Merge git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial
[pandora-kernel.git] / drivers / ide / ide-iops.c
1 /*
2  * linux/drivers/ide/ide-iops.c Version 0.37    Mar 05, 2003
3  *
4  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
5  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
6  *
7  */
8
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
27
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
32
33 /*
34  *      Conventional PIO operations for ATA devices
35  */
36
37 static u8 ide_inb (unsigned long port)
38 {
39         return (u8) inb(port);
40 }
41
42 static u16 ide_inw (unsigned long port)
43 {
44         return (u16) inw(port);
45 }
46
47 static void ide_insw (unsigned long port, void *addr, u32 count)
48 {
49         insw(port, addr, count);
50 }
51
52 static void ide_insl (unsigned long port, void *addr, u32 count)
53 {
54         insl(port, addr, count);
55 }
56
57 static void ide_outb (u8 val, unsigned long port)
58 {
59         outb(val, port);
60 }
61
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63 {
64         outb(addr, port);
65 }
66
67 static void ide_outw (u16 val, unsigned long port)
68 {
69         outw(val, port);
70 }
71
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
73 {
74         outsw(port, addr, count);
75 }
76
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
78 {
79         outsl(port, addr, count);
80 }
81
82 void default_hwif_iops (ide_hwif_t *hwif)
83 {
84         hwif->OUTB      = ide_outb;
85         hwif->OUTBSYNC  = ide_outbsync;
86         hwif->OUTW      = ide_outw;
87         hwif->OUTSW     = ide_outsw;
88         hwif->OUTSL     = ide_outsl;
89         hwif->INB       = ide_inb;
90         hwif->INW       = ide_inw;
91         hwif->INSW      = ide_insw;
92         hwif->INSL      = ide_insl;
93 }
94
95 /*
96  *      MMIO operations, typically used for SATA controllers
97  */
98
99 static u8 ide_mm_inb (unsigned long port)
100 {
101         return (u8) readb((void __iomem *) port);
102 }
103
104 static u16 ide_mm_inw (unsigned long port)
105 {
106         return (u16) readw((void __iomem *) port);
107 }
108
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110 {
111         __ide_mm_insw((void __iomem *) port, addr, count);
112 }
113
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115 {
116         __ide_mm_insl((void __iomem *) port, addr, count);
117 }
118
119 static void ide_mm_outb (u8 value, unsigned long port)
120 {
121         writeb(value, (void __iomem *) port);
122 }
123
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125 {
126         writeb(value, (void __iomem *) port);
127 }
128
129 static void ide_mm_outw (u16 value, unsigned long port)
130 {
131         writew(value, (void __iomem *) port);
132 }
133
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135 {
136         __ide_mm_outsw((void __iomem *) port, addr, count);
137 }
138
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140 {
141         __ide_mm_outsl((void __iomem *) port, addr, count);
142 }
143
144 void default_hwif_mmiops (ide_hwif_t *hwif)
145 {
146         hwif->OUTB      = ide_mm_outb;
147         /* Most systems will need to override OUTBSYNC, alas however
148            this one is controller specific! */
149         hwif->OUTBSYNC  = ide_mm_outbsync;
150         hwif->OUTW      = ide_mm_outw;
151         hwif->OUTSW     = ide_mm_outsw;
152         hwif->OUTSL     = ide_mm_outsl;
153         hwif->INB       = ide_mm_inb;
154         hwif->INW       = ide_mm_inw;
155         hwif->INSW      = ide_mm_insw;
156         hwif->INSL      = ide_mm_insl;
157 }
158
159 EXPORT_SYMBOL(default_hwif_mmiops);
160
161 u32 ide_read_24 (ide_drive_t *drive)
162 {
163         u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164         u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165         u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166         return (hcyl<<16)|(lcyl<<8)|sect;
167 }
168
169 void SELECT_DRIVE (ide_drive_t *drive)
170 {
171         if (HWIF(drive)->selectproc)
172                 HWIF(drive)->selectproc(drive);
173         HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174 }
175
176 EXPORT_SYMBOL(SELECT_DRIVE);
177
178 void SELECT_INTERRUPT (ide_drive_t *drive)
179 {
180         if (HWIF(drive)->intrproc)
181                 HWIF(drive)->intrproc(drive);
182         else
183                 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184 }
185
186 void SELECT_MASK (ide_drive_t *drive, int mask)
187 {
188         if (HWIF(drive)->maskproc)
189                 HWIF(drive)->maskproc(drive, mask);
190 }
191
192 void QUIRK_LIST (ide_drive_t *drive)
193 {
194         if (HWIF(drive)->quirkproc)
195                 drive->quirk_list = HWIF(drive)->quirkproc(drive);
196 }
197
198 /*
199  * Some localbus EIDE interfaces require a special access sequence
200  * when using 32-bit I/O instructions to transfer data.  We call this
201  * the "vlb_sync" sequence, which consists of three successive reads
202  * of the sector count register location, with interrupts disabled
203  * to ensure that the reads all happen together.
204  */
205 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
206 {
207         (void) HWIF(drive)->INB(port);
208         (void) HWIF(drive)->INB(port);
209         (void) HWIF(drive)->INB(port);
210 }
211
212 /*
213  * This is used for most PIO data transfers *from* the IDE interface
214  */
215 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
216 {
217         ide_hwif_t *hwif        = HWIF(drive);
218         u8 io_32bit             = drive->io_32bit;
219
220         if (io_32bit) {
221                 if (io_32bit & 2) {
222                         unsigned long flags;
223                         local_irq_save(flags);
224                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
225                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
226                         local_irq_restore(flags);
227                 } else
228                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
229         } else {
230                 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
231         }
232 }
233
234 /*
235  * This is used for most PIO data transfers *to* the IDE interface
236  */
237 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
238 {
239         ide_hwif_t *hwif        = HWIF(drive);
240         u8 io_32bit             = drive->io_32bit;
241
242         if (io_32bit) {
243                 if (io_32bit & 2) {
244                         unsigned long flags;
245                         local_irq_save(flags);
246                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
247                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248                         local_irq_restore(flags);
249                 } else
250                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251         } else {
252                 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
253         }
254 }
255
256 /*
257  * The following routines are mainly used by the ATAPI drivers.
258  *
259  * These routines will round up any request for an odd number of bytes,
260  * so if an odd bytecount is specified, be sure that there's at least one
261  * extra byte allocated for the buffer.
262  */
263
264 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265 {
266         ide_hwif_t *hwif = HWIF(drive);
267
268         ++bytecount;
269 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270         if (MACH_IS_ATARI || MACH_IS_Q40) {
271                 /* Atari has a byte-swapped IDE interface */
272                 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273                 return;
274         }
275 #endif /* CONFIG_ATARI || CONFIG_Q40 */
276         hwif->ata_input_data(drive, buffer, bytecount / 4);
277         if ((bytecount & 0x03) >= 2)
278                 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
279 }
280
281 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
282 {
283         ide_hwif_t *hwif = HWIF(drive);
284
285         ++bytecount;
286 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287         if (MACH_IS_ATARI || MACH_IS_Q40) {
288                 /* Atari has a byte-swapped IDE interface */
289                 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290                 return;
291         }
292 #endif /* CONFIG_ATARI || CONFIG_Q40 */
293         hwif->ata_output_data(drive, buffer, bytecount / 4);
294         if ((bytecount & 0x03) >= 2)
295                 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
296 }
297
298 void default_hwif_transport(ide_hwif_t *hwif)
299 {
300         hwif->ata_input_data            = ata_input_data;
301         hwif->ata_output_data           = ata_output_data;
302         hwif->atapi_input_bytes         = atapi_input_bytes;
303         hwif->atapi_output_bytes        = atapi_output_bytes;
304 }
305
306 /*
307  * Beginning of Taskfile OPCODE Library and feature sets.
308  */
309 void ide_fix_driveid (struct hd_driveid *id)
310 {
311 #ifndef __LITTLE_ENDIAN
312 # ifdef __BIG_ENDIAN
313         int i;
314         u16 *stringcast;
315
316         id->config         = __le16_to_cpu(id->config);
317         id->cyls           = __le16_to_cpu(id->cyls);
318         id->reserved2      = __le16_to_cpu(id->reserved2);
319         id->heads          = __le16_to_cpu(id->heads);
320         id->track_bytes    = __le16_to_cpu(id->track_bytes);
321         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
322         id->sectors        = __le16_to_cpu(id->sectors);
323         id->vendor0        = __le16_to_cpu(id->vendor0);
324         id->vendor1        = __le16_to_cpu(id->vendor1);
325         id->vendor2        = __le16_to_cpu(id->vendor2);
326         stringcast = (u16 *)&id->serial_no[0];
327         for (i = 0; i < (20/2); i++)
328                 stringcast[i] = __le16_to_cpu(stringcast[i]);
329         id->buf_type       = __le16_to_cpu(id->buf_type);
330         id->buf_size       = __le16_to_cpu(id->buf_size);
331         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
332         stringcast = (u16 *)&id->fw_rev[0];
333         for (i = 0; i < (8/2); i++)
334                 stringcast[i] = __le16_to_cpu(stringcast[i]);
335         stringcast = (u16 *)&id->model[0];
336         for (i = 0; i < (40/2); i++)
337                 stringcast[i] = __le16_to_cpu(stringcast[i]);
338         id->dword_io       = __le16_to_cpu(id->dword_io);
339         id->reserved50     = __le16_to_cpu(id->reserved50);
340         id->field_valid    = __le16_to_cpu(id->field_valid);
341         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
342         id->cur_heads      = __le16_to_cpu(id->cur_heads);
343         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
344         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
345         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
346         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
347         id->dma_1word      = __le16_to_cpu(id->dma_1word);
348         id->dma_mword      = __le16_to_cpu(id->dma_mword);
349         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
351         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
352         id->eide_pio       = __le16_to_cpu(id->eide_pio);
353         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354         for (i = 0; i < 2; ++i)
355                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356         for (i = 0; i < 4; ++i)
357                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358         id->queue_depth    = __le16_to_cpu(id->queue_depth);
359         for (i = 0; i < 4; ++i)
360                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
362         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
363         id->command_set_1  = __le16_to_cpu(id->command_set_1);
364         id->command_set_2  = __le16_to_cpu(id->command_set_2);
365         id->cfsse          = __le16_to_cpu(id->cfsse);
366         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
367         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
368         id->csf_default    = __le16_to_cpu(id->csf_default);
369         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
370         id->trseuc         = __le16_to_cpu(id->trseuc);
371         id->trsEuc         = __le16_to_cpu(id->trsEuc);
372         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
373         id->mprc           = __le16_to_cpu(id->mprc);
374         id->hw_config      = __le16_to_cpu(id->hw_config);
375         id->acoustic       = __le16_to_cpu(id->acoustic);
376         id->msrqs          = __le16_to_cpu(id->msrqs);
377         id->sxfert         = __le16_to_cpu(id->sxfert);
378         id->sal            = __le16_to_cpu(id->sal);
379         id->spg            = __le32_to_cpu(id->spg);
380         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381         for (i = 0; i < 22; i++)
382                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
383         id->last_lun       = __le16_to_cpu(id->last_lun);
384         id->word127        = __le16_to_cpu(id->word127);
385         id->dlf            = __le16_to_cpu(id->dlf);
386         id->csfo           = __le16_to_cpu(id->csfo);
387         for (i = 0; i < 26; i++)
388                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389         id->word156        = __le16_to_cpu(id->word156);
390         for (i = 0; i < 3; i++)
391                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392         id->cfa_power      = __le16_to_cpu(id->cfa_power);
393         for (i = 0; i < 14; i++)
394                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395         for (i = 0; i < 31; i++)
396                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397         for (i = 0; i < 48; i++)
398                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399         id->integrity_word  = __le16_to_cpu(id->integrity_word);
400 # else
401 #  error "Please fix <asm/byteorder.h>"
402 # endif
403 #endif
404 }
405
406 /* FIXME: exported for use by the USB storage (isd200.c) code only */
407 EXPORT_SYMBOL(ide_fix_driveid);
408
409 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
410 {
411         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
412
413         if (byteswap) {
414                 /* convert from big-endian to host byte order */
415                 for (p = end ; p != s;) {
416                         unsigned short *pp = (unsigned short *) (p -= 2);
417                         *pp = ntohs(*pp);
418                 }
419         }
420         /* strip leading blanks */
421         while (s != end && *s == ' ')
422                 ++s;
423         /* compress internal blanks and strip trailing blanks */
424         while (s != end && *s) {
425                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
426                         *p++ = *(s-1);
427         }
428         /* wipe out trailing garbage */
429         while (p != end)
430                 *p++ = '\0';
431 }
432
433 EXPORT_SYMBOL(ide_fixstring);
434
435 /*
436  * Needed for PCI irq sharing
437  */
438 int drive_is_ready (ide_drive_t *drive)
439 {
440         ide_hwif_t *hwif        = HWIF(drive);
441         u8 stat                 = 0;
442
443         if (drive->waiting_for_dma)
444                 return hwif->ide_dma_test_irq(drive);
445
446 #if 0
447         /* need to guarantee 400ns since last command was issued */
448         udelay(1);
449 #endif
450
451 #ifdef CONFIG_IDEPCI_SHARE_IRQ
452         /*
453          * We do a passive status test under shared PCI interrupts on
454          * cards that truly share the ATA side interrupt, but may also share
455          * an interrupt with another pci card/device.  We make no assumptions
456          * about possible isa-pnp and pci-pnp issues yet.
457          */
458         if (IDE_CONTROL_REG)
459                 stat = hwif->INB(IDE_ALTSTATUS_REG);
460         else
461 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
462                 /* Note: this may clear a pending IRQ!! */
463                 stat = hwif->INB(IDE_STATUS_REG);
464
465         if (stat & BUSY_STAT)
466                 /* drive busy:  definitely not interrupting */
467                 return 0;
468
469         /* drive ready: *might* be interrupting */
470         return 1;
471 }
472
473 EXPORT_SYMBOL(drive_is_ready);
474
475 /*
476  * Global for All, and taken from ide-pmac.c. Can be called
477  * with spinlock held & IRQs disabled, so don't schedule !
478  */
479 int wait_for_ready (ide_drive_t *drive, int timeout)
480 {
481         ide_hwif_t *hwif        = HWIF(drive);
482         u8 stat                 = 0;
483
484         while(--timeout) {
485                 stat = hwif->INB(IDE_STATUS_REG);
486                 if (!(stat & BUSY_STAT)) {
487                         if (drive->ready_stat == 0)
488                                 break;
489                         else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
490                                 break;
491                 }
492                 mdelay(1);
493         }
494         if ((stat & ERR_STAT) || timeout <= 0) {
495                 if (stat & ERR_STAT) {
496                         printk(KERN_ERR "%s: wait_for_ready, "
497                                 "error status: %x\n", drive->name, stat);
498                 }
499                 return 1;
500         }
501         return 0;
502 }
503
504 /*
505  * This routine busy-waits for the drive status to be not "busy".
506  * It then checks the status for all of the "good" bits and none
507  * of the "bad" bits, and if all is okay it returns 0.  All other
508  * cases return 1 after invoking ide_error() -- caller should just return.
509  *
510  * This routine should get fixed to not hog the cpu during extra long waits..
511  * That could be done by busy-waiting for the first jiffy or two, and then
512  * setting a timer to wake up at half second intervals thereafter,
513  * until timeout is achieved, before timing out.
514  */
515 int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
516 {
517         ide_hwif_t *hwif = HWIF(drive);
518         u8 stat;
519         int i;
520         unsigned long flags;
521  
522         /* bail early if we've exceeded max_failures */
523         if (drive->max_failures && (drive->failures > drive->max_failures)) {
524                 *startstop = ide_stopped;
525                 return 1;
526         }
527
528         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
529         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
530                 local_irq_set(flags);
531                 timeout += jiffies;
532                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
533                         if (time_after(jiffies, timeout)) {
534                                 /*
535                                  * One last read after the timeout in case
536                                  * heavy interrupt load made us not make any
537                                  * progress during the timeout..
538                                  */
539                                 stat = hwif->INB(IDE_STATUS_REG);
540                                 if (!(stat & BUSY_STAT))
541                                         break;
542
543                                 local_irq_restore(flags);
544                                 *startstop = ide_error(drive, "status timeout", stat);
545                                 return 1;
546                         }
547                 }
548                 local_irq_restore(flags);
549         }
550         /*
551          * Allow status to settle, then read it again.
552          * A few rare drives vastly violate the 400ns spec here,
553          * so we'll wait up to 10usec for a "good" status
554          * rather than expensively fail things immediately.
555          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
556          */
557         for (i = 0; i < 10; i++) {
558                 udelay(1);
559                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
560                         return 0;
561         }
562         *startstop = ide_error(drive, "status error", stat);
563         return 1;
564 }
565
566 EXPORT_SYMBOL(ide_wait_stat);
567
568 /*
569  *  All hosts that use the 80c ribbon must use!
570  *  The name is derived from upper byte of word 93 and the 80c ribbon.
571  */
572 u8 eighty_ninty_three (ide_drive_t *drive)
573 {
574         if(HWIF(drive)->udma_four == 0)
575                 return 0;
576
577         /* Check for SATA but only if we are ATA5 or higher */
578         if (drive->id->hw_config == 0 && (drive->id->major_rev_num & 0x7FE0))
579                 return 1;
580         if (!(drive->id->hw_config & 0x6000))
581                 return 0;
582 #ifndef CONFIG_IDEDMA_IVB
583         if(!(drive->id->hw_config & 0x4000))
584                 return 0;
585 #endif /* CONFIG_IDEDMA_IVB */
586         return 1;
587 }
588
589 EXPORT_SYMBOL(eighty_ninty_three);
590
591 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
592 {
593         if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
594             (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
595             (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
596 #ifndef CONFIG_IDEDMA_IVB
597                 if ((drive->id->hw_config & 0x6000) == 0) {
598 #else /* !CONFIG_IDEDMA_IVB */
599                 if (((drive->id->hw_config & 0x2000) == 0) ||
600                     ((drive->id->hw_config & 0x4000) == 0)) {
601 #endif /* CONFIG_IDEDMA_IVB */
602                         printk("%s: Speed warnings UDMA 3/4/5 is not "
603                                 "functional.\n", drive->name);
604                         return 1;
605                 }
606                 if (!HWIF(drive)->udma_four) {
607                         printk("%s: Speed warnings UDMA 3/4/5 is not "
608                                 "functional.\n",
609                                 HWIF(drive)->name);
610                         return 1;
611                 }
612         }
613         return 0;
614 }
615
616 /*
617  * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
618  * 1 : Safe to update drive->id DMA registers.
619  * 0 : OOPs not allowed.
620  */
621 int set_transfer (ide_drive_t *drive, ide_task_t *args)
622 {
623         if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
624             (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
625             (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
626             (drive->id->dma_ultra ||
627              drive->id->dma_mword ||
628              drive->id->dma_1word))
629                 return 1;
630
631         return 0;
632 }
633
634 #ifdef CONFIG_BLK_DEV_IDEDMA
635 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
636 {
637         if (!drive->crc_count)
638                 return drive->current_speed;
639         drive->crc_count = 0;
640
641         switch(drive->current_speed) {
642                 case XFER_UDMA_7:       return XFER_UDMA_6;
643                 case XFER_UDMA_6:       return XFER_UDMA_5;
644                 case XFER_UDMA_5:       return XFER_UDMA_4;
645                 case XFER_UDMA_4:       return XFER_UDMA_3;
646                 case XFER_UDMA_3:       return XFER_UDMA_2;
647                 case XFER_UDMA_2:       return XFER_UDMA_1;
648                 case XFER_UDMA_1:       return XFER_UDMA_0;
649                         /*
650                          * OOPS we do not goto non Ultra DMA modes
651                          * without iCRC's available we force
652                          * the system to PIO and make the user
653                          * invoke the ATA-1 ATA-2 DMA modes.
654                          */
655                 case XFER_UDMA_0:
656                 default:                return XFER_PIO_4;
657         }
658 }
659 #endif /* CONFIG_BLK_DEV_IDEDMA */
660
661 /*
662  * Update the 
663  */
664 int ide_driveid_update (ide_drive_t *drive)
665 {
666         ide_hwif_t *hwif        = HWIF(drive);
667         struct hd_driveid *id;
668 #if 0
669         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
670         if (!id)
671                 return 0;
672
673         taskfile_lib_get_identify(drive, (char *)&id);
674
675         ide_fix_driveid(id);
676         if (id) {
677                 drive->id->dma_ultra = id->dma_ultra;
678                 drive->id->dma_mword = id->dma_mword;
679                 drive->id->dma_1word = id->dma_1word;
680                 /* anything more ? */
681                 kfree(id);
682         }
683         return 1;
684 #else
685         /*
686          * Re-read drive->id for possible DMA mode
687          * change (copied from ide-probe.c)
688          */
689         unsigned long timeout, flags;
690
691         SELECT_MASK(drive, 1);
692         if (IDE_CONTROL_REG)
693                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
694         msleep(50);
695         hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
696         timeout = jiffies + WAIT_WORSTCASE;
697         do {
698                 if (time_after(jiffies, timeout)) {
699                         SELECT_MASK(drive, 0);
700                         return 0;       /* drive timed-out */
701                 }
702                 msleep(50);     /* give drive a breather */
703         } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
704         msleep(50);     /* wait for IRQ and DRQ_STAT */
705         if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
706                 SELECT_MASK(drive, 0);
707                 printk("%s: CHECK for good STATUS\n", drive->name);
708                 return 0;
709         }
710         local_irq_save(flags);
711         SELECT_MASK(drive, 0);
712         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
713         if (!id) {
714                 local_irq_restore(flags);
715                 return 0;
716         }
717         ata_input_data(drive, id, SECTOR_WORDS);
718         (void) hwif->INB(IDE_STATUS_REG);       /* clear drive IRQ */
719         local_irq_enable();
720         local_irq_restore(flags);
721         ide_fix_driveid(id);
722         if (id) {
723                 drive->id->dma_ultra = id->dma_ultra;
724                 drive->id->dma_mword = id->dma_mword;
725                 drive->id->dma_1word = id->dma_1word;
726                 /* anything more ? */
727                 kfree(id);
728         }
729
730         return 1;
731 #endif
732 }
733
734 /*
735  * Similar to ide_wait_stat(), except it never calls ide_error internally.
736  * This is a kludge to handle the new ide_config_drive_speed() function,
737  * and should not otherwise be used anywhere.  Eventually, the tuneproc's
738  * should be updated to return ide_startstop_t, in which case we can get
739  * rid of this abomination again.  :)   -ml
740  *
741  * It is gone..........
742  *
743  * const char *msg == consider adding for verbose errors.
744  */
745 int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
746 {
747         ide_hwif_t *hwif        = HWIF(drive);
748         int     i, error        = 1;
749         u8 stat;
750
751 //      while (HWGROUP(drive)->busy)
752 //              msleep(50);
753
754 #ifdef CONFIG_BLK_DEV_IDEDMA
755         if (hwif->ide_dma_check)         /* check if host supports DMA */
756                 hwif->dma_host_off(drive);
757 #endif
758
759         /*
760          * Don't use ide_wait_cmd here - it will
761          * attempt to set_geometry and recalibrate,
762          * but for some reason these don't work at
763          * this point (lost interrupt).
764          */
765         /*
766          * Select the drive, and issue the SETFEATURES command
767          */
768         disable_irq_nosync(hwif->irq);
769         
770         /*
771          *      FIXME: we race against the running IRQ here if
772          *      this is called from non IRQ context. If we use
773          *      disable_irq() we hang on the error path. Work
774          *      is needed.
775          */
776          
777         udelay(1);
778         SELECT_DRIVE(drive);
779         SELECT_MASK(drive, 0);
780         udelay(1);
781         if (IDE_CONTROL_REG)
782                 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
783         hwif->OUTB(speed, IDE_NSECTOR_REG);
784         hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
785         hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG);
786         if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
787                 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
788         udelay(1);
789         /*
790          * Wait for drive to become non-BUSY
791          */
792         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
793                 unsigned long flags, timeout;
794                 local_irq_set(flags);
795                 timeout = jiffies + WAIT_CMD;
796                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
797                         if (time_after(jiffies, timeout))
798                                 break;
799                 }
800                 local_irq_restore(flags);
801         }
802
803         /*
804          * Allow status to settle, then read it again.
805          * A few rare drives vastly violate the 400ns spec here,
806          * so we'll wait up to 10usec for a "good" status
807          * rather than expensively fail things immediately.
808          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
809          */
810         for (i = 0; i < 10; i++) {
811                 udelay(1);
812                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
813                         error = 0;
814                         break;
815                 }
816         }
817
818         SELECT_MASK(drive, 0);
819
820         enable_irq(hwif->irq);
821
822         if (error) {
823                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
824                 return error;
825         }
826
827         drive->id->dma_ultra &= ~0xFF00;
828         drive->id->dma_mword &= ~0x0F00;
829         drive->id->dma_1word &= ~0x0F00;
830
831 #ifdef CONFIG_BLK_DEV_IDEDMA
832         if (speed >= XFER_SW_DMA_0)
833                 hwif->dma_host_on(drive);
834         else if (hwif->ide_dma_check)   /* check if host supports DMA */
835                 hwif->dma_off_quietly(drive);
836 #endif
837
838         switch(speed) {
839                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
840                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
841                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
842                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
843                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
844                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
845                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
846                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
847                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
848                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
849                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
850                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
851                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
852                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
853                 default: break;
854         }
855         if (!drive->init_speed)
856                 drive->init_speed = speed;
857         drive->current_speed = speed;
858         return error;
859 }
860
861 EXPORT_SYMBOL(ide_config_drive_speed);
862
863
864 /*
865  * This should get invoked any time we exit the driver to
866  * wait for an interrupt response from a drive.  handler() points
867  * at the appropriate code to handle the next interrupt, and a
868  * timer is started to prevent us from waiting forever in case
869  * something goes wrong (see the ide_timer_expiry() handler later on).
870  *
871  * See also ide_execute_command
872  */
873 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
874                       unsigned int timeout, ide_expiry_t *expiry)
875 {
876         ide_hwgroup_t *hwgroup = HWGROUP(drive);
877
878         if (hwgroup->handler != NULL) {
879                 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
880                         "old=%p, new=%p\n",
881                         drive->name, hwgroup->handler, handler);
882         }
883         hwgroup->handler        = handler;
884         hwgroup->expiry         = expiry;
885         hwgroup->timer.expires  = jiffies + timeout;
886         add_timer(&hwgroup->timer);
887 }
888
889 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
890                       unsigned int timeout, ide_expiry_t *expiry)
891 {
892         unsigned long flags;
893         spin_lock_irqsave(&ide_lock, flags);
894         __ide_set_handler(drive, handler, timeout, expiry);
895         spin_unlock_irqrestore(&ide_lock, flags);
896 }
897
898 EXPORT_SYMBOL(ide_set_handler);
899  
900 /**
901  *      ide_execute_command     -       execute an IDE command
902  *      @drive: IDE drive to issue the command against
903  *      @command: command byte to write
904  *      @handler: handler for next phase
905  *      @timeout: timeout for command
906  *      @expiry:  handler to run on timeout
907  *
908  *      Helper function to issue an IDE command. This handles the
909  *      atomicity requirements, command timing and ensures that the 
910  *      handler and IRQ setup do not race. All IDE command kick off
911  *      should go via this function or do equivalent locking.
912  */
913  
914 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
915 {
916         unsigned long flags;
917         ide_hwgroup_t *hwgroup = HWGROUP(drive);
918         ide_hwif_t *hwif = HWIF(drive);
919         
920         spin_lock_irqsave(&ide_lock, flags);
921         
922         BUG_ON(hwgroup->handler);
923         hwgroup->handler        = handler;
924         hwgroup->expiry         = expiry;
925         hwgroup->timer.expires  = jiffies + timeout;
926         add_timer(&hwgroup->timer);
927         hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
928         /* Drive takes 400nS to respond, we must avoid the IRQ being
929            serviced before that. 
930            
931            FIXME: we could skip this delay with care on non shared
932            devices 
933         */
934         ndelay(400);
935         spin_unlock_irqrestore(&ide_lock, flags);
936 }
937
938 EXPORT_SYMBOL(ide_execute_command);
939
940
941 /* needed below */
942 static ide_startstop_t do_reset1 (ide_drive_t *, int);
943
944 /*
945  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
946  * during an atapi drive reset operation. If the drive has not yet responded,
947  * and we have not yet hit our maximum waiting time, then the timer is restarted
948  * for another 50ms.
949  */
950 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
951 {
952         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
953         ide_hwif_t *hwif        = HWIF(drive);
954         u8 stat;
955
956         SELECT_DRIVE(drive);
957         udelay (10);
958
959         if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
960                 printk("%s: ATAPI reset complete\n", drive->name);
961         } else {
962                 if (time_before(jiffies, hwgroup->poll_timeout)) {
963                         BUG_ON(HWGROUP(drive)->handler != NULL);
964                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
965                         /* continue polling */
966                         return ide_started;
967                 }
968                 /* end of polling */
969                 hwgroup->polling = 0;
970                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
971                                 drive->name, stat);
972                 /* do it the old fashioned way */
973                 return do_reset1(drive, 1);
974         }
975         /* done polling */
976         hwgroup->polling = 0;
977         hwgroup->resetting = 0;
978         return ide_stopped;
979 }
980
981 /*
982  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
983  * during an ide reset operation. If the drives have not yet responded,
984  * and we have not yet hit our maximum waiting time, then the timer is restarted
985  * for another 50ms.
986  */
987 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
988 {
989         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
990         ide_hwif_t *hwif        = HWIF(drive);
991         u8 tmp;
992
993         if (hwif->reset_poll != NULL) {
994                 if (hwif->reset_poll(drive)) {
995                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
996                                 hwif->name, drive->name);
997                         return ide_stopped;
998                 }
999         }
1000
1001         if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1002                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1003                         BUG_ON(HWGROUP(drive)->handler != NULL);
1004                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1005                         /* continue polling */
1006                         return ide_started;
1007                 }
1008                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1009                 drive->failures++;
1010         } else  {
1011                 printk("%s: reset: ", hwif->name);
1012                 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1013                         printk("success\n");
1014                         drive->failures = 0;
1015                 } else {
1016                         drive->failures++;
1017                         printk("master: ");
1018                         switch (tmp & 0x7f) {
1019                                 case 1: printk("passed");
1020                                         break;
1021                                 case 2: printk("formatter device error");
1022                                         break;
1023                                 case 3: printk("sector buffer error");
1024                                         break;
1025                                 case 4: printk("ECC circuitry error");
1026                                         break;
1027                                 case 5: printk("controlling MPU error");
1028                                         break;
1029                                 default:printk("error (0x%02x?)", tmp);
1030                         }
1031                         if (tmp & 0x80)
1032                                 printk("; slave: failed");
1033                         printk("\n");
1034                 }
1035         }
1036         hwgroup->polling = 0;   /* done polling */
1037         hwgroup->resetting = 0; /* done reset attempt */
1038         return ide_stopped;
1039 }
1040
1041 static void check_dma_crc(ide_drive_t *drive)
1042 {
1043 #ifdef CONFIG_BLK_DEV_IDEDMA
1044         if (drive->crc_count) {
1045                 drive->hwif->dma_off_quietly(drive);
1046                 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1047                 if (drive->current_speed >= XFER_SW_DMA_0)
1048                         (void) HWIF(drive)->ide_dma_on(drive);
1049         } else
1050                 ide_dma_off(drive);
1051 #endif
1052 }
1053
1054 static void ide_disk_pre_reset(ide_drive_t *drive)
1055 {
1056         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1057
1058         drive->special.all = 0;
1059         drive->special.b.set_geometry = legacy;
1060         drive->special.b.recalibrate  = legacy;
1061         if (OK_TO_RESET_CONTROLLER)
1062                 drive->mult_count = 0;
1063         if (!drive->keep_settings && !drive->using_dma)
1064                 drive->mult_req = 0;
1065         if (drive->mult_req != drive->mult_count)
1066                 drive->special.b.set_multmode = 1;
1067 }
1068
1069 static void pre_reset(ide_drive_t *drive)
1070 {
1071         if (drive->media == ide_disk)
1072                 ide_disk_pre_reset(drive);
1073         else
1074                 drive->post_reset = 1;
1075
1076         if (!drive->keep_settings) {
1077                 if (drive->using_dma) {
1078                         check_dma_crc(drive);
1079                 } else {
1080                         drive->unmask = 0;
1081                         drive->io_32bit = 0;
1082                 }
1083                 return;
1084         }
1085         if (drive->using_dma)
1086                 check_dma_crc(drive);
1087
1088         if (HWIF(drive)->pre_reset != NULL)
1089                 HWIF(drive)->pre_reset(drive);
1090
1091 }
1092
1093 /*
1094  * do_reset1() attempts to recover a confused drive by resetting it.
1095  * Unfortunately, resetting a disk drive actually resets all devices on
1096  * the same interface, so it can really be thought of as resetting the
1097  * interface rather than resetting the drive.
1098  *
1099  * ATAPI devices have their own reset mechanism which allows them to be
1100  * individually reset without clobbering other devices on the same interface.
1101  *
1102  * Unfortunately, the IDE interface does not generate an interrupt to let
1103  * us know when the reset operation has finished, so we must poll for this.
1104  * Equally poor, though, is the fact that this may a very long time to complete,
1105  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1106  * we set a timer to poll at 50ms intervals.
1107  */
1108 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1109 {
1110         unsigned int unit;
1111         unsigned long flags;
1112         ide_hwif_t *hwif;
1113         ide_hwgroup_t *hwgroup;
1114         
1115         spin_lock_irqsave(&ide_lock, flags);
1116         hwif = HWIF(drive);
1117         hwgroup = HWGROUP(drive);
1118
1119         /* We must not reset with running handlers */
1120         BUG_ON(hwgroup->handler != NULL);
1121
1122         /* For an ATAPI device, first try an ATAPI SRST. */
1123         if (drive->media != ide_disk && !do_not_try_atapi) {
1124                 hwgroup->resetting = 1;
1125                 pre_reset(drive);
1126                 SELECT_DRIVE(drive);
1127                 udelay (20);
1128                 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1129                 ndelay(400);
1130                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1131                 hwgroup->polling = 1;
1132                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1133                 spin_unlock_irqrestore(&ide_lock, flags);
1134                 return ide_started;
1135         }
1136
1137         /*
1138          * First, reset any device state data we were maintaining
1139          * for any of the drives on this interface.
1140          */
1141         for (unit = 0; unit < MAX_DRIVES; ++unit)
1142                 pre_reset(&hwif->drives[unit]);
1143
1144 #if OK_TO_RESET_CONTROLLER
1145         if (!IDE_CONTROL_REG) {
1146                 spin_unlock_irqrestore(&ide_lock, flags);
1147                 return ide_stopped;
1148         }
1149
1150         hwgroup->resetting = 1;
1151         /*
1152          * Note that we also set nIEN while resetting the device,
1153          * to mask unwanted interrupts from the interface during the reset.
1154          * However, due to the design of PC hardware, this will cause an
1155          * immediate interrupt due to the edge transition it produces.
1156          * This single interrupt gives us a "fast poll" for drives that
1157          * recover from reset very quickly, saving us the first 50ms wait time.
1158          */
1159         /* set SRST and nIEN */
1160         hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1161         /* more than enough time */
1162         udelay(10);
1163         if (drive->quirk_list == 2) {
1164                 /* clear SRST and nIEN */
1165                 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1166         } else {
1167                 /* clear SRST, leave nIEN */
1168                 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1169         }
1170         /* more than enough time */
1171         udelay(10);
1172         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1173         hwgroup->polling = 1;
1174         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1175
1176         /*
1177          * Some weird controller like resetting themselves to a strange
1178          * state when the disks are reset this way. At least, the Winbond
1179          * 553 documentation says that
1180          */
1181         if (hwif->resetproc != NULL) {
1182                 hwif->resetproc(drive);
1183         }
1184         
1185 #endif  /* OK_TO_RESET_CONTROLLER */
1186
1187         spin_unlock_irqrestore(&ide_lock, flags);
1188         return ide_started;
1189 }
1190
1191 /*
1192  * ide_do_reset() is the entry point to the drive/interface reset code.
1193  */
1194
1195 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1196 {
1197         return do_reset1(drive, 0);
1198 }
1199
1200 EXPORT_SYMBOL(ide_do_reset);
1201
1202 /*
1203  * ide_wait_not_busy() waits for the currently selected device on the hwif
1204  * to report a non-busy status, see comments in probe_hwif().
1205  */
1206 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1207 {
1208         u8 stat = 0;
1209
1210         while(timeout--) {
1211                 /*
1212                  * Turn this into a schedule() sleep once I'm sure
1213                  * about locking issues (2.5 work ?).
1214                  */
1215                 mdelay(1);
1216                 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1217                 if ((stat & BUSY_STAT) == 0)
1218                         return 0;
1219                 /*
1220                  * Assume a value of 0xff means nothing is connected to
1221                  * the interface and it doesn't implement the pull-down
1222                  * resistor on D7.
1223                  */
1224                 if (stat == 0xff)
1225                         return -ENODEV;
1226                 touch_softlockup_watchdog();
1227                 touch_nmi_watchdog();
1228         }
1229         return -EBUSY;
1230 }
1231
1232 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1233