ide: add ide_set_irq() inline helper
[pandora-kernel.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->dma_host_set == NULL)
223                         break;
224                 /*
225                  * TODO: respect ->using_dma setting
226                  */
227                 ide_set_dma(drive);
228                 break;
229         }
230         pm->pm_step = ide_pm_state_completed;
231         return ide_stopped;
232
233 out_do_tf:
234         args->tf_flags   = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
235         args->data_phase = TASKFILE_NO_DATA;
236         return do_rw_taskfile(drive, args);
237 }
238
239 /**
240  *      ide_end_dequeued_request        -       complete an IDE I/O
241  *      @drive: IDE device for the I/O
242  *      @uptodate:
243  *      @nr_sectors: number of sectors completed
244  *
245  *      Complete an I/O that is no longer on the request queue. This
246  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
247  *      We must still finish the old request but we must not tamper with the
248  *      queue in the meantime.
249  *
250  *      NOTE: This path does not handle barrier, but barrier is not supported
251  *      on ide-cd anyway.
252  */
253
254 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255                              int uptodate, int nr_sectors)
256 {
257         unsigned long flags;
258         int ret;
259
260         spin_lock_irqsave(&ide_lock, flags);
261         BUG_ON(!blk_rq_started(rq));
262         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263         spin_unlock_irqrestore(&ide_lock, flags);
264
265         return ret;
266 }
267 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
270 /**
271  *      ide_complete_pm_request - end the current Power Management request
272  *      @drive: target drive
273  *      @rq: request
274  *
275  *      This function cleans up the current PM request and stops the queue
276  *      if necessary.
277  */
278 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279 {
280         unsigned long flags;
281
282 #ifdef DEBUG_PM
283         printk("%s: completing PM request, %s\n", drive->name,
284                blk_pm_suspend_request(rq) ? "suspend" : "resume");
285 #endif
286         spin_lock_irqsave(&ide_lock, flags);
287         if (blk_pm_suspend_request(rq)) {
288                 blk_stop_queue(drive->queue);
289         } else {
290                 drive->blocked = 0;
291                 blk_start_queue(drive->queue);
292         }
293         blkdev_dequeue_request(rq);
294         HWGROUP(drive)->rq = NULL;
295         end_that_request_last(rq, 1);
296         spin_unlock_irqrestore(&ide_lock, flags);
297 }
298
299 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300 {
301         ide_hwif_t *hwif = drive->hwif;
302         struct ide_taskfile *tf = &task->tf;
303
304         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305                 u16 data = hwif->INW(IDE_DATA_REG);
306
307                 tf->data = data & 0xff;
308                 tf->hob_data = (data >> 8) & 0xff;
309         }
310
311         /* be sure we're looking at the low order bits */
312         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315                 tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
316         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317                 tf->lbal   = hwif->INB(IDE_SECTOR_REG);
318         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319                 tf->lbam   = hwif->INB(IDE_LCYL_REG);
320         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321                 tf->lbah   = hwif->INB(IDE_HCYL_REG);
322         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323                 tf->device = hwif->INB(IDE_SELECT_REG);
324
325         if (task->tf_flags & IDE_TFLAG_LBA48) {
326                 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329                         tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331                         tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
332                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333                         tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
334                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335                         tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
336                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337                         tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
338         }
339 }
340
341 /**
342  *      ide_end_drive_cmd       -       end an explicit drive command
343  *      @drive: command 
344  *      @stat: status bits
345  *      @err: error bits
346  *
347  *      Clean up after success/failure of an explicit drive command.
348  *      These get thrown onto the queue so they are synchronized with
349  *      real I/O operations on the drive.
350  *
351  *      In LBA48 mode we have to read the register set twice to get
352  *      all the extra information out.
353  */
354  
355 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356 {
357         ide_hwif_t *hwif = HWIF(drive);
358         unsigned long flags;
359         struct request *rq;
360
361         spin_lock_irqsave(&ide_lock, flags);
362         rq = HWGROUP(drive)->rq;
363         spin_unlock_irqrestore(&ide_lock, flags);
364
365         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
366                 u8 *args = (u8 *) rq->buffer;
367                 if (rq->errors == 0)
368                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
369
370                 if (args) {
371                         args[0] = stat;
372                         args[1] = err;
373                         args[2] = hwif->INB(IDE_NSECTOR_REG);
374                 }
375         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
376                 ide_task_t *args = (ide_task_t *) rq->special;
377                 if (rq->errors == 0)
378                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
379                         
380                 if (args) {
381                         struct ide_taskfile *tf = &args->tf;
382
383                         tf->error = err;
384                         tf->status = stat;
385
386                         args->tf_flags |= (IDE_TFLAG_IN_TF|IDE_TFLAG_IN_DEVICE);
387                         if (args->tf_flags & IDE_TFLAG_LBA48)
388                                 args->tf_flags |= IDE_TFLAG_IN_HOB;
389
390                         ide_tf_read(drive, args);
391                 }
392         } else if (blk_pm_request(rq)) {
393                 struct request_pm_state *pm = rq->data;
394 #ifdef DEBUG_PM
395                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
396                         drive->name, rq->pm->pm_step, stat, err);
397 #endif
398                 ide_complete_power_step(drive, rq, stat, err);
399                 if (pm->pm_step == ide_pm_state_completed)
400                         ide_complete_pm_request(drive, rq);
401                 return;
402         }
403
404         spin_lock_irqsave(&ide_lock, flags);
405         blkdev_dequeue_request(rq);
406         HWGROUP(drive)->rq = NULL;
407         rq->errors = err;
408         end_that_request_last(rq, !rq->errors);
409         spin_unlock_irqrestore(&ide_lock, flags);
410 }
411
412 EXPORT_SYMBOL(ide_end_drive_cmd);
413
414 /**
415  *      try_to_flush_leftover_data      -       flush junk
416  *      @drive: drive to flush
417  *
418  *      try_to_flush_leftover_data() is invoked in response to a drive
419  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
420  *      resetting the drive, this routine tries to clear the condition
421  *      by read a sector's worth of data from the drive.  Of course,
422  *      this may not help if the drive is *waiting* for data from *us*.
423  */
424 static void try_to_flush_leftover_data (ide_drive_t *drive)
425 {
426         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
427
428         if (drive->media != ide_disk)
429                 return;
430         while (i > 0) {
431                 u32 buffer[16];
432                 u32 wcount = (i > 16) ? 16 : i;
433
434                 i -= wcount;
435                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
436         }
437 }
438
439 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
440 {
441         if (rq->rq_disk) {
442                 ide_driver_t *drv;
443
444                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
445                 drv->end_request(drive, 0, 0);
446         } else
447                 ide_end_request(drive, 0, 0);
448 }
449
450 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
451 {
452         ide_hwif_t *hwif = drive->hwif;
453
454         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
455                 /* other bits are useless when BUSY */
456                 rq->errors |= ERROR_RESET;
457         } else if (stat & ERR_STAT) {
458                 /* err has different meaning on cdrom and tape */
459                 if (err == ABRT_ERR) {
460                         if (drive->select.b.lba &&
461                             /* some newer drives don't support WIN_SPECIFY */
462                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
463                                 return ide_stopped;
464                 } else if ((err & BAD_CRC) == BAD_CRC) {
465                         /* UDMA crc error, just retry the operation */
466                         drive->crc_count++;
467                 } else if (err & (BBD_ERR | ECC_ERR)) {
468                         /* retries won't help these */
469                         rq->errors = ERROR_MAX;
470                 } else if (err & TRK0_ERR) {
471                         /* help it find track zero */
472                         rq->errors |= ERROR_RECAL;
473                 }
474         }
475
476         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
477             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
478                 try_to_flush_leftover_data(drive);
479
480         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
481                 ide_kill_rq(drive, rq);
482                 return ide_stopped;
483         }
484
485         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
486                 rq->errors |= ERROR_RESET;
487
488         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
489                 ++rq->errors;
490                 return ide_do_reset(drive);
491         }
492
493         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
494                 drive->special.b.recalibrate = 1;
495
496         ++rq->errors;
497
498         return ide_stopped;
499 }
500
501 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
502 {
503         ide_hwif_t *hwif = drive->hwif;
504
505         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
506                 /* other bits are useless when BUSY */
507                 rq->errors |= ERROR_RESET;
508         } else {
509                 /* add decoding error stuff */
510         }
511
512         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
513                 /* force an abort */
514                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
515
516         if (rq->errors >= ERROR_MAX) {
517                 ide_kill_rq(drive, rq);
518         } else {
519                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
520                         ++rq->errors;
521                         return ide_do_reset(drive);
522                 }
523                 ++rq->errors;
524         }
525
526         return ide_stopped;
527 }
528
529 ide_startstop_t
530 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
531 {
532         if (drive->media == ide_disk)
533                 return ide_ata_error(drive, rq, stat, err);
534         return ide_atapi_error(drive, rq, stat, err);
535 }
536
537 EXPORT_SYMBOL_GPL(__ide_error);
538
539 /**
540  *      ide_error       -       handle an error on the IDE
541  *      @drive: drive the error occurred on
542  *      @msg: message to report
543  *      @stat: status bits
544  *
545  *      ide_error() takes action based on the error returned by the drive.
546  *      For normal I/O that may well include retries. We deal with
547  *      both new-style (taskfile) and old style command handling here.
548  *      In the case of taskfile command handling there is work left to
549  *      do
550  */
551  
552 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
553 {
554         struct request *rq;
555         u8 err;
556
557         err = ide_dump_status(drive, msg, stat);
558
559         if ((rq = HWGROUP(drive)->rq) == NULL)
560                 return ide_stopped;
561
562         /* retry only "normal" I/O: */
563         if (!blk_fs_request(rq)) {
564                 rq->errors = 1;
565                 ide_end_drive_cmd(drive, stat, err);
566                 return ide_stopped;
567         }
568
569         if (rq->rq_disk) {
570                 ide_driver_t *drv;
571
572                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
573                 return drv->error(drive, rq, stat, err);
574         } else
575                 return __ide_error(drive, rq, stat, err);
576 }
577
578 EXPORT_SYMBOL_GPL(ide_error);
579
580 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
581 {
582         if (drive->media != ide_disk)
583                 rq->errors |= ERROR_RESET;
584
585         ide_kill_rq(drive, rq);
586
587         return ide_stopped;
588 }
589
590 EXPORT_SYMBOL_GPL(__ide_abort);
591
592 /**
593  *      ide_abort       -       abort pending IDE operations
594  *      @drive: drive the error occurred on
595  *      @msg: message to report
596  *
597  *      ide_abort kills and cleans up when we are about to do a 
598  *      host initiated reset on active commands. Longer term we
599  *      want handlers to have sensible abort handling themselves
600  *
601  *      This differs fundamentally from ide_error because in 
602  *      this case the command is doing just fine when we
603  *      blow it away.
604  */
605  
606 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
607 {
608         struct request *rq;
609
610         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
611                 return ide_stopped;
612
613         /* retry only "normal" I/O: */
614         if (!blk_fs_request(rq)) {
615                 rq->errors = 1;
616                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
617                 return ide_stopped;
618         }
619
620         if (rq->rq_disk) {
621                 ide_driver_t *drv;
622
623                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
624                 return drv->abort(drive, rq);
625         } else
626                 return __ide_abort(drive, rq);
627 }
628
629 /**
630  *      drive_cmd_intr          -       drive command completion interrupt
631  *      @drive: drive the completion interrupt occurred on
632  *
633  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
634  *      We do any necessary data reading and then wait for the drive to
635  *      go non busy. At that point we may read the error data and complete
636  *      the request
637  */
638  
639 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
640 {
641         struct request *rq = HWGROUP(drive)->rq;
642         ide_hwif_t *hwif = HWIF(drive);
643         u8 *args = (u8 *) rq->buffer;
644         u8 stat = hwif->INB(IDE_STATUS_REG);
645         int retries = 10;
646
647         local_irq_enable_in_hardirq();
648         if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
649             (stat & DRQ_STAT) && args && args[3]) {
650                 u8 io_32bit = drive->io_32bit;
651                 drive->io_32bit = 0;
652                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
653                 drive->io_32bit = io_32bit;
654                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
655                         udelay(100);
656         }
657
658         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
659                 return ide_error(drive, "drive_cmd", stat);
660                 /* calls ide_end_drive_cmd */
661         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
662         return ide_stopped;
663 }
664
665 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
666 {
667         tf->nsect   = drive->sect;
668         tf->lbal    = drive->sect;
669         tf->lbam    = drive->cyl;
670         tf->lbah    = drive->cyl >> 8;
671         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
672         tf->command = WIN_SPECIFY;
673 }
674
675 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
676 {
677         tf->nsect   = drive->sect;
678         tf->command = WIN_RESTORE;
679 }
680
681 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
682 {
683         tf->nsect   = drive->mult_req;
684         tf->command = WIN_SETMULT;
685 }
686
687 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
688 {
689         special_t *s = &drive->special;
690         ide_task_t args;
691
692         memset(&args, 0, sizeof(ide_task_t));
693         args.data_phase = TASKFILE_NO_DATA;
694
695         if (s->b.set_geometry) {
696                 s->b.set_geometry = 0;
697                 ide_tf_set_specify_cmd(drive, &args.tf);
698         } else if (s->b.recalibrate) {
699                 s->b.recalibrate = 0;
700                 ide_tf_set_restore_cmd(drive, &args.tf);
701         } else if (s->b.set_multmode) {
702                 s->b.set_multmode = 0;
703                 if (drive->mult_req > drive->id->max_multsect)
704                         drive->mult_req = drive->id->max_multsect;
705                 ide_tf_set_setmult_cmd(drive, &args.tf);
706         } else if (s->all) {
707                 int special = s->all;
708                 s->all = 0;
709                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
710                 return ide_stopped;
711         }
712
713         args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE |
714                         IDE_TFLAG_CUSTOM_HANDLER;
715
716         do_rw_taskfile(drive, &args);
717
718         return ide_started;
719 }
720
721 /*
722  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
723  */
724 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
725 {
726         switch (req_pio) {
727         case 202:
728         case 201:
729         case 200:
730         case 102:
731         case 101:
732         case 100:
733                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
734         case 9:
735         case 8:
736                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
737         case 7:
738         case 6:
739                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
740         default:
741                 return 0;
742         }
743 }
744
745 /**
746  *      do_special              -       issue some special commands
747  *      @drive: drive the command is for
748  *
749  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
750  *      commands to a drive.  It used to do much more, but has been scaled
751  *      back.
752  */
753
754 static ide_startstop_t do_special (ide_drive_t *drive)
755 {
756         special_t *s = &drive->special;
757
758 #ifdef DEBUG
759         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
760 #endif
761         if (s->b.set_tune) {
762                 ide_hwif_t *hwif = drive->hwif;
763                 u8 req_pio = drive->tune_req;
764
765                 s->b.set_tune = 0;
766
767                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
768
769                         if (hwif->set_pio_mode == NULL)
770                                 return ide_stopped;
771
772                         /*
773                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
774                          */
775                         if (req_pio == 8 || req_pio == 9) {
776                                 unsigned long flags;
777
778                                 spin_lock_irqsave(&ide_lock, flags);
779                                 hwif->set_pio_mode(drive, req_pio);
780                                 spin_unlock_irqrestore(&ide_lock, flags);
781                         } else
782                                 hwif->set_pio_mode(drive, req_pio);
783                 } else {
784                         int keep_dma = drive->using_dma;
785
786                         ide_set_pio(drive, req_pio);
787
788                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
789                                 if (keep_dma)
790                                         ide_dma_on(drive);
791                         }
792                 }
793
794                 return ide_stopped;
795         } else {
796                 if (drive->media == ide_disk)
797                         return ide_disk_special(drive);
798
799                 s->all = 0;
800                 drive->mult_req = 0;
801                 return ide_stopped;
802         }
803 }
804
805 void ide_map_sg(ide_drive_t *drive, struct request *rq)
806 {
807         ide_hwif_t *hwif = drive->hwif;
808         struct scatterlist *sg = hwif->sg_table;
809
810         if (hwif->sg_mapped)    /* needed by ide-scsi */
811                 return;
812
813         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
814                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
815         } else {
816                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
817                 hwif->sg_nents = 1;
818         }
819 }
820
821 EXPORT_SYMBOL_GPL(ide_map_sg);
822
823 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
824 {
825         ide_hwif_t *hwif = drive->hwif;
826
827         hwif->nsect = hwif->nleft = rq->nr_sectors;
828         hwif->cursg_ofs = 0;
829         hwif->cursg = NULL;
830 }
831
832 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
833
834 /**
835  *      execute_drive_command   -       issue special drive command
836  *      @drive: the drive to issue the command on
837  *      @rq: the request structure holding the command
838  *
839  *      execute_drive_cmd() issues a special drive command,  usually 
840  *      initiated by ioctl() from the external hdparm program. The
841  *      command can be a drive command, drive task or taskfile 
842  *      operation. Weirdly you can call it with NULL to wait for
843  *      all commands to finish. Don't do this as that is due to change
844  */
845
846 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
847                 struct request *rq)
848 {
849         ide_hwif_t *hwif = HWIF(drive);
850         u8 *args = rq->buffer;
851         ide_task_t ltask;
852         struct ide_taskfile *tf = &ltask.tf;
853
854         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
855                 ide_task_t *task = rq->special;
856  
857                 if (task == NULL)
858                         goto done;
859
860                 hwif->data_phase = task->data_phase;
861
862                 switch (hwif->data_phase) {
863                 case TASKFILE_MULTI_OUT:
864                 case TASKFILE_OUT:
865                 case TASKFILE_MULTI_IN:
866                 case TASKFILE_IN:
867                         ide_init_sg_cmd(drive, rq);
868                         ide_map_sg(drive, rq);
869                 default:
870                         break;
871                 }
872
873                 return do_rw_taskfile(drive, task);
874         }
875
876         if (args == NULL)
877                 goto done;
878
879         memset(&ltask, 0, sizeof(ltask));
880         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
881 #ifdef DEBUG
882                 printk("%s: DRIVE_CMD\n", drive->name);
883 #endif
884                 tf->feature = args[2];
885                 if (args[0] == WIN_SMART) {
886                         tf->nsect = args[3];
887                         tf->lbal  = args[1];
888                         tf->lbam  = 0x4f;
889                         tf->lbah  = 0xc2;
890                         ltask.tf_flags = IDE_TFLAG_OUT_TF;
891                 } else {
892                         tf->nsect = args[1];
893                         ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
894                                          IDE_TFLAG_OUT_NSECT;
895                 }
896         }
897         tf->command = args[0];
898         ide_tf_load(drive, &ltask);
899         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
900         return ide_started;
901
902 done:
903         /*
904          * NULL is actually a valid way of waiting for
905          * all current requests to be flushed from the queue.
906          */
907 #ifdef DEBUG
908         printk("%s: DRIVE_CMD (null)\n", drive->name);
909 #endif
910         ide_end_drive_cmd(drive,
911                         hwif->INB(IDE_STATUS_REG),
912                         hwif->INB(IDE_ERROR_REG));
913         return ide_stopped;
914 }
915
916 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
917 {
918         struct request_pm_state *pm = rq->data;
919
920         if (blk_pm_suspend_request(rq) &&
921             pm->pm_step == ide_pm_state_start_suspend)
922                 /* Mark drive blocked when starting the suspend sequence. */
923                 drive->blocked = 1;
924         else if (blk_pm_resume_request(rq) &&
925                  pm->pm_step == ide_pm_state_start_resume) {
926                 /* 
927                  * The first thing we do on wakeup is to wait for BSY bit to
928                  * go away (with a looong timeout) as a drive on this hwif may
929                  * just be POSTing itself.
930                  * We do that before even selecting as the "other" device on
931                  * the bus may be broken enough to walk on our toes at this
932                  * point.
933                  */
934                 int rc;
935 #ifdef DEBUG_PM
936                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
937 #endif
938                 rc = ide_wait_not_busy(HWIF(drive), 35000);
939                 if (rc)
940                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
941                 SELECT_DRIVE(drive);
942                 ide_set_irq(drive, 1);
943                 rc = ide_wait_not_busy(HWIF(drive), 100000);
944                 if (rc)
945                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
946         }
947 }
948
949 /**
950  *      start_request   -       start of I/O and command issuing for IDE
951  *
952  *      start_request() initiates handling of a new I/O request. It
953  *      accepts commands and I/O (read/write) requests. It also does
954  *      the final remapping for weird stuff like EZDrive. Once 
955  *      device mapper can work sector level the EZDrive stuff can go away
956  *
957  *      FIXME: this function needs a rename
958  */
959  
960 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
961 {
962         ide_startstop_t startstop;
963         sector_t block;
964
965         BUG_ON(!blk_rq_started(rq));
966
967 #ifdef DEBUG
968         printk("%s: start_request: current=0x%08lx\n",
969                 HWIF(drive)->name, (unsigned long) rq);
970 #endif
971
972         /* bail early if we've exceeded max_failures */
973         if (drive->max_failures && (drive->failures > drive->max_failures)) {
974                 rq->cmd_flags |= REQ_FAILED;
975                 goto kill_rq;
976         }
977
978         block    = rq->sector;
979         if (blk_fs_request(rq) &&
980             (drive->media == ide_disk || drive->media == ide_floppy)) {
981                 block += drive->sect0;
982         }
983         /* Yecch - this will shift the entire interval,
984            possibly killing some innocent following sector */
985         if (block == 0 && drive->remap_0_to_1 == 1)
986                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
987
988         if (blk_pm_request(rq))
989                 ide_check_pm_state(drive, rq);
990
991         SELECT_DRIVE(drive);
992         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
993                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
994                 return startstop;
995         }
996         if (!drive->special.all) {
997                 ide_driver_t *drv;
998
999                 /*
1000                  * We reset the drive so we need to issue a SETFEATURES.
1001                  * Do it _after_ do_special() restored device parameters.
1002                  */
1003                 if (drive->current_speed == 0xff)
1004                         ide_config_drive_speed(drive, drive->desired_speed);
1005
1006                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1007                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1008                         return execute_drive_cmd(drive, rq);
1009                 else if (blk_pm_request(rq)) {
1010                         struct request_pm_state *pm = rq->data;
1011 #ifdef DEBUG_PM
1012                         printk("%s: start_power_step(step: %d)\n",
1013                                 drive->name, rq->pm->pm_step);
1014 #endif
1015                         startstop = ide_start_power_step(drive, rq);
1016                         if (startstop == ide_stopped &&
1017                             pm->pm_step == ide_pm_state_completed)
1018                                 ide_complete_pm_request(drive, rq);
1019                         return startstop;
1020                 }
1021
1022                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1023                 return drv->do_request(drive, rq, block);
1024         }
1025         return do_special(drive);
1026 kill_rq:
1027         ide_kill_rq(drive, rq);
1028         return ide_stopped;
1029 }
1030
1031 /**
1032  *      ide_stall_queue         -       pause an IDE device
1033  *      @drive: drive to stall
1034  *      @timeout: time to stall for (jiffies)
1035  *
1036  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1037  *      to the hwgroup by sleeping for timeout jiffies.
1038  */
1039  
1040 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1041 {
1042         if (timeout > WAIT_WORSTCASE)
1043                 timeout = WAIT_WORSTCASE;
1044         drive->sleep = timeout + jiffies;
1045         drive->sleeping = 1;
1046 }
1047
1048 EXPORT_SYMBOL(ide_stall_queue);
1049
1050 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1051
1052 /**
1053  *      choose_drive            -       select a drive to service
1054  *      @hwgroup: hardware group to select on
1055  *
1056  *      choose_drive() selects the next drive which will be serviced.
1057  *      This is necessary because the IDE layer can't issue commands
1058  *      to both drives on the same cable, unlike SCSI.
1059  */
1060  
1061 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1062 {
1063         ide_drive_t *drive, *best;
1064
1065 repeat: 
1066         best = NULL;
1067         drive = hwgroup->drive;
1068
1069         /*
1070          * drive is doing pre-flush, ordered write, post-flush sequence. even
1071          * though that is 3 requests, it must be seen as a single transaction.
1072          * we must not preempt this drive until that is complete
1073          */
1074         if (blk_queue_flushing(drive->queue)) {
1075                 /*
1076                  * small race where queue could get replugged during
1077                  * the 3-request flush cycle, just yank the plug since
1078                  * we want it to finish asap
1079                  */
1080                 blk_remove_plug(drive->queue);
1081                 return drive;
1082         }
1083
1084         do {
1085                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1086                     && !elv_queue_empty(drive->queue)) {
1087                         if (!best
1088                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1089                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1090                         {
1091                                 if (!blk_queue_plugged(drive->queue))
1092                                         best = drive;
1093                         }
1094                 }
1095         } while ((drive = drive->next) != hwgroup->drive);
1096         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1097                 long t = (signed long)(WAKEUP(best) - jiffies);
1098                 if (t >= WAIT_MIN_SLEEP) {
1099                 /*
1100                  * We *may* have some time to spare, but first let's see if
1101                  * someone can potentially benefit from our nice mood today..
1102                  */
1103                         drive = best->next;
1104                         do {
1105                                 if (!drive->sleeping
1106                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1107                                  && time_before(WAKEUP(drive), jiffies + t))
1108                                 {
1109                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1110                                         goto repeat;
1111                                 }
1112                         } while ((drive = drive->next) != best);
1113                 }
1114         }
1115         return best;
1116 }
1117
1118 /*
1119  * Issue a new request to a drive from hwgroup
1120  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1121  *
1122  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1123  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1124  * may have both interfaces in a single hwgroup to "serialize" access.
1125  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1126  * together into one hwgroup for serialized access.
1127  *
1128  * Note also that several hwgroups can end up sharing a single IRQ,
1129  * possibly along with many other devices.  This is especially common in
1130  * PCI-based systems with off-board IDE controller cards.
1131  *
1132  * The IDE driver uses the single global ide_lock spinlock to protect
1133  * access to the request queues, and to protect the hwgroup->busy flag.
1134  *
1135  * The first thread into the driver for a particular hwgroup sets the
1136  * hwgroup->busy flag to indicate that this hwgroup is now active,
1137  * and then initiates processing of the top request from the request queue.
1138  *
1139  * Other threads attempting entry notice the busy setting, and will simply
1140  * queue their new requests and exit immediately.  Note that hwgroup->busy
1141  * remains set even when the driver is merely awaiting the next interrupt.
1142  * Thus, the meaning is "this hwgroup is busy processing a request".
1143  *
1144  * When processing of a request completes, the completing thread or IRQ-handler
1145  * will start the next request from the queue.  If no more work remains,
1146  * the driver will clear the hwgroup->busy flag and exit.
1147  *
1148  * The ide_lock (spinlock) is used to protect all access to the
1149  * hwgroup->busy flag, but is otherwise not needed for most processing in
1150  * the driver.  This makes the driver much more friendlier to shared IRQs
1151  * than previous designs, while remaining 100% (?) SMP safe and capable.
1152  */
1153 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1154 {
1155         ide_drive_t     *drive;
1156         ide_hwif_t      *hwif;
1157         struct request  *rq;
1158         ide_startstop_t startstop;
1159         int             loops = 0;
1160
1161         /* for atari only: POSSIBLY BROKEN HERE(?) */
1162         ide_get_lock(ide_intr, hwgroup);
1163
1164         /* caller must own ide_lock */
1165         BUG_ON(!irqs_disabled());
1166
1167         while (!hwgroup->busy) {
1168                 hwgroup->busy = 1;
1169                 drive = choose_drive(hwgroup);
1170                 if (drive == NULL) {
1171                         int sleeping = 0;
1172                         unsigned long sleep = 0; /* shut up, gcc */
1173                         hwgroup->rq = NULL;
1174                         drive = hwgroup->drive;
1175                         do {
1176                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1177                                         sleeping = 1;
1178                                         sleep = drive->sleep;
1179                                 }
1180                         } while ((drive = drive->next) != hwgroup->drive);
1181                         if (sleeping) {
1182                 /*
1183                  * Take a short snooze, and then wake up this hwgroup again.
1184                  * This gives other hwgroups on the same a chance to
1185                  * play fairly with us, just in case there are big differences
1186                  * in relative throughputs.. don't want to hog the cpu too much.
1187                  */
1188                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1189                                         sleep = jiffies + WAIT_MIN_SLEEP;
1190 #if 1
1191                                 if (timer_pending(&hwgroup->timer))
1192                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1193 #endif
1194                                 /* so that ide_timer_expiry knows what to do */
1195                                 hwgroup->sleeping = 1;
1196                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1197                                 mod_timer(&hwgroup->timer, sleep);
1198                                 /* we purposely leave hwgroup->busy==1
1199                                  * while sleeping */
1200                         } else {
1201                                 /* Ugly, but how can we sleep for the lock
1202                                  * otherwise? perhaps from tq_disk?
1203                                  */
1204
1205                                 /* for atari only */
1206                                 ide_release_lock();
1207                                 hwgroup->busy = 0;
1208                         }
1209
1210                         /* no more work for this hwgroup (for now) */
1211                         return;
1212                 }
1213         again:
1214                 hwif = HWIF(drive);
1215                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1216                         /*
1217                          * set nIEN for previous hwif, drives in the
1218                          * quirk_list may not like intr setups/cleanups
1219                          */
1220                         if (drive->quirk_list != 1)
1221                                 ide_set_irq(drive, 0);
1222                 }
1223                 hwgroup->hwif = hwif;
1224                 hwgroup->drive = drive;
1225                 drive->sleeping = 0;
1226                 drive->service_start = jiffies;
1227
1228                 if (blk_queue_plugged(drive->queue)) {
1229                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1230                         break;
1231                 }
1232
1233                 /*
1234                  * we know that the queue isn't empty, but this can happen
1235                  * if the q->prep_rq_fn() decides to kill a request
1236                  */
1237                 rq = elv_next_request(drive->queue);
1238                 if (!rq) {
1239                         hwgroup->busy = 0;
1240                         break;
1241                 }
1242
1243                 /*
1244                  * Sanity: don't accept a request that isn't a PM request
1245                  * if we are currently power managed. This is very important as
1246                  * blk_stop_queue() doesn't prevent the elv_next_request()
1247                  * above to return us whatever is in the queue. Since we call
1248                  * ide_do_request() ourselves, we end up taking requests while
1249                  * the queue is blocked...
1250                  * 
1251                  * We let requests forced at head of queue with ide-preempt
1252                  * though. I hope that doesn't happen too much, hopefully not
1253                  * unless the subdriver triggers such a thing in its own PM
1254                  * state machine.
1255                  *
1256                  * We count how many times we loop here to make sure we service
1257                  * all drives in the hwgroup without looping for ever
1258                  */
1259                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1260                         drive = drive->next ? drive->next : hwgroup->drive;
1261                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1262                                 goto again;
1263                         /* We clear busy, there should be no pending ATA command at this point. */
1264                         hwgroup->busy = 0;
1265                         break;
1266                 }
1267
1268                 hwgroup->rq = rq;
1269
1270                 /*
1271                  * Some systems have trouble with IDE IRQs arriving while
1272                  * the driver is still setting things up.  So, here we disable
1273                  * the IRQ used by this interface while the request is being started.
1274                  * This may look bad at first, but pretty much the same thing
1275                  * happens anyway when any interrupt comes in, IDE or otherwise
1276                  *  -- the kernel masks the IRQ while it is being handled.
1277                  */
1278                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1279                         disable_irq_nosync(hwif->irq);
1280                 spin_unlock(&ide_lock);
1281                 local_irq_enable_in_hardirq();
1282                         /* allow other IRQs while we start this request */
1283                 startstop = start_request(drive, rq);
1284                 spin_lock_irq(&ide_lock);
1285                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1286                         enable_irq(hwif->irq);
1287                 if (startstop == ide_stopped)
1288                         hwgroup->busy = 0;
1289         }
1290 }
1291
1292 /*
1293  * Passes the stuff to ide_do_request
1294  */
1295 void do_ide_request(struct request_queue *q)
1296 {
1297         ide_drive_t *drive = q->queuedata;
1298
1299         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1300 }
1301
1302 /*
1303  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1304  * retry the current request in pio mode instead of risking tossing it
1305  * all away
1306  */
1307 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1308 {
1309         ide_hwif_t *hwif = HWIF(drive);
1310         struct request *rq;
1311         ide_startstop_t ret = ide_stopped;
1312
1313         /*
1314          * end current dma transaction
1315          */
1316
1317         if (error < 0) {
1318                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1319                 (void)HWIF(drive)->ide_dma_end(drive);
1320                 ret = ide_error(drive, "dma timeout error",
1321                                                 hwif->INB(IDE_STATUS_REG));
1322         } else {
1323                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1324                 hwif->dma_timeout(drive);
1325         }
1326
1327         /*
1328          * disable dma for now, but remember that we did so because of
1329          * a timeout -- we'll reenable after we finish this next request
1330          * (or rather the first chunk of it) in pio.
1331          */
1332         drive->retry_pio++;
1333         drive->state = DMA_PIO_RETRY;
1334         ide_dma_off_quietly(drive);
1335
1336         /*
1337          * un-busy drive etc (hwgroup->busy is cleared on return) and
1338          * make sure request is sane
1339          */
1340         rq = HWGROUP(drive)->rq;
1341
1342         if (!rq)
1343                 goto out;
1344
1345         HWGROUP(drive)->rq = NULL;
1346
1347         rq->errors = 0;
1348
1349         if (!rq->bio)
1350                 goto out;
1351
1352         rq->sector = rq->bio->bi_sector;
1353         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1354         rq->hard_cur_sectors = rq->current_nr_sectors;
1355         rq->buffer = bio_data(rq->bio);
1356 out:
1357         return ret;
1358 }
1359
1360 /**
1361  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1362  *      @data: timer callback magic (hwgroup)
1363  *
1364  *      An IDE command has timed out before the expected drive return
1365  *      occurred. At this point we attempt to clean up the current
1366  *      mess. If the current handler includes an expiry handler then
1367  *      we invoke the expiry handler, and providing it is happy the
1368  *      work is done. If that fails we apply generic recovery rules
1369  *      invoking the handler and checking the drive DMA status. We
1370  *      have an excessively incestuous relationship with the DMA
1371  *      logic that wants cleaning up.
1372  */
1373  
1374 void ide_timer_expiry (unsigned long data)
1375 {
1376         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1377         ide_handler_t   *handler;
1378         ide_expiry_t    *expiry;
1379         unsigned long   flags;
1380         unsigned long   wait = -1;
1381
1382         spin_lock_irqsave(&ide_lock, flags);
1383
1384         if (((handler = hwgroup->handler) == NULL) ||
1385             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1386                 /*
1387                  * Either a marginal timeout occurred
1388                  * (got the interrupt just as timer expired),
1389                  * or we were "sleeping" to give other devices a chance.
1390                  * Either way, we don't really want to complain about anything.
1391                  */
1392                 if (hwgroup->sleeping) {
1393                         hwgroup->sleeping = 0;
1394                         hwgroup->busy = 0;
1395                 }
1396         } else {
1397                 ide_drive_t *drive = hwgroup->drive;
1398                 if (!drive) {
1399                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1400                         hwgroup->handler = NULL;
1401                 } else {
1402                         ide_hwif_t *hwif;
1403                         ide_startstop_t startstop = ide_stopped;
1404                         if (!hwgroup->busy) {
1405                                 hwgroup->busy = 1;      /* paranoia */
1406                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1407                         }
1408                         if ((expiry = hwgroup->expiry) != NULL) {
1409                                 /* continue */
1410                                 if ((wait = expiry(drive)) > 0) {
1411                                         /* reset timer */
1412                                         hwgroup->timer.expires  = jiffies + wait;
1413                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1414                                         add_timer(&hwgroup->timer);
1415                                         spin_unlock_irqrestore(&ide_lock, flags);
1416                                         return;
1417                                 }
1418                         }
1419                         hwgroup->handler = NULL;
1420                         /*
1421                          * We need to simulate a real interrupt when invoking
1422                          * the handler() function, which means we need to
1423                          * globally mask the specific IRQ:
1424                          */
1425                         spin_unlock(&ide_lock);
1426                         hwif  = HWIF(drive);
1427                         /* disable_irq_nosync ?? */
1428                         disable_irq(hwif->irq);
1429                         /* local CPU only,
1430                          * as if we were handling an interrupt */
1431                         local_irq_disable();
1432                         if (hwgroup->polling) {
1433                                 startstop = handler(drive);
1434                         } else if (drive_is_ready(drive)) {
1435                                 if (drive->waiting_for_dma)
1436                                         hwgroup->hwif->dma_lost_irq(drive);
1437                                 (void)ide_ack_intr(hwif);
1438                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1439                                 startstop = handler(drive);
1440                         } else {
1441                                 if (drive->waiting_for_dma) {
1442                                         startstop = ide_dma_timeout_retry(drive, wait);
1443                                 } else
1444                                         startstop =
1445                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1446                         }
1447                         drive->service_time = jiffies - drive->service_start;
1448                         spin_lock_irq(&ide_lock);
1449                         enable_irq(hwif->irq);
1450                         if (startstop == ide_stopped)
1451                                 hwgroup->busy = 0;
1452                 }
1453         }
1454         ide_do_request(hwgroup, IDE_NO_IRQ);
1455         spin_unlock_irqrestore(&ide_lock, flags);
1456 }
1457
1458 /**
1459  *      unexpected_intr         -       handle an unexpected IDE interrupt
1460  *      @irq: interrupt line
1461  *      @hwgroup: hwgroup being processed
1462  *
1463  *      There's nothing really useful we can do with an unexpected interrupt,
1464  *      other than reading the status register (to clear it), and logging it.
1465  *      There should be no way that an irq can happen before we're ready for it,
1466  *      so we needn't worry much about losing an "important" interrupt here.
1467  *
1468  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1469  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1470  *      looks "good", we just ignore the interrupt completely.
1471  *
1472  *      This routine assumes __cli() is in effect when called.
1473  *
1474  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1475  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1476  *      we could screw up by interfering with a new request being set up for 
1477  *      irq15.
1478  *
1479  *      In reality, this is a non-issue.  The new command is not sent unless 
1480  *      the drive is ready to accept one, in which case we know the drive is
1481  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1482  *      before completing the issuance of any new drive command, so we will not
1483  *      be accidentally invoked as a result of any valid command completion
1484  *      interrupt.
1485  *
1486  *      Note that we must walk the entire hwgroup here. We know which hwif
1487  *      is doing the current command, but we don't know which hwif burped
1488  *      mysteriously.
1489  */
1490  
1491 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1492 {
1493         u8 stat;
1494         ide_hwif_t *hwif = hwgroup->hwif;
1495
1496         /*
1497          * handle the unexpected interrupt
1498          */
1499         do {
1500                 if (hwif->irq == irq) {
1501                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1502                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1503                                 /* Try to not flood the console with msgs */
1504                                 static unsigned long last_msgtime, count;
1505                                 ++count;
1506                                 if (time_after(jiffies, last_msgtime + HZ)) {
1507                                         last_msgtime = jiffies;
1508                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1509                                                 "status=0x%02x, count=%ld\n",
1510                                                 hwif->name,
1511                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1512                                 }
1513                         }
1514                 }
1515         } while ((hwif = hwif->next) != hwgroup->hwif);
1516 }
1517
1518 /**
1519  *      ide_intr        -       default IDE interrupt handler
1520  *      @irq: interrupt number
1521  *      @dev_id: hwif group
1522  *      @regs: unused weirdness from the kernel irq layer
1523  *
1524  *      This is the default IRQ handler for the IDE layer. You should
1525  *      not need to override it. If you do be aware it is subtle in
1526  *      places
1527  *
1528  *      hwgroup->hwif is the interface in the group currently performing
1529  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1530  *      the IRQ handler to call. As we issue a command the handlers
1531  *      step through multiple states, reassigning the handler to the
1532  *      next step in the process. Unlike a smart SCSI controller IDE
1533  *      expects the main processor to sequence the various transfer
1534  *      stages. We also manage a poll timer to catch up with most
1535  *      timeout situations. There are still a few where the handlers
1536  *      don't ever decide to give up.
1537  *
1538  *      The handler eventually returns ide_stopped to indicate the
1539  *      request completed. At this point we issue the next request
1540  *      on the hwgroup and the process begins again.
1541  */
1542  
1543 irqreturn_t ide_intr (int irq, void *dev_id)
1544 {
1545         unsigned long flags;
1546         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1547         ide_hwif_t *hwif;
1548         ide_drive_t *drive;
1549         ide_handler_t *handler;
1550         ide_startstop_t startstop;
1551
1552         spin_lock_irqsave(&ide_lock, flags);
1553         hwif = hwgroup->hwif;
1554
1555         if (!ide_ack_intr(hwif)) {
1556                 spin_unlock_irqrestore(&ide_lock, flags);
1557                 return IRQ_NONE;
1558         }
1559
1560         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1561                 /*
1562                  * Not expecting an interrupt from this drive.
1563                  * That means this could be:
1564                  *      (1) an interrupt from another PCI device
1565                  *      sharing the same PCI INT# as us.
1566                  * or   (2) a drive just entered sleep or standby mode,
1567                  *      and is interrupting to let us know.
1568                  * or   (3) a spurious interrupt of unknown origin.
1569                  *
1570                  * For PCI, we cannot tell the difference,
1571                  * so in that case we just ignore it and hope it goes away.
1572                  *
1573                  * FIXME: unexpected_intr should be hwif-> then we can
1574                  * remove all the ifdef PCI crap
1575                  */
1576 #ifdef CONFIG_BLK_DEV_IDEPCI
1577                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1578 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1579                 {
1580                         /*
1581                          * Probably not a shared PCI interrupt,
1582                          * so we can safely try to do something about it:
1583                          */
1584                         unexpected_intr(irq, hwgroup);
1585 #ifdef CONFIG_BLK_DEV_IDEPCI
1586                 } else {
1587                         /*
1588                          * Whack the status register, just in case
1589                          * we have a leftover pending IRQ.
1590                          */
1591                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1592 #endif /* CONFIG_BLK_DEV_IDEPCI */
1593                 }
1594                 spin_unlock_irqrestore(&ide_lock, flags);
1595                 return IRQ_NONE;
1596         }
1597         drive = hwgroup->drive;
1598         if (!drive) {
1599                 /*
1600                  * This should NEVER happen, and there isn't much
1601                  * we could do about it here.
1602                  *
1603                  * [Note - this can occur if the drive is hot unplugged]
1604                  */
1605                 spin_unlock_irqrestore(&ide_lock, flags);
1606                 return IRQ_HANDLED;
1607         }
1608         if (!drive_is_ready(drive)) {
1609                 /*
1610                  * This happens regularly when we share a PCI IRQ with
1611                  * another device.  Unfortunately, it can also happen
1612                  * with some buggy drives that trigger the IRQ before
1613                  * their status register is up to date.  Hopefully we have
1614                  * enough advance overhead that the latter isn't a problem.
1615                  */
1616                 spin_unlock_irqrestore(&ide_lock, flags);
1617                 return IRQ_NONE;
1618         }
1619         if (!hwgroup->busy) {
1620                 hwgroup->busy = 1;      /* paranoia */
1621                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1622         }
1623         hwgroup->handler = NULL;
1624         hwgroup->req_gen++;
1625         del_timer(&hwgroup->timer);
1626         spin_unlock(&ide_lock);
1627
1628         /* Some controllers might set DMA INTR no matter DMA or PIO;
1629          * bmdma status might need to be cleared even for
1630          * PIO interrupts to prevent spurious/lost irq.
1631          */
1632         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1633                 /* ide_dma_end() needs bmdma status for error checking.
1634                  * So, skip clearing bmdma status here and leave it
1635                  * to ide_dma_end() if this is dma interrupt.
1636                  */
1637                 hwif->ide_dma_clear_irq(drive);
1638
1639         if (drive->unmask)
1640                 local_irq_enable_in_hardirq();
1641         /* service this interrupt, may set handler for next interrupt */
1642         startstop = handler(drive);
1643         spin_lock_irq(&ide_lock);
1644
1645         /*
1646          * Note that handler() may have set things up for another
1647          * interrupt to occur soon, but it cannot happen until
1648          * we exit from this routine, because it will be the
1649          * same irq as is currently being serviced here, and Linux
1650          * won't allow another of the same (on any CPU) until we return.
1651          */
1652         drive->service_time = jiffies - drive->service_start;
1653         if (startstop == ide_stopped) {
1654                 if (hwgroup->handler == NULL) { /* paranoia */
1655                         hwgroup->busy = 0;
1656                         ide_do_request(hwgroup, hwif->irq);
1657                 } else {
1658                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1659                                 "on exit\n", drive->name);
1660                 }
1661         }
1662         spin_unlock_irqrestore(&ide_lock, flags);
1663         return IRQ_HANDLED;
1664 }
1665
1666 /**
1667  *      ide_init_drive_cmd      -       initialize a drive command request
1668  *      @rq: request object
1669  *
1670  *      Initialize a request before we fill it in and send it down to
1671  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1672  *      now it doesn't do a lot, but if that changes abusers will have a
1673  *      nasty surprise.
1674  */
1675
1676 void ide_init_drive_cmd (struct request *rq)
1677 {
1678         memset(rq, 0, sizeof(*rq));
1679         rq->cmd_type = REQ_TYPE_ATA_CMD;
1680         rq->ref_count = 1;
1681 }
1682
1683 EXPORT_SYMBOL(ide_init_drive_cmd);
1684
1685 /**
1686  *      ide_do_drive_cmd        -       issue IDE special command
1687  *      @drive: device to issue command
1688  *      @rq: request to issue
1689  *      @action: action for processing
1690  *
1691  *      This function issues a special IDE device request
1692  *      onto the request queue.
1693  *
1694  *      If action is ide_wait, then the rq is queued at the end of the
1695  *      request queue, and the function sleeps until it has been processed.
1696  *      This is for use when invoked from an ioctl handler.
1697  *
1698  *      If action is ide_preempt, then the rq is queued at the head of
1699  *      the request queue, displacing the currently-being-processed
1700  *      request and this function returns immediately without waiting
1701  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1702  *      intended for careful use by the ATAPI tape/cdrom driver code.
1703  *
1704  *      If action is ide_end, then the rq is queued at the end of the
1705  *      request queue, and the function returns immediately without waiting
1706  *      for the new rq to be completed. This is again intended for careful
1707  *      use by the ATAPI tape/cdrom driver code.
1708  */
1709  
1710 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1711 {
1712         unsigned long flags;
1713         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1714         DECLARE_COMPLETION_ONSTACK(wait);
1715         int where = ELEVATOR_INSERT_BACK, err;
1716         int must_wait = (action == ide_wait || action == ide_head_wait);
1717
1718         rq->errors = 0;
1719
1720         /*
1721          * we need to hold an extra reference to request for safe inspection
1722          * after completion
1723          */
1724         if (must_wait) {
1725                 rq->ref_count++;
1726                 rq->end_io_data = &wait;
1727                 rq->end_io = blk_end_sync_rq;
1728         }
1729
1730         spin_lock_irqsave(&ide_lock, flags);
1731         if (action == ide_preempt)
1732                 hwgroup->rq = NULL;
1733         if (action == ide_preempt || action == ide_head_wait) {
1734                 where = ELEVATOR_INSERT_FRONT;
1735                 rq->cmd_flags |= REQ_PREEMPT;
1736         }
1737         __elv_add_request(drive->queue, rq, where, 0);
1738         ide_do_request(hwgroup, IDE_NO_IRQ);
1739         spin_unlock_irqrestore(&ide_lock, flags);
1740
1741         err = 0;
1742         if (must_wait) {
1743                 wait_for_completion(&wait);
1744                 if (rq->errors)
1745                         err = -EIO;
1746
1747                 blk_put_request(rq);
1748         }
1749
1750         return err;
1751 }
1752
1753 EXPORT_SYMBOL(ide_do_drive_cmd);
1754
1755 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1756 {
1757         ide_task_t task;
1758
1759         memset(&task, 0, sizeof(task));
1760         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1761                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1762         task.tf.feature = dma;          /* Use PIO/DMA */
1763         task.tf.lbam    = bcount & 0xff;
1764         task.tf.lbah    = (bcount >> 8) & 0xff;
1765
1766         ide_tf_load(drive, &task);
1767 }
1768
1769 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);