Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild
[pandora-kernel.git] / drivers / ide / ide-iops.c
1 /*
2  * linux/drivers/ide/ide-iops.c Version 0.37    Mar 05, 2003
3  *
4  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
5  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
6  *
7  */
8
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26
27 #include <asm/byteorder.h>
28 #include <asm/irq.h>
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31
32 /*
33  *      Conventional PIO operations for ATA devices
34  */
35
36 static u8 ide_inb (unsigned long port)
37 {
38         return (u8) inb(port);
39 }
40
41 static u16 ide_inw (unsigned long port)
42 {
43         return (u16) inw(port);
44 }
45
46 static void ide_insw (unsigned long port, void *addr, u32 count)
47 {
48         insw(port, addr, count);
49 }
50
51 static u32 ide_inl (unsigned long port)
52 {
53         return (u32) inl(port);
54 }
55
56 static void ide_insl (unsigned long port, void *addr, u32 count)
57 {
58         insl(port, addr, count);
59 }
60
61 static void ide_outb (u8 val, unsigned long port)
62 {
63         outb(val, port);
64 }
65
66 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
67 {
68         outb(addr, port);
69 }
70
71 static void ide_outw (u16 val, unsigned long port)
72 {
73         outw(val, port);
74 }
75
76 static void ide_outsw (unsigned long port, void *addr, u32 count)
77 {
78         outsw(port, addr, count);
79 }
80
81 static void ide_outl (u32 val, unsigned long port)
82 {
83         outl(val, port);
84 }
85
86 static void ide_outsl (unsigned long port, void *addr, u32 count)
87 {
88         outsl(port, addr, count);
89 }
90
91 void default_hwif_iops (ide_hwif_t *hwif)
92 {
93         hwif->OUTB      = ide_outb;
94         hwif->OUTBSYNC  = ide_outbsync;
95         hwif->OUTW      = ide_outw;
96         hwif->OUTL      = ide_outl;
97         hwif->OUTSW     = ide_outsw;
98         hwif->OUTSL     = ide_outsl;
99         hwif->INB       = ide_inb;
100         hwif->INW       = ide_inw;
101         hwif->INL       = ide_inl;
102         hwif->INSW      = ide_insw;
103         hwif->INSL      = ide_insl;
104 }
105
106 /*
107  *      MMIO operations, typically used for SATA controllers
108  */
109
110 static u8 ide_mm_inb (unsigned long port)
111 {
112         return (u8) readb((void __iomem *) port);
113 }
114
115 static u16 ide_mm_inw (unsigned long port)
116 {
117         return (u16) readw((void __iomem *) port);
118 }
119
120 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
121 {
122         __ide_mm_insw((void __iomem *) port, addr, count);
123 }
124
125 static u32 ide_mm_inl (unsigned long port)
126 {
127         return (u32) readl((void __iomem *) port);
128 }
129
130 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
131 {
132         __ide_mm_insl((void __iomem *) port, addr, count);
133 }
134
135 static void ide_mm_outb (u8 value, unsigned long port)
136 {
137         writeb(value, (void __iomem *) port);
138 }
139
140 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
141 {
142         writeb(value, (void __iomem *) port);
143 }
144
145 static void ide_mm_outw (u16 value, unsigned long port)
146 {
147         writew(value, (void __iomem *) port);
148 }
149
150 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
151 {
152         __ide_mm_outsw((void __iomem *) port, addr, count);
153 }
154
155 static void ide_mm_outl (u32 value, unsigned long port)
156 {
157         writel(value, (void __iomem *) port);
158 }
159
160 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
161 {
162         __ide_mm_outsl((void __iomem *) port, addr, count);
163 }
164
165 void default_hwif_mmiops (ide_hwif_t *hwif)
166 {
167         hwif->OUTB      = ide_mm_outb;
168         /* Most systems will need to override OUTBSYNC, alas however
169            this one is controller specific! */
170         hwif->OUTBSYNC  = ide_mm_outbsync;
171         hwif->OUTW      = ide_mm_outw;
172         hwif->OUTL      = ide_mm_outl;
173         hwif->OUTSW     = ide_mm_outsw;
174         hwif->OUTSL     = ide_mm_outsl;
175         hwif->INB       = ide_mm_inb;
176         hwif->INW       = ide_mm_inw;
177         hwif->INL       = ide_mm_inl;
178         hwif->INSW      = ide_mm_insw;
179         hwif->INSL      = ide_mm_insl;
180 }
181
182 EXPORT_SYMBOL(default_hwif_mmiops);
183
184 u32 ide_read_24 (ide_drive_t *drive)
185 {
186         u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
187         u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
188         u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
189         return (hcyl<<16)|(lcyl<<8)|sect;
190 }
191
192 void SELECT_DRIVE (ide_drive_t *drive)
193 {
194         if (HWIF(drive)->selectproc)
195                 HWIF(drive)->selectproc(drive);
196         HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
197 }
198
199 EXPORT_SYMBOL(SELECT_DRIVE);
200
201 void SELECT_INTERRUPT (ide_drive_t *drive)
202 {
203         if (HWIF(drive)->intrproc)
204                 HWIF(drive)->intrproc(drive);
205         else
206                 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
207 }
208
209 void SELECT_MASK (ide_drive_t *drive, int mask)
210 {
211         if (HWIF(drive)->maskproc)
212                 HWIF(drive)->maskproc(drive, mask);
213 }
214
215 void QUIRK_LIST (ide_drive_t *drive)
216 {
217         if (HWIF(drive)->quirkproc)
218                 drive->quirk_list = HWIF(drive)->quirkproc(drive);
219 }
220
221 /*
222  * Some localbus EIDE interfaces require a special access sequence
223  * when using 32-bit I/O instructions to transfer data.  We call this
224  * the "vlb_sync" sequence, which consists of three successive reads
225  * of the sector count register location, with interrupts disabled
226  * to ensure that the reads all happen together.
227  */
228 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
229 {
230         (void) HWIF(drive)->INB(port);
231         (void) HWIF(drive)->INB(port);
232         (void) HWIF(drive)->INB(port);
233 }
234
235 /*
236  * This is used for most PIO data transfers *from* the IDE interface
237  */
238 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
239 {
240         ide_hwif_t *hwif        = HWIF(drive);
241         u8 io_32bit             = drive->io_32bit;
242
243         if (io_32bit) {
244                 if (io_32bit & 2) {
245                         unsigned long flags;
246                         local_irq_save(flags);
247                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
248                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
249                         local_irq_restore(flags);
250                 } else
251                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
252         } else {
253                 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
254         }
255 }
256
257 /*
258  * This is used for most PIO data transfers *to* the IDE interface
259  */
260 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
261 {
262         ide_hwif_t *hwif        = HWIF(drive);
263         u8 io_32bit             = drive->io_32bit;
264
265         if (io_32bit) {
266                 if (io_32bit & 2) {
267                         unsigned long flags;
268                         local_irq_save(flags);
269                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
270                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
271                         local_irq_restore(flags);
272                 } else
273                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
274         } else {
275                 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
276         }
277 }
278
279 /*
280  * The following routines are mainly used by the ATAPI drivers.
281  *
282  * These routines will round up any request for an odd number of bytes,
283  * so if an odd bytecount is specified, be sure that there's at least one
284  * extra byte allocated for the buffer.
285  */
286
287 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
288 {
289         ide_hwif_t *hwif = HWIF(drive);
290
291         ++bytecount;
292 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
293         if (MACH_IS_ATARI || MACH_IS_Q40) {
294                 /* Atari has a byte-swapped IDE interface */
295                 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
296                 return;
297         }
298 #endif /* CONFIG_ATARI || CONFIG_Q40 */
299         hwif->ata_input_data(drive, buffer, bytecount / 4);
300         if ((bytecount & 0x03) >= 2)
301                 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
302 }
303
304 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
305 {
306         ide_hwif_t *hwif = HWIF(drive);
307
308         ++bytecount;
309 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
310         if (MACH_IS_ATARI || MACH_IS_Q40) {
311                 /* Atari has a byte-swapped IDE interface */
312                 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
313                 return;
314         }
315 #endif /* CONFIG_ATARI || CONFIG_Q40 */
316         hwif->ata_output_data(drive, buffer, bytecount / 4);
317         if ((bytecount & 0x03) >= 2)
318                 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
319 }
320
321 void default_hwif_transport(ide_hwif_t *hwif)
322 {
323         hwif->ata_input_data            = ata_input_data;
324         hwif->ata_output_data           = ata_output_data;
325         hwif->atapi_input_bytes         = atapi_input_bytes;
326         hwif->atapi_output_bytes        = atapi_output_bytes;
327 }
328
329 /*
330  * Beginning of Taskfile OPCODE Library and feature sets.
331  */
332 void ide_fix_driveid (struct hd_driveid *id)
333 {
334 #ifndef __LITTLE_ENDIAN
335 # ifdef __BIG_ENDIAN
336         int i;
337         u16 *stringcast;
338
339         id->config         = __le16_to_cpu(id->config);
340         id->cyls           = __le16_to_cpu(id->cyls);
341         id->reserved2      = __le16_to_cpu(id->reserved2);
342         id->heads          = __le16_to_cpu(id->heads);
343         id->track_bytes    = __le16_to_cpu(id->track_bytes);
344         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
345         id->sectors        = __le16_to_cpu(id->sectors);
346         id->vendor0        = __le16_to_cpu(id->vendor0);
347         id->vendor1        = __le16_to_cpu(id->vendor1);
348         id->vendor2        = __le16_to_cpu(id->vendor2);
349         stringcast = (u16 *)&id->serial_no[0];
350         for (i = 0; i < (20/2); i++)
351                 stringcast[i] = __le16_to_cpu(stringcast[i]);
352         id->buf_type       = __le16_to_cpu(id->buf_type);
353         id->buf_size       = __le16_to_cpu(id->buf_size);
354         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
355         stringcast = (u16 *)&id->fw_rev[0];
356         for (i = 0; i < (8/2); i++)
357                 stringcast[i] = __le16_to_cpu(stringcast[i]);
358         stringcast = (u16 *)&id->model[0];
359         for (i = 0; i < (40/2); i++)
360                 stringcast[i] = __le16_to_cpu(stringcast[i]);
361         id->dword_io       = __le16_to_cpu(id->dword_io);
362         id->reserved50     = __le16_to_cpu(id->reserved50);
363         id->field_valid    = __le16_to_cpu(id->field_valid);
364         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
365         id->cur_heads      = __le16_to_cpu(id->cur_heads);
366         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
367         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
368         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
369         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
370         id->dma_1word      = __le16_to_cpu(id->dma_1word);
371         id->dma_mword      = __le16_to_cpu(id->dma_mword);
372         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
373         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
374         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
375         id->eide_pio       = __le16_to_cpu(id->eide_pio);
376         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
377         for (i = 0; i < 2; ++i)
378                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
379         for (i = 0; i < 4; ++i)
380                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
381         id->queue_depth    = __le16_to_cpu(id->queue_depth);
382         for (i = 0; i < 4; ++i)
383                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
384         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
385         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
386         id->command_set_1  = __le16_to_cpu(id->command_set_1);
387         id->command_set_2  = __le16_to_cpu(id->command_set_2);
388         id->cfsse          = __le16_to_cpu(id->cfsse);
389         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
390         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
391         id->csf_default    = __le16_to_cpu(id->csf_default);
392         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
393         id->trseuc         = __le16_to_cpu(id->trseuc);
394         id->trsEuc         = __le16_to_cpu(id->trsEuc);
395         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
396         id->mprc           = __le16_to_cpu(id->mprc);
397         id->hw_config      = __le16_to_cpu(id->hw_config);
398         id->acoustic       = __le16_to_cpu(id->acoustic);
399         id->msrqs          = __le16_to_cpu(id->msrqs);
400         id->sxfert         = __le16_to_cpu(id->sxfert);
401         id->sal            = __le16_to_cpu(id->sal);
402         id->spg            = __le32_to_cpu(id->spg);
403         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
404         for (i = 0; i < 22; i++)
405                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
406         id->last_lun       = __le16_to_cpu(id->last_lun);
407         id->word127        = __le16_to_cpu(id->word127);
408         id->dlf            = __le16_to_cpu(id->dlf);
409         id->csfo           = __le16_to_cpu(id->csfo);
410         for (i = 0; i < 26; i++)
411                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
412         id->word156        = __le16_to_cpu(id->word156);
413         for (i = 0; i < 3; i++)
414                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
415         id->cfa_power      = __le16_to_cpu(id->cfa_power);
416         for (i = 0; i < 14; i++)
417                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
418         for (i = 0; i < 31; i++)
419                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
420         for (i = 0; i < 48; i++)
421                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
422         id->integrity_word  = __le16_to_cpu(id->integrity_word);
423 # else
424 #  error "Please fix <asm/byteorder.h>"
425 # endif
426 #endif
427 }
428
429 /* FIXME: exported for use by the USB storage (isd200.c) code only */
430 EXPORT_SYMBOL(ide_fix_driveid);
431
432 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
433 {
434         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
435
436         if (byteswap) {
437                 /* convert from big-endian to host byte order */
438                 for (p = end ; p != s;) {
439                         unsigned short *pp = (unsigned short *) (p -= 2);
440                         *pp = ntohs(*pp);
441                 }
442         }
443         /* strip leading blanks */
444         while (s != end && *s == ' ')
445                 ++s;
446         /* compress internal blanks and strip trailing blanks */
447         while (s != end && *s) {
448                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
449                         *p++ = *(s-1);
450         }
451         /* wipe out trailing garbage */
452         while (p != end)
453                 *p++ = '\0';
454 }
455
456 EXPORT_SYMBOL(ide_fixstring);
457
458 /*
459  * Needed for PCI irq sharing
460  */
461 int drive_is_ready (ide_drive_t *drive)
462 {
463         ide_hwif_t *hwif        = HWIF(drive);
464         u8 stat                 = 0;
465
466         if (drive->waiting_for_dma)
467                 return hwif->ide_dma_test_irq(drive);
468
469 #if 0
470         /* need to guarantee 400ns since last command was issued */
471         udelay(1);
472 #endif
473
474 #ifdef CONFIG_IDEPCI_SHARE_IRQ
475         /*
476          * We do a passive status test under shared PCI interrupts on
477          * cards that truly share the ATA side interrupt, but may also share
478          * an interrupt with another pci card/device.  We make no assumptions
479          * about possible isa-pnp and pci-pnp issues yet.
480          */
481         if (IDE_CONTROL_REG)
482                 stat = hwif->INB(IDE_ALTSTATUS_REG);
483         else
484 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
485                 /* Note: this may clear a pending IRQ!! */
486                 stat = hwif->INB(IDE_STATUS_REG);
487
488         if (stat & BUSY_STAT)
489                 /* drive busy:  definitely not interrupting */
490                 return 0;
491
492         /* drive ready: *might* be interrupting */
493         return 1;
494 }
495
496 EXPORT_SYMBOL(drive_is_ready);
497
498 /*
499  * Global for All, and taken from ide-pmac.c. Can be called
500  * with spinlock held & IRQs disabled, so don't schedule !
501  */
502 int wait_for_ready (ide_drive_t *drive, int timeout)
503 {
504         ide_hwif_t *hwif        = HWIF(drive);
505         u8 stat                 = 0;
506
507         while(--timeout) {
508                 stat = hwif->INB(IDE_STATUS_REG);
509                 if (!(stat & BUSY_STAT)) {
510                         if (drive->ready_stat == 0)
511                                 break;
512                         else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
513                                 break;
514                 }
515                 mdelay(1);
516         }
517         if ((stat & ERR_STAT) || timeout <= 0) {
518                 if (stat & ERR_STAT) {
519                         printk(KERN_ERR "%s: wait_for_ready, "
520                                 "error status: %x\n", drive->name, stat);
521                 }
522                 return 1;
523         }
524         return 0;
525 }
526
527 /*
528  * This routine busy-waits for the drive status to be not "busy".
529  * It then checks the status for all of the "good" bits and none
530  * of the "bad" bits, and if all is okay it returns 0.  All other
531  * cases return 1 after invoking ide_error() -- caller should just return.
532  *
533  * This routine should get fixed to not hog the cpu during extra long waits..
534  * That could be done by busy-waiting for the first jiffy or two, and then
535  * setting a timer to wake up at half second intervals thereafter,
536  * until timeout is achieved, before timing out.
537  */
538 int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
539 {
540         ide_hwif_t *hwif = HWIF(drive);
541         u8 stat;
542         int i;
543         unsigned long flags;
544  
545         /* bail early if we've exceeded max_failures */
546         if (drive->max_failures && (drive->failures > drive->max_failures)) {
547                 *startstop = ide_stopped;
548                 return 1;
549         }
550
551         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
552         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
553                 local_irq_set(flags);
554                 timeout += jiffies;
555                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
556                         if (time_after(jiffies, timeout)) {
557                                 /*
558                                  * One last read after the timeout in case
559                                  * heavy interrupt load made us not make any
560                                  * progress during the timeout..
561                                  */
562                                 stat = hwif->INB(IDE_STATUS_REG);
563                                 if (!(stat & BUSY_STAT))
564                                         break;
565
566                                 local_irq_restore(flags);
567                                 *startstop = ide_error(drive, "status timeout", stat);
568                                 return 1;
569                         }
570                 }
571                 local_irq_restore(flags);
572         }
573         /*
574          * Allow status to settle, then read it again.
575          * A few rare drives vastly violate the 400ns spec here,
576          * so we'll wait up to 10usec for a "good" status
577          * rather than expensively fail things immediately.
578          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
579          */
580         for (i = 0; i < 10; i++) {
581                 udelay(1);
582                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
583                         return 0;
584         }
585         *startstop = ide_error(drive, "status error", stat);
586         return 1;
587 }
588
589 EXPORT_SYMBOL(ide_wait_stat);
590
591 /*
592  *  All hosts that use the 80c ribbon must use!
593  *  The name is derived from upper byte of word 93 and the 80c ribbon.
594  */
595 u8 eighty_ninty_three (ide_drive_t *drive)
596 {
597         if(HWIF(drive)->udma_four == 0)
598                 return 0;
599
600         /* Check for SATA but only if we are ATA5 or higher */
601         if (drive->id->hw_config == 0 && (drive->id->major_rev_num & 0x7FE0))
602                 return 1;
603         if (!(drive->id->hw_config & 0x6000))
604                 return 0;
605 #ifndef CONFIG_IDEDMA_IVB
606         if(!(drive->id->hw_config & 0x4000))
607                 return 0;
608 #endif /* CONFIG_IDEDMA_IVB */
609         return 1;
610 }
611
612 EXPORT_SYMBOL(eighty_ninty_three);
613
614 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
615 {
616         if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
617             (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
618             (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
619 #ifndef CONFIG_IDEDMA_IVB
620                 if ((drive->id->hw_config & 0x6000) == 0) {
621 #else /* !CONFIG_IDEDMA_IVB */
622                 if (((drive->id->hw_config & 0x2000) == 0) ||
623                     ((drive->id->hw_config & 0x4000) == 0)) {
624 #endif /* CONFIG_IDEDMA_IVB */
625                         printk("%s: Speed warnings UDMA 3/4/5 is not "
626                                 "functional.\n", drive->name);
627                         return 1;
628                 }
629                 if (!HWIF(drive)->udma_four) {
630                         printk("%s: Speed warnings UDMA 3/4/5 is not "
631                                 "functional.\n",
632                                 HWIF(drive)->name);
633                         return 1;
634                 }
635         }
636         return 0;
637 }
638
639 /*
640  * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
641  * 1 : Safe to update drive->id DMA registers.
642  * 0 : OOPs not allowed.
643  */
644 int set_transfer (ide_drive_t *drive, ide_task_t *args)
645 {
646         if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
647             (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
648             (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
649             (drive->id->dma_ultra ||
650              drive->id->dma_mword ||
651              drive->id->dma_1word))
652                 return 1;
653
654         return 0;
655 }
656
657 #ifdef CONFIG_BLK_DEV_IDEDMA
658 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
659 {
660         if (!drive->crc_count)
661                 return drive->current_speed;
662         drive->crc_count = 0;
663
664         switch(drive->current_speed) {
665                 case XFER_UDMA_7:       return XFER_UDMA_6;
666                 case XFER_UDMA_6:       return XFER_UDMA_5;
667                 case XFER_UDMA_5:       return XFER_UDMA_4;
668                 case XFER_UDMA_4:       return XFER_UDMA_3;
669                 case XFER_UDMA_3:       return XFER_UDMA_2;
670                 case XFER_UDMA_2:       return XFER_UDMA_1;
671                 case XFER_UDMA_1:       return XFER_UDMA_0;
672                         /*
673                          * OOPS we do not goto non Ultra DMA modes
674                          * without iCRC's available we force
675                          * the system to PIO and make the user
676                          * invoke the ATA-1 ATA-2 DMA modes.
677                          */
678                 case XFER_UDMA_0:
679                 default:                return XFER_PIO_4;
680         }
681 }
682 #endif /* CONFIG_BLK_DEV_IDEDMA */
683
684 /*
685  * Update the 
686  */
687 int ide_driveid_update (ide_drive_t *drive)
688 {
689         ide_hwif_t *hwif        = HWIF(drive);
690         struct hd_driveid *id;
691 #if 0
692         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
693         if (!id)
694                 return 0;
695
696         taskfile_lib_get_identify(drive, (char *)&id);
697
698         ide_fix_driveid(id);
699         if (id) {
700                 drive->id->dma_ultra = id->dma_ultra;
701                 drive->id->dma_mword = id->dma_mword;
702                 drive->id->dma_1word = id->dma_1word;
703                 /* anything more ? */
704                 kfree(id);
705         }
706         return 1;
707 #else
708         /*
709          * Re-read drive->id for possible DMA mode
710          * change (copied from ide-probe.c)
711          */
712         unsigned long timeout, flags;
713
714         SELECT_MASK(drive, 1);
715         if (IDE_CONTROL_REG)
716                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
717         msleep(50);
718         hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
719         timeout = jiffies + WAIT_WORSTCASE;
720         do {
721                 if (time_after(jiffies, timeout)) {
722                         SELECT_MASK(drive, 0);
723                         return 0;       /* drive timed-out */
724                 }
725                 msleep(50);     /* give drive a breather */
726         } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
727         msleep(50);     /* wait for IRQ and DRQ_STAT */
728         if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
729                 SELECT_MASK(drive, 0);
730                 printk("%s: CHECK for good STATUS\n", drive->name);
731                 return 0;
732         }
733         local_irq_save(flags);
734         SELECT_MASK(drive, 0);
735         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
736         if (!id) {
737                 local_irq_restore(flags);
738                 return 0;
739         }
740         ata_input_data(drive, id, SECTOR_WORDS);
741         (void) hwif->INB(IDE_STATUS_REG);       /* clear drive IRQ */
742         local_irq_enable();
743         local_irq_restore(flags);
744         ide_fix_driveid(id);
745         if (id) {
746                 drive->id->dma_ultra = id->dma_ultra;
747                 drive->id->dma_mword = id->dma_mword;
748                 drive->id->dma_1word = id->dma_1word;
749                 /* anything more ? */
750                 kfree(id);
751         }
752
753         return 1;
754 #endif
755 }
756
757 /*
758  * Similar to ide_wait_stat(), except it never calls ide_error internally.
759  * This is a kludge to handle the new ide_config_drive_speed() function,
760  * and should not otherwise be used anywhere.  Eventually, the tuneproc's
761  * should be updated to return ide_startstop_t, in which case we can get
762  * rid of this abomination again.  :)   -ml
763  *
764  * It is gone..........
765  *
766  * const char *msg == consider adding for verbose errors.
767  */
768 int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
769 {
770         ide_hwif_t *hwif        = HWIF(drive);
771         int     i, error        = 1;
772         u8 stat;
773
774 //      while (HWGROUP(drive)->busy)
775 //              msleep(50);
776
777 #ifdef CONFIG_BLK_DEV_IDEDMA
778         if (hwif->ide_dma_check)         /* check if host supports DMA */
779                 hwif->ide_dma_host_off(drive);
780 #endif
781
782         /*
783          * Don't use ide_wait_cmd here - it will
784          * attempt to set_geometry and recalibrate,
785          * but for some reason these don't work at
786          * this point (lost interrupt).
787          */
788         /*
789          * Select the drive, and issue the SETFEATURES command
790          */
791         disable_irq_nosync(hwif->irq);
792         
793         /*
794          *      FIXME: we race against the running IRQ here if
795          *      this is called from non IRQ context. If we use
796          *      disable_irq() we hang on the error path. Work
797          *      is needed.
798          */
799          
800         udelay(1);
801         SELECT_DRIVE(drive);
802         SELECT_MASK(drive, 0);
803         udelay(1);
804         if (IDE_CONTROL_REG)
805                 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
806         hwif->OUTB(speed, IDE_NSECTOR_REG);
807         hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
808         hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG);
809         if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
810                 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
811         udelay(1);
812         /*
813          * Wait for drive to become non-BUSY
814          */
815         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
816                 unsigned long flags, timeout;
817                 local_irq_set(flags);
818                 timeout = jiffies + WAIT_CMD;
819                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
820                         if (time_after(jiffies, timeout))
821                                 break;
822                 }
823                 local_irq_restore(flags);
824         }
825
826         /*
827          * Allow status to settle, then read it again.
828          * A few rare drives vastly violate the 400ns spec here,
829          * so we'll wait up to 10usec for a "good" status
830          * rather than expensively fail things immediately.
831          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
832          */
833         for (i = 0; i < 10; i++) {
834                 udelay(1);
835                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
836                         error = 0;
837                         break;
838                 }
839         }
840
841         SELECT_MASK(drive, 0);
842
843         enable_irq(hwif->irq);
844
845         if (error) {
846                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
847                 return error;
848         }
849
850         drive->id->dma_ultra &= ~0xFF00;
851         drive->id->dma_mword &= ~0x0F00;
852         drive->id->dma_1word &= ~0x0F00;
853
854 #ifdef CONFIG_BLK_DEV_IDEDMA
855         if (speed >= XFER_SW_DMA_0)
856                 hwif->ide_dma_host_on(drive);
857         else if (hwif->ide_dma_check)   /* check if host supports DMA */
858                 hwif->ide_dma_off_quietly(drive);
859 #endif
860
861         switch(speed) {
862                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
863                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
864                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
865                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
866                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
867                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
868                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
869                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
870                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
871                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
872                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
873                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
874                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
875                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
876                 default: break;
877         }
878         if (!drive->init_speed)
879                 drive->init_speed = speed;
880         drive->current_speed = speed;
881         return error;
882 }
883
884 EXPORT_SYMBOL(ide_config_drive_speed);
885
886
887 /*
888  * This should get invoked any time we exit the driver to
889  * wait for an interrupt response from a drive.  handler() points
890  * at the appropriate code to handle the next interrupt, and a
891  * timer is started to prevent us from waiting forever in case
892  * something goes wrong (see the ide_timer_expiry() handler later on).
893  *
894  * See also ide_execute_command
895  */
896 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
897                       unsigned int timeout, ide_expiry_t *expiry)
898 {
899         ide_hwgroup_t *hwgroup = HWGROUP(drive);
900
901         if (hwgroup->handler != NULL) {
902                 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
903                         "old=%p, new=%p\n",
904                         drive->name, hwgroup->handler, handler);
905         }
906         hwgroup->handler        = handler;
907         hwgroup->expiry         = expiry;
908         hwgroup->timer.expires  = jiffies + timeout;
909         add_timer(&hwgroup->timer);
910 }
911
912 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
913                       unsigned int timeout, ide_expiry_t *expiry)
914 {
915         unsigned long flags;
916         spin_lock_irqsave(&ide_lock, flags);
917         __ide_set_handler(drive, handler, timeout, expiry);
918         spin_unlock_irqrestore(&ide_lock, flags);
919 }
920
921 EXPORT_SYMBOL(ide_set_handler);
922  
923 /**
924  *      ide_execute_command     -       execute an IDE command
925  *      @drive: IDE drive to issue the command against
926  *      @command: command byte to write
927  *      @handler: handler for next phase
928  *      @timeout: timeout for command
929  *      @expiry:  handler to run on timeout
930  *
931  *      Helper function to issue an IDE command. This handles the
932  *      atomicity requirements, command timing and ensures that the 
933  *      handler and IRQ setup do not race. All IDE command kick off
934  *      should go via this function or do equivalent locking.
935  */
936  
937 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
938 {
939         unsigned long flags;
940         ide_hwgroup_t *hwgroup = HWGROUP(drive);
941         ide_hwif_t *hwif = HWIF(drive);
942         
943         spin_lock_irqsave(&ide_lock, flags);
944         
945         BUG_ON(hwgroup->handler);
946         hwgroup->handler        = handler;
947         hwgroup->expiry         = expiry;
948         hwgroup->timer.expires  = jiffies + timeout;
949         add_timer(&hwgroup->timer);
950         hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
951         /* Drive takes 400nS to respond, we must avoid the IRQ being
952            serviced before that. 
953            
954            FIXME: we could skip this delay with care on non shared
955            devices 
956         */
957         ndelay(400);
958         spin_unlock_irqrestore(&ide_lock, flags);
959 }
960
961 EXPORT_SYMBOL(ide_execute_command);
962
963
964 /* needed below */
965 static ide_startstop_t do_reset1 (ide_drive_t *, int);
966
967 /*
968  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
969  * during an atapi drive reset operation. If the drive has not yet responded,
970  * and we have not yet hit our maximum waiting time, then the timer is restarted
971  * for another 50ms.
972  */
973 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
974 {
975         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
976         ide_hwif_t *hwif        = HWIF(drive);
977         u8 stat;
978
979         SELECT_DRIVE(drive);
980         udelay (10);
981
982         if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
983                 printk("%s: ATAPI reset complete\n", drive->name);
984         } else {
985                 if (time_before(jiffies, hwgroup->poll_timeout)) {
986                         BUG_ON(HWGROUP(drive)->handler != NULL);
987                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
988                         /* continue polling */
989                         return ide_started;
990                 }
991                 /* end of polling */
992                 hwgroup->polling = 0;
993                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
994                                 drive->name, stat);
995                 /* do it the old fashioned way */
996                 return do_reset1(drive, 1);
997         }
998         /* done polling */
999         hwgroup->polling = 0;
1000         return ide_stopped;
1001 }
1002
1003 /*
1004  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1005  * during an ide reset operation. If the drives have not yet responded,
1006  * and we have not yet hit our maximum waiting time, then the timer is restarted
1007  * for another 50ms.
1008  */
1009 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1010 {
1011         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
1012         ide_hwif_t *hwif        = HWIF(drive);
1013         u8 tmp;
1014
1015         if (hwif->reset_poll != NULL) {
1016                 if (hwif->reset_poll(drive)) {
1017                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1018                                 hwif->name, drive->name);
1019                         return ide_stopped;
1020                 }
1021         }
1022
1023         if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1024                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1025                         BUG_ON(HWGROUP(drive)->handler != NULL);
1026                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1027                         /* continue polling */
1028                         return ide_started;
1029                 }
1030                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1031                 drive->failures++;
1032         } else  {
1033                 printk("%s: reset: ", hwif->name);
1034                 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1035                         printk("success\n");
1036                         drive->failures = 0;
1037                 } else {
1038                         drive->failures++;
1039                         printk("master: ");
1040                         switch (tmp & 0x7f) {
1041                                 case 1: printk("passed");
1042                                         break;
1043                                 case 2: printk("formatter device error");
1044                                         break;
1045                                 case 3: printk("sector buffer error");
1046                                         break;
1047                                 case 4: printk("ECC circuitry error");
1048                                         break;
1049                                 case 5: printk("controlling MPU error");
1050                                         break;
1051                                 default:printk("error (0x%02x?)", tmp);
1052                         }
1053                         if (tmp & 0x80)
1054                                 printk("; slave: failed");
1055                         printk("\n");
1056                 }
1057         }
1058         hwgroup->polling = 0;   /* done polling */
1059         return ide_stopped;
1060 }
1061
1062 static void check_dma_crc(ide_drive_t *drive)
1063 {
1064 #ifdef CONFIG_BLK_DEV_IDEDMA
1065         if (drive->crc_count) {
1066                 (void) HWIF(drive)->ide_dma_off_quietly(drive);
1067                 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1068                 if (drive->current_speed >= XFER_SW_DMA_0)
1069                         (void) HWIF(drive)->ide_dma_on(drive);
1070         } else
1071                 (void)__ide_dma_off(drive);
1072 #endif
1073 }
1074
1075 static void ide_disk_pre_reset(ide_drive_t *drive)
1076 {
1077         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1078
1079         drive->special.all = 0;
1080         drive->special.b.set_geometry = legacy;
1081         drive->special.b.recalibrate  = legacy;
1082         if (OK_TO_RESET_CONTROLLER)
1083                 drive->mult_count = 0;
1084         if (!drive->keep_settings && !drive->using_dma)
1085                 drive->mult_req = 0;
1086         if (drive->mult_req != drive->mult_count)
1087                 drive->special.b.set_multmode = 1;
1088 }
1089
1090 static void pre_reset(ide_drive_t *drive)
1091 {
1092         if (drive->media == ide_disk)
1093                 ide_disk_pre_reset(drive);
1094         else
1095                 drive->post_reset = 1;
1096
1097         if (!drive->keep_settings) {
1098                 if (drive->using_dma) {
1099                         check_dma_crc(drive);
1100                 } else {
1101                         drive->unmask = 0;
1102                         drive->io_32bit = 0;
1103                 }
1104                 return;
1105         }
1106         if (drive->using_dma)
1107                 check_dma_crc(drive);
1108
1109         if (HWIF(drive)->pre_reset != NULL)
1110                 HWIF(drive)->pre_reset(drive);
1111
1112 }
1113
1114 /*
1115  * do_reset1() attempts to recover a confused drive by resetting it.
1116  * Unfortunately, resetting a disk drive actually resets all devices on
1117  * the same interface, so it can really be thought of as resetting the
1118  * interface rather than resetting the drive.
1119  *
1120  * ATAPI devices have their own reset mechanism which allows them to be
1121  * individually reset without clobbering other devices on the same interface.
1122  *
1123  * Unfortunately, the IDE interface does not generate an interrupt to let
1124  * us know when the reset operation has finished, so we must poll for this.
1125  * Equally poor, though, is the fact that this may a very long time to complete,
1126  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1127  * we set a timer to poll at 50ms intervals.
1128  */
1129 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1130 {
1131         unsigned int unit;
1132         unsigned long flags;
1133         ide_hwif_t *hwif;
1134         ide_hwgroup_t *hwgroup;
1135         
1136         spin_lock_irqsave(&ide_lock, flags);
1137         hwif = HWIF(drive);
1138         hwgroup = HWGROUP(drive);
1139
1140         /* We must not reset with running handlers */
1141         BUG_ON(hwgroup->handler != NULL);
1142
1143         /* For an ATAPI device, first try an ATAPI SRST. */
1144         if (drive->media != ide_disk && !do_not_try_atapi) {
1145                 pre_reset(drive);
1146                 SELECT_DRIVE(drive);
1147                 udelay (20);
1148                 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1149                 ndelay(400);
1150                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1151                 hwgroup->polling = 1;
1152                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1153                 spin_unlock_irqrestore(&ide_lock, flags);
1154                 return ide_started;
1155         }
1156
1157         /*
1158          * First, reset any device state data we were maintaining
1159          * for any of the drives on this interface.
1160          */
1161         for (unit = 0; unit < MAX_DRIVES; ++unit)
1162                 pre_reset(&hwif->drives[unit]);
1163
1164 #if OK_TO_RESET_CONTROLLER
1165         if (!IDE_CONTROL_REG) {
1166                 spin_unlock_irqrestore(&ide_lock, flags);
1167                 return ide_stopped;
1168         }
1169
1170         /*
1171          * Note that we also set nIEN while resetting the device,
1172          * to mask unwanted interrupts from the interface during the reset.
1173          * However, due to the design of PC hardware, this will cause an
1174          * immediate interrupt due to the edge transition it produces.
1175          * This single interrupt gives us a "fast poll" for drives that
1176          * recover from reset very quickly, saving us the first 50ms wait time.
1177          */
1178         /* set SRST and nIEN */
1179         hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1180         /* more than enough time */
1181         udelay(10);
1182         if (drive->quirk_list == 2) {
1183                 /* clear SRST and nIEN */
1184                 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1185         } else {
1186                 /* clear SRST, leave nIEN */
1187                 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1188         }
1189         /* more than enough time */
1190         udelay(10);
1191         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1192         hwgroup->polling = 1;
1193         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1194
1195         /*
1196          * Some weird controller like resetting themselves to a strange
1197          * state when the disks are reset this way. At least, the Winbond
1198          * 553 documentation says that
1199          */
1200         if (hwif->resetproc != NULL) {
1201                 hwif->resetproc(drive);
1202         }
1203         
1204 #endif  /* OK_TO_RESET_CONTROLLER */
1205
1206         spin_unlock_irqrestore(&ide_lock, flags);
1207         return ide_started;
1208 }
1209
1210 /*
1211  * ide_do_reset() is the entry point to the drive/interface reset code.
1212  */
1213
1214 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1215 {
1216         return do_reset1(drive, 0);
1217 }
1218
1219 EXPORT_SYMBOL(ide_do_reset);
1220
1221 /*
1222  * ide_wait_not_busy() waits for the currently selected device on the hwif
1223  * to report a non-busy status, see comments in probe_hwif().
1224  */
1225 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1226 {
1227         u8 stat = 0;
1228
1229         while(timeout--) {
1230                 /*
1231                  * Turn this into a schedule() sleep once I'm sure
1232                  * about locking issues (2.5 work ?).
1233                  */
1234                 mdelay(1);
1235                 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1236                 if ((stat & BUSY_STAT) == 0)
1237                         return 0;
1238                 /*
1239                  * Assume a value of 0xff means nothing is connected to
1240                  * the interface and it doesn't implement the pull-down
1241                  * resistor on D7.
1242                  */
1243                 if (stat == 0xff)
1244                         return -ENODEV;
1245                 touch_softlockup_watchdog();
1246         }
1247         return -EBUSY;
1248 }
1249
1250 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1251