default region size of %lu sectors",
293                                region_size);
294                         region_size = min_region_size;
295                 } else {
296                         DMINFO("Choosing default region size of 4MiB");
297                         region_size = 1 << 13; /* sectors */
298                 }
299         } else {
300                 /*
301                  * Validate user-supplied value.
302                  */
303                 if (region_size > rs->ti->len) {
304                         rs->ti->error = "Supplied region size is too large";
305                         return -EINVAL;
306                 }
307
308                 if (region_size < min_region_size) {
309                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
310                               region_size, min_region_size);
311                         rs->ti->error = "Supplied region size is too small";
312                         return -EINVAL;
313                 }
314
315                 if (!is_power_of_2(region_size)) {
316                         rs->ti->error = "Region size is not a power of 2";
317                         return -EINVAL;
318                 }
319
320                 if (region_size < rs->md.chunk_sectors) {
321                         rs->ti->error = "Region size is smaller than the chunk size";
322                         return -EINVAL;
323                 }
324         }
325
326         /*
327          * Convert sectors to bytes.
328          */
329         rs->md.bitmap_info.chunksize = (region_size << 9);
330
331         return 0;
332 }
333
334 /*
335  * Possible arguments are...
336  *      <chunk_size> [optional_args]
337  *
338  * Argument definitions
339  *    <chunk_size>                      The number of sectors per disk that
340  *                                      will form the "stripe"
341  *    [[no]sync]                        Force or prevent recovery of the
342  *                                      entire array
343  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
344  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
345  *                                      clear bits
346  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
347  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
348  *    [write_mostly <idx>]              Indicate a write mostly drive via index
349  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
350  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
351  *    [region_size <sectors>]           Defines granularity of bitmap
352  */
353 static int parse_raid_params(struct raid_set *rs, char **argv,
354                              unsigned num_raid_params)
355 {
356         unsigned i, rebuild_cnt = 0;
357         unsigned long value, region_size = 0;
358         char *key;
359
360         /*
361          * First, parse the in-order required arguments
362          * "chunk_size" is the only argument of this type.
363          */
364         if ((strict_strtoul(argv[0], 10, &value) < 0)) {
365                 rs->ti->error = "Bad chunk size";
366                 return -EINVAL;
367         } else if (rs->raid_type->level == 1) {
368                 if (value)
369                         DMERR("Ignoring chunk size parameter for RAID 1");
370                 value = 0;
371         } else if (!is_power_of_2(value)) {
372                 rs->ti->error = "Chunk size must be a power of 2";
373                 return -EINVAL;
374         } else if (value < 8) {
375                 rs->ti->error = "Chunk size value is too small";
376                 return -EINVAL;
377         }
378
379         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
380         argv++;
381         num_raid_params--;
382
383         /*
384          * We set each individual device as In_sync with a completed
385          * 'recovery_offset'.  If there has been a device failure or
386          * replacement then one of the following cases applies:
387          *
388          *   1) User specifies 'rebuild'.
389          *      - Device is reset when param is read.
390          *   2) A new device is supplied.
391          *      - No matching superblock found, resets device.
392          *   3) Device failure was transient and returns on reload.
393          *      - Failure noticed, resets device for bitmap replay.
394          *   4) Device hadn't completed recovery after previous failure.
395          *      - Superblock is read and overrides recovery_offset.
396          *
397          * What is found in the superblocks of the devices is always
398          * authoritative, unless 'rebuild' or '[no]sync' was specified.
399          */
400         for (i = 0; i < rs->md.raid_disks; i++) {
401                 set_bit(In_sync, &rs->dev[i].rdev.flags);
402                 rs->dev[i].rdev.recovery_offset = MaxSector;
403         }
404
405         /*
406          * Second, parse the unordered optional arguments
407          */
408         for (i = 0; i < num_raid_params; i++) {
409                 if (!strcasecmp(argv[i], "nosync")) {
410                         rs->md.recovery_cp = MaxSector;
411                         rs->print_flags |= DMPF_NOSYNC;
412                         continue;
413                 }
414                 if (!strcasecmp(argv[i], "sync")) {
415                         rs->md.recovery_cp = 0;
416                         rs->print_flags |= DMPF_SYNC;
417                         continue;
418                 }
419
420                 /* The rest of the optional arguments come in key/value pairs */
421                 if ((i + 1) >= num_raid_params) {
422                         rs->ti->error = "Wrong number of raid parameters given";
423                         return -EINVAL;
424                 }
425
426                 key = argv[i++];
427                 if (strict_strtoul(argv[i], 10, &value) < 0) {
428                         rs->ti->error = "Bad numerical argument given in raid params";
429                         return -EINVAL;
430                 }
431
432                 if (!strcasecmp(key, "rebuild")) {
433                         rebuild_cnt++;
434                         if (((rs->raid_type->level != 1) &&
435                              (rebuild_cnt > rs->raid_type->parity_devs)) ||
436                             ((rs->raid_type->level == 1) &&
437                              (rebuild_cnt > (rs->md.raid_disks - 1)))) {
438                                 rs->ti->error = "Too many rebuild devices specified for given RAID type";
439                                 return -EINVAL;
440                         }
441                         if (value > rs->md.raid_disks) {
442                                 rs->ti->error = "Invalid rebuild index given";
443                                 return -EINVAL;
444                         }
445                         clear_bit(In_sync, &rs->dev[value].rdev.flags);
446                         rs->dev[value].rdev.recovery_offset = 0;
447                         rs->print_flags |= DMPF_REBUILD;
448                 } else if (!strcasecmp(key, "write_mostly")) {
449                         if (rs->raid_type->level != 1) {
450                                 rs->ti->error = "write_mostly option is only valid for RAID1";
451                                 return -EINVAL;
452                         }
453                         if (value >= rs->md.raid_disks) {
454                                 rs->ti->error = "Invalid write_mostly drive index given";
455                                 return -EINVAL;
456                         }
457                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
458                 } else if (!strcasecmp(key, "max_write_behind")) {
459                         if (rs->raid_type->level != 1) {
460                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
461                                 return -EINVAL;
462                         }
463                         rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
464
465                         /*
466                          * In device-mapper, we specify things in sectors, but
467                          * MD records this value in kB
468                          */
469                         value /= 2;
470                         if (value > COUNTER_MAX) {
471                                 rs->ti->error = "Max write-behind limit out of range";
472                                 return -EINVAL;
473                         }
474                         rs->md.bitmap_info.max_write_behind = value;
475                 } else if (!strcasecmp(key, "daemon_sleep")) {
476                         rs->print_flags |= DMPF_DAEMON_SLEEP;
477                         if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
478                                 rs->ti->error = "daemon sleep period out of range";
479                                 return -EINVAL;
480                         }
481                         rs->md.bitmap_info.daemon_sleep = value;
482                 } else if (!strcasecmp(key, "stripe_cache")) {
483                         rs->print_flags |= DMPF_STRIPE_CACHE;
484
485                         /*
486                          * In device-mapper, we specify things in sectors, but
487                          * MD records this value in kB
488                          */
489                         value /= 2;
490
491                         if (rs->raid_type->level < 5) {
492                                 rs->ti->error = "Inappropriate argument: stripe_cache";
493                                 return -EINVAL;
494                         }
495                         if (raid5_set_cache_size(&rs->md, (int)value)) {
496                                 rs->ti->error = "Bad stripe_cache size";
497                                 return -EINVAL;
498                         }
499                 } else if (!strcasecmp(key, "min_recovery_rate")) {
500                         rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
501                         if (value > INT_MAX) {
502                                 rs->ti->error = "min_recovery_rate out of range";
503                                 return -EINVAL;
504                         }
505                         rs->md.sync_speed_min = (int)value;
506                 } else if (!strcasecmp(key, "max_recovery_rate")) {
507                         rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
508                         if (value > INT_MAX) {
509                                 rs->ti->error = "max_recovery_rate out of range";
510                                 return -EINVAL;
511                         }
512                         rs->md.sync_speed_max = (int)value;
513                 } else if (!strcasecmp(key, "region_size")) {
514                         rs->print_flags |= DMPF_REGION_SIZE;
515                         region_size = value;
516                 } else {
517                         DMERR("Unable to parse RAID parameter: %s", key);
518                         rs->ti->error = "Unable to parse RAID parameters";
519                         return -EINVAL;
520                 }
521         }
522
523         if (validate_region_size(rs, region_size))
524                 return -EINVAL;
525
526         if (rs->md.chunk_sectors)
527                 rs->ti->split_io = rs->md.chunk_sectors;
528         else
529                 rs->ti->split_io = region_size;
530
531         if (rs->md.chunk_sectors)
532                 rs->ti->split_io = rs->md.chunk_sectors;
533         else
534                 rs->ti->split_io = region_size;
535
536         /* Assume there are no metadata devices until the drives are parsed */
537         rs->md.persistent = 0;
538         rs->md.external = 1;
539
540         return 0;
541 }
542
543 static void do_table_event(struct work_struct *ws)
544 {
545         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
546
547         dm_table_event(rs->ti->table);
548 }
549
550 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
551 {
552         struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
553
554         if (rs->raid_type->level == 1)
555                 return md_raid1_congested(&rs->md, bits);
556
557         return md_raid5_congested(&rs->md, bits);
558 }
559
560 /*
561  * This structure is never routinely used by userspace, unlike md superblocks.
562  * Devices with this superblock should only ever be accessed via device-mapper.
563  */
564 #define DM_RAID_MAGIC 0x64526D44
565 struct dm_raid_superblock {
566         __le32 magic;           /* "DmRd" */
567         __le32 features;        /* Used to indicate possible future changes */
568
569         __le32 num_devices;     /* Number of devices in this array. (Max 64) */
570         __le32 array_position;  /* The position of this drive in the array */
571
572         __le64 events;          /* Incremented by md when superblock updated */
573         __le64 failed_devices;  /* Bit field of devices to indicate failures */
574
575         /*
576          * This offset tracks the progress of the repair or replacement of
577          * an individual drive.
578          */
579         __le64 disk_recovery_offset;
580
581         /*
582          * This offset tracks the progress of the initial array
583          * synchronisation/parity calculation.
584          */
585         __le64 array_resync_offset;
586
587         /*
588          * RAID characteristics
589          */
590         __le32 level;
591         __le32 layout;
592         __le32 stripe_sectors;
593
594         __u8 pad[452];          /* Round struct to 512 bytes. */
595                                 /* Always set to 0 when writing. */
596 } __packed;
597
598 static int read_disk_sb(struct md_rdev *rdev, int size)
599 {
600         BUG_ON(!rdev->sb_page);
601
602         if (rdev->sb_loaded)
603                 return 0;
604
605         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
606                 DMERR("Failed to read device superblock");
607                 return -EINVAL;
608         }
609
610         rdev->sb_loaded = 1;
611
612         return 0;
613 }
614
615 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
616 {
617         struct md_rdev *r, *t;
618         uint64_t failed_devices;
619         struct dm_raid_superblock *sb;
620
621         sb = page_address(rdev->sb_page);
622         failed_devices = le64_to_cpu(sb->failed_devices);
623
624         rdev_for_each(r, t, mddev)
625                 if ((r->raid_disk >= 0) && test_bit(Faulty, &r->flags))
626                         failed_devices |= (1ULL << r->raid_disk);
627
628         memset(sb, 0, sizeof(*sb));
629
630         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
631         sb->features = cpu_to_le32(0);  /* No features yet */
632
633         sb->num_devices = cpu_to_le32(mddev->raid_disks);
634         sb->array_position = cpu_to_le32(rdev->raid_disk);
635
636         sb->events = cpu_to_le64(mddev->events);
637         sb->failed_devices = cpu_to_le64(failed_devices);
638
639         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
640         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
641
642         sb->level = cpu_to_le32(mddev->level);
643         sb->layout = cpu_to_le32(mddev->layout);
644         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
645 }
646
647 /*
648  * super_load
649  *
650  * This function creates a superblock if one is not found on the device
651  * and will decide which superblock to use if there's a choice.
652  *
653  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
654  */
655 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
656 {
657         int ret;
658         struct dm_raid_superblock *sb;
659         struct dm_raid_superblock *refsb;
660         uint64_t events_sb, events_refsb;
661
662         rdev->sb_start = 0;
663         rdev->sb_size = sizeof(*sb);
664
665         ret = read_disk_sb(rdev, rdev->sb_size);
666         if (ret)
667                 return ret;
668
669         sb = page_address(rdev->sb_page);
670
671         /*
672          * Two cases that we want to write new superblocks and rebuild:
673          * 1) New device (no matching magic number)
674          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
675          */
676         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
677             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
678                 super_sync(rdev->mddev, rdev);
679
680                 set_bit(FirstUse, &rdev->flags);
681
682                 /* Force writing of superblocks to disk */
683                 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
684
685                 /* Any superblock is better than none, choose that if given */
686                 return refdev ? 0 : 1;
687         }
688
689         if (!refdev)
690                 return 1;
691
692         events_sb = le64_to_cpu(sb->events);
693
694         refsb = page_address(refdev->sb_page);
695         events_refsb = le64_to_cpu(refsb->events);
696
697         return (events_sb > events_refsb) ? 1 : 0;
698 }
699
700 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
701 {
702         int role;
703         struct raid_set *rs = container_of(mddev, struct raid_set, md);
704         uint64_t events_sb;
705         uint64_t failed_devices;
706         struct dm_raid_superblock *sb;
707         uint32_t new_devs = 0;
708         uint32_t rebuilds = 0;
709         struct md_rdev *r, *t;
710         struct dm_raid_superblock *sb2;
711
712         sb = page_address(rdev->sb_page);
713         events_sb = le64_to_cpu(sb->events);
714         failed_devices = le64_to_cpu(sb->failed_devices);
715
716         /*
717          * Initialise to 1 if this is a new superblock.
718          */
719         mddev->events = events_sb ? : 1;
720
721         /*
722          * Reshaping is not currently allowed
723          */
724         if ((le32_to_cpu(sb->level) != mddev->level) ||
725             (le32_to_cpu(sb->layout) != mddev->layout) ||
726             (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
727                 DMERR("Reshaping arrays not yet supported.");
728                 return -EINVAL;
729         }
730
731         /* We can only change the number of devices in RAID1 right now */
732         if ((rs->raid_type->level != 1) &&
733             (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
734                 DMERR("Reshaping arrays not yet supported.");
735                 return -EINVAL;
736         }
737
738         if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
739                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
740
741         /*
742          * During load, we set FirstUse if a new superblock was written.
743          * There are two reasons we might not have a superblock:
744          * 1) The array is brand new - in which case, all of the
745          *    devices must have their In_sync bit set.  Also,
746          *    recovery_cp must be 0, unless forced.
747          * 2) This is a new device being added to an old array
748          *    and the new device needs to be rebuilt - in which
749          *    case the In_sync bit will /not/ be set and
750          *    recovery_cp must be MaxSector.
751          */
752         rdev_for_each(r, t, mddev) {
753                 if (!test_bit(In_sync, &r->flags)) {
754                         DMINFO("Device %d specified for rebuild: "
755                                "Clearing superblock", r->raid_disk);
756                         rebuilds++;
757                 } else if (test_bit(FirstUse, &r->flags))
758                         new_devs++;
759         }
760
761         if (!rebuilds) {
762                 if (new_devs == mddev->raid_disks) {
763                         DMINFO("Superblocks created for new array");
764                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
765                 } else if (new_devs) {
766                         DMERR("New device injected "
767                               "into existing array without 'rebuild' "
768                               "parameter specified");
769                         return -EINVAL;
770                 }
771         } else if (new_devs) {
772                 DMERR("'rebuild' devices cannot be "
773                       "injected into an array with other first-time devices");
774                 return -EINVAL;
775         } else if (mddev->recovery_cp != MaxSector) {
776                 DMERR("'rebuild' specified while array is not in-sync");
777                 return -EINVAL;
778         }
779
780         /*
781          * Now we set the Faulty bit for those devices that are
782          * recorded in the superblock as failed.
783          */
784         rdev_for_each(r, t, mddev) {
785                 if (!r->sb_page)
786                         continue;
787                 sb2 = page_address(r->sb_page);
788                 sb2->failed_devices = 0;
789
790                 /*
791                  * Check for any device re-ordering.
792                  */
793                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
794                         role = le32_to_cpu(sb2->array_position);
795                         if (role != r->raid_disk) {
796                                 if (rs->raid_type->level != 1) {
797                                         rs->ti->error = "Cannot change device "
798                                                 "positions in RAID array";
799                                         return -EINVAL;
800                                 }
801                                 DMINFO("RAID1 device #%d now at position #%d",
802                                        role, r->raid_disk);
803                         }
804
805                         /*
806                          * Partial recovery is performed on
807                          * returning failed devices.
808                          */
809                         if (failed_devices & (1 << role))
810                                 set_bit(Faulty, &r->flags);
811                 }
812         }
813
814         return 0;
815 }
816
817 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
818 {
819         struct dm_raid_superblock *sb = page_address(rdev->sb_page);
820
821         /*
822          * If mddev->events is not set, we know we have not yet initialized
823          * the array.
824          */
825         if (!mddev->events && super_init_validation(mddev, rdev))
826                 return -EINVAL;
827
828         mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
829         rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
830         if (!test_bit(FirstUse, &rdev->flags)) {
831                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
832                 if (rdev->recovery_offset != MaxSector)
833                         clear_bit(In_sync, &rdev->flags);
834         }
835
836         /*
837          * If a device comes back, set it as not In_sync and no longer faulty.
838          */
839         if (test_bit(Faulty, &rdev->flags)) {
840                 clear_bit(Faulty, &rdev->flags);
841                 clear_bit(In_sync, &rdev->flags);
842                 rdev->saved_raid_disk = rdev->raid_disk;
843                 rdev->recovery_offset = 0;
844         }
845
846         clear_bit(FirstUse, &rdev->flags);
847
848         return 0;
849 }
850
851 /*
852  * Analyse superblocks and select the freshest.
853  */
854 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
855 {
856         int ret;
857         struct md_rdev *rdev, *freshest, *tmp;
858         struct mddev *mddev = &rs->md;
859
860         freshest = NULL;
861         rdev_for_each(rdev, tmp, mddev) {
862                 if (!rdev->meta_bdev)
863                         continue;
864
865                 ret = super_load(rdev, freshest);
866
867                 switch (ret) {
868                 case 1:
869                         freshest = rdev;
870                         break;
871                 case 0:
872                         break;
873                 default:
874                         ti->error = "Failed to load superblock";
875                         return ret;
876                 }
877         }
878
879         if (!freshest)
880                 return 0;
881
882         /*
883          * Validation of the freshest device provides the source of
884          * validation for the remaining devices.
885          */
886         ti->error = "Unable to assemble array: Invalid superblocks";
887         if (super_validate(mddev, freshest))
888                 return -EINVAL;
889
890         rdev_for_each(rdev, tmp, mddev)
891                 if ((rdev != freshest) && super_validate(mddev, rdev))
892                         return -EINVAL;
893
894         return 0;
895 }
896
897 /*
898  * Construct a RAID4/5/6 mapping:
899  * Args:
900  *      <raid_type> <#raid_params> <raid_params>                \
901  *      <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
902  *
903  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
904  * details on possible <raid_params>.
905  */
906 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
907 {
908         int ret;
909         struct raid_type *rt;
910         unsigned long num_raid_params, num_raid_devs;
911         struct raid_set *rs = NULL;
912
913         /* Must have at least <raid_type> <#raid_params> */
914         if (argc < 2) {
915                 ti->error = "Too few arguments";
916                 return -EINVAL;
917         }
918
919         /* raid type */
920         rt = get_raid_type(argv[0]);
921         if (!rt) {
922                 ti->error = "Unrecognised raid_type";
923                 return -EINVAL;
924         }
925         argc--;
926         argv++;
927
928         /* number of RAID parameters */
929         if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
930                 ti->error = "Cannot understand number of RAID parameters";
931                 return -EINVAL;
932         }
933         argc--;
934         argv++;
935
936         /* Skip over RAID params for now and find out # of devices */
937         if (num_raid_params + 1 > argc) {
938                 ti->error = "Arguments do not agree with counts given";
939                 return -EINVAL;
940         }
941
942         if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
943             (num_raid_devs >= INT_MAX)) {
944                 ti->error = "Cannot understand number of raid devices";
945                 return -EINVAL;
946         }
947
948         rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
949         if (IS_ERR(rs))
950                 return PTR_ERR(rs);
951
952         ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
953         if (ret)
954                 goto bad;
955
956         ret = -EINVAL;
957
958         argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
959         argv += num_raid_params + 1;
960
961         if (argc != (num_raid_devs * 2)) {
962                 ti->error = "Supplied RAID devices does not match the count given";
963                 goto bad;
964         }
965
966         ret = dev_parms(rs, argv);
967         if (ret)
968                 goto bad;
969
970         rs->md.sync_super = super_sync;
971         ret = analyse_superblocks(ti, rs);
972         if (ret)
973                 goto bad;
974
975         INIT_WORK(&rs->md.event_work, do_table_event);
976         ti->private = rs;
977         ti->num_flush_requests = 1;
978
979         mutex_lock(&rs->md.reconfig_mutex);
980         ret = md_run(&rs->md);
981         rs->md.in_sync = 0; /* Assume already marked dirty */
982         mutex_unlock(&rs->md.reconfig_mutex);
983
984         if (ret) {
985                 ti->error = "Fail to run raid array";
986                 goto bad;
987         }
988
989         rs->callbacks.congested_fn = raid_is_congested;
990         dm_table_add_target_callbacks(ti->table, &rs->callbacks);
991
992         mddev_suspend(&rs->md);
993         return 0;
994
995 bad:
996         context_free(rs);
997
998         return ret;
999 }
1000
1001 static void raid_dtr(struct dm_target *ti)
1002 {
1003         struct raid_set *rs = ti->private;
1004
1005         list_del_init(&rs->callbacks.list);
1006         md_stop(&rs->md);
1007         context_free(rs);
1008 }
1009
1010 static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1011 {
1012         struct raid_set *rs = ti->private;
1013         struct mddev *mddev = &rs->md;
1014
1015         mddev->pers->make_request(mddev, bio);
1016
1017         return DM_MAPIO_SUBMITTED;
1018 }
1019
1020 static int raid_status(struct dm_target *ti, status_type_t type,
1021                        char *result, unsigned maxlen)
1022 {
1023         struct raid_set *rs = ti->private;
1024         unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1025         unsigned sz = 0;
1026         int i, array_in_sync = 0;
1027         sector_t sync;
1028
1029         switch (type) {
1030         case STATUSTYPE_INFO:
1031                 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1032
1033                 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1034                         sync = rs->md.curr_resync_completed;
1035                 else
1036                         sync = rs->md.recovery_cp;
1037
1038                 if (sync >= rs->md.resync_max_sectors) {
1039                         array_in_sync = 1;
1040                         sync = rs->md.resync_max_sectors;
1041                 } else {
1042                         /*
1043                          * The array may be doing an initial sync, or it may
1044                          * be rebuilding individual components.  If all the
1045                          * devices are In_sync, then it is the array that is
1046                          * being initialized.
1047                          */
1048                         for (i = 0; i < rs->md.raid_disks; i++)
1049                                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1050                                         array_in_sync = 1;
1051                 }
1052                 /*
1053                  * Status characters:
1054                  *  'D' = Dead/Failed device
1055                  *  'a' = Alive but not in-sync
1056                  *  'A' = Alive and in-sync
1057                  */
1058                 for (i = 0; i < rs->md.raid_disks; i++) {
1059                         if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1060                                 DMEMIT("D");
1061                         else if (!array_in_sync ||
1062                                  !test_bit(In_sync, &rs->dev[i].rdev.flags))
1063                                 DMEMIT("a");
1064                         else
1065                                 DMEMIT("A");
1066                 }
1067
1068                 /*
1069                  * In-sync ratio:
1070                  *  The in-sync ratio shows the progress of:
1071                  *   - Initializing the array
1072                  *   - Rebuilding a subset of devices of the array
1073                  *  The user can distinguish between the two by referring
1074                  *  to the status characters.
1075                  */
1076                 DMEMIT(" %llu/%llu",
1077                        (unsigned long long) sync,
1078                        (unsigned long long) rs->md.resync_max_sectors);
1079
1080                 break;
1081         case STATUSTYPE_TABLE:
1082                 /* The string you would use to construct this array */
1083                 for (i = 0; i < rs->md.raid_disks; i++) {
1084                         if ((rs->print_flags & DMPF_REBUILD) &&
1085                             rs->dev[i].data_dev &&
1086                             !test_bit(In_sync, &rs->dev[i].rdev.flags))
1087                                 raid_param_cnt += 2; /* for rebuilds */
1088                         if (rs->dev[i].data_dev &&
1089                             test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1090                                 raid_param_cnt += 2;
1091                 }
1092
1093                 raid_param_cnt += (hweight64(rs->print_flags & ~DMPF_REBUILD) * 2);
1094                 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1095                         raid_param_cnt--;
1096
1097                 DMEMIT("%s %u %u", rs->raid_type->name,
1098                        raid_param_cnt, rs->md.chunk_sectors);
1099
1100                 if ((rs->print_flags & DMPF_SYNC) &&
1101                     (rs->md.recovery_cp == MaxSector))
1102                         DMEMIT(" sync");
1103                 if (rs->print_flags & DMPF_NOSYNC)
1104                         DMEMIT(" nosync");
1105
1106                 for (i = 0; i < rs->md.raid_disks; i++)
1107                         if ((rs->print_flags & DMPF_REBUILD) &&
1108                             rs->dev[i].data_dev &&
1109                             !test_bit(In_sync, &rs->dev[i].rdev.flags))
1110                                 DMEMIT(" rebuild %u", i);
1111
1112                 if (rs->print_flags & DMPF_DAEMON_SLEEP)
1113                         DMEMIT(" daemon_sleep %lu",
1114                                rs->md.bitmap_info.daemon_sleep);
1115
1116                 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1117                         DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1118
1119                 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1120                         DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1121
1122                 for (i = 0; i < rs->md.raid_disks; i++)
1123                         if (rs->dev[i].data_dev &&
1124                             test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1125                                 DMEMIT(" write_mostly %u", i);
1126
1127                 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1128                         DMEMIT(" max_write_behind %lu",
1129                                rs->md.bitmap_info.max_write_behind);
1130
1131                 if (rs->print_flags & DMPF_STRIPE_CACHE) {
1132                         struct r5conf *conf = rs->md.private;
1133
1134                         /* convert from kiB to sectors */
1135                         DMEMIT(" stripe_cache %d",
1136                                conf ? conf->max_nr_stripes * 2 : 0);
1137                 }
1138
1139                 if (rs->print_flags & DMPF_REGION_SIZE)
1140                         DMEMIT(" region_size %lu",
1141                                rs->md.bitmap_info.chunksize >> 9);
1142
1143                 DMEMIT(" %d", rs->md.raid_disks);
1144                 for (i = 0; i < rs->md.raid_disks; i++) {
1145                         if (rs->dev[i].meta_dev)
1146                                 DMEMIT(" %s", rs->dev[i].meta_dev->name);
1147                         else
1148                                 DMEMIT(" -");
1149
1150                         if (rs->dev[i].data_dev)
1151                                 DMEMIT(" %s", rs->dev[i].data_dev->name);
1152                         else
1153                                 DMEMIT(" -");
1154                 }
1155         }
1156
1157         return 0;
1158 }
1159
1160 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1161 {
1162         struct raid_set *rs = ti->private;
1163         unsigned i;
1164         int ret = 0;
1165
1166         for (i = 0; !ret && i < rs->md.raid_disks; i++)
1167                 if (rs->dev[i].data_dev)
1168                         ret = fn(ti,
1169                                  rs->dev[i].data_dev,
1170                                  0, /* No offset on data devs */
1171                                  rs->md.dev_sectors,
1172                                  data);
1173
1174         return ret;
1175 }
1176
1177 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1178 {
1179         struct raid_set *rs = ti->private;
1180         unsigned chunk_size = rs->md.chunk_sectors << 9;
1181         struct r5conf *conf = rs->md.private;
1182
1183         blk_limits_io_min(limits, chunk_size);
1184         blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1185 }
1186
1187 static void raid_presuspend(struct dm_target *ti)
1188 {
1189         struct raid_set *rs = ti->private;
1190
1191         md_stop_writes(&rs->md);
1192 }
1193
1194 static void raid_postsuspend(struct dm_target *ti)
1195 {
1196         struct raid_set *rs = ti->private;
1197
1198         mddev_suspend(&rs->md);
1199 }
1200
1201 static void raid_resume(struct dm_target *ti)
1202 {
1203         struct raid_set *rs = ti->private;
1204
1205         bitmap_load(&rs->md);
1206         mddev_resume(&rs->md);
1207 }
1208
1209 static struct target_type raid_target = {
1210         .name = "raid",
1211         .version = {1, 1, 0},
1212         .module = THIS_MODULE,
1213         .ctr = raid_ctr,
1214         .dtr = raid_dtr,
1215         .map = raid_map,
1216         .status = raid_status,
1217         .iterate_devices = raid_iterate_devices,
1218         .io_hints = raid_io_hints,
1219         .presuspend = raid_presuspend,
1220         .postsuspend = raid_postsuspend,
1221         .resume = raid_resume,
1222 };
1223
1224 static int __init dm_raid_init(void)
1225 {
1226         return dm_register_target(&raid_target);
1227 }
1228
1229 static void __exit dm_raid_exit(void)
1230 {
1231         dm_unregister_target(&raid_target);
1232 }
1233
1234 module_init(dm_raid_init);
1235 module_exit(dm_raid_exit);
1236
1237 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1238 MODULE_ALIAS("dm-raid4");
1239 MODULE_ALIAS("dm-raid5");
1240 MODULE_ALIAS("dm-raid6");
1241 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1242 MODULE_LICENSE("GPL");