Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/kaber/nf-2.6
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 struct intel_dp {
46         struct intel_encoder base;
47         uint32_t output_reg;
48         uint32_t DP;
49         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50         bool has_audio;
51         int force_audio;
52         int dpms_mode;
53         uint8_t link_bw;
54         uint8_t lane_count;
55         uint8_t dpcd[4];
56         struct i2c_adapter adapter;
57         struct i2c_algo_dp_aux_data algo;
58         bool is_pch_edp;
59         uint8_t train_set[4];
60         uint8_t link_status[DP_LINK_STATUS_SIZE];
61
62         struct drm_property *force_audio_property;
63 };
64
65 /**
66  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
67  * @intel_dp: DP struct
68  *
69  * If a CPU or PCH DP output is attached to an eDP panel, this function
70  * will return true, and false otherwise.
71  */
72 static bool is_edp(struct intel_dp *intel_dp)
73 {
74         return intel_dp->base.type == INTEL_OUTPUT_EDP;
75 }
76
77 /**
78  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
79  * @intel_dp: DP struct
80  *
81  * Returns true if the given DP struct corresponds to a PCH DP port attached
82  * to an eDP panel, false otherwise.  Helpful for determining whether we
83  * may need FDI resources for a given DP output or not.
84  */
85 static bool is_pch_edp(struct intel_dp *intel_dp)
86 {
87         return intel_dp->is_pch_edp;
88 }
89
90 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
91 {
92         return container_of(encoder, struct intel_dp, base.base);
93 }
94
95 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
96 {
97         return container_of(intel_attached_encoder(connector),
98                             struct intel_dp, base);
99 }
100
101 /**
102  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
103  * @encoder: DRM encoder
104  *
105  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
106  * by intel_display.c.
107  */
108 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
109 {
110         struct intel_dp *intel_dp;
111
112         if (!encoder)
113                 return false;
114
115         intel_dp = enc_to_intel_dp(encoder);
116
117         return is_pch_edp(intel_dp);
118 }
119
120 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
121 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
122 static void intel_dp_link_down(struct intel_dp *intel_dp);
123
124 void
125 intel_edp_link_config (struct intel_encoder *intel_encoder,
126                        int *lane_num, int *link_bw)
127 {
128         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
129
130         *lane_num = intel_dp->lane_count;
131         if (intel_dp->link_bw == DP_LINK_BW_1_62)
132                 *link_bw = 162000;
133         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
134                 *link_bw = 270000;
135 }
136
137 static int
138 intel_dp_max_lane_count(struct intel_dp *intel_dp)
139 {
140         int max_lane_count = 4;
141
142         if (intel_dp->dpcd[0] >= 0x11) {
143                 max_lane_count = intel_dp->dpcd[2] & 0x1f;
144                 switch (max_lane_count) {
145                 case 1: case 2: case 4:
146                         break;
147                 default:
148                         max_lane_count = 4;
149                 }
150         }
151         return max_lane_count;
152 }
153
154 static int
155 intel_dp_max_link_bw(struct intel_dp *intel_dp)
156 {
157         int max_link_bw = intel_dp->dpcd[1];
158
159         switch (max_link_bw) {
160         case DP_LINK_BW_1_62:
161         case DP_LINK_BW_2_7:
162                 break;
163         default:
164                 max_link_bw = DP_LINK_BW_1_62;
165                 break;
166         }
167         return max_link_bw;
168 }
169
170 static int
171 intel_dp_link_clock(uint8_t link_bw)
172 {
173         if (link_bw == DP_LINK_BW_2_7)
174                 return 270000;
175         else
176                 return 162000;
177 }
178
179 /* I think this is a fiction */
180 static int
181 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
182 {
183         struct drm_i915_private *dev_priv = dev->dev_private;
184
185         if (is_edp(intel_dp))
186                 return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
187         else
188                 return pixel_clock * 3;
189 }
190
191 static int
192 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
193 {
194         return (max_link_clock * max_lanes * 8) / 10;
195 }
196
197 static int
198 intel_dp_mode_valid(struct drm_connector *connector,
199                     struct drm_display_mode *mode)
200 {
201         struct intel_dp *intel_dp = intel_attached_dp(connector);
202         struct drm_device *dev = connector->dev;
203         struct drm_i915_private *dev_priv = dev->dev_private;
204         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
205         int max_lanes = intel_dp_max_lane_count(intel_dp);
206
207         if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
208                 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
209                         return MODE_PANEL;
210
211                 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
212                         return MODE_PANEL;
213         }
214
215         /* only refuse the mode on non eDP since we have seen some wierd eDP panels
216            which are outside spec tolerances but somehow work by magic */
217         if (!is_edp(intel_dp) &&
218             (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
219              > intel_dp_max_data_rate(max_link_clock, max_lanes)))
220                 return MODE_CLOCK_HIGH;
221
222         if (mode->clock < 10000)
223                 return MODE_CLOCK_LOW;
224
225         return MODE_OK;
226 }
227
228 static uint32_t
229 pack_aux(uint8_t *src, int src_bytes)
230 {
231         int     i;
232         uint32_t v = 0;
233
234         if (src_bytes > 4)
235                 src_bytes = 4;
236         for (i = 0; i < src_bytes; i++)
237                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
238         return v;
239 }
240
241 static void
242 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
243 {
244         int i;
245         if (dst_bytes > 4)
246                 dst_bytes = 4;
247         for (i = 0; i < dst_bytes; i++)
248                 dst[i] = src >> ((3-i) * 8);
249 }
250
251 /* hrawclock is 1/4 the FSB frequency */
252 static int
253 intel_hrawclk(struct drm_device *dev)
254 {
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         uint32_t clkcfg;
257
258         clkcfg = I915_READ(CLKCFG);
259         switch (clkcfg & CLKCFG_FSB_MASK) {
260         case CLKCFG_FSB_400:
261                 return 100;
262         case CLKCFG_FSB_533:
263                 return 133;
264         case CLKCFG_FSB_667:
265                 return 166;
266         case CLKCFG_FSB_800:
267                 return 200;
268         case CLKCFG_FSB_1067:
269                 return 266;
270         case CLKCFG_FSB_1333:
271                 return 333;
272         /* these two are just a guess; one of them might be right */
273         case CLKCFG_FSB_1600:
274         case CLKCFG_FSB_1600_ALT:
275                 return 400;
276         default:
277                 return 133;
278         }
279 }
280
281 static int
282 intel_dp_aux_ch(struct intel_dp *intel_dp,
283                 uint8_t *send, int send_bytes,
284                 uint8_t *recv, int recv_size)
285 {
286         uint32_t output_reg = intel_dp->output_reg;
287         struct drm_device *dev = intel_dp->base.base.dev;
288         struct drm_i915_private *dev_priv = dev->dev_private;
289         uint32_t ch_ctl = output_reg + 0x10;
290         uint32_t ch_data = ch_ctl + 4;
291         int i;
292         int recv_bytes;
293         uint32_t status;
294         uint32_t aux_clock_divider;
295         int try, precharge;
296
297         /* The clock divider is based off the hrawclk,
298          * and would like to run at 2MHz. So, take the
299          * hrawclk value and divide by 2 and use that
300          *
301          * Note that PCH attached eDP panels should use a 125MHz input
302          * clock divider.
303          */
304         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
305                 if (IS_GEN6(dev))
306                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
307                 else
308                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
309         } else if (HAS_PCH_SPLIT(dev))
310                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
311         else
312                 aux_clock_divider = intel_hrawclk(dev) / 2;
313
314         if (IS_GEN6(dev))
315                 precharge = 3;
316         else
317                 precharge = 5;
318
319         if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
320                 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
321                           I915_READ(ch_ctl));
322                 return -EBUSY;
323         }
324
325         /* Must try at least 3 times according to DP spec */
326         for (try = 0; try < 5; try++) {
327                 /* Load the send data into the aux channel data registers */
328                 for (i = 0; i < send_bytes; i += 4)
329                         I915_WRITE(ch_data + i,
330                                    pack_aux(send + i, send_bytes - i));
331         
332                 /* Send the command and wait for it to complete */
333                 I915_WRITE(ch_ctl,
334                            DP_AUX_CH_CTL_SEND_BUSY |
335                            DP_AUX_CH_CTL_TIME_OUT_400us |
336                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
337                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
338                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
339                            DP_AUX_CH_CTL_DONE |
340                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
341                            DP_AUX_CH_CTL_RECEIVE_ERROR);
342                 for (;;) {
343                         status = I915_READ(ch_ctl);
344                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
345                                 break;
346                         udelay(100);
347                 }
348         
349                 /* Clear done status and any errors */
350                 I915_WRITE(ch_ctl,
351                            status |
352                            DP_AUX_CH_CTL_DONE |
353                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
354                            DP_AUX_CH_CTL_RECEIVE_ERROR);
355                 if (status & DP_AUX_CH_CTL_DONE)
356                         break;
357         }
358
359         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
360                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
361                 return -EBUSY;
362         }
363
364         /* Check for timeout or receive error.
365          * Timeouts occur when the sink is not connected
366          */
367         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
368                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
369                 return -EIO;
370         }
371
372         /* Timeouts occur when the device isn't connected, so they're
373          * "normal" -- don't fill the kernel log with these */
374         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
375                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
376                 return -ETIMEDOUT;
377         }
378
379         /* Unload any bytes sent back from the other side */
380         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
381                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
382         if (recv_bytes > recv_size)
383                 recv_bytes = recv_size;
384         
385         for (i = 0; i < recv_bytes; i += 4)
386                 unpack_aux(I915_READ(ch_data + i),
387                            recv + i, recv_bytes - i);
388
389         return recv_bytes;
390 }
391
392 /* Write data to the aux channel in native mode */
393 static int
394 intel_dp_aux_native_write(struct intel_dp *intel_dp,
395                           uint16_t address, uint8_t *send, int send_bytes)
396 {
397         int ret;
398         uint8_t msg[20];
399         int msg_bytes;
400         uint8_t ack;
401
402         if (send_bytes > 16)
403                 return -1;
404         msg[0] = AUX_NATIVE_WRITE << 4;
405         msg[1] = address >> 8;
406         msg[2] = address & 0xff;
407         msg[3] = send_bytes - 1;
408         memcpy(&msg[4], send, send_bytes);
409         msg_bytes = send_bytes + 4;
410         for (;;) {
411                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
412                 if (ret < 0)
413                         return ret;
414                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
415                         break;
416                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
417                         udelay(100);
418                 else
419                         return -EIO;
420         }
421         return send_bytes;
422 }
423
424 /* Write a single byte to the aux channel in native mode */
425 static int
426 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
427                             uint16_t address, uint8_t byte)
428 {
429         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
430 }
431
432 /* read bytes from a native aux channel */
433 static int
434 intel_dp_aux_native_read(struct intel_dp *intel_dp,
435                          uint16_t address, uint8_t *recv, int recv_bytes)
436 {
437         uint8_t msg[4];
438         int msg_bytes;
439         uint8_t reply[20];
440         int reply_bytes;
441         uint8_t ack;
442         int ret;
443
444         msg[0] = AUX_NATIVE_READ << 4;
445         msg[1] = address >> 8;
446         msg[2] = address & 0xff;
447         msg[3] = recv_bytes - 1;
448
449         msg_bytes = 4;
450         reply_bytes = recv_bytes + 1;
451
452         for (;;) {
453                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
454                                       reply, reply_bytes);
455                 if (ret == 0)
456                         return -EPROTO;
457                 if (ret < 0)
458                         return ret;
459                 ack = reply[0];
460                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
461                         memcpy(recv, reply + 1, ret - 1);
462                         return ret - 1;
463                 }
464                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
465                         udelay(100);
466                 else
467                         return -EIO;
468         }
469 }
470
471 static int
472 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
473                     uint8_t write_byte, uint8_t *read_byte)
474 {
475         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
476         struct intel_dp *intel_dp = container_of(adapter,
477                                                 struct intel_dp,
478                                                 adapter);
479         uint16_t address = algo_data->address;
480         uint8_t msg[5];
481         uint8_t reply[2];
482         unsigned retry;
483         int msg_bytes;
484         int reply_bytes;
485         int ret;
486
487         /* Set up the command byte */
488         if (mode & MODE_I2C_READ)
489                 msg[0] = AUX_I2C_READ << 4;
490         else
491                 msg[0] = AUX_I2C_WRITE << 4;
492
493         if (!(mode & MODE_I2C_STOP))
494                 msg[0] |= AUX_I2C_MOT << 4;
495
496         msg[1] = address >> 8;
497         msg[2] = address;
498
499         switch (mode) {
500         case MODE_I2C_WRITE:
501                 msg[3] = 0;
502                 msg[4] = write_byte;
503                 msg_bytes = 5;
504                 reply_bytes = 1;
505                 break;
506         case MODE_I2C_READ:
507                 msg[3] = 0;
508                 msg_bytes = 4;
509                 reply_bytes = 2;
510                 break;
511         default:
512                 msg_bytes = 3;
513                 reply_bytes = 1;
514                 break;
515         }
516
517         for (retry = 0; retry < 5; retry++) {
518                 ret = intel_dp_aux_ch(intel_dp,
519                                       msg, msg_bytes,
520                                       reply, reply_bytes);
521                 if (ret < 0) {
522                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
523                         return ret;
524                 }
525
526                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
527                 case AUX_NATIVE_REPLY_ACK:
528                         /* I2C-over-AUX Reply field is only valid
529                          * when paired with AUX ACK.
530                          */
531                         break;
532                 case AUX_NATIVE_REPLY_NACK:
533                         DRM_DEBUG_KMS("aux_ch native nack\n");
534                         return -EREMOTEIO;
535                 case AUX_NATIVE_REPLY_DEFER:
536                         udelay(100);
537                         continue;
538                 default:
539                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
540                                   reply[0]);
541                         return -EREMOTEIO;
542                 }
543
544                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
545                 case AUX_I2C_REPLY_ACK:
546                         if (mode == MODE_I2C_READ) {
547                                 *read_byte = reply[1];
548                         }
549                         return reply_bytes - 1;
550                 case AUX_I2C_REPLY_NACK:
551                         DRM_DEBUG_KMS("aux_i2c nack\n");
552                         return -EREMOTEIO;
553                 case AUX_I2C_REPLY_DEFER:
554                         DRM_DEBUG_KMS("aux_i2c defer\n");
555                         udelay(100);
556                         break;
557                 default:
558                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
559                         return -EREMOTEIO;
560                 }
561         }
562
563         DRM_ERROR("too many retries, giving up\n");
564         return -EREMOTEIO;
565 }
566
567 static int
568 intel_dp_i2c_init(struct intel_dp *intel_dp,
569                   struct intel_connector *intel_connector, const char *name)
570 {
571         DRM_DEBUG_KMS("i2c_init %s\n", name);
572         intel_dp->algo.running = false;
573         intel_dp->algo.address = 0;
574         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
575
576         memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
577         intel_dp->adapter.owner = THIS_MODULE;
578         intel_dp->adapter.class = I2C_CLASS_DDC;
579         strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
580         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
581         intel_dp->adapter.algo_data = &intel_dp->algo;
582         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
583
584         return i2c_dp_aux_add_bus(&intel_dp->adapter);
585 }
586
587 static bool
588 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
589                     struct drm_display_mode *adjusted_mode)
590 {
591         struct drm_device *dev = encoder->dev;
592         struct drm_i915_private *dev_priv = dev->dev_private;
593         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
594         int lane_count, clock;
595         int max_lane_count = intel_dp_max_lane_count(intel_dp);
596         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
597         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
598
599         if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
600                 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
601                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
602                                         mode, adjusted_mode);
603                 /*
604                  * the mode->clock is used to calculate the Data&Link M/N
605                  * of the pipe. For the eDP the fixed clock should be used.
606                  */
607                 mode->clock = dev_priv->panel_fixed_mode->clock;
608         }
609
610         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
611                 for (clock = 0; clock <= max_clock; clock++) {
612                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
613
614                         if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
615                                         <= link_avail) {
616                                 intel_dp->link_bw = bws[clock];
617                                 intel_dp->lane_count = lane_count;
618                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
619                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
620                                                 "count %d clock %d\n",
621                                        intel_dp->link_bw, intel_dp->lane_count,
622                                        adjusted_mode->clock);
623                                 return true;
624                         }
625                 }
626         }
627
628         if (is_edp(intel_dp)) {
629                 /* okay we failed just pick the highest */
630                 intel_dp->lane_count = max_lane_count;
631                 intel_dp->link_bw = bws[max_clock];
632                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
633                 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
634                               "count %d clock %d\n",
635                               intel_dp->link_bw, intel_dp->lane_count,
636                               adjusted_mode->clock);
637
638                 return true;
639         }
640
641         return false;
642 }
643
644 struct intel_dp_m_n {
645         uint32_t        tu;
646         uint32_t        gmch_m;
647         uint32_t        gmch_n;
648         uint32_t        link_m;
649         uint32_t        link_n;
650 };
651
652 static void
653 intel_reduce_ratio(uint32_t *num, uint32_t *den)
654 {
655         while (*num > 0xffffff || *den > 0xffffff) {
656                 *num >>= 1;
657                 *den >>= 1;
658         }
659 }
660
661 static void
662 intel_dp_compute_m_n(int bpp,
663                      int nlanes,
664                      int pixel_clock,
665                      int link_clock,
666                      struct intel_dp_m_n *m_n)
667 {
668         m_n->tu = 64;
669         m_n->gmch_m = (pixel_clock * bpp) >> 3;
670         m_n->gmch_n = link_clock * nlanes;
671         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
672         m_n->link_m = pixel_clock;
673         m_n->link_n = link_clock;
674         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
675 }
676
677 void
678 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
679                  struct drm_display_mode *adjusted_mode)
680 {
681         struct drm_device *dev = crtc->dev;
682         struct drm_mode_config *mode_config = &dev->mode_config;
683         struct drm_encoder *encoder;
684         struct drm_i915_private *dev_priv = dev->dev_private;
685         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
686         int lane_count = 4, bpp = 24;
687         struct intel_dp_m_n m_n;
688
689         /*
690          * Find the lane count in the intel_encoder private
691          */
692         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
693                 struct intel_dp *intel_dp;
694
695                 if (encoder->crtc != crtc)
696                         continue;
697
698                 intel_dp = enc_to_intel_dp(encoder);
699                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
700                         lane_count = intel_dp->lane_count;
701                         break;
702                 } else if (is_edp(intel_dp)) {
703                         lane_count = dev_priv->edp.lanes;
704                         bpp = dev_priv->edp.bpp;
705                         break;
706                 }
707         }
708
709         /*
710          * Compute the GMCH and Link ratios. The '3' here is
711          * the number of bytes_per_pixel post-LUT, which we always
712          * set up for 8-bits of R/G/B, or 3 bytes total.
713          */
714         intel_dp_compute_m_n(bpp, lane_count,
715                              mode->clock, adjusted_mode->clock, &m_n);
716
717         if (HAS_PCH_SPLIT(dev)) {
718                 if (intel_crtc->pipe == 0) {
719                         I915_WRITE(TRANSA_DATA_M1,
720                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
721                                    m_n.gmch_m);
722                         I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
723                         I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
724                         I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
725                 } else {
726                         I915_WRITE(TRANSB_DATA_M1,
727                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
728                                    m_n.gmch_m);
729                         I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
730                         I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
731                         I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
732                 }
733         } else {
734                 if (intel_crtc->pipe == 0) {
735                         I915_WRITE(PIPEA_GMCH_DATA_M,
736                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
737                                    m_n.gmch_m);
738                         I915_WRITE(PIPEA_GMCH_DATA_N,
739                                    m_n.gmch_n);
740                         I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
741                         I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
742                 } else {
743                         I915_WRITE(PIPEB_GMCH_DATA_M,
744                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
745                                    m_n.gmch_m);
746                         I915_WRITE(PIPEB_GMCH_DATA_N,
747                                         m_n.gmch_n);
748                         I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
749                         I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
750                 }
751         }
752 }
753
754 static void
755 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
756                   struct drm_display_mode *adjusted_mode)
757 {
758         struct drm_device *dev = encoder->dev;
759         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
760         struct drm_crtc *crtc = intel_dp->base.base.crtc;
761         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
762
763         intel_dp->DP = (DP_VOLTAGE_0_4 |
764                        DP_PRE_EMPHASIS_0);
765
766         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
767                 intel_dp->DP |= DP_SYNC_HS_HIGH;
768         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
769                 intel_dp->DP |= DP_SYNC_VS_HIGH;
770
771         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
772                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
773         else
774                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
775
776         switch (intel_dp->lane_count) {
777         case 1:
778                 intel_dp->DP |= DP_PORT_WIDTH_1;
779                 break;
780         case 2:
781                 intel_dp->DP |= DP_PORT_WIDTH_2;
782                 break;
783         case 4:
784                 intel_dp->DP |= DP_PORT_WIDTH_4;
785                 break;
786         }
787         if (intel_dp->has_audio)
788                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
789
790         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
791         intel_dp->link_configuration[0] = intel_dp->link_bw;
792         intel_dp->link_configuration[1] = intel_dp->lane_count;
793
794         /*
795          * Check for DPCD version > 1.1 and enhanced framing support
796          */
797         if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
798                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
799                 intel_dp->DP |= DP_ENHANCED_FRAMING;
800         }
801
802         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
803         if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
804                 intel_dp->DP |= DP_PIPEB_SELECT;
805
806         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
807                 /* don't miss out required setting for eDP */
808                 intel_dp->DP |= DP_PLL_ENABLE;
809                 if (adjusted_mode->clock < 200000)
810                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
811                 else
812                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
813         }
814 }
815
816 /* Returns true if the panel was already on when called */
817 static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
818 {
819         struct drm_device *dev = intel_dp->base.base.dev;
820         struct drm_i915_private *dev_priv = dev->dev_private;
821         u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
822
823         if (I915_READ(PCH_PP_STATUS) & PP_ON)
824                 return true;
825
826         pp = I915_READ(PCH_PP_CONTROL);
827
828         /* ILK workaround: disable reset around power sequence */
829         pp &= ~PANEL_POWER_RESET;
830         I915_WRITE(PCH_PP_CONTROL, pp);
831         POSTING_READ(PCH_PP_CONTROL);
832
833         pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
834         I915_WRITE(PCH_PP_CONTROL, pp);
835         POSTING_READ(PCH_PP_CONTROL);
836
837         /* Ouch. We need to wait here for some panels, like Dell e6510
838          * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
839          */
840         msleep(300);
841
842         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
843                      5000))
844                 DRM_ERROR("panel on wait timed out: 0x%08x\n",
845                           I915_READ(PCH_PP_STATUS));
846
847         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
848         I915_WRITE(PCH_PP_CONTROL, pp);
849         POSTING_READ(PCH_PP_CONTROL);
850
851         return false;
852 }
853
854 static void ironlake_edp_panel_off (struct drm_device *dev)
855 {
856         struct drm_i915_private *dev_priv = dev->dev_private;
857         u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
858                 PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
859
860         pp = I915_READ(PCH_PP_CONTROL);
861
862         /* ILK workaround: disable reset around power sequence */
863         pp &= ~PANEL_POWER_RESET;
864         I915_WRITE(PCH_PP_CONTROL, pp);
865         POSTING_READ(PCH_PP_CONTROL);
866
867         pp &= ~POWER_TARGET_ON;
868         I915_WRITE(PCH_PP_CONTROL, pp);
869         POSTING_READ(PCH_PP_CONTROL);
870
871         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
872                 DRM_ERROR("panel off wait timed out: 0x%08x\n",
873                           I915_READ(PCH_PP_STATUS));
874
875         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
876         I915_WRITE(PCH_PP_CONTROL, pp);
877         POSTING_READ(PCH_PP_CONTROL);
878
879         /* Ouch. We need to wait here for some panels, like Dell e6510
880          * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
881          */
882         msleep(300);
883 }
884
885 static void ironlake_edp_backlight_on (struct drm_device *dev)
886 {
887         struct drm_i915_private *dev_priv = dev->dev_private;
888         u32 pp;
889
890         DRM_DEBUG_KMS("\n");
891         /*
892          * If we enable the backlight right away following a panel power
893          * on, we may see slight flicker as the panel syncs with the eDP
894          * link.  So delay a bit to make sure the image is solid before
895          * allowing it to appear.
896          */
897         msleep(300);
898         pp = I915_READ(PCH_PP_CONTROL);
899         pp |= EDP_BLC_ENABLE;
900         I915_WRITE(PCH_PP_CONTROL, pp);
901 }
902
903 static void ironlake_edp_backlight_off (struct drm_device *dev)
904 {
905         struct drm_i915_private *dev_priv = dev->dev_private;
906         u32 pp;
907
908         DRM_DEBUG_KMS("\n");
909         pp = I915_READ(PCH_PP_CONTROL);
910         pp &= ~EDP_BLC_ENABLE;
911         I915_WRITE(PCH_PP_CONTROL, pp);
912 }
913
914 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
915 {
916         struct drm_device *dev = encoder->dev;
917         struct drm_i915_private *dev_priv = dev->dev_private;
918         u32 dpa_ctl;
919
920         DRM_DEBUG_KMS("\n");
921         dpa_ctl = I915_READ(DP_A);
922         dpa_ctl |= DP_PLL_ENABLE;
923         I915_WRITE(DP_A, dpa_ctl);
924         POSTING_READ(DP_A);
925         udelay(200);
926 }
927
928 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
929 {
930         struct drm_device *dev = encoder->dev;
931         struct drm_i915_private *dev_priv = dev->dev_private;
932         u32 dpa_ctl;
933
934         dpa_ctl = I915_READ(DP_A);
935         dpa_ctl &= ~DP_PLL_ENABLE;
936         I915_WRITE(DP_A, dpa_ctl);
937         POSTING_READ(DP_A);
938         udelay(200);
939 }
940
941 static void intel_dp_prepare(struct drm_encoder *encoder)
942 {
943         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
944         struct drm_device *dev = encoder->dev;
945
946         if (is_edp(intel_dp)) {
947                 ironlake_edp_backlight_off(dev);
948                 ironlake_edp_panel_on(intel_dp);
949                 if (!is_pch_edp(intel_dp))
950                         ironlake_edp_pll_on(encoder);
951                 else
952                         ironlake_edp_pll_off(encoder);
953         }
954         intel_dp_link_down(intel_dp);
955 }
956
957 static void intel_dp_commit(struct drm_encoder *encoder)
958 {
959         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
960         struct drm_device *dev = encoder->dev;
961
962         intel_dp_start_link_train(intel_dp);
963
964         if (is_edp(intel_dp))
965                 ironlake_edp_panel_on(intel_dp);
966
967         intel_dp_complete_link_train(intel_dp);
968
969         if (is_edp(intel_dp))
970                 ironlake_edp_backlight_on(dev);
971 }
972
973 static void
974 intel_dp_dpms(struct drm_encoder *encoder, int mode)
975 {
976         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
977         struct drm_device *dev = encoder->dev;
978         struct drm_i915_private *dev_priv = dev->dev_private;
979         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
980
981         if (mode != DRM_MODE_DPMS_ON) {
982                 if (is_edp(intel_dp))
983                         ironlake_edp_backlight_off(dev);
984                 intel_dp_link_down(intel_dp);
985                 if (is_edp(intel_dp))
986                         ironlake_edp_panel_off(dev);
987                 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
988                         ironlake_edp_pll_off(encoder);
989         } else {
990                 if (is_edp(intel_dp))
991                         ironlake_edp_panel_on(intel_dp);
992                 if (!(dp_reg & DP_PORT_EN)) {
993                         intel_dp_start_link_train(intel_dp);
994                         intel_dp_complete_link_train(intel_dp);
995                 }
996                 if (is_edp(intel_dp))
997                         ironlake_edp_backlight_on(dev);
998         }
999         intel_dp->dpms_mode = mode;
1000 }
1001
1002 /*
1003  * Fetch AUX CH registers 0x202 - 0x207 which contain
1004  * link status information
1005  */
1006 static bool
1007 intel_dp_get_link_status(struct intel_dp *intel_dp)
1008 {
1009         int ret;
1010
1011         ret = intel_dp_aux_native_read(intel_dp,
1012                                        DP_LANE0_1_STATUS,
1013                                        intel_dp->link_status, DP_LINK_STATUS_SIZE);
1014         if (ret != DP_LINK_STATUS_SIZE)
1015                 return false;
1016         return true;
1017 }
1018
1019 static uint8_t
1020 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1021                      int r)
1022 {
1023         return link_status[r - DP_LANE0_1_STATUS];
1024 }
1025
1026 static uint8_t
1027 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1028                                  int lane)
1029 {
1030         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1031         int         s = ((lane & 1) ?
1032                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1033                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1034         uint8_t l = intel_dp_link_status(link_status, i);
1035
1036         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1037 }
1038
1039 static uint8_t
1040 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1041                                       int lane)
1042 {
1043         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1044         int         s = ((lane & 1) ?
1045                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1046                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1047         uint8_t l = intel_dp_link_status(link_status, i);
1048
1049         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1050 }
1051
1052
1053 #if 0
1054 static char     *voltage_names[] = {
1055         "0.4V", "0.6V", "0.8V", "1.2V"
1056 };
1057 static char     *pre_emph_names[] = {
1058         "0dB", "3.5dB", "6dB", "9.5dB"
1059 };
1060 static char     *link_train_names[] = {
1061         "pattern 1", "pattern 2", "idle", "off"
1062 };
1063 #endif
1064
1065 /*
1066  * These are source-specific values; current Intel hardware supports
1067  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1068  */
1069 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1070
1071 static uint8_t
1072 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1073 {
1074         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1075         case DP_TRAIN_VOLTAGE_SWING_400:
1076                 return DP_TRAIN_PRE_EMPHASIS_6;
1077         case DP_TRAIN_VOLTAGE_SWING_600:
1078                 return DP_TRAIN_PRE_EMPHASIS_6;
1079         case DP_TRAIN_VOLTAGE_SWING_800:
1080                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1081         case DP_TRAIN_VOLTAGE_SWING_1200:
1082         default:
1083                 return DP_TRAIN_PRE_EMPHASIS_0;
1084         }
1085 }
1086
1087 static void
1088 intel_get_adjust_train(struct intel_dp *intel_dp)
1089 {
1090         uint8_t v = 0;
1091         uint8_t p = 0;
1092         int lane;
1093
1094         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1095                 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1096                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1097
1098                 if (this_v > v)
1099                         v = this_v;
1100                 if (this_p > p)
1101                         p = this_p;
1102         }
1103
1104         if (v >= I830_DP_VOLTAGE_MAX)
1105                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1106
1107         if (p >= intel_dp_pre_emphasis_max(v))
1108                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1109
1110         for (lane = 0; lane < 4; lane++)
1111                 intel_dp->train_set[lane] = v | p;
1112 }
1113
1114 static uint32_t
1115 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1116 {
1117         uint32_t        signal_levels = 0;
1118
1119         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1120         case DP_TRAIN_VOLTAGE_SWING_400:
1121         default:
1122                 signal_levels |= DP_VOLTAGE_0_4;
1123                 break;
1124         case DP_TRAIN_VOLTAGE_SWING_600:
1125                 signal_levels |= DP_VOLTAGE_0_6;
1126                 break;
1127         case DP_TRAIN_VOLTAGE_SWING_800:
1128                 signal_levels |= DP_VOLTAGE_0_8;
1129                 break;
1130         case DP_TRAIN_VOLTAGE_SWING_1200:
1131                 signal_levels |= DP_VOLTAGE_1_2;
1132                 break;
1133         }
1134         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1135         case DP_TRAIN_PRE_EMPHASIS_0:
1136         default:
1137                 signal_levels |= DP_PRE_EMPHASIS_0;
1138                 break;
1139         case DP_TRAIN_PRE_EMPHASIS_3_5:
1140                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1141                 break;
1142         case DP_TRAIN_PRE_EMPHASIS_6:
1143                 signal_levels |= DP_PRE_EMPHASIS_6;
1144                 break;
1145         case DP_TRAIN_PRE_EMPHASIS_9_5:
1146                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1147                 break;
1148         }
1149         return signal_levels;
1150 }
1151
1152 /* Gen6's DP voltage swing and pre-emphasis control */
1153 static uint32_t
1154 intel_gen6_edp_signal_levels(uint8_t train_set)
1155 {
1156         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1157                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1158         switch (signal_levels) {
1159         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1160         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1161                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1162         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1163                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1164         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1165         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1166                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1167         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1168         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1169                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1170         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1171         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1172                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1173         default:
1174                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1175                               "0x%x\n", signal_levels);
1176                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1177         }
1178 }
1179
1180 static uint8_t
1181 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1182                       int lane)
1183 {
1184         int i = DP_LANE0_1_STATUS + (lane >> 1);
1185         int s = (lane & 1) * 4;
1186         uint8_t l = intel_dp_link_status(link_status, i);
1187
1188         return (l >> s) & 0xf;
1189 }
1190
1191 /* Check for clock recovery is done on all channels */
1192 static bool
1193 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1194 {
1195         int lane;
1196         uint8_t lane_status;
1197
1198         for (lane = 0; lane < lane_count; lane++) {
1199                 lane_status = intel_get_lane_status(link_status, lane);
1200                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1201                         return false;
1202         }
1203         return true;
1204 }
1205
1206 /* Check to see if channel eq is done on all channels */
1207 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1208                          DP_LANE_CHANNEL_EQ_DONE|\
1209                          DP_LANE_SYMBOL_LOCKED)
1210 static bool
1211 intel_channel_eq_ok(struct intel_dp *intel_dp)
1212 {
1213         uint8_t lane_align;
1214         uint8_t lane_status;
1215         int lane;
1216
1217         lane_align = intel_dp_link_status(intel_dp->link_status,
1218                                           DP_LANE_ALIGN_STATUS_UPDATED);
1219         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1220                 return false;
1221         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1222                 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1223                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1224                         return false;
1225         }
1226         return true;
1227 }
1228
1229 static bool
1230 intel_dp_set_link_train(struct intel_dp *intel_dp,
1231                         uint32_t dp_reg_value,
1232                         uint8_t dp_train_pat)
1233 {
1234         struct drm_device *dev = intel_dp->base.base.dev;
1235         struct drm_i915_private *dev_priv = dev->dev_private;
1236         int ret;
1237
1238         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1239         POSTING_READ(intel_dp->output_reg);
1240
1241         intel_dp_aux_native_write_1(intel_dp,
1242                                     DP_TRAINING_PATTERN_SET,
1243                                     dp_train_pat);
1244
1245         ret = intel_dp_aux_native_write(intel_dp,
1246                                         DP_TRAINING_LANE0_SET,
1247                                         intel_dp->train_set, 4);
1248         if (ret != 4)
1249                 return false;
1250
1251         return true;
1252 }
1253
1254 /* Enable corresponding port and start training pattern 1 */
1255 static void
1256 intel_dp_start_link_train(struct intel_dp *intel_dp)
1257 {
1258         struct drm_device *dev = intel_dp->base.base.dev;
1259         struct drm_i915_private *dev_priv = dev->dev_private;
1260         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1261         int i;
1262         uint8_t voltage;
1263         bool clock_recovery = false;
1264         int tries;
1265         u32 reg;
1266         uint32_t DP = intel_dp->DP;
1267
1268         /* Enable output, wait for it to become active */
1269         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1270         POSTING_READ(intel_dp->output_reg);
1271         intel_wait_for_vblank(dev, intel_crtc->pipe);
1272
1273         /* Write the link configuration data */
1274         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1275                                   intel_dp->link_configuration,
1276                                   DP_LINK_CONFIGURATION_SIZE);
1277
1278         DP |= DP_PORT_EN;
1279         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1280                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1281         else
1282                 DP &= ~DP_LINK_TRAIN_MASK;
1283         memset(intel_dp->train_set, 0, 4);
1284         voltage = 0xff;
1285         tries = 0;
1286         clock_recovery = false;
1287         for (;;) {
1288                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1289                 uint32_t    signal_levels;
1290                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1291                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1292                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1293                 } else {
1294                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1295                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1296                 }
1297
1298                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1299                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1300                 else
1301                         reg = DP | DP_LINK_TRAIN_PAT_1;
1302
1303                 if (!intel_dp_set_link_train(intel_dp, reg,
1304                                              DP_TRAINING_PATTERN_1))
1305                         break;
1306                 /* Set training pattern 1 */
1307
1308                 udelay(100);
1309                 if (!intel_dp_get_link_status(intel_dp))
1310                         break;
1311
1312                 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1313                         clock_recovery = true;
1314                         break;
1315                 }
1316
1317                 /* Check to see if we've tried the max voltage */
1318                 for (i = 0; i < intel_dp->lane_count; i++)
1319                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1320                                 break;
1321                 if (i == intel_dp->lane_count)
1322                         break;
1323
1324                 /* Check to see if we've tried the same voltage 5 times */
1325                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1326                         ++tries;
1327                         if (tries == 5)
1328                                 break;
1329                 } else
1330                         tries = 0;
1331                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1332
1333                 /* Compute new intel_dp->train_set as requested by target */
1334                 intel_get_adjust_train(intel_dp);
1335         }
1336
1337         intel_dp->DP = DP;
1338 }
1339
1340 static void
1341 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1342 {
1343         struct drm_device *dev = intel_dp->base.base.dev;
1344         struct drm_i915_private *dev_priv = dev->dev_private;
1345         bool channel_eq = false;
1346         int tries, cr_tries;
1347         u32 reg;
1348         uint32_t DP = intel_dp->DP;
1349
1350         /* channel equalization */
1351         tries = 0;
1352         cr_tries = 0;
1353         channel_eq = false;
1354         for (;;) {
1355                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1356                 uint32_t    signal_levels;
1357
1358                 if (cr_tries > 5) {
1359                         DRM_ERROR("failed to train DP, aborting\n");
1360                         intel_dp_link_down(intel_dp);
1361                         break;
1362                 }
1363
1364                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1365                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1366                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1367                 } else {
1368                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1369                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1370                 }
1371
1372                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1373                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1374                 else
1375                         reg = DP | DP_LINK_TRAIN_PAT_2;
1376
1377                 /* channel eq pattern */
1378                 if (!intel_dp_set_link_train(intel_dp, reg,
1379                                              DP_TRAINING_PATTERN_2))
1380                         break;
1381
1382                 udelay(400);
1383                 if (!intel_dp_get_link_status(intel_dp))
1384                         break;
1385
1386                 /* Make sure clock is still ok */
1387                 if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1388                         intel_dp_start_link_train(intel_dp);
1389                         cr_tries++;
1390                         continue;
1391                 }
1392
1393                 if (intel_channel_eq_ok(intel_dp)) {
1394                         channel_eq = true;
1395                         break;
1396                 }
1397
1398                 /* Try 5 times, then try clock recovery if that fails */
1399                 if (tries > 5) {
1400                         intel_dp_link_down(intel_dp);
1401                         intel_dp_start_link_train(intel_dp);
1402                         tries = 0;
1403                         cr_tries++;
1404                         continue;
1405                 }
1406
1407                 /* Compute new intel_dp->train_set as requested by target */
1408                 intel_get_adjust_train(intel_dp);
1409                 ++tries;
1410         }
1411
1412         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1413                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1414         else
1415                 reg = DP | DP_LINK_TRAIN_OFF;
1416
1417         I915_WRITE(intel_dp->output_reg, reg);
1418         POSTING_READ(intel_dp->output_reg);
1419         intel_dp_aux_native_write_1(intel_dp,
1420                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1421 }
1422
1423 static void
1424 intel_dp_link_down(struct intel_dp *intel_dp)
1425 {
1426         struct drm_device *dev = intel_dp->base.base.dev;
1427         struct drm_i915_private *dev_priv = dev->dev_private;
1428         uint32_t DP = intel_dp->DP;
1429
1430         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1431                 return;
1432
1433         DRM_DEBUG_KMS("\n");
1434
1435         if (is_edp(intel_dp)) {
1436                 DP &= ~DP_PLL_ENABLE;
1437                 I915_WRITE(intel_dp->output_reg, DP);
1438                 POSTING_READ(intel_dp->output_reg);
1439                 udelay(100);
1440         }
1441
1442         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1443                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1444                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1445         } else {
1446                 DP &= ~DP_LINK_TRAIN_MASK;
1447                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1448         }
1449         POSTING_READ(intel_dp->output_reg);
1450
1451         msleep(17);
1452
1453         if (is_edp(intel_dp))
1454                 DP |= DP_LINK_TRAIN_OFF;
1455
1456         if (!HAS_PCH_CPT(dev) &&
1457             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1458                 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1459                 /* Hardware workaround: leaving our transcoder select
1460                  * set to transcoder B while it's off will prevent the
1461                  * corresponding HDMI output on transcoder A.
1462                  *
1463                  * Combine this with another hardware workaround:
1464                  * transcoder select bit can only be cleared while the
1465                  * port is enabled.
1466                  */
1467                 DP &= ~DP_PIPEB_SELECT;
1468                 I915_WRITE(intel_dp->output_reg, DP);
1469
1470                 /* Changes to enable or select take place the vblank
1471                  * after being written.
1472                  */
1473                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1474         }
1475
1476         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1477         POSTING_READ(intel_dp->output_reg);
1478 }
1479
1480 /*
1481  * According to DP spec
1482  * 5.1.2:
1483  *  1. Read DPCD
1484  *  2. Configure link according to Receiver Capabilities
1485  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1486  *  4. Check link status on receipt of hot-plug interrupt
1487  */
1488
1489 static void
1490 intel_dp_check_link_status(struct intel_dp *intel_dp)
1491 {
1492         if (!intel_dp->base.base.crtc)
1493                 return;
1494
1495         if (!intel_dp_get_link_status(intel_dp)) {
1496                 intel_dp_link_down(intel_dp);
1497                 return;
1498         }
1499
1500         if (!intel_channel_eq_ok(intel_dp)) {
1501                 intel_dp_start_link_train(intel_dp);
1502                 intel_dp_complete_link_train(intel_dp);
1503         }
1504 }
1505
1506 static enum drm_connector_status
1507 ironlake_dp_detect(struct intel_dp *intel_dp)
1508 {
1509         enum drm_connector_status status;
1510
1511         /* Can't disconnect eDP */
1512         if (is_edp(intel_dp))
1513                 return connector_status_connected;
1514
1515         status = connector_status_disconnected;
1516         if (intel_dp_aux_native_read(intel_dp,
1517                                      0x000, intel_dp->dpcd,
1518                                      sizeof (intel_dp->dpcd))
1519             == sizeof(intel_dp->dpcd)) {
1520                 if (intel_dp->dpcd[0] != 0)
1521                         status = connector_status_connected;
1522         }
1523         DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1524                       intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1525         return status;
1526 }
1527
1528 static enum drm_connector_status
1529 g4x_dp_detect(struct intel_dp *intel_dp)
1530 {
1531         struct drm_device *dev = intel_dp->base.base.dev;
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         enum drm_connector_status status;
1534         uint32_t temp, bit;
1535
1536         switch (intel_dp->output_reg) {
1537         case DP_B:
1538                 bit = DPB_HOTPLUG_INT_STATUS;
1539                 break;
1540         case DP_C:
1541                 bit = DPC_HOTPLUG_INT_STATUS;
1542                 break;
1543         case DP_D:
1544                 bit = DPD_HOTPLUG_INT_STATUS;
1545                 break;
1546         default:
1547                 return connector_status_unknown;
1548         }
1549
1550         temp = I915_READ(PORT_HOTPLUG_STAT);
1551
1552         if ((temp & bit) == 0)
1553                 return connector_status_disconnected;
1554
1555         status = connector_status_disconnected;
1556         if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
1557                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1558         {
1559                 if (intel_dp->dpcd[0] != 0)
1560                         status = connector_status_connected;
1561         }
1562
1563         return status;
1564 }
1565
1566 /**
1567  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1568  *
1569  * \return true if DP port is connected.
1570  * \return false if DP port is disconnected.
1571  */
1572 static enum drm_connector_status
1573 intel_dp_detect(struct drm_connector *connector, bool force)
1574 {
1575         struct intel_dp *intel_dp = intel_attached_dp(connector);
1576         struct drm_device *dev = intel_dp->base.base.dev;
1577         enum drm_connector_status status;
1578         struct edid *edid = NULL;
1579
1580         intel_dp->has_audio = false;
1581
1582         if (HAS_PCH_SPLIT(dev))
1583                 status = ironlake_dp_detect(intel_dp);
1584         else
1585                 status = g4x_dp_detect(intel_dp);
1586         if (status != connector_status_connected)
1587                 return status;
1588
1589         if (intel_dp->force_audio) {
1590                 intel_dp->has_audio = intel_dp->force_audio > 0;
1591         } else {
1592                 edid = drm_get_edid(connector, &intel_dp->adapter);
1593                 if (edid) {
1594                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
1595                         connector->display_info.raw_edid = NULL;
1596                         kfree(edid);
1597                 }
1598         }
1599
1600         return connector_status_connected;
1601 }
1602
1603 static int intel_dp_get_modes(struct drm_connector *connector)
1604 {
1605         struct intel_dp *intel_dp = intel_attached_dp(connector);
1606         struct drm_device *dev = intel_dp->base.base.dev;
1607         struct drm_i915_private *dev_priv = dev->dev_private;
1608         int ret;
1609
1610         /* We should parse the EDID data and find out if it has an audio sink
1611          */
1612
1613         ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1614         if (ret) {
1615                 if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1616                         struct drm_display_mode *newmode;
1617                         list_for_each_entry(newmode, &connector->probed_modes,
1618                                             head) {
1619                                 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1620                                         dev_priv->panel_fixed_mode =
1621                                                 drm_mode_duplicate(dev, newmode);
1622                                         break;
1623                                 }
1624                         }
1625                 }
1626
1627                 return ret;
1628         }
1629
1630         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1631         if (is_edp(intel_dp)) {
1632                 if (dev_priv->panel_fixed_mode != NULL) {
1633                         struct drm_display_mode *mode;
1634                         mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1635                         drm_mode_probed_add(connector, mode);
1636                         return 1;
1637                 }
1638         }
1639         return 0;
1640 }
1641
1642 static bool
1643 intel_dp_detect_audio(struct drm_connector *connector)
1644 {
1645         struct intel_dp *intel_dp = intel_attached_dp(connector);
1646         struct edid *edid;
1647         bool has_audio = false;
1648
1649         edid = drm_get_edid(connector, &intel_dp->adapter);
1650         if (edid) {
1651                 has_audio = drm_detect_monitor_audio(edid);
1652
1653                 connector->display_info.raw_edid = NULL;
1654                 kfree(edid);
1655         }
1656
1657         return has_audio;
1658 }
1659
1660 static int
1661 intel_dp_set_property(struct drm_connector *connector,
1662                       struct drm_property *property,
1663                       uint64_t val)
1664 {
1665         struct intel_dp *intel_dp = intel_attached_dp(connector);
1666         int ret;
1667
1668         ret = drm_connector_property_set_value(connector, property, val);
1669         if (ret)
1670                 return ret;
1671
1672         if (property == intel_dp->force_audio_property) {
1673                 int i = val;
1674                 bool has_audio;
1675
1676                 if (i == intel_dp->force_audio)
1677                         return 0;
1678
1679                 intel_dp->force_audio = i;
1680
1681                 if (i == 0)
1682                         has_audio = intel_dp_detect_audio(connector);
1683                 else
1684                         has_audio = i > 0;
1685
1686                 if (has_audio == intel_dp->has_audio)
1687                         return 0;
1688
1689                 intel_dp->has_audio = has_audio;
1690                 goto done;
1691         }
1692
1693         return -EINVAL;
1694
1695 done:
1696         if (intel_dp->base.base.crtc) {
1697                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1698                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1699                                          crtc->x, crtc->y,
1700                                          crtc->fb);
1701         }
1702
1703         return 0;
1704 }
1705
1706 static void
1707 intel_dp_destroy (struct drm_connector *connector)
1708 {
1709         drm_sysfs_connector_remove(connector);
1710         drm_connector_cleanup(connector);
1711         kfree(connector);
1712 }
1713
1714 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1715 {
1716         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1717
1718         i2c_del_adapter(&intel_dp->adapter);
1719         drm_encoder_cleanup(encoder);
1720         kfree(intel_dp);
1721 }
1722
1723 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1724         .dpms = intel_dp_dpms,
1725         .mode_fixup = intel_dp_mode_fixup,
1726         .prepare = intel_dp_prepare,
1727         .mode_set = intel_dp_mode_set,
1728         .commit = intel_dp_commit,
1729 };
1730
1731 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1732         .dpms = drm_helper_connector_dpms,
1733         .detect = intel_dp_detect,
1734         .fill_modes = drm_helper_probe_single_connector_modes,
1735         .set_property = intel_dp_set_property,
1736         .destroy = intel_dp_destroy,
1737 };
1738
1739 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1740         .get_modes = intel_dp_get_modes,
1741         .mode_valid = intel_dp_mode_valid,
1742         .best_encoder = intel_best_encoder,
1743 };
1744
1745 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1746         .destroy = intel_dp_encoder_destroy,
1747 };
1748
1749 static void
1750 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1751 {
1752         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1753
1754         if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
1755                 intel_dp_check_link_status(intel_dp);
1756 }
1757
1758 /* Return which DP Port should be selected for Transcoder DP control */
1759 int
1760 intel_trans_dp_port_sel (struct drm_crtc *crtc)
1761 {
1762         struct drm_device *dev = crtc->dev;
1763         struct drm_mode_config *mode_config = &dev->mode_config;
1764         struct drm_encoder *encoder;
1765
1766         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1767                 struct intel_dp *intel_dp;
1768
1769                 if (encoder->crtc != crtc)
1770                         continue;
1771
1772                 intel_dp = enc_to_intel_dp(encoder);
1773                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1774                         return intel_dp->output_reg;
1775         }
1776
1777         return -1;
1778 }
1779
1780 /* check the VBT to see whether the eDP is on DP-D port */
1781 bool intel_dpd_is_edp(struct drm_device *dev)
1782 {
1783         struct drm_i915_private *dev_priv = dev->dev_private;
1784         struct child_device_config *p_child;
1785         int i;
1786
1787         if (!dev_priv->child_dev_num)
1788                 return false;
1789
1790         for (i = 0; i < dev_priv->child_dev_num; i++) {
1791                 p_child = dev_priv->child_dev + i;
1792
1793                 if (p_child->dvo_port == PORT_IDPD &&
1794                     p_child->device_type == DEVICE_TYPE_eDP)
1795                         return true;
1796         }
1797         return false;
1798 }
1799
1800 static void
1801 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1802 {
1803         struct drm_device *dev = connector->dev;
1804
1805         intel_dp->force_audio_property =
1806                 drm_property_create(dev, DRM_MODE_PROP_RANGE, "force_audio", 2);
1807         if (intel_dp->force_audio_property) {
1808                 intel_dp->force_audio_property->values[0] = -1;
1809                 intel_dp->force_audio_property->values[1] = 1;
1810                 drm_connector_attach_property(connector, intel_dp->force_audio_property, 0);
1811         }
1812 }
1813
1814 void
1815 intel_dp_init(struct drm_device *dev, int output_reg)
1816 {
1817         struct drm_i915_private *dev_priv = dev->dev_private;
1818         struct drm_connector *connector;
1819         struct intel_dp *intel_dp;
1820         struct intel_encoder *intel_encoder;
1821         struct intel_connector *intel_connector;
1822         const char *name = NULL;
1823         int type;
1824
1825         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1826         if (!intel_dp)
1827                 return;
1828
1829         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1830         if (!intel_connector) {
1831                 kfree(intel_dp);
1832                 return;
1833         }
1834         intel_encoder = &intel_dp->base;
1835
1836         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1837                 if (intel_dpd_is_edp(dev))
1838                         intel_dp->is_pch_edp = true;
1839
1840         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1841                 type = DRM_MODE_CONNECTOR_eDP;
1842                 intel_encoder->type = INTEL_OUTPUT_EDP;
1843         } else {
1844                 type = DRM_MODE_CONNECTOR_DisplayPort;
1845                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1846         }
1847
1848         connector = &intel_connector->base;
1849         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1850         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1851
1852         connector->polled = DRM_CONNECTOR_POLL_HPD;
1853
1854         if (output_reg == DP_B || output_reg == PCH_DP_B)
1855                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1856         else if (output_reg == DP_C || output_reg == PCH_DP_C)
1857                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1858         else if (output_reg == DP_D || output_reg == PCH_DP_D)
1859                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1860
1861         if (is_edp(intel_dp))
1862                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1863
1864         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1865         connector->interlace_allowed = true;
1866         connector->doublescan_allowed = 0;
1867
1868         intel_dp->output_reg = output_reg;
1869         intel_dp->has_audio = false;
1870         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1871
1872         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
1873                          DRM_MODE_ENCODER_TMDS);
1874         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
1875
1876         intel_connector_attach_encoder(intel_connector, intel_encoder);
1877         drm_sysfs_connector_add(connector);
1878
1879         /* Set up the DDC bus. */
1880         switch (output_reg) {
1881                 case DP_A:
1882                         name = "DPDDC-A";
1883                         break;
1884                 case DP_B:
1885                 case PCH_DP_B:
1886                         dev_priv->hotplug_supported_mask |=
1887                                 HDMIB_HOTPLUG_INT_STATUS;
1888                         name = "DPDDC-B";
1889                         break;
1890                 case DP_C:
1891                 case PCH_DP_C:
1892                         dev_priv->hotplug_supported_mask |=
1893                                 HDMIC_HOTPLUG_INT_STATUS;
1894                         name = "DPDDC-C";
1895                         break;
1896                 case DP_D:
1897                 case PCH_DP_D:
1898                         dev_priv->hotplug_supported_mask |=
1899                                 HDMID_HOTPLUG_INT_STATUS;
1900                         name = "DPDDC-D";
1901                         break;
1902         }
1903
1904         intel_dp_i2c_init(intel_dp, intel_connector, name);
1905
1906         /* Cache some DPCD data in the eDP case */
1907         if (is_edp(intel_dp)) {
1908                 int ret;
1909                 bool was_on;
1910
1911                 was_on = ironlake_edp_panel_on(intel_dp);
1912                 ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
1913                                                intel_dp->dpcd,
1914                                                sizeof(intel_dp->dpcd));
1915                 if (ret == sizeof(intel_dp->dpcd)) {
1916                         if (intel_dp->dpcd[0] >= 0x11)
1917                                 dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
1918                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
1919                 } else {
1920                         DRM_ERROR("failed to retrieve link info\n");
1921                 }
1922                 if (!was_on)
1923                         ironlake_edp_panel_off(dev);
1924         }
1925
1926         intel_encoder->hot_plug = intel_dp_hot_plug;
1927
1928         if (is_edp(intel_dp)) {
1929                 /* initialize panel mode from VBT if available for eDP */
1930                 if (dev_priv->lfp_lvds_vbt_mode) {
1931                         dev_priv->panel_fixed_mode =
1932                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1933                         if (dev_priv->panel_fixed_mode) {
1934                                 dev_priv->panel_fixed_mode->type |=
1935                                         DRM_MODE_TYPE_PREFERRED;
1936                         }
1937                 }
1938         }
1939
1940         intel_dp_add_properties(intel_dp, connector);
1941
1942         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1943          * 0xd.  Failure to do so will result in spurious interrupts being
1944          * generated on the port when a cable is not attached.
1945          */
1946         if (IS_G4X(dev) && !IS_GM45(dev)) {
1947                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1948                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1949         }
1950 }