drm/ttm/radeon: add dma32 support.
[pandora-kernel.git] / drivers / gpu / drm / ttm / ttm_tt.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include <linux/vmalloc.h>
32 #include <linux/sched.h>
33 #include <linux/highmem.h>
34 #include <linux/pagemap.h>
35 #include <linux/file.h>
36 #include <linux/swap.h>
37 #include "ttm/ttm_module.h"
38 #include "ttm/ttm_bo_driver.h"
39 #include "ttm/ttm_placement.h"
40
41 static int ttm_tt_swapin(struct ttm_tt *ttm);
42
43 #if defined(CONFIG_X86)
44 static void ttm_tt_clflush_page(struct page *page)
45 {
46         uint8_t *page_virtual;
47         unsigned int i;
48
49         if (unlikely(page == NULL))
50                 return;
51
52         page_virtual = kmap_atomic(page, KM_USER0);
53
54         for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
55                 clflush(page_virtual + i);
56
57         kunmap_atomic(page_virtual, KM_USER0);
58 }
59
60 static void ttm_tt_cache_flush_clflush(struct page *pages[],
61                                        unsigned long num_pages)
62 {
63         unsigned long i;
64
65         mb();
66         for (i = 0; i < num_pages; ++i)
67                 ttm_tt_clflush_page(*pages++);
68         mb();
69 }
70 #elif !defined(__powerpc__)
71 static void ttm_tt_ipi_handler(void *null)
72 {
73         ;
74 }
75 #endif
76
77 void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages)
78 {
79
80 #if defined(CONFIG_X86)
81         if (cpu_has_clflush) {
82                 ttm_tt_cache_flush_clflush(pages, num_pages);
83                 return;
84         }
85 #elif defined(__powerpc__)
86         unsigned long i;
87
88         for (i = 0; i < num_pages; ++i) {
89                 if (pages[i]) {
90                         unsigned long start = (unsigned long)page_address(pages[i]);
91                         flush_dcache_range(start, start + PAGE_SIZE);
92                 }
93         }
94 #else
95         if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0)
96                 printk(KERN_ERR TTM_PFX
97                        "Timed out waiting for drm cache flush.\n");
98 #endif
99 }
100
101 /**
102  * Allocates storage for pointers to the pages that back the ttm.
103  *
104  * Uses kmalloc if possible. Otherwise falls back to vmalloc.
105  */
106 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
107 {
108         unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
109         ttm->pages = NULL;
110
111         if (size <= PAGE_SIZE)
112                 ttm->pages = kzalloc(size, GFP_KERNEL);
113
114         if (!ttm->pages) {
115                 ttm->pages = vmalloc_user(size);
116                 if (ttm->pages)
117                         ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
118         }
119 }
120
121 static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
122 {
123         if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
124                 vfree(ttm->pages);
125                 ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
126         } else {
127                 kfree(ttm->pages);
128         }
129         ttm->pages = NULL;
130 }
131
132 static struct page *ttm_tt_alloc_page(unsigned page_flags)
133 {
134         gfp_t gfp_flags = GFP_HIGHUSER;
135
136         if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
137                 gfp_flags |= __GFP_ZERO;
138
139         if (page_flags & TTM_PAGE_FLAG_DMA32)
140                 gfp_flags |= __GFP_DMA32;
141
142         return alloc_page(gfp_flags);
143 }
144
145 static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
146 {
147         int write;
148         int dirty;
149         struct page *page;
150         int i;
151         struct ttm_backend *be = ttm->be;
152
153         BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
154         write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
155         dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
156
157         if (be)
158                 be->func->clear(be);
159
160         for (i = 0; i < ttm->num_pages; ++i) {
161                 page = ttm->pages[i];
162                 if (page == NULL)
163                         continue;
164
165                 if (page == ttm->dummy_read_page) {
166                         BUG_ON(write);
167                         continue;
168                 }
169
170                 if (write && dirty && !PageReserved(page))
171                         set_page_dirty_lock(page);
172
173                 ttm->pages[i] = NULL;
174                 ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE, false);
175                 put_page(page);
176         }
177         ttm->state = tt_unpopulated;
178         ttm->first_himem_page = ttm->num_pages;
179         ttm->last_lomem_page = -1;
180 }
181
182 static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
183 {
184         struct page *p;
185         struct ttm_bo_device *bdev = ttm->bdev;
186         struct ttm_mem_global *mem_glob = bdev->mem_glob;
187         int ret;
188
189         while (NULL == (p = ttm->pages[index])) {
190                 p = ttm_tt_alloc_page(ttm->page_flags);
191
192                 if (!p)
193                         return NULL;
194
195                 if (PageHighMem(p)) {
196                         ret =
197                             ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
198                                                  false, false, true);
199                         if (unlikely(ret != 0))
200                                 goto out_err;
201                         ttm->pages[--ttm->first_himem_page] = p;
202                 } else {
203                         ret =
204                             ttm_mem_global_alloc(mem_glob, PAGE_SIZE,
205                                                  false, false, false);
206                         if (unlikely(ret != 0))
207                                 goto out_err;
208                         ttm->pages[++ttm->last_lomem_page] = p;
209                 }
210         }
211         return p;
212 out_err:
213         put_page(p);
214         return NULL;
215 }
216
217 struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
218 {
219         int ret;
220
221         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
222                 ret = ttm_tt_swapin(ttm);
223                 if (unlikely(ret != 0))
224                         return NULL;
225         }
226         return __ttm_tt_get_page(ttm, index);
227 }
228
229 int ttm_tt_populate(struct ttm_tt *ttm)
230 {
231         struct page *page;
232         unsigned long i;
233         struct ttm_backend *be;
234         int ret;
235
236         if (ttm->state != tt_unpopulated)
237                 return 0;
238
239         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
240                 ret = ttm_tt_swapin(ttm);
241                 if (unlikely(ret != 0))
242                         return ret;
243         }
244
245         be = ttm->be;
246
247         for (i = 0; i < ttm->num_pages; ++i) {
248                 page = __ttm_tt_get_page(ttm, i);
249                 if (!page)
250                         return -ENOMEM;
251         }
252
253         be->func->populate(be, ttm->num_pages, ttm->pages,
254                            ttm->dummy_read_page);
255         ttm->state = tt_unbound;
256         return 0;
257 }
258
259 #ifdef CONFIG_X86
260 static inline int ttm_tt_set_page_caching(struct page *p,
261                                           enum ttm_caching_state c_state)
262 {
263         if (PageHighMem(p))
264                 return 0;
265
266         switch (c_state) {
267         case tt_cached:
268                 return set_pages_wb(p, 1);
269         case tt_wc:
270             return set_memory_wc((unsigned long) page_address(p), 1);
271         default:
272                 return set_pages_uc(p, 1);
273         }
274 }
275 #else /* CONFIG_X86 */
276 static inline int ttm_tt_set_page_caching(struct page *p,
277                                           enum ttm_caching_state c_state)
278 {
279         return 0;
280 }
281 #endif /* CONFIG_X86 */
282
283 /*
284  * Change caching policy for the linear kernel map
285  * for range of pages in a ttm.
286  */
287
288 static int ttm_tt_set_caching(struct ttm_tt *ttm,
289                               enum ttm_caching_state c_state)
290 {
291         int i, j;
292         struct page *cur_page;
293         int ret;
294
295         if (ttm->caching_state == c_state)
296                 return 0;
297
298         if (c_state != tt_cached) {
299                 ret = ttm_tt_populate(ttm);
300                 if (unlikely(ret != 0))
301                         return ret;
302         }
303
304         if (ttm->caching_state == tt_cached)
305                 ttm_tt_cache_flush(ttm->pages, ttm->num_pages);
306
307         for (i = 0; i < ttm->num_pages; ++i) {
308                 cur_page = ttm->pages[i];
309                 if (likely(cur_page != NULL)) {
310                         ret = ttm_tt_set_page_caching(cur_page, c_state);
311                         if (unlikely(ret != 0))
312                                 goto out_err;
313                 }
314         }
315
316         ttm->caching_state = c_state;
317
318         return 0;
319
320 out_err:
321         for (j = 0; j < i; ++j) {
322                 cur_page = ttm->pages[j];
323                 if (likely(cur_page != NULL)) {
324                         (void)ttm_tt_set_page_caching(cur_page,
325                                                       ttm->caching_state);
326                 }
327         }
328
329         return ret;
330 }
331
332 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
333 {
334         enum ttm_caching_state state;
335
336         if (placement & TTM_PL_FLAG_WC)
337                 state = tt_wc;
338         else if (placement & TTM_PL_FLAG_UNCACHED)
339                 state = tt_uncached;
340         else
341                 state = tt_cached;
342
343         return ttm_tt_set_caching(ttm, state);
344 }
345
346 static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
347 {
348         int i;
349         struct page *cur_page;
350         struct ttm_backend *be = ttm->be;
351
352         if (be)
353                 be->func->clear(be);
354         (void)ttm_tt_set_caching(ttm, tt_cached);
355         for (i = 0; i < ttm->num_pages; ++i) {
356                 cur_page = ttm->pages[i];
357                 ttm->pages[i] = NULL;
358                 if (cur_page) {
359                         if (page_count(cur_page) != 1)
360                                 printk(KERN_ERR TTM_PFX
361                                        "Erroneous page count. "
362                                        "Leaking pages.\n");
363                         ttm_mem_global_free(ttm->bdev->mem_glob, PAGE_SIZE,
364                                             PageHighMem(cur_page));
365                         __free_page(cur_page);
366                 }
367         }
368         ttm->state = tt_unpopulated;
369         ttm->first_himem_page = ttm->num_pages;
370         ttm->last_lomem_page = -1;
371 }
372
373 void ttm_tt_destroy(struct ttm_tt *ttm)
374 {
375         struct ttm_backend *be;
376
377         if (unlikely(ttm == NULL))
378                 return;
379
380         be = ttm->be;
381         if (likely(be != NULL)) {
382                 be->func->destroy(be);
383                 ttm->be = NULL;
384         }
385
386         if (likely(ttm->pages != NULL)) {
387                 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
388                         ttm_tt_free_user_pages(ttm);
389                 else
390                         ttm_tt_free_alloced_pages(ttm);
391
392                 ttm_tt_free_page_directory(ttm);
393         }
394
395         if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
396             ttm->swap_storage)
397                 fput(ttm->swap_storage);
398
399         kfree(ttm);
400 }
401
402 int ttm_tt_set_user(struct ttm_tt *ttm,
403                     struct task_struct *tsk,
404                     unsigned long start, unsigned long num_pages)
405 {
406         struct mm_struct *mm = tsk->mm;
407         int ret;
408         int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
409         struct ttm_mem_global *mem_glob = ttm->bdev->mem_glob;
410
411         BUG_ON(num_pages != ttm->num_pages);
412         BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
413
414         /**
415          * Account user pages as lowmem pages for now.
416          */
417
418         ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
419                                    false, false, false);
420         if (unlikely(ret != 0))
421                 return ret;
422
423         down_read(&mm->mmap_sem);
424         ret = get_user_pages(tsk, mm, start, num_pages,
425                              write, 0, ttm->pages, NULL);
426         up_read(&mm->mmap_sem);
427
428         if (ret != num_pages && write) {
429                 ttm_tt_free_user_pages(ttm);
430                 ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE, false);
431                 return -ENOMEM;
432         }
433
434         ttm->tsk = tsk;
435         ttm->start = start;
436         ttm->state = tt_unbound;
437
438         return 0;
439 }
440
441 struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
442                              uint32_t page_flags, struct page *dummy_read_page)
443 {
444         struct ttm_bo_driver *bo_driver = bdev->driver;
445         struct ttm_tt *ttm;
446
447         if (!bo_driver)
448                 return NULL;
449
450         ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
451         if (!ttm)
452                 return NULL;
453
454         ttm->bdev = bdev;
455
456         ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
457         ttm->first_himem_page = ttm->num_pages;
458         ttm->last_lomem_page = -1;
459         ttm->caching_state = tt_cached;
460         ttm->page_flags = page_flags;
461
462         ttm->dummy_read_page = dummy_read_page;
463
464         ttm_tt_alloc_page_directory(ttm);
465         if (!ttm->pages) {
466                 ttm_tt_destroy(ttm);
467                 printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
468                 return NULL;
469         }
470         ttm->be = bo_driver->create_ttm_backend_entry(bdev);
471         if (!ttm->be) {
472                 ttm_tt_destroy(ttm);
473                 printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
474                 return NULL;
475         }
476         ttm->state = tt_unpopulated;
477         return ttm;
478 }
479
480 void ttm_tt_unbind(struct ttm_tt *ttm)
481 {
482         int ret;
483         struct ttm_backend *be = ttm->be;
484
485         if (ttm->state == tt_bound) {
486                 ret = be->func->unbind(be);
487                 BUG_ON(ret);
488                 ttm->state = tt_unbound;
489         }
490 }
491
492 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
493 {
494         int ret = 0;
495         struct ttm_backend *be;
496
497         if (!ttm)
498                 return -EINVAL;
499
500         if (ttm->state == tt_bound)
501                 return 0;
502
503         be = ttm->be;
504
505         ret = ttm_tt_populate(ttm);
506         if (ret)
507                 return ret;
508
509         ret = be->func->bind(be, bo_mem);
510         if (ret) {
511                 printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
512                 return ret;
513         }
514
515         ttm->state = tt_bound;
516
517         if (ttm->page_flags & TTM_PAGE_FLAG_USER)
518                 ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
519         return 0;
520 }
521 EXPORT_SYMBOL(ttm_tt_bind);
522
523 static int ttm_tt_swapin(struct ttm_tt *ttm)
524 {
525         struct address_space *swap_space;
526         struct file *swap_storage;
527         struct page *from_page;
528         struct page *to_page;
529         void *from_virtual;
530         void *to_virtual;
531         int i;
532         int ret;
533
534         if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
535                 ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
536                                       ttm->num_pages);
537                 if (unlikely(ret != 0))
538                         return ret;
539
540                 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
541                 return 0;
542         }
543
544         swap_storage = ttm->swap_storage;
545         BUG_ON(swap_storage == NULL);
546
547         swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
548
549         for (i = 0; i < ttm->num_pages; ++i) {
550                 from_page = read_mapping_page(swap_space, i, NULL);
551                 if (IS_ERR(from_page))
552                         goto out_err;
553                 to_page = __ttm_tt_get_page(ttm, i);
554                 if (unlikely(to_page == NULL))
555                         goto out_err;
556
557                 preempt_disable();
558                 from_virtual = kmap_atomic(from_page, KM_USER0);
559                 to_virtual = kmap_atomic(to_page, KM_USER1);
560                 memcpy(to_virtual, from_virtual, PAGE_SIZE);
561                 kunmap_atomic(to_virtual, KM_USER1);
562                 kunmap_atomic(from_virtual, KM_USER0);
563                 preempt_enable();
564                 page_cache_release(from_page);
565         }
566
567         if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
568                 fput(swap_storage);
569         ttm->swap_storage = NULL;
570         ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
571
572         return 0;
573 out_err:
574         ttm_tt_free_alloced_pages(ttm);
575         return -ENOMEM;
576 }
577
578 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
579 {
580         struct address_space *swap_space;
581         struct file *swap_storage;
582         struct page *from_page;
583         struct page *to_page;
584         void *from_virtual;
585         void *to_virtual;
586         int i;
587
588         BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
589         BUG_ON(ttm->caching_state != tt_cached);
590
591         /*
592          * For user buffers, just unpin the pages, as there should be
593          * vma references.
594          */
595
596         if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
597                 ttm_tt_free_user_pages(ttm);
598                 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
599                 ttm->swap_storage = NULL;
600                 return 0;
601         }
602
603         if (!persistant_swap_storage) {
604                 swap_storage = shmem_file_setup("ttm swap",
605                                                 ttm->num_pages << PAGE_SHIFT,
606                                                 0);
607                 if (unlikely(IS_ERR(swap_storage))) {
608                         printk(KERN_ERR "Failed allocating swap storage.\n");
609                         return -ENOMEM;
610                 }
611         } else
612                 swap_storage = persistant_swap_storage;
613
614         swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
615
616         for (i = 0; i < ttm->num_pages; ++i) {
617                 from_page = ttm->pages[i];
618                 if (unlikely(from_page == NULL))
619                         continue;
620                 to_page = read_mapping_page(swap_space, i, NULL);
621                 if (unlikely(to_page == NULL))
622                         goto out_err;
623
624                 preempt_disable();
625                 from_virtual = kmap_atomic(from_page, KM_USER0);
626                 to_virtual = kmap_atomic(to_page, KM_USER1);
627                 memcpy(to_virtual, from_virtual, PAGE_SIZE);
628                 kunmap_atomic(to_virtual, KM_USER1);
629                 kunmap_atomic(from_virtual, KM_USER0);
630                 preempt_enable();
631                 set_page_dirty(to_page);
632                 mark_page_accessed(to_page);
633                 page_cache_release(to_page);
634         }
635
636         ttm_tt_free_alloced_pages(ttm);
637         ttm->swap_storage = swap_storage;
638         ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
639         if (persistant_swap_storage)
640                 ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
641
642         return 0;
643 out_err:
644         if (!persistant_swap_storage)
645                 fput(swap_storage);
646
647         return -ENOMEM;
648 }