Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/hch/vfs...
[pandora-kernel.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <linux/atomic.h>
41
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
49
50 static struct attribute ttm_bo_count = {
51         .name = "bo_count",
52         .mode = S_IRUGO
53 };
54
55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
56 {
57         int i;
58
59         for (i = 0; i <= TTM_PL_PRIV5; i++)
60                 if (flags & (1 << i)) {
61                         *mem_type = i;
62                         return 0;
63                 }
64         return -EINVAL;
65 }
66
67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68 {
69         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
70
71         printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
72         printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
73         printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
74         printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75         printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76         printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
77                 man->available_caching);
78         printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
79                 man->default_caching);
80         if (mem_type != TTM_PL_SYSTEM)
81                 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85                                         struct ttm_placement *placement)
86 {
87         int i, ret, mem_type;
88
89         printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90                 bo, bo->mem.num_pages, bo->mem.size >> 10,
91                 bo->mem.size >> 20);
92         for (i = 0; i < placement->num_placement; i++) {
93                 ret = ttm_mem_type_from_flags(placement->placement[i],
94                                                 &mem_type);
95                 if (ret)
96                         return;
97                 printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
98                         i, placement->placement[i], mem_type);
99                 ttm_mem_type_debug(bo->bdev, mem_type);
100         }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104                                   struct attribute *attr,
105                                   char *buffer)
106 {
107         struct ttm_bo_global *glob =
108                 container_of(kobj, struct ttm_bo_global, kobj);
109
110         return snprintf(buffer, PAGE_SIZE, "%lu\n",
111                         (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115         &ttm_bo_count,
116         NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120         .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124         .release = &ttm_bo_global_kobj_release,
125         .sysfs_ops = &ttm_bo_global_ops,
126         .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132         return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137         struct ttm_buffer_object *bo =
138             container_of(list_kref, struct ttm_buffer_object, list_kref);
139         struct ttm_bo_device *bdev = bo->bdev;
140
141         BUG_ON(atomic_read(&bo->list_kref.refcount));
142         BUG_ON(atomic_read(&bo->kref.refcount));
143         BUG_ON(atomic_read(&bo->cpu_writers));
144         BUG_ON(bo->sync_obj != NULL);
145         BUG_ON(bo->mem.mm_node != NULL);
146         BUG_ON(!list_empty(&bo->lru));
147         BUG_ON(!list_empty(&bo->ddestroy));
148
149         if (bo->ttm)
150                 ttm_tt_destroy(bo->ttm);
151         atomic_dec(&bo->glob->bo_count);
152         if (bo->destroy)
153                 bo->destroy(bo);
154         else {
155                 ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
156                 kfree(bo);
157         }
158 }
159
160 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
161 {
162         if (interruptible) {
163                 return wait_event_interruptible(bo->event_queue,
164                                                atomic_read(&bo->reserved) == 0);
165         } else {
166                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
167                 return 0;
168         }
169 }
170 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
171
172 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
173 {
174         struct ttm_bo_device *bdev = bo->bdev;
175         struct ttm_mem_type_manager *man;
176
177         BUG_ON(!atomic_read(&bo->reserved));
178
179         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
180
181                 BUG_ON(!list_empty(&bo->lru));
182
183                 man = &bdev->man[bo->mem.mem_type];
184                 list_add_tail(&bo->lru, &man->lru);
185                 kref_get(&bo->list_kref);
186
187                 if (bo->ttm != NULL) {
188                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
189                         kref_get(&bo->list_kref);
190                 }
191         }
192 }
193
194 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
195 {
196         int put_count = 0;
197
198         if (!list_empty(&bo->swap)) {
199                 list_del_init(&bo->swap);
200                 ++put_count;
201         }
202         if (!list_empty(&bo->lru)) {
203                 list_del_init(&bo->lru);
204                 ++put_count;
205         }
206
207         /*
208          * TODO: Add a driver hook to delete from
209          * driver-specific LRU's here.
210          */
211
212         return put_count;
213 }
214
215 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
216                           bool interruptible,
217                           bool no_wait, bool use_sequence, uint32_t sequence)
218 {
219         struct ttm_bo_global *glob = bo->glob;
220         int ret;
221
222         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
223                 /**
224                  * Deadlock avoidance for multi-bo reserving.
225                  */
226                 if (use_sequence && bo->seq_valid) {
227                         /**
228                          * We've already reserved this one.
229                          */
230                         if (unlikely(sequence == bo->val_seq))
231                                 return -EDEADLK;
232                         /**
233                          * Already reserved by a thread that will not back
234                          * off for us. We need to back off.
235                          */
236                         if (unlikely(sequence - bo->val_seq < (1 << 31)))
237                                 return -EAGAIN;
238                 }
239
240                 if (no_wait)
241                         return -EBUSY;
242
243                 spin_unlock(&glob->lru_lock);
244                 ret = ttm_bo_wait_unreserved(bo, interruptible);
245                 spin_lock(&glob->lru_lock);
246
247                 if (unlikely(ret))
248                         return ret;
249         }
250
251         if (use_sequence) {
252                 /**
253                  * Wake up waiters that may need to recheck for deadlock,
254                  * if we decreased the sequence number.
255                  */
256                 if (unlikely((bo->val_seq - sequence < (1 << 31))
257                              || !bo->seq_valid))
258                         wake_up_all(&bo->event_queue);
259
260                 bo->val_seq = sequence;
261                 bo->seq_valid = true;
262         } else {
263                 bo->seq_valid = false;
264         }
265
266         return 0;
267 }
268 EXPORT_SYMBOL(ttm_bo_reserve);
269
270 static void ttm_bo_ref_bug(struct kref *list_kref)
271 {
272         BUG();
273 }
274
275 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
276                          bool never_free)
277 {
278         kref_sub(&bo->list_kref, count,
279                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
280 }
281
282 int ttm_bo_reserve(struct ttm_buffer_object *bo,
283                    bool interruptible,
284                    bool no_wait, bool use_sequence, uint32_t sequence)
285 {
286         struct ttm_bo_global *glob = bo->glob;
287         int put_count = 0;
288         int ret;
289
290         spin_lock(&glob->lru_lock);
291         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
292                                     sequence);
293         if (likely(ret == 0))
294                 put_count = ttm_bo_del_from_lru(bo);
295         spin_unlock(&glob->lru_lock);
296
297         ttm_bo_list_ref_sub(bo, put_count, true);
298
299         return ret;
300 }
301
302 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
303 {
304         ttm_bo_add_to_lru(bo);
305         atomic_set(&bo->reserved, 0);
306         wake_up_all(&bo->event_queue);
307 }
308
309 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
310 {
311         struct ttm_bo_global *glob = bo->glob;
312
313         spin_lock(&glob->lru_lock);
314         ttm_bo_unreserve_locked(bo);
315         spin_unlock(&glob->lru_lock);
316 }
317 EXPORT_SYMBOL(ttm_bo_unreserve);
318
319 /*
320  * Call bo->mutex locked.
321  */
322 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
323 {
324         struct ttm_bo_device *bdev = bo->bdev;
325         struct ttm_bo_global *glob = bo->glob;
326         int ret = 0;
327         uint32_t page_flags = 0;
328
329         TTM_ASSERT_LOCKED(&bo->mutex);
330         bo->ttm = NULL;
331
332         if (bdev->need_dma32)
333                 page_flags |= TTM_PAGE_FLAG_DMA32;
334
335         switch (bo->type) {
336         case ttm_bo_type_device:
337                 if (zero_alloc)
338                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
339         case ttm_bo_type_kernel:
340                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
341                                         page_flags, glob->dummy_read_page);
342                 if (unlikely(bo->ttm == NULL))
343                         ret = -ENOMEM;
344                 break;
345         case ttm_bo_type_user:
346                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
347                                         page_flags | TTM_PAGE_FLAG_USER,
348                                         glob->dummy_read_page);
349                 if (unlikely(bo->ttm == NULL)) {
350                         ret = -ENOMEM;
351                         break;
352                 }
353
354                 ret = ttm_tt_set_user(bo->ttm, current,
355                                       bo->buffer_start, bo->num_pages);
356                 if (unlikely(ret != 0)) {
357                         ttm_tt_destroy(bo->ttm);
358                         bo->ttm = NULL;
359                 }
360                 break;
361         default:
362                 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
363                 ret = -EINVAL;
364                 break;
365         }
366
367         return ret;
368 }
369
370 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
371                                   struct ttm_mem_reg *mem,
372                                   bool evict, bool interruptible,
373                                   bool no_wait_reserve, bool no_wait_gpu)
374 {
375         struct ttm_bo_device *bdev = bo->bdev;
376         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
377         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
378         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
379         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
380         int ret = 0;
381
382         if (old_is_pci || new_is_pci ||
383             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
384                 ret = ttm_mem_io_lock(old_man, true);
385                 if (unlikely(ret != 0))
386                         goto out_err;
387                 ttm_bo_unmap_virtual_locked(bo);
388                 ttm_mem_io_unlock(old_man);
389         }
390
391         /*
392          * Create and bind a ttm if required.
393          */
394
395         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
396                 if (bo->ttm == NULL) {
397                         bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
398                         ret = ttm_bo_add_ttm(bo, zero);
399                         if (ret)
400                                 goto out_err;
401                 }
402
403                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
404                 if (ret)
405                         goto out_err;
406
407                 if (mem->mem_type != TTM_PL_SYSTEM) {
408                         ret = ttm_tt_bind(bo->ttm, mem);
409                         if (ret)
410                                 goto out_err;
411                 }
412
413                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
414                         if (bdev->driver->move_notify)
415                                 bdev->driver->move_notify(bo, mem);
416                         bo->mem = *mem;
417                         mem->mm_node = NULL;
418                         goto moved;
419                 }
420         }
421
422         if (bdev->driver->move_notify)
423                 bdev->driver->move_notify(bo, mem);
424
425         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
426             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
427                 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
428         else if (bdev->driver->move)
429                 ret = bdev->driver->move(bo, evict, interruptible,
430                                          no_wait_reserve, no_wait_gpu, mem);
431         else
432                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
433
434         if (ret)
435                 goto out_err;
436
437 moved:
438         if (bo->evicted) {
439                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
440                 if (ret)
441                         printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
442                 bo->evicted = false;
443         }
444
445         if (bo->mem.mm_node) {
446                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
447                     bdev->man[bo->mem.mem_type].gpu_offset;
448                 bo->cur_placement = bo->mem.placement;
449         } else
450                 bo->offset = 0;
451
452         return 0;
453
454 out_err:
455         new_man = &bdev->man[bo->mem.mem_type];
456         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
457                 ttm_tt_unbind(bo->ttm);
458                 ttm_tt_destroy(bo->ttm);
459                 bo->ttm = NULL;
460         }
461
462         return ret;
463 }
464
465 /**
466  * Call bo::reserved.
467  * Will release GPU memory type usage on destruction.
468  * This is the place to put in driver specific hooks to release
469  * driver private resources.
470  * Will release the bo::reserved lock.
471  */
472
473 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
474 {
475         if (bo->ttm) {
476                 ttm_tt_unbind(bo->ttm);
477                 ttm_tt_destroy(bo->ttm);
478                 bo->ttm = NULL;
479         }
480         ttm_bo_mem_put(bo, &bo->mem);
481
482         atomic_set(&bo->reserved, 0);
483
484         /*
485          * Make processes trying to reserve really pick it up.
486          */
487         smp_mb__after_atomic_dec();
488         wake_up_all(&bo->event_queue);
489 }
490
491 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
492 {
493         struct ttm_bo_device *bdev = bo->bdev;
494         struct ttm_bo_global *glob = bo->glob;
495         struct ttm_bo_driver *driver;
496         void *sync_obj = NULL;
497         void *sync_obj_arg;
498         int put_count;
499         int ret;
500
501         spin_lock(&bdev->fence_lock);
502         (void) ttm_bo_wait(bo, false, false, true);
503         if (!bo->sync_obj) {
504
505                 spin_lock(&glob->lru_lock);
506
507                 /**
508                  * Lock inversion between bo:reserve and bdev::fence_lock here,
509                  * but that's OK, since we're only trylocking.
510                  */
511
512                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
513
514                 if (unlikely(ret == -EBUSY))
515                         goto queue;
516
517                 spin_unlock(&bdev->fence_lock);
518                 put_count = ttm_bo_del_from_lru(bo);
519
520                 spin_unlock(&glob->lru_lock);
521                 ttm_bo_cleanup_memtype_use(bo);
522
523                 ttm_bo_list_ref_sub(bo, put_count, true);
524
525                 return;
526         } else {
527                 spin_lock(&glob->lru_lock);
528         }
529 queue:
530         driver = bdev->driver;
531         if (bo->sync_obj)
532                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
533         sync_obj_arg = bo->sync_obj_arg;
534
535         kref_get(&bo->list_kref);
536         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
537         spin_unlock(&glob->lru_lock);
538         spin_unlock(&bdev->fence_lock);
539
540         if (sync_obj) {
541                 driver->sync_obj_flush(sync_obj, sync_obj_arg);
542                 driver->sync_obj_unref(&sync_obj);
543         }
544         schedule_delayed_work(&bdev->wq,
545                               ((HZ / 100) < 1) ? 1 : HZ / 100);
546 }
547
548 /**
549  * function ttm_bo_cleanup_refs
550  * If bo idle, remove from delayed- and lru lists, and unref.
551  * If not idle, do nothing.
552  *
553  * @interruptible         Any sleeps should occur interruptibly.
554  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
555  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
556  */
557
558 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
559                                bool interruptible,
560                                bool no_wait_reserve,
561                                bool no_wait_gpu)
562 {
563         struct ttm_bo_device *bdev = bo->bdev;
564         struct ttm_bo_global *glob = bo->glob;
565         int put_count;
566         int ret = 0;
567
568 retry:
569         spin_lock(&bdev->fence_lock);
570         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
571         spin_unlock(&bdev->fence_lock);
572
573         if (unlikely(ret != 0))
574                 return ret;
575
576         spin_lock(&glob->lru_lock);
577         ret = ttm_bo_reserve_locked(bo, interruptible,
578                                     no_wait_reserve, false, 0);
579
580         if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
581                 spin_unlock(&glob->lru_lock);
582                 return ret;
583         }
584
585         /**
586          * We can re-check for sync object without taking
587          * the bo::lock since setting the sync object requires
588          * also bo::reserved. A busy object at this point may
589          * be caused by another thread recently starting an accelerated
590          * eviction.
591          */
592
593         if (unlikely(bo->sync_obj)) {
594                 atomic_set(&bo->reserved, 0);
595                 wake_up_all(&bo->event_queue);
596                 spin_unlock(&glob->lru_lock);
597                 goto retry;
598         }
599
600         put_count = ttm_bo_del_from_lru(bo);
601         list_del_init(&bo->ddestroy);
602         ++put_count;
603
604         spin_unlock(&glob->lru_lock);
605         ttm_bo_cleanup_memtype_use(bo);
606
607         ttm_bo_list_ref_sub(bo, put_count, true);
608
609         return 0;
610 }
611
612 /**
613  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
614  * encountered buffers.
615  */
616
617 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
618 {
619         struct ttm_bo_global *glob = bdev->glob;
620         struct ttm_buffer_object *entry = NULL;
621         int ret = 0;
622
623         spin_lock(&glob->lru_lock);
624         if (list_empty(&bdev->ddestroy))
625                 goto out_unlock;
626
627         entry = list_first_entry(&bdev->ddestroy,
628                 struct ttm_buffer_object, ddestroy);
629         kref_get(&entry->list_kref);
630
631         for (;;) {
632                 struct ttm_buffer_object *nentry = NULL;
633
634                 if (entry->ddestroy.next != &bdev->ddestroy) {
635                         nentry = list_first_entry(&entry->ddestroy,
636                                 struct ttm_buffer_object, ddestroy);
637                         kref_get(&nentry->list_kref);
638                 }
639
640                 spin_unlock(&glob->lru_lock);
641                 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
642                                           !remove_all);
643                 kref_put(&entry->list_kref, ttm_bo_release_list);
644                 entry = nentry;
645
646                 if (ret || !entry)
647                         goto out;
648
649                 spin_lock(&glob->lru_lock);
650                 if (list_empty(&entry->ddestroy))
651                         break;
652         }
653
654 out_unlock:
655         spin_unlock(&glob->lru_lock);
656 out:
657         if (entry)
658                 kref_put(&entry->list_kref, ttm_bo_release_list);
659         return ret;
660 }
661
662 static void ttm_bo_delayed_workqueue(struct work_struct *work)
663 {
664         struct ttm_bo_device *bdev =
665             container_of(work, struct ttm_bo_device, wq.work);
666
667         if (ttm_bo_delayed_delete(bdev, false)) {
668                 schedule_delayed_work(&bdev->wq,
669                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
670         }
671 }
672
673 static void ttm_bo_release(struct kref *kref)
674 {
675         struct ttm_buffer_object *bo =
676             container_of(kref, struct ttm_buffer_object, kref);
677         struct ttm_bo_device *bdev = bo->bdev;
678         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
679
680         if (likely(bo->vm_node != NULL)) {
681                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
682                 drm_mm_put_block(bo->vm_node);
683                 bo->vm_node = NULL;
684         }
685         write_unlock(&bdev->vm_lock);
686         ttm_mem_io_lock(man, false);
687         ttm_mem_io_free_vm(bo);
688         ttm_mem_io_unlock(man);
689         ttm_bo_cleanup_refs_or_queue(bo);
690         kref_put(&bo->list_kref, ttm_bo_release_list);
691         write_lock(&bdev->vm_lock);
692 }
693
694 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
695 {
696         struct ttm_buffer_object *bo = *p_bo;
697         struct ttm_bo_device *bdev = bo->bdev;
698
699         *p_bo = NULL;
700         write_lock(&bdev->vm_lock);
701         kref_put(&bo->kref, ttm_bo_release);
702         write_unlock(&bdev->vm_lock);
703 }
704 EXPORT_SYMBOL(ttm_bo_unref);
705
706 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
707 {
708         return cancel_delayed_work_sync(&bdev->wq);
709 }
710 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
711
712 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
713 {
714         if (resched)
715                 schedule_delayed_work(&bdev->wq,
716                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
717 }
718 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
719
720 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
721                         bool no_wait_reserve, bool no_wait_gpu)
722 {
723         struct ttm_bo_device *bdev = bo->bdev;
724         struct ttm_mem_reg evict_mem;
725         struct ttm_placement placement;
726         int ret = 0;
727
728         spin_lock(&bdev->fence_lock);
729         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
730         spin_unlock(&bdev->fence_lock);
731
732         if (unlikely(ret != 0)) {
733                 if (ret != -ERESTARTSYS) {
734                         printk(KERN_ERR TTM_PFX
735                                "Failed to expire sync object before "
736                                "buffer eviction.\n");
737                 }
738                 goto out;
739         }
740
741         BUG_ON(!atomic_read(&bo->reserved));
742
743         evict_mem = bo->mem;
744         evict_mem.mm_node = NULL;
745         evict_mem.bus.io_reserved_vm = false;
746         evict_mem.bus.io_reserved_count = 0;
747
748         placement.fpfn = 0;
749         placement.lpfn = 0;
750         placement.num_placement = 0;
751         placement.num_busy_placement = 0;
752         bdev->driver->evict_flags(bo, &placement);
753         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
754                                 no_wait_reserve, no_wait_gpu);
755         if (ret) {
756                 if (ret != -ERESTARTSYS) {
757                         printk(KERN_ERR TTM_PFX
758                                "Failed to find memory space for "
759                                "buffer 0x%p eviction.\n", bo);
760                         ttm_bo_mem_space_debug(bo, &placement);
761                 }
762                 goto out;
763         }
764
765         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
766                                      no_wait_reserve, no_wait_gpu);
767         if (ret) {
768                 if (ret != -ERESTARTSYS)
769                         printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
770                 ttm_bo_mem_put(bo, &evict_mem);
771                 goto out;
772         }
773         bo->evicted = true;
774 out:
775         return ret;
776 }
777
778 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
779                                 uint32_t mem_type,
780                                 bool interruptible, bool no_wait_reserve,
781                                 bool no_wait_gpu)
782 {
783         struct ttm_bo_global *glob = bdev->glob;
784         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
785         struct ttm_buffer_object *bo;
786         int ret, put_count = 0;
787
788 retry:
789         spin_lock(&glob->lru_lock);
790         if (list_empty(&man->lru)) {
791                 spin_unlock(&glob->lru_lock);
792                 return -EBUSY;
793         }
794
795         bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
796         kref_get(&bo->list_kref);
797
798         if (!list_empty(&bo->ddestroy)) {
799                 spin_unlock(&glob->lru_lock);
800                 ret = ttm_bo_cleanup_refs(bo, interruptible,
801                                           no_wait_reserve, no_wait_gpu);
802                 kref_put(&bo->list_kref, ttm_bo_release_list);
803
804                 if (likely(ret == 0 || ret == -ERESTARTSYS))
805                         return ret;
806
807                 goto retry;
808         }
809
810         ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
811
812         if (unlikely(ret == -EBUSY)) {
813                 spin_unlock(&glob->lru_lock);
814                 if (likely(!no_wait_gpu))
815                         ret = ttm_bo_wait_unreserved(bo, interruptible);
816
817                 kref_put(&bo->list_kref, ttm_bo_release_list);
818
819                 /**
820                  * We *need* to retry after releasing the lru lock.
821                  */
822
823                 if (unlikely(ret != 0))
824                         return ret;
825                 goto retry;
826         }
827
828         put_count = ttm_bo_del_from_lru(bo);
829         spin_unlock(&glob->lru_lock);
830
831         BUG_ON(ret != 0);
832
833         ttm_bo_list_ref_sub(bo, put_count, true);
834
835         ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
836         ttm_bo_unreserve(bo);
837
838         kref_put(&bo->list_kref, ttm_bo_release_list);
839         return ret;
840 }
841
842 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
843 {
844         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
845
846         if (mem->mm_node)
847                 (*man->func->put_node)(man, mem);
848 }
849 EXPORT_SYMBOL(ttm_bo_mem_put);
850
851 /**
852  * Repeatedly evict memory from the LRU for @mem_type until we create enough
853  * space, or we've evicted everything and there isn't enough space.
854  */
855 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
856                                         uint32_t mem_type,
857                                         struct ttm_placement *placement,
858                                         struct ttm_mem_reg *mem,
859                                         bool interruptible,
860                                         bool no_wait_reserve,
861                                         bool no_wait_gpu)
862 {
863         struct ttm_bo_device *bdev = bo->bdev;
864         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
865         int ret;
866
867         do {
868                 ret = (*man->func->get_node)(man, bo, placement, mem);
869                 if (unlikely(ret != 0))
870                         return ret;
871                 if (mem->mm_node)
872                         break;
873                 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
874                                                 no_wait_reserve, no_wait_gpu);
875                 if (unlikely(ret != 0))
876                         return ret;
877         } while (1);
878         if (mem->mm_node == NULL)
879                 return -ENOMEM;
880         mem->mem_type = mem_type;
881         return 0;
882 }
883
884 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
885                                       uint32_t cur_placement,
886                                       uint32_t proposed_placement)
887 {
888         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
889         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
890
891         /**
892          * Keep current caching if possible.
893          */
894
895         if ((cur_placement & caching) != 0)
896                 result |= (cur_placement & caching);
897         else if ((man->default_caching & caching) != 0)
898                 result |= man->default_caching;
899         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
900                 result |= TTM_PL_FLAG_CACHED;
901         else if ((TTM_PL_FLAG_WC & caching) != 0)
902                 result |= TTM_PL_FLAG_WC;
903         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
904                 result |= TTM_PL_FLAG_UNCACHED;
905
906         return result;
907 }
908
909 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
910                                  bool disallow_fixed,
911                                  uint32_t mem_type,
912                                  uint32_t proposed_placement,
913                                  uint32_t *masked_placement)
914 {
915         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
916
917         if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
918                 return false;
919
920         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
921                 return false;
922
923         if ((proposed_placement & man->available_caching) == 0)
924                 return false;
925
926         cur_flags |= (proposed_placement & man->available_caching);
927
928         *masked_placement = cur_flags;
929         return true;
930 }
931
932 /**
933  * Creates space for memory region @mem according to its type.
934  *
935  * This function first searches for free space in compatible memory types in
936  * the priority order defined by the driver.  If free space isn't found, then
937  * ttm_bo_mem_force_space is attempted in priority order to evict and find
938  * space.
939  */
940 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
941                         struct ttm_placement *placement,
942                         struct ttm_mem_reg *mem,
943                         bool interruptible, bool no_wait_reserve,
944                         bool no_wait_gpu)
945 {
946         struct ttm_bo_device *bdev = bo->bdev;
947         struct ttm_mem_type_manager *man;
948         uint32_t mem_type = TTM_PL_SYSTEM;
949         uint32_t cur_flags = 0;
950         bool type_found = false;
951         bool type_ok = false;
952         bool has_erestartsys = false;
953         int i, ret;
954
955         mem->mm_node = NULL;
956         for (i = 0; i < placement->num_placement; ++i) {
957                 ret = ttm_mem_type_from_flags(placement->placement[i],
958                                                 &mem_type);
959                 if (ret)
960                         return ret;
961                 man = &bdev->man[mem_type];
962
963                 type_ok = ttm_bo_mt_compatible(man,
964                                                 bo->type == ttm_bo_type_user,
965                                                 mem_type,
966                                                 placement->placement[i],
967                                                 &cur_flags);
968
969                 if (!type_ok)
970                         continue;
971
972                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
973                                                   cur_flags);
974                 /*
975                  * Use the access and other non-mapping-related flag bits from
976                  * the memory placement flags to the current flags
977                  */
978                 ttm_flag_masked(&cur_flags, placement->placement[i],
979                                 ~TTM_PL_MASK_MEMTYPE);
980
981                 if (mem_type == TTM_PL_SYSTEM)
982                         break;
983
984                 if (man->has_type && man->use_type) {
985                         type_found = true;
986                         ret = (*man->func->get_node)(man, bo, placement, mem);
987                         if (unlikely(ret))
988                                 return ret;
989                 }
990                 if (mem->mm_node)
991                         break;
992         }
993
994         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
995                 mem->mem_type = mem_type;
996                 mem->placement = cur_flags;
997                 return 0;
998         }
999
1000         if (!type_found)
1001                 return -EINVAL;
1002
1003         for (i = 0; i < placement->num_busy_placement; ++i) {
1004                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1005                                                 &mem_type);
1006                 if (ret)
1007                         return ret;
1008                 man = &bdev->man[mem_type];
1009                 if (!man->has_type)
1010                         continue;
1011                 if (!ttm_bo_mt_compatible(man,
1012                                                 bo->type == ttm_bo_type_user,
1013                                                 mem_type,
1014                                                 placement->busy_placement[i],
1015                                                 &cur_flags))
1016                         continue;
1017
1018                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1019                                                   cur_flags);
1020                 /*
1021                  * Use the access and other non-mapping-related flag bits from
1022                  * the memory placement flags to the current flags
1023                  */
1024                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1025                                 ~TTM_PL_MASK_MEMTYPE);
1026
1027
1028                 if (mem_type == TTM_PL_SYSTEM) {
1029                         mem->mem_type = mem_type;
1030                         mem->placement = cur_flags;
1031                         mem->mm_node = NULL;
1032                         return 0;
1033                 }
1034
1035                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1036                                                 interruptible, no_wait_reserve, no_wait_gpu);
1037                 if (ret == 0 && mem->mm_node) {
1038                         mem->placement = cur_flags;
1039                         return 0;
1040                 }
1041                 if (ret == -ERESTARTSYS)
1042                         has_erestartsys = true;
1043         }
1044         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1045         return ret;
1046 }
1047 EXPORT_SYMBOL(ttm_bo_mem_space);
1048
1049 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1050 {
1051         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1052                 return -EBUSY;
1053
1054         return wait_event_interruptible(bo->event_queue,
1055                                         atomic_read(&bo->cpu_writers) == 0);
1056 }
1057 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1058
1059 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1060                         struct ttm_placement *placement,
1061                         bool interruptible, bool no_wait_reserve,
1062                         bool no_wait_gpu)
1063 {
1064         int ret = 0;
1065         struct ttm_mem_reg mem;
1066         struct ttm_bo_device *bdev = bo->bdev;
1067
1068         BUG_ON(!atomic_read(&bo->reserved));
1069
1070         /*
1071          * FIXME: It's possible to pipeline buffer moves.
1072          * Have the driver move function wait for idle when necessary,
1073          * instead of doing it here.
1074          */
1075         spin_lock(&bdev->fence_lock);
1076         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1077         spin_unlock(&bdev->fence_lock);
1078         if (ret)
1079                 return ret;
1080         mem.num_pages = bo->num_pages;
1081         mem.size = mem.num_pages << PAGE_SHIFT;
1082         mem.page_alignment = bo->mem.page_alignment;
1083         mem.bus.io_reserved_vm = false;
1084         mem.bus.io_reserved_count = 0;
1085         /*
1086          * Determine where to move the buffer.
1087          */
1088         ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1089         if (ret)
1090                 goto out_unlock;
1091         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1092 out_unlock:
1093         if (ret && mem.mm_node)
1094                 ttm_bo_mem_put(bo, &mem);
1095         return ret;
1096 }
1097
1098 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1099                              struct ttm_mem_reg *mem)
1100 {
1101         int i;
1102
1103         if (mem->mm_node && placement->lpfn != 0 &&
1104             (mem->start < placement->fpfn ||
1105              mem->start + mem->num_pages > placement->lpfn))
1106                 return -1;
1107
1108         for (i = 0; i < placement->num_placement; i++) {
1109                 if ((placement->placement[i] & mem->placement &
1110                         TTM_PL_MASK_CACHING) &&
1111                         (placement->placement[i] & mem->placement &
1112                         TTM_PL_MASK_MEM))
1113                         return i;
1114         }
1115         return -1;
1116 }
1117
1118 int ttm_bo_validate(struct ttm_buffer_object *bo,
1119                         struct ttm_placement *placement,
1120                         bool interruptible, bool no_wait_reserve,
1121                         bool no_wait_gpu)
1122 {
1123         int ret;
1124
1125         BUG_ON(!atomic_read(&bo->reserved));
1126         /* Check that range is valid */
1127         if (placement->lpfn || placement->fpfn)
1128                 if (placement->fpfn > placement->lpfn ||
1129                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1130                         return -EINVAL;
1131         /*
1132          * Check whether we need to move buffer.
1133          */
1134         ret = ttm_bo_mem_compat(placement, &bo->mem);
1135         if (ret < 0) {
1136                 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1137                 if (ret)
1138                         return ret;
1139         } else {
1140                 /*
1141                  * Use the access and other non-mapping-related flag bits from
1142                  * the compatible memory placement flags to the active flags
1143                  */
1144                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1145                                 ~TTM_PL_MASK_MEMTYPE);
1146         }
1147         /*
1148          * We might need to add a TTM.
1149          */
1150         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1151                 ret = ttm_bo_add_ttm(bo, true);
1152                 if (ret)
1153                         return ret;
1154         }
1155         return 0;
1156 }
1157 EXPORT_SYMBOL(ttm_bo_validate);
1158
1159 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1160                                 struct ttm_placement *placement)
1161 {
1162         BUG_ON((placement->fpfn || placement->lpfn) &&
1163                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1164
1165         return 0;
1166 }
1167
1168 int ttm_bo_init(struct ttm_bo_device *bdev,
1169                 struct ttm_buffer_object *bo,
1170                 unsigned long size,
1171                 enum ttm_bo_type type,
1172                 struct ttm_placement *placement,
1173                 uint32_t page_alignment,
1174                 unsigned long buffer_start,
1175                 bool interruptible,
1176                 struct file *persistent_swap_storage,
1177                 size_t acc_size,
1178                 void (*destroy) (struct ttm_buffer_object *))
1179 {
1180         int ret = 0;
1181         unsigned long num_pages;
1182
1183         size += buffer_start & ~PAGE_MASK;
1184         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185         if (num_pages == 0) {
1186                 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1187                 if (destroy)
1188                         (*destroy)(bo);
1189                 else
1190                         kfree(bo);
1191                 return -EINVAL;
1192         }
1193         bo->destroy = destroy;
1194
1195         kref_init(&bo->kref);
1196         kref_init(&bo->list_kref);
1197         atomic_set(&bo->cpu_writers, 0);
1198         atomic_set(&bo->reserved, 1);
1199         init_waitqueue_head(&bo->event_queue);
1200         INIT_LIST_HEAD(&bo->lru);
1201         INIT_LIST_HEAD(&bo->ddestroy);
1202         INIT_LIST_HEAD(&bo->swap);
1203         INIT_LIST_HEAD(&bo->io_reserve_lru);
1204         bo->bdev = bdev;
1205         bo->glob = bdev->glob;
1206         bo->type = type;
1207         bo->num_pages = num_pages;
1208         bo->mem.size = num_pages << PAGE_SHIFT;
1209         bo->mem.mem_type = TTM_PL_SYSTEM;
1210         bo->mem.num_pages = bo->num_pages;
1211         bo->mem.mm_node = NULL;
1212         bo->mem.page_alignment = page_alignment;
1213         bo->mem.bus.io_reserved_vm = false;
1214         bo->mem.bus.io_reserved_count = 0;
1215         bo->buffer_start = buffer_start & PAGE_MASK;
1216         bo->priv_flags = 0;
1217         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1218         bo->seq_valid = false;
1219         bo->persistent_swap_storage = persistent_swap_storage;
1220         bo->acc_size = acc_size;
1221         atomic_inc(&bo->glob->bo_count);
1222
1223         ret = ttm_bo_check_placement(bo, placement);
1224         if (unlikely(ret != 0))
1225                 goto out_err;
1226
1227         /*
1228          * For ttm_bo_type_device buffers, allocate
1229          * address space from the device.
1230          */
1231         if (bo->type == ttm_bo_type_device) {
1232                 ret = ttm_bo_setup_vm(bo);
1233                 if (ret)
1234                         goto out_err;
1235         }
1236
1237         ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1238         if (ret)
1239                 goto out_err;
1240
1241         ttm_bo_unreserve(bo);
1242         return 0;
1243
1244 out_err:
1245         ttm_bo_unreserve(bo);
1246         ttm_bo_unref(&bo);
1247
1248         return ret;
1249 }
1250 EXPORT_SYMBOL(ttm_bo_init);
1251
1252 static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1253                                  unsigned long num_pages)
1254 {
1255         size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1256             PAGE_MASK;
1257
1258         return glob->ttm_bo_size + 2 * page_array_size;
1259 }
1260
1261 int ttm_bo_create(struct ttm_bo_device *bdev,
1262                         unsigned long size,
1263                         enum ttm_bo_type type,
1264                         struct ttm_placement *placement,
1265                         uint32_t page_alignment,
1266                         unsigned long buffer_start,
1267                         bool interruptible,
1268                         struct file *persistent_swap_storage,
1269                         struct ttm_buffer_object **p_bo)
1270 {
1271         struct ttm_buffer_object *bo;
1272         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1273         int ret;
1274
1275         size_t acc_size =
1276             ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1277         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1278         if (unlikely(ret != 0))
1279                 return ret;
1280
1281         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1282
1283         if (unlikely(bo == NULL)) {
1284                 ttm_mem_global_free(mem_glob, acc_size);
1285                 return -ENOMEM;
1286         }
1287
1288         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1289                                 buffer_start, interruptible,
1290                                 persistent_swap_storage, acc_size, NULL);
1291         if (likely(ret == 0))
1292                 *p_bo = bo;
1293
1294         return ret;
1295 }
1296 EXPORT_SYMBOL(ttm_bo_create);
1297
1298 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1299                                         unsigned mem_type, bool allow_errors)
1300 {
1301         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1302         struct ttm_bo_global *glob = bdev->glob;
1303         int ret;
1304
1305         /*
1306          * Can't use standard list traversal since we're unlocking.
1307          */
1308
1309         spin_lock(&glob->lru_lock);
1310         while (!list_empty(&man->lru)) {
1311                 spin_unlock(&glob->lru_lock);
1312                 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1313                 if (ret) {
1314                         if (allow_errors) {
1315                                 return ret;
1316                         } else {
1317                                 printk(KERN_ERR TTM_PFX
1318                                         "Cleanup eviction failed\n");
1319                         }
1320                 }
1321                 spin_lock(&glob->lru_lock);
1322         }
1323         spin_unlock(&glob->lru_lock);
1324         return 0;
1325 }
1326
1327 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1328 {
1329         struct ttm_mem_type_manager *man;
1330         int ret = -EINVAL;
1331
1332         if (mem_type >= TTM_NUM_MEM_TYPES) {
1333                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1334                 return ret;
1335         }
1336         man = &bdev->man[mem_type];
1337
1338         if (!man->has_type) {
1339                 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1340                        "memory manager type %u\n", mem_type);
1341                 return ret;
1342         }
1343
1344         man->use_type = false;
1345         man->has_type = false;
1346
1347         ret = 0;
1348         if (mem_type > 0) {
1349                 ttm_bo_force_list_clean(bdev, mem_type, false);
1350
1351                 ret = (*man->func->takedown)(man);
1352         }
1353
1354         return ret;
1355 }
1356 EXPORT_SYMBOL(ttm_bo_clean_mm);
1357
1358 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1359 {
1360         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1361
1362         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1363                 printk(KERN_ERR TTM_PFX
1364                        "Illegal memory manager memory type %u.\n",
1365                        mem_type);
1366                 return -EINVAL;
1367         }
1368
1369         if (!man->has_type) {
1370                 printk(KERN_ERR TTM_PFX
1371                        "Memory type %u has not been initialized.\n",
1372                        mem_type);
1373                 return 0;
1374         }
1375
1376         return ttm_bo_force_list_clean(bdev, mem_type, true);
1377 }
1378 EXPORT_SYMBOL(ttm_bo_evict_mm);
1379
1380 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1381                         unsigned long p_size)
1382 {
1383         int ret = -EINVAL;
1384         struct ttm_mem_type_manager *man;
1385
1386         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1387         man = &bdev->man[type];
1388         BUG_ON(man->has_type);
1389         man->io_reserve_fastpath = true;
1390         man->use_io_reserve_lru = false;
1391         mutex_init(&man->io_reserve_mutex);
1392         INIT_LIST_HEAD(&man->io_reserve_lru);
1393
1394         ret = bdev->driver->init_mem_type(bdev, type, man);
1395         if (ret)
1396                 return ret;
1397         man->bdev = bdev;
1398
1399         ret = 0;
1400         if (type != TTM_PL_SYSTEM) {
1401                 ret = (*man->func->init)(man, p_size);
1402                 if (ret)
1403                         return ret;
1404         }
1405         man->has_type = true;
1406         man->use_type = true;
1407         man->size = p_size;
1408
1409         INIT_LIST_HEAD(&man->lru);
1410
1411         return 0;
1412 }
1413 EXPORT_SYMBOL(ttm_bo_init_mm);
1414
1415 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1416 {
1417         struct ttm_bo_global *glob =
1418                 container_of(kobj, struct ttm_bo_global, kobj);
1419
1420         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1421         __free_page(glob->dummy_read_page);
1422         kfree(glob);
1423 }
1424
1425 void ttm_bo_global_release(struct drm_global_reference *ref)
1426 {
1427         struct ttm_bo_global *glob = ref->object;
1428
1429         kobject_del(&glob->kobj);
1430         kobject_put(&glob->kobj);
1431 }
1432 EXPORT_SYMBOL(ttm_bo_global_release);
1433
1434 int ttm_bo_global_init(struct drm_global_reference *ref)
1435 {
1436         struct ttm_bo_global_ref *bo_ref =
1437                 container_of(ref, struct ttm_bo_global_ref, ref);
1438         struct ttm_bo_global *glob = ref->object;
1439         int ret;
1440
1441         mutex_init(&glob->device_list_mutex);
1442         spin_lock_init(&glob->lru_lock);
1443         glob->mem_glob = bo_ref->mem_glob;
1444         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1445
1446         if (unlikely(glob->dummy_read_page == NULL)) {
1447                 ret = -ENOMEM;
1448                 goto out_no_drp;
1449         }
1450
1451         INIT_LIST_HEAD(&glob->swap_lru);
1452         INIT_LIST_HEAD(&glob->device_list);
1453
1454         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1455         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1456         if (unlikely(ret != 0)) {
1457                 printk(KERN_ERR TTM_PFX
1458                        "Could not register buffer object swapout.\n");
1459                 goto out_no_shrink;
1460         }
1461
1462         glob->ttm_bo_extra_size =
1463                 ttm_round_pot(sizeof(struct ttm_tt)) +
1464                 ttm_round_pot(sizeof(struct ttm_backend));
1465
1466         glob->ttm_bo_size = glob->ttm_bo_extra_size +
1467                 ttm_round_pot(sizeof(struct ttm_buffer_object));
1468
1469         atomic_set(&glob->bo_count, 0);
1470
1471         ret = kobject_init_and_add(
1472                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1473         if (unlikely(ret != 0))
1474                 kobject_put(&glob->kobj);
1475         return ret;
1476 out_no_shrink:
1477         __free_page(glob->dummy_read_page);
1478 out_no_drp:
1479         kfree(glob);
1480         return ret;
1481 }
1482 EXPORT_SYMBOL(ttm_bo_global_init);
1483
1484
1485 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1486 {
1487         int ret = 0;
1488         unsigned i = TTM_NUM_MEM_TYPES;
1489         struct ttm_mem_type_manager *man;
1490         struct ttm_bo_global *glob = bdev->glob;
1491
1492         while (i--) {
1493                 man = &bdev->man[i];
1494                 if (man->has_type) {
1495                         man->use_type = false;
1496                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1497                                 ret = -EBUSY;
1498                                 printk(KERN_ERR TTM_PFX
1499                                        "DRM memory manager type %d "
1500                                        "is not clean.\n", i);
1501                         }
1502                         man->has_type = false;
1503                 }
1504         }
1505
1506         mutex_lock(&glob->device_list_mutex);
1507         list_del(&bdev->device_list);
1508         mutex_unlock(&glob->device_list_mutex);
1509
1510         cancel_delayed_work_sync(&bdev->wq);
1511
1512         while (ttm_bo_delayed_delete(bdev, true))
1513                 ;
1514
1515         spin_lock(&glob->lru_lock);
1516         if (list_empty(&bdev->ddestroy))
1517                 TTM_DEBUG("Delayed destroy list was clean\n");
1518
1519         if (list_empty(&bdev->man[0].lru))
1520                 TTM_DEBUG("Swap list was clean\n");
1521         spin_unlock(&glob->lru_lock);
1522
1523         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1524         write_lock(&bdev->vm_lock);
1525         drm_mm_takedown(&bdev->addr_space_mm);
1526         write_unlock(&bdev->vm_lock);
1527
1528         return ret;
1529 }
1530 EXPORT_SYMBOL(ttm_bo_device_release);
1531
1532 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1533                        struct ttm_bo_global *glob,
1534                        struct ttm_bo_driver *driver,
1535                        uint64_t file_page_offset,
1536                        bool need_dma32)
1537 {
1538         int ret = -EINVAL;
1539
1540         rwlock_init(&bdev->vm_lock);
1541         bdev->driver = driver;
1542
1543         memset(bdev->man, 0, sizeof(bdev->man));
1544
1545         /*
1546          * Initialize the system memory buffer type.
1547          * Other types need to be driver / IOCTL initialized.
1548          */
1549         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1550         if (unlikely(ret != 0))
1551                 goto out_no_sys;
1552
1553         bdev->addr_space_rb = RB_ROOT;
1554         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1555         if (unlikely(ret != 0))
1556                 goto out_no_addr_mm;
1557
1558         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1559         bdev->nice_mode = true;
1560         INIT_LIST_HEAD(&bdev->ddestroy);
1561         bdev->dev_mapping = NULL;
1562         bdev->glob = glob;
1563         bdev->need_dma32 = need_dma32;
1564         bdev->val_seq = 0;
1565         spin_lock_init(&bdev->fence_lock);
1566         mutex_lock(&glob->device_list_mutex);
1567         list_add_tail(&bdev->device_list, &glob->device_list);
1568         mutex_unlock(&glob->device_list_mutex);
1569
1570         return 0;
1571 out_no_addr_mm:
1572         ttm_bo_clean_mm(bdev, 0);
1573 out_no_sys:
1574         return ret;
1575 }
1576 EXPORT_SYMBOL(ttm_bo_device_init);
1577
1578 /*
1579  * buffer object vm functions.
1580  */
1581
1582 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1583 {
1584         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1585
1586         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1587                 if (mem->mem_type == TTM_PL_SYSTEM)
1588                         return false;
1589
1590                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1591                         return false;
1592
1593                 if (mem->placement & TTM_PL_FLAG_CACHED)
1594                         return false;
1595         }
1596         return true;
1597 }
1598
1599 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1600 {
1601         struct ttm_bo_device *bdev = bo->bdev;
1602         loff_t offset = (loff_t) bo->addr_space_offset;
1603         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1604
1605         if (!bdev->dev_mapping)
1606                 return;
1607         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1608         ttm_mem_io_free_vm(bo);
1609 }
1610
1611 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1612 {
1613         struct ttm_bo_device *bdev = bo->bdev;
1614         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1615
1616         ttm_mem_io_lock(man, false);
1617         ttm_bo_unmap_virtual_locked(bo);
1618         ttm_mem_io_unlock(man);
1619 }
1620
1621
1622 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1623
1624 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1625 {
1626         struct ttm_bo_device *bdev = bo->bdev;
1627         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1628         struct rb_node *parent = NULL;
1629         struct ttm_buffer_object *cur_bo;
1630         unsigned long offset = bo->vm_node->start;
1631         unsigned long cur_offset;
1632
1633         while (*cur) {
1634                 parent = *cur;
1635                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1636                 cur_offset = cur_bo->vm_node->start;
1637                 if (offset < cur_offset)
1638                         cur = &parent->rb_left;
1639                 else if (offset > cur_offset)
1640                         cur = &parent->rb_right;
1641                 else
1642                         BUG();
1643         }
1644
1645         rb_link_node(&bo->vm_rb, parent, cur);
1646         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1647 }
1648
1649 /**
1650  * ttm_bo_setup_vm:
1651  *
1652  * @bo: the buffer to allocate address space for
1653  *
1654  * Allocate address space in the drm device so that applications
1655  * can mmap the buffer and access the contents. This only
1656  * applies to ttm_bo_type_device objects as others are not
1657  * placed in the drm device address space.
1658  */
1659
1660 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1661 {
1662         struct ttm_bo_device *bdev = bo->bdev;
1663         int ret;
1664
1665 retry_pre_get:
1666         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1667         if (unlikely(ret != 0))
1668                 return ret;
1669
1670         write_lock(&bdev->vm_lock);
1671         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1672                                          bo->mem.num_pages, 0, 0);
1673
1674         if (unlikely(bo->vm_node == NULL)) {
1675                 ret = -ENOMEM;
1676                 goto out_unlock;
1677         }
1678
1679         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1680                                               bo->mem.num_pages, 0);
1681
1682         if (unlikely(bo->vm_node == NULL)) {
1683                 write_unlock(&bdev->vm_lock);
1684                 goto retry_pre_get;
1685         }
1686
1687         ttm_bo_vm_insert_rb(bo);
1688         write_unlock(&bdev->vm_lock);
1689         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1690
1691         return 0;
1692 out_unlock:
1693         write_unlock(&bdev->vm_lock);
1694         return ret;
1695 }
1696
1697 int ttm_bo_wait(struct ttm_buffer_object *bo,
1698                 bool lazy, bool interruptible, bool no_wait)
1699 {
1700         struct ttm_bo_driver *driver = bo->bdev->driver;
1701         struct ttm_bo_device *bdev = bo->bdev;
1702         void *sync_obj;
1703         void *sync_obj_arg;
1704         int ret = 0;
1705
1706         if (likely(bo->sync_obj == NULL))
1707                 return 0;
1708
1709         while (bo->sync_obj) {
1710
1711                 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1712                         void *tmp_obj = bo->sync_obj;
1713                         bo->sync_obj = NULL;
1714                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1715                         spin_unlock(&bdev->fence_lock);
1716                         driver->sync_obj_unref(&tmp_obj);
1717                         spin_lock(&bdev->fence_lock);
1718                         continue;
1719                 }
1720
1721                 if (no_wait)
1722                         return -EBUSY;
1723
1724                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1725                 sync_obj_arg = bo->sync_obj_arg;
1726                 spin_unlock(&bdev->fence_lock);
1727                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1728                                             lazy, interruptible);
1729                 if (unlikely(ret != 0)) {
1730                         driver->sync_obj_unref(&sync_obj);
1731                         spin_lock(&bdev->fence_lock);
1732                         return ret;
1733                 }
1734                 spin_lock(&bdev->fence_lock);
1735                 if (likely(bo->sync_obj == sync_obj &&
1736                            bo->sync_obj_arg == sync_obj_arg)) {
1737                         void *tmp_obj = bo->sync_obj;
1738                         bo->sync_obj = NULL;
1739                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1740                                   &bo->priv_flags);
1741                         spin_unlock(&bdev->fence_lock);
1742                         driver->sync_obj_unref(&sync_obj);
1743                         driver->sync_obj_unref(&tmp_obj);
1744                         spin_lock(&bdev->fence_lock);
1745                 } else {
1746                         spin_unlock(&bdev->fence_lock);
1747                         driver->sync_obj_unref(&sync_obj);
1748                         spin_lock(&bdev->fence_lock);
1749                 }
1750         }
1751         return 0;
1752 }
1753 EXPORT_SYMBOL(ttm_bo_wait);
1754
1755 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1756 {
1757         struct ttm_bo_device *bdev = bo->bdev;
1758         int ret = 0;
1759
1760         /*
1761          * Using ttm_bo_reserve makes sure the lru lists are updated.
1762          */
1763
1764         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1765         if (unlikely(ret != 0))
1766                 return ret;
1767         spin_lock(&bdev->fence_lock);
1768         ret = ttm_bo_wait(bo, false, true, no_wait);
1769         spin_unlock(&bdev->fence_lock);
1770         if (likely(ret == 0))
1771                 atomic_inc(&bo->cpu_writers);
1772         ttm_bo_unreserve(bo);
1773         return ret;
1774 }
1775 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1776
1777 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1778 {
1779         if (atomic_dec_and_test(&bo->cpu_writers))
1780                 wake_up_all(&bo->event_queue);
1781 }
1782 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1783
1784 /**
1785  * A buffer object shrink method that tries to swap out the first
1786  * buffer object on the bo_global::swap_lru list.
1787  */
1788
1789 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1790 {
1791         struct ttm_bo_global *glob =
1792             container_of(shrink, struct ttm_bo_global, shrink);
1793         struct ttm_buffer_object *bo;
1794         int ret = -EBUSY;
1795         int put_count;
1796         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1797
1798         spin_lock(&glob->lru_lock);
1799         while (ret == -EBUSY) {
1800                 if (unlikely(list_empty(&glob->swap_lru))) {
1801                         spin_unlock(&glob->lru_lock);
1802                         return -EBUSY;
1803                 }
1804
1805                 bo = list_first_entry(&glob->swap_lru,
1806                                       struct ttm_buffer_object, swap);
1807                 kref_get(&bo->list_kref);
1808
1809                 if (!list_empty(&bo->ddestroy)) {
1810                         spin_unlock(&glob->lru_lock);
1811                         (void) ttm_bo_cleanup_refs(bo, false, false, false);
1812                         kref_put(&bo->list_kref, ttm_bo_release_list);
1813                         continue;
1814                 }
1815
1816                 /**
1817                  * Reserve buffer. Since we unlock while sleeping, we need
1818                  * to re-check that nobody removed us from the swap-list while
1819                  * we slept.
1820                  */
1821
1822                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1823                 if (unlikely(ret == -EBUSY)) {
1824                         spin_unlock(&glob->lru_lock);
1825                         ttm_bo_wait_unreserved(bo, false);
1826                         kref_put(&bo->list_kref, ttm_bo_release_list);
1827                         spin_lock(&glob->lru_lock);
1828                 }
1829         }
1830
1831         BUG_ON(ret != 0);
1832         put_count = ttm_bo_del_from_lru(bo);
1833         spin_unlock(&glob->lru_lock);
1834
1835         ttm_bo_list_ref_sub(bo, put_count, true);
1836
1837         /**
1838          * Wait for GPU, then move to system cached.
1839          */
1840
1841         spin_lock(&bo->bdev->fence_lock);
1842         ret = ttm_bo_wait(bo, false, false, false);
1843         spin_unlock(&bo->bdev->fence_lock);
1844
1845         if (unlikely(ret != 0))
1846                 goto out;
1847
1848         if ((bo->mem.placement & swap_placement) != swap_placement) {
1849                 struct ttm_mem_reg evict_mem;
1850
1851                 evict_mem = bo->mem;
1852                 evict_mem.mm_node = NULL;
1853                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1854                 evict_mem.mem_type = TTM_PL_SYSTEM;
1855
1856                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1857                                              false, false, false);
1858                 if (unlikely(ret != 0))
1859                         goto out;
1860         }
1861
1862         ttm_bo_unmap_virtual(bo);
1863
1864         /**
1865          * Swap out. Buffer will be swapped in again as soon as
1866          * anyone tries to access a ttm page.
1867          */
1868
1869         if (bo->bdev->driver->swap_notify)
1870                 bo->bdev->driver->swap_notify(bo);
1871
1872         ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1873 out:
1874
1875         /**
1876          *
1877          * Unreserve without putting on LRU to avoid swapping out an
1878          * already swapped buffer.
1879          */
1880
1881         atomic_set(&bo->reserved, 0);
1882         wake_up_all(&bo->event_queue);
1883         kref_put(&bo->list_kref, ttm_bo_release_list);
1884         return ret;
1885 }
1886
1887 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1888 {
1889         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1890                 ;
1891 }
1892 EXPORT_SYMBOL(ttm_bo_swapout_all);