Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-rc-fixes-2.6
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 #define IS_eDP(i) ((i)->base.type == INTEL_OUTPUT_EDP)
46 #define IS_PCH_eDP(i) ((i)->is_pch_edp)
47
48 struct intel_dp {
49         struct intel_encoder base;
50         uint32_t output_reg;
51         uint32_t DP;
52         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
53         bool has_audio;
54         int dpms_mode;
55         uint8_t link_bw;
56         uint8_t lane_count;
57         uint8_t dpcd[4];
58         struct i2c_adapter adapter;
59         struct i2c_algo_dp_aux_data algo;
60         bool is_pch_edp;
61 };
62
63 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
64 {
65         return container_of(enc_to_intel_encoder(encoder), struct intel_dp, base);
66 }
67
68 static void intel_dp_link_train(struct intel_dp *intel_dp);
69 static void intel_dp_link_down(struct intel_dp *intel_dp);
70
71 void
72 intel_edp_link_config (struct intel_encoder *intel_encoder,
73                        int *lane_num, int *link_bw)
74 {
75         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
76
77         *lane_num = intel_dp->lane_count;
78         if (intel_dp->link_bw == DP_LINK_BW_1_62)
79                 *link_bw = 162000;
80         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
81                 *link_bw = 270000;
82 }
83
84 static int
85 intel_dp_max_lane_count(struct intel_dp *intel_dp)
86 {
87         int max_lane_count = 4;
88
89         if (intel_dp->dpcd[0] >= 0x11) {
90                 max_lane_count = intel_dp->dpcd[2] & 0x1f;
91                 switch (max_lane_count) {
92                 case 1: case 2: case 4:
93                         break;
94                 default:
95                         max_lane_count = 4;
96                 }
97         }
98         return max_lane_count;
99 }
100
101 static int
102 intel_dp_max_link_bw(struct intel_dp *intel_dp)
103 {
104         int max_link_bw = intel_dp->dpcd[1];
105
106         switch (max_link_bw) {
107         case DP_LINK_BW_1_62:
108         case DP_LINK_BW_2_7:
109                 break;
110         default:
111                 max_link_bw = DP_LINK_BW_1_62;
112                 break;
113         }
114         return max_link_bw;
115 }
116
117 static int
118 intel_dp_link_clock(uint8_t link_bw)
119 {
120         if (link_bw == DP_LINK_BW_2_7)
121                 return 270000;
122         else
123                 return 162000;
124 }
125
126 /* I think this is a fiction */
127 static int
128 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
129 {
130         struct drm_i915_private *dev_priv = dev->dev_private;
131
132         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
133                 return (pixel_clock * dev_priv->edp_bpp) / 8;
134         else
135                 return pixel_clock * 3;
136 }
137
138 static int
139 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
140 {
141         return (max_link_clock * max_lanes * 8) / 10;
142 }
143
144 static int
145 intel_dp_mode_valid(struct drm_connector *connector,
146                     struct drm_display_mode *mode)
147 {
148         struct drm_encoder *encoder = intel_attached_encoder(connector);
149         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
150         struct drm_device *dev = connector->dev;
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
153         int max_lanes = intel_dp_max_lane_count(intel_dp);
154
155         if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
156             dev_priv->panel_fixed_mode) {
157                 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
158                         return MODE_PANEL;
159
160                 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
161                         return MODE_PANEL;
162         }
163
164         /* only refuse the mode on non eDP since we have seen some wierd eDP panels
165            which are outside spec tolerances but somehow work by magic */
166         if (!IS_eDP(intel_dp) &&
167             (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
168              > intel_dp_max_data_rate(max_link_clock, max_lanes)))
169                 return MODE_CLOCK_HIGH;
170
171         if (mode->clock < 10000)
172                 return MODE_CLOCK_LOW;
173
174         return MODE_OK;
175 }
176
177 static uint32_t
178 pack_aux(uint8_t *src, int src_bytes)
179 {
180         int     i;
181         uint32_t v = 0;
182
183         if (src_bytes > 4)
184                 src_bytes = 4;
185         for (i = 0; i < src_bytes; i++)
186                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
187         return v;
188 }
189
190 static void
191 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
192 {
193         int i;
194         if (dst_bytes > 4)
195                 dst_bytes = 4;
196         for (i = 0; i < dst_bytes; i++)
197                 dst[i] = src >> ((3-i) * 8);
198 }
199
200 /* hrawclock is 1/4 the FSB frequency */
201 static int
202 intel_hrawclk(struct drm_device *dev)
203 {
204         struct drm_i915_private *dev_priv = dev->dev_private;
205         uint32_t clkcfg;
206
207         clkcfg = I915_READ(CLKCFG);
208         switch (clkcfg & CLKCFG_FSB_MASK) {
209         case CLKCFG_FSB_400:
210                 return 100;
211         case CLKCFG_FSB_533:
212                 return 133;
213         case CLKCFG_FSB_667:
214                 return 166;
215         case CLKCFG_FSB_800:
216                 return 200;
217         case CLKCFG_FSB_1067:
218                 return 266;
219         case CLKCFG_FSB_1333:
220                 return 333;
221         /* these two are just a guess; one of them might be right */
222         case CLKCFG_FSB_1600:
223         case CLKCFG_FSB_1600_ALT:
224                 return 400;
225         default:
226                 return 133;
227         }
228 }
229
230 static int
231 intel_dp_aux_ch(struct intel_dp *intel_dp,
232                 uint8_t *send, int send_bytes,
233                 uint8_t *recv, int recv_size)
234 {
235         uint32_t output_reg = intel_dp->output_reg;
236         struct drm_device *dev = intel_dp->base.enc.dev;
237         struct drm_i915_private *dev_priv = dev->dev_private;
238         uint32_t ch_ctl = output_reg + 0x10;
239         uint32_t ch_data = ch_ctl + 4;
240         int i;
241         int recv_bytes;
242         uint32_t status;
243         uint32_t aux_clock_divider;
244         int try, precharge;
245
246         /* The clock divider is based off the hrawclk,
247          * and would like to run at 2MHz. So, take the
248          * hrawclk value and divide by 2 and use that
249          */
250         if (IS_eDP(intel_dp)) {
251                 if (IS_GEN6(dev))
252                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
253                 else
254                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
255         } else if (HAS_PCH_SPLIT(dev))
256                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
257         else
258                 aux_clock_divider = intel_hrawclk(dev) / 2;
259
260         if (IS_GEN6(dev))
261                 precharge = 3;
262         else
263                 precharge = 5;
264
265         if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
266                 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
267                           I915_READ(ch_ctl));
268                 return -EBUSY;
269         }
270
271         /* Must try at least 3 times according to DP spec */
272         for (try = 0; try < 5; try++) {
273                 /* Load the send data into the aux channel data registers */
274                 for (i = 0; i < send_bytes; i += 4)
275                         I915_WRITE(ch_data + i,
276                                    pack_aux(send + i, send_bytes - i));
277         
278                 /* Send the command and wait for it to complete */
279                 I915_WRITE(ch_ctl,
280                            DP_AUX_CH_CTL_SEND_BUSY |
281                            DP_AUX_CH_CTL_TIME_OUT_400us |
282                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
283                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
284                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
285                            DP_AUX_CH_CTL_DONE |
286                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
287                            DP_AUX_CH_CTL_RECEIVE_ERROR);
288                 for (;;) {
289                         status = I915_READ(ch_ctl);
290                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
291                                 break;
292                         udelay(100);
293                 }
294         
295                 /* Clear done status and any errors */
296                 I915_WRITE(ch_ctl,
297                            status |
298                            DP_AUX_CH_CTL_DONE |
299                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
300                            DP_AUX_CH_CTL_RECEIVE_ERROR);
301                 if (status & DP_AUX_CH_CTL_DONE)
302                         break;
303         }
304
305         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
306                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
307                 return -EBUSY;
308         }
309
310         /* Check for timeout or receive error.
311          * Timeouts occur when the sink is not connected
312          */
313         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
314                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
315                 return -EIO;
316         }
317
318         /* Timeouts occur when the device isn't connected, so they're
319          * "normal" -- don't fill the kernel log with these */
320         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
321                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
322                 return -ETIMEDOUT;
323         }
324
325         /* Unload any bytes sent back from the other side */
326         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
327                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
328         if (recv_bytes > recv_size)
329                 recv_bytes = recv_size;
330         
331         for (i = 0; i < recv_bytes; i += 4)
332                 unpack_aux(I915_READ(ch_data + i),
333                            recv + i, recv_bytes - i);
334
335         return recv_bytes;
336 }
337
338 /* Write data to the aux channel in native mode */
339 static int
340 intel_dp_aux_native_write(struct intel_dp *intel_dp,
341                           uint16_t address, uint8_t *send, int send_bytes)
342 {
343         int ret;
344         uint8_t msg[20];
345         int msg_bytes;
346         uint8_t ack;
347
348         if (send_bytes > 16)
349                 return -1;
350         msg[0] = AUX_NATIVE_WRITE << 4;
351         msg[1] = address >> 8;
352         msg[2] = address & 0xff;
353         msg[3] = send_bytes - 1;
354         memcpy(&msg[4], send, send_bytes);
355         msg_bytes = send_bytes + 4;
356         for (;;) {
357                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
358                 if (ret < 0)
359                         return ret;
360                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
361                         break;
362                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
363                         udelay(100);
364                 else
365                         return -EIO;
366         }
367         return send_bytes;
368 }
369
370 /* Write a single byte to the aux channel in native mode */
371 static int
372 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
373                             uint16_t address, uint8_t byte)
374 {
375         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
376 }
377
378 /* read bytes from a native aux channel */
379 static int
380 intel_dp_aux_native_read(struct intel_dp *intel_dp,
381                          uint16_t address, uint8_t *recv, int recv_bytes)
382 {
383         uint8_t msg[4];
384         int msg_bytes;
385         uint8_t reply[20];
386         int reply_bytes;
387         uint8_t ack;
388         int ret;
389
390         msg[0] = AUX_NATIVE_READ << 4;
391         msg[1] = address >> 8;
392         msg[2] = address & 0xff;
393         msg[3] = recv_bytes - 1;
394
395         msg_bytes = 4;
396         reply_bytes = recv_bytes + 1;
397
398         for (;;) {
399                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
400                                       reply, reply_bytes);
401                 if (ret == 0)
402                         return -EPROTO;
403                 if (ret < 0)
404                         return ret;
405                 ack = reply[0];
406                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
407                         memcpy(recv, reply + 1, ret - 1);
408                         return ret - 1;
409                 }
410                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
411                         udelay(100);
412                 else
413                         return -EIO;
414         }
415 }
416
417 static int
418 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
419                     uint8_t write_byte, uint8_t *read_byte)
420 {
421         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
422         struct intel_dp *intel_dp = container_of(adapter,
423                                                 struct intel_dp,
424                                                 adapter);
425         uint16_t address = algo_data->address;
426         uint8_t msg[5];
427         uint8_t reply[2];
428         int msg_bytes;
429         int reply_bytes;
430         int ret;
431
432         /* Set up the command byte */
433         if (mode & MODE_I2C_READ)
434                 msg[0] = AUX_I2C_READ << 4;
435         else
436                 msg[0] = AUX_I2C_WRITE << 4;
437
438         if (!(mode & MODE_I2C_STOP))
439                 msg[0] |= AUX_I2C_MOT << 4;
440
441         msg[1] = address >> 8;
442         msg[2] = address;
443
444         switch (mode) {
445         case MODE_I2C_WRITE:
446                 msg[3] = 0;
447                 msg[4] = write_byte;
448                 msg_bytes = 5;
449                 reply_bytes = 1;
450                 break;
451         case MODE_I2C_READ:
452                 msg[3] = 0;
453                 msg_bytes = 4;
454                 reply_bytes = 2;
455                 break;
456         default:
457                 msg_bytes = 3;
458                 reply_bytes = 1;
459                 break;
460         }
461
462         for (;;) {
463           ret = intel_dp_aux_ch(intel_dp,
464                                 msg, msg_bytes,
465                                 reply, reply_bytes);
466                 if (ret < 0) {
467                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
468                         return ret;
469                 }
470                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
471                 case AUX_I2C_REPLY_ACK:
472                         if (mode == MODE_I2C_READ) {
473                                 *read_byte = reply[1];
474                         }
475                         return reply_bytes - 1;
476                 case AUX_I2C_REPLY_NACK:
477                         DRM_DEBUG_KMS("aux_ch nack\n");
478                         return -EREMOTEIO;
479                 case AUX_I2C_REPLY_DEFER:
480                         DRM_DEBUG_KMS("aux_ch defer\n");
481                         udelay(100);
482                         break;
483                 default:
484                         DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
485                         return -EREMOTEIO;
486                 }
487         }
488 }
489
490 static int
491 intel_dp_i2c_init(struct intel_dp *intel_dp,
492                   struct intel_connector *intel_connector, const char *name)
493 {
494         DRM_DEBUG_KMS("i2c_init %s\n", name);
495         intel_dp->algo.running = false;
496         intel_dp->algo.address = 0;
497         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
498
499         memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
500         intel_dp->adapter.owner = THIS_MODULE;
501         intel_dp->adapter.class = I2C_CLASS_DDC;
502         strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
503         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
504         intel_dp->adapter.algo_data = &intel_dp->algo;
505         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
506
507         return i2c_dp_aux_add_bus(&intel_dp->adapter);
508 }
509
510 static bool
511 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
512                     struct drm_display_mode *adjusted_mode)
513 {
514         struct drm_device *dev = encoder->dev;
515         struct drm_i915_private *dev_priv = dev->dev_private;
516         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
517         int lane_count, clock;
518         int max_lane_count = intel_dp_max_lane_count(intel_dp);
519         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
520         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
521
522         if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
523             dev_priv->panel_fixed_mode) {
524                 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
525                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
526                                         mode, adjusted_mode);
527                 /*
528                  * the mode->clock is used to calculate the Data&Link M/N
529                  * of the pipe. For the eDP the fixed clock should be used.
530                  */
531                 mode->clock = dev_priv->panel_fixed_mode->clock;
532         }
533
534         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
535                 for (clock = 0; clock <= max_clock; clock++) {
536                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
537
538                         if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
539                                         <= link_avail) {
540                                 intel_dp->link_bw = bws[clock];
541                                 intel_dp->lane_count = lane_count;
542                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
543                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
544                                                 "count %d clock %d\n",
545                                        intel_dp->link_bw, intel_dp->lane_count,
546                                        adjusted_mode->clock);
547                                 return true;
548                         }
549                 }
550         }
551
552         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
553                 /* okay we failed just pick the highest */
554                 intel_dp->lane_count = max_lane_count;
555                 intel_dp->link_bw = bws[max_clock];
556                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
557                 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
558                               "count %d clock %d\n",
559                               intel_dp->link_bw, intel_dp->lane_count,
560                               adjusted_mode->clock);
561
562                 return true;
563         }
564
565         return false;
566 }
567
568 struct intel_dp_m_n {
569         uint32_t        tu;
570         uint32_t        gmch_m;
571         uint32_t        gmch_n;
572         uint32_t        link_m;
573         uint32_t        link_n;
574 };
575
576 static void
577 intel_reduce_ratio(uint32_t *num, uint32_t *den)
578 {
579         while (*num > 0xffffff || *den > 0xffffff) {
580                 *num >>= 1;
581                 *den >>= 1;
582         }
583 }
584
585 static void
586 intel_dp_compute_m_n(int bpp,
587                      int nlanes,
588                      int pixel_clock,
589                      int link_clock,
590                      struct intel_dp_m_n *m_n)
591 {
592         m_n->tu = 64;
593         m_n->gmch_m = (pixel_clock * bpp) >> 3;
594         m_n->gmch_n = link_clock * nlanes;
595         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
596         m_n->link_m = pixel_clock;
597         m_n->link_n = link_clock;
598         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
599 }
600
601 bool intel_pch_has_edp(struct drm_crtc *crtc)
602 {
603         struct drm_device *dev = crtc->dev;
604         struct drm_mode_config *mode_config = &dev->mode_config;
605         struct drm_encoder *encoder;
606
607         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
608                 struct intel_dp *intel_dp;
609
610                 if (encoder->crtc != crtc)
611                         continue;
612
613                 intel_dp = enc_to_intel_dp(encoder);
614                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
615                         return intel_dp->is_pch_edp;
616         }
617         return false;
618 }
619
620 void
621 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
622                  struct drm_display_mode *adjusted_mode)
623 {
624         struct drm_device *dev = crtc->dev;
625         struct drm_mode_config *mode_config = &dev->mode_config;
626         struct drm_encoder *encoder;
627         struct drm_i915_private *dev_priv = dev->dev_private;
628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
629         int lane_count = 4, bpp = 24;
630         struct intel_dp_m_n m_n;
631
632         /*
633          * Find the lane count in the intel_encoder private
634          */
635         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
636                 struct intel_dp *intel_dp;
637
638                 if (encoder->crtc != crtc)
639                         continue;
640
641                 intel_dp = enc_to_intel_dp(encoder);
642                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
643                         lane_count = intel_dp->lane_count;
644                         if (IS_PCH_eDP(intel_dp))
645                                 bpp = dev_priv->edp_bpp;
646                         break;
647                 }
648         }
649
650         /*
651          * Compute the GMCH and Link ratios. The '3' here is
652          * the number of bytes_per_pixel post-LUT, which we always
653          * set up for 8-bits of R/G/B, or 3 bytes total.
654          */
655         intel_dp_compute_m_n(bpp, lane_count,
656                              mode->clock, adjusted_mode->clock, &m_n);
657
658         if (HAS_PCH_SPLIT(dev)) {
659                 if (intel_crtc->pipe == 0) {
660                         I915_WRITE(TRANSA_DATA_M1,
661                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
662                                    m_n.gmch_m);
663                         I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
664                         I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
665                         I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
666                 } else {
667                         I915_WRITE(TRANSB_DATA_M1,
668                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
669                                    m_n.gmch_m);
670                         I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
671                         I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
672                         I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
673                 }
674         } else {
675                 if (intel_crtc->pipe == 0) {
676                         I915_WRITE(PIPEA_GMCH_DATA_M,
677                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
678                                    m_n.gmch_m);
679                         I915_WRITE(PIPEA_GMCH_DATA_N,
680                                    m_n.gmch_n);
681                         I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
682                         I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
683                 } else {
684                         I915_WRITE(PIPEB_GMCH_DATA_M,
685                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
686                                    m_n.gmch_m);
687                         I915_WRITE(PIPEB_GMCH_DATA_N,
688                                         m_n.gmch_n);
689                         I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
690                         I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
691                 }
692         }
693 }
694
695 static void
696 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
697                   struct drm_display_mode *adjusted_mode)
698 {
699         struct drm_device *dev = encoder->dev;
700         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
701         struct drm_crtc *crtc = intel_dp->base.enc.crtc;
702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
703
704         intel_dp->DP = (DP_VOLTAGE_0_4 |
705                        DP_PRE_EMPHASIS_0);
706
707         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
708                 intel_dp->DP |= DP_SYNC_HS_HIGH;
709         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
710                 intel_dp->DP |= DP_SYNC_VS_HIGH;
711
712         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
713                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
714         else
715                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
716
717         switch (intel_dp->lane_count) {
718         case 1:
719                 intel_dp->DP |= DP_PORT_WIDTH_1;
720                 break;
721         case 2:
722                 intel_dp->DP |= DP_PORT_WIDTH_2;
723                 break;
724         case 4:
725                 intel_dp->DP |= DP_PORT_WIDTH_4;
726                 break;
727         }
728         if (intel_dp->has_audio)
729                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
730
731         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
732         intel_dp->link_configuration[0] = intel_dp->link_bw;
733         intel_dp->link_configuration[1] = intel_dp->lane_count;
734
735         /*
736          * Check for DPCD version > 1.1 and enhanced framing support
737          */
738         if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
739                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
740                 intel_dp->DP |= DP_ENHANCED_FRAMING;
741         }
742
743         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
744         if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
745                 intel_dp->DP |= DP_PIPEB_SELECT;
746
747         if (IS_eDP(intel_dp)) {
748                 /* don't miss out required setting for eDP */
749                 intel_dp->DP |= DP_PLL_ENABLE;
750                 if (adjusted_mode->clock < 200000)
751                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
752                 else
753                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
754         }
755 }
756
757 static void ironlake_edp_panel_on (struct drm_device *dev)
758 {
759         struct drm_i915_private *dev_priv = dev->dev_private;
760         u32 pp;
761
762         if (I915_READ(PCH_PP_STATUS) & PP_ON)
763                 return;
764
765         pp = I915_READ(PCH_PP_CONTROL);
766
767         /* ILK workaround: disable reset around power sequence */
768         pp &= ~PANEL_POWER_RESET;
769         I915_WRITE(PCH_PP_CONTROL, pp);
770         POSTING_READ(PCH_PP_CONTROL);
771
772         pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
773         I915_WRITE(PCH_PP_CONTROL, pp);
774
775         if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000, 10))
776                 DRM_ERROR("panel on wait timed out: 0x%08x\n",
777                           I915_READ(PCH_PP_STATUS));
778
779         pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
780         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
781         I915_WRITE(PCH_PP_CONTROL, pp);
782         POSTING_READ(PCH_PP_CONTROL);
783 }
784
785 static void ironlake_edp_panel_off (struct drm_device *dev)
786 {
787         struct drm_i915_private *dev_priv = dev->dev_private;
788         u32 pp;
789
790         pp = I915_READ(PCH_PP_CONTROL);
791
792         /* ILK workaround: disable reset around power sequence */
793         pp &= ~PANEL_POWER_RESET;
794         I915_WRITE(PCH_PP_CONTROL, pp);
795         POSTING_READ(PCH_PP_CONTROL);
796
797         pp &= ~POWER_TARGET_ON;
798         I915_WRITE(PCH_PP_CONTROL, pp);
799
800         if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000, 10))
801                 DRM_ERROR("panel off wait timed out: 0x%08x\n",
802                           I915_READ(PCH_PP_STATUS));
803
804         /* Make sure VDD is enabled so DP AUX will work */
805         pp |= EDP_FORCE_VDD | PANEL_POWER_RESET; /* restore panel reset bit */
806         I915_WRITE(PCH_PP_CONTROL, pp);
807         POSTING_READ(PCH_PP_CONTROL);
808 }
809
810 static void ironlake_edp_backlight_on (struct drm_device *dev)
811 {
812         struct drm_i915_private *dev_priv = dev->dev_private;
813         u32 pp;
814
815         DRM_DEBUG_KMS("\n");
816         pp = I915_READ(PCH_PP_CONTROL);
817         pp |= EDP_BLC_ENABLE;
818         I915_WRITE(PCH_PP_CONTROL, pp);
819 }
820
821 static void ironlake_edp_backlight_off (struct drm_device *dev)
822 {
823         struct drm_i915_private *dev_priv = dev->dev_private;
824         u32 pp;
825
826         DRM_DEBUG_KMS("\n");
827         pp = I915_READ(PCH_PP_CONTROL);
828         pp &= ~EDP_BLC_ENABLE;
829         I915_WRITE(PCH_PP_CONTROL, pp);
830 }
831
832 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
833 {
834         struct drm_device *dev = encoder->dev;
835         struct drm_i915_private *dev_priv = dev->dev_private;
836         u32 dpa_ctl;
837
838         DRM_DEBUG_KMS("\n");
839         dpa_ctl = I915_READ(DP_A);
840         dpa_ctl &= ~DP_PLL_ENABLE;
841         I915_WRITE(DP_A, dpa_ctl);
842 }
843
844 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
845 {
846         struct drm_device *dev = encoder->dev;
847         struct drm_i915_private *dev_priv = dev->dev_private;
848         u32 dpa_ctl;
849
850         dpa_ctl = I915_READ(DP_A);
851         dpa_ctl |= DP_PLL_ENABLE;
852         I915_WRITE(DP_A, dpa_ctl);
853         udelay(200);
854 }
855
856 static void intel_dp_prepare(struct drm_encoder *encoder)
857 {
858         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
859         struct drm_device *dev = encoder->dev;
860         struct drm_i915_private *dev_priv = dev->dev_private;
861         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
862
863         if (IS_eDP(intel_dp)) {
864                 ironlake_edp_backlight_off(dev);
865                 ironlake_edp_panel_on(dev);
866                 ironlake_edp_pll_on(encoder);
867         }
868         if (dp_reg & DP_PORT_EN)
869                 intel_dp_link_down(intel_dp);
870 }
871
872 static void intel_dp_commit(struct drm_encoder *encoder)
873 {
874         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
875         struct drm_device *dev = encoder->dev;
876         struct drm_i915_private *dev_priv = dev->dev_private;
877         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
878
879         if (!(dp_reg & DP_PORT_EN)) {
880                 intel_dp_link_train(intel_dp);
881         }
882         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
883                 ironlake_edp_backlight_on(dev);
884 }
885
886 static void
887 intel_dp_dpms(struct drm_encoder *encoder, int mode)
888 {
889         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
890         struct drm_device *dev = encoder->dev;
891         struct drm_i915_private *dev_priv = dev->dev_private;
892         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
893
894         if (mode != DRM_MODE_DPMS_ON) {
895                 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
896                         ironlake_edp_backlight_off(dev);
897                         ironlake_edp_panel_off(dev);
898                 }
899                 if (dp_reg & DP_PORT_EN)
900                         intel_dp_link_down(intel_dp);
901                 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
902                         ironlake_edp_pll_off(encoder);
903         } else {
904                 if (!(dp_reg & DP_PORT_EN)) {
905                         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
906                                 ironlake_edp_panel_on(dev);
907                         intel_dp_link_train(intel_dp);
908                         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
909                                 ironlake_edp_backlight_on(dev);
910                 }
911         }
912         intel_dp->dpms_mode = mode;
913 }
914
915 /*
916  * Fetch AUX CH registers 0x202 - 0x207 which contain
917  * link status information
918  */
919 static bool
920 intel_dp_get_link_status(struct intel_dp *intel_dp,
921                          uint8_t link_status[DP_LINK_STATUS_SIZE])
922 {
923         int ret;
924
925         ret = intel_dp_aux_native_read(intel_dp,
926                                        DP_LANE0_1_STATUS,
927                                        link_status, DP_LINK_STATUS_SIZE);
928         if (ret != DP_LINK_STATUS_SIZE)
929                 return false;
930         return true;
931 }
932
933 static uint8_t
934 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
935                      int r)
936 {
937         return link_status[r - DP_LANE0_1_STATUS];
938 }
939
940 static uint8_t
941 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
942                                  int lane)
943 {
944         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
945         int         s = ((lane & 1) ?
946                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
947                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
948         uint8_t l = intel_dp_link_status(link_status, i);
949
950         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
951 }
952
953 static uint8_t
954 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
955                                       int lane)
956 {
957         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
958         int         s = ((lane & 1) ?
959                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
960                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
961         uint8_t l = intel_dp_link_status(link_status, i);
962
963         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
964 }
965
966
967 #if 0
968 static char     *voltage_names[] = {
969         "0.4V", "0.6V", "0.8V", "1.2V"
970 };
971 static char     *pre_emph_names[] = {
972         "0dB", "3.5dB", "6dB", "9.5dB"
973 };
974 static char     *link_train_names[] = {
975         "pattern 1", "pattern 2", "idle", "off"
976 };
977 #endif
978
979 /*
980  * These are source-specific values; current Intel hardware supports
981  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
982  */
983 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
984
985 static uint8_t
986 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
987 {
988         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
989         case DP_TRAIN_VOLTAGE_SWING_400:
990                 return DP_TRAIN_PRE_EMPHASIS_6;
991         case DP_TRAIN_VOLTAGE_SWING_600:
992                 return DP_TRAIN_PRE_EMPHASIS_6;
993         case DP_TRAIN_VOLTAGE_SWING_800:
994                 return DP_TRAIN_PRE_EMPHASIS_3_5;
995         case DP_TRAIN_VOLTAGE_SWING_1200:
996         default:
997                 return DP_TRAIN_PRE_EMPHASIS_0;
998         }
999 }
1000
1001 static void
1002 intel_get_adjust_train(struct intel_dp *intel_dp,
1003                        uint8_t link_status[DP_LINK_STATUS_SIZE],
1004                        int lane_count,
1005                        uint8_t train_set[4])
1006 {
1007         uint8_t v = 0;
1008         uint8_t p = 0;
1009         int lane;
1010
1011         for (lane = 0; lane < lane_count; lane++) {
1012                 uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
1013                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
1014
1015                 if (this_v > v)
1016                         v = this_v;
1017                 if (this_p > p)
1018                         p = this_p;
1019         }
1020
1021         if (v >= I830_DP_VOLTAGE_MAX)
1022                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1023
1024         if (p >= intel_dp_pre_emphasis_max(v))
1025                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1026
1027         for (lane = 0; lane < 4; lane++)
1028                 train_set[lane] = v | p;
1029 }
1030
1031 static uint32_t
1032 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1033 {
1034         uint32_t        signal_levels = 0;
1035
1036         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1037         case DP_TRAIN_VOLTAGE_SWING_400:
1038         default:
1039                 signal_levels |= DP_VOLTAGE_0_4;
1040                 break;
1041         case DP_TRAIN_VOLTAGE_SWING_600:
1042                 signal_levels |= DP_VOLTAGE_0_6;
1043                 break;
1044         case DP_TRAIN_VOLTAGE_SWING_800:
1045                 signal_levels |= DP_VOLTAGE_0_8;
1046                 break;
1047         case DP_TRAIN_VOLTAGE_SWING_1200:
1048                 signal_levels |= DP_VOLTAGE_1_2;
1049                 break;
1050         }
1051         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1052         case DP_TRAIN_PRE_EMPHASIS_0:
1053         default:
1054                 signal_levels |= DP_PRE_EMPHASIS_0;
1055                 break;
1056         case DP_TRAIN_PRE_EMPHASIS_3_5:
1057                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1058                 break;
1059         case DP_TRAIN_PRE_EMPHASIS_6:
1060                 signal_levels |= DP_PRE_EMPHASIS_6;
1061                 break;
1062         case DP_TRAIN_PRE_EMPHASIS_9_5:
1063                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1064                 break;
1065         }
1066         return signal_levels;
1067 }
1068
1069 /* Gen6's DP voltage swing and pre-emphasis control */
1070 static uint32_t
1071 intel_gen6_edp_signal_levels(uint8_t train_set)
1072 {
1073         switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
1074         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1075                 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
1076         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1077                 return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
1078         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1079                 return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
1080         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1081                 return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
1082         default:
1083                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
1084                 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
1085         }
1086 }
1087
1088 static uint8_t
1089 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1090                       int lane)
1091 {
1092         int i = DP_LANE0_1_STATUS + (lane >> 1);
1093         int s = (lane & 1) * 4;
1094         uint8_t l = intel_dp_link_status(link_status, i);
1095
1096         return (l >> s) & 0xf;
1097 }
1098
1099 /* Check for clock recovery is done on all channels */
1100 static bool
1101 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1102 {
1103         int lane;
1104         uint8_t lane_status;
1105
1106         for (lane = 0; lane < lane_count; lane++) {
1107                 lane_status = intel_get_lane_status(link_status, lane);
1108                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1109                         return false;
1110         }
1111         return true;
1112 }
1113
1114 /* Check to see if channel eq is done on all channels */
1115 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1116                          DP_LANE_CHANNEL_EQ_DONE|\
1117                          DP_LANE_SYMBOL_LOCKED)
1118 static bool
1119 intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1120 {
1121         uint8_t lane_align;
1122         uint8_t lane_status;
1123         int lane;
1124
1125         lane_align = intel_dp_link_status(link_status,
1126                                           DP_LANE_ALIGN_STATUS_UPDATED);
1127         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1128                 return false;
1129         for (lane = 0; lane < lane_count; lane++) {
1130                 lane_status = intel_get_lane_status(link_status, lane);
1131                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1132                         return false;
1133         }
1134         return true;
1135 }
1136
1137 static bool
1138 intel_dp_set_link_train(struct intel_dp *intel_dp,
1139                         uint32_t dp_reg_value,
1140                         uint8_t dp_train_pat,
1141                         uint8_t train_set[4])
1142 {
1143         struct drm_device *dev = intel_dp->base.enc.dev;
1144         struct drm_i915_private *dev_priv = dev->dev_private;
1145         int ret;
1146
1147         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1148         POSTING_READ(intel_dp->output_reg);
1149
1150         intel_dp_aux_native_write_1(intel_dp,
1151                                     DP_TRAINING_PATTERN_SET,
1152                                     dp_train_pat);
1153
1154         ret = intel_dp_aux_native_write(intel_dp,
1155                                         DP_TRAINING_LANE0_SET, train_set, 4);
1156         if (ret != 4)
1157                 return false;
1158
1159         return true;
1160 }
1161
1162 static void
1163 intel_dp_link_train(struct intel_dp *intel_dp)
1164 {
1165         struct drm_device *dev = intel_dp->base.enc.dev;
1166         struct drm_i915_private *dev_priv = dev->dev_private;
1167         uint8_t train_set[4];
1168         uint8_t link_status[DP_LINK_STATUS_SIZE];
1169         int i;
1170         uint8_t voltage;
1171         bool clock_recovery = false;
1172         bool channel_eq = false;
1173         int tries;
1174         u32 reg;
1175         uint32_t DP = intel_dp->DP;
1176         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.enc.crtc);
1177
1178         /* Enable output, wait for it to become active */
1179         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1180         POSTING_READ(intel_dp->output_reg);
1181         intel_wait_for_vblank(dev, intel_crtc->pipe);
1182
1183         /* Write the link configuration data */
1184         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1185                                   intel_dp->link_configuration,
1186                                   DP_LINK_CONFIGURATION_SIZE);
1187
1188         DP |= DP_PORT_EN;
1189         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1190                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1191         else
1192                 DP &= ~DP_LINK_TRAIN_MASK;
1193         memset(train_set, 0, 4);
1194         voltage = 0xff;
1195         tries = 0;
1196         clock_recovery = false;
1197         for (;;) {
1198                 /* Use train_set[0] to set the voltage and pre emphasis values */
1199                 uint32_t    signal_levels;
1200                 if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
1201                         signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
1202                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1203                 } else {
1204                         signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
1205                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1206                 }
1207
1208                 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1209                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1210                 else
1211                         reg = DP | DP_LINK_TRAIN_PAT_1;
1212
1213                 if (!intel_dp_set_link_train(intel_dp, reg,
1214                                              DP_TRAINING_PATTERN_1, train_set))
1215                         break;
1216                 /* Set training pattern 1 */
1217
1218                 udelay(100);
1219                 if (!intel_dp_get_link_status(intel_dp, link_status))
1220                         break;
1221
1222                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1223                         clock_recovery = true;
1224                         break;
1225                 }
1226
1227                 /* Check to see if we've tried the max voltage */
1228                 for (i = 0; i < intel_dp->lane_count; i++)
1229                         if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1230                                 break;
1231                 if (i == intel_dp->lane_count)
1232                         break;
1233
1234                 /* Check to see if we've tried the same voltage 5 times */
1235                 if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1236                         ++tries;
1237                         if (tries == 5)
1238                                 break;
1239                 } else
1240                         tries = 0;
1241                 voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1242
1243                 /* Compute new train_set as requested by target */
1244                 intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
1245         }
1246
1247         /* channel equalization */
1248         tries = 0;
1249         channel_eq = false;
1250         for (;;) {
1251                 /* Use train_set[0] to set the voltage and pre emphasis values */
1252                 uint32_t    signal_levels;
1253
1254                 if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
1255                         signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
1256                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1257                 } else {
1258                         signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
1259                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1260                 }
1261
1262                 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1263                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1264                 else
1265                         reg = DP | DP_LINK_TRAIN_PAT_2;
1266
1267                 /* channel eq pattern */
1268                 if (!intel_dp_set_link_train(intel_dp, reg,
1269                                              DP_TRAINING_PATTERN_2, train_set))
1270                         break;
1271
1272                 udelay(400);
1273                 if (!intel_dp_get_link_status(intel_dp, link_status))
1274                         break;
1275
1276                 if (intel_channel_eq_ok(link_status, intel_dp->lane_count)) {
1277                         channel_eq = true;
1278                         break;
1279                 }
1280
1281                 /* Try 5 times */
1282                 if (tries > 5)
1283                         break;
1284
1285                 /* Compute new train_set as requested by target */
1286                 intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
1287                 ++tries;
1288         }
1289
1290         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1291                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1292         else
1293                 reg = DP | DP_LINK_TRAIN_OFF;
1294
1295         I915_WRITE(intel_dp->output_reg, reg);
1296         POSTING_READ(intel_dp->output_reg);
1297         intel_dp_aux_native_write_1(intel_dp,
1298                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1299 }
1300
1301 static void
1302 intel_dp_link_down(struct intel_dp *intel_dp)
1303 {
1304         struct drm_device *dev = intel_dp->base.enc.dev;
1305         struct drm_i915_private *dev_priv = dev->dev_private;
1306         uint32_t DP = intel_dp->DP;
1307
1308         DRM_DEBUG_KMS("\n");
1309
1310         if (IS_eDP(intel_dp)) {
1311                 DP &= ~DP_PLL_ENABLE;
1312                 I915_WRITE(intel_dp->output_reg, DP);
1313                 POSTING_READ(intel_dp->output_reg);
1314                 udelay(100);
1315         }
1316
1317         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp)) {
1318                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1319                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1320                 POSTING_READ(intel_dp->output_reg);
1321         } else {
1322                 DP &= ~DP_LINK_TRAIN_MASK;
1323                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1324                 POSTING_READ(intel_dp->output_reg);
1325         }
1326
1327         udelay(17000);
1328
1329         if (IS_eDP(intel_dp))
1330                 DP |= DP_LINK_TRAIN_OFF;
1331         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1332         POSTING_READ(intel_dp->output_reg);
1333 }
1334
1335 /*
1336  * According to DP spec
1337  * 5.1.2:
1338  *  1. Read DPCD
1339  *  2. Configure link according to Receiver Capabilities
1340  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1341  *  4. Check link status on receipt of hot-plug interrupt
1342  */
1343
1344 static void
1345 intel_dp_check_link_status(struct intel_dp *intel_dp)
1346 {
1347         uint8_t link_status[DP_LINK_STATUS_SIZE];
1348
1349         if (!intel_dp->base.enc.crtc)
1350                 return;
1351
1352         if (!intel_dp_get_link_status(intel_dp, link_status)) {
1353                 intel_dp_link_down(intel_dp);
1354                 return;
1355         }
1356
1357         if (!intel_channel_eq_ok(link_status, intel_dp->lane_count))
1358                 intel_dp_link_train(intel_dp);
1359 }
1360
1361 static enum drm_connector_status
1362 ironlake_dp_detect(struct drm_connector *connector)
1363 {
1364         struct drm_encoder *encoder = intel_attached_encoder(connector);
1365         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1366         enum drm_connector_status status;
1367
1368         status = connector_status_disconnected;
1369         if (intel_dp_aux_native_read(intel_dp,
1370                                      0x000, intel_dp->dpcd,
1371                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1372         {
1373                 if (intel_dp->dpcd[0] != 0)
1374                         status = connector_status_connected;
1375         }
1376         DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1377                       intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1378         return status;
1379 }
1380
1381 /**
1382  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1383  *
1384  * \return true if DP port is connected.
1385  * \return false if DP port is disconnected.
1386  */
1387 static enum drm_connector_status
1388 intel_dp_detect(struct drm_connector *connector, bool force)
1389 {
1390         struct drm_encoder *encoder = intel_attached_encoder(connector);
1391         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1392         struct drm_device *dev = intel_dp->base.enc.dev;
1393         struct drm_i915_private *dev_priv = dev->dev_private;
1394         uint32_t temp, bit;
1395         enum drm_connector_status status;
1396
1397         intel_dp->has_audio = false;
1398
1399         if (HAS_PCH_SPLIT(dev))
1400                 return ironlake_dp_detect(connector);
1401
1402         switch (intel_dp->output_reg) {
1403         case DP_B:
1404                 bit = DPB_HOTPLUG_INT_STATUS;
1405                 break;
1406         case DP_C:
1407                 bit = DPC_HOTPLUG_INT_STATUS;
1408                 break;
1409         case DP_D:
1410                 bit = DPD_HOTPLUG_INT_STATUS;
1411                 break;
1412         default:
1413                 return connector_status_unknown;
1414         }
1415
1416         temp = I915_READ(PORT_HOTPLUG_STAT);
1417
1418         if ((temp & bit) == 0)
1419                 return connector_status_disconnected;
1420
1421         status = connector_status_disconnected;
1422         if (intel_dp_aux_native_read(intel_dp,
1423                                      0x000, intel_dp->dpcd,
1424                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1425         {
1426                 if (intel_dp->dpcd[0] != 0)
1427                         status = connector_status_connected;
1428         }
1429         return status;
1430 }
1431
1432 static int intel_dp_get_modes(struct drm_connector *connector)
1433 {
1434         struct drm_encoder *encoder = intel_attached_encoder(connector);
1435         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1436         struct drm_device *dev = intel_dp->base.enc.dev;
1437         struct drm_i915_private *dev_priv = dev->dev_private;
1438         int ret;
1439
1440         /* We should parse the EDID data and find out if it has an audio sink
1441          */
1442
1443         ret = intel_ddc_get_modes(connector, intel_dp->base.ddc_bus);
1444         if (ret) {
1445                 if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
1446                     !dev_priv->panel_fixed_mode) {
1447                         struct drm_display_mode *newmode;
1448                         list_for_each_entry(newmode, &connector->probed_modes,
1449                                             head) {
1450                                 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1451                                         dev_priv->panel_fixed_mode =
1452                                                 drm_mode_duplicate(dev, newmode);
1453                                         break;
1454                                 }
1455                         }
1456                 }
1457
1458                 return ret;
1459         }
1460
1461         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1462         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
1463                 if (dev_priv->panel_fixed_mode != NULL) {
1464                         struct drm_display_mode *mode;
1465                         mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1466                         drm_mode_probed_add(connector, mode);
1467                         return 1;
1468                 }
1469         }
1470         return 0;
1471 }
1472
1473 static void
1474 intel_dp_destroy (struct drm_connector *connector)
1475 {
1476         drm_sysfs_connector_remove(connector);
1477         drm_connector_cleanup(connector);
1478         kfree(connector);
1479 }
1480
1481 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1482         .dpms = intel_dp_dpms,
1483         .mode_fixup = intel_dp_mode_fixup,
1484         .prepare = intel_dp_prepare,
1485         .mode_set = intel_dp_mode_set,
1486         .commit = intel_dp_commit,
1487 };
1488
1489 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1490         .dpms = drm_helper_connector_dpms,
1491         .detect = intel_dp_detect,
1492         .fill_modes = drm_helper_probe_single_connector_modes,
1493         .destroy = intel_dp_destroy,
1494 };
1495
1496 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1497         .get_modes = intel_dp_get_modes,
1498         .mode_valid = intel_dp_mode_valid,
1499         .best_encoder = intel_attached_encoder,
1500 };
1501
1502 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1503         .destroy = intel_encoder_destroy,
1504 };
1505
1506 void
1507 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1508 {
1509         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1510
1511         if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
1512                 intel_dp_check_link_status(intel_dp);
1513 }
1514
1515 /* Return which DP Port should be selected for Transcoder DP control */
1516 int
1517 intel_trans_dp_port_sel (struct drm_crtc *crtc)
1518 {
1519         struct drm_device *dev = crtc->dev;
1520         struct drm_mode_config *mode_config = &dev->mode_config;
1521         struct drm_encoder *encoder;
1522
1523         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1524                 struct intel_dp *intel_dp;
1525
1526                 if (encoder->crtc != crtc)
1527                         continue;
1528
1529                 intel_dp = enc_to_intel_dp(encoder);
1530                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1531                         return intel_dp->output_reg;
1532         }
1533
1534         return -1;
1535 }
1536
1537 /* check the VBT to see whether the eDP is on DP-D port */
1538 bool intel_dpd_is_edp(struct drm_device *dev)
1539 {
1540         struct drm_i915_private *dev_priv = dev->dev_private;
1541         struct child_device_config *p_child;
1542         int i;
1543
1544         if (!dev_priv->child_dev_num)
1545                 return false;
1546
1547         for (i = 0; i < dev_priv->child_dev_num; i++) {
1548                 p_child = dev_priv->child_dev + i;
1549
1550                 if (p_child->dvo_port == PORT_IDPD &&
1551                     p_child->device_type == DEVICE_TYPE_eDP)
1552                         return true;
1553         }
1554         return false;
1555 }
1556
1557 void
1558 intel_dp_init(struct drm_device *dev, int output_reg)
1559 {
1560         struct drm_i915_private *dev_priv = dev->dev_private;
1561         struct drm_connector *connector;
1562         struct intel_dp *intel_dp;
1563         struct intel_encoder *intel_encoder;
1564         struct intel_connector *intel_connector;
1565         const char *name = NULL;
1566         int type;
1567
1568         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1569         if (!intel_dp)
1570                 return;
1571
1572         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1573         if (!intel_connector) {
1574                 kfree(intel_dp);
1575                 return;
1576         }
1577         intel_encoder = &intel_dp->base;
1578
1579         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1580                 if (intel_dpd_is_edp(dev))
1581                         intel_dp->is_pch_edp = true;
1582
1583         if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
1584                 type = DRM_MODE_CONNECTOR_eDP;
1585                 intel_encoder->type = INTEL_OUTPUT_EDP;
1586         } else {
1587                 type = DRM_MODE_CONNECTOR_DisplayPort;
1588                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1589         }
1590
1591         connector = &intel_connector->base;
1592         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1593         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1594
1595         connector->polled = DRM_CONNECTOR_POLL_HPD;
1596
1597         if (output_reg == DP_B || output_reg == PCH_DP_B)
1598                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1599         else if (output_reg == DP_C || output_reg == PCH_DP_C)
1600                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1601         else if (output_reg == DP_D || output_reg == PCH_DP_D)
1602                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1603
1604         if (IS_eDP(intel_dp))
1605                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1606
1607         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1608         connector->interlace_allowed = true;
1609         connector->doublescan_allowed = 0;
1610
1611         intel_dp->output_reg = output_reg;
1612         intel_dp->has_audio = false;
1613         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1614
1615         drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
1616                          DRM_MODE_ENCODER_TMDS);
1617         drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
1618
1619         drm_mode_connector_attach_encoder(&intel_connector->base,
1620                                           &intel_encoder->enc);
1621         drm_sysfs_connector_add(connector);
1622
1623         /* Set up the DDC bus. */
1624         switch (output_reg) {
1625                 case DP_A:
1626                         name = "DPDDC-A";
1627                         break;
1628                 case DP_B:
1629                 case PCH_DP_B:
1630                         dev_priv->hotplug_supported_mask |=
1631                                 HDMIB_HOTPLUG_INT_STATUS;
1632                         name = "DPDDC-B";
1633                         break;
1634                 case DP_C:
1635                 case PCH_DP_C:
1636                         dev_priv->hotplug_supported_mask |=
1637                                 HDMIC_HOTPLUG_INT_STATUS;
1638                         name = "DPDDC-C";
1639                         break;
1640                 case DP_D:
1641                 case PCH_DP_D:
1642                         dev_priv->hotplug_supported_mask |=
1643                                 HDMID_HOTPLUG_INT_STATUS;
1644                         name = "DPDDC-D";
1645                         break;
1646         }
1647
1648         intel_dp_i2c_init(intel_dp, intel_connector, name);
1649
1650         intel_encoder->ddc_bus = &intel_dp->adapter;
1651         intel_encoder->hot_plug = intel_dp_hot_plug;
1652
1653         if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
1654                 /* initialize panel mode from VBT if available for eDP */
1655                 if (dev_priv->lfp_lvds_vbt_mode) {
1656                         dev_priv->panel_fixed_mode =
1657                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1658                         if (dev_priv->panel_fixed_mode) {
1659                                 dev_priv->panel_fixed_mode->type |=
1660                                         DRM_MODE_TYPE_PREFERRED;
1661                         }
1662                 }
1663         }
1664
1665         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1666          * 0xd.  Failure to do so will result in spurious interrupts being
1667          * generated on the port when a cable is not attached.
1668          */
1669         if (IS_G4X(dev) && !IS_GM45(dev)) {
1670                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1671                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1672         }
1673 }