Merge branch 'omap-fixes-for-tony' of git://dev.omapzoom.org/pub/scm/saaguirre/linux...
[pandora-kernel.git] / drivers / macintosh / therm_pm72.c
1 /*
2  * Device driver for the thermostats & fan controller of  the
3  * Apple G5 "PowerMac7,2" desktop machines.
4  *
5  * (c) Copyright IBM Corp. 2003-2004
6  *
7  * Maintained by: Benjamin Herrenschmidt
8  *                <benh@kernel.crashing.org>
9  * 
10  *
11  * The algorithm used is the PID control algorithm, used the same
12  * way the published Darwin code does, using the same values that
13  * are present in the Darwin 7.0 snapshot property lists.
14  *
15  * As far as the CPUs control loops are concerned, I use the
16  * calibration & PID constants provided by the EEPROM,
17  * I do _not_ embed any value from the property lists, as the ones
18  * provided by Darwin 7.0 seem to always have an older version that
19  * what I've seen on the actual computers.
20  * It would be interesting to verify that though. Darwin has a
21  * version code of 1.0.0d11 for all control loops it seems, while
22  * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23  *
24  * Darwin doesn't provide source to all parts, some missing
25  * bits like the AppleFCU driver or the actual scale of some
26  * of the values returned by sensors had to be "guessed" some
27  * way... or based on what Open Firmware does.
28  *
29  * I didn't yet figure out how to get the slots power consumption
30  * out of the FCU, so that part has not been implemented yet and
31  * the slots fan is set to a fixed 50% PWM, hoping this value is
32  * safe enough ...
33  *
34  * Note: I have observed strange oscillations of the CPU control
35  * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36  * oscillates slowly (over several minutes) between the minimum
37  * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38  * this, it could be some incorrect constant or an error in the
39  * way I ported the algorithm, or it could be just normal. I
40  * don't have full understanding on the way Apple tweaked the PID
41  * algorithm for the CPU control, it is definitely not a standard
42  * implementation...
43  *
44  * TODO:  - Check MPU structure version/signature
45  *        - Add things like /sbin/overtemp for non-critical
46  *          overtemp conditions so userland can take some policy
47  *          decisions, like slewing down CPUs
48  *        - Deal with fan and i2c failures in a better way
49  *        - Maybe do a generic PID based on params used for
50  *          U3 and Drives ? Definitely need to factor code a bit
51  *          bettter... also make sensor detection more robust using
52  *          the device-tree to probe for them
53  *        - Figure out how to get the slots consumption and set the
54  *          slots fan accordingly
55  *
56  * History:
57  *
58  *  Nov. 13, 2003 : 0.5
59  *      - First release
60  *
61  *  Nov. 14, 2003 : 0.6
62  *      - Read fan speed from FCU, low level fan routines now deal
63  *        with errors & check fan status, though higher level don't
64  *        do much.
65  *      - Move a bunch of definitions to .h file
66  *
67  *  Nov. 18, 2003 : 0.7
68  *      - Fix build on ppc64 kernel
69  *      - Move back statics definitions to .c file
70  *      - Avoid calling schedule_timeout with a negative number
71  *
72  *  Dec. 18, 2003 : 0.8
73  *      - Fix typo when reading back fan speed on 2 CPU machines
74  *
75  *  Mar. 11, 2004 : 0.9
76  *      - Rework code accessing the ADC chips, make it more robust and
77  *        closer to the chip spec. Also make sure it is configured properly,
78  *        I've seen yet unexplained cases where on startup, I would have stale
79  *        values in the configuration register
80  *      - Switch back to use of target fan speed for PID, thus lowering
81  *        pressure on i2c
82  *
83  *  Oct. 20, 2004 : 1.1
84  *      - Add device-tree lookup for fan IDs, should detect liquid cooling
85  *        pumps when present
86  *      - Enable driver for PowerMac7,3 machines
87  *      - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88  *      - Add new CPU cooling algorithm for machines with liquid cooling
89  *      - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90  *      - Fix a signed/unsigned compare issue in some PID loops
91  *
92  *  Mar. 10, 2005 : 1.2
93  *      - Add basic support for Xserve G5
94  *      - Retreive pumps min/max from EEPROM image in device-tree (broken)
95  *      - Use min/max macros here or there
96  *      - Latest darwin updated U3H min fan speed to 20% PWM
97  *
98  *  July. 06, 2006 : 1.3
99  *      - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100  *      - Add missing slots fan control loop for Xserve G5
101  *      - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102  *        still can't properly implement the control loop for these, so let's
103  *        reduce the noise a little bit, it appears that 40% still gives us
104  *        a pretty good air flow
105  *      - Add code to "tickle" the FCU regulary so it doesn't think that
106  *        we are gone while in fact, the machine just didn't need any fan
107  *        speed change lately
108  *
109  */
110
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/slab.h>
118 #include <linux/init.h>
119 #include <linux/spinlock.h>
120 #include <linux/wait.h>
121 #include <linux/reboot.h>
122 #include <linux/kmod.h>
123 #include <linux/i2c.h>
124 #include <linux/kthread.h>
125 #include <linux/mutex.h>
126 #include <linux/of_device.h>
127 #include <linux/of_platform.h>
128 #include <asm/prom.h>
129 #include <asm/machdep.h>
130 #include <asm/io.h>
131 #include <asm/system.h>
132 #include <asm/sections.h>
133 #include <asm/macio.h>
134
135 #include "therm_pm72.h"
136
137 #define VERSION "1.3"
138
139 #undef DEBUG
140
141 #ifdef DEBUG
142 #define DBG(args...)    printk(args)
143 #else
144 #define DBG(args...)    do { } while(0)
145 #endif
146
147
148 /*
149  * Driver statics
150  */
151
152 static struct of_device *               of_dev;
153 static struct i2c_adapter *             u3_0;
154 static struct i2c_adapter *             u3_1;
155 static struct i2c_adapter *             k2;
156 static struct i2c_client *              fcu;
157 static struct cpu_pid_state             cpu_state[2];
158 static struct basckside_pid_params      backside_params;
159 static struct backside_pid_state        backside_state;
160 static struct drives_pid_state          drives_state;
161 static struct dimm_pid_state            dimms_state;
162 static struct slots_pid_state           slots_state;
163 static int                              state;
164 static int                              cpu_count;
165 static int                              cpu_pid_type;
166 static struct task_struct               *ctrl_task;
167 static struct completion                ctrl_complete;
168 static int                              critical_state;
169 static int                              rackmac;
170 static s32                              dimm_output_clamp;
171 static int                              fcu_rpm_shift;
172 static int                              fcu_tickle_ticks;
173 static DEFINE_MUTEX(driver_lock);
174
175 /*
176  * We have 3 types of CPU PID control. One is "split" old style control
177  * for intake & exhaust fans, the other is "combined" control for both
178  * CPUs that also deals with the pumps when present. To be "compatible"
179  * with OS X at this point, we only use "COMBINED" on the machines that
180  * are identified as having the pumps (though that identification is at
181  * least dodgy). Ultimately, we could probably switch completely to this
182  * algorithm provided we hack it to deal with the UP case
183  */
184 #define CPU_PID_TYPE_SPLIT      0
185 #define CPU_PID_TYPE_COMBINED   1
186 #define CPU_PID_TYPE_RACKMAC    2
187
188 /*
189  * This table describes all fans in the FCU. The "id" and "type" values
190  * are defaults valid for all earlier machines. Newer machines will
191  * eventually override the table content based on the device-tree
192  */
193 struct fcu_fan_table
194 {
195         char*   loc;    /* location code */
196         int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
197         int     id;     /* id or -1 */
198 };
199
200 #define FCU_FAN_RPM             0
201 #define FCU_FAN_PWM             1
202
203 #define FCU_FAN_ABSENT_ID       -1
204
205 #define FCU_FAN_COUNT           ARRAY_SIZE(fcu_fans)
206
207 struct fcu_fan_table    fcu_fans[] = {
208         [BACKSIDE_FAN_PWM_INDEX] = {
209                 .loc    = "BACKSIDE,SYS CTRLR FAN",
210                 .type   = FCU_FAN_PWM,
211                 .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
212         },
213         [DRIVES_FAN_RPM_INDEX] = {
214                 .loc    = "DRIVE BAY",
215                 .type   = FCU_FAN_RPM,
216                 .id     = DRIVES_FAN_RPM_DEFAULT_ID,
217         },
218         [SLOTS_FAN_PWM_INDEX] = {
219                 .loc    = "SLOT,PCI FAN",
220                 .type   = FCU_FAN_PWM,
221                 .id     = SLOTS_FAN_PWM_DEFAULT_ID,
222         },
223         [CPUA_INTAKE_FAN_RPM_INDEX] = {
224                 .loc    = "CPU A INTAKE",
225                 .type   = FCU_FAN_RPM,
226                 .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
227         },
228         [CPUA_EXHAUST_FAN_RPM_INDEX] = {
229                 .loc    = "CPU A EXHAUST",
230                 .type   = FCU_FAN_RPM,
231                 .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
232         },
233         [CPUB_INTAKE_FAN_RPM_INDEX] = {
234                 .loc    = "CPU B INTAKE",
235                 .type   = FCU_FAN_RPM,
236                 .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
237         },
238         [CPUB_EXHAUST_FAN_RPM_INDEX] = {
239                 .loc    = "CPU B EXHAUST",
240                 .type   = FCU_FAN_RPM,
241                 .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
242         },
243         /* pumps aren't present by default, have to be looked up in the
244          * device-tree
245          */
246         [CPUA_PUMP_RPM_INDEX] = {
247                 .loc    = "CPU A PUMP",
248                 .type   = FCU_FAN_RPM,          
249                 .id     = FCU_FAN_ABSENT_ID,
250         },
251         [CPUB_PUMP_RPM_INDEX] = {
252                 .loc    = "CPU B PUMP",
253                 .type   = FCU_FAN_RPM,
254                 .id     = FCU_FAN_ABSENT_ID,
255         },
256         /* Xserve fans */
257         [CPU_A1_FAN_RPM_INDEX] = {
258                 .loc    = "CPU A 1",
259                 .type   = FCU_FAN_RPM,
260                 .id     = FCU_FAN_ABSENT_ID,
261         },
262         [CPU_A2_FAN_RPM_INDEX] = {
263                 .loc    = "CPU A 2",
264                 .type   = FCU_FAN_RPM,
265                 .id     = FCU_FAN_ABSENT_ID,
266         },
267         [CPU_A3_FAN_RPM_INDEX] = {
268                 .loc    = "CPU A 3",
269                 .type   = FCU_FAN_RPM,
270                 .id     = FCU_FAN_ABSENT_ID,
271         },
272         [CPU_B1_FAN_RPM_INDEX] = {
273                 .loc    = "CPU B 1",
274                 .type   = FCU_FAN_RPM,
275                 .id     = FCU_FAN_ABSENT_ID,
276         },
277         [CPU_B2_FAN_RPM_INDEX] = {
278                 .loc    = "CPU B 2",
279                 .type   = FCU_FAN_RPM,
280                 .id     = FCU_FAN_ABSENT_ID,
281         },
282         [CPU_B3_FAN_RPM_INDEX] = {
283                 .loc    = "CPU B 3",
284                 .type   = FCU_FAN_RPM,
285                 .id     = FCU_FAN_ABSENT_ID,
286         },
287 };
288
289 static struct i2c_driver therm_pm72_driver;
290
291 /*
292  * Utility function to create an i2c_client structure and
293  * attach it to one of u3 adapters
294  */
295 static struct i2c_client *attach_i2c_chip(int id, const char *name)
296 {
297         struct i2c_client *clt;
298         struct i2c_adapter *adap;
299         struct i2c_board_info info;
300
301         if (id & 0x200)
302                 adap = k2;
303         else if (id & 0x100)
304                 adap = u3_1;
305         else
306                 adap = u3_0;
307         if (adap == NULL)
308                 return NULL;
309
310         memset(&info, 0, sizeof(struct i2c_board_info));
311         info.addr = (id >> 1) & 0x7f;
312         strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
313         clt = i2c_new_device(adap, &info);
314         if (!clt) {
315                 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
316                 return NULL;
317         }
318
319         /*
320          * Let i2c-core delete that device on driver removal.
321          * This is safe because i2c-core holds the core_lock mutex for us.
322          */
323         list_add_tail(&clt->detected, &therm_pm72_driver.clients);
324         return clt;
325 }
326
327 /*
328  * Here are the i2c chip access wrappers
329  */
330
331 static void initialize_adc(struct cpu_pid_state *state)
332 {
333         int rc;
334         u8 buf[2];
335
336         /* Read ADC the configuration register and cache it. We
337          * also make sure Config2 contains proper values, I've seen
338          * cases where we got stale grabage in there, thus preventing
339          * proper reading of conv. values
340          */
341
342         /* Clear Config2 */
343         buf[0] = 5;
344         buf[1] = 0;
345         i2c_master_send(state->monitor, buf, 2);
346
347         /* Read & cache Config1 */
348         buf[0] = 1;
349         rc = i2c_master_send(state->monitor, buf, 1);
350         if (rc > 0) {
351                 rc = i2c_master_recv(state->monitor, buf, 1);
352                 if (rc > 0) {
353                         state->adc_config = buf[0];
354                         DBG("ADC config reg: %02x\n", state->adc_config);
355                         /* Disable shutdown mode */
356                         state->adc_config &= 0xfe;
357                         buf[0] = 1;
358                         buf[1] = state->adc_config;
359                         rc = i2c_master_send(state->monitor, buf, 2);
360                 }
361         }
362         if (rc <= 0)
363                 printk(KERN_ERR "therm_pm72: Error reading ADC config"
364                        " register !\n");
365 }
366
367 static int read_smon_adc(struct cpu_pid_state *state, int chan)
368 {
369         int rc, data, tries = 0;
370         u8 buf[2];
371
372         for (;;) {
373                 /* Set channel */
374                 buf[0] = 1;
375                 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
376                 rc = i2c_master_send(state->monitor, buf, 2);
377                 if (rc <= 0)
378                         goto error;
379                 /* Wait for convertion */
380                 msleep(1);
381                 /* Switch to data register */
382                 buf[0] = 4;
383                 rc = i2c_master_send(state->monitor, buf, 1);
384                 if (rc <= 0)
385                         goto error;
386                 /* Read result */
387                 rc = i2c_master_recv(state->monitor, buf, 2);
388                 if (rc < 0)
389                         goto error;
390                 data = ((u16)buf[0]) << 8 | (u16)buf[1];
391                 return data >> 6;
392         error:
393                 DBG("Error reading ADC, retrying...\n");
394                 if (++tries > 10) {
395                         printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
396                         return -1;
397                 }
398                 msleep(10);
399         }
400 }
401
402 static int read_lm87_reg(struct i2c_client * chip, int reg)
403 {
404         int rc, tries = 0;
405         u8 buf;
406
407         for (;;) {
408                 /* Set address */
409                 buf = (u8)reg;
410                 rc = i2c_master_send(chip, &buf, 1);
411                 if (rc <= 0)
412                         goto error;
413                 rc = i2c_master_recv(chip, &buf, 1);
414                 if (rc <= 0)
415                         goto error;
416                 return (int)buf;
417         error:
418                 DBG("Error reading LM87, retrying...\n");
419                 if (++tries > 10) {
420                         printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
421                         return -1;
422                 }
423                 msleep(10);
424         }
425 }
426
427 static int fan_read_reg(int reg, unsigned char *buf, int nb)
428 {
429         int tries, nr, nw;
430
431         buf[0] = reg;
432         tries = 0;
433         for (;;) {
434                 nw = i2c_master_send(fcu, buf, 1);
435                 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
436                         break;
437                 msleep(10);
438                 ++tries;
439         }
440         if (nw <= 0) {
441                 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
442                 return -EIO;
443         }
444         tries = 0;
445         for (;;) {
446                 nr = i2c_master_recv(fcu, buf, nb);
447                 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
448                         break;
449                 msleep(10);
450                 ++tries;
451         }
452         if (nr <= 0)
453                 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
454         return nr;
455 }
456
457 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
458 {
459         int tries, nw;
460         unsigned char buf[16];
461
462         buf[0] = reg;
463         memcpy(buf+1, ptr, nb);
464         ++nb;
465         tries = 0;
466         for (;;) {
467                 nw = i2c_master_send(fcu, buf, nb);
468                 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
469                         break;
470                 msleep(10);
471                 ++tries;
472         }
473         if (nw < 0)
474                 printk(KERN_ERR "Failure writing to FCU: %d", nw);
475         return nw;
476 }
477
478 static int start_fcu(void)
479 {
480         unsigned char buf = 0xff;
481         int rc;
482
483         rc = fan_write_reg(0xe, &buf, 1);
484         if (rc < 0)
485                 return -EIO;
486         rc = fan_write_reg(0x2e, &buf, 1);
487         if (rc < 0)
488                 return -EIO;
489         rc = fan_read_reg(0, &buf, 1);
490         if (rc < 0)
491                 return -EIO;
492         fcu_rpm_shift = (buf == 1) ? 2 : 3;
493         printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
494                fcu_rpm_shift);
495
496         return 0;
497 }
498
499 static int set_rpm_fan(int fan_index, int rpm)
500 {
501         unsigned char buf[2];
502         int rc, id, min, max;
503
504         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
505                 return -EINVAL;
506         id = fcu_fans[fan_index].id; 
507         if (id == FCU_FAN_ABSENT_ID)
508                 return -EINVAL;
509
510         min = 2400 >> fcu_rpm_shift;
511         max = 56000 >> fcu_rpm_shift;
512
513         if (rpm < min)
514                 rpm = min;
515         else if (rpm > max)
516                 rpm = max;
517         buf[0] = rpm >> (8 - fcu_rpm_shift);
518         buf[1] = rpm << fcu_rpm_shift;
519         rc = fan_write_reg(0x10 + (id * 2), buf, 2);
520         if (rc < 0)
521                 return -EIO;
522         return 0;
523 }
524
525 static int get_rpm_fan(int fan_index, int programmed)
526 {
527         unsigned char failure;
528         unsigned char active;
529         unsigned char buf[2];
530         int rc, id, reg_base;
531
532         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
533                 return -EINVAL;
534         id = fcu_fans[fan_index].id; 
535         if (id == FCU_FAN_ABSENT_ID)
536                 return -EINVAL;
537
538         rc = fan_read_reg(0xb, &failure, 1);
539         if (rc != 1)
540                 return -EIO;
541         if ((failure & (1 << id)) != 0)
542                 return -EFAULT;
543         rc = fan_read_reg(0xd, &active, 1);
544         if (rc != 1)
545                 return -EIO;
546         if ((active & (1 << id)) == 0)
547                 return -ENXIO;
548
549         /* Programmed value or real current speed */
550         reg_base = programmed ? 0x10 : 0x11;
551         rc = fan_read_reg(reg_base + (id * 2), buf, 2);
552         if (rc != 2)
553                 return -EIO;
554
555         return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
556 }
557
558 static int set_pwm_fan(int fan_index, int pwm)
559 {
560         unsigned char buf[2];
561         int rc, id;
562
563         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
564                 return -EINVAL;
565         id = fcu_fans[fan_index].id; 
566         if (id == FCU_FAN_ABSENT_ID)
567                 return -EINVAL;
568
569         if (pwm < 10)
570                 pwm = 10;
571         else if (pwm > 100)
572                 pwm = 100;
573         pwm = (pwm * 2559) / 1000;
574         buf[0] = pwm;
575         rc = fan_write_reg(0x30 + (id * 2), buf, 1);
576         if (rc < 0)
577                 return rc;
578         return 0;
579 }
580
581 static int get_pwm_fan(int fan_index)
582 {
583         unsigned char failure;
584         unsigned char active;
585         unsigned char buf[2];
586         int rc, id;
587
588         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
589                 return -EINVAL;
590         id = fcu_fans[fan_index].id; 
591         if (id == FCU_FAN_ABSENT_ID)
592                 return -EINVAL;
593
594         rc = fan_read_reg(0x2b, &failure, 1);
595         if (rc != 1)
596                 return -EIO;
597         if ((failure & (1 << id)) != 0)
598                 return -EFAULT;
599         rc = fan_read_reg(0x2d, &active, 1);
600         if (rc != 1)
601                 return -EIO;
602         if ((active & (1 << id)) == 0)
603                 return -ENXIO;
604
605         /* Programmed value or real current speed */
606         rc = fan_read_reg(0x30 + (id * 2), buf, 1);
607         if (rc != 1)
608                 return -EIO;
609
610         return (buf[0] * 1000) / 2559;
611 }
612
613 static void tickle_fcu(void)
614 {
615         int pwm;
616
617         pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
618
619         DBG("FCU Tickle, slots fan is: %d\n", pwm);
620         if (pwm < 0)
621                 pwm = 100;
622
623         if (!rackmac) {
624                 pwm = SLOTS_FAN_DEFAULT_PWM;
625         } else if (pwm < SLOTS_PID_OUTPUT_MIN)
626                 pwm = SLOTS_PID_OUTPUT_MIN;
627
628         /* That is hopefully enough to make the FCU happy */
629         set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
630 }
631
632
633 /*
634  * Utility routine to read the CPU calibration EEPROM data
635  * from the device-tree
636  */
637 static int read_eeprom(int cpu, struct mpu_data *out)
638 {
639         struct device_node *np;
640         char nodename[64];
641         const u8 *data;
642         int len;
643
644         /* prom.c routine for finding a node by path is a bit brain dead
645          * and requires exact @xxx unit numbers. This is a bit ugly but
646          * will work for these machines
647          */
648         sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
649         np = of_find_node_by_path(nodename);
650         if (np == NULL) {
651                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
652                 return -ENODEV;
653         }
654         data = of_get_property(np, "cpuid", &len);
655         if (data == NULL) {
656                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
657                 of_node_put(np);
658                 return -ENODEV;
659         }
660         memcpy(out, data, sizeof(struct mpu_data));
661         of_node_put(np);
662         
663         return 0;
664 }
665
666 static void fetch_cpu_pumps_minmax(void)
667 {
668         struct cpu_pid_state *state0 = &cpu_state[0];
669         struct cpu_pid_state *state1 = &cpu_state[1];
670         u16 pump_min = 0, pump_max = 0xffff;
671         u16 tmp[4];
672
673         /* Try to fetch pumps min/max infos from eeprom */
674
675         memcpy(&tmp, &state0->mpu.processor_part_num, 8);
676         if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
677                 pump_min = max(pump_min, tmp[0]);
678                 pump_max = min(pump_max, tmp[1]);
679         }
680         if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
681                 pump_min = max(pump_min, tmp[2]);
682                 pump_max = min(pump_max, tmp[3]);
683         }
684
685         /* Double check the values, this _IS_ needed as the EEPROM on
686          * some dual 2.5Ghz G5s seem, at least, to have both min & max
687          * same to the same value ... (grrrr)
688          */
689         if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
690                 pump_min = CPU_PUMP_OUTPUT_MIN;
691                 pump_max = CPU_PUMP_OUTPUT_MAX;
692         }
693
694         state0->pump_min = state1->pump_min = pump_min;
695         state0->pump_max = state1->pump_max = pump_max;
696 }
697
698 /* 
699  * Now, unfortunately, sysfs doesn't give us a nice void * we could
700  * pass around to the attribute functions, so we don't really have
701  * choice but implement a bunch of them...
702  *
703  * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
704  * the input twice... I accept patches :)
705  */
706 #define BUILD_SHOW_FUNC_FIX(name, data)                         \
707 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
708 {                                                               \
709         ssize_t r;                                              \
710         mutex_lock(&driver_lock);                                       \
711         r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
712         mutex_unlock(&driver_lock);                                     \
713         return r;                                               \
714 }
715 #define BUILD_SHOW_FUNC_INT(name, data)                         \
716 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
717 {                                                               \
718         return sprintf(buf, "%d", data);                        \
719 }
720
721 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
722 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
723 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
724 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
725 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
726
727 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
728 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
729 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
730 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
731 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
732
733 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
734 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
735
736 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
737 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
738
739 BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
740 BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
741
742 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
743
744 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
745 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
746 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
747 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
748 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
749
750 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
751 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
752 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
753 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
754 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
755
756 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
757 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
758
759 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
760 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
761
762 static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
763 static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
764
765 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
766
767 /*
768  * CPUs fans control loop
769  */
770
771 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
772 {
773         s32 ltemp, volts, amps;
774         int index, rc = 0;
775
776         /* Default (in case of error) */
777         *temp = state->cur_temp;
778         *power = state->cur_power;
779
780         if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
781                 index = (state->index == 0) ?
782                         CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
783         else
784                 index = (state->index == 0) ?
785                         CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
786
787         /* Read current fan status */
788         rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
789         if (rc < 0) {
790                 /* XXX What do we do now ? Nothing for now, keep old value, but
791                  * return error upstream
792                  */
793                 DBG("  cpu %d, fan reading error !\n", state->index);
794         } else {
795                 state->rpm = rc;
796                 DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
797         }
798
799         /* Get some sensor readings and scale it */
800         ltemp = read_smon_adc(state, 1);
801         if (ltemp == -1) {
802                 /* XXX What do we do now ? */
803                 state->overtemp++;
804                 if (rc == 0)
805                         rc = -EIO;
806                 DBG("  cpu %d, temp reading error !\n", state->index);
807         } else {
808                 /* Fixup temperature according to diode calibration
809                  */
810                 DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
811                     state->index,
812                     ltemp, state->mpu.mdiode, state->mpu.bdiode);
813                 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
814                 state->last_temp = *temp;
815                 DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
816         }
817
818         /*
819          * Read voltage & current and calculate power
820          */
821         volts = read_smon_adc(state, 3);
822         amps = read_smon_adc(state, 4);
823
824         /* Scale voltage and current raw sensor values according to fixed scales
825          * obtained in Darwin and calculate power from I and V
826          */
827         volts *= ADC_CPU_VOLTAGE_SCALE;
828         amps *= ADC_CPU_CURRENT_SCALE;
829         *power = (((u64)volts) * ((u64)amps)) >> 16;
830         state->voltage = volts;
831         state->current_a = amps;
832         state->last_power = *power;
833
834         DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
835             state->index, FIX32TOPRINT(state->current_a),
836             FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
837
838         return 0;
839 }
840
841 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
842 {
843         s32 power_target, integral, derivative, proportional, adj_in_target, sval;
844         s64 integ_p, deriv_p, prop_p, sum; 
845         int i;
846
847         /* Calculate power target value (could be done once for all)
848          * and convert to a 16.16 fp number
849          */
850         power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
851         DBG("  power target: %d.%03d, error: %d.%03d\n",
852             FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
853
854         /* Store temperature and power in history array */
855         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
856         state->temp_history[state->cur_temp] = temp;
857         state->cur_power = (state->cur_power + 1) % state->count_power;
858         state->power_history[state->cur_power] = power;
859         state->error_history[state->cur_power] = power_target - power;
860         
861         /* If first loop, fill the history table */
862         if (state->first) {
863                 for (i = 0; i < (state->count_power - 1); i++) {
864                         state->cur_power = (state->cur_power + 1) % state->count_power;
865                         state->power_history[state->cur_power] = power;
866                         state->error_history[state->cur_power] = power_target - power;
867                 }
868                 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
869                         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
870                         state->temp_history[state->cur_temp] = temp;                    
871                 }
872                 state->first = 0;
873         }
874
875         /* Calculate the integral term normally based on the "power" values */
876         sum = 0;
877         integral = 0;
878         for (i = 0; i < state->count_power; i++)
879                 integral += state->error_history[i];
880         integral *= CPU_PID_INTERVAL;
881         DBG("  integral: %08x\n", integral);
882
883         /* Calculate the adjusted input (sense value).
884          *   G_r is 12.20
885          *   integ is 16.16
886          *   so the result is 28.36
887          *
888          * input target is mpu.ttarget, input max is mpu.tmax
889          */
890         integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
891         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
892         sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
893         adj_in_target = (state->mpu.ttarget << 16);
894         if (adj_in_target > sval)
895                 adj_in_target = sval;
896         DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
897             state->mpu.ttarget);
898
899         /* Calculate the derivative term */
900         derivative = state->temp_history[state->cur_temp] -
901                 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
902                                     % CPU_TEMP_HISTORY_SIZE];
903         derivative /= CPU_PID_INTERVAL;
904         deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
905         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
906         sum += deriv_p;
907
908         /* Calculate the proportional term */
909         proportional = temp - adj_in_target;
910         prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
911         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
912         sum += prop_p;
913
914         /* Scale sum */
915         sum >>= 36;
916
917         DBG("   sum: %d\n", (int)sum);
918         state->rpm += (s32)sum;
919 }
920
921 static void do_monitor_cpu_combined(void)
922 {
923         struct cpu_pid_state *state0 = &cpu_state[0];
924         struct cpu_pid_state *state1 = &cpu_state[1];
925         s32 temp0, power0, temp1, power1;
926         s32 temp_combi, power_combi;
927         int rc, intake, pump;
928
929         rc = do_read_one_cpu_values(state0, &temp0, &power0);
930         if (rc < 0) {
931                 /* XXX What do we do now ? */
932         }
933         state1->overtemp = 0;
934         rc = do_read_one_cpu_values(state1, &temp1, &power1);
935         if (rc < 0) {
936                 /* XXX What do we do now ? */
937         }
938         if (state1->overtemp)
939                 state0->overtemp++;
940
941         temp_combi = max(temp0, temp1);
942         power_combi = max(power0, power1);
943
944         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
945          * full blown immediately and try to trigger a shutdown
946          */
947         if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
948                 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
949                        temp_combi >> 16);
950                 state0->overtemp += CPU_MAX_OVERTEMP / 4;
951         } else if (temp_combi > (state0->mpu.tmax << 16)) {
952                 state0->overtemp++;
953                 printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
954                        temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
955         } else {
956                 if (state0->overtemp)
957                         printk(KERN_WARNING "Temperature back down to %d\n",
958                                temp_combi >> 16);
959                 state0->overtemp = 0;
960         }
961         if (state0->overtemp >= CPU_MAX_OVERTEMP)
962                 critical_state = 1;
963         if (state0->overtemp > 0) {
964                 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
965                 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
966                 pump = state0->pump_max;
967                 goto do_set_fans;
968         }
969
970         /* Do the PID */
971         do_cpu_pid(state0, temp_combi, power_combi);
972
973         /* Range check */
974         state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
975         state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
976
977         /* Calculate intake fan speed */
978         intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
979         intake = max(intake, (int)state0->mpu.rminn_intake_fan);
980         intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
981         state0->intake_rpm = intake;
982
983         /* Calculate pump speed */
984         pump = (state0->rpm * state0->pump_max) /
985                 state0->mpu.rmaxn_exhaust_fan;
986         pump = min(pump, state0->pump_max);
987         pump = max(pump, state0->pump_min);
988         
989  do_set_fans:
990         /* We copy values from state 0 to state 1 for /sysfs */
991         state1->rpm = state0->rpm;
992         state1->intake_rpm = state0->intake_rpm;
993
994         DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
995             state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
996
997         /* We should check for errors, shouldn't we ? But then, what
998          * do we do once the error occurs ? For FCU notified fan
999          * failures (-EFAULT) we probably want to notify userland
1000          * some way...
1001          */
1002         set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1003         set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1004         set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1005         set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1006
1007         if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1008                 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1009         if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1010                 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1011 }
1012
1013 static void do_monitor_cpu_split(struct cpu_pid_state *state)
1014 {
1015         s32 temp, power;
1016         int rc, intake;
1017
1018         /* Read current fan status */
1019         rc = do_read_one_cpu_values(state, &temp, &power);
1020         if (rc < 0) {
1021                 /* XXX What do we do now ? */
1022         }
1023
1024         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1025          * full blown immediately and try to trigger a shutdown
1026          */
1027         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1028                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1029                        " (%d) !\n",
1030                        state->index, temp >> 16);
1031                 state->overtemp += CPU_MAX_OVERTEMP / 4;
1032         } else if (temp > (state->mpu.tmax << 16)) {
1033                 state->overtemp++;
1034                 printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1035                        state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1036         } else {
1037                 if (state->overtemp)
1038                         printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1039                                state->index, temp >> 16);
1040                 state->overtemp = 0;
1041         }
1042         if (state->overtemp >= CPU_MAX_OVERTEMP)
1043                 critical_state = 1;
1044         if (state->overtemp > 0) {
1045                 state->rpm = state->mpu.rmaxn_exhaust_fan;
1046                 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1047                 goto do_set_fans;
1048         }
1049
1050         /* Do the PID */
1051         do_cpu_pid(state, temp, power);
1052
1053         /* Range check */
1054         state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1055         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1056
1057         /* Calculate intake fan */
1058         intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1059         intake = max(intake, (int)state->mpu.rminn_intake_fan);
1060         intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1061         state->intake_rpm = intake;
1062
1063  do_set_fans:
1064         DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1065             state->index, (int)state->rpm, intake, state->overtemp);
1066
1067         /* We should check for errors, shouldn't we ? But then, what
1068          * do we do once the error occurs ? For FCU notified fan
1069          * failures (-EFAULT) we probably want to notify userland
1070          * some way...
1071          */
1072         if (state->index == 0) {
1073                 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1074                 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1075         } else {
1076                 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1077                 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1078         }
1079 }
1080
1081 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1082 {
1083         s32 temp, power, fan_min;
1084         int rc;
1085
1086         /* Read current fan status */
1087         rc = do_read_one_cpu_values(state, &temp, &power);
1088         if (rc < 0) {
1089                 /* XXX What do we do now ? */
1090         }
1091
1092         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1093          * full blown immediately and try to trigger a shutdown
1094          */
1095         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1096                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1097                        " (%d) !\n",
1098                        state->index, temp >> 16);
1099                 state->overtemp = CPU_MAX_OVERTEMP / 4;
1100         } else if (temp > (state->mpu.tmax << 16)) {
1101                 state->overtemp++;
1102                 printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1103                        state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1104         } else {
1105                 if (state->overtemp)
1106                         printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1107                                state->index, temp >> 16);
1108                 state->overtemp = 0;
1109         }
1110         if (state->overtemp >= CPU_MAX_OVERTEMP)
1111                 critical_state = 1;
1112         if (state->overtemp > 0) {
1113                 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1114                 goto do_set_fans;
1115         }
1116
1117         /* Do the PID */
1118         do_cpu_pid(state, temp, power);
1119
1120         /* Check clamp from dimms */
1121         fan_min = dimm_output_clamp;
1122         fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1123
1124         DBG(" CPU min mpu = %d, min dimm = %d\n",
1125             state->mpu.rminn_intake_fan, dimm_output_clamp);
1126
1127         state->rpm = max(state->rpm, (int)fan_min);
1128         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1129         state->intake_rpm = state->rpm;
1130
1131  do_set_fans:
1132         DBG("** CPU %d RPM: %d overtemp: %d\n",
1133             state->index, (int)state->rpm, state->overtemp);
1134
1135         /* We should check for errors, shouldn't we ? But then, what
1136          * do we do once the error occurs ? For FCU notified fan
1137          * failures (-EFAULT) we probably want to notify userland
1138          * some way...
1139          */
1140         if (state->index == 0) {
1141                 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1142                 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1143                 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1144         } else {
1145                 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1146                 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1147                 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1148         }
1149 }
1150
1151 /*
1152  * Initialize the state structure for one CPU control loop
1153  */
1154 static int init_cpu_state(struct cpu_pid_state *state, int index)
1155 {
1156         int err;
1157
1158         state->index = index;
1159         state->first = 1;
1160         state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1161         state->overtemp = 0;
1162         state->adc_config = 0x00;
1163
1164
1165         if (index == 0)
1166                 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1167         else if (index == 1)
1168                 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1169         if (state->monitor == NULL)
1170                 goto fail;
1171
1172         if (read_eeprom(index, &state->mpu))
1173                 goto fail;
1174
1175         state->count_power = state->mpu.tguardband;
1176         if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1177                 printk(KERN_WARNING "Warning ! too many power history slots\n");
1178                 state->count_power = CPU_POWER_HISTORY_SIZE;
1179         }
1180         DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1181
1182         if (index == 0) {
1183                 err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1184                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1185                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1186                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1187                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1188         } else {
1189                 err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1190                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1191                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1192                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1193                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1194         }
1195         if (err)
1196                 printk(KERN_WARNING "Failed to create some of the atribute"
1197                         "files for CPU %d\n", index);
1198
1199         return 0;
1200  fail:
1201         state->monitor = NULL;
1202         
1203         return -ENODEV;
1204 }
1205
1206 /*
1207  * Dispose of the state data for one CPU control loop
1208  */
1209 static void dispose_cpu_state(struct cpu_pid_state *state)
1210 {
1211         if (state->monitor == NULL)
1212                 return;
1213
1214         if (state->index == 0) {
1215                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1216                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1217                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1218                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1219                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1220         } else {
1221                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1222                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1223                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1224                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1225                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1226         }
1227
1228         state->monitor = NULL;
1229 }
1230
1231 /*
1232  * Motherboard backside & U3 heatsink fan control loop
1233  */
1234 static void do_monitor_backside(struct backside_pid_state *state)
1235 {
1236         s32 temp, integral, derivative, fan_min;
1237         s64 integ_p, deriv_p, prop_p, sum; 
1238         int i, rc;
1239
1240         if (--state->ticks != 0)
1241                 return;
1242         state->ticks = backside_params.interval;
1243
1244         DBG("backside:\n");
1245
1246         /* Check fan status */
1247         rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1248         if (rc < 0) {
1249                 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1250                 /* XXX What do we do now ? */
1251         } else
1252                 state->pwm = rc;
1253         DBG("  current pwm: %d\n", state->pwm);
1254
1255         /* Get some sensor readings */
1256         temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1257         state->last_temp = temp;
1258         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1259             FIX32TOPRINT(backside_params.input_target));
1260
1261         /* Store temperature and error in history array */
1262         state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1263         state->sample_history[state->cur_sample] = temp;
1264         state->error_history[state->cur_sample] = temp - backside_params.input_target;
1265         
1266         /* If first loop, fill the history table */
1267         if (state->first) {
1268                 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1269                         state->cur_sample = (state->cur_sample + 1) %
1270                                 BACKSIDE_PID_HISTORY_SIZE;
1271                         state->sample_history[state->cur_sample] = temp;
1272                         state->error_history[state->cur_sample] =
1273                                 temp - backside_params.input_target;
1274                 }
1275                 state->first = 0;
1276         }
1277
1278         /* Calculate the integral term */
1279         sum = 0;
1280         integral = 0;
1281         for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1282                 integral += state->error_history[i];
1283         integral *= backside_params.interval;
1284         DBG("  integral: %08x\n", integral);
1285         integ_p = ((s64)backside_params.G_r) * (s64)integral;
1286         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1287         sum += integ_p;
1288
1289         /* Calculate the derivative term */
1290         derivative = state->error_history[state->cur_sample] -
1291                 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1292                                     % BACKSIDE_PID_HISTORY_SIZE];
1293         derivative /= backside_params.interval;
1294         deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1295         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1296         sum += deriv_p;
1297
1298         /* Calculate the proportional term */
1299         prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1300         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1301         sum += prop_p;
1302
1303         /* Scale sum */
1304         sum >>= 36;
1305
1306         DBG("   sum: %d\n", (int)sum);
1307         if (backside_params.additive)
1308                 state->pwm += (s32)sum;
1309         else
1310                 state->pwm = sum;
1311
1312         /* Check for clamp */
1313         fan_min = (dimm_output_clamp * 100) / 14000;
1314         fan_min = max(fan_min, backside_params.output_min);
1315
1316         state->pwm = max(state->pwm, fan_min);
1317         state->pwm = min(state->pwm, backside_params.output_max);
1318
1319         DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1320         set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1321 }
1322
1323 /*
1324  * Initialize the state structure for the backside fan control loop
1325  */
1326 static int init_backside_state(struct backside_pid_state *state)
1327 {
1328         struct device_node *u3;
1329         int u3h = 1; /* conservative by default */
1330         int err;
1331
1332         /*
1333          * There are different PID params for machines with U3 and machines
1334          * with U3H, pick the right ones now
1335          */
1336         u3 = of_find_node_by_path("/u3@0,f8000000");
1337         if (u3 != NULL) {
1338                 const u32 *vers = of_get_property(u3, "device-rev", NULL);
1339                 if (vers)
1340                         if (((*vers) & 0x3f) < 0x34)
1341                                 u3h = 0;
1342                 of_node_put(u3);
1343         }
1344
1345         if (rackmac) {
1346                 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1347                 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1348                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1349                 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1350                 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1351                 backside_params.G_r = BACKSIDE_PID_G_r;
1352                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1353                 backside_params.additive = 0;
1354         } else if (u3h) {
1355                 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1356                 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1357                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1358                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1359                 backside_params.G_p = BACKSIDE_PID_G_p;
1360                 backside_params.G_r = BACKSIDE_PID_G_r;
1361                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1362                 backside_params.additive = 1;
1363         } else {
1364                 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1365                 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1366                 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1367                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1368                 backside_params.G_p = BACKSIDE_PID_G_p;
1369                 backside_params.G_r = BACKSIDE_PID_G_r;
1370                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1371                 backside_params.additive = 1;
1372         }
1373
1374         state->ticks = 1;
1375         state->first = 1;
1376         state->pwm = 50;
1377
1378         state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1379         if (state->monitor == NULL)
1380                 return -ENODEV;
1381
1382         err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1383         err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1384         if (err)
1385                 printk(KERN_WARNING "Failed to create attribute file(s)"
1386                         " for backside fan\n");
1387
1388         return 0;
1389 }
1390
1391 /*
1392  * Dispose of the state data for the backside control loop
1393  */
1394 static void dispose_backside_state(struct backside_pid_state *state)
1395 {
1396         if (state->monitor == NULL)
1397                 return;
1398
1399         device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1400         device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1401
1402         state->monitor = NULL;
1403 }
1404  
1405 /*
1406  * Drives bay fan control loop
1407  */
1408 static void do_monitor_drives(struct drives_pid_state *state)
1409 {
1410         s32 temp, integral, derivative;
1411         s64 integ_p, deriv_p, prop_p, sum; 
1412         int i, rc;
1413
1414         if (--state->ticks != 0)
1415                 return;
1416         state->ticks = DRIVES_PID_INTERVAL;
1417
1418         DBG("drives:\n");
1419
1420         /* Check fan status */
1421         rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1422         if (rc < 0) {
1423                 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1424                 /* XXX What do we do now ? */
1425         } else
1426                 state->rpm = rc;
1427         DBG("  current rpm: %d\n", state->rpm);
1428
1429         /* Get some sensor readings */
1430         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1431                                                     DS1775_TEMP)) << 8;
1432         state->last_temp = temp;
1433         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1434             FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1435
1436         /* Store temperature and error in history array */
1437         state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1438         state->sample_history[state->cur_sample] = temp;
1439         state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1440         
1441         /* If first loop, fill the history table */
1442         if (state->first) {
1443                 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1444                         state->cur_sample = (state->cur_sample + 1) %
1445                                 DRIVES_PID_HISTORY_SIZE;
1446                         state->sample_history[state->cur_sample] = temp;
1447                         state->error_history[state->cur_sample] =
1448                                 temp - DRIVES_PID_INPUT_TARGET;
1449                 }
1450                 state->first = 0;
1451         }
1452
1453         /* Calculate the integral term */
1454         sum = 0;
1455         integral = 0;
1456         for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1457                 integral += state->error_history[i];
1458         integral *= DRIVES_PID_INTERVAL;
1459         DBG("  integral: %08x\n", integral);
1460         integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1461         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1462         sum += integ_p;
1463
1464         /* Calculate the derivative term */
1465         derivative = state->error_history[state->cur_sample] -
1466                 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1467                                     % DRIVES_PID_HISTORY_SIZE];
1468         derivative /= DRIVES_PID_INTERVAL;
1469         deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1470         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1471         sum += deriv_p;
1472
1473         /* Calculate the proportional term */
1474         prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1475         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1476         sum += prop_p;
1477
1478         /* Scale sum */
1479         sum >>= 36;
1480
1481         DBG("   sum: %d\n", (int)sum);
1482         state->rpm += (s32)sum;
1483
1484         state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1485         state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1486
1487         DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1488         set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1489 }
1490
1491 /*
1492  * Initialize the state structure for the drives bay fan control loop
1493  */
1494 static int init_drives_state(struct drives_pid_state *state)
1495 {
1496         int err;
1497
1498         state->ticks = 1;
1499         state->first = 1;
1500         state->rpm = 1000;
1501
1502         state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1503         if (state->monitor == NULL)
1504                 return -ENODEV;
1505
1506         err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1507         err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1508         if (err)
1509                 printk(KERN_WARNING "Failed to create attribute file(s)"
1510                         " for drives bay fan\n");
1511
1512         return 0;
1513 }
1514
1515 /*
1516  * Dispose of the state data for the drives control loop
1517  */
1518 static void dispose_drives_state(struct drives_pid_state *state)
1519 {
1520         if (state->monitor == NULL)
1521                 return;
1522
1523         device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1524         device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1525
1526         state->monitor = NULL;
1527 }
1528
1529 /*
1530  * DIMMs temp control loop
1531  */
1532 static void do_monitor_dimms(struct dimm_pid_state *state)
1533 {
1534         s32 temp, integral, derivative, fan_min;
1535         s64 integ_p, deriv_p, prop_p, sum;
1536         int i;
1537
1538         if (--state->ticks != 0)
1539                 return;
1540         state->ticks = DIMM_PID_INTERVAL;
1541
1542         DBG("DIMM:\n");
1543
1544         DBG("  current value: %d\n", state->output);
1545
1546         temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1547         if (temp < 0)
1548                 return;
1549         temp <<= 16;
1550         state->last_temp = temp;
1551         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1552             FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1553
1554         /* Store temperature and error in history array */
1555         state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1556         state->sample_history[state->cur_sample] = temp;
1557         state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1558
1559         /* If first loop, fill the history table */
1560         if (state->first) {
1561                 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1562                         state->cur_sample = (state->cur_sample + 1) %
1563                                 DIMM_PID_HISTORY_SIZE;
1564                         state->sample_history[state->cur_sample] = temp;
1565                         state->error_history[state->cur_sample] =
1566                                 temp - DIMM_PID_INPUT_TARGET;
1567                 }
1568                 state->first = 0;
1569         }
1570
1571         /* Calculate the integral term */
1572         sum = 0;
1573         integral = 0;
1574         for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1575                 integral += state->error_history[i];
1576         integral *= DIMM_PID_INTERVAL;
1577         DBG("  integral: %08x\n", integral);
1578         integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1579         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1580         sum += integ_p;
1581
1582         /* Calculate the derivative term */
1583         derivative = state->error_history[state->cur_sample] -
1584                 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1585                                     % DIMM_PID_HISTORY_SIZE];
1586         derivative /= DIMM_PID_INTERVAL;
1587         deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1588         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1589         sum += deriv_p;
1590
1591         /* Calculate the proportional term */
1592         prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1593         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1594         sum += prop_p;
1595
1596         /* Scale sum */
1597         sum >>= 36;
1598
1599         DBG("   sum: %d\n", (int)sum);
1600         state->output = (s32)sum;
1601         state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1602         state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1603         dimm_output_clamp = state->output;
1604
1605         DBG("** DIMM clamp value: %d\n", (int)state->output);
1606
1607         /* Backside PID is only every 5 seconds, force backside fan clamping now */
1608         fan_min = (dimm_output_clamp * 100) / 14000;
1609         fan_min = max(fan_min, backside_params.output_min);
1610         if (backside_state.pwm < fan_min) {
1611                 backside_state.pwm = fan_min;
1612                 DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1613                 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1614         }
1615 }
1616
1617 /*
1618  * Initialize the state structure for the DIMM temp control loop
1619  */
1620 static int init_dimms_state(struct dimm_pid_state *state)
1621 {
1622         state->ticks = 1;
1623         state->first = 1;
1624         state->output = 4000;
1625
1626         state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1627         if (state->monitor == NULL)
1628                 return -ENODEV;
1629
1630         if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1631                 printk(KERN_WARNING "Failed to create attribute file"
1632                         " for DIMM temperature\n");
1633
1634         return 0;
1635 }
1636
1637 /*
1638  * Dispose of the state data for the DIMM control loop
1639  */
1640 static void dispose_dimms_state(struct dimm_pid_state *state)
1641 {
1642         if (state->monitor == NULL)
1643                 return;
1644
1645         device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1646
1647         state->monitor = NULL;
1648 }
1649
1650 /*
1651  * Slots fan control loop
1652  */
1653 static void do_monitor_slots(struct slots_pid_state *state)
1654 {
1655         s32 temp, integral, derivative;
1656         s64 integ_p, deriv_p, prop_p, sum;
1657         int i, rc;
1658
1659         if (--state->ticks != 0)
1660                 return;
1661         state->ticks = SLOTS_PID_INTERVAL;
1662
1663         DBG("slots:\n");
1664
1665         /* Check fan status */
1666         rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1667         if (rc < 0) {
1668                 printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1669                 /* XXX What do we do now ? */
1670         } else
1671                 state->pwm = rc;
1672         DBG("  current pwm: %d\n", state->pwm);
1673
1674         /* Get some sensor readings */
1675         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1676                                                     DS1775_TEMP)) << 8;
1677         state->last_temp = temp;
1678         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1679             FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1680
1681         /* Store temperature and error in history array */
1682         state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1683         state->sample_history[state->cur_sample] = temp;
1684         state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1685
1686         /* If first loop, fill the history table */
1687         if (state->first) {
1688                 for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1689                         state->cur_sample = (state->cur_sample + 1) %
1690                                 SLOTS_PID_HISTORY_SIZE;
1691                         state->sample_history[state->cur_sample] = temp;
1692                         state->error_history[state->cur_sample] =
1693                                 temp - SLOTS_PID_INPUT_TARGET;
1694                 }
1695                 state->first = 0;
1696         }
1697
1698         /* Calculate the integral term */
1699         sum = 0;
1700         integral = 0;
1701         for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1702                 integral += state->error_history[i];
1703         integral *= SLOTS_PID_INTERVAL;
1704         DBG("  integral: %08x\n", integral);
1705         integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1706         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1707         sum += integ_p;
1708
1709         /* Calculate the derivative term */
1710         derivative = state->error_history[state->cur_sample] -
1711                 state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1712                                     % SLOTS_PID_HISTORY_SIZE];
1713         derivative /= SLOTS_PID_INTERVAL;
1714         deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1715         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1716         sum += deriv_p;
1717
1718         /* Calculate the proportional term */
1719         prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1720         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1721         sum += prop_p;
1722
1723         /* Scale sum */
1724         sum >>= 36;
1725
1726         DBG("   sum: %d\n", (int)sum);
1727         state->pwm = (s32)sum;
1728
1729         state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1730         state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1731
1732         DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1733         set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1734 }
1735
1736 /*
1737  * Initialize the state structure for the slots bay fan control loop
1738  */
1739 static int init_slots_state(struct slots_pid_state *state)
1740 {
1741         int err;
1742
1743         state->ticks = 1;
1744         state->first = 1;
1745         state->pwm = 50;
1746
1747         state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1748         if (state->monitor == NULL)
1749                 return -ENODEV;
1750
1751         err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1752         err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1753         if (err)
1754                 printk(KERN_WARNING "Failed to create attribute file(s)"
1755                         " for slots bay fan\n");
1756
1757         return 0;
1758 }
1759
1760 /*
1761  * Dispose of the state data for the slots control loop
1762  */
1763 static void dispose_slots_state(struct slots_pid_state *state)
1764 {
1765         if (state->monitor == NULL)
1766                 return;
1767
1768         device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1769         device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1770
1771         state->monitor = NULL;
1772 }
1773
1774
1775 static int call_critical_overtemp(void)
1776 {
1777         char *argv[] = { critical_overtemp_path, NULL };
1778         static char *envp[] = { "HOME=/",
1779                                 "TERM=linux",
1780                                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1781                                 NULL };
1782
1783         return call_usermodehelper(critical_overtemp_path,
1784                                    argv, envp, UMH_WAIT_EXEC);
1785 }
1786
1787
1788 /*
1789  * Here's the kernel thread that calls the various control loops
1790  */
1791 static int main_control_loop(void *x)
1792 {
1793         DBG("main_control_loop started\n");
1794
1795         mutex_lock(&driver_lock);
1796
1797         if (start_fcu() < 0) {
1798                 printk(KERN_ERR "kfand: failed to start FCU\n");
1799                 mutex_unlock(&driver_lock);
1800                 goto out;
1801         }
1802
1803         /* Set the PCI fan once for now on non-RackMac */
1804         if (!rackmac)
1805                 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1806
1807         /* Initialize ADCs */
1808         initialize_adc(&cpu_state[0]);
1809         if (cpu_state[1].monitor != NULL)
1810                 initialize_adc(&cpu_state[1]);
1811
1812         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1813
1814         mutex_unlock(&driver_lock);
1815
1816         while (state == state_attached) {
1817                 unsigned long elapsed, start;
1818
1819                 start = jiffies;
1820
1821                 mutex_lock(&driver_lock);
1822
1823                 /* Tickle the FCU just in case */
1824                 if (--fcu_tickle_ticks < 0) {
1825                         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1826                         tickle_fcu();
1827                 }
1828
1829                 /* First, we always calculate the new DIMMs state on an Xserve */
1830                 if (rackmac)
1831                         do_monitor_dimms(&dimms_state);
1832
1833                 /* Then, the CPUs */
1834                 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1835                         do_monitor_cpu_combined();
1836                 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1837                         do_monitor_cpu_rack(&cpu_state[0]);
1838                         if (cpu_state[1].monitor != NULL)
1839                                 do_monitor_cpu_rack(&cpu_state[1]);
1840                         // better deal with UP
1841                 } else {
1842                         do_monitor_cpu_split(&cpu_state[0]);
1843                         if (cpu_state[1].monitor != NULL)
1844                                 do_monitor_cpu_split(&cpu_state[1]);
1845                         // better deal with UP
1846                 }
1847                 /* Then, the rest */
1848                 do_monitor_backside(&backside_state);
1849                 if (rackmac)
1850                         do_monitor_slots(&slots_state);
1851                 else
1852                         do_monitor_drives(&drives_state);
1853                 mutex_unlock(&driver_lock);
1854
1855                 if (critical_state == 1) {
1856                         printk(KERN_WARNING "Temperature control detected a critical condition\n");
1857                         printk(KERN_WARNING "Attempting to shut down...\n");
1858                         if (call_critical_overtemp()) {
1859                                 printk(KERN_WARNING "Can't call %s, power off now!\n",
1860                                        critical_overtemp_path);
1861                                 machine_power_off();
1862                         }
1863                 }
1864                 if (critical_state > 0)
1865                         critical_state++;
1866                 if (critical_state > MAX_CRITICAL_STATE) {
1867                         printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1868                         machine_power_off();
1869                 }
1870
1871                 // FIXME: Deal with signals
1872                 elapsed = jiffies - start;
1873                 if (elapsed < HZ)
1874                         schedule_timeout_interruptible(HZ - elapsed);
1875         }
1876
1877  out:
1878         DBG("main_control_loop ended\n");
1879
1880         ctrl_task = 0;
1881         complete_and_exit(&ctrl_complete, 0);
1882 }
1883
1884 /*
1885  * Dispose the control loops when tearing down
1886  */
1887 static void dispose_control_loops(void)
1888 {
1889         dispose_cpu_state(&cpu_state[0]);
1890         dispose_cpu_state(&cpu_state[1]);
1891         dispose_backside_state(&backside_state);
1892         dispose_drives_state(&drives_state);
1893         dispose_slots_state(&slots_state);
1894         dispose_dimms_state(&dimms_state);
1895 }
1896
1897 /*
1898  * Create the control loops. U3-0 i2c bus is up, so we can now
1899  * get to the various sensors
1900  */
1901 static int create_control_loops(void)
1902 {
1903         struct device_node *np;
1904
1905         /* Count CPUs from the device-tree, we don't care how many are
1906          * actually used by Linux
1907          */
1908         cpu_count = 0;
1909         for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1910                 cpu_count++;
1911
1912         DBG("counted %d CPUs in the device-tree\n", cpu_count);
1913
1914         /* Decide the type of PID algorithm to use based on the presence of
1915          * the pumps, though that may not be the best way, that is good enough
1916          * for now
1917          */
1918         if (rackmac)
1919                 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1920         else if (of_machine_is_compatible("PowerMac7,3")
1921             && (cpu_count > 1)
1922             && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1923             && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1924                 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1925                 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1926         } else
1927                 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1928
1929         /* Create control loops for everything. If any fail, everything
1930          * fails
1931          */
1932         if (init_cpu_state(&cpu_state[0], 0))
1933                 goto fail;
1934         if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1935                 fetch_cpu_pumps_minmax();
1936
1937         if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1938                 goto fail;
1939         if (init_backside_state(&backside_state))
1940                 goto fail;
1941         if (rackmac && init_dimms_state(&dimms_state))
1942                 goto fail;
1943         if (rackmac && init_slots_state(&slots_state))
1944                 goto fail;
1945         if (!rackmac && init_drives_state(&drives_state))
1946                 goto fail;
1947
1948         DBG("all control loops up !\n");
1949
1950         return 0;
1951         
1952  fail:
1953         DBG("failure creating control loops, disposing\n");
1954
1955         dispose_control_loops();
1956
1957         return -ENODEV;
1958 }
1959
1960 /*
1961  * Start the control loops after everything is up, that is create
1962  * the thread that will make them run
1963  */
1964 static void start_control_loops(void)
1965 {
1966         init_completion(&ctrl_complete);
1967
1968         ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1969 }
1970
1971 /*
1972  * Stop the control loops when tearing down
1973  */
1974 static void stop_control_loops(void)
1975 {
1976         if (ctrl_task)
1977                 wait_for_completion(&ctrl_complete);
1978 }
1979
1980 /*
1981  * Attach to the i2c FCU after detecting U3-1 bus
1982  */
1983 static int attach_fcu(void)
1984 {
1985         fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1986         if (fcu == NULL)
1987                 return -ENODEV;
1988
1989         DBG("FCU attached\n");
1990
1991         return 0;
1992 }
1993
1994 /*
1995  * Detach from the i2c FCU when tearing down
1996  */
1997 static void detach_fcu(void)
1998 {
1999         fcu = NULL;
2000 }
2001
2002 /*
2003  * Attach to the i2c controller. We probe the various chips based
2004  * on the device-tree nodes and build everything for the driver to
2005  * run, we then kick the driver monitoring thread
2006  */
2007 static int therm_pm72_attach(struct i2c_adapter *adapter)
2008 {
2009         mutex_lock(&driver_lock);
2010
2011         /* Check state */
2012         if (state == state_detached)
2013                 state = state_attaching;
2014         if (state != state_attaching) {
2015                 mutex_unlock(&driver_lock);
2016                 return 0;
2017         }
2018
2019         /* Check if we are looking for one of these */
2020         if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2021                 u3_0 = adapter;
2022                 DBG("found U3-0\n");
2023                 if (k2 || !rackmac)
2024                         if (create_control_loops())
2025                                 u3_0 = NULL;
2026         } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2027                 u3_1 = adapter;
2028                 DBG("found U3-1, attaching FCU\n");
2029                 if (attach_fcu())
2030                         u3_1 = NULL;
2031         } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2032                 k2 = adapter;
2033                 DBG("Found K2\n");
2034                 if (u3_0 && rackmac)
2035                         if (create_control_loops())
2036                                 k2 = NULL;
2037         }
2038         /* We got all we need, start control loops */
2039         if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2040                 DBG("everything up, starting control loops\n");
2041                 state = state_attached;
2042                 start_control_loops();
2043         }
2044         mutex_unlock(&driver_lock);
2045
2046         return 0;
2047 }
2048
2049 static int therm_pm72_probe(struct i2c_client *client,
2050                             const struct i2c_device_id *id)
2051 {
2052         /* Always succeed, the real work was done in therm_pm72_attach() */
2053         return 0;
2054 }
2055
2056 /*
2057  * Called when any of the devices which participates into thermal management
2058  * is going away.
2059  */
2060 static int therm_pm72_remove(struct i2c_client *client)
2061 {
2062         struct i2c_adapter *adapter = client->adapter;
2063
2064         mutex_lock(&driver_lock);
2065
2066         if (state != state_detached)
2067                 state = state_detaching;
2068
2069         /* Stop control loops if any */
2070         DBG("stopping control loops\n");
2071         mutex_unlock(&driver_lock);
2072         stop_control_loops();
2073         mutex_lock(&driver_lock);
2074
2075         if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2076                 DBG("lost U3-0, disposing control loops\n");
2077                 dispose_control_loops();
2078                 u3_0 = NULL;
2079         }
2080         
2081         if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2082                 DBG("lost U3-1, detaching FCU\n");
2083                 detach_fcu();
2084                 u3_1 = NULL;
2085         }
2086         if (u3_0 == NULL && u3_1 == NULL)
2087                 state = state_detached;
2088
2089         mutex_unlock(&driver_lock);
2090
2091         return 0;
2092 }
2093
2094 /*
2095  * i2c_driver structure to attach to the host i2c controller
2096  */
2097
2098 static const struct i2c_device_id therm_pm72_id[] = {
2099         /*
2100          * Fake device name, thermal management is done by several
2101          * chips but we don't need to differentiate between them at
2102          * this point.
2103          */
2104         { "therm_pm72", 0 },
2105         { }
2106 };
2107
2108 static struct i2c_driver therm_pm72_driver = {
2109         .driver = {
2110                 .name   = "therm_pm72",
2111         },
2112         .attach_adapter = therm_pm72_attach,
2113         .probe          = therm_pm72_probe,
2114         .remove         = therm_pm72_remove,
2115         .id_table       = therm_pm72_id,
2116 };
2117
2118 static int fan_check_loc_match(const char *loc, int fan)
2119 {
2120         char    tmp[64];
2121         char    *c, *e;
2122
2123         strlcpy(tmp, fcu_fans[fan].loc, 64);
2124
2125         c = tmp;
2126         for (;;) {
2127                 e = strchr(c, ',');
2128                 if (e)
2129                         *e = 0;
2130                 if (strcmp(loc, c) == 0)
2131                         return 1;
2132                 if (e == NULL)
2133                         break;
2134                 c = e + 1;
2135         }
2136         return 0;
2137 }
2138
2139 static void fcu_lookup_fans(struct device_node *fcu_node)
2140 {
2141         struct device_node *np = NULL;
2142         int i;
2143
2144         /* The table is filled by default with values that are suitable
2145          * for the old machines without device-tree informations. We scan
2146          * the device-tree and override those values with whatever is
2147          * there
2148          */
2149
2150         DBG("Looking up FCU controls in device-tree...\n");
2151
2152         while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2153                 int type = -1;
2154                 const char *loc;
2155                 const u32 *reg;
2156
2157                 DBG(" control: %s, type: %s\n", np->name, np->type);
2158
2159                 /* Detect control type */
2160                 if (!strcmp(np->type, "fan-rpm-control") ||
2161                     !strcmp(np->type, "fan-rpm"))
2162                         type = FCU_FAN_RPM;
2163                 if (!strcmp(np->type, "fan-pwm-control") ||
2164                     !strcmp(np->type, "fan-pwm"))
2165                         type = FCU_FAN_PWM;
2166                 /* Only care about fans for now */
2167                 if (type == -1)
2168                         continue;
2169
2170                 /* Lookup for a matching location */
2171                 loc = of_get_property(np, "location", NULL);
2172                 reg = of_get_property(np, "reg", NULL);
2173                 if (loc == NULL || reg == NULL)
2174                         continue;
2175                 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2176
2177                 for (i = 0; i < FCU_FAN_COUNT; i++) {
2178                         int fan_id;
2179
2180                         if (!fan_check_loc_match(loc, i))
2181                                 continue;
2182                         DBG(" location match, index: %d\n", i);
2183                         fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2184                         if (type != fcu_fans[i].type) {
2185                                 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2186                                        "in device-tree for %s\n", np->full_name);
2187                                 break;
2188                         }
2189                         if (type == FCU_FAN_RPM)
2190                                 fan_id = ((*reg) - 0x10) / 2;
2191                         else
2192                                 fan_id = ((*reg) - 0x30) / 2;
2193                         if (fan_id > 7) {
2194                                 printk(KERN_WARNING "therm_pm72: Can't parse "
2195                                        "fan ID in device-tree for %s\n", np->full_name);
2196                                 break;
2197                         }
2198                         DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2199                         fcu_fans[i].id = fan_id;
2200                 }
2201         }
2202
2203         /* Now dump the array */
2204         printk(KERN_INFO "Detected fan controls:\n");
2205         for (i = 0; i < FCU_FAN_COUNT; i++) {
2206                 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2207                         continue;
2208                 printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2209                        fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2210                        fcu_fans[i].id, fcu_fans[i].loc);
2211         }
2212 }
2213
2214 static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
2215 {
2216         state = state_detached;
2217
2218         /* Lookup the fans in the device tree */
2219         fcu_lookup_fans(dev->node);
2220
2221         /* Add the driver */
2222         return i2c_add_driver(&therm_pm72_driver);
2223 }
2224
2225 static int fcu_of_remove(struct of_device* dev)
2226 {
2227         i2c_del_driver(&therm_pm72_driver);
2228
2229         return 0;
2230 }
2231
2232 static const struct of_device_id fcu_match[] = 
2233 {
2234         {
2235         .type           = "fcu",
2236         },
2237         {},
2238 };
2239
2240 static struct of_platform_driver fcu_of_platform_driver = 
2241 {
2242         .name           = "temperature",
2243         .match_table    = fcu_match,
2244         .probe          = fcu_of_probe,
2245         .remove         = fcu_of_remove
2246 };
2247
2248 /*
2249  * Check machine type, attach to i2c controller
2250  */
2251 static int __init therm_pm72_init(void)
2252 {
2253         struct device_node *np;
2254
2255         rackmac = of_machine_is_compatible("RackMac3,1");
2256
2257         if (!of_machine_is_compatible("PowerMac7,2") &&
2258             !of_machine_is_compatible("PowerMac7,3") &&
2259             !rackmac)
2260                 return -ENODEV;
2261
2262         printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2263
2264         np = of_find_node_by_type(NULL, "fcu");
2265         if (np == NULL) {
2266                 /* Some machines have strangely broken device-tree */
2267                 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2268                 if (np == NULL) {
2269                             printk(KERN_ERR "Can't find FCU in device-tree !\n");
2270                             return -ENODEV;
2271                 }
2272         }
2273         of_dev = of_platform_device_create(np, "temperature", NULL);
2274         if (of_dev == NULL) {
2275                 printk(KERN_ERR "Can't register FCU platform device !\n");
2276                 return -ENODEV;
2277         }
2278
2279         of_register_platform_driver(&fcu_of_platform_driver);
2280         
2281         return 0;
2282 }
2283
2284 static void __exit therm_pm72_exit(void)
2285 {
2286         of_unregister_platform_driver(&fcu_of_platform_driver);
2287
2288         if (of_dev)
2289                 of_device_unregister(of_dev);
2290 }
2291
2292 module_init(therm_pm72_init);
2293 module_exit(therm_pm72_exit);
2294
2295 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2296 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2297 MODULE_LICENSE("GPL");
2298