percpu: fix per_cpu_ptr_to_phys() handling of non-page-aligned addresses
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "drm_dp_helper.h"
39
40 #define DP_RECEIVER_CAP_SIZE    0xf
41 #define DP_LINK_STATUS_SIZE     6
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 #define DP_LINK_CONFIGURATION_SIZE      9
45
46 struct intel_dp {
47         struct intel_encoder base;
48         uint32_t output_reg;
49         uint32_t DP;
50         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
51         bool has_audio;
52         int force_audio;
53         uint32_t color_range;
54         int dpms_mode;
55         uint8_t link_bw;
56         uint8_t lane_count;
57         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58         struct i2c_adapter adapter;
59         struct i2c_algo_dp_aux_data algo;
60         bool is_pch_edp;
61         uint8_t train_set[4];
62         int panel_power_up_delay;
63         int panel_power_down_delay;
64         int panel_power_cycle_delay;
65         int backlight_on_delay;
66         int backlight_off_delay;
67         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
68         struct delayed_work panel_vdd_work;
69         bool want_panel_vdd;
70 };
71
72 /**
73  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74  * @intel_dp: DP struct
75  *
76  * If a CPU or PCH DP output is attached to an eDP panel, this function
77  * will return true, and false otherwise.
78  */
79 static bool is_edp(struct intel_dp *intel_dp)
80 {
81         return intel_dp->base.type == INTEL_OUTPUT_EDP;
82 }
83
84 /**
85  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86  * @intel_dp: DP struct
87  *
88  * Returns true if the given DP struct corresponds to a PCH DP port attached
89  * to an eDP panel, false otherwise.  Helpful for determining whether we
90  * may need FDI resources for a given DP output or not.
91  */
92 static bool is_pch_edp(struct intel_dp *intel_dp)
93 {
94         return intel_dp->is_pch_edp;
95 }
96
97 /**
98  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99  * @intel_dp: DP struct
100  *
101  * Returns true if the given DP struct corresponds to a CPU eDP port.
102  */
103 static bool is_cpu_edp(struct intel_dp *intel_dp)
104 {
105         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
106 }
107
108 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
109 {
110         return container_of(encoder, struct intel_dp, base.base);
111 }
112
113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114 {
115         return container_of(intel_attached_encoder(connector),
116                             struct intel_dp, base);
117 }
118
119 /**
120  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121  * @encoder: DRM encoder
122  *
123  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
124  * by intel_display.c.
125  */
126 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
127 {
128         struct intel_dp *intel_dp;
129
130         if (!encoder)
131                 return false;
132
133         intel_dp = enc_to_intel_dp(encoder);
134
135         return is_pch_edp(intel_dp);
136 }
137
138 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
140 static void intel_dp_link_down(struct intel_dp *intel_dp);
141
142 void
143 intel_edp_link_config(struct intel_encoder *intel_encoder,
144                        int *lane_num, int *link_bw)
145 {
146         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
147
148         *lane_num = intel_dp->lane_count;
149         if (intel_dp->link_bw == DP_LINK_BW_1_62)
150                 *link_bw = 162000;
151         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
152                 *link_bw = 270000;
153 }
154
155 static int
156 intel_dp_max_lane_count(struct intel_dp *intel_dp)
157 {
158         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159         switch (max_lane_count) {
160         case 1: case 2: case 4:
161                 break;
162         default:
163                 max_lane_count = 4;
164         }
165         return max_lane_count;
166 }
167
168 static int
169 intel_dp_max_link_bw(struct intel_dp *intel_dp)
170 {
171         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
172
173         switch (max_link_bw) {
174         case DP_LINK_BW_1_62:
175         case DP_LINK_BW_2_7:
176                 break;
177         default:
178                 max_link_bw = DP_LINK_BW_1_62;
179                 break;
180         }
181         return max_link_bw;
182 }
183
184 static int
185 intel_dp_link_clock(uint8_t link_bw)
186 {
187         if (link_bw == DP_LINK_BW_2_7)
188                 return 270000;
189         else
190                 return 162000;
191 }
192
193 /*
194  * The units on the numbers in the next two are... bizarre.  Examples will
195  * make it clearer; this one parallels an example in the eDP spec.
196  *
197  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
198  *
199  *     270000 * 1 * 8 / 10 == 216000
200  *
201  * The actual data capacity of that configuration is 2.16Gbit/s, so the
202  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
203  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204  * 119000.  At 18bpp that's 2142000 kilobits per second.
205  *
206  * Thus the strange-looking division by 10 in intel_dp_link_required, to
207  * get the result in decakilobits instead of kilobits.
208  */
209
210 static int
211 intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
212 {
213         struct drm_crtc *crtc = intel_dp->base.base.crtc;
214         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
215         int bpp = 24;
216
217         if (intel_crtc)
218                 bpp = intel_crtc->bpp;
219
220         return (pixel_clock * bpp + 9) / 10;
221 }
222
223 static int
224 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
225 {
226         return (max_link_clock * max_lanes * 8) / 10;
227 }
228
229 static int
230 intel_dp_mode_valid(struct drm_connector *connector,
231                     struct drm_display_mode *mode)
232 {
233         struct intel_dp *intel_dp = intel_attached_dp(connector);
234         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
235         int max_lanes = intel_dp_max_lane_count(intel_dp);
236
237         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
238                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
239                         return MODE_PANEL;
240
241                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
242                         return MODE_PANEL;
243         }
244
245         if (intel_dp_link_required(intel_dp, mode->clock)
246             > intel_dp_max_data_rate(max_link_clock, max_lanes))
247                 return MODE_CLOCK_HIGH;
248
249         if (mode->clock < 10000)
250                 return MODE_CLOCK_LOW;
251
252         return MODE_OK;
253 }
254
255 static uint32_t
256 pack_aux(uint8_t *src, int src_bytes)
257 {
258         int     i;
259         uint32_t v = 0;
260
261         if (src_bytes > 4)
262                 src_bytes = 4;
263         for (i = 0; i < src_bytes; i++)
264                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
265         return v;
266 }
267
268 static void
269 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270 {
271         int i;
272         if (dst_bytes > 4)
273                 dst_bytes = 4;
274         for (i = 0; i < dst_bytes; i++)
275                 dst[i] = src >> ((3-i) * 8);
276 }
277
278 /* hrawclock is 1/4 the FSB frequency */
279 static int
280 intel_hrawclk(struct drm_device *dev)
281 {
282         struct drm_i915_private *dev_priv = dev->dev_private;
283         uint32_t clkcfg;
284
285         clkcfg = I915_READ(CLKCFG);
286         switch (clkcfg & CLKCFG_FSB_MASK) {
287         case CLKCFG_FSB_400:
288                 return 100;
289         case CLKCFG_FSB_533:
290                 return 133;
291         case CLKCFG_FSB_667:
292                 return 166;
293         case CLKCFG_FSB_800:
294                 return 200;
295         case CLKCFG_FSB_1067:
296                 return 266;
297         case CLKCFG_FSB_1333:
298                 return 333;
299         /* these two are just a guess; one of them might be right */
300         case CLKCFG_FSB_1600:
301         case CLKCFG_FSB_1600_ALT:
302                 return 400;
303         default:
304                 return 133;
305         }
306 }
307
308 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
309 {
310         struct drm_device *dev = intel_dp->base.base.dev;
311         struct drm_i915_private *dev_priv = dev->dev_private;
312
313         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
314 }
315
316 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
317 {
318         struct drm_device *dev = intel_dp->base.base.dev;
319         struct drm_i915_private *dev_priv = dev->dev_private;
320
321         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
322 }
323
324 static void
325 intel_dp_check_edp(struct intel_dp *intel_dp)
326 {
327         struct drm_device *dev = intel_dp->base.base.dev;
328         struct drm_i915_private *dev_priv = dev->dev_private;
329
330         if (!is_edp(intel_dp))
331                 return;
332         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
333                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
334                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
335                               I915_READ(PCH_PP_STATUS),
336                               I915_READ(PCH_PP_CONTROL));
337         }
338 }
339
340 static int
341 intel_dp_aux_ch(struct intel_dp *intel_dp,
342                 uint8_t *send, int send_bytes,
343                 uint8_t *recv, int recv_size)
344 {
345         uint32_t output_reg = intel_dp->output_reg;
346         struct drm_device *dev = intel_dp->base.base.dev;
347         struct drm_i915_private *dev_priv = dev->dev_private;
348         uint32_t ch_ctl = output_reg + 0x10;
349         uint32_t ch_data = ch_ctl + 4;
350         int i;
351         int recv_bytes;
352         uint32_t status;
353         uint32_t aux_clock_divider;
354         int try, precharge;
355
356         intel_dp_check_edp(intel_dp);
357         /* The clock divider is based off the hrawclk,
358          * and would like to run at 2MHz. So, take the
359          * hrawclk value and divide by 2 and use that
360          *
361          * Note that PCH attached eDP panels should use a 125MHz input
362          * clock divider.
363          */
364         if (is_cpu_edp(intel_dp)) {
365                 if (IS_GEN6(dev))
366                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
367                 else
368                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
369         } else if (HAS_PCH_SPLIT(dev))
370                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
371         else
372                 aux_clock_divider = intel_hrawclk(dev) / 2;
373
374         if (IS_GEN6(dev))
375                 precharge = 3;
376         else
377                 precharge = 5;
378
379         /* Try to wait for any previous AUX channel activity */
380         for (try = 0; try < 3; try++) {
381                 status = I915_READ(ch_ctl);
382                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
383                         break;
384                 msleep(1);
385         }
386
387         if (try == 3) {
388                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
389                      I915_READ(ch_ctl));
390                 return -EBUSY;
391         }
392
393         /* Must try at least 3 times according to DP spec */
394         for (try = 0; try < 5; try++) {
395                 /* Load the send data into the aux channel data registers */
396                 for (i = 0; i < send_bytes; i += 4)
397                         I915_WRITE(ch_data + i,
398                                    pack_aux(send + i, send_bytes - i));
399
400                 /* Send the command and wait for it to complete */
401                 I915_WRITE(ch_ctl,
402                            DP_AUX_CH_CTL_SEND_BUSY |
403                            DP_AUX_CH_CTL_TIME_OUT_400us |
404                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
405                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
406                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
407                            DP_AUX_CH_CTL_DONE |
408                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
409                            DP_AUX_CH_CTL_RECEIVE_ERROR);
410                 for (;;) {
411                         status = I915_READ(ch_ctl);
412                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
413                                 break;
414                         udelay(100);
415                 }
416
417                 /* Clear done status and any errors */
418                 I915_WRITE(ch_ctl,
419                            status |
420                            DP_AUX_CH_CTL_DONE |
421                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
422                            DP_AUX_CH_CTL_RECEIVE_ERROR);
423                 if (status & DP_AUX_CH_CTL_DONE)
424                         break;
425         }
426
427         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
428                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
429                 return -EBUSY;
430         }
431
432         /* Check for timeout or receive error.
433          * Timeouts occur when the sink is not connected
434          */
435         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
436                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
437                 return -EIO;
438         }
439
440         /* Timeouts occur when the device isn't connected, so they're
441          * "normal" -- don't fill the kernel log with these */
442         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
443                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
444                 return -ETIMEDOUT;
445         }
446
447         /* Unload any bytes sent back from the other side */
448         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
449                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
450         if (recv_bytes > recv_size)
451                 recv_bytes = recv_size;
452
453         for (i = 0; i < recv_bytes; i += 4)
454                 unpack_aux(I915_READ(ch_data + i),
455                            recv + i, recv_bytes - i);
456
457         return recv_bytes;
458 }
459
460 /* Write data to the aux channel in native mode */
461 static int
462 intel_dp_aux_native_write(struct intel_dp *intel_dp,
463                           uint16_t address, uint8_t *send, int send_bytes)
464 {
465         int ret;
466         uint8_t msg[20];
467         int msg_bytes;
468         uint8_t ack;
469
470         intel_dp_check_edp(intel_dp);
471         if (send_bytes > 16)
472                 return -1;
473         msg[0] = AUX_NATIVE_WRITE << 4;
474         msg[1] = address >> 8;
475         msg[2] = address & 0xff;
476         msg[3] = send_bytes - 1;
477         memcpy(&msg[4], send, send_bytes);
478         msg_bytes = send_bytes + 4;
479         for (;;) {
480                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
481                 if (ret < 0)
482                         return ret;
483                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
484                         break;
485                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
486                         udelay(100);
487                 else
488                         return -EIO;
489         }
490         return send_bytes;
491 }
492
493 /* Write a single byte to the aux channel in native mode */
494 static int
495 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
496                             uint16_t address, uint8_t byte)
497 {
498         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
499 }
500
501 /* read bytes from a native aux channel */
502 static int
503 intel_dp_aux_native_read(struct intel_dp *intel_dp,
504                          uint16_t address, uint8_t *recv, int recv_bytes)
505 {
506         uint8_t msg[4];
507         int msg_bytes;
508         uint8_t reply[20];
509         int reply_bytes;
510         uint8_t ack;
511         int ret;
512
513         intel_dp_check_edp(intel_dp);
514         msg[0] = AUX_NATIVE_READ << 4;
515         msg[1] = address >> 8;
516         msg[2] = address & 0xff;
517         msg[3] = recv_bytes - 1;
518
519         msg_bytes = 4;
520         reply_bytes = recv_bytes + 1;
521
522         for (;;) {
523                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
524                                       reply, reply_bytes);
525                 if (ret == 0)
526                         return -EPROTO;
527                 if (ret < 0)
528                         return ret;
529                 ack = reply[0];
530                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
531                         memcpy(recv, reply + 1, ret - 1);
532                         return ret - 1;
533                 }
534                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
535                         udelay(100);
536                 else
537                         return -EIO;
538         }
539 }
540
541 static int
542 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
543                     uint8_t write_byte, uint8_t *read_byte)
544 {
545         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
546         struct intel_dp *intel_dp = container_of(adapter,
547                                                 struct intel_dp,
548                                                 adapter);
549         uint16_t address = algo_data->address;
550         uint8_t msg[5];
551         uint8_t reply[2];
552         unsigned retry;
553         int msg_bytes;
554         int reply_bytes;
555         int ret;
556
557         intel_dp_check_edp(intel_dp);
558         /* Set up the command byte */
559         if (mode & MODE_I2C_READ)
560                 msg[0] = AUX_I2C_READ << 4;
561         else
562                 msg[0] = AUX_I2C_WRITE << 4;
563
564         if (!(mode & MODE_I2C_STOP))
565                 msg[0] |= AUX_I2C_MOT << 4;
566
567         msg[1] = address >> 8;
568         msg[2] = address;
569
570         switch (mode) {
571         case MODE_I2C_WRITE:
572                 msg[3] = 0;
573                 msg[4] = write_byte;
574                 msg_bytes = 5;
575                 reply_bytes = 1;
576                 break;
577         case MODE_I2C_READ:
578                 msg[3] = 0;
579                 msg_bytes = 4;
580                 reply_bytes = 2;
581                 break;
582         default:
583                 msg_bytes = 3;
584                 reply_bytes = 1;
585                 break;
586         }
587
588         for (retry = 0; retry < 5; retry++) {
589                 ret = intel_dp_aux_ch(intel_dp,
590                                       msg, msg_bytes,
591                                       reply, reply_bytes);
592                 if (ret < 0) {
593                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
594                         return ret;
595                 }
596
597                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
598                 case AUX_NATIVE_REPLY_ACK:
599                         /* I2C-over-AUX Reply field is only valid
600                          * when paired with AUX ACK.
601                          */
602                         break;
603                 case AUX_NATIVE_REPLY_NACK:
604                         DRM_DEBUG_KMS("aux_ch native nack\n");
605                         return -EREMOTEIO;
606                 case AUX_NATIVE_REPLY_DEFER:
607                         udelay(100);
608                         continue;
609                 default:
610                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
611                                   reply[0]);
612                         return -EREMOTEIO;
613                 }
614
615                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
616                 case AUX_I2C_REPLY_ACK:
617                         if (mode == MODE_I2C_READ) {
618                                 *read_byte = reply[1];
619                         }
620                         return reply_bytes - 1;
621                 case AUX_I2C_REPLY_NACK:
622                         DRM_DEBUG_KMS("aux_i2c nack\n");
623                         return -EREMOTEIO;
624                 case AUX_I2C_REPLY_DEFER:
625                         DRM_DEBUG_KMS("aux_i2c defer\n");
626                         udelay(100);
627                         break;
628                 default:
629                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
630                         return -EREMOTEIO;
631                 }
632         }
633
634         DRM_ERROR("too many retries, giving up\n");
635         return -EREMOTEIO;
636 }
637
638 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
639 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
640
641 static int
642 intel_dp_i2c_init(struct intel_dp *intel_dp,
643                   struct intel_connector *intel_connector, const char *name)
644 {
645         int     ret;
646
647         DRM_DEBUG_KMS("i2c_init %s\n", name);
648         intel_dp->algo.running = false;
649         intel_dp->algo.address = 0;
650         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
651
652         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
653         intel_dp->adapter.owner = THIS_MODULE;
654         intel_dp->adapter.class = I2C_CLASS_DDC;
655         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
656         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
657         intel_dp->adapter.algo_data = &intel_dp->algo;
658         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
659
660         ironlake_edp_panel_vdd_on(intel_dp);
661         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
662         ironlake_edp_panel_vdd_off(intel_dp, false);
663         return ret;
664 }
665
666 static bool
667 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
668                     struct drm_display_mode *adjusted_mode)
669 {
670         struct drm_device *dev = encoder->dev;
671         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
672         int lane_count, clock;
673         int max_lane_count = intel_dp_max_lane_count(intel_dp);
674         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
675         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
676
677         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
678                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
679                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
680                                         mode, adjusted_mode);
681                 /*
682                  * the mode->clock is used to calculate the Data&Link M/N
683                  * of the pipe. For the eDP the fixed clock should be used.
684                  */
685                 mode->clock = intel_dp->panel_fixed_mode->clock;
686         }
687
688         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
689                 for (clock = 0; clock <= max_clock; clock++) {
690                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
691
692                         if (intel_dp_link_required(intel_dp, mode->clock)
693                                         <= link_avail) {
694                                 intel_dp->link_bw = bws[clock];
695                                 intel_dp->lane_count = lane_count;
696                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
697                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
698                                                 "count %d clock %d\n",
699                                        intel_dp->link_bw, intel_dp->lane_count,
700                                        adjusted_mode->clock);
701                                 return true;
702                         }
703                 }
704         }
705
706         return false;
707 }
708
709 struct intel_dp_m_n {
710         uint32_t        tu;
711         uint32_t        gmch_m;
712         uint32_t        gmch_n;
713         uint32_t        link_m;
714         uint32_t        link_n;
715 };
716
717 static void
718 intel_reduce_ratio(uint32_t *num, uint32_t *den)
719 {
720         while (*num > 0xffffff || *den > 0xffffff) {
721                 *num >>= 1;
722                 *den >>= 1;
723         }
724 }
725
726 static void
727 intel_dp_compute_m_n(int bpp,
728                      int nlanes,
729                      int pixel_clock,
730                      int link_clock,
731                      struct intel_dp_m_n *m_n)
732 {
733         m_n->tu = 64;
734         m_n->gmch_m = (pixel_clock * bpp) >> 3;
735         m_n->gmch_n = link_clock * nlanes;
736         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
737         m_n->link_m = pixel_clock;
738         m_n->link_n = link_clock;
739         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
740 }
741
742 void
743 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
744                  struct drm_display_mode *adjusted_mode)
745 {
746         struct drm_device *dev = crtc->dev;
747         struct drm_mode_config *mode_config = &dev->mode_config;
748         struct drm_encoder *encoder;
749         struct drm_i915_private *dev_priv = dev->dev_private;
750         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
751         int lane_count = 4;
752         struct intel_dp_m_n m_n;
753         int pipe = intel_crtc->pipe;
754
755         /*
756          * Find the lane count in the intel_encoder private
757          */
758         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
759                 struct intel_dp *intel_dp;
760
761                 if (encoder->crtc != crtc)
762                         continue;
763
764                 intel_dp = enc_to_intel_dp(encoder);
765                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
766                     intel_dp->base.type == INTEL_OUTPUT_EDP)
767                 {
768                         lane_count = intel_dp->lane_count;
769                         break;
770                 }
771         }
772
773         /*
774          * Compute the GMCH and Link ratios. The '3' here is
775          * the number of bytes_per_pixel post-LUT, which we always
776          * set up for 8-bits of R/G/B, or 3 bytes total.
777          */
778         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
779                              mode->clock, adjusted_mode->clock, &m_n);
780
781         if (HAS_PCH_SPLIT(dev)) {
782                 I915_WRITE(TRANSDATA_M1(pipe),
783                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
784                            m_n.gmch_m);
785                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
786                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
787                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
788         } else {
789                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
790                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
791                            m_n.gmch_m);
792                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
793                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
794                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
795         }
796 }
797
798 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
799 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
800
801 static void
802 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
803                   struct drm_display_mode *adjusted_mode)
804 {
805         struct drm_device *dev = encoder->dev;
806         struct drm_i915_private *dev_priv = dev->dev_private;
807         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
808         struct drm_crtc *crtc = intel_dp->base.base.crtc;
809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
810
811         /* Turn on the eDP PLL if needed */
812         if (is_edp(intel_dp)) {
813                 if (!is_pch_edp(intel_dp))
814                         ironlake_edp_pll_on(encoder);
815                 else
816                         ironlake_edp_pll_off(encoder);
817         }
818
819         /*
820          * There are three kinds of DP registers:
821          *
822          *      IBX PCH
823          *      CPU
824          *      CPT PCH
825          *
826          * IBX PCH and CPU are the same for almost everything,
827          * except that the CPU DP PLL is configured in this
828          * register
829          *
830          * CPT PCH is quite different, having many bits moved
831          * to the TRANS_DP_CTL register instead. That
832          * configuration happens (oddly) in ironlake_pch_enable
833          */
834
835         /* Preserve the BIOS-computed detected bit. This is
836          * supposed to be read-only.
837          */
838         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
839         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
840
841         /* Handle DP bits in common between all three register formats */
842
843         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
844
845         switch (intel_dp->lane_count) {
846         case 1:
847                 intel_dp->DP |= DP_PORT_WIDTH_1;
848                 break;
849         case 2:
850                 intel_dp->DP |= DP_PORT_WIDTH_2;
851                 break;
852         case 4:
853                 intel_dp->DP |= DP_PORT_WIDTH_4;
854                 break;
855         }
856         if (intel_dp->has_audio) {
857                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
858                                  pipe_name(intel_crtc->pipe));
859                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
860                 intel_write_eld(encoder, adjusted_mode);
861         }
862         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
863         intel_dp->link_configuration[0] = intel_dp->link_bw;
864         intel_dp->link_configuration[1] = intel_dp->lane_count;
865         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
866         /*
867          * Check for DPCD version > 1.1 and enhanced framing support
868          */
869         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
870             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
871                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
872         }
873
874         /* Split out the IBX/CPU vs CPT settings */
875
876         if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
877                 intel_dp->DP |= intel_dp->color_range;
878
879                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
880                         intel_dp->DP |= DP_SYNC_HS_HIGH;
881                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
882                         intel_dp->DP |= DP_SYNC_VS_HIGH;
883                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
884
885                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
886                         intel_dp->DP |= DP_ENHANCED_FRAMING;
887
888                 if (intel_crtc->pipe == 1)
889                         intel_dp->DP |= DP_PIPEB_SELECT;
890
891                 if (is_cpu_edp(intel_dp)) {
892                         /* don't miss out required setting for eDP */
893                         intel_dp->DP |= DP_PLL_ENABLE;
894                         if (adjusted_mode->clock < 200000)
895                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
896                         else
897                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
898                 }
899         } else {
900                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
901         }
902 }
903
904 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
905 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
906
907 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
908 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
909
910 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
911 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
912
913 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
914                                        u32 mask,
915                                        u32 value)
916 {
917         struct drm_device *dev = intel_dp->base.base.dev;
918         struct drm_i915_private *dev_priv = dev->dev_private;
919
920         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
921                       mask, value,
922                       I915_READ(PCH_PP_STATUS),
923                       I915_READ(PCH_PP_CONTROL));
924
925         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
926                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
927                           I915_READ(PCH_PP_STATUS),
928                           I915_READ(PCH_PP_CONTROL));
929         }
930 }
931
932 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
933 {
934         DRM_DEBUG_KMS("Wait for panel power on\n");
935         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
936 }
937
938 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
939 {
940         DRM_DEBUG_KMS("Wait for panel power off time\n");
941         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
942 }
943
944 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
945 {
946         DRM_DEBUG_KMS("Wait for panel power cycle\n");
947         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
948 }
949
950
951 /* Read the current pp_control value, unlocking the register if it
952  * is locked
953  */
954
955 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
956 {
957         u32     control = I915_READ(PCH_PP_CONTROL);
958
959         control &= ~PANEL_UNLOCK_MASK;
960         control |= PANEL_UNLOCK_REGS;
961         return control;
962 }
963
964 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
965 {
966         struct drm_device *dev = intel_dp->base.base.dev;
967         struct drm_i915_private *dev_priv = dev->dev_private;
968         u32 pp;
969
970         if (!is_edp(intel_dp))
971                 return;
972         DRM_DEBUG_KMS("Turn eDP VDD on\n");
973
974         WARN(intel_dp->want_panel_vdd,
975              "eDP VDD already requested on\n");
976
977         intel_dp->want_panel_vdd = true;
978
979         if (ironlake_edp_have_panel_vdd(intel_dp)) {
980                 DRM_DEBUG_KMS("eDP VDD already on\n");
981                 return;
982         }
983
984         if (!ironlake_edp_have_panel_power(intel_dp))
985                 ironlake_wait_panel_power_cycle(intel_dp);
986
987         pp = ironlake_get_pp_control(dev_priv);
988         pp |= EDP_FORCE_VDD;
989         I915_WRITE(PCH_PP_CONTROL, pp);
990         POSTING_READ(PCH_PP_CONTROL);
991         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
992                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
993
994         /*
995          * If the panel wasn't on, delay before accessing aux channel
996          */
997         if (!ironlake_edp_have_panel_power(intel_dp)) {
998                 DRM_DEBUG_KMS("eDP was not running\n");
999                 msleep(intel_dp->panel_power_up_delay);
1000         }
1001 }
1002
1003 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1004 {
1005         struct drm_device *dev = intel_dp->base.base.dev;
1006         struct drm_i915_private *dev_priv = dev->dev_private;
1007         u32 pp;
1008
1009         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1010                 pp = ironlake_get_pp_control(dev_priv);
1011                 pp &= ~EDP_FORCE_VDD;
1012                 I915_WRITE(PCH_PP_CONTROL, pp);
1013                 POSTING_READ(PCH_PP_CONTROL);
1014
1015                 /* Make sure sequencer is idle before allowing subsequent activity */
1016                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1017                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1018
1019                 msleep(intel_dp->panel_power_down_delay);
1020         }
1021 }
1022
1023 static void ironlake_panel_vdd_work(struct work_struct *__work)
1024 {
1025         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1026                                                  struct intel_dp, panel_vdd_work);
1027         struct drm_device *dev = intel_dp->base.base.dev;
1028
1029         mutex_lock(&dev->mode_config.mutex);
1030         ironlake_panel_vdd_off_sync(intel_dp);
1031         mutex_unlock(&dev->mode_config.mutex);
1032 }
1033
1034 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1035 {
1036         if (!is_edp(intel_dp))
1037                 return;
1038
1039         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1040         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1041
1042         intel_dp->want_panel_vdd = false;
1043
1044         if (sync) {
1045                 ironlake_panel_vdd_off_sync(intel_dp);
1046         } else {
1047                 /*
1048                  * Queue the timer to fire a long
1049                  * time from now (relative to the power down delay)
1050                  * to keep the panel power up across a sequence of operations
1051                  */
1052                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1053                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1054         }
1055 }
1056
1057 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1058 {
1059         struct drm_device *dev = intel_dp->base.base.dev;
1060         struct drm_i915_private *dev_priv = dev->dev_private;
1061         u32 pp;
1062
1063         if (!is_edp(intel_dp))
1064                 return;
1065
1066         DRM_DEBUG_KMS("Turn eDP power on\n");
1067
1068         if (ironlake_edp_have_panel_power(intel_dp)) {
1069                 DRM_DEBUG_KMS("eDP power already on\n");
1070                 return;
1071         }
1072
1073         ironlake_wait_panel_power_cycle(intel_dp);
1074
1075         pp = ironlake_get_pp_control(dev_priv);
1076         if (IS_GEN5(dev)) {
1077                 /* ILK workaround: disable reset around power sequence */
1078                 pp &= ~PANEL_POWER_RESET;
1079                 I915_WRITE(PCH_PP_CONTROL, pp);
1080                 POSTING_READ(PCH_PP_CONTROL);
1081         }
1082
1083         pp |= POWER_TARGET_ON;
1084         if (!IS_GEN5(dev))
1085                 pp |= PANEL_POWER_RESET;
1086
1087         I915_WRITE(PCH_PP_CONTROL, pp);
1088         POSTING_READ(PCH_PP_CONTROL);
1089
1090         ironlake_wait_panel_on(intel_dp);
1091
1092         if (IS_GEN5(dev)) {
1093                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1094                 I915_WRITE(PCH_PP_CONTROL, pp);
1095                 POSTING_READ(PCH_PP_CONTROL);
1096         }
1097 }
1098
1099 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1100 {
1101         struct drm_device *dev = intel_dp->base.base.dev;
1102         struct drm_i915_private *dev_priv = dev->dev_private;
1103         u32 pp;
1104
1105         if (!is_edp(intel_dp))
1106                 return;
1107
1108         DRM_DEBUG_KMS("Turn eDP power off\n");
1109
1110         WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1111
1112         pp = ironlake_get_pp_control(dev_priv);
1113         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1114         I915_WRITE(PCH_PP_CONTROL, pp);
1115         POSTING_READ(PCH_PP_CONTROL);
1116
1117         ironlake_wait_panel_off(intel_dp);
1118 }
1119
1120 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1121 {
1122         struct drm_device *dev = intel_dp->base.base.dev;
1123         struct drm_i915_private *dev_priv = dev->dev_private;
1124         u32 pp;
1125
1126         if (!is_edp(intel_dp))
1127                 return;
1128
1129         DRM_DEBUG_KMS("\n");
1130         /*
1131          * If we enable the backlight right away following a panel power
1132          * on, we may see slight flicker as the panel syncs with the eDP
1133          * link.  So delay a bit to make sure the image is solid before
1134          * allowing it to appear.
1135          */
1136         msleep(intel_dp->backlight_on_delay);
1137         pp = ironlake_get_pp_control(dev_priv);
1138         pp |= EDP_BLC_ENABLE;
1139         I915_WRITE(PCH_PP_CONTROL, pp);
1140         POSTING_READ(PCH_PP_CONTROL);
1141 }
1142
1143 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1144 {
1145         struct drm_device *dev = intel_dp->base.base.dev;
1146         struct drm_i915_private *dev_priv = dev->dev_private;
1147         u32 pp;
1148
1149         if (!is_edp(intel_dp))
1150                 return;
1151
1152         DRM_DEBUG_KMS("\n");
1153         pp = ironlake_get_pp_control(dev_priv);
1154         pp &= ~EDP_BLC_ENABLE;
1155         I915_WRITE(PCH_PP_CONTROL, pp);
1156         POSTING_READ(PCH_PP_CONTROL);
1157         msleep(intel_dp->backlight_off_delay);
1158 }
1159
1160 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1161 {
1162         struct drm_device *dev = encoder->dev;
1163         struct drm_i915_private *dev_priv = dev->dev_private;
1164         u32 dpa_ctl;
1165
1166         DRM_DEBUG_KMS("\n");
1167         dpa_ctl = I915_READ(DP_A);
1168         dpa_ctl |= DP_PLL_ENABLE;
1169         I915_WRITE(DP_A, dpa_ctl);
1170         POSTING_READ(DP_A);
1171         udelay(200);
1172 }
1173
1174 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1175 {
1176         struct drm_device *dev = encoder->dev;
1177         struct drm_i915_private *dev_priv = dev->dev_private;
1178         u32 dpa_ctl;
1179
1180         dpa_ctl = I915_READ(DP_A);
1181         dpa_ctl &= ~DP_PLL_ENABLE;
1182         I915_WRITE(DP_A, dpa_ctl);
1183         POSTING_READ(DP_A);
1184         udelay(200);
1185 }
1186
1187 /* If the sink supports it, try to set the power state appropriately */
1188 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1189 {
1190         int ret, i;
1191
1192         /* Should have a valid DPCD by this point */
1193         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1194                 return;
1195
1196         if (mode != DRM_MODE_DPMS_ON) {
1197                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1198                                                   DP_SET_POWER_D3);
1199                 if (ret != 1)
1200                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1201         } else {
1202                 /*
1203                  * When turning on, we need to retry for 1ms to give the sink
1204                  * time to wake up.
1205                  */
1206                 for (i = 0; i < 3; i++) {
1207                         ret = intel_dp_aux_native_write_1(intel_dp,
1208                                                           DP_SET_POWER,
1209                                                           DP_SET_POWER_D0);
1210                         if (ret == 1)
1211                                 break;
1212                         msleep(1);
1213                 }
1214         }
1215 }
1216
1217 static void intel_dp_prepare(struct drm_encoder *encoder)
1218 {
1219         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1220
1221         ironlake_edp_backlight_off(intel_dp);
1222         ironlake_edp_panel_off(intel_dp);
1223
1224         /* Wake up the sink first */
1225         ironlake_edp_panel_vdd_on(intel_dp);
1226         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1227         intel_dp_link_down(intel_dp);
1228         ironlake_edp_panel_vdd_off(intel_dp, false);
1229
1230         /* Make sure the panel is off before trying to
1231          * change the mode
1232          */
1233 }
1234
1235 static void intel_dp_commit(struct drm_encoder *encoder)
1236 {
1237         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1238         struct drm_device *dev = encoder->dev;
1239         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1240
1241         ironlake_edp_panel_vdd_on(intel_dp);
1242         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1243         intel_dp_start_link_train(intel_dp);
1244         ironlake_edp_panel_on(intel_dp);
1245         ironlake_edp_panel_vdd_off(intel_dp, true);
1246         intel_dp_complete_link_train(intel_dp);
1247         ironlake_edp_backlight_on(intel_dp);
1248
1249         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1250
1251         if (HAS_PCH_CPT(dev))
1252                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1253 }
1254
1255 static void
1256 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1257 {
1258         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1259         struct drm_device *dev = encoder->dev;
1260         struct drm_i915_private *dev_priv = dev->dev_private;
1261         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1262
1263         if (mode != DRM_MODE_DPMS_ON) {
1264                 ironlake_edp_backlight_off(intel_dp);
1265                 ironlake_edp_panel_off(intel_dp);
1266
1267                 ironlake_edp_panel_vdd_on(intel_dp);
1268                 intel_dp_sink_dpms(intel_dp, mode);
1269                 intel_dp_link_down(intel_dp);
1270                 ironlake_edp_panel_vdd_off(intel_dp, false);
1271
1272                 if (is_cpu_edp(intel_dp))
1273                         ironlake_edp_pll_off(encoder);
1274         } else {
1275                 if (is_cpu_edp(intel_dp))
1276                         ironlake_edp_pll_on(encoder);
1277
1278                 ironlake_edp_panel_vdd_on(intel_dp);
1279                 intel_dp_sink_dpms(intel_dp, mode);
1280                 if (!(dp_reg & DP_PORT_EN)) {
1281                         intel_dp_start_link_train(intel_dp);
1282                         ironlake_edp_panel_on(intel_dp);
1283                         ironlake_edp_panel_vdd_off(intel_dp, true);
1284                         intel_dp_complete_link_train(intel_dp);
1285                 } else
1286                         ironlake_edp_panel_vdd_off(intel_dp, false);
1287                 ironlake_edp_backlight_on(intel_dp);
1288         }
1289         intel_dp->dpms_mode = mode;
1290 }
1291
1292 /*
1293  * Native read with retry for link status and receiver capability reads for
1294  * cases where the sink may still be asleep.
1295  */
1296 static bool
1297 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1298                                uint8_t *recv, int recv_bytes)
1299 {
1300         int ret, i;
1301
1302         /*
1303          * Sinks are *supposed* to come up within 1ms from an off state,
1304          * but we're also supposed to retry 3 times per the spec.
1305          */
1306         for (i = 0; i < 3; i++) {
1307                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1308                                                recv_bytes);
1309                 if (ret == recv_bytes)
1310                         return true;
1311                 msleep(1);
1312         }
1313
1314         return false;
1315 }
1316
1317 /*
1318  * Fetch AUX CH registers 0x202 - 0x207 which contain
1319  * link status information
1320  */
1321 static bool
1322 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1323 {
1324         return intel_dp_aux_native_read_retry(intel_dp,
1325                                               DP_LANE0_1_STATUS,
1326                                               link_status,
1327                                               DP_LINK_STATUS_SIZE);
1328 }
1329
1330 static uint8_t
1331 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1332                      int r)
1333 {
1334         return link_status[r - DP_LANE0_1_STATUS];
1335 }
1336
1337 static uint8_t
1338 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1339                                  int lane)
1340 {
1341         int         s = ((lane & 1) ?
1342                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1343                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1344         uint8_t l = adjust_request[lane>>1];
1345
1346         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1347 }
1348
1349 static uint8_t
1350 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1351                                       int lane)
1352 {
1353         int         s = ((lane & 1) ?
1354                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1355                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1356         uint8_t l = adjust_request[lane>>1];
1357
1358         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1359 }
1360
1361
1362 #if 0
1363 static char     *voltage_names[] = {
1364         "0.4V", "0.6V", "0.8V", "1.2V"
1365 };
1366 static char     *pre_emph_names[] = {
1367         "0dB", "3.5dB", "6dB", "9.5dB"
1368 };
1369 static char     *link_train_names[] = {
1370         "pattern 1", "pattern 2", "idle", "off"
1371 };
1372 #endif
1373
1374 /*
1375  * These are source-specific values; current Intel hardware supports
1376  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1377  */
1378 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1379 #define I830_DP_VOLTAGE_MAX_CPT     DP_TRAIN_VOLTAGE_SWING_1200
1380
1381 static uint8_t
1382 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1383 {
1384         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1385         case DP_TRAIN_VOLTAGE_SWING_400:
1386                 return DP_TRAIN_PRE_EMPHASIS_6;
1387         case DP_TRAIN_VOLTAGE_SWING_600:
1388                 return DP_TRAIN_PRE_EMPHASIS_6;
1389         case DP_TRAIN_VOLTAGE_SWING_800:
1390                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1391         case DP_TRAIN_VOLTAGE_SWING_1200:
1392         default:
1393                 return DP_TRAIN_PRE_EMPHASIS_0;
1394         }
1395 }
1396
1397 static void
1398 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1399 {
1400         struct drm_device *dev = intel_dp->base.base.dev;
1401         uint8_t v = 0;
1402         uint8_t p = 0;
1403         int lane;
1404         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1405         int voltage_max;
1406
1407         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1408                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1409                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1410
1411                 if (this_v > v)
1412                         v = this_v;
1413                 if (this_p > p)
1414                         p = this_p;
1415         }
1416
1417         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1418                 voltage_max = I830_DP_VOLTAGE_MAX_CPT;
1419         else
1420                 voltage_max = I830_DP_VOLTAGE_MAX;
1421         if (v >= voltage_max)
1422                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1423
1424         if (p >= intel_dp_pre_emphasis_max(v))
1425                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1426
1427         for (lane = 0; lane < 4; lane++)
1428                 intel_dp->train_set[lane] = v | p;
1429 }
1430
1431 static uint32_t
1432 intel_dp_signal_levels(uint8_t train_set)
1433 {
1434         uint32_t        signal_levels = 0;
1435
1436         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1437         case DP_TRAIN_VOLTAGE_SWING_400:
1438         default:
1439                 signal_levels |= DP_VOLTAGE_0_4;
1440                 break;
1441         case DP_TRAIN_VOLTAGE_SWING_600:
1442                 signal_levels |= DP_VOLTAGE_0_6;
1443                 break;
1444         case DP_TRAIN_VOLTAGE_SWING_800:
1445                 signal_levels |= DP_VOLTAGE_0_8;
1446                 break;
1447         case DP_TRAIN_VOLTAGE_SWING_1200:
1448                 signal_levels |= DP_VOLTAGE_1_2;
1449                 break;
1450         }
1451         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1452         case DP_TRAIN_PRE_EMPHASIS_0:
1453         default:
1454                 signal_levels |= DP_PRE_EMPHASIS_0;
1455                 break;
1456         case DP_TRAIN_PRE_EMPHASIS_3_5:
1457                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1458                 break;
1459         case DP_TRAIN_PRE_EMPHASIS_6:
1460                 signal_levels |= DP_PRE_EMPHASIS_6;
1461                 break;
1462         case DP_TRAIN_PRE_EMPHASIS_9_5:
1463                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1464                 break;
1465         }
1466         return signal_levels;
1467 }
1468
1469 /* Gen6's DP voltage swing and pre-emphasis control */
1470 static uint32_t
1471 intel_gen6_edp_signal_levels(uint8_t train_set)
1472 {
1473         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1474                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1475         switch (signal_levels) {
1476         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1477         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1478                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1479         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1480                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1481         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1482         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1483                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1484         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1485         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1486                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1487         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1488         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1489                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1490         default:
1491                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1492                               "0x%x\n", signal_levels);
1493                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1494         }
1495 }
1496
1497 static uint8_t
1498 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1499                       int lane)
1500 {
1501         int s = (lane & 1) * 4;
1502         uint8_t l = link_status[lane>>1];
1503
1504         return (l >> s) & 0xf;
1505 }
1506
1507 /* Check for clock recovery is done on all channels */
1508 static bool
1509 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1510 {
1511         int lane;
1512         uint8_t lane_status;
1513
1514         for (lane = 0; lane < lane_count; lane++) {
1515                 lane_status = intel_get_lane_status(link_status, lane);
1516                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1517                         return false;
1518         }
1519         return true;
1520 }
1521
1522 /* Check to see if channel eq is done on all channels */
1523 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1524                          DP_LANE_CHANNEL_EQ_DONE|\
1525                          DP_LANE_SYMBOL_LOCKED)
1526 static bool
1527 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1528 {
1529         uint8_t lane_align;
1530         uint8_t lane_status;
1531         int lane;
1532
1533         lane_align = intel_dp_link_status(link_status,
1534                                           DP_LANE_ALIGN_STATUS_UPDATED);
1535         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1536                 return false;
1537         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1538                 lane_status = intel_get_lane_status(link_status, lane);
1539                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1540                         return false;
1541         }
1542         return true;
1543 }
1544
1545 static bool
1546 intel_dp_set_link_train(struct intel_dp *intel_dp,
1547                         uint32_t dp_reg_value,
1548                         uint8_t dp_train_pat)
1549 {
1550         struct drm_device *dev = intel_dp->base.base.dev;
1551         struct drm_i915_private *dev_priv = dev->dev_private;
1552         int ret;
1553
1554         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1555         POSTING_READ(intel_dp->output_reg);
1556
1557         intel_dp_aux_native_write_1(intel_dp,
1558                                     DP_TRAINING_PATTERN_SET,
1559                                     dp_train_pat);
1560
1561         ret = intel_dp_aux_native_write(intel_dp,
1562                                         DP_TRAINING_LANE0_SET,
1563                                         intel_dp->train_set,
1564                                         intel_dp->lane_count);
1565         if (ret != intel_dp->lane_count)
1566                 return false;
1567
1568         return true;
1569 }
1570
1571 /* Enable corresponding port and start training pattern 1 */
1572 static void
1573 intel_dp_start_link_train(struct intel_dp *intel_dp)
1574 {
1575         struct drm_device *dev = intel_dp->base.base.dev;
1576         struct drm_i915_private *dev_priv = dev->dev_private;
1577         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1578         int i;
1579         uint8_t voltage;
1580         bool clock_recovery = false;
1581         int voltage_tries, loop_tries;
1582         u32 reg;
1583         uint32_t DP = intel_dp->DP;
1584
1585         /*
1586          * On CPT we have to enable the port in training pattern 1, which
1587          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1588          * the port and wait for it to become active.
1589          */
1590         if (!HAS_PCH_CPT(dev)) {
1591                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1592                 POSTING_READ(intel_dp->output_reg);
1593                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1594         }
1595
1596         /* Write the link configuration data */
1597         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1598                                   intel_dp->link_configuration,
1599                                   DP_LINK_CONFIGURATION_SIZE);
1600
1601         DP |= DP_PORT_EN;
1602         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1603                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1604         else
1605                 DP &= ~DP_LINK_TRAIN_MASK;
1606         memset(intel_dp->train_set, 0, 4);
1607         voltage = 0xff;
1608         voltage_tries = 0;
1609         loop_tries = 0;
1610         clock_recovery = false;
1611         for (;;) {
1612                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1613                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1614                 uint32_t    signal_levels;
1615
1616                 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1617                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1618                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1619                 } else {
1620                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1621                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1622                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1623                 }
1624
1625                 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1626                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1627                 else
1628                         reg = DP | DP_LINK_TRAIN_PAT_1;
1629
1630                 if (!intel_dp_set_link_train(intel_dp, reg,
1631                                              DP_TRAINING_PATTERN_1 |
1632                                              DP_LINK_SCRAMBLING_DISABLE))
1633                         break;
1634                 /* Set training pattern 1 */
1635
1636                 udelay(100);
1637                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1638                         DRM_ERROR("failed to get link status\n");
1639                         break;
1640                 }
1641
1642                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1643                         DRM_DEBUG_KMS("clock recovery OK\n");
1644                         clock_recovery = true;
1645                         break;
1646                 }
1647
1648                 /* Check to see if we've tried the max voltage */
1649                 for (i = 0; i < intel_dp->lane_count; i++)
1650                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1651                                 break;
1652                 if (i == intel_dp->lane_count) {
1653                         ++loop_tries;
1654                         if (loop_tries == 5) {
1655                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1656                                 break;
1657                         }
1658                         memset(intel_dp->train_set, 0, 4);
1659                         voltage_tries = 0;
1660                         continue;
1661                 }
1662
1663                 /* Check to see if we've tried the same voltage 5 times */
1664                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1665                         ++voltage_tries;
1666                         if (voltage_tries == 5) {
1667                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1668                                 break;
1669                         }
1670                 } else
1671                         voltage_tries = 0;
1672                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1673
1674                 /* Compute new intel_dp->train_set as requested by target */
1675                 intel_get_adjust_train(intel_dp, link_status);
1676         }
1677
1678         intel_dp->DP = DP;
1679 }
1680
1681 static void
1682 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1683 {
1684         struct drm_device *dev = intel_dp->base.base.dev;
1685         struct drm_i915_private *dev_priv = dev->dev_private;
1686         bool channel_eq = false;
1687         int tries, cr_tries;
1688         u32 reg;
1689         uint32_t DP = intel_dp->DP;
1690
1691         /* channel equalization */
1692         tries = 0;
1693         cr_tries = 0;
1694         channel_eq = false;
1695         for (;;) {
1696                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1697                 uint32_t    signal_levels;
1698                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1699
1700                 if (cr_tries > 5) {
1701                         DRM_ERROR("failed to train DP, aborting\n");
1702                         intel_dp_link_down(intel_dp);
1703                         break;
1704                 }
1705
1706                 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1707                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1708                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1709                 } else {
1710                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1711                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1712                 }
1713
1714                 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1715                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1716                 else
1717                         reg = DP | DP_LINK_TRAIN_PAT_2;
1718
1719                 /* channel eq pattern */
1720                 if (!intel_dp_set_link_train(intel_dp, reg,
1721                                              DP_TRAINING_PATTERN_2 |
1722                                              DP_LINK_SCRAMBLING_DISABLE))
1723                         break;
1724
1725                 udelay(400);
1726                 if (!intel_dp_get_link_status(intel_dp, link_status))
1727                         break;
1728
1729                 /* Make sure clock is still ok */
1730                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1731                         intel_dp_start_link_train(intel_dp);
1732                         cr_tries++;
1733                         continue;
1734                 }
1735
1736                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1737                         channel_eq = true;
1738                         break;
1739                 }
1740
1741                 /* Try 5 times, then try clock recovery if that fails */
1742                 if (tries > 5) {
1743                         intel_dp_link_down(intel_dp);
1744                         intel_dp_start_link_train(intel_dp);
1745                         tries = 0;
1746                         cr_tries++;
1747                         continue;
1748                 }
1749
1750                 /* Compute new intel_dp->train_set as requested by target */
1751                 intel_get_adjust_train(intel_dp, link_status);
1752                 ++tries;
1753         }
1754
1755         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1756                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1757         else
1758                 reg = DP | DP_LINK_TRAIN_OFF;
1759
1760         I915_WRITE(intel_dp->output_reg, reg);
1761         POSTING_READ(intel_dp->output_reg);
1762         intel_dp_aux_native_write_1(intel_dp,
1763                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1764 }
1765
1766 static void
1767 intel_dp_link_down(struct intel_dp *intel_dp)
1768 {
1769         struct drm_device *dev = intel_dp->base.base.dev;
1770         struct drm_i915_private *dev_priv = dev->dev_private;
1771         uint32_t DP = intel_dp->DP;
1772
1773         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1774                 return;
1775
1776         DRM_DEBUG_KMS("\n");
1777
1778         if (is_edp(intel_dp)) {
1779                 DP &= ~DP_PLL_ENABLE;
1780                 I915_WRITE(intel_dp->output_reg, DP);
1781                 POSTING_READ(intel_dp->output_reg);
1782                 udelay(100);
1783         }
1784
1785         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp)) {
1786                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1787                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1788         } else {
1789                 DP &= ~DP_LINK_TRAIN_MASK;
1790                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1791         }
1792         POSTING_READ(intel_dp->output_reg);
1793
1794         msleep(17);
1795
1796         if (is_edp(intel_dp)) {
1797                 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1798                         DP |= DP_LINK_TRAIN_OFF_CPT;
1799                 else
1800                         DP |= DP_LINK_TRAIN_OFF;
1801         }
1802
1803         if (!HAS_PCH_CPT(dev) &&
1804             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1805                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1806
1807                 /* Hardware workaround: leaving our transcoder select
1808                  * set to transcoder B while it's off will prevent the
1809                  * corresponding HDMI output on transcoder A.
1810                  *
1811                  * Combine this with another hardware workaround:
1812                  * transcoder select bit can only be cleared while the
1813                  * port is enabled.
1814                  */
1815                 DP &= ~DP_PIPEB_SELECT;
1816                 I915_WRITE(intel_dp->output_reg, DP);
1817
1818                 /* Changes to enable or select take place the vblank
1819                  * after being written.
1820                  */
1821                 if (crtc == NULL) {
1822                         /* We can arrive here never having been attached
1823                          * to a CRTC, for instance, due to inheriting
1824                          * random state from the BIOS.
1825                          *
1826                          * If the pipe is not running, play safe and
1827                          * wait for the clocks to stabilise before
1828                          * continuing.
1829                          */
1830                         POSTING_READ(intel_dp->output_reg);
1831                         msleep(50);
1832                 } else
1833                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1834         }
1835
1836         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1837         POSTING_READ(intel_dp->output_reg);
1838         msleep(intel_dp->panel_power_down_delay);
1839 }
1840
1841 static bool
1842 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1843 {
1844         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1845                                            sizeof(intel_dp->dpcd)) &&
1846             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1847                 return true;
1848         }
1849
1850         return false;
1851 }
1852
1853 static bool
1854 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1855 {
1856         int ret;
1857
1858         ret = intel_dp_aux_native_read_retry(intel_dp,
1859                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
1860                                              sink_irq_vector, 1);
1861         if (!ret)
1862                 return false;
1863
1864         return true;
1865 }
1866
1867 static void
1868 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1869 {
1870         /* NAK by default */
1871         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1872 }
1873
1874 /*
1875  * According to DP spec
1876  * 5.1.2:
1877  *  1. Read DPCD
1878  *  2. Configure link according to Receiver Capabilities
1879  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1880  *  4. Check link status on receipt of hot-plug interrupt
1881  */
1882
1883 static void
1884 intel_dp_check_link_status(struct intel_dp *intel_dp)
1885 {
1886         u8 sink_irq_vector;
1887         u8 link_status[DP_LINK_STATUS_SIZE];
1888
1889         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1890                 return;
1891
1892         if (!intel_dp->base.base.crtc)
1893                 return;
1894
1895         /* Try to read receiver status if the link appears to be up */
1896         if (!intel_dp_get_link_status(intel_dp, link_status)) {
1897                 intel_dp_link_down(intel_dp);
1898                 return;
1899         }
1900
1901         /* Now read the DPCD to see if it's actually running */
1902         if (!intel_dp_get_dpcd(intel_dp)) {
1903                 intel_dp_link_down(intel_dp);
1904                 return;
1905         }
1906
1907         /* Try to read the source of the interrupt */
1908         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1909             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1910                 /* Clear interrupt source */
1911                 intel_dp_aux_native_write_1(intel_dp,
1912                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
1913                                             sink_irq_vector);
1914
1915                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
1916                         intel_dp_handle_test_request(intel_dp);
1917                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
1918                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
1919         }
1920
1921         if (!intel_channel_eq_ok(intel_dp, link_status)) {
1922                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1923                               drm_get_encoder_name(&intel_dp->base.base));
1924                 intel_dp_start_link_train(intel_dp);
1925                 intel_dp_complete_link_train(intel_dp);
1926         }
1927 }
1928
1929 static enum drm_connector_status
1930 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1931 {
1932         if (intel_dp_get_dpcd(intel_dp))
1933                 return connector_status_connected;
1934         return connector_status_disconnected;
1935 }
1936
1937 static enum drm_connector_status
1938 ironlake_dp_detect(struct intel_dp *intel_dp)
1939 {
1940         enum drm_connector_status status;
1941
1942         /* Can't disconnect eDP, but you can close the lid... */
1943         if (is_edp(intel_dp)) {
1944                 status = intel_panel_detect(intel_dp->base.base.dev);
1945                 if (status == connector_status_unknown)
1946                         status = connector_status_connected;
1947                 return status;
1948         }
1949
1950         return intel_dp_detect_dpcd(intel_dp);
1951 }
1952
1953 static enum drm_connector_status
1954 g4x_dp_detect(struct intel_dp *intel_dp)
1955 {
1956         struct drm_device *dev = intel_dp->base.base.dev;
1957         struct drm_i915_private *dev_priv = dev->dev_private;
1958         uint32_t temp, bit;
1959
1960         switch (intel_dp->output_reg) {
1961         case DP_B:
1962                 bit = DPB_HOTPLUG_INT_STATUS;
1963                 break;
1964         case DP_C:
1965                 bit = DPC_HOTPLUG_INT_STATUS;
1966                 break;
1967         case DP_D:
1968                 bit = DPD_HOTPLUG_INT_STATUS;
1969                 break;
1970         default:
1971                 return connector_status_unknown;
1972         }
1973
1974         temp = I915_READ(PORT_HOTPLUG_STAT);
1975
1976         if ((temp & bit) == 0)
1977                 return connector_status_disconnected;
1978
1979         return intel_dp_detect_dpcd(intel_dp);
1980 }
1981
1982 static struct edid *
1983 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1984 {
1985         struct intel_dp *intel_dp = intel_attached_dp(connector);
1986         struct edid     *edid;
1987
1988         ironlake_edp_panel_vdd_on(intel_dp);
1989         edid = drm_get_edid(connector, adapter);
1990         ironlake_edp_panel_vdd_off(intel_dp, false);
1991         return edid;
1992 }
1993
1994 static int
1995 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
1996 {
1997         struct intel_dp *intel_dp = intel_attached_dp(connector);
1998         int     ret;
1999
2000         ironlake_edp_panel_vdd_on(intel_dp);
2001         ret = intel_ddc_get_modes(connector, adapter);
2002         ironlake_edp_panel_vdd_off(intel_dp, false);
2003         return ret;
2004 }
2005
2006
2007 /**
2008  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2009  *
2010  * \return true if DP port is connected.
2011  * \return false if DP port is disconnected.
2012  */
2013 static enum drm_connector_status
2014 intel_dp_detect(struct drm_connector *connector, bool force)
2015 {
2016         struct intel_dp *intel_dp = intel_attached_dp(connector);
2017         struct drm_device *dev = intel_dp->base.base.dev;
2018         enum drm_connector_status status;
2019         struct edid *edid = NULL;
2020
2021         intel_dp->has_audio = false;
2022
2023         if (HAS_PCH_SPLIT(dev))
2024                 status = ironlake_dp_detect(intel_dp);
2025         else
2026                 status = g4x_dp_detect(intel_dp);
2027
2028         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2029                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2030                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2031                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2032
2033         if (status != connector_status_connected)
2034                 return status;
2035
2036         if (intel_dp->force_audio) {
2037                 intel_dp->has_audio = intel_dp->force_audio > 0;
2038         } else {
2039                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2040                 if (edid) {
2041                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2042                         connector->display_info.raw_edid = NULL;
2043                         kfree(edid);
2044                 }
2045         }
2046
2047         return connector_status_connected;
2048 }
2049
2050 static int intel_dp_get_modes(struct drm_connector *connector)
2051 {
2052         struct intel_dp *intel_dp = intel_attached_dp(connector);
2053         struct drm_device *dev = intel_dp->base.base.dev;
2054         struct drm_i915_private *dev_priv = dev->dev_private;
2055         int ret;
2056
2057         /* We should parse the EDID data and find out if it has an audio sink
2058          */
2059
2060         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2061         if (ret) {
2062                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2063                         struct drm_display_mode *newmode;
2064                         list_for_each_entry(newmode, &connector->probed_modes,
2065                                             head) {
2066                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2067                                         intel_dp->panel_fixed_mode =
2068                                                 drm_mode_duplicate(dev, newmode);
2069                                         break;
2070                                 }
2071                         }
2072                 }
2073                 return ret;
2074         }
2075
2076         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2077         if (is_edp(intel_dp)) {
2078                 /* initialize panel mode from VBT if available for eDP */
2079                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2080                         intel_dp->panel_fixed_mode =
2081                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2082                         if (intel_dp->panel_fixed_mode) {
2083                                 intel_dp->panel_fixed_mode->type |=
2084                                         DRM_MODE_TYPE_PREFERRED;
2085                         }
2086                 }
2087                 if (intel_dp->panel_fixed_mode) {
2088                         struct drm_display_mode *mode;
2089                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2090                         drm_mode_probed_add(connector, mode);
2091                         return 1;
2092                 }
2093         }
2094         return 0;
2095 }
2096
2097 static bool
2098 intel_dp_detect_audio(struct drm_connector *connector)
2099 {
2100         struct intel_dp *intel_dp = intel_attached_dp(connector);
2101         struct edid *edid;
2102         bool has_audio = false;
2103
2104         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2105         if (edid) {
2106                 has_audio = drm_detect_monitor_audio(edid);
2107
2108                 connector->display_info.raw_edid = NULL;
2109                 kfree(edid);
2110         }
2111
2112         return has_audio;
2113 }
2114
2115 static int
2116 intel_dp_set_property(struct drm_connector *connector,
2117                       struct drm_property *property,
2118                       uint64_t val)
2119 {
2120         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2121         struct intel_dp *intel_dp = intel_attached_dp(connector);
2122         int ret;
2123
2124         ret = drm_connector_property_set_value(connector, property, val);
2125         if (ret)
2126                 return ret;
2127
2128         if (property == dev_priv->force_audio_property) {
2129                 int i = val;
2130                 bool has_audio;
2131
2132                 if (i == intel_dp->force_audio)
2133                         return 0;
2134
2135                 intel_dp->force_audio = i;
2136
2137                 if (i == 0)
2138                         has_audio = intel_dp_detect_audio(connector);
2139                 else
2140                         has_audio = i > 0;
2141
2142                 if (has_audio == intel_dp->has_audio)
2143                         return 0;
2144
2145                 intel_dp->has_audio = has_audio;
2146                 goto done;
2147         }
2148
2149         if (property == dev_priv->broadcast_rgb_property) {
2150                 if (val == !!intel_dp->color_range)
2151                         return 0;
2152
2153                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2154                 goto done;
2155         }
2156
2157         return -EINVAL;
2158
2159 done:
2160         if (intel_dp->base.base.crtc) {
2161                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2162                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2163                                          crtc->x, crtc->y,
2164                                          crtc->fb);
2165         }
2166
2167         return 0;
2168 }
2169
2170 static void
2171 intel_dp_destroy(struct drm_connector *connector)
2172 {
2173         struct drm_device *dev = connector->dev;
2174
2175         if (intel_dpd_is_edp(dev))
2176                 intel_panel_destroy_backlight(dev);
2177
2178         drm_sysfs_connector_remove(connector);
2179         drm_connector_cleanup(connector);
2180         kfree(connector);
2181 }
2182
2183 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2184 {
2185         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2186
2187         i2c_del_adapter(&intel_dp->adapter);
2188         drm_encoder_cleanup(encoder);
2189         if (is_edp(intel_dp)) {
2190                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2191                 ironlake_panel_vdd_off_sync(intel_dp);
2192         }
2193         kfree(intel_dp);
2194 }
2195
2196 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2197         .dpms = intel_dp_dpms,
2198         .mode_fixup = intel_dp_mode_fixup,
2199         .prepare = intel_dp_prepare,
2200         .mode_set = intel_dp_mode_set,
2201         .commit = intel_dp_commit,
2202 };
2203
2204 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2205         .dpms = drm_helper_connector_dpms,
2206         .detect = intel_dp_detect,
2207         .fill_modes = drm_helper_probe_single_connector_modes,
2208         .set_property = intel_dp_set_property,
2209         .destroy = intel_dp_destroy,
2210 };
2211
2212 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2213         .get_modes = intel_dp_get_modes,
2214         .mode_valid = intel_dp_mode_valid,
2215         .best_encoder = intel_best_encoder,
2216 };
2217
2218 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2219         .destroy = intel_dp_encoder_destroy,
2220 };
2221
2222 static void
2223 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2224 {
2225         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2226
2227         intel_dp_check_link_status(intel_dp);
2228 }
2229
2230 /* Return which DP Port should be selected for Transcoder DP control */
2231 int
2232 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2233 {
2234         struct drm_device *dev = crtc->dev;
2235         struct drm_mode_config *mode_config = &dev->mode_config;
2236         struct drm_encoder *encoder;
2237
2238         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2239                 struct intel_dp *intel_dp;
2240
2241                 if (encoder->crtc != crtc)
2242                         continue;
2243
2244                 intel_dp = enc_to_intel_dp(encoder);
2245                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2246                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2247                         return intel_dp->output_reg;
2248         }
2249
2250         return -1;
2251 }
2252
2253 /* check the VBT to see whether the eDP is on DP-D port */
2254 bool intel_dpd_is_edp(struct drm_device *dev)
2255 {
2256         struct drm_i915_private *dev_priv = dev->dev_private;
2257         struct child_device_config *p_child;
2258         int i;
2259
2260         if (!dev_priv->child_dev_num)
2261                 return false;
2262
2263         for (i = 0; i < dev_priv->child_dev_num; i++) {
2264                 p_child = dev_priv->child_dev + i;
2265
2266                 if (p_child->dvo_port == PORT_IDPD &&
2267                     p_child->device_type == DEVICE_TYPE_eDP)
2268                         return true;
2269         }
2270         return false;
2271 }
2272
2273 static void
2274 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2275 {
2276         intel_attach_force_audio_property(connector);
2277         intel_attach_broadcast_rgb_property(connector);
2278 }
2279
2280 void
2281 intel_dp_init(struct drm_device *dev, int output_reg)
2282 {
2283         struct drm_i915_private *dev_priv = dev->dev_private;
2284         struct drm_connector *connector;
2285         struct intel_dp *intel_dp;
2286         struct intel_encoder *intel_encoder;
2287         struct intel_connector *intel_connector;
2288         const char *name = NULL;
2289         int type;
2290
2291         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2292         if (!intel_dp)
2293                 return;
2294
2295         intel_dp->output_reg = output_reg;
2296         intel_dp->dpms_mode = -1;
2297
2298         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2299         if (!intel_connector) {
2300                 kfree(intel_dp);
2301                 return;
2302         }
2303         intel_encoder = &intel_dp->base;
2304
2305         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2306                 if (intel_dpd_is_edp(dev))
2307                         intel_dp->is_pch_edp = true;
2308
2309         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2310                 type = DRM_MODE_CONNECTOR_eDP;
2311                 intel_encoder->type = INTEL_OUTPUT_EDP;
2312         } else {
2313                 type = DRM_MODE_CONNECTOR_DisplayPort;
2314                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2315         }
2316
2317         connector = &intel_connector->base;
2318         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2319         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2320
2321         connector->polled = DRM_CONNECTOR_POLL_HPD;
2322
2323         if (output_reg == DP_B || output_reg == PCH_DP_B)
2324                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2325         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2326                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2327         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2328                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2329
2330         if (is_edp(intel_dp)) {
2331                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2332                 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2333                                   ironlake_panel_vdd_work);
2334         }
2335
2336         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2337         connector->interlace_allowed = true;
2338         connector->doublescan_allowed = 0;
2339
2340         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2341                          DRM_MODE_ENCODER_TMDS);
2342         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2343
2344         intel_connector_attach_encoder(intel_connector, intel_encoder);
2345         drm_sysfs_connector_add(connector);
2346
2347         /* Set up the DDC bus. */
2348         switch (output_reg) {
2349                 case DP_A:
2350                         name = "DPDDC-A";
2351                         break;
2352                 case DP_B:
2353                 case PCH_DP_B:
2354                         dev_priv->hotplug_supported_mask |=
2355                                 HDMIB_HOTPLUG_INT_STATUS;
2356                         name = "DPDDC-B";
2357                         break;
2358                 case DP_C:
2359                 case PCH_DP_C:
2360                         dev_priv->hotplug_supported_mask |=
2361                                 HDMIC_HOTPLUG_INT_STATUS;
2362                         name = "DPDDC-C";
2363                         break;
2364                 case DP_D:
2365                 case PCH_DP_D:
2366                         dev_priv->hotplug_supported_mask |=
2367                                 HDMID_HOTPLUG_INT_STATUS;
2368                         name = "DPDDC-D";
2369                         break;
2370         }
2371
2372         /* Cache some DPCD data in the eDP case */
2373         if (is_edp(intel_dp)) {
2374                 bool ret;
2375                 struct edp_power_seq    cur, vbt;
2376                 u32 pp_on, pp_off, pp_div;
2377
2378                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2379                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2380                 pp_div = I915_READ(PCH_PP_DIVISOR);
2381
2382                 /* Pull timing values out of registers */
2383                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2384                         PANEL_POWER_UP_DELAY_SHIFT;
2385
2386                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2387                         PANEL_LIGHT_ON_DELAY_SHIFT;
2388
2389                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2390                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2391
2392                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2393                         PANEL_POWER_DOWN_DELAY_SHIFT;
2394
2395                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2396                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2397
2398                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2399                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2400
2401                 vbt = dev_priv->edp.pps;
2402
2403                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2404                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2405
2406 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2407
2408                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2409                 intel_dp->backlight_on_delay = get_delay(t8);
2410                 intel_dp->backlight_off_delay = get_delay(t9);
2411                 intel_dp->panel_power_down_delay = get_delay(t10);
2412                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2413
2414                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2415                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2416                               intel_dp->panel_power_cycle_delay);
2417
2418                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2419                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2420
2421                 ironlake_edp_panel_vdd_on(intel_dp);
2422                 ret = intel_dp_get_dpcd(intel_dp);
2423                 ironlake_edp_panel_vdd_off(intel_dp, false);
2424
2425                 if (ret) {
2426                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2427                                 dev_priv->no_aux_handshake =
2428                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2429                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2430                 } else {
2431                         /* if this fails, presume the device is a ghost */
2432                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2433                         intel_dp_encoder_destroy(&intel_dp->base.base);
2434                         intel_dp_destroy(&intel_connector->base);
2435                         return;
2436                 }
2437         }
2438
2439         intel_dp_i2c_init(intel_dp, intel_connector, name);
2440
2441         intel_encoder->hot_plug = intel_dp_hot_plug;
2442
2443         if (is_edp(intel_dp)) {
2444                 dev_priv->int_edp_connector = connector;
2445                 intel_panel_setup_backlight(dev);
2446         }
2447
2448         intel_dp_add_properties(intel_dp, connector);
2449
2450         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2451          * 0xd.  Failure to do so will result in spurious interrupts being
2452          * generated on the port when a cable is not attached.
2453          */
2454         if (IS_G4X(dev) && !IS_GM45(dev)) {
2455                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2456                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2457         }
2458 }