Merge branch 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[pandora-kernel.git] / drivers / macintosh / smu.c
1 /*
2  * PowerMac G5 SMU driver
3  *
4  * Copyright 2004 J. Mayer <l_indien@magic.fr>
5  * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6  *
7  * Released under the term of the GNU GPL v2.
8  */
9
10 /*
11  * TODO:
12  *  - maybe add timeout to commands ?
13  *  - blocking version of time functions
14  *  - polling version of i2c commands (including timer that works with
15  *    interrupts off)
16  *  - maybe avoid some data copies with i2c by directly using the smu cmd
17  *    buffer and a lower level internal interface
18  *  - understand SMU -> CPU events and implement reception of them via
19  *    the userland interface
20  */
21
22 #include <linux/smp_lock.h>
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>
26 #include <linux/dmapool.h>
27 #include <linux/bootmem.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/jiffies.h>
31 #include <linux/interrupt.h>
32 #include <linux/rtc.h>
33 #include <linux/completion.h>
34 #include <linux/miscdevice.h>
35 #include <linux/delay.h>
36 #include <linux/sysdev.h>
37 #include <linux/poll.h>
38 #include <linux/mutex.h>
39 #include <linux/of_device.h>
40 #include <linux/of_platform.h>
41 #include <linux/slab.h>
42
43 #include <asm/byteorder.h>
44 #include <asm/io.h>
45 #include <asm/prom.h>
46 #include <asm/machdep.h>
47 #include <asm/pmac_feature.h>
48 #include <asm/smu.h>
49 #include <asm/sections.h>
50 #include <asm/abs_addr.h>
51 #include <asm/uaccess.h>
52
53 #define VERSION "0.7"
54 #define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
55
56 #undef DEBUG_SMU
57
58 #ifdef DEBUG_SMU
59 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
60 #else
61 #define DPRINTK(fmt, args...) do { } while (0)
62 #endif
63
64 /*
65  * This is the command buffer passed to the SMU hardware
66  */
67 #define SMU_MAX_DATA    254
68
69 struct smu_cmd_buf {
70         u8 cmd;
71         u8 length;
72         u8 data[SMU_MAX_DATA];
73 };
74
75 struct smu_device {
76         spinlock_t              lock;
77         struct device_node      *of_node;
78         struct of_device        *of_dev;
79         int                     doorbell;       /* doorbell gpio */
80         u32 __iomem             *db_buf;        /* doorbell buffer */
81         struct device_node      *db_node;
82         unsigned int            db_irq;
83         int                     msg;
84         struct device_node      *msg_node;
85         unsigned int            msg_irq;
86         struct smu_cmd_buf      *cmd_buf;       /* command buffer virtual */
87         u32                     cmd_buf_abs;    /* command buffer absolute */
88         struct list_head        cmd_list;
89         struct smu_cmd          *cmd_cur;       /* pending command */
90         int                     broken_nap;
91         struct list_head        cmd_i2c_list;
92         struct smu_i2c_cmd      *cmd_i2c_cur;   /* pending i2c command */
93         struct timer_list       i2c_timer;
94 };
95
96 /*
97  * I don't think there will ever be more than one SMU, so
98  * for now, just hard code that
99  */
100 static struct smu_device        *smu;
101 static DEFINE_MUTEX(smu_part_access);
102 static int smu_irq_inited;
103
104 static void smu_i2c_retry(unsigned long data);
105
106 /*
107  * SMU driver low level stuff
108  */
109
110 static void smu_start_cmd(void)
111 {
112         unsigned long faddr, fend;
113         struct smu_cmd *cmd;
114
115         if (list_empty(&smu->cmd_list))
116                 return;
117
118         /* Fetch first command in queue */
119         cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
120         smu->cmd_cur = cmd;
121         list_del(&cmd->link);
122
123         DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
124                 cmd->data_len);
125         DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
126                 ((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
127                 ((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
128                 ((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
129                 ((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
130
131         /* Fill the SMU command buffer */
132         smu->cmd_buf->cmd = cmd->cmd;
133         smu->cmd_buf->length = cmd->data_len;
134         memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
135
136         /* Flush command and data to RAM */
137         faddr = (unsigned long)smu->cmd_buf;
138         fend = faddr + smu->cmd_buf->length + 2;
139         flush_inval_dcache_range(faddr, fend);
140
141
142         /* We also disable NAP mode for the duration of the command
143          * on U3 based machines.
144          * This is slightly racy as it can be written back to 1 by a sysctl
145          * but that never happens in practice. There seem to be an issue with
146          * U3 based machines such as the iMac G5 where napping for the
147          * whole duration of the command prevents the SMU from fetching it
148          * from memory. This might be related to the strange i2c based
149          * mechanism the SMU uses to access memory.
150          */
151         if (smu->broken_nap)
152                 powersave_nap = 0;
153
154         /* This isn't exactly a DMA mapping here, I suspect
155          * the SMU is actually communicating with us via i2c to the
156          * northbridge or the CPU to access RAM.
157          */
158         writel(smu->cmd_buf_abs, smu->db_buf);
159
160         /* Ring the SMU doorbell */
161         pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
162 }
163
164
165 static irqreturn_t smu_db_intr(int irq, void *arg)
166 {
167         unsigned long flags;
168         struct smu_cmd *cmd;
169         void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
170         void *misc = NULL;
171         u8 gpio;
172         int rc = 0;
173
174         /* SMU completed the command, well, we hope, let's make sure
175          * of it
176          */
177         spin_lock_irqsave(&smu->lock, flags);
178
179         gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
180         if ((gpio & 7) != 7) {
181                 spin_unlock_irqrestore(&smu->lock, flags);
182                 return IRQ_HANDLED;
183         }
184
185         cmd = smu->cmd_cur;
186         smu->cmd_cur = NULL;
187         if (cmd == NULL)
188                 goto bail;
189
190         if (rc == 0) {
191                 unsigned long faddr;
192                 int reply_len;
193                 u8 ack;
194
195                 /* CPU might have brought back the cache line, so we need
196                  * to flush again before peeking at the SMU response. We
197                  * flush the entire buffer for now as we haven't read the
198                  * reply length (it's only 2 cache lines anyway)
199                  */
200                 faddr = (unsigned long)smu->cmd_buf;
201                 flush_inval_dcache_range(faddr, faddr + 256);
202
203                 /* Now check ack */
204                 ack = (~cmd->cmd) & 0xff;
205                 if (ack != smu->cmd_buf->cmd) {
206                         DPRINTK("SMU: incorrect ack, want %x got %x\n",
207                                 ack, smu->cmd_buf->cmd);
208                         rc = -EIO;
209                 }
210                 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
211                 DPRINTK("SMU: reply len: %d\n", reply_len);
212                 if (reply_len > cmd->reply_len) {
213                         printk(KERN_WARNING "SMU: reply buffer too small,"
214                                "got %d bytes for a %d bytes buffer\n",
215                                reply_len, cmd->reply_len);
216                         reply_len = cmd->reply_len;
217                 }
218                 cmd->reply_len = reply_len;
219                 if (cmd->reply_buf && reply_len)
220                         memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
221         }
222
223         /* Now complete the command. Write status last in order as we lost
224          * ownership of the command structure as soon as it's no longer -1
225          */
226         done = cmd->done;
227         misc = cmd->misc;
228         mb();
229         cmd->status = rc;
230
231         /* Re-enable NAP mode */
232         if (smu->broken_nap)
233                 powersave_nap = 1;
234  bail:
235         /* Start next command if any */
236         smu_start_cmd();
237         spin_unlock_irqrestore(&smu->lock, flags);
238
239         /* Call command completion handler if any */
240         if (done)
241                 done(cmd, misc);
242
243         /* It's an edge interrupt, nothing to do */
244         return IRQ_HANDLED;
245 }
246
247
248 static irqreturn_t smu_msg_intr(int irq, void *arg)
249 {
250         /* I don't quite know what to do with this one, we seem to never
251          * receive it, so I suspect we have to arm it someway in the SMU
252          * to start getting events that way.
253          */
254
255         printk(KERN_INFO "SMU: message interrupt !\n");
256
257         /* It's an edge interrupt, nothing to do */
258         return IRQ_HANDLED;
259 }
260
261
262 /*
263  * Queued command management.
264  *
265  */
266
267 int smu_queue_cmd(struct smu_cmd *cmd)
268 {
269         unsigned long flags;
270
271         if (smu == NULL)
272                 return -ENODEV;
273         if (cmd->data_len > SMU_MAX_DATA ||
274             cmd->reply_len > SMU_MAX_DATA)
275                 return -EINVAL;
276
277         cmd->status = 1;
278         spin_lock_irqsave(&smu->lock, flags);
279         list_add_tail(&cmd->link, &smu->cmd_list);
280         if (smu->cmd_cur == NULL)
281                 smu_start_cmd();
282         spin_unlock_irqrestore(&smu->lock, flags);
283
284         /* Workaround for early calls when irq isn't available */
285         if (!smu_irq_inited || smu->db_irq == NO_IRQ)
286                 smu_spinwait_cmd(cmd);
287
288         return 0;
289 }
290 EXPORT_SYMBOL(smu_queue_cmd);
291
292
293 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
294                      unsigned int data_len,
295                      void (*done)(struct smu_cmd *cmd, void *misc),
296                      void *misc, ...)
297 {
298         struct smu_cmd *cmd = &scmd->cmd;
299         va_list list;
300         int i;
301
302         if (data_len > sizeof(scmd->buffer))
303                 return -EINVAL;
304
305         memset(scmd, 0, sizeof(*scmd));
306         cmd->cmd = command;
307         cmd->data_len = data_len;
308         cmd->data_buf = scmd->buffer;
309         cmd->reply_len = sizeof(scmd->buffer);
310         cmd->reply_buf = scmd->buffer;
311         cmd->done = done;
312         cmd->misc = misc;
313
314         va_start(list, misc);
315         for (i = 0; i < data_len; ++i)
316                 scmd->buffer[i] = (u8)va_arg(list, int);
317         va_end(list);
318
319         return smu_queue_cmd(cmd);
320 }
321 EXPORT_SYMBOL(smu_queue_simple);
322
323
324 void smu_poll(void)
325 {
326         u8 gpio;
327
328         if (smu == NULL)
329                 return;
330
331         gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
332         if ((gpio & 7) == 7)
333                 smu_db_intr(smu->db_irq, smu);
334 }
335 EXPORT_SYMBOL(smu_poll);
336
337
338 void smu_done_complete(struct smu_cmd *cmd, void *misc)
339 {
340         struct completion *comp = misc;
341
342         complete(comp);
343 }
344 EXPORT_SYMBOL(smu_done_complete);
345
346
347 void smu_spinwait_cmd(struct smu_cmd *cmd)
348 {
349         while(cmd->status == 1)
350                 smu_poll();
351 }
352 EXPORT_SYMBOL(smu_spinwait_cmd);
353
354
355 /* RTC low level commands */
356 static inline int bcd2hex (int n)
357 {
358         return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
359 }
360
361
362 static inline int hex2bcd (int n)
363 {
364         return ((n / 10) << 4) + (n % 10);
365 }
366
367
368 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
369                                         struct rtc_time *time)
370 {
371         cmd_buf->cmd = 0x8e;
372         cmd_buf->length = 8;
373         cmd_buf->data[0] = 0x80;
374         cmd_buf->data[1] = hex2bcd(time->tm_sec);
375         cmd_buf->data[2] = hex2bcd(time->tm_min);
376         cmd_buf->data[3] = hex2bcd(time->tm_hour);
377         cmd_buf->data[4] = time->tm_wday;
378         cmd_buf->data[5] = hex2bcd(time->tm_mday);
379         cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
380         cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
381 }
382
383
384 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
385 {
386         struct smu_simple_cmd cmd;
387         int rc;
388
389         if (smu == NULL)
390                 return -ENODEV;
391
392         memset(time, 0, sizeof(struct rtc_time));
393         rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
394                               SMU_CMD_RTC_GET_DATETIME);
395         if (rc)
396                 return rc;
397         smu_spinwait_simple(&cmd);
398
399         time->tm_sec = bcd2hex(cmd.buffer[0]);
400         time->tm_min = bcd2hex(cmd.buffer[1]);
401         time->tm_hour = bcd2hex(cmd.buffer[2]);
402         time->tm_wday = bcd2hex(cmd.buffer[3]);
403         time->tm_mday = bcd2hex(cmd.buffer[4]);
404         time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
405         time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
406
407         return 0;
408 }
409
410
411 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
412 {
413         struct smu_simple_cmd cmd;
414         int rc;
415
416         if (smu == NULL)
417                 return -ENODEV;
418
419         rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
420                               SMU_CMD_RTC_SET_DATETIME,
421                               hex2bcd(time->tm_sec),
422                               hex2bcd(time->tm_min),
423                               hex2bcd(time->tm_hour),
424                               time->tm_wday,
425                               hex2bcd(time->tm_mday),
426                               hex2bcd(time->tm_mon) + 1,
427                               hex2bcd(time->tm_year - 100));
428         if (rc)
429                 return rc;
430         smu_spinwait_simple(&cmd);
431
432         return 0;
433 }
434
435
436 void smu_shutdown(void)
437 {
438         struct smu_simple_cmd cmd;
439
440         if (smu == NULL)
441                 return;
442
443         if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
444                              'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
445                 return;
446         smu_spinwait_simple(&cmd);
447         for (;;)
448                 ;
449 }
450
451
452 void smu_restart(void)
453 {
454         struct smu_simple_cmd cmd;
455
456         if (smu == NULL)
457                 return;
458
459         if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
460                              'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
461                 return;
462         smu_spinwait_simple(&cmd);
463         for (;;)
464                 ;
465 }
466
467
468 int smu_present(void)
469 {
470         return smu != NULL;
471 }
472 EXPORT_SYMBOL(smu_present);
473
474
475 int __init smu_init (void)
476 {
477         struct device_node *np;
478         const u32 *data;
479         int ret = 0;
480
481         np = of_find_node_by_type(NULL, "smu");
482         if (np == NULL)
483                 return -ENODEV;
484
485         printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
486
487         if (smu_cmdbuf_abs == 0) {
488                 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
489                 ret = -EINVAL;
490                 goto fail_np;
491         }
492
493         smu = alloc_bootmem(sizeof(struct smu_device));
494
495         spin_lock_init(&smu->lock);
496         INIT_LIST_HEAD(&smu->cmd_list);
497         INIT_LIST_HEAD(&smu->cmd_i2c_list);
498         smu->of_node = np;
499         smu->db_irq = NO_IRQ;
500         smu->msg_irq = NO_IRQ;
501
502         /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
503          * 32 bits value safely
504          */
505         smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
506         smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
507
508         smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
509         if (smu->db_node == NULL) {
510                 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
511                 ret = -ENXIO;
512                 goto fail_bootmem;
513         }
514         data = of_get_property(smu->db_node, "reg", NULL);
515         if (data == NULL) {
516                 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
517                 ret = -ENXIO;
518                 goto fail_db_node;
519         }
520
521         /* Current setup has one doorbell GPIO that does both doorbell
522          * and ack. GPIOs are at 0x50, best would be to find that out
523          * in the device-tree though.
524          */
525         smu->doorbell = *data;
526         if (smu->doorbell < 0x50)
527                 smu->doorbell += 0x50;
528
529         /* Now look for the smu-interrupt GPIO */
530         do {
531                 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
532                 if (smu->msg_node == NULL)
533                         break;
534                 data = of_get_property(smu->msg_node, "reg", NULL);
535                 if (data == NULL) {
536                         of_node_put(smu->msg_node);
537                         smu->msg_node = NULL;
538                         break;
539                 }
540                 smu->msg = *data;
541                 if (smu->msg < 0x50)
542                         smu->msg += 0x50;
543         } while(0);
544
545         /* Doorbell buffer is currently hard-coded, I didn't find a proper
546          * device-tree entry giving the address. Best would probably to use
547          * an offset for K2 base though, but let's do it that way for now.
548          */
549         smu->db_buf = ioremap(0x8000860c, 0x1000);
550         if (smu->db_buf == NULL) {
551                 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
552                 ret = -ENXIO;
553                 goto fail_msg_node;
554         }
555
556         /* U3 has an issue with NAP mode when issuing SMU commands */
557         smu->broken_nap = pmac_get_uninorth_variant() < 4;
558         if (smu->broken_nap)
559                 printk(KERN_INFO "SMU: using NAP mode workaround\n");
560
561         sys_ctrler = SYS_CTRLER_SMU;
562         return 0;
563
564 fail_msg_node:
565         if (smu->msg_node)
566                 of_node_put(smu->msg_node);
567 fail_db_node:
568         of_node_put(smu->db_node);
569 fail_bootmem:
570         free_bootmem((unsigned long)smu, sizeof(struct smu_device));
571         smu = NULL;
572 fail_np:
573         of_node_put(np);
574         return ret;
575 }
576
577
578 static int smu_late_init(void)
579 {
580         if (!smu)
581                 return 0;
582
583         init_timer(&smu->i2c_timer);
584         smu->i2c_timer.function = smu_i2c_retry;
585         smu->i2c_timer.data = (unsigned long)smu;
586
587         if (smu->db_node) {
588                 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
589                 if (smu->db_irq == NO_IRQ)
590                         printk(KERN_ERR "smu: failed to map irq for node %s\n",
591                                smu->db_node->full_name);
592         }
593         if (smu->msg_node) {
594                 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
595                 if (smu->msg_irq == NO_IRQ)
596                         printk(KERN_ERR "smu: failed to map irq for node %s\n",
597                                smu->msg_node->full_name);
598         }
599
600         /*
601          * Try to request the interrupts
602          */
603
604         if (smu->db_irq != NO_IRQ) {
605                 if (request_irq(smu->db_irq, smu_db_intr,
606                                 IRQF_SHARED, "SMU doorbell", smu) < 0) {
607                         printk(KERN_WARNING "SMU: can't "
608                                "request interrupt %d\n",
609                                smu->db_irq);
610                         smu->db_irq = NO_IRQ;
611                 }
612         }
613
614         if (smu->msg_irq != NO_IRQ) {
615                 if (request_irq(smu->msg_irq, smu_msg_intr,
616                                 IRQF_SHARED, "SMU message", smu) < 0) {
617                         printk(KERN_WARNING "SMU: can't "
618                                "request interrupt %d\n",
619                                smu->msg_irq);
620                         smu->msg_irq = NO_IRQ;
621                 }
622         }
623
624         smu_irq_inited = 1;
625         return 0;
626 }
627 /* This has to be before arch_initcall as the low i2c stuff relies on the
628  * above having been done before we reach arch_initcalls
629  */
630 core_initcall(smu_late_init);
631
632 /*
633  * sysfs visibility
634  */
635
636 static void smu_expose_childs(struct work_struct *unused)
637 {
638         struct device_node *np;
639
640         for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
641                 if (of_device_is_compatible(np, "smu-sensors"))
642                         of_platform_device_create(np, "smu-sensors",
643                                                   &smu->of_dev->dev);
644 }
645
646 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
647
648 static int smu_platform_probe(struct of_device* dev,
649                               const struct of_device_id *match)
650 {
651         if (!smu)
652                 return -ENODEV;
653         smu->of_dev = dev;
654
655         /*
656          * Ok, we are matched, now expose all i2c busses. We have to defer
657          * that unfortunately or it would deadlock inside the device model
658          */
659         schedule_work(&smu_expose_childs_work);
660
661         return 0;
662 }
663
664 static const struct of_device_id smu_platform_match[] =
665 {
666         {
667                 .type           = "smu",
668         },
669         {},
670 };
671
672 static struct of_platform_driver smu_of_platform_driver =
673 {
674         .name           = "smu",
675         .match_table    = smu_platform_match,
676         .probe          = smu_platform_probe,
677 };
678
679 static int __init smu_init_sysfs(void)
680 {
681         /*
682          * Due to sysfs bogosity, a sysdev is not a real device, so
683          * we should in fact create both if we want sysdev semantics
684          * for power management.
685          * For now, we don't power manage machines with an SMU chip,
686          * I'm a bit too far from figuring out how that works with those
687          * new chipsets, but that will come back and bite us
688          */
689         of_register_platform_driver(&smu_of_platform_driver);
690         return 0;
691 }
692
693 device_initcall(smu_init_sysfs);
694
695 struct of_device *smu_get_ofdev(void)
696 {
697         if (!smu)
698                 return NULL;
699         return smu->of_dev;
700 }
701
702 EXPORT_SYMBOL_GPL(smu_get_ofdev);
703
704 /*
705  * i2c interface
706  */
707
708 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
709 {
710         void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
711         void *misc = cmd->misc;
712         unsigned long flags;
713
714         /* Check for read case */
715         if (!fail && cmd->read) {
716                 if (cmd->pdata[0] < 1)
717                         fail = 1;
718                 else
719                         memcpy(cmd->info.data, &cmd->pdata[1],
720                                cmd->info.datalen);
721         }
722
723         DPRINTK("SMU: completing, success: %d\n", !fail);
724
725         /* Update status and mark no pending i2c command with lock
726          * held so nobody comes in while we dequeue an eventual
727          * pending next i2c command
728          */
729         spin_lock_irqsave(&smu->lock, flags);
730         smu->cmd_i2c_cur = NULL;
731         wmb();
732         cmd->status = fail ? -EIO : 0;
733
734         /* Is there another i2c command waiting ? */
735         if (!list_empty(&smu->cmd_i2c_list)) {
736                 struct smu_i2c_cmd *newcmd;
737
738                 /* Fetch it, new current, remove from list */
739                 newcmd = list_entry(smu->cmd_i2c_list.next,
740                                     struct smu_i2c_cmd, link);
741                 smu->cmd_i2c_cur = newcmd;
742                 list_del(&cmd->link);
743
744                 /* Queue with low level smu */
745                 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
746                 if (smu->cmd_cur == NULL)
747                         smu_start_cmd();
748         }
749         spin_unlock_irqrestore(&smu->lock, flags);
750
751         /* Call command completion handler if any */
752         if (done)
753                 done(cmd, misc);
754
755 }
756
757
758 static void smu_i2c_retry(unsigned long data)
759 {
760         struct smu_i2c_cmd      *cmd = smu->cmd_i2c_cur;
761
762         DPRINTK("SMU: i2c failure, requeuing...\n");
763
764         /* requeue command simply by resetting reply_len */
765         cmd->pdata[0] = 0xff;
766         cmd->scmd.reply_len = sizeof(cmd->pdata);
767         smu_queue_cmd(&cmd->scmd);
768 }
769
770
771 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
772 {
773         struct smu_i2c_cmd      *cmd = misc;
774         int                     fail = 0;
775
776         DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
777                 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
778
779         /* Check for possible status */
780         if (scmd->status < 0)
781                 fail = 1;
782         else if (cmd->read) {
783                 if (cmd->stage == 0)
784                         fail = cmd->pdata[0] != 0;
785                 else
786                         fail = cmd->pdata[0] >= 0x80;
787         } else {
788                 fail = cmd->pdata[0] != 0;
789         }
790
791         /* Handle failures by requeuing command, after 5ms interval
792          */
793         if (fail && --cmd->retries > 0) {
794                 DPRINTK("SMU: i2c failure, starting timer...\n");
795                 BUG_ON(cmd != smu->cmd_i2c_cur);
796                 if (!smu_irq_inited) {
797                         mdelay(5);
798                         smu_i2c_retry(0);
799                         return;
800                 }
801                 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
802                 return;
803         }
804
805         /* If failure or stage 1, command is complete */
806         if (fail || cmd->stage != 0) {
807                 smu_i2c_complete_command(cmd, fail);
808                 return;
809         }
810
811         DPRINTK("SMU: going to stage 1\n");
812
813         /* Ok, initial command complete, now poll status */
814         scmd->reply_buf = cmd->pdata;
815         scmd->reply_len = sizeof(cmd->pdata);
816         scmd->data_buf = cmd->pdata;
817         scmd->data_len = 1;
818         cmd->pdata[0] = 0;
819         cmd->stage = 1;
820         cmd->retries = 20;
821         smu_queue_cmd(scmd);
822 }
823
824
825 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
826 {
827         unsigned long flags;
828
829         if (smu == NULL)
830                 return -ENODEV;
831
832         /* Fill most fields of scmd */
833         cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
834         cmd->scmd.done = smu_i2c_low_completion;
835         cmd->scmd.misc = cmd;
836         cmd->scmd.reply_buf = cmd->pdata;
837         cmd->scmd.reply_len = sizeof(cmd->pdata);
838         cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
839         cmd->scmd.status = 1;
840         cmd->stage = 0;
841         cmd->pdata[0] = 0xff;
842         cmd->retries = 20;
843         cmd->status = 1;
844
845         /* Check transfer type, sanitize some "info" fields
846          * based on transfer type and do more checking
847          */
848         cmd->info.caddr = cmd->info.devaddr;
849         cmd->read = cmd->info.devaddr & 0x01;
850         switch(cmd->info.type) {
851         case SMU_I2C_TRANSFER_SIMPLE:
852                 memset(&cmd->info.sublen, 0, 4);
853                 break;
854         case SMU_I2C_TRANSFER_COMBINED:
855                 cmd->info.devaddr &= 0xfe;
856         case SMU_I2C_TRANSFER_STDSUB:
857                 if (cmd->info.sublen > 3)
858                         return -EINVAL;
859                 break;
860         default:
861                 return -EINVAL;
862         }
863
864         /* Finish setting up command based on transfer direction
865          */
866         if (cmd->read) {
867                 if (cmd->info.datalen > SMU_I2C_READ_MAX)
868                         return -EINVAL;
869                 memset(cmd->info.data, 0xff, cmd->info.datalen);
870                 cmd->scmd.data_len = 9;
871         } else {
872                 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
873                         return -EINVAL;
874                 cmd->scmd.data_len = 9 + cmd->info.datalen;
875         }
876
877         DPRINTK("SMU: i2c enqueuing command\n");
878         DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
879                 cmd->read ? "read" : "write", cmd->info.datalen,
880                 cmd->info.bus, cmd->info.caddr,
881                 cmd->info.subaddr[0], cmd->info.type);
882
883
884         /* Enqueue command in i2c list, and if empty, enqueue also in
885          * main command list
886          */
887         spin_lock_irqsave(&smu->lock, flags);
888         if (smu->cmd_i2c_cur == NULL) {
889                 smu->cmd_i2c_cur = cmd;
890                 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
891                 if (smu->cmd_cur == NULL)
892                         smu_start_cmd();
893         } else
894                 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
895         spin_unlock_irqrestore(&smu->lock, flags);
896
897         return 0;
898 }
899
900 /*
901  * Handling of "partitions"
902  */
903
904 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
905 {
906         DECLARE_COMPLETION_ONSTACK(comp);
907         unsigned int chunk;
908         struct smu_cmd cmd;
909         int rc;
910         u8 params[8];
911
912         /* We currently use a chunk size of 0xe. We could check the
913          * SMU firmware version and use bigger sizes though
914          */
915         chunk = 0xe;
916
917         while (len) {
918                 unsigned int clen = min(len, chunk);
919
920                 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
921                 cmd.data_len = 7;
922                 cmd.data_buf = params;
923                 cmd.reply_len = chunk;
924                 cmd.reply_buf = dest;
925                 cmd.done = smu_done_complete;
926                 cmd.misc = &comp;
927                 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
928                 params[1] = 0x4;
929                 *((u32 *)&params[2]) = addr;
930                 params[6] = clen;
931
932                 rc = smu_queue_cmd(&cmd);
933                 if (rc)
934                         return rc;
935                 wait_for_completion(&comp);
936                 if (cmd.status != 0)
937                         return rc;
938                 if (cmd.reply_len != clen) {
939                         printk(KERN_DEBUG "SMU: short read in "
940                                "smu_read_datablock, got: %d, want: %d\n",
941                                cmd.reply_len, clen);
942                         return -EIO;
943                 }
944                 len -= clen;
945                 addr += clen;
946                 dest += clen;
947         }
948         return 0;
949 }
950
951 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
952 {
953         DECLARE_COMPLETION_ONSTACK(comp);
954         struct smu_simple_cmd cmd;
955         unsigned int addr, len, tlen;
956         struct smu_sdbp_header *hdr;
957         struct property *prop;
958
959         /* First query the partition info */
960         DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
961         smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
962                          smu_done_complete, &comp,
963                          SMU_CMD_PARTITION_LATEST, id);
964         wait_for_completion(&comp);
965         DPRINTK("SMU: done, status: %d, reply_len: %d\n",
966                 cmd.cmd.status, cmd.cmd.reply_len);
967
968         /* Partition doesn't exist (or other error) */
969         if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
970                 return NULL;
971
972         /* Fetch address and length from reply */
973         addr = *((u16 *)cmd.buffer);
974         len = cmd.buffer[3] << 2;
975         /* Calucluate total length to allocate, including the 17 bytes
976          * for "sdb-partition-XX" that we append at the end of the buffer
977          */
978         tlen = sizeof(struct property) + len + 18;
979
980         prop = kzalloc(tlen, GFP_KERNEL);
981         if (prop == NULL)
982                 return NULL;
983         hdr = (struct smu_sdbp_header *)(prop + 1);
984         prop->name = ((char *)prop) + tlen - 18;
985         sprintf(prop->name, "sdb-partition-%02x", id);
986         prop->length = len;
987         prop->value = hdr;
988         prop->next = NULL;
989
990         /* Read the datablock */
991         if (smu_read_datablock((u8 *)hdr, addr, len)) {
992                 printk(KERN_DEBUG "SMU: datablock read failed while reading "
993                        "partition %02x !\n", id);
994                 goto failure;
995         }
996
997         /* Got it, check a few things and create the property */
998         if (hdr->id != id) {
999                 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
1000                        "%02x !\n", id, hdr->id);
1001                 goto failure;
1002         }
1003         if (prom_add_property(smu->of_node, prop)) {
1004                 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1005                        "property !\n", id);
1006                 goto failure;
1007         }
1008
1009         return hdr;
1010  failure:
1011         kfree(prop);
1012         return NULL;
1013 }
1014
1015 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1016  * when interruptible is 1
1017  */
1018 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1019                 unsigned int *size, int interruptible)
1020 {
1021         char pname[32];
1022         const struct smu_sdbp_header *part;
1023
1024         if (!smu)
1025                 return NULL;
1026
1027         sprintf(pname, "sdb-partition-%02x", id);
1028
1029         DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1030
1031         if (interruptible) {
1032                 int rc;
1033                 rc = mutex_lock_interruptible(&smu_part_access);
1034                 if (rc)
1035                         return ERR_PTR(rc);
1036         } else
1037                 mutex_lock(&smu_part_access);
1038
1039         part = of_get_property(smu->of_node, pname, size);
1040         if (part == NULL) {
1041                 DPRINTK("trying to extract from SMU ...\n");
1042                 part = smu_create_sdb_partition(id);
1043                 if (part != NULL && size)
1044                         *size = part->len << 2;
1045         }
1046         mutex_unlock(&smu_part_access);
1047         return part;
1048 }
1049
1050 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1051 {
1052         return __smu_get_sdb_partition(id, size, 0);
1053 }
1054 EXPORT_SYMBOL(smu_get_sdb_partition);
1055
1056
1057 /*
1058  * Userland driver interface
1059  */
1060
1061
1062 static LIST_HEAD(smu_clist);
1063 static DEFINE_SPINLOCK(smu_clist_lock);
1064
1065 enum smu_file_mode {
1066         smu_file_commands,
1067         smu_file_events,
1068         smu_file_closing
1069 };
1070
1071 struct smu_private
1072 {
1073         struct list_head        list;
1074         enum smu_file_mode      mode;
1075         int                     busy;
1076         struct smu_cmd          cmd;
1077         spinlock_t              lock;
1078         wait_queue_head_t       wait;
1079         u8                      buffer[SMU_MAX_DATA];
1080 };
1081
1082
1083 static int smu_open(struct inode *inode, struct file *file)
1084 {
1085         struct smu_private *pp;
1086         unsigned long flags;
1087
1088         pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1089         if (pp == 0)
1090                 return -ENOMEM;
1091         spin_lock_init(&pp->lock);
1092         pp->mode = smu_file_commands;
1093         init_waitqueue_head(&pp->wait);
1094
1095         lock_kernel();
1096         spin_lock_irqsave(&smu_clist_lock, flags);
1097         list_add(&pp->list, &smu_clist);
1098         spin_unlock_irqrestore(&smu_clist_lock, flags);
1099         file->private_data = pp;
1100         unlock_kernel();
1101
1102         return 0;
1103 }
1104
1105
1106 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1107 {
1108         struct smu_private *pp = misc;
1109
1110         wake_up_all(&pp->wait);
1111 }
1112
1113
1114 static ssize_t smu_write(struct file *file, const char __user *buf,
1115                          size_t count, loff_t *ppos)
1116 {
1117         struct smu_private *pp = file->private_data;
1118         unsigned long flags;
1119         struct smu_user_cmd_hdr hdr;
1120         int rc = 0;
1121
1122         if (pp->busy)
1123                 return -EBUSY;
1124         else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1125                 return -EFAULT;
1126         else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1127                 pp->mode = smu_file_events;
1128                 return 0;
1129         } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1130                 const struct smu_sdbp_header *part;
1131                 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1132                 if (part == NULL)
1133                         return -EINVAL;
1134                 else if (IS_ERR(part))
1135                         return PTR_ERR(part);
1136                 return 0;
1137         } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1138                 return -EINVAL;
1139         else if (pp->mode != smu_file_commands)
1140                 return -EBADFD;
1141         else if (hdr.data_len > SMU_MAX_DATA)
1142                 return -EINVAL;
1143
1144         spin_lock_irqsave(&pp->lock, flags);
1145         if (pp->busy) {
1146                 spin_unlock_irqrestore(&pp->lock, flags);
1147                 return -EBUSY;
1148         }
1149         pp->busy = 1;
1150         pp->cmd.status = 1;
1151         spin_unlock_irqrestore(&pp->lock, flags);
1152
1153         if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1154                 pp->busy = 0;
1155                 return -EFAULT;
1156         }
1157
1158         pp->cmd.cmd = hdr.cmd;
1159         pp->cmd.data_len = hdr.data_len;
1160         pp->cmd.reply_len = SMU_MAX_DATA;
1161         pp->cmd.data_buf = pp->buffer;
1162         pp->cmd.reply_buf = pp->buffer;
1163         pp->cmd.done = smu_user_cmd_done;
1164         pp->cmd.misc = pp;
1165         rc = smu_queue_cmd(&pp->cmd);
1166         if (rc < 0)
1167                 return rc;
1168         return count;
1169 }
1170
1171
1172 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1173                                 char __user *buf, size_t count)
1174 {
1175         DECLARE_WAITQUEUE(wait, current);
1176         struct smu_user_reply_hdr hdr;
1177         unsigned long flags;
1178         int size, rc = 0;
1179
1180         if (!pp->busy)
1181                 return 0;
1182         if (count < sizeof(struct smu_user_reply_hdr))
1183                 return -EOVERFLOW;
1184         spin_lock_irqsave(&pp->lock, flags);
1185         if (pp->cmd.status == 1) {
1186                 if (file->f_flags & O_NONBLOCK)
1187                         return -EAGAIN;
1188                 add_wait_queue(&pp->wait, &wait);
1189                 for (;;) {
1190                         set_current_state(TASK_INTERRUPTIBLE);
1191                         rc = 0;
1192                         if (pp->cmd.status != 1)
1193                                 break;
1194                         rc = -ERESTARTSYS;
1195                         if (signal_pending(current))
1196                                 break;
1197                         spin_unlock_irqrestore(&pp->lock, flags);
1198                         schedule();
1199                         spin_lock_irqsave(&pp->lock, flags);
1200                 }
1201                 set_current_state(TASK_RUNNING);
1202                 remove_wait_queue(&pp->wait, &wait);
1203         }
1204         spin_unlock_irqrestore(&pp->lock, flags);
1205         if (rc)
1206                 return rc;
1207         if (pp->cmd.status != 0)
1208                 pp->cmd.reply_len = 0;
1209         size = sizeof(hdr) + pp->cmd.reply_len;
1210         if (count < size)
1211                 size = count;
1212         rc = size;
1213         hdr.status = pp->cmd.status;
1214         hdr.reply_len = pp->cmd.reply_len;
1215         if (copy_to_user(buf, &hdr, sizeof(hdr)))
1216                 return -EFAULT;
1217         size -= sizeof(hdr);
1218         if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1219                 return -EFAULT;
1220         pp->busy = 0;
1221
1222         return rc;
1223 }
1224
1225
1226 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1227                                char __user *buf, size_t count)
1228 {
1229         /* Not implemented */
1230         msleep_interruptible(1000);
1231         return 0;
1232 }
1233
1234
1235 static ssize_t smu_read(struct file *file, char __user *buf,
1236                         size_t count, loff_t *ppos)
1237 {
1238         struct smu_private *pp = file->private_data;
1239
1240         if (pp->mode == smu_file_commands)
1241                 return smu_read_command(file, pp, buf, count);
1242         if (pp->mode == smu_file_events)
1243                 return smu_read_events(file, pp, buf, count);
1244
1245         return -EBADFD;
1246 }
1247
1248 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1249 {
1250         struct smu_private *pp = file->private_data;
1251         unsigned int mask = 0;
1252         unsigned long flags;
1253
1254         if (pp == 0)
1255                 return 0;
1256
1257         if (pp->mode == smu_file_commands) {
1258                 poll_wait(file, &pp->wait, wait);
1259
1260                 spin_lock_irqsave(&pp->lock, flags);
1261                 if (pp->busy && pp->cmd.status != 1)
1262                         mask |= POLLIN;
1263                 spin_unlock_irqrestore(&pp->lock, flags);
1264         } if (pp->mode == smu_file_events) {
1265                 /* Not yet implemented */
1266         }
1267         return mask;
1268 }
1269
1270 static int smu_release(struct inode *inode, struct file *file)
1271 {
1272         struct smu_private *pp = file->private_data;
1273         unsigned long flags;
1274         unsigned int busy;
1275
1276         if (pp == 0)
1277                 return 0;
1278
1279         file->private_data = NULL;
1280
1281         /* Mark file as closing to avoid races with new request */
1282         spin_lock_irqsave(&pp->lock, flags);
1283         pp->mode = smu_file_closing;
1284         busy = pp->busy;
1285
1286         /* Wait for any pending request to complete */
1287         if (busy && pp->cmd.status == 1) {
1288                 DECLARE_WAITQUEUE(wait, current);
1289
1290                 add_wait_queue(&pp->wait, &wait);
1291                 for (;;) {
1292                         set_current_state(TASK_UNINTERRUPTIBLE);
1293                         if (pp->cmd.status != 1)
1294                                 break;
1295                         spin_unlock_irqrestore(&pp->lock, flags);
1296                         schedule();
1297                         spin_lock_irqsave(&pp->lock, flags);
1298                 }
1299                 set_current_state(TASK_RUNNING);
1300                 remove_wait_queue(&pp->wait, &wait);
1301         }
1302         spin_unlock_irqrestore(&pp->lock, flags);
1303
1304         spin_lock_irqsave(&smu_clist_lock, flags);
1305         list_del(&pp->list);
1306         spin_unlock_irqrestore(&smu_clist_lock, flags);
1307         kfree(pp);
1308
1309         return 0;
1310 }
1311
1312
1313 static const struct file_operations smu_device_fops = {
1314         .llseek         = no_llseek,
1315         .read           = smu_read,
1316         .write          = smu_write,
1317         .poll           = smu_fpoll,
1318         .open           = smu_open,
1319         .release        = smu_release,
1320 };
1321
1322 static struct miscdevice pmu_device = {
1323         MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1324 };
1325
1326 static int smu_device_init(void)
1327 {
1328         if (!smu)
1329                 return -ENODEV;
1330         if (misc_register(&pmu_device) < 0)
1331                 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1332         return 0;
1333 }
1334 device_initcall(smu_device_init);