ide: use IDE I/O helpers directly in ide_tf_{load,read}()
[pandora-kernel.git] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static u16 ide_inw (unsigned long port)
41 {
42         return (u16) inw(port);
43 }
44
45 static void ide_outb (u8 val, unsigned long port)
46 {
47         outb(val, port);
48 }
49
50 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
51 {
52         outb(addr, port);
53 }
54
55 static void ide_outw (u16 val, unsigned long port)
56 {
57         outw(val, port);
58 }
59
60 void default_hwif_iops (ide_hwif_t *hwif)
61 {
62         hwif->OUTB      = ide_outb;
63         hwif->OUTBSYNC  = ide_outbsync;
64         hwif->OUTW      = ide_outw;
65         hwif->INB       = ide_inb;
66         hwif->INW       = ide_inw;
67 }
68
69 /*
70  *      MMIO operations, typically used for SATA controllers
71  */
72
73 static u8 ide_mm_inb (unsigned long port)
74 {
75         return (u8) readb((void __iomem *) port);
76 }
77
78 static u16 ide_mm_inw (unsigned long port)
79 {
80         return (u16) readw((void __iomem *) port);
81 }
82
83 static void ide_mm_outb (u8 value, unsigned long port)
84 {
85         writeb(value, (void __iomem *) port);
86 }
87
88 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
89 {
90         writeb(value, (void __iomem *) port);
91 }
92
93 static void ide_mm_outw (u16 value, unsigned long port)
94 {
95         writew(value, (void __iomem *) port);
96 }
97
98 void default_hwif_mmiops (ide_hwif_t *hwif)
99 {
100         hwif->OUTB      = ide_mm_outb;
101         /* Most systems will need to override OUTBSYNC, alas however
102            this one is controller specific! */
103         hwif->OUTBSYNC  = ide_mm_outbsync;
104         hwif->OUTW      = ide_mm_outw;
105         hwif->INB       = ide_mm_inb;
106         hwif->INW       = ide_mm_inw;
107 }
108
109 EXPORT_SYMBOL(default_hwif_mmiops);
110
111 void SELECT_DRIVE (ide_drive_t *drive)
112 {
113         ide_hwif_t *hwif = drive->hwif;
114         const struct ide_port_ops *port_ops = hwif->port_ops;
115
116         if (port_ops && port_ops->selectproc)
117                 port_ops->selectproc(drive);
118
119         hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
120 }
121
122 void SELECT_MASK (ide_drive_t *drive, int mask)
123 {
124         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
125
126         if (port_ops && port_ops->maskproc)
127                 port_ops->maskproc(drive, mask);
128 }
129
130 static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
131 {
132         ide_hwif_t *hwif = drive->hwif;
133         struct ide_io_ports *io_ports = &hwif->io_ports;
134         struct ide_taskfile *tf = &task->tf;
135         void (*tf_outb)(u8 addr, unsigned long port);
136         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
137         u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
138
139         if (mmio)
140                 tf_outb = ide_mm_outb;
141         else
142                 tf_outb = ide_outb;
143
144         if (task->tf_flags & IDE_TFLAG_FLAGGED)
145                 HIHI = 0xFF;
146
147         ide_set_irq(drive, 1);
148
149         if ((task->tf_flags & IDE_TFLAG_NO_SELECT_MASK) == 0)
150                 SELECT_MASK(drive, 0);
151
152         if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
153                 u16 data = (tf->hob_data << 8) | tf->data;
154
155                 if (mmio)
156                         writew(data, (void __iomem *)io_ports->data_addr);
157                 else
158                         outw(data, io_ports->data_addr);
159         }
160
161         if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
162                 tf_outb(tf->hob_feature, io_ports->feature_addr);
163         if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
164                 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
165         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
166                 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
167         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
168                 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
169         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
170                 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
171
172         if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
173                 tf_outb(tf->feature, io_ports->feature_addr);
174         if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
175                 tf_outb(tf->nsect, io_ports->nsect_addr);
176         if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
177                 tf_outb(tf->lbal, io_ports->lbal_addr);
178         if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
179                 tf_outb(tf->lbam, io_ports->lbam_addr);
180         if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
181                 tf_outb(tf->lbah, io_ports->lbah_addr);
182
183         if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
184                 tf_outb((tf->device & HIHI) | drive->select.all,
185                          io_ports->device_addr);
186 }
187
188 static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
189 {
190         ide_hwif_t *hwif = drive->hwif;
191         struct ide_io_ports *io_ports = &hwif->io_ports;
192         struct ide_taskfile *tf = &task->tf;
193         void (*tf_outb)(u8 addr, unsigned long port);
194         u8 (*tf_inb)(unsigned long port);
195         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
196
197         if (mmio) {
198                 tf_outb = ide_mm_outb;
199                 tf_inb  = ide_mm_inb;
200         } else {
201                 tf_outb = ide_outb;
202                 tf_inb  = ide_inb;
203         }
204
205         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
206                 u16 data;
207
208                 if (mmio)
209                         data = readw((void __iomem *)io_ports->data_addr);
210                 else
211                         data = inw(io_ports->data_addr);
212
213                 tf->data = data & 0xff;
214                 tf->hob_data = (data >> 8) & 0xff;
215         }
216
217         /* be sure we're looking at the low order bits */
218         tf_outb(drive->ctl & ~0x80, io_ports->ctl_addr);
219
220         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
221                 tf->nsect  = tf_inb(io_ports->nsect_addr);
222         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
223                 tf->lbal   = tf_inb(io_ports->lbal_addr);
224         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
225                 tf->lbam   = tf_inb(io_ports->lbam_addr);
226         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
227                 tf->lbah   = tf_inb(io_ports->lbah_addr);
228         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
229                 tf->device = tf_inb(io_ports->device_addr);
230
231         if (task->tf_flags & IDE_TFLAG_LBA48) {
232                 tf_outb(drive->ctl | 0x80, io_ports->ctl_addr);
233
234                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
235                         tf->hob_feature = tf_inb(io_ports->feature_addr);
236                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
237                         tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
238                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
239                         tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
240                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
241                         tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
242                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
243                         tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
244         }
245 }
246
247 /*
248  * Some localbus EIDE interfaces require a special access sequence
249  * when using 32-bit I/O instructions to transfer data.  We call this
250  * the "vlb_sync" sequence, which consists of three successive reads
251  * of the sector count register location, with interrupts disabled
252  * to ensure that the reads all happen together.
253  */
254 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
255 {
256         (void) HWIF(drive)->INB(port);
257         (void) HWIF(drive)->INB(port);
258         (void) HWIF(drive)->INB(port);
259 }
260
261 /*
262  * This is used for most PIO data transfers *from* the IDE interface
263  *
264  * These routines will round up any request for an odd number of bytes,
265  * so if an odd len is specified, be sure that there's at least one
266  * extra byte allocated for the buffer.
267  */
268 static void ata_input_data(ide_drive_t *drive, struct request *rq,
269                            void *buf, unsigned int len)
270 {
271         ide_hwif_t *hwif = drive->hwif;
272         struct ide_io_ports *io_ports = &hwif->io_ports;
273         unsigned long data_addr = io_ports->data_addr;
274         u8 io_32bit = drive->io_32bit;
275         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
276
277         len++;
278
279         if (io_32bit) {
280                 unsigned long uninitialized_var(flags);
281
282                 if (io_32bit & 2) {
283                         local_irq_save(flags);
284                         ata_vlb_sync(drive, io_ports->nsect_addr);
285                 }
286
287                 if (mmio)
288                         __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
289                 else
290                         insl(data_addr, buf, len / 4);
291
292                 if (io_32bit & 2)
293                         local_irq_restore(flags);
294
295                 if ((len & 3) >= 2) {
296                         if (mmio)
297                                 __ide_mm_insw((void __iomem *)data_addr,
298                                                 (u8 *)buf + (len & ~3), 1);
299                         else
300                                 insw(data_addr, (u8 *)buf + (len & ~3), 1);
301                 }
302         } else {
303                 if (mmio)
304                         __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
305                 else
306                         insw(data_addr, buf, len / 2);
307         }
308 }
309
310 /*
311  * This is used for most PIO data transfers *to* the IDE interface
312  */
313 static void ata_output_data(ide_drive_t *drive, struct request *rq,
314                             void *buf, unsigned int len)
315 {
316         ide_hwif_t *hwif = drive->hwif;
317         struct ide_io_ports *io_ports = &hwif->io_ports;
318         unsigned long data_addr = io_ports->data_addr;
319         u8 io_32bit = drive->io_32bit;
320         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
321
322         if (io_32bit) {
323                 unsigned long uninitialized_var(flags);
324
325                 if (io_32bit & 2) {
326                         local_irq_save(flags);
327                         ata_vlb_sync(drive, io_ports->nsect_addr);
328                 }
329
330                 if (mmio)
331                         __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
332                 else
333                         outsl(data_addr, buf, len / 4);
334
335                 if (io_32bit & 2)
336                         local_irq_restore(flags);
337
338                 if ((len & 3) >= 2) {
339                         if (mmio)
340                                 __ide_mm_outsw((void __iomem *)data_addr,
341                                                  (u8 *)buf + (len & ~3), 1);
342                         else
343                                 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
344                 }
345         } else {
346                 if (mmio)
347                         __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
348                 else
349                         outsw(data_addr, buf, len / 2);
350         }
351 }
352
353 void default_hwif_transport(ide_hwif_t *hwif)
354 {
355         hwif->tf_load     = ide_tf_load;
356         hwif->tf_read     = ide_tf_read;
357
358         hwif->input_data  = ata_input_data;
359         hwif->output_data = ata_output_data;
360 }
361
362 void ide_fix_driveid (struct hd_driveid *id)
363 {
364 #ifndef __LITTLE_ENDIAN
365 # ifdef __BIG_ENDIAN
366         int i;
367         u16 *stringcast;
368
369         id->config         = __le16_to_cpu(id->config);
370         id->cyls           = __le16_to_cpu(id->cyls);
371         id->reserved2      = __le16_to_cpu(id->reserved2);
372         id->heads          = __le16_to_cpu(id->heads);
373         id->track_bytes    = __le16_to_cpu(id->track_bytes);
374         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
375         id->sectors        = __le16_to_cpu(id->sectors);
376         id->vendor0        = __le16_to_cpu(id->vendor0);
377         id->vendor1        = __le16_to_cpu(id->vendor1);
378         id->vendor2        = __le16_to_cpu(id->vendor2);
379         stringcast = (u16 *)&id->serial_no[0];
380         for (i = 0; i < (20/2); i++)
381                 stringcast[i] = __le16_to_cpu(stringcast[i]);
382         id->buf_type       = __le16_to_cpu(id->buf_type);
383         id->buf_size       = __le16_to_cpu(id->buf_size);
384         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
385         stringcast = (u16 *)&id->fw_rev[0];
386         for (i = 0; i < (8/2); i++)
387                 stringcast[i] = __le16_to_cpu(stringcast[i]);
388         stringcast = (u16 *)&id->model[0];
389         for (i = 0; i < (40/2); i++)
390                 stringcast[i] = __le16_to_cpu(stringcast[i]);
391         id->dword_io       = __le16_to_cpu(id->dword_io);
392         id->reserved50     = __le16_to_cpu(id->reserved50);
393         id->field_valid    = __le16_to_cpu(id->field_valid);
394         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
395         id->cur_heads      = __le16_to_cpu(id->cur_heads);
396         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
397         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
398         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
399         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
400         id->dma_1word      = __le16_to_cpu(id->dma_1word);
401         id->dma_mword      = __le16_to_cpu(id->dma_mword);
402         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
403         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
404         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
405         id->eide_pio       = __le16_to_cpu(id->eide_pio);
406         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
407         for (i = 0; i < 2; ++i)
408                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
409         for (i = 0; i < 4; ++i)
410                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
411         id->queue_depth    = __le16_to_cpu(id->queue_depth);
412         for (i = 0; i < 4; ++i)
413                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
414         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
415         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
416         id->command_set_1  = __le16_to_cpu(id->command_set_1);
417         id->command_set_2  = __le16_to_cpu(id->command_set_2);
418         id->cfsse          = __le16_to_cpu(id->cfsse);
419         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
420         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
421         id->csf_default    = __le16_to_cpu(id->csf_default);
422         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
423         id->trseuc         = __le16_to_cpu(id->trseuc);
424         id->trsEuc         = __le16_to_cpu(id->trsEuc);
425         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
426         id->mprc           = __le16_to_cpu(id->mprc);
427         id->hw_config      = __le16_to_cpu(id->hw_config);
428         id->acoustic       = __le16_to_cpu(id->acoustic);
429         id->msrqs          = __le16_to_cpu(id->msrqs);
430         id->sxfert         = __le16_to_cpu(id->sxfert);
431         id->sal            = __le16_to_cpu(id->sal);
432         id->spg            = __le32_to_cpu(id->spg);
433         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
434         for (i = 0; i < 22; i++)
435                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
436         id->last_lun       = __le16_to_cpu(id->last_lun);
437         id->word127        = __le16_to_cpu(id->word127);
438         id->dlf            = __le16_to_cpu(id->dlf);
439         id->csfo           = __le16_to_cpu(id->csfo);
440         for (i = 0; i < 26; i++)
441                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
442         id->word156        = __le16_to_cpu(id->word156);
443         for (i = 0; i < 3; i++)
444                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
445         id->cfa_power      = __le16_to_cpu(id->cfa_power);
446         for (i = 0; i < 14; i++)
447                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
448         for (i = 0; i < 31; i++)
449                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
450         for (i = 0; i < 48; i++)
451                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
452         id->integrity_word  = __le16_to_cpu(id->integrity_word);
453 # else
454 #  error "Please fix <asm/byteorder.h>"
455 # endif
456 #endif
457 }
458
459 /*
460  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
461  * removing leading/trailing blanks and compressing internal blanks.
462  * It is primarily used to tidy up the model name/number fields as
463  * returned by the WIN_[P]IDENTIFY commands.
464  */
465
466 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
467 {
468         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
469
470         if (byteswap) {
471                 /* convert from big-endian to host byte order */
472                 for (p = end ; p != s;) {
473                         unsigned short *pp = (unsigned short *) (p -= 2);
474                         *pp = ntohs(*pp);
475                 }
476         }
477         /* strip leading blanks */
478         while (s != end && *s == ' ')
479                 ++s;
480         /* compress internal blanks and strip trailing blanks */
481         while (s != end && *s) {
482                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
483                         *p++ = *(s-1);
484         }
485         /* wipe out trailing garbage */
486         while (p != end)
487                 *p++ = '\0';
488 }
489
490 EXPORT_SYMBOL(ide_fixstring);
491
492 /*
493  * Needed for PCI irq sharing
494  */
495 int drive_is_ready (ide_drive_t *drive)
496 {
497         ide_hwif_t *hwif        = HWIF(drive);
498         u8 stat                 = 0;
499
500         if (drive->waiting_for_dma)
501                 return hwif->dma_ops->dma_test_irq(drive);
502
503 #if 0
504         /* need to guarantee 400ns since last command was issued */
505         udelay(1);
506 #endif
507
508         /*
509          * We do a passive status test under shared PCI interrupts on
510          * cards that truly share the ATA side interrupt, but may also share
511          * an interrupt with another pci card/device.  We make no assumptions
512          * about possible isa-pnp and pci-pnp issues yet.
513          */
514         if (hwif->io_ports.ctl_addr)
515                 stat = ide_read_altstatus(drive);
516         else
517                 /* Note: this may clear a pending IRQ!! */
518                 stat = ide_read_status(drive);
519
520         if (stat & BUSY_STAT)
521                 /* drive busy:  definitely not interrupting */
522                 return 0;
523
524         /* drive ready: *might* be interrupting */
525         return 1;
526 }
527
528 EXPORT_SYMBOL(drive_is_ready);
529
530 /*
531  * This routine busy-waits for the drive status to be not "busy".
532  * It then checks the status for all of the "good" bits and none
533  * of the "bad" bits, and if all is okay it returns 0.  All other
534  * cases return error -- caller may then invoke ide_error().
535  *
536  * This routine should get fixed to not hog the cpu during extra long waits..
537  * That could be done by busy-waiting for the first jiffy or two, and then
538  * setting a timer to wake up at half second intervals thereafter,
539  * until timeout is achieved, before timing out.
540  */
541 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
542 {
543         unsigned long flags;
544         int i;
545         u8 stat;
546
547         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
548         stat = ide_read_status(drive);
549
550         if (stat & BUSY_STAT) {
551                 local_irq_set(flags);
552                 timeout += jiffies;
553                 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
554                         if (time_after(jiffies, timeout)) {
555                                 /*
556                                  * One last read after the timeout in case
557                                  * heavy interrupt load made us not make any
558                                  * progress during the timeout..
559                                  */
560                                 stat = ide_read_status(drive);
561                                 if (!(stat & BUSY_STAT))
562                                         break;
563
564                                 local_irq_restore(flags);
565                                 *rstat = stat;
566                                 return -EBUSY;
567                         }
568                 }
569                 local_irq_restore(flags);
570         }
571         /*
572          * Allow status to settle, then read it again.
573          * A few rare drives vastly violate the 400ns spec here,
574          * so we'll wait up to 10usec for a "good" status
575          * rather than expensively fail things immediately.
576          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
577          */
578         for (i = 0; i < 10; i++) {
579                 udelay(1);
580                 stat = ide_read_status(drive);
581
582                 if (OK_STAT(stat, good, bad)) {
583                         *rstat = stat;
584                         return 0;
585                 }
586         }
587         *rstat = stat;
588         return -EFAULT;
589 }
590
591 /*
592  * In case of error returns error value after doing "*startstop = ide_error()".
593  * The caller should return the updated value of "startstop" in this case,
594  * "startstop" is unchanged when the function returns 0.
595  */
596 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
597 {
598         int err;
599         u8 stat;
600
601         /* bail early if we've exceeded max_failures */
602         if (drive->max_failures && (drive->failures > drive->max_failures)) {
603                 *startstop = ide_stopped;
604                 return 1;
605         }
606
607         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
608
609         if (err) {
610                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
611                 *startstop = ide_error(drive, s, stat);
612         }
613
614         return err;
615 }
616
617 EXPORT_SYMBOL(ide_wait_stat);
618
619 /**
620  *      ide_in_drive_list       -       look for drive in black/white list
621  *      @id: drive identifier
622  *      @drive_table: list to inspect
623  *
624  *      Look for a drive in the blacklist and the whitelist tables
625  *      Returns 1 if the drive is found in the table.
626  */
627
628 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
629 {
630         for ( ; drive_table->id_model; drive_table++)
631                 if ((!strcmp(drive_table->id_model, id->model)) &&
632                     (!drive_table->id_firmware ||
633                      strstr(id->fw_rev, drive_table->id_firmware)))
634                         return 1;
635         return 0;
636 }
637
638 EXPORT_SYMBOL_GPL(ide_in_drive_list);
639
640 /*
641  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
642  * We list them here and depend on the device side cable detection for them.
643  *
644  * Some optical devices with the buggy firmwares have the same problem.
645  */
646 static const struct drive_list_entry ivb_list[] = {
647         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
648         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
649         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
650         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
651         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
652         { NULL                          , NULL          }
653 };
654
655 /*
656  *  All hosts that use the 80c ribbon must use!
657  *  The name is derived from upper byte of word 93 and the 80c ribbon.
658  */
659 u8 eighty_ninty_three (ide_drive_t *drive)
660 {
661         ide_hwif_t *hwif = drive->hwif;
662         struct hd_driveid *id = drive->id;
663         int ivb = ide_in_drive_list(id, ivb_list);
664
665         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
666                 return 1;
667
668         if (ivb)
669                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
670                                   drive->name);
671
672         if (ide_dev_is_sata(id) && !ivb)
673                 return 1;
674
675         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
676                 goto no_80w;
677
678         /*
679          * FIXME:
680          * - change master/slave IDENTIFY order
681          * - force bit13 (80c cable present) check also for !ivb devices
682          *   (unless the slave device is pre-ATA3)
683          */
684         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
685                 return 1;
686
687 no_80w:
688         if (drive->udma33_warned == 1)
689                 return 0;
690
691         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
692                             "limiting max speed to UDMA33\n",
693                             drive->name,
694                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
695
696         drive->udma33_warned = 1;
697
698         return 0;
699 }
700
701 int ide_driveid_update(ide_drive_t *drive)
702 {
703         ide_hwif_t *hwif = drive->hwif;
704         struct hd_driveid *id;
705         unsigned long timeout, flags;
706         u8 stat;
707
708         /*
709          * Re-read drive->id for possible DMA mode
710          * change (copied from ide-probe.c)
711          */
712
713         SELECT_MASK(drive, 1);
714         ide_set_irq(drive, 1);
715         msleep(50);
716         hwif->OUTBSYNC(drive, WIN_IDENTIFY, hwif->io_ports.command_addr);
717         timeout = jiffies + WAIT_WORSTCASE;
718         do {
719                 if (time_after(jiffies, timeout)) {
720                         SELECT_MASK(drive, 0);
721                         return 0;       /* drive timed-out */
722                 }
723
724                 msleep(50);     /* give drive a breather */
725                 stat = ide_read_altstatus(drive);
726         } while (stat & BUSY_STAT);
727
728         msleep(50);     /* wait for IRQ and DRQ_STAT */
729         stat = ide_read_status(drive);
730
731         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
732                 SELECT_MASK(drive, 0);
733                 printk("%s: CHECK for good STATUS\n", drive->name);
734                 return 0;
735         }
736         local_irq_save(flags);
737         SELECT_MASK(drive, 0);
738         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
739         if (!id) {
740                 local_irq_restore(flags);
741                 return 0;
742         }
743         hwif->input_data(drive, NULL, id, SECTOR_SIZE);
744         (void)ide_read_status(drive);   /* clear drive IRQ */
745         local_irq_enable();
746         local_irq_restore(flags);
747         ide_fix_driveid(id);
748         if (id) {
749                 drive->id->dma_ultra = id->dma_ultra;
750                 drive->id->dma_mword = id->dma_mword;
751                 drive->id->dma_1word = id->dma_1word;
752                 /* anything more ? */
753                 kfree(id);
754
755                 if (drive->using_dma && ide_id_dma_bug(drive))
756                         ide_dma_off(drive);
757         }
758
759         return 1;
760 }
761
762 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
763 {
764         ide_hwif_t *hwif = drive->hwif;
765         struct ide_io_ports *io_ports = &hwif->io_ports;
766         int error = 0;
767         u8 stat;
768
769 //      while (HWGROUP(drive)->busy)
770 //              msleep(50);
771
772 #ifdef CONFIG_BLK_DEV_IDEDMA
773         if (hwif->dma_ops)      /* check if host supports DMA */
774                 hwif->dma_ops->dma_host_set(drive, 0);
775 #endif
776
777         /* Skip setting PIO flow-control modes on pre-EIDE drives */
778         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
779                 goto skip;
780
781         /*
782          * Don't use ide_wait_cmd here - it will
783          * attempt to set_geometry and recalibrate,
784          * but for some reason these don't work at
785          * this point (lost interrupt).
786          */
787         /*
788          * Select the drive, and issue the SETFEATURES command
789          */
790         disable_irq_nosync(hwif->irq);
791         
792         /*
793          *      FIXME: we race against the running IRQ here if
794          *      this is called from non IRQ context. If we use
795          *      disable_irq() we hang on the error path. Work
796          *      is needed.
797          */
798          
799         udelay(1);
800         SELECT_DRIVE(drive);
801         SELECT_MASK(drive, 0);
802         udelay(1);
803         ide_set_irq(drive, 0);
804         hwif->OUTB(speed, io_ports->nsect_addr);
805         hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
806         hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
807         if (drive->quirk_list == 2)
808                 ide_set_irq(drive, 1);
809
810         error = __ide_wait_stat(drive, drive->ready_stat,
811                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
812                                 WAIT_CMD, &stat);
813
814         SELECT_MASK(drive, 0);
815
816         enable_irq(hwif->irq);
817
818         if (error) {
819                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
820                 return error;
821         }
822
823         drive->id->dma_ultra &= ~0xFF00;
824         drive->id->dma_mword &= ~0x0F00;
825         drive->id->dma_1word &= ~0x0F00;
826
827  skip:
828 #ifdef CONFIG_BLK_DEV_IDEDMA
829         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
830             drive->using_dma)
831                 hwif->dma_ops->dma_host_set(drive, 1);
832         else if (hwif->dma_ops) /* check if host supports DMA */
833                 ide_dma_off_quietly(drive);
834 #endif
835
836         switch(speed) {
837                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
838                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
839                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
840                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
841                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
842                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
843                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
844                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
845                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
846                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
847                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
848                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
849                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
850                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
851                 default: break;
852         }
853         if (!drive->init_speed)
854                 drive->init_speed = speed;
855         drive->current_speed = speed;
856         return error;
857 }
858
859 /*
860  * This should get invoked any time we exit the driver to
861  * wait for an interrupt response from a drive.  handler() points
862  * at the appropriate code to handle the next interrupt, and a
863  * timer is started to prevent us from waiting forever in case
864  * something goes wrong (see the ide_timer_expiry() handler later on).
865  *
866  * See also ide_execute_command
867  */
868 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
869                       unsigned int timeout, ide_expiry_t *expiry)
870 {
871         ide_hwgroup_t *hwgroup = HWGROUP(drive);
872
873         BUG_ON(hwgroup->handler);
874         hwgroup->handler        = handler;
875         hwgroup->expiry         = expiry;
876         hwgroup->timer.expires  = jiffies + timeout;
877         hwgroup->req_gen_timer  = hwgroup->req_gen;
878         add_timer(&hwgroup->timer);
879 }
880
881 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
882                       unsigned int timeout, ide_expiry_t *expiry)
883 {
884         unsigned long flags;
885         spin_lock_irqsave(&ide_lock, flags);
886         __ide_set_handler(drive, handler, timeout, expiry);
887         spin_unlock_irqrestore(&ide_lock, flags);
888 }
889
890 EXPORT_SYMBOL(ide_set_handler);
891  
892 /**
893  *      ide_execute_command     -       execute an IDE command
894  *      @drive: IDE drive to issue the command against
895  *      @command: command byte to write
896  *      @handler: handler for next phase
897  *      @timeout: timeout for command
898  *      @expiry:  handler to run on timeout
899  *
900  *      Helper function to issue an IDE command. This handles the
901  *      atomicity requirements, command timing and ensures that the 
902  *      handler and IRQ setup do not race. All IDE command kick off
903  *      should go via this function or do equivalent locking.
904  */
905
906 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
907                          unsigned timeout, ide_expiry_t *expiry)
908 {
909         unsigned long flags;
910         ide_hwif_t *hwif = HWIF(drive);
911
912         spin_lock_irqsave(&ide_lock, flags);
913         __ide_set_handler(drive, handler, timeout, expiry);
914         hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
915         /*
916          * Drive takes 400nS to respond, we must avoid the IRQ being
917          * serviced before that.
918          *
919          * FIXME: we could skip this delay with care on non shared devices
920          */
921         ndelay(400);
922         spin_unlock_irqrestore(&ide_lock, flags);
923 }
924 EXPORT_SYMBOL(ide_execute_command);
925
926 void ide_execute_pkt_cmd(ide_drive_t *drive)
927 {
928         ide_hwif_t *hwif = drive->hwif;
929         unsigned long flags;
930
931         spin_lock_irqsave(&ide_lock, flags);
932         hwif->OUTBSYNC(drive, WIN_PACKETCMD, hwif->io_ports.command_addr);
933         ndelay(400);
934         spin_unlock_irqrestore(&ide_lock, flags);
935 }
936 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
937
938 /* needed below */
939 static ide_startstop_t do_reset1 (ide_drive_t *, int);
940
941 /*
942  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
943  * during an atapi drive reset operation. If the drive has not yet responded,
944  * and we have not yet hit our maximum waiting time, then the timer is restarted
945  * for another 50ms.
946  */
947 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
948 {
949         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
950         u8 stat;
951
952         SELECT_DRIVE(drive);
953         udelay (10);
954         stat = ide_read_status(drive);
955
956         if (OK_STAT(stat, 0, BUSY_STAT))
957                 printk("%s: ATAPI reset complete\n", drive->name);
958         else {
959                 if (time_before(jiffies, hwgroup->poll_timeout)) {
960                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
961                         /* continue polling */
962                         return ide_started;
963                 }
964                 /* end of polling */
965                 hwgroup->polling = 0;
966                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
967                                 drive->name, stat);
968                 /* do it the old fashioned way */
969                 return do_reset1(drive, 1);
970         }
971         /* done polling */
972         hwgroup->polling = 0;
973         hwgroup->resetting = 0;
974         return ide_stopped;
975 }
976
977 /*
978  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
979  * during an ide reset operation. If the drives have not yet responded,
980  * and we have not yet hit our maximum waiting time, then the timer is restarted
981  * for another 50ms.
982  */
983 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
984 {
985         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
986         ide_hwif_t *hwif        = HWIF(drive);
987         const struct ide_port_ops *port_ops = hwif->port_ops;
988         u8 tmp;
989
990         if (port_ops && port_ops->reset_poll) {
991                 if (port_ops->reset_poll(drive)) {
992                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
993                                 hwif->name, drive->name);
994                         return ide_stopped;
995                 }
996         }
997
998         tmp = ide_read_status(drive);
999
1000         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1001                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1002                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1003                         /* continue polling */
1004                         return ide_started;
1005                 }
1006                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1007                 drive->failures++;
1008         } else  {
1009                 printk("%s: reset: ", hwif->name);
1010                 tmp = ide_read_error(drive);
1011
1012                 if (tmp == 1) {
1013                         printk("success\n");
1014                         drive->failures = 0;
1015                 } else {
1016                         drive->failures++;
1017                         printk("master: ");
1018                         switch (tmp & 0x7f) {
1019                                 case 1: printk("passed");
1020                                         break;
1021                                 case 2: printk("formatter device error");
1022                                         break;
1023                                 case 3: printk("sector buffer error");
1024                                         break;
1025                                 case 4: printk("ECC circuitry error");
1026                                         break;
1027                                 case 5: printk("controlling MPU error");
1028                                         break;
1029                                 default:printk("error (0x%02x?)", tmp);
1030                         }
1031                         if (tmp & 0x80)
1032                                 printk("; slave: failed");
1033                         printk("\n");
1034                 }
1035         }
1036         hwgroup->polling = 0;   /* done polling */
1037         hwgroup->resetting = 0; /* done reset attempt */
1038         return ide_stopped;
1039 }
1040
1041 static void ide_disk_pre_reset(ide_drive_t *drive)
1042 {
1043         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1044
1045         drive->special.all = 0;
1046         drive->special.b.set_geometry = legacy;
1047         drive->special.b.recalibrate  = legacy;
1048         drive->mult_count = 0;
1049         if (!drive->keep_settings && !drive->using_dma)
1050                 drive->mult_req = 0;
1051         if (drive->mult_req != drive->mult_count)
1052                 drive->special.b.set_multmode = 1;
1053 }
1054
1055 static void pre_reset(ide_drive_t *drive)
1056 {
1057         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1058
1059         if (drive->media == ide_disk)
1060                 ide_disk_pre_reset(drive);
1061         else
1062                 drive->post_reset = 1;
1063
1064         if (drive->using_dma) {
1065                 if (drive->crc_count)
1066                         ide_check_dma_crc(drive);
1067                 else
1068                         ide_dma_off(drive);
1069         }
1070
1071         if (!drive->keep_settings) {
1072                 if (!drive->using_dma) {
1073                         drive->unmask = 0;
1074                         drive->io_32bit = 0;
1075                 }
1076                 return;
1077         }
1078
1079         if (port_ops && port_ops->pre_reset)
1080                 port_ops->pre_reset(drive);
1081
1082         if (drive->current_speed != 0xff)
1083                 drive->desired_speed = drive->current_speed;
1084         drive->current_speed = 0xff;
1085 }
1086
1087 /*
1088  * do_reset1() attempts to recover a confused drive by resetting it.
1089  * Unfortunately, resetting a disk drive actually resets all devices on
1090  * the same interface, so it can really be thought of as resetting the
1091  * interface rather than resetting the drive.
1092  *
1093  * ATAPI devices have their own reset mechanism which allows them to be
1094  * individually reset without clobbering other devices on the same interface.
1095  *
1096  * Unfortunately, the IDE interface does not generate an interrupt to let
1097  * us know when the reset operation has finished, so we must poll for this.
1098  * Equally poor, though, is the fact that this may a very long time to complete,
1099  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1100  * we set a timer to poll at 50ms intervals.
1101  */
1102 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1103 {
1104         unsigned int unit;
1105         unsigned long flags;
1106         ide_hwif_t *hwif;
1107         ide_hwgroup_t *hwgroup;
1108         struct ide_io_ports *io_ports;
1109         const struct ide_port_ops *port_ops;
1110         u8 ctl;
1111
1112         spin_lock_irqsave(&ide_lock, flags);
1113         hwif = HWIF(drive);
1114         hwgroup = HWGROUP(drive);
1115
1116         io_ports = &hwif->io_ports;
1117
1118         /* We must not reset with running handlers */
1119         BUG_ON(hwgroup->handler != NULL);
1120
1121         /* For an ATAPI device, first try an ATAPI SRST. */
1122         if (drive->media != ide_disk && !do_not_try_atapi) {
1123                 hwgroup->resetting = 1;
1124                 pre_reset(drive);
1125                 SELECT_DRIVE(drive);
1126                 udelay (20);
1127                 hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
1128                 ndelay(400);
1129                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1130                 hwgroup->polling = 1;
1131                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1132                 spin_unlock_irqrestore(&ide_lock, flags);
1133                 return ide_started;
1134         }
1135
1136         /*
1137          * First, reset any device state data we were maintaining
1138          * for any of the drives on this interface.
1139          */
1140         for (unit = 0; unit < MAX_DRIVES; ++unit)
1141                 pre_reset(&hwif->drives[unit]);
1142
1143         if (io_ports->ctl_addr == 0) {
1144                 spin_unlock_irqrestore(&ide_lock, flags);
1145                 return ide_stopped;
1146         }
1147
1148         hwgroup->resetting = 1;
1149         /*
1150          * Note that we also set nIEN while resetting the device,
1151          * to mask unwanted interrupts from the interface during the reset.
1152          * However, due to the design of PC hardware, this will cause an
1153          * immediate interrupt due to the edge transition it produces.
1154          * This single interrupt gives us a "fast poll" for drives that
1155          * recover from reset very quickly, saving us the first 50ms wait time.
1156          */
1157         /* set SRST and nIEN */
1158         hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1159         /* more than enough time */
1160         udelay(10);
1161         if (drive->quirk_list == 2)
1162                 ctl = drive->ctl;       /* clear SRST and nIEN */
1163         else
1164                 ctl = drive->ctl | 2;   /* clear SRST, leave nIEN */
1165         hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1166         /* more than enough time */
1167         udelay(10);
1168         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1169         hwgroup->polling = 1;
1170         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1171
1172         /*
1173          * Some weird controller like resetting themselves to a strange
1174          * state when the disks are reset this way. At least, the Winbond
1175          * 553 documentation says that
1176          */
1177         port_ops = hwif->port_ops;
1178         if (port_ops && port_ops->resetproc)
1179                 port_ops->resetproc(drive);
1180
1181         spin_unlock_irqrestore(&ide_lock, flags);
1182         return ide_started;
1183 }
1184
1185 /*
1186  * ide_do_reset() is the entry point to the drive/interface reset code.
1187  */
1188
1189 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1190 {
1191         return do_reset1(drive, 0);
1192 }
1193
1194 EXPORT_SYMBOL(ide_do_reset);
1195
1196 /*
1197  * ide_wait_not_busy() waits for the currently selected device on the hwif
1198  * to report a non-busy status, see comments in ide_probe_port().
1199  */
1200 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1201 {
1202         u8 stat = 0;
1203
1204         while(timeout--) {
1205                 /*
1206                  * Turn this into a schedule() sleep once I'm sure
1207                  * about locking issues (2.5 work ?).
1208                  */
1209                 mdelay(1);
1210                 stat = hwif->INB(hwif->io_ports.status_addr);
1211                 if ((stat & BUSY_STAT) == 0)
1212                         return 0;
1213                 /*
1214                  * Assume a value of 0xff means nothing is connected to
1215                  * the interface and it doesn't implement the pull-down
1216                  * resistor on D7.
1217                  */
1218                 if (stat == 0xff)
1219                         return -ENODEV;
1220                 touch_softlockup_watchdog();
1221                 touch_nmi_watchdog();
1222         }
1223         return -EBUSY;
1224 }
1225
1226 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1227